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Abstract

Dias, Jonatan de Oliveira; Velloso, Raquel Quadros (Advisor); Nu-
nes, Cassiane Maria Ferreira (Co-Advisor). Rock Physics Mo-
deling Evaluation for Carbonate Reservoirs. Rio de Janeiro,
2017. 126p. Dissertação de mestrado – Departamento de Engenha-
ria Civil e Ambiental , Pontifícia Universidade Católica do Rio de
Janeiro.

Since the 80’s, data-driven approaches have been used for fluids
identification and reservoir characterization of siliciclastic and carbonate
rocks mainly regarding seismic amplitudes analyses. However, techniques
successfully applied for siliciclastic rocks, such as: AVO analysis, seismic
inversions and DHI (Direct Hydrocarbon Indicators) ranking revealed not
have achieved the same outstanding and reliable results for heterogeneous
carbonate rocks. On the other hand, several articles demonstrate that
reservoir characterization workflows with rock physics models embedded
have been reaching a robust success in order to obtain petrophysical
properties and elastic attributes of both rocks, from the seismic and well
logs, in a model-driven approach focused on the reservoirs microstructural
information. In this way, taking into account the importance of applying
rock physics models in the scope of reservoir characterization, two rock
physics models – Xu & Payne and T-Matrix – were applied, compared
and their parameters were stochastically evaluated and optimized in a
Bayesian framework. Through this approach, it was possible to estimate, in
a reliable manner, the elastic attributes of a carbonate reservoir (coquinas)
taking into consideration different kinds of uncertainties. Furthermore,
after the calibration in the well location and validation of both rock
physics models for other wells, sensitivity analyses were conducted in order
to quantitatively understand how the coquinas elastic attributes behave
regarding the variations in the reservoir mineralogical content, pore shapes
and fluids.

Keywords
Rock Physics; Carbonates; Xu & Payne Model; T-Matrix Model
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Resumo

Dias, Jonatan de Oliveira; Velloso, Raquel Quadros; Nunes, Cassi-
ane Maria Ferreira.Avaliação de Modelos de Física de Rochas
para Reservatórios Carbonáticos. Rio de Janeiro, 2017. 126p.
Dissertação de Mestrado – Departamento de Engenharia Civil e
Ambiental , Pontifícia Universidade Católica do Rio de Janeiro.

Desde a década de 80, abordagens data-driven têm sido utilizadas
para identificação de fluidos e caracterização de reservatórios carbonáticos
e siliciclásticos principalmente em relação à análise das amplitudes sísmi-
cas. No entanto, técnicas aplicadas com sucesso para rochas siliciclásticas,
como por exemplo: Análise AVO, inversões sísmicas e IDH (Indicadores
Diretos de Hidrocarbonetos) revelaram não obter o mesmo êxito para re-
servatórios carbonáticos heterogêneos. Em contrapartida, diversos artigos
mostram que fluxos de caracterização de reservatórios com modelos de fí-
sica de rochas incorporados têm alcançado grande sucesso para obtenção
de propriedades petrofísicas e atributos elásticos de ambas as rochas, uti-
lizando sísmicas e well logs, em uma abordagem model-driven, focada nas
características microestruturais do reservatório. Dessa forma, levando em
consideração a importância de se utilizar modelos de física de rochas no
escopo da caracterização de reservatórios, dois modelos de física de rochas –
Xu & Payne e T-Matrix – foram aplicados, comparados e seus parâmetros
foram estocasticamente avaliados e otimizados em um arcabouço Bayesiano.
Através dessa abordagem, foi possível estimar, de uma forma confiável, os
atributos elásticos de um reservatório carbonático (coquinas) levando em
consideração diversos tipos de incertezas. Além disso, após a calibração e
validação de ambos os modelos de física de rochas para diferentes poços,
análises de sensibilidade foram realizadas para compreensão de forma quan-
titativa do comportamento dos atributos elásticos das coquinas em relação
às alterações do conteúdo mineralógico, tipos de poro e fluidos desse reser-
vatório.

Palavras-chave
Física de Rochas; Carbonatos; Modelo de Xu & Payne; Modelo

T-Matrix
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1
Introduction

The oil & gas industry is divided into three major sectors: upstream, mid-
stream and downstream. The exploration and production phases are embedded
in the upstream sector which is responsible for finding and extracting the oil
and gas from the subsurface. Therefore, to reach successful results in the up-
stream, a clear understanding of the sedimentary basins is necessary through
the analyses of the geological structures beneath the surface using geophysical
methods. However, for exploration purposes, there is a task more important
than delimiting the structural and stratigraphical regional frameworks of those
basins through the analyses of 2D and 3D seismic data: The identification and
characterization of possible reservoirs rocks through techniques which not only
estimate but also relate the rocks petrophysical properties to their elastic at-
tributes.

There are two main types of reservoirs rocks: siliciclastics and carbonates.
The carbonate rocks have been reaching a high notoriety in recent years not
only locally in Brazil’s pre salt on the continental margin but also globally. In
fact, approximately 50% of the worldwide production of oil and gas come from
carbonate reservoirs in the sedimentary basins around the world. However,
there are many distinctions between the siliciclastic and carbonate rocks
in several aspects mainly regarding sedimentary facies, diagenetic processes
and pore network (Choquette and Pray (1970) (25), Anselmetti and Eberli
(1993) (), Anselmetti and Eberli (1999) (9) and Eberli et al., (2003) (37)).
Carbonate rocks are highly affected by diagenetic processes – dissolution,
cementation, compaction and others – which are responsible for changing
the primary porosity – interparticle and intercrystaline Wang (1997) (90) –
generated during the rocks initial stages of diagenesis. In this way, due to
the diagenetic processes, the different kinds of sedimentary facies, pore-type
variety and others, some authors created classifications trying to ease the
task of understanding those rocks frameworks. The following works have most
relevance in the matter of carbonates classification: Folk (1959) (39), Folk
(1962) (40), Dunham (1962) (34) and Embry and Klovan (1971) (38).

Lucia (2007) (62) stated that the main reason to conduct a reservoir char-
acterization is to obtain three-dimensional images of petrophysical properties.
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Chapter 1. Introduction 15

However, the new discoveries about the complexity of carbonates framework
led the academia and industry to develop new characterization techniques
because the last ones used to extract important and reliable information of
siliciclastic reservoirs were no longer trustworthy enough to characterize the
required properties for carbonate rocks. Therefore, those techniques have been
developed mainly because of the pore-type variety embedded in the carbon-
ate rocks whereas siliciclastic rocks have a more homogeneous framework. In
fact, some authors have been doing important studies in several aspects to
better understand the relation between pore-type variety, petrophysical prop-
erties and elastic attributes of carbonate rocks, as follows: Agesborg (2007) (6),
Agesborg et al., (2008) (7), Neto and Missagia (2012) (61), Kittridge (2015)
(58), Kumar and Han (2005) (59), Anselmetti and Eberli (1997, 1993, 1999)
(1, , 9), Eberli et al., (2003) (37) and Baechle et al., (2004) (16).

The seismic reflection is the most widely used method in geophysics for
oil and gas exploration. The measurements made in the seismic reflection are
the waves travel times – between the source and the receivers – and the final
outcome – after the application of seismic processing techniques – of this
method is a stacked seismogram, also known as seismic or stacked seismic.
Russel and Hampson (2006) (79) stated that initially, the seismic had the goal
of only identifying geological structures beneath the surface. However, in the
70’s, seismic amplitudes became very important because geophysicists found
out that bright-spots could be a good DHI – Direct Hydrocarbon Indicator.
Bright-spot is a fancy name for amplitudes anomalies which can be analyzed
throughout the seismic. Nonetheless, those inferences through bright-spots
in the seismic were very ambiguous and did not always lead to a successful
indication of hydrocarbons as was expected (Chiburis et al., (1993) (24), Avseth
et al., (2005) (12)).

AVO (Amplitude vs. Offset) analysis has been applied successfully as a
geophysical technique since the 80’s for a more reliable detection of amplitudes
anomalies in the seismic, mainly, distinguishing gas-related amplitude anoma-
lies and other types of anomalies for siliciclastic rocks (Ostrander (1984) (72)).
Moreover, the academia and industry consider the AVO technique as a good
DHI (Direct Hydrocarbon Indicator) – Chiburis et al., (1993) (24) and Mah-
moud et al., (2008) (67) – and there is a great effort to develop applications of
AVO technique for carbonates in recent years (Li et al., (2003), Isaac and Law-
ton (2003), Mahmoud et al., (2008) and Elbaz et al., (2010) (63, 52, 67, 36)).
However, even the authors who work with AVO analysis are used to pointing
out that the method has its limitations for carbonate rocks in the matter of
reliable and confident inferences of fluids and lithological information of those
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heterogeneous rocks (Li et al., (2003) (63), Mahmoud et al., (2008) (67) and
Isaac and Lawton (2009) (52)). As a matter of fact, AVO analysis is a technique
embedded in the so-called data-driven approach as well as seismic inversions
(acoustic and elastic) and other approaches related to machine learning scope,
such as: neural networks, support vector machines and others (Kuroda et al.,
(2016) (57) and Cersosimo et al., (2016) (29)). A data-driven approach can
be described as a technique for reservoir characterization which mostly takes
the seismic information into consideration such as: amplitude, frequency, wave-
length and other seismic attributes together with well logs or even only the
seismic itself (pre stack or post stack).

As quickly as more data-driven techniques are being established, at
least in recent years, a research field has been strongly developed and used
inside of reservoir characterization workflows generating successful results for
estimations of petrophysical properties and elastic attributes of siliciclastic
and carbonate reservoirs from the seismic and well logs: Rock Physics (Avseth
et al., (2005) (12), Draege (2012) (32), Sain et al., (2008) (81), Payne et al.,
(2010) (74), Ruiz and Dvorkin (2007) (78), Xu and Payne (2009) (86), Grana
(2013, 2014) (46, 48), Jakobsen et al., (2003a,b) (54, 53), Spikes (2008) (82)).
Reservoir characterization workflows with rock physics models embedded are
classified as model-driven approaches (Coleou et al., (2006) (77)), because those
workflows through those models not only relate the seismic to well log data in a
"macro" perspective, but also to thin-sections, core samples and other valuable
information – in a micro perspective – that improve the characterization of a
reservoir with a physical reasoning behind the scenes through the link of the
rock elastic attributes and its petrophysical properties.

Avseth et al., (2005) (12) stated that the goal of rock physics research
is to understand and discover the seismic-to-reservoir relations. Rock physics
models have the same meaning of petroelastic models, both of them are
responsible for making the link between elastic attributes and petrophysical
properties of a rock (Grana (2014), Allo et al., (2011) and Codo and Fournier
(2016) (48, 14, 28)). Currently, those models have been used in several research
lines achieving successful results not only in the matter of pore-type character-
ization (Zhao et al., (2013), Artola et al., (2016) (91, 10)), model-based seismic
inversions (Coleou et al., (2006, 2012) and Allo et al., (2011) (77, 27, 14))
and 4D petrophysical seismic inversions (Coleou et al., (2013), Gjerding et
al., (2010), Michou et al., (2013) and Machecler et al., (2009) (26, 47, 69, 70))
but as well as in reservoir engineering (Fahimudin (2009) and Rodrigues et
al., (2012) (41, 80)).
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The petroelastic models are embedded with a set of equations – derived
from the rock physics foundations – which are responsible for making the link
between the petrophysical properties and the elastic attributes for both kind of
rocks: siliciclastic and carbonates. Regarding carbonate rocks, the models try
to simulate – in the most reliable possible way – those rocks heterogeneity. As
it was already addressed previously, the carbonate rocks are highly affected by
diagenetic processes which are responsible for changing the carbonates pore-
network in an abrupt way (Choquette and Pray (1970) (25)). Therefore, those
processes can generate different pore types with several pore shapes as well as
alterations in the carbonate matrix. In fact, the real challenge behind the rock
physics modeling for carbonates is to represent with confidence the pore-type
variety of these rocks through ellipses with different aspect ratios (taking into
consideration an elliptical inclusion, the aspect ratio is the ratio between the
pores minor and major axes of the ellipse).

This dissertation has two main goals. The first one is to address, compare
and evaluate the rock physics models of Xu & Payne and T-Matrix regarding
elastic attributes estimations of a carbonate reservoir (coquinas). However,
unfortunately, inserting different inputs inside of those models, similar outputs
can be obtained. Therefore, in order to handle this non-uniqueness problem
and reliably evaluate the outcomes of both models, their input parameters
were stochastically settled and optimized in a Bayesian framework. In fact,
the Bayesian inference has been a trend in many fields of research (Vrugt
(2016) (84)). Specifically, in the rock physics scope, this approach provided the
possibility to take into consideration the inherent uncertainties regarding the
input parameters as well as the geological uncertainties. Thus, it was possible
to achieve more accurate elastic attributes estimations and evaluation through
the rock physics models despite their non-uniqueness issues. Secondly, after
the parametrization and calibration in the well location, both rock physics
models were extrapolated and validated for other wells and sensitivity analyses
were conducted in order to quantitatively understand how the coquinas elastic
attributes behave regarding the changes in the reservoir mineralogical content,
pore shapes and fluids.
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2
Rock Physics of Carbonate Rocks

The real rocks found in nature are not composed by a homogeneous
material or even a specific mineral. Rocks themselves are complex structures
which are unique in several aspects of geology, sedimentology, diagenetic
processes and others. However, try to understand those rocks is very important,
because some of them can be reservoirs which can store billions of oil barrels.
In fact, that is why rock physics models are relevant: To try to represent a
reality which sometimes is too difficult to understand and make experiments
with, in an attempt to extract valuable information and conclusions about
those models responses. Despite the fact that it is not possible to take into
consideration all the heterogeneities present in a reservoir, the models try to
simplify what is really complicated through assumptions, approximations, and
idealizations and simulate the rocks elastic attributes (Avseth et al., (2005)
(12)).

One of the advantages of using rock physics models is to find a model
which represents reliably the reservoir elastic attributes, hence, it is also
possible to take advantage of the extrapolation power of these models to
compute elastic attributes estimations far away from the well location, for
instance. The process of identifying a rock physics model which fits and/or
represents a reservoir or a dataset is called: rock physics diagnostics (Dvorkin
et al., (2014) (30)), since the models estimate with confidence the reservoirs
elastic attributes, the forward seismic modeling can be done and behaviors
of seismic signatures can be observed changing the initial parameters of the
model. The forward seismic modeling through rock physics models can be an
important tool to reduce uncertainty. In fact, this is a worthy research field
that is beyond the scope of this dissertation, although, the book: Seismic
Reflections of Rock Properties of Dvorkin et al., (2014) (30) gives an extended
review about this subject.

This whole introduction for this chapter is needed to give more insights
of how rock physics models work and how they can be helpful to reduce
uncertainty in the oil exploration process. The goal of rock physics models
is to compute/calculate the rocks elastic attributes through inputs of those
rocks petrophysical properties. However, several factors affect the rocks elastic
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attributes in different manners. Therefore, the main objective of this chapter
is not to make a geological or even sedimentological overview about carbonate
rocks. It is very common to observe such a review describing the grains struc-
ture, facies and other carbonate features. For further understanding of this
geological perspective, there are some classic works approaching this matter:
Folk (1959) (39), Folk (1962) (40), Dunham (1962) (34), Embry and Klovan
(1971) (38), Ahr (2008) (2) as well as another thousands of other papers and
articles addressing this subject. However, the focus is to understand how the
changes in the carbonates framework can alter these rocks elastic attributes.
Mainly, by talking about the changes related to diagenetic processes and
petrophysical properties. For motivation purposes, Figure 2.1 shows the quali-
tative relation between fluids, petrophysical and rock properties with acoustic
velocities in different scenarios.

Figure 2.1: Qualitative relation between fluids, petrophysical and rock proper-
ties with acoustic velocities. Image from Mavko et al., (2009) (68).

In the same way that petrophysical properties affect the acoustic veloci-
ties, diagenetic processes also generate huge changes in the elastic responses.
In the following bullets, some examples of Figure 2.1 are corroborated by some
illustrations of how the rock elastic attributes can be affected in the matter
of clay content, diagenetic processes and presence of different pore types in
the rock framework. Besides that, it will be shown how rock physics models
can be related to diagenetic changes for those examples, where siliclastic and
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carbonate rocks were described following – Avseth et al., (2005) (12) and
Dvorkin et al., (2014) (30):

– Avseth et al., (2005) (12) present a good reason why this kind of subject
– how the rock physics is related to the rock intrinsic properties – should
gain special attention. In their book it is possible to see two examples
of scattered Vp − φ crossplots even for siliciclastic and carbonates rocks.
In order to explain these behaviors, Han (1986) (49) stated that the
scattering problem of siliciclastic samples in Vp−φ crossplots is likely to
be related to the clay content in the rock framework, whereas Anselmetti
and Eberli (1997) (1) conducted a wide experiment with carbonate core
samples and showed that the scattering in Vp − φ crossplots of carbon-
ates was not related to clay content but to different pore shapes in the
carbonate framework.

– In the same way, Dvorkin et al., (2014) (30), in an example in their
book, state that the Raymer-Hunt-Gardner equation (Raymer et al.,
(1980) (75)) was a good fit for some siliciclastic rock samples whereas for
other datasets the fit was not good, despite the fact that, both datasets
had similar mineralogy and had similar amounts of clay, the velocities
were very different. Ultimately, the hypothesis that one dataset was more
affected by the diagenetic process of cementation than the other proved
itself to be plausible.

Diagenetic processes really affect the rocks frameworks and by conse-
quence change their elastic attributes. Quantifying and understanding those
effects are highly important and great effort has been made since the early
80’s as can be seen with the modest and simple aforementioned examples. It
is possible to state that rock physics have been used as an important tool to
physically describe those effects and understand how they change the elastic
attributes of the reservoirs for siliciclastic and even carbonate rocks. Currently,
there are some new approaches, mainly regarding theoretical inclusion mod-
els, which represent the elastic responses of carbonate reservoirs quite well
(Jakobsen (2003a,b) (54) (53) and Xu & Payne (2009) (86)). In this way, in
the next section, the main factors which alter the rock elastic attributes will
be described taking into consideration the several aspects of: lithology, pore
type, porosity, diagenetic processes and pressure. This chapter is limited to the
carbonates point of view, and siliciclastic rocks will not be addressed with the
same attention.
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2.1
Main Factors which affect the Carbonate Rock Elastic Attributes

The remarkable work of Anselmetti and Eberli (1993) () was one of the
precursors to approach control factors of acoustic velocities in carbonate rocks
with such a wide sampling – 210 core samples – from several places, taking into
consideration lithologies which goes from unconsolidated carbonates mud until
totally lithified limestones and making measurements under different confining
and pore-fluid pressures. It was possible through this paper to relate acoustic
velocities measurements to intrinsic features of carbonates, such as: mineralogy,
porosity, pore types and density. Seven were the number of factors pointed
out by the authors which affect the carbonate velocities and each one of those
have different relevance and effects. Despite the fact that a wide number of core
samples were used to conduct this study, it should be important to say that, at
the first sight, the conclusions obtained might be related to the local carbonates
used from the several places. However, more than 10 years later other articles
still confirm almost all the same conclusions obtained by those authors at that
time for different datasets (Eberli et al., (2003) and Kumar and Han (2005)
(37, 59)). One of the conclusions obtained from the aforementioned authors
was that the changes in carbonate acoustic velocities are more directly related
to the rock pore geometries and porosities. In fact, Figure 2.2 delivers a very
good illustration of how the acoustic velocities in carbonate core samples vary
taking into consideration the porosity, pore types and diagenetic processes.

Figure 2.2: Crossplot Vp − φ for different carbonate core samples. Image from
Eberli et al., (2003) (37).
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From Figure 2.2 some immediate conclusions can be quickly obtained:

– There is a high scattering in the crossplot and for one value of porosity
the core samples have very different values of velocity;

– Microporosity and interparticle pores seem to reduce the carbonate rocks
velocity whereas rounded pores or moldic increase the acoustic velocity;

– Samples highly cemented with low porosity also show high values of
velocity. In fact this is very intuitive because low porosity and increase of
cementation make the rock stiffer and consequently increase the acoustic
velocities. Thus, the main point to notice in this bullet, is that the
diagenetic processes also affect the carbonates elastic attributes.

Figure 2.2 brings meaningful insights about carbonates and their rela-
tions with P wave velocities and validates the conclusions of Anselmetti and
Eberli (1993) () in a very didactic manner. In this way, the main conclusion,
for now, is: pore types and diagenetic processes – in Figure 2.2 the cementation
process is approached – change the carbonate elastic attributes. Therefore, in
Figure 2.3, looking at some carbonate thin sections, it is possible to idealize
those pore shapes as representations of ellipses with different formats.

Figure 2.3: Carbonate rocks thin sections illustrating different pore types and
their respective "ideal" representations. Image from Xu and Payne (2009) (86).

Figure 2.3 displays an important insight: carbonates pore types in dif-
ferent thin sections show geometric shapes similar to ellipses with different
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formats or different aspect-ratios (α). However, a bigger question should be
asked: If Wang (1997) (90) already stated that the main pore types discovered
in rocks are interparticle and intercrystalline, why rounded and crack pores
are so wide spread in carbonate thin sections from all over the world? Figures
2.4 and 2.5, illustrate some rounded/moldic pores in carbonate thin sections
regarding different sedimentological carbonate facies:

Figure 2.4: (a) oolithic carbonate sand with interparticle porosity and (b)
diagenetic process of dissolution generating moldic porosity in the carbonate
rock. Image from Eberli et al., (2003) (37).

Figure 2.5: Moldic porosity generated through the diagenetic process of disso-
lution in both thin sections (mudstone and grainstone). Image from Bizotto
(2014) (15).

Both figures illustrate the diagenetic process of dissolution in carbonate
thin sections. Therefore, cementation as well as dissolution diagenetic processes
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(generation of moldic pores) highly affect the carbonate elastic attributes, as
we can see in Figure 2.2, where the presence of rounded pore types are related
to samples with high values of velocity. In fact, different from siliciclastic rocks,
in which the pore space is mostly affected by mechanical compaction in shallow
burial and quartz cementation for around 2 kilometers of depth (Avseth (2000)
(11)), the carbonate rocks are highly affected by diagenetic processes, such
as: dolomitization, cementation, dissolution, silicification and through some
of those, an additional secondary porosity in the carbonates framework is
generated.

It is beyond of this dissertation scope to approach and explain each
one of those diagenetic processes. However, there is a wide range of literature
addressing this subject, such as Bizotto (2014) (15), just to mention one of
them. Taking into consideration that moldic porosity increases the carbonate
acoustic velocities and this kind of porosity came from the changes of the
primary porosity – interpaticle and intercrystalline –, how does the cracks
porosity fits in this context? The genesis and comprehension of the crack
pores in the carbonate rocks framework is as important as the understanding
regarding the presence of moldic and interparticle pores because each one of
them individually and they together have different roles in the changes of the
carbonate elastic attributes as can be seen in Figure 2.6. This figure represents
the template of the Xu and Payne (2009) (86) rock physics model which will
be described in Chapter 3.

Figure 2.6: Distribution of pore types in crossplot Vp − φ in the rock physics
template of Xu and Payne. Image from Xu and Payne (2009) (86).
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Regarding crack pores, in carbonate rocks, they can be represented by
grain-to-grain contacts, microporosity (contacts between smaller particles) and
microfractures. Moreover, it is important to mention that all these kind of
crack porosities are responsible to reduce the carbonate stiffness (Baechle et al.,
(2008) (95)). Regarding crack pores representing microfractures, they are likely
to be generated through fracturing processes and there are two main concerns
to be considered related to effective pressure and pore pressure: (1) Generally,
when the effective pressure increase with depth, the acoustic velocities also
increase, closing the crack pores and making the rock stiffer and (2) on the
other hand, where high anomalous pore-pressure values are found, the crack
pores appear – this is likely to happen because some carbonates have a brittle
behavior – and the acoustic velocities tend to decline because the presence of
crack pores decreases the carbonate stiffness making the rock softer (Wang
(1997) (90)). Microfractures are a special issue for carbonate rocks because
some of those rocks have an intrinsic brittle nature and a fracture system can
be very valuable for tight carbonates and even for tight sandstones in order to
improve those reservoirs permeability (Xu and Payne (2009) (86)).

Nowadays, over-attention has been given to the pores aspect ratios in
carbonate rocks, a plausible explanation for this is that porosity and pore-types
are the main reasons which explain the expressive changes in the carbonate
rocks velocities (Anselmetti and Eberli (1997, 1993, 1999) (1, , 9), Eberli et al.,
(2003) (37), Kumar and Han (2005) (59) and Kittridge (2015) (58)). Moreover,
theoretical inclusion models take into consideration ellipsoidal inclusions with
different aspect-ratios (α) (Xu and Payne (2009) and Jakobsen (2003a,b)
(86, 54, 53)). In spite of that, some authors conducted studies about other
possible geometric attributes in order to better describe the changes in the
carbonates elastic attributes: Weger et al., (2004) and Baechle et al., (2004)
(88, 16).

Weger et al., (2004) (88) address the importance of the following at-
tributes combination: Roundness, PoA (Perimeter over Area) and DOMSize
(Dominant Pore Size) which came from the digital image analysis. In this way,
regarding their study, it was possible to conclude that the parameter PoA
is the most important in the matter of affecting the velocities in carbonates
for a specific porosity whereas DOMSize and roundness have less importance.
On the other hand, some of the conclusions obtained by Baechle et al., (2004)
(16) using DOMSize and P/Apor (Perimeter/Area Ratio) geometric factors for
their dataset were: (1) samples with higher velocities and simple pore struc-
ture were defined by high values of DOMSize and low values of P/Apor and
(2) P/Apor has a direct relation with the tortuosity of the pore system, where
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higher values of P/Apor mean a higher tortuosity of the pore system.
This chapter is a brief review of rock physics of carbonates. The goal

is to show how the carbonate rocks microstructure can affect their elastic
attributes in an illustrative way. It was possible to notice that pore shapes
and porosity are extremely important in the matter of velocity changes in
carbonate rocks and diagenetic processes are also very relevant following the
literature available. Besides that, those two features are somehow linked and
related – e.g. moldic pores and diagenetic process of dissolution. Nevertheless,
despite the fact that the pores aspect-ratios have shown a great value for several
reasons, there are other geometric factors of carbonates that are also relevant
which have been less addressed in a general manner. A much more extended
and detailed explanation about all those aforementioned characteristics which
affect the carbonate elastic attributes can be found in the classic chapter which
Wang (1997) (90) wrote: Seismic Properties of Carbonates Rocks.

Ultimately, during this chapter, it was illustrated several carbonate
sedimentary facies – oolithic grainstones, mudstones and others. However,
during this dissertation, the only carbonate rock which will be addressed
is the coquinas carbonate reservoir. In fact, in a few words, coquinas are
carbonate rocks almost fully composed by shell debris which generally present
a heterogeneous framework and are susceptible to diagenetic processes, such
as: silicification, dolomitization and dissolution (Junior (2016) (43)). Regarding
the Brazilian continental margin, these carbonate rocks represent important
reservoirs because they are not only present in Campos Basin but also in Santos
Basin in the Pre-Salt section together with other carbonate sedimentary facies
(Bizotto (2014) (15)).
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3
Rock Physics Models Review

This chapter is the cornerstone of the whole dissertation. The foundations
of all rock physics models applied during this work will be addressed and
described. However, it is important to make the following consideration:
Despite the fact that one of the dissertation goals is to apply rock physics
models in order to estimate the carbonates elastic attributes, it is relevant
to mention that there are a lot of rock physics models that characterize
different types of rocks: sandstones, shales and carbonates. It is beyond of
this dissertation scope to describe and dive into each one of them, although a
quick review with the due references is necessary.

The chapter two of Avseth et al., (2005) (12) explains in a very didactic
manner the rock physics models for different kind of siliciclastic rocks. In fact,
the most well-known rock physics models for clean sands are: The friable sand
model, the contact sand model introduced by Dvorkin and Nur (1996) (31)
and the constant-cement model – Avseth et al., (2000) (11) – which is a
mathematical combination between the first two models previously mentioned
(Avseth et al., (2005) (12)). In the same way that models for clean sands were
already developed, there are rock physics models for shales, sandy shales, silty
shales, shaly sands, and also for carbonates. As a matter of fact, rock physics
models for source rocks have been highly developed – Guo et al., (2013) (44) –
even with the promise to reduce the uncertainty in AVO analysis (Avseth and
Carcione (2015) (13)) and ultimately: theoretical inclusions models have been
consistently used in rock physics models for carbonates (Xu and Payne (2009)
(86)).

The basic premise of the rock physics models for clean sands is to take
into consideration a regular pack of identical spheric grains which initially has a
critical porosity that decreases due to the cementing or non-cementing particles
or both processes (Dvorkin et al., (2014) (30)). This is especially important
for siliciclastic rocks because under a shallow burial (0-2 km) the porosity loss
in this kind of rock is mostly related to the mechanical compaction by the
overburden layers above the reservoir rock, however, after 2 km of depth, the
quartz cementation is likely to start and this diagenetic process really affects
the elastic attributes of siliciclastic rocks (Avseth et al., (2000) (11)). On the
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other hand, rock physics models related to theoretical inclusions in a solid
matrix – approaches mostly used to characterize carbonate rocks (Jakobsen
(2003a,b) and Xu and Payne (2009) (54, 53, 86)) – work in a different manner.

Inclusion models start with a theoretical elastic solid media with a zero-
porosity endpoint and inclusions with different aspect ratios can be inserted
in the solid matrix. This is a really different approach in comparison to the
first one already mentioned for siliciclastics in the last paragraph, but it is a
really good fit for carbonate rocks because pore shapes in carbonate rocks can
be modeled by ellipses with different aspect ratios (Kumar and Han (2005),
Abreu (2010), Allo et al., (2011) (59, 3, 14)), as described in Chapter 2. Despite
of the comparison already made in the last paragraph and the specifics of each
model for each kind of rock, Dvorkin et al., (2014) (30) warn that granular
rock physics models can also be applied for carbonates pointing out a very
good reason: sometimes granular structure is likely to appear in the carbonate
rocks framework. This statement is partially true, in fact, it is really possible
to apply those rock physics models for carbonates which have an apparent
granular structure, however, it seems that granular rock physics models have
not been used in this manner, such as:

– Allo et al., (2011) (14) applied the rock physics model of Xu and Payne
(2009) (86) and the T-Matrix approach of Jakobsen (54, 53) for oolithic
grainstones in an offshore carbonate field.

– Fournier and Codo (2016) (28) also addressed a non-specified rock
physics model – built specifically for the Santos Basin – for spherulitic
facies in the pre salt’s carbonates.

In terms of classifying rock physics models, Avseth et al., (2005) (12)
divided them into three general classes: Theoretical, Empirical and Heuristic.
For a further and detailed understanding of those, the books Quantitative
Seismic Interpretation - Applying Rock Physics Tools to Reduce Interpretation
Risk written by the aforementioned authors as well as the classic The Rock
Physics Handbook: Tools for Seismic Analysis of Porous Media of Mavko
et al., (2009) (68) are very good choices. However, special attention will be
given to the theoretical rock physics models and their following elastic models:
Inclusion Models, Bounds and Transformations. In fact, theoretical models
are also micromechanical models – Dvorkin et al., (2014) (30) – which try
to represent the elastic, poroelastic or viscoelastic properties of a rock with
reliability and confidence based on the rock microstructural information –
mineralogy, pore aspect ratios and fluids –, however, it is not easy to do such
a task because three major pieces of information are needed to make accurate
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elastic attributes estimations of the rock through theoretical inclusion models
(Mavko et al., (2009) (68)):

1. A quantitative estimation of the volume fraction of the constituents

2. The quantitative elastic moduli information of the phases inside the rock

3. The detailed geometric information of how the phases are settled in the
rock framework relative to each other

When all the aforementioned information is available, it is very suggestive
to use theoretical inclusion models. However, it is not always possible to
obtain an accurate and reliable geometric arrangement of the rock phases as
mentioned in the third item. Nevertheless, Avseth et al., (2005) (12) stated that
there is an elegant way to face this kind of limitation using the "silent heroes" of
rock physics models: The Elastic Bounds (Hashin-Shtrikman (1963) (51) and
Voigt (1919) and Reuss (1929) bounds (83, 76)), which will be better explained
in the next sections of this chapter along with the classic Gassmann’s Relations
(Gassman (1951) (42)); respectively, those models, match in the bounds and
transformation elastic models.

At first glance, the rock physics model of Xu and Payne (2009) (86)
and the T-Matrix approach of Jakobsen (2003a,b) (54, 53) seem to work in
a similar manner because both of them are theoretical inclusion models and
need to follow the three premises already aforementioned. However, they have
some great differences between each other. In this way, trying to clarify the
main differences between these rock physics models and pursuing a good way
to explain how those approaches work, this chapter is divided into two main
sections. The section 3.1 is related to the Xu & Payne petroelastic model with
its foundations and the section 3.2 addresses the T-Matrix rock physics model.

3.1
Xu and Payne Rock Physics Model

The rock physics model of Xu and Payne (2009) (86) for carbonate rocks
is a continuity of the velocity-model of Xu and White (1995) (87) for clastic
rocks. This approach is based on the creation of a theoretical elastic solid
media with cavities/voids generated through inclusion models. Avseth et al.,
(2005) (12) stated that the inclusion models (e.g. the Kuster and Toksoz theory
(1974a,b) (55) (56)) are responsible for inserting ellipsoidal or "penny-shaped"
pore cavities in an elastic solid media which represents the mineralogical
features of the rock. The new insight of the rock physics model of Xu and Payne
is the multiple inclusions through the differential effective medium (DEM)
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model – Berryman (1992) (19) – together with the long-wavelength first-order
theory of Kuster and Toksoz (1974a,b) (55) (56). Liu et al., (2009) (60) at
that same time found out that to make accurate carbonates elastic attributes
estimations through rock physics models, it is necessary a model capable to
handle with different pore types. In this way, the total pore volume of the rock
physics model of Xu and Payne can be divided into four: (1) clay-related pores,
(2) interparticle pores, (3) microcracks, and (4) stiff pores, as follows:

φT = φClay + φCrack + φInterparticle + φstiff (3-1)

– φClay are the pores related to the possible presence of clay or silt in the
carbonate rock taking into consideration the hypothesis of carbonatic-
clastic environment. Xu and White (1995) (87) had already stated that
the proportion of φClay is represented by the following relation:

φClay = VshφT (3-2)

where Vsh is the shale volume and φT is the total porosity of the rock.

– φCrack can be related to fractures in the carbonate rocks and are highly
sensitive to stress. The following equation expresses the relation between
the crack porosity φCrack and the effective stress σe:

φCrack = φInite
−βσe (3-3)

where β is a constant related to the P and S wave velocities measured in
the laboratory and φInit is the initial crack porosity in surface conditions
(σ0 is equal to zero).

– φInterparticle are the most common pore types in sedimentary rocks. In
carbonates rocks, they are generated in the early stages of diagenesis
embedded in the primary porosity – Wang (1997) (90).

– φstiff are related to the moldic and vuggy pores present in the carbonate
rock, most of the time those pores are generated through the diagenetic
process of dissolution.

A special attention should be given for the φstiff and φCrack pore types.
As a matter of fact, inclusion models are perturbed by cavities and when the
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volume of cavities increase, the overall rock elastic stiffness changes; then, the
bulk and shear moduli also vary, altering the P and S wave velocities. This
effect happens because the inclusions in the solid media are more compliant
than the host elastic media itself (Avseth et al., (2005) (12)). Following Liu et
al., (2009) (60), round pores in general, such as: vuggy and moldic pores (φstiff )
tend to make the rock "faster", which means that this kind of pore increases the
rock stiffness whereas flat pores with low aspect ratio – cracks (φCrack) – make
the rock "weaker", which means that the rock stiffness decreases. In fact, that
is the main reason why a scattered behavior is found in crossplots porosity-
velocity in carbonates (Eberli et al., (2003) (37)). Moreover, in carbonate rocks,
huge presence of rounded pores makes the P wave velocity increase whereas
abundance of crack pores makes the P wave velocity decrease. Explaining in a
didactic manner how the pore space of this rock physics model is composed is
really important but for a further comprehension, the four main steps which
compose the rock physics model of Xu and Payne (2009) (86) are described:

1. Generation of the effective solid elastic media through the bounds of
Voigt (1910) (83) and Reuss (1929) (76) together with the mixing law of
Hill (1952) (50) as known as Voigt-Reuss-Hill mean. This mean represents
an average of the carbonate rock mineralogy which has been modeled
(e.g., calcite, dolomite or even quartz).

2. The pore network of the elastic media is created through the DEM model
(Berryman (1992) (19)) based on the Kuster and Toksoz (1974a,b) (55)
(56) theory. It should be important to mention that it is possible to make
different pore type inclusions and for special cases when the rock show
high values of shale content, it is also possible to insert wet clay pores.
Despite of that, the Xu & Payne approach take into consideration dry
inclusions and those voids are fulfilled with fluids later by the Gassmann’s
relations and inclusion based theory. The only exception is the clay
related pores.

3. Apply a fluid mixing law to mix the possible mixture of fluids – brine, oil
and/or gas – which are needed as inputs into the rock physics model, such
as: The mixing fluid law of Wood (1955) (89). Initially, before applying
the fluid mixture relation, the fluids properties are calculated by the well
known Batzle and Wang (1992) (17) equations.

4. Ultimately, use the Gasmmann’s relations for fluid substitution in the
macropores of the elastic media already generated by the first two steps
previously mentioned. Regarding the crack pores, the fluid saturation
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procedure happens through inclusion based-theory, assuming isolated
micropores. In fact, Xu & Payne when used the Gassmann’s equations
in order to saturate the crack pores, their rock physics model tended to
underpredict P wave velocities. That is why the rock physics model of Xu
& Payne works with a mixed system of Gassmann-consistent macropores
and non-Gassmann-consistent microcracks (Xu & Payne (2009) (86)).

Before the explanation about the specifics of each elastic model inside
the Xu and Payne rock physics model, in the next sections of this chapter;
a brief comment will be delivered about the frequency issues inside this ap-
proach. While numbering and explaining the steps to run the Xu and Payne
rock physics model, the application of Gassmann’s fluid substitution was men-
tioned as a solution to transform a high frequency model because of the DEM
approach to a low frequency model. Dvorkin et al., (2014) (30) explains that
DEM modeling with fluid generates elastic attributes in a high frequency per-
spective – simulating ultrasonic laboratory measurements – because this theory
states that there is no connection between the voids/inclusions. However, there
is a simple workflow to run the Xu and Payne rock physics model in a low fre-
quency perspective: Generate the dry effective moduli of the theoretical media
and then make the Gassmann’s fluid substitution to simulate low frequencies
elastic responses. The Gassmann’s relations are capable of doing such a task
because this model strictly works for low frequencies taking into consideration
that the wave induced pore pressures can be dissipated during a seismic period
(Avseth et al., (12)). Nevertheless, Figure 3.1 describes in a very didactic way
the four aforementioned steps of the Xu & Payne model:

Figure 3.1: Diagram of the three steps of de Xu & Payne rock physics model.
Image from Xu and Payne (2009) (86).
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3.1.1
Effective Solid Elastic Media

3.1.1.1
Voigt and Reuss Bounds

Despite the fact that there is a consensus about the Hashin-Shtrikman
bounds being the best choice to represent the elastic behavior of an isotropic
linear elastic media (Avseth et al., (2005) (12) and Mavko et al., (2009) (68)),
the workflow of Xu and Payne uses the Voigt-Reuss bounds as inputs for
the mixing law of Hill. For given values of volume fractions of the mineral
constituents and the respective elastic moduli of each one, The Voigt Upper
Bound, MV , of a mixture of N material phases, can be calculated as (Avseth
et al., (2005) (12)):

MV =
N∑
i=1

fiMi (3-4)

where:

fi is the volume fraction of the ith mineral constituent
Mi is the elastic modulus of the ith mineral constituent

In a similar manner, for given values of volume fractions of the mineral
constituents and the respective elastic moduli of each one, The Reuss Lower
bound, MR, of a mixture of N material phases, can be calculated as:

1
MR

=
N∑
i=1

fi
Mi

(3-5)

fi is the volume fraction of the ith mineral constituent
Mi is the elastic modulus of the ith mineral constituent

The M of Voigt and Reuss bounds can express any modulus: Bulk
Modulus, Shear Modulus and others. However, it is more convenient – and
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makes more sense – to calculate the Voigt and Reuss averages of bulk and
shear moduli: M = K or M = G. In this way, through the bulk and shear
moduli, obtain the others moduli through elasticity relations (Avseth et al.,
(2005) (12)).

3.1.1.2
Voigt - Reuss - Hill Average

In a few words, the Voigt-Reuss-Hill mean is the arithmetical mean of
the Voigt-Reuss bounds, as follows (Hill (1952) (50)):

MV RH = MV +MR

2 (3-6)

This computation is necessary to estimate the average of the minerals
bulk and shear moduli which the rock is composed. This is a very useful
information that can be used inside the rock physics model of Xu and Payne.
Besides that, it is also possible to make a similar approach with the Hashin-
Shtrikman bounds as can be seen in Avseth et al., (2005) (12).

3.1.2
Effective Moduli (Inclusion Methods)

3.1.2.1
Kuster and Toksoz Theory

The approach of Kuster and Toksoz (1974a,b) (55) (56) is based on
the long-wavelength first-order scattering theory. The authors goal with this
article – which is divided into two parts: The first describes the theoretical
formulations (Kuster and Toksoz (1974a) (55)) and the second makes the
validation through experimental results (Kuster and Toksoz (1974b) (56)) –
was to obtain theoretical expressions to estimate the elastic attributes of a
two phase-medium. The basic premises used by them in their models were
two: (1) The wavelengths of the elastic waves which propagated through the
two phase-medium were much higher than the size of a single inclusion and
(2) the multiple scattering effects could be neglected. In this way, following
Mavko et al., (2009) (68), it is possible to obtain the effective moduli K∗

KT

and G∗
KT through the generalized expressions for different kind of pore shapes
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(Berryman (1992) (19)):

(K∗
KT −Km)

(Km + 4
3Gm)

(K∗
KT + 4

3Gm) =
N∑
i=1

xi(Ki −Km)Pmi (3-7)

(G∗
KT −Gm) (Gm + ζm)

(G∗
KT + ζm) =

N∑
i=1

xi(Gi −Gm)Qmi (3-8)

where:

ζ = Gm

6
(9Km + 8Gm)
(Km + 2Gm) (3-9)

Km and Gm are, respectively, the bulk and shear moduli of the matrix
which compose the elastic solid media. The coefficients Pmi and Qmi are
related to the inclusions material i inside of the framework m (geometrical
factors). There are also standards coefficients P and Q for some specific shapes
– aspect ratios – as it can be seen in Berryman (1980) (18) and Mavko et al.,
(2009) (68). However, the geometrical factors P and Q for arbitrary aspect
ratios can be obtained through the following equations:

P = 1
3Tiijj (3-10)

Q = 1
5(Tijij −

1
3Tiijj) (3-11)
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where:

Tiijj = 3F1

F2
(3-12)

Tijij −
1
3Tiijj = 2

F3
+ 1
F4

+ F4F5 + F6F7 − F8F9

F2F4
(3-13)

Therefore:

F1 = 1 + A[32(f + θ)−R(3
2f + 5

2θ −
4
3)] (3-14)

F2 = 1+A[1+3
2(f+θ)−1

2R(3f+5θ)]+B(3−4R)+1
2A(A+3B)(3−4R)[f+θ−R(f−θ+2θ2)]

F3 = 1 + A[1− (f + 3
2θ) +R(f + θ)] (3-15)

F4 = 1 + 1
4A[f + 3θ −R(f − θ)] (3-16)

F5 = A[−f +R(f + θ − 4
3)] +Bθ(3− 4R) (3-17)

F6 = 1 + A[1 + f −R(f + θ)] +B(1− θ)(3− 4R) (3-18)
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F7 = 1 + 1
4A[3f + 9θ −R(3f + 5θ)] +Bθ(3− 4R) (3-19)

F8 = A[1− 2R + 1
2f(R− 1) + 1

2θ(5R− 3)] +B(1− θ)(3− 4R) (3-20)

F9 = A[(R− 1)f −Rθ] +Bθ(3− 4R) (3-21)

Thus, we can obtain the parameters A, B and R as follows:

A = Gi

Gm

− 1 (3-22)

B = 1
3( Ki

Km

− Gi

Gm

) (3-23)

R = (1− 2νm)
2(1− νm) = Gm

Km + 4
3Gm

(3-24)

Finally, the θ and f functions can be obtained for prolate (α < 1) and/or
oblate spheroids (α > 1), respectively:

θ =


α

(α2−1)
3
2

[α(α2 − 1) 1
2 − cosh−1(α)]

α

(1−α2)
3
2

[cos−1(α)− α(1− α2) 1
2 ]

(3-25)

with:
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f = α2

1− α2 (3θ − 2) (3-26)

During this section it was demonstrated how to calculate the geometrical
factors P and Q for arbitrary aspect ratios. However, in the Xu and Payne
approach, for clean carbonate rocks, three different dry pore types with their
volume proportions are considered to generate the porous media in the rock
physics modeling: αstiff , αreference, αcracks or αS, αR, αC and their respective
volume fractions VS, VR, VC . In this way, it is necessary to follow the Keys and
Xu (2002) (85) recipe to calculate the resultant geometrical factors P and Q
when more than one aspect ratio is considered. Therefore, after obtaining the
constants F1 - F9 for each pore type αS, αR, αC , it is possible to compute the
aspect ratio functions Tiijj(αl) and F (αl), as follows:

Tiijj(αl) = Tiijj = 3F1

F2
(3-27)

F (αl) = Tijij −
1
3Tiijj = 2

F3
+ 1
F4

+ F4F5 + F6F7 − F8F9

F2F4
(3-28)

Where:

αl =


αS

αR

αC

 Vl =


VS

VR

VC



Thus, it is possible to calculate the resultant geometric factors P and Q
related to αS, αR, αC and VS, VR, VC , as follows (Keys and Xu (2002) (85)):
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P = 1
3

∑
l=S,R,C

VlTiijj(αl) (3-29)

Q = 1
5

∑
l=S,R,C

VlF (αl) (3-30)

In the next section, it will be possible to understand how those resultant
geometrical factors are inputted in the DEM’s analytical solutions.

3.1.2.2
Differential Effective Medium Theory (DEM)

The differential effective medium theory (DEM) is embedded in the so-
called: Self-consistent approximations of effective moduli. Berryman (1980)
(18) presented an important paper approaching this matter and also proposed
– at that time – a new self-consistent method to calculate elastic attributes of
theoretical elastic media with ellipsoidal inclusions based on the elastic-wave
scattering theory. Some of the conclusions obtained from this article were that
the self-consistent model – for all ellipsoidal shapes – proposed was capable
of satisfying the elastic bounds, such as: Hashin - Shtrikman. Furthermore,
it was also proved that this approach was superior in comparison with other
self-consistent models.

The DEM theory works starting from the endpoint where there is only
the rock matrix without any kind of porosity, and this matrix – K and G –
is computed by some mixture law, such as: Hill’s Average. It means that the
initial condition for φ = 0 is known: The bulk and shear moduli of the matrix
(phase 1) are the mineral bulk and shear moduli already given by the average
of Hill. However, the main point is to calculate the bulk and shear moduli –
K∗ and G∗ – with the desired additional inclusions (phase 2) in the theoretical
matrix, that can be fulfilled or dry. In this way, it is possible to obtain the
effective bulk and shear moduli – K∗ and G∗ –, respectively, through the
following ordinary differential equations (ODEs) system (Berryman (1992)
(19)):
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(1− y)dK
∗(y)
dy

= (K2 −K∗(y))P ∗2 (3-31)

(1− y)dG
∗(y)
dy

= (G2 −G∗(y))Q∗2 (3-32)

Thus, the initial conditions are K∗(0) = K1 and G∗(0) = G1, taking
into consideration that K1 and G1 are the bulk and shear moduli of the rock
matrix (phase 1) whereas K2 and G2 are the bulk and shear moduli of the
inclusions (phase 2). P ∗2 and Q∗2 are the geometrical factors of the inclusions
(phase 2). y is the concentration of the inclusions (phase 2) and for fluid
inclusions or voids: y = φ, as follows:

(1− φ)dK
∗(φ)
dφ

= (K2 −K∗(φ))P ∗2 (3-33)

(1− φ)dG
∗(φ)
dφ

= (G2 −G∗(φ))Q∗2 (3-34)

Therefore, the following analytical solutions of the ordinary differential
equations (ODEs) for dry inclusions are obtained when y = φ following Keys
and Xu (2002) (85):

K(φ) = K0(1− φ)P (3-35)

G(φ) = G0(1− φ)Q (3-36)

In this way, K0 and G0 are the bulk and shear moduli of the rock matrix
and the terms P and Q are the resultant geometrical factors (explained in the
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previous section – 3.1.2.1) for the ODEs and their analytical solutions. The
geometric factors of the inclusions can be obtained through standard equations
for specific pore types (Mavko et al., (2009) (68)) or can be calculated through
the Kuster and Toksoz (1974a,b) (55, 56) relations for any pore type with any
values of aspect ratio (α) as can be seen in section 3.1.2.1.

3.1.3
Fluids

3.1.3.1
Wood’s Mixing Law

Before starting the explanation of how important the mixing law of
Wood (1955) (89) is in the approach of Xu and Payne (2009) (86), it is
necessary to point out that the Batzle and Wang (1992) (17) relations also
play an important role in the matter of fluids calculations in other perspective.
In fact, those relations were validated with a good match regarding labora-
tory measurements (Vasquez and Dillon, (1993) (45)). Therefore, through
the equations of Batzle and Wang, accurate values of the elastic moduli of
fluids: brine, oil and gas, can be obtained regarding the variations of pressure,
temperature, salinity among others. In spite of this, when the fluids in situ
information is available, such as: Bulk modulus (Kfl) and density (ρfl) and it
is necessary to make a fluid mixture, it is very suggestive to use the Wood’s
Mixing Law to calculate the P wave acoustic velocity of the mixture (Vfl), as
follows:

Vfl =
√
Kfl

ρfl
(3-37)

Therefore, this equation is valid when the wavelength is much higher
than the heterogeneities present in the rock itself. Thus, the bulk modulus
can be calculated through the Reuss (1929) (76) bound/average whereas the
density can be calculated with the Voigt (1910) (83) bound/average:

1
Kfl

=
N∑
i=1

fi
Ki

(3-38)

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



Chapter 3. Rock Physics Models Review 42

ρfl =
N∑
i=1

fiρi (3-39)

Where fi is the fraction of each kind of fluid and Ki and ρi are the
respective bulk modulus and density of each fluids phase.

3.1.3.2
Gassmann’s Relations

The Gassmann’s relations (Gassmann (1951) (42)) have a simple but
noble and important goal: How the elastic moduli of a dry or saturated rock
changes if the fluids are added or changed/replaced in the rock framework.
This is the fluid substitution problem that can be expressed by the following
equation:

Ksat

Km −Ksat

= Kdry

Km −Kdry

+ Kfl

φ(Km −Kfl)
(3-40)

And after some manipulations (Mavko et al., (2009) (68)):

Ksat = Kdry +
(1− Kdry

Ksat
)2

φ
Kfl

+ 1−φ
Km
− Kdry

K2
m

(3-41)

Where:

Gsat = Gdry (3-42)
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ρsat = (1− φ) ∗ ρm + φ ∗ ρfl (3-43)

Where Ksat is the effective bulk modulus of the rock with the saturating
fluid, Kdry is the effective bulk modulus of the dry rock, Kfl is the effective
bulk modulus of the saturating fluid (pore fluid), Km is the effective bulk
modulus of the matrix or mineral which the rock is composed of, Gdry is the
effective shear modulus of the dry rock, Gsat is the effective shear modulus
of the saturated rock, φ is the porosity of the rock, ρsat is the density of the
saturated rock, ρm is the matrix density and ρfl is the pore fluid density. For
a further understanding about the Gassmann’s relations, it is worthy to say
that Avseth et al., (2005) (12) make a detailed and didactic fluid substitution
analysis regarding this rock physics model addressing its pitfalls, cautions and
limitations.

It is important to remind that the Gasmmann’s relations for fluid
substitution are applied in the macropores of the elastic media in the Xu
& Payne workflow. Regarding the crack pores, the fluid saturation procedure
happens through inclusion based-theory, assuming isolated micropores. In fact,
Xu & Payne when used the Gassmann’s equations in order to saturate the crack
pores, their rock physics model tended to underpredict P wave velocities. That
is why the rock physics model of Xu & Payne works with a mixed system of
Gassmann-consistent macropores and non-Gassmann-consistent microcracks
(Xu & Payne (2009) (86)).

3.2
T-Matrix Rock Physics Model

The T-Matrix approach of Jakobsen et al., (2003a,b) (54, 53) is based
on physically transparent integral equation methods (Green’s Function Tech-
niques) which have a strong and heavy mathematical foundation behind the
scenes that enables to work with the effects of fluid flow between cavities when
calculating the elastic media attributes. Moreover, it is also possible to make
inclusions of minerals or solid constituents and connected or disconnected cav-
ities with different shapes, orientations and spacial distributions. This visco-
elastic effective medium theory in comparison with other approaches, has a
special advantage: the T-Matrix approach delivers a frequency-dependent in-
clusion model that takes into consideration all frequencies – infrasonic, sonic
and ultrasonic –, in an attempt to cover all the flaws related to frequency
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of others rock physics models. On the other hand, the Kuster and Toksoz
(1974a) (55) approach works as a high-frequency theoretical inclusion model
that takes into consideration isolated pores as well as the DEM theory of
Berryman (1992) (19), whereas the rock physics model of Xu and Payne works
for low-frequencies due to the presence of Gassmann’s relations inside of the
model workflow. Nevertheless, during this chapter, it was possible to notice
that there is a variety of rock physics models and plenty of differences can be
found among each one of them. In this way, one of the dissertation goals is
to evaluate the elastic attributes estimations of the rock physics models of Xu
and Payne and T-Matrix. Therefore, between these two rock physics models,
the main differences and similarities are described, as follows:

– Both of them can model the porous media of the initial composite
through ellipsoidal inclusions of aspect ratio (α)

– In terms of frequency, naturally, the rock physics model of Xu and Payne
would be a high frequency rock physics model because the inclusions are
made through the DEM theory grounded in the long-wavelength first-
order approach of Kuster and Toksoz. However, due to the Gassmann’s
fluid substitution, a low-frequency model prevails. On the other hand,
the rock physics model of Jakobsen et al., (2003a,b) (54, 53) is not
based on the Gassmann’s relations and takes into consideration all the
frequencies needed (infrasonic, sonic and ultrasonic). In fact, that is
one of the most prominent advantages of the T-Matrix model over the
Xu & Payne model taking into consideration the relevance of elastic
attributes changes regarding the frequency in the quantitative seismic
interpretation scope.

– For both rock physics models, inclusions with different pore shapes
can be made. However, through the T-Matrix rock physics model, it
is possible to build the pore network of the elastic solid media with
connected and/or disconnected pores. In this way, it is possible to
simulate a family of pores as connected and another family of pores as
disconnected, in the same pore network, inside of the theoretical elastic
media. Therefore, when all the pores in the T-Matrix approach are
connected, it is possible to simulate a low frequency model where the
wave induced pore pressures can be dissipated during the seismic period
whereas when all the pores are disconnected a high frequency model is
simulated. On the other hand, in the Xu and Payne approach, it was
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proven when the Gassmann’s relations were applied in crack pores, the
wave induced pore pressures could not equilibrate in a seismic period.
Thus, this issue led a violation one of the Gassmann’s assumptions. In
this way, the rock physics model of Xu and Payne takes into considera-
tion macropores as perfectly connected and microcracks as disconnected.

– The T-Matrix approach only uses inclusion based theory in order to
saturate the dry elastic media. On the other hand, the Xu & Payne
rock physics model uses the Gassmann’s relations in order to saturate
macropores and inclusion based theory to saturate crack pores, as it was
possible to see in the section 3.1.

In the thesis of Agesborg (2007) (6) the T-matrix approach of Jakobsen et
al., (2003a,b) (54, 53) was applied specifically for carbonates rocks in different
manners. Four articles came up from the thesis and special attention should
be given to the following: Agesborg et al., (2008) and Agesborg et al., (2009)
(7, 5). In both articles, dual porosity systems to investigate velocities behaviors
in carbonate rocks were addressed. Despite the fact that it is likely to assume
that the dry and saturated shear moduli are equal for a given rock since the
fluids have no shear modulus, Agesborg et al., (2008) (7) discovered that shear
strengthening may occur in carbonate rocks due to the squirt flow effects
generated by wave-induced fluid flow events. This conclusion corroborates
analyses previously made by other authors who state that shear weakening
or strengthening can happen in carbonate rocks. Nevertheless, Agesborg et
al., (2009) (5) used the T-matrix approach to investigate the fluids effects in
velocities of carbonate rocks and then, a comparison with the Gassmann’s
relations was made showing that the deviations varied from close to zero
until five percent. Finally, after this brief description and introduction, part
of the mathematical formalism of the frequency-dependent inclusion model
of Jakobsen et al., (2003a,b) (53) will be presented. In this way, during this
chapter, only the most important equations will be addressed in order to
understand how this rock physics model works in a general manner and for
further details, it is advisable to study the articles which are the foundations
of this section.

3.2.1
T-Matrix Mathematical Formulations

The T-Matrix approach of Jakobsen et al., (2003a,b) (54, 53) is a
frequency-dependent theoretical inclusion model which takes into consider-
ation a homogeneous elastic solid media embedded of inclusions. When the
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inclusions have the same shapes and orientation they are divided in families
labeled r. In this way, following the mathematical arrangement of Agesborg
et al., (2005) (4), the stiffness tensor C∗ of the elastic solid media can be
described in the following manner:

C∗ = C(0) + C(1) : (I4 + C−1
1 : C2)−1 (3-44)

where:

C1 =
N∑
r

v(r)t(r) (3-45)

C2 =
N∑
r=1

N∑
s=1

v(r)t(r)G
(rs)
d t(s)v(s) (3-46)

Therefore, C(0) is the fourth-rank stiffness tensor of the homogeneous
elastic media, I4 is the identity for fourth-rank tensors, v(r) in the concen-
tration of inclusions of a family r, t(r) is the t-matrix of the inclusions of
the family r, G(rs)

d is obtained through the strain Green’s function over a
characteristic ellipsoid. Nevertheless, the T-Matrix formulation for an isolated
inclusion of a family/type r, dependent on a frequency w, can be written as:

t(r)(ω) = (C(r)(ω)− C(0)) : [I4 −G(r) : (C(r)(ω)− C(0))]−1 (3-47)

Where the G(r) is a fourth-rank tensor which depends on C(0) and the ge-
ometric details – shape/orientation/aspect ratio – of the family of inclusions r.

If:
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C(r) = w = 0

t(r) = t
(r)
d

Thus, it is possible to conclude that a dry inclusion has been modeled
in the elastic media and the t-matrix of a dry inclusion is obtained (t(r)d ).
On the other hand, the t-matrix formulation for connected inclusions in the
theoretical elastic solid media can be calculated as:

t(r) = t
(r)
d + ΘZ(r) + iωτκfX

(r)

1 + iωγ(r)τ
(3-48)

Thus:

S(0) = (C(0))−1 (3-49)

X(r) = t
(r)
d : S(0) : (I2 ⊗ I2) : S(0) : t(r)d (3-50)

Z(r) = t
(r)
d : S(0) : (I2 ⊗ I2) : S(0) :

 Nc∑
n=1

v(n)t
(n)
d

1 + iωγ(n)τ

 (3-51)

Θ = κf

(1− κfS(0)
uuvv)

 Nc∑
n=1

v(r)t
(r)
d

1 + iωγ(r)τ

 + κf

 Nc∑
n=1

v(r)(K(r)
d

)uuvvt
(r)
d

1 + iωγ(r)τ

− ikukvΓuvκf
ηfω

−1

(3-52)
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And:

γ(r) = 1 + κf (K(r)
d − S(0))uuvv (3-53)

K
(r)
d = (I4 −G(r) : C(0))−1 : S(0) (3-54)

Where κf and ηf are the fluid bulk modulus and viscosity, respectively,
I2 is a second rank tensor, ku and kv are the components of the wave number
vector, Γuv is the rock permeability tensor and τ is the relaxation time constant.
Following Jakobsen et al., (2003a,b) (53), the relaxation time constant (τ) is
empirically calculated and depends on several properties, such as: pore shapes,
quantity of cracks, fluid information and matrix mineralogy. Agesborg (2007)
(6) makes a brief but good and didactic review about the relaxation constants
in the literature approaching the specifics of each one and when each equation
should be used depending on the information available.

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



4
Bayesian Inference Theory

The stochastic or probabilistic approach through the Bayesian Inference
has been a trend in many fields of research (Vrugt (2016) (84)). Therefore,
regarding geophysical applications, in the earlier 2000’s, Loures (2001) (21)
already applied this approach for reservoir characterization purposes linking
well log and seismic data to rock physics models (Loures and Moraes (2002)
(20)). Nevertheless, in the recent years, this subject has not been stressed
enough and the Bayesian framework has been posed in many ways trying
to better approach different problems regarding not only the application in
rock physics models and seismic reservoir characterization workflows (Grana
(2016) (66) and Figueiredo et al., (2017) (65)) but also in other fields, such
as: Hydrology, Engineering and others (Scharnagl et al., (2011), Scharnagl
et al., (2011) and Vrugt (2016) (23, 22, 84)). As a matter of fact, Vrugt
et al., (2008a, 2009a) (35, 33) developed a MATLAB toolbox that is based
on the Markov Chain Monte Carlo (MCMC) simulation and the DiffeRential
Evolution Adaptive Metropolis (DREAM) algorithm which has been used in
several research fields and provides means to solve posterior sampling problems
through the Bayesian inference using MCMC simulations.

The possibility of posing the rock physics models described in Chapter 3
in a Bayesian framework is paramount in order to obtain a better evaluation
of those models inputs and outputs which are not represented anymore by
deterministic values, but by probability density functions (PDFs). During this
work it will be possible to see that both rock physics models require a set of
input parameters which are very uncertain. Likewise, the outputs tend to be
also uncertain. In this way, using different inputs inside of rock physics models,
similar outputs can be obtained. Therefore, to address and better understand
this non-uniqueness problem, in the evaluation of both rock physics models,
the uncertainties related to the measurements needed as inputs as well as
the geological uncertainties due to indirect measurements will be settled in
a Bayesian framework. Thus, it will be possible to achieve a more reliable
evaluation of both rock physics models regarding elastic attributes estimations
of the coquinas reservoir.
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This chapter goal is not to make a detailed and complete review about
Bayesian Inference, Monte Carlo Simulation and Markov Chains. In fact, there
is extensive literature approaching all those subjects and it would be too ex-
haustive to describe the foundations of each one during this chapter (e.g.
Vrugt (2016) (84) and Brooks (1998) (73)). However, the basic concepts of
the Bayesian Inference (Inverse Modeling) will be described and the DREAM
algorithm will be used exclusively for the inference of the rock physics models
posterior distributions of parameters – despite its multiple applications. There-
fore, during the next sections, firstly, some basic concepts regarding random
variables and probability density functions will be presented (Grana (2011)
(92)). After this introduction, the basic theory of Bayesian inference with the
explanation of the main components needed to compute the posteriors pa-
rameters distributions will be also disclosed (Vrugt (2016) (84)). Finally, some
metrics of accuracy will be quickly described and defined. In fact, those metrics
will be extensively used in the Chapter 6 in order to quantitatively evaluate
the performance of the rock physics models of Xu & Payne and T-Matrix.

4.1
Random Variables and Probability Density Functions - PDFs

It is very important to introduce, before the explanation of the Bayes’
Theory itself, some basic concepts regarding random variables and probability
density functions. In fact, a quick review about those terminologies is needed
because they will be the cornerstone in order to better understand the next
section and the Chapters 5 and 6. Therefore, a variable will be classified as
random if its value is somehow uncertain, varying in some order and there is
not a specific or a deterministic value that can represent this variable. The
following illustration is very useful for a better comprehension of what would
be a random variable in comparison with a deterministic value:

– Take into consideration that a rock physics model has been used to
calculate the elastic attributes of a carbonate reservoir. Some of the
inputs needed for this modeling are the mineral bulk and shear moduli.
Thus, the deterministic feeling suggests to assign deterministic values
for K and G that can be easily obtained from the literature knowing the
composition of the reservoir matrix (e.g. 100% Calcite). However, there
are several values of calcite bulk and shear moduli in the literature as
can be seen in Table 5.1. Among those values, which would be the right
one?
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In case that you want to represent all those values when inserting the
inputs in the rock physics modeling, it is possible to generate two continuous
random variables K and G which will be represented by their respective
probability density functions (PDFs). There are several PDFs available in the
literature, during this dissertation only the Gaussian and Uniform distributions
will be approached. In this way, taking into consideration a continuous random
variable Θ, its PDF can be defined as follows:

fΘ(θ)dθ = P (θ < Θ 6 θ + dθ) (4-1)

Where fΘ(θ) is a probability distribution function which computes the
probability of any interval of the random variable when integrated, whereas dθ
is the differential element of infinitesimal length. However, this interval must
be in the range: θ < Θ 6 θ + dθ. In this way, it is possible to calculate the
probability of a set of values in Θ between the interval [a, b], in the following
manner:

P (a < Θ < b) =
∫ b

a
fΘ(θ)dθ (4-2)

As was already mentioned there are several types of standard continuous
and discrete random variables, such as: Gaussian, Beta, Gamma and others.
It is out the scope of this dissertation address each one of them, however,
the Gaussian distribution which will be used in the following chapters to
represent the prior distributions of the rock physics models parameters should
be presented (it is important to highlight that in the Bayesian framework we
used truncated versions of the original Gaussian distribution). Therefore, the
Gaussian distribution is defined as follows:

fΘ(θ) = 1√
2πσ2

Θ

exp
− 1

2
(θ − µΘ)2

σ2
Θ

 (4-3)
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Despite the fact that a random variable is represented by its PDF,
sometimes, it is possible to define the random variable with some parameters,
such as: Mean (µΘ) and Variance (σ2

Θ). Both of them can be computed in the
following manner:

µΘ =
∫
θfΘ(θ)dθ (4-4)

σ2
Θ =

∫
(θ − µΘ)2fΘ(θ)dθ (4-5)

In fact, the most probable value that a random variable can be assigned is
the mean (µΘ) whereas the variance (σ2

Θ) indicates how scattered the Gaussian
distribution may be. Finally, there is a very useful notation to represent a
random variable as a Gaussian distribution that will be widely used during
this dissertation:

Θ ∼ N (µΘ, σ
2
Θ) (4-6)

4.2
Bayesian Inference

The Bayesian Inference is grounded in the Bayes’ Theorem which is also
known as the inverse probability method. Therefore, this approach can be
applied in a rock physics inverse problem in the following manner:

Φ← R(θ) + ε (4-7)

Where Φ = {φ1, ..., φn} is a vector of modeled values provided by the
rock physics model, θ = {θ1, ..., θn} a vector of the models parameters and
ε = {ε1, ..., εn} is a vector which not only stores observational errors but
also errors related to the fact that the rock physics model R(·) can be
different from the reality: G(θ) for the parameters θ. Where G(θ) is some
environmental system, such as: the carbonate reservoir which has been studied
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in this dissertation (Vrugt (2016) (84)). In this way, posing the rock physics
inverse problem in a Bayesian framework, it is possible to infer the posterior
distribution of parameters p(θ|Φ̃) taking into consideration the measurements
Φ̃ = {φ̃1, ..., φ̃n}, as follows:

p(θ|Φ̃) = p(θ)p(Φ̃|θ)
p(Φ̃)

(4-8)

Taking into consideration the following parameters space: θ ∈ Θ ∈ Rd.
p(θ) is the prior distribution of parameters, L(θ|Φ̃) ≡ p(Φ̃|θ) means the
likelihood function and p(Φ̃) 6= 0 has a normalization property in order to
reach a unit computing the integral of p(θ|Φ̃). In spite of all this, p(Φ̃) is
not required to compute the posterior distribution of parameters through the
Bayesian inference. In fact, all statistical inferences related to p(θ|Φ̃) can be
made without normalized terms, thus:

p(θ|Φ̃) α p(θ)L(θ|Φ̃) (4-9)

The prior parameters distribution p(θ) can be built based on some prior
knowledge about the parameters which will be inputted in the rock physics
model. The prior knowledge can be obtained from theoretical information, data
previously acquired and interpreted or some qualitative information from the
literature (Loures (2001) (21)). As a matter of fact, the prior distribution p(θ)
can be informative (non-flat) or non-informative (flat/uniform). The latter
happens when some parameter θ must be limited in an interval [a, b] and
there is not any prior knowledge about the specified parameter, thus, the prior
distribution would be described in the following manner:

p(θ) =


1
b−a for a 6 θ 6 b,

0 for θ < a or θ > b

(4-10)
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A flat distribution leads the posterior parameter distribution vector
p(θ|Φ̃) to be proportional to its likelihood function, as follows:

p(θ|Φ̃) α p(θ)L(θ|Φ̃) (4-11)

p(θ|Φ̃) α L(θ|Φ̃) (4-12)

On the other hand, the prior distribution of the parameters can be
informative and non-flat represented by different kind of distributions, such
as: Gaussian, Beta, Gamma, Exponential and others. In that case, the pos-
terior parameters distribution will be equivalent to the product of the prior
distribution and the likelihood function as it was already described in the
Equation 4-9. Thus, it is possible to state the likelihood function represents the
summary between the differences of the rock physics model outcomes Φ(θ) and
the respective observations Φ̃ from the environmental system G(θ). Therefore,
assuming the error residuals being independent and normally distributed,
then, the likelihood function can be written as:

L(θ|Φ̃) =
n∏
i=1

1√
2πσ2

i

exp
− 1

2

 φ̃i − φi(θ)
σi

2 (4-13)

Where σi and σ2
i are the standard deviation and variance estimations

of the error measurements of the ith observation, respectively. Ultimately, as
was already mentioned, for informative prior parameters distributions (non-
flat) p(θ), the posterior parameters distribution p(θ|Φ̃) is the equivalent of
the product between the prior p(θ) and the likelihood function L(θ|Φ̃) as
can be seen in Equation 4-9. Therefore, sometimes, the posterior parameters
distributions can be obtained through analytical manners. However, it is not
always possible to accomplish such a task, such as when the models are non-
linear, the posterior distribution p(θ|Φ̃) can not be reached analytically. In this
way, following Scharnagl et al., (2011) (23), in order to solve this problem, it
is necessary to use sampling methods to reach a posterior distribution. In fact,
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Markov Chain Monte Carlo simulation, also known as MCMC simulation is
the most common of those methods.

It is out of the scope of this chapter describe all the theory behind MCMC
simulation and the Metropolis algorithm. There is a wide range of literature
approaching those subjects and for a complete and further explanation the
following articles are very useful: Brooks et al., (1998) (73), Metropolis et
al., 1953 (64) and Vrugt (2016) (84). The latter being the manual of the
DREAM algorithm which will be used to run the Bayesian framework in order
to evaluate the parameters of the rock physics models described in Chapter 3.
In fact, this approach of the DREAM framework shows plenty of advantages
in comparison with other techniques, all of them can be analyzed in the work
of Vrugt (2016) (84).

4.3
Metrics to Measure the Models Accuracy

One of the main points of this work is to evaluate how accurate both rock
physics models approached in this dissertation are regarding elastic attributes
estimations for carbonate reservoirs. In this way, it is necessary to use metrics
to measure the errors of the models outputs and evaluate how accurate the
predictions provided by the models are in comparison with the measurements
available. Therefore, the following metrics will be extensively used in Chapter
6 in order to evaluate the accuracy of the rock physics models of Xu &
Payne and T-Matrix: Mean absolute error (MAE), Root mean squared error
(RMSE), Mean error (ME) and Relative error (RE). Each one of them can be
defined by the following equations:

Mean Absolute Error:

MAE = 1
n

n∑
i=1
|φ̃i − φi(θ)| (4-14)

Root Mean Squared Error:

RMSE =
√√√√ 1
n

n∑
i=1

(φ̃i − φi(θ))2 (4-15)
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Mean Error:

ME = 1
n

n∑
i=1

|φ̃i − φi(θ)|
φ̃i

(4-16)

Relative error:

RE = φ̃i − φi(θ)
φ̃i

(4-17)

Where n is the counter, φ̃i represents the measurements and φi(θ)
represents the models outcomes. Therefore, the metrics MAE, RMSE and ME
are classified as negatively-oriented scores, and this term means that higher
values signify low accuracy and lower values better accuracy. Besides that,
the relative error (RE) is used to build the histograms between the responses
generated through the models and the measurements in Chapter 6.
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5
Methodology

In this chapter the methodology, dataset and tools used during this
dissertation will be described. Special attention will be given to the parameters
chosen to be stochastically treated and represented by prior distributions
in the Bayesian framework. As a matter of fact, not all input parameters
of both rock physics models were evaluated and optimized in the DREAM
algorithm. The approach of applying the Bayesian framework has the goal
of evaluating and optimizing the input parameters of both rock physics
models in order to reliably reach the best elastic attributes estimations
of the carbonate reservoir possible. However, taking into consideration the
uncertainties related to the input parameters, it is very important to highlight
that some caution is needed regarding the choice of the prior distributions
which will be inputted in the Bayesian framework. In this way, the foundations
of each prior parameter distribution will be explained, supported and justified
following all the geological information in the dataset and also in the literature.
Besides that, during this chapter, in section 5.2, not only the stochastic
inputs addressed in the Bayesian framework will be explained but also the
deterministic ones which were not evaluated stochastically. Furthermore, in
section 5.1, it will be possible to describe the tools used in this dissertation
and also understand the challenges faced regarding the dataset used, such as:
Quality control of the well logs and the thin sections images.

5.1
Dataset, Data Quality Control and Tools

5.1.1
Quality Control of Well Logs and Core Samples Measurements

Three well log suites from three different wells were available for this
dissertation. Most of them are composed by the following well logs: DT (Sonic),
GR (Gamma Ray), RHOB (Bulk Density), NPHI (Neutron Porosity), PHIT
(Total Porosity), PHIE (Effective Porosity), Sw (Water Saturation), CALI
(Caliper), Vsh (Shale Content) and ILD (Resistivity). None of those well logs
suites had the DTS well log which is related to the S wave velocity as well as
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the DT log (Sonic) which is related to the P wave velocity. In fact, the basic
well log suites are composed by NPHI, DT, ILD, RHOB, GR and CALI. Other
well logs, such as: Vsh, PHIE and Sw are generated through the logs inside the
basic suite. In the same way, 22 thin sections images were used to make the
pores aspect ratios measurements with their respective volume fractions, all of
them were extracted from the work of Bizotto (2014) (15).

Regarding well log analyses, the first challenge was to separate the
coquinas from the mudrocks and shales. In fact, it is possible to notice in
the work of Bizotto (2014) (15) that is very common to observe that coquinas
reservoirs are interleaved with mudrocks and shales. Therefore, the mudrocks
and shales were cut off from the well logs. Moreover, another important well
log that supported the analysis and delimitation of coquinas was the caliper
log (CALI). In short, the caliper log measures the diameter of the well hole
and through the analysis of those measurements it is possible to try to identify
well washouts or even anomalous values of the hole diameter due to drilling.
Several times high values of caliper were discovered in the well log suites,
indicating washouts and each one of those measurements and the related well
logs measurements at the same depth, inside of the well log suites, were cutted
off.

It is also important to mention that, besides the caliper cutoff, it was
also necessary to make the cutoff related to the GR and Vsh logs. In fact,
plenty of times it was very easy to identify and cut high values of Vsh because
the shale was really interleaved with the coquinas. However, a criteria was
established to cut even the dirty coquinas and this criteria was generated
with the well logs of GR and Vsh. Therefore, after all those changes, it was
possible to obtain the coquinas as clean as possible. Nevertheless, it is also
important to highlight that besides the well logs, 14 sets of dry Vp and Vs lab
measurements of core samples were available for this work. These core samples
were extracted from different wells allocated in the same coquinas reservoir.
Moreover, all of them have the same facies of the carbonate reservoir profiled
by the well logs but most of the core samples did not come from the three
wells analyzed in this dissertation.

5.1.2
Quality Control of the Thin Sections Images and Aspect Ratio Measure-
ments

In the matter of pores aspect ratio measurements, other challenges were
faced. As mentioned before, all the thin sections images used were taken from
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the work of Bizotto (2014) (15). In this way, 22 thin sections images were
used among all images available in the dissertation. The reason why just 22
images were chosen, is because most of the time, the thin sections images did
not have pores or the image quality to measure the aspect ratio was too poor.
Moreover, the software used to make the pores aspect ratios measurements
was the ImageJ software (https://imagej.nih.gov/ij/). ImageJ is a software of
image processing and analysis developed in Java which was extremely helpful
in order to measure the pores aspect ratios from those images (Ferreira and
Hasband, (2012) (71)). Besides that, due to the low resolution of the thin
sections images, it was not possible to make an automatic extraction of the
pores aspect ratios. Therefore, a meticulous work was necessary to manually
measure each aspect ratio in all thin sections images totalizing 105 pores
aspect ratios measurements in the 22 thin sections images available. The
procedure to measure the aspect ratios was pretty simple and can be found in
a very didactic manner in the ImageJ’s manual (just take into account that
the measurements were made through ellipses fitting in the pores of the thin
sections images). For illustration purposes, in Figure 5.1, there are some of the
thin sections images chosen to make the aspect ratio measurements. Besides
that, in Appendix A, some examples of the fitted ellipses in the thin section
images are also shown.

5.1.3
Deploys of the Rock Physics Models and the DREAM Framework

It is important to highlight that the rock physics models of Xu and Payne
and the T-Matrix approach were deployed with Python and/or Matlab and
all data manipulation in the well log suites in section 5.1.1 was made with the
Pandas Package in Python. In fact, the deploys of both rock physics models
were validated with the respective articles from the literature reaching the
same results obtained by the authors in the following articles: Xu and Payne
(2009) (86), Jakobsen et al., (2003a,b) (54, 53). Moreover, the settlement of
the rock physics models parameters in the Bayesian framework was achieved
through a MATLAB toolbox that is based in the Markov chain Monte carlo
(MCMC) simulation and the DiffeRential Evolution Adaptive Metropolis
(DREAM) algorithm which has been used in several research fields and was
developed by Vrugt et al., (2008a, 2009a) (35, 33).
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Figure 5.1: Some of the thin sections images used to make the pores aspect
ratios measurements where the blue color represents the pore space. Image
from Bizotto (2014) (15).

5.2
Stochastic and Deterministic Parameters

After the explanation regarding the dataset and tools used in this
dissertation, it is necessary to explain and describe the inputs used in each
rock physics model and why some of them were stochastically treated in the
Bayesian framework. In fact, some parameters are common for both models.
However, as it was possible to notice in Chapter 3, the T-Matrix approach
is a frequecy-dependent model whereas the Xu & Payne only works for low
frequencies because of the Gassmann’s relations. Therefore, the following
parameters are common for both models: mineral bulk and shear moduli
(K|G), density (ρ), aspect ratios (α1|α2), volume proportions (V1|V2) and
fluids bulk modulus and density (Kfl|ρfl). On the other hand, the parameters:
relaxation time constant (τ), frequency (ω) and connectivity (β) are exclusively
used in the T-Matrix approach. Despite all this, only the parameters related
to the mineral bulk and shear moduli (K|G), aspect ratios (α1|α2) and
volume proportion (V1) will be stochastically addressed and represented by
probability density functions (PDFs) in the Bayesian framework whereas the
other parameters will be deterministically inputted.
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5.2.1
Stochastic Parameters

5.2.1.1
Mineralogical Content - Bulk and Shear Elastic Moduli

In the rock physics point of view, the reservoir rock is composed of three
entities: matrix, pore network and fluids. As it was possible to observe in
the section 3.1.1, the matrix can be modeled as an elastic solid media if
the following information is available: Volume fractions of the mineralogical
content which compose the matrix and their respective elastic moduli (mineral
bulk and shear moduli). Generally, the mineralogical content can be obtained
through X-Ray Difraction technique, also known as XRD analysis. In short,
the XRD analysis compute the mineralogical content of core samples through
a small sample of the core itself. Part of the dataset available for this work
was composed by core samples and their respective XRD measurements but
no information regarding the mineral bulk and shear moduli was provided.

The XRD measurements available for this work pointed out that the
coquinas core samples are composed predominantly by the mineral calcite
with other much less important contents of quartz and dolomite. Therefore, it
was considered in the rock physics modeling that the reservoir is composed of
100% calcite. However, without the information about the mineral bulk and
shear moduli, which kind of values Ko and Go should be used to represent the
reservoir matrix in the rock physics modeling? Table 5.1 shows some values
of bulk and shear moduli of the minerals calcite and dolomite. This table was
extracted from Mavko et al., (2009) (68) and all those values were extracted
from several different references that can be further analyzed in their books.

In Table 5.1, it is possible to notice a wider range of the calcite bulk
modulus, a lower range of the shear modulus and the density values are almost
constant for different values of K and G. Moreover, some values of the calcite
bulk modulus are almost equal to some of the values of the dolomite bulk
modulus whereas the dolomite shear modulus shows much higher values in
comparison to the calcite shear modulus values. Therefore, it would not be
fair to choose only one of those bulk and shear moduli as input in the rock
physics models and assume that would be the mineral bulk and shear moduli
and consequently, the matrix elastic moduli.
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Table 5.1: Values of Shear and Bulk moduli of Calcite and Dolomite Minerals.

Mineral Bulk Modulus (GPa) Shear Modulus (GPa) Density (g/cm3)

Calcite 76,8 32 2,71

63,7 31,7 2,70

70,2 29 2,71

74,8 30,6 2,71

68,3 28,4 2,71

Dolomite 94,9 45 2,87

69,4 51,6 2,88

76,4 49,7 2,87

Table from Mavko et al., (2009) (68).

After analyzing the previous table, it is possible to conclude that deter-
ministic values could not be the best option to represent K and G as inputs
for the rock physics models described in Chapter 3. Facing this uncertainty
issue and taking into consideration this quantitative information from the
literature, it is very suggestive to represent both K and G by normal Gaussian
distributions that will be part of the prior parameters distributions vector
p(θ) in the Bayesian framework used in this dissertation through the DREAM
algorithm. Those parameters distributions are mathematically expressed in
the following manner: K ∼ N (µK , σ2

K) and G ∼ N (µG, σ2
G) where µG, µK ,

σ2
G and σ2

K are the distributions means and variances, respectively. Therefore,
Figures 5.2 and 5.3 illustrate both Gaussian distributions.
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Figure 5.2: Gaussian distribution representing the calcite elastic bulk modulus.
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Figure 5.3: Gaussian distribution representing the calcite elastic shear modu-
lus.

In Figures 5.2 and 5.3, it is possible to notice that the Gaussian distri-
butions which represent the calcite elastic moduli have the following values of
mean and variance:

K ∼ N (µK = 70, σ2
G = 1.7) (5-1)

G ∼ N (µG = 30, σ2
G = 0.5) (5-2)

Besides that, those distributions are constrained by the following bounds:

K ∼ [63.7, 76.8] (5-3)

G ∼ [28, 32] (5-4)

The criteria used to build both distributions was Table 5.1 where the
mean values (µK and µG) of the distributions K and G are the arithmetic
mean of calcite elastic moduli values (K and G) in table 5.1. In the same way,
the bounds were generated following the same table where K and G vary in
the following manner approximately: 63.7 6 K 6 76.8 and 28 6 G 6 32. The
variance values were settled to better distribute the Gaussian along the x-axis
giving the correct density of probability for each value of K and G. In this
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way, despite the fact that no information of in situ calcite K and G of the
carbonate reservoir was available, it was possible to build the prior parameters
distributions taking into consideration information from the literature.

Finally, the reservoir rock density was not approached as a stochastic
parameter because of the low variation of calcite density in Table 5.1. Thus, the
following value of density in the Bayesian framework using both rock physics
models was assumed: ρ = 2.710 kg/m3.

5.2.1.2
Pores Aspect Ratios and their Volume Proportions

Since the prior parameters distributions of the calcite bulk and shear
moduli were already settled with a geological reasoning, the next step is to
make the same analysis for inputs related to the pores network that should
be generated in the elastic solid matrix. Therefore, regarding the pores net-
work modeling, two main parameters should be highlighted: the pores aspect
ratios and their volume proportions. Thus, to obtain these parameters, it
was necessary to make the pores aspect ratios measurements as can be seen
in section 5.1.2, where 105 aspect ratios were measured in 22 thin sections
images. Figure 5.4 shows a histogram that gives some insights about the
volume distribution of the measured aspect ratios. Moreover, the vertical axis
represents the volume percentage of each aspect ratio measured in all the thin
section images and the horizontal axis represents each value of aspect ratio.
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Figure 5.4: Histogram of all aspect ratio measurements in the 22 thin sections
normalized by the volume percentage.
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Figure 5.4 shows the histogram of all aspect ratios measured in the
thin sections images available and it is possible to conclude that there is a
greater volume percentage of pores in the following range of aspect ratios:
0.2 6 α < 0.5. Besides that, it is also possible to notice that pores with low
(α < 0.1) and high values (0.8 6 α 6 1) of aspect ratio tend to present
lower volume percentage in the measurements made in the thin sections of the
coquinas reservoir. Therefore, the following ranges of aspect ratios: α < 0.1 and
α > 0.9 just represent approximately 1% of the total volume of aspect ratios
measured. In fact, only one pore was discovered with α > 0.9 and four pores
α < 0.1. Nevertheless, it should be important to highlight that there is a kind
of pore type which is very difficult to see through human eyes in thin sections:
crack pores. It is possible to notice in Figure 5.4 that the predominant volume
percentage represented by the pores aspect ratios varies approximately in the
following range: 0.1 6 α < 0.9. In this way, crack pores with aspect ratios
around 0.001 and 0.01 are not likely to be seen/observed and there is a lack
of literature which approaches the crack pores percentage in carbonate rocks,
especially in coquinas reservoirs.

It would not be right to neglect the presence of crack pores in carbonates
due to the intrinsic carbonates brittle nature already approached in Chapter
2. As a matter of fact, crack pores in the rock physics models can be repre-
sented by grain-to-grain contacts, microporosity and microfractures. Besides
that, some people believe that cracks aspect ratios and their volume propor-
tions are fitting parameters in rock physics modelings. Therefore, taking into
consideration the previous premises and the fact that there is a lack of liter-
ature addressing this subject, it is possible to make a kind of approximation
and fairly cogitate that this kind of porosity can represent until 10% of the
reservoir volume, a kind of porosity which is not likely to be seen/observed in
thin sections because of very low aspect ratios presented (0.001 6 α 6 0.01).

After analyze the most likely volume proportions of cracks in the car-
bonate reservoir, it is necessary to disclose about the possible values of aspect
ratios that this kind of pore can assume. However, there is not a wide vari-
ety of literature approaching aspect ratios of crack pores for different types of
carbonate rocks. On the other hand, Xu and Payne (2009) (86) used the fol-
lowing values to represent the aspect ratios of interparticle pores, crack pores
and moldic pores, respectively: αinterparticle = 0.15, αcracks = 0.02 and αmoldic =
0.8. Besides that, using carbonates core samples from the University of Miami
database, they ran the pore-type inversion workflow of Kumar and Han (2005)
(59) and found out that the range of crack porosity present in those core sam-
ples varied approximately in the following manner: 0.002 6 αcracks 6 0.018.
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Moreover, following Xu & Payne (2009) (86), it is possible to state that the
pore volume of a carbonate rock can be divided in the following manner:

VT = Vstiff + Vinterparticle + Vcracks (5-5)

Where the VT is the total pore volume of the carbonate reservoir,
Vcracks is the volume of cracks pores, Vstiff is the volume of moldic pores and
Vinterparticle represents the volume of interparticle pores. Despite all that, it
is difficult to deterministically state a volume proportion for each pore type
in a carbonate reservoir. There is no direct way to obtain this quantitative
information in a reliable manner without taking into consideration uncertain-
ties. Therefore, after this brief discussion and grounded on those premises
regarding the pores aspect ratios and their volume proportions, it was possible
to verify the need to approach those parameters stochastically through the
Bayesian inference, in order to achieve a better parameters evaluation taking
into account the intrinsic uncertainties related to the aspect ratios and their
volume proportions. In fact, regarding our specific case, the total pore volume
VT of the carbonate reservoir which has been studied will be divided in two
volumes of pore types, as follows:

VT = V1 + V2 (5-6)

Where V1 and V2 represent the volume of crack pores and the volume of
non-crack pores, respectively. In fact, the volume of non-crack pores represents
the volume of the measured pores obtained through the measurements in the
thin sections images available. Thus, the volume of the non-crack pores is
computed in the following manner:

V2 = 1− V1 (5-7)
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In this way, the volume of crack pores in the carbonate reservoir (V1)
will be computed as a prior parameter distribution which will be represented
by a uniform distribution as can be illustrated in Figure 5.5.
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Figure 5.5: Gaussian Distribution Representing the Volume of Crack Pores.

The distribution presented in Figure 5.5 is mathematically represented
in the following manner:

V1 ∼ U(0, 0.1) (5-8)

Thus, it is constrained by the following bounds:

V1 ∼ [0, 0.1] (5-9)

The criteria used to build this uniform distribution as a prior param-
eter was the premise that the coquinas reservoir can have until 10% of the
volume proportion equals to cracks pores. Taking into consideration the lack
of literature regarding this subject for carbonates, mainly for coquinas, we
took into consideration a uniform distribution because there is not any prior
knowledge regarding this parameter where all the values have the same density
of probability. In the same way that the carbonate reservoir will be modeled
with two different volumes of pore types – cracks (V1) and non-cracks (V2)
–, as was already described, it is also necessary to stochastically approach
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the aspect ratios which will be represented by those two volume fractions.
Therefore, Figures 5.6 and 5.7 illustrate both distributions of aspect ratios
(α1 and α2) that will be used as inputs of the parameters evaluation through
the Bayesian Inference using the DREAM algorithm. Take into consideration
that α1 is related to the aspect ratios of the crack pores whereas α2 is related
to the aspect ratio of the measured pores in the thin section images.
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Figure 5.6: Gaussian distribution representing the values of aspect ratio of the
crack pores.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Aspect Ratio of the Measured Pores

0

1

2

3

4

2 ~
 N

(
,

2 )

Probability Density Function - PDF

2
 ~ N(0.4,0.1)

Figure 5.7: Gaussian distribution representing the values of aspect ratio
measured in the thin sections.
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The Gaussian distribution of Figure 5.6 represents the crack pores aspect
ratios and has the following properties:

α1 ∼ N (µα1 = 0.015, σ2
α1 = 0.004) (5-10)

Moreover, this distribution is constrained by the following bounds:

α1 ∼ [0.001, 0.03] (5-11)

Likewise, the Gaussian distribution of Figure 5.7 represents the measured
pores aspect ratios and has the following properties:

α2 ∼ N (µα2 = 0.4, σ2
α2 = 0.1) (5-12)

Moreover, this distribution is constrained by the following bounds:

α2 ∼ [0.01, 0.8] (5-13)

The criteria used to build the Gaussian distribution α1 was the out-
come obtained in the article of Xu & Payne (2009) (86), where a pore-type
inversion workflow was conducted in carbonate core samples and the follow-
ing range of crack pores was obtained: 0.002 6 αcracks 6 0.018. In order to
take into consideration a wider range of cracks values in our parameters eval-
uation through the Bayesian framework, the following range was taken into
consideration (bounds): 0.001 6 αcracks 6 0.03.

The Gaussian distribution α2 was built grounded in the histogram of
Figure 5.4. Therefore, in order to build a reliable and representative Gaussian
distribution of this histogram, the high volume percentage inside the range
of 0.6 6 α < 0.7 was not considered. On the other hand, the high volume
percentages of the range 0.2 6 α < 0.6 was honored as well as the low
volumes α 6 0.1 and α > 0.8. This approximation was needed because it
is not possible to take into account high values of density of probabilities
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for the range 0.6 6 α < 0.7 which represents only 15% of the pores volume
percentage without a strong decrease in the density of probabilities of the
range 0.2 6 α < 0.6 which represents more than 60% of the pores volume. In
this way, it was preferable to make the PDF centered in α = 0.4 and honor
almost all the histogram volume percentages with the respective densities of
probabilities than try to honor the volume percentage in the range 0.6 6 α <

0.7 and misrepresent all the other volumes. Besides that, in this PDF, the
following interval of aspect ratio was taken into consideration (bounds): [0.01,
0.8]. This interval represents more than 96% of the pores volume percentage.

5.2.2
Deterministic Parameters

5.2.2.1
Fluids

Regarding the fluids information, in our case, it was not evaluated as a
stochastic input in the Bayesian framework through the DREAM algorithm.
It does not signify that we truly believe that all information regarding the
fluids do not embed uncertainties. In fact, the fluids inputs are: the water
saturation well log (Sw), which is obtained from the resistivity log (ILD), and
also the reservoir average fluids in situ information: averaged bulk modulus
(Kfl) and averaged density (ρfl). Despite all that, all of them will be treated
deterministically in the Bayesian framework and also in the sensitivity analyses
in Chapter 6. Therefore, this section goal is to quickly summarize how the
fluids information are inputted in both rock physics models and how the water
saturation log, and the averaged fluids bulk modulus and density are used
together to simulate fluids mixture in the carbonate reservoir.

The rock physics models of Xu & Payne and T-Matrix work in different
perspectives regarding fluids inclusions and/or interactions. In Chapter 3, it
was possible to notice that the Xu & Payne rock physics model uses the
Gassmann’s fluid substitution to saturate the dry elastic matrix in non-crack
pores (interparticle and moldic) whereas the T-Matrix approach uses the
inclusion based theory to insert fluids in all the pores present in the dry
elastic solid matrix. Regarding the Gassmann’s fluid substitution used in the
Xu & Payne approach, it is necessary to take caution because of the many
assumptions embedded in the Gassmann’s relations (Mavko et al., (2009)
(68)). One of them that should be highlighted is that the Xu & Payne rock
physics model should work strictly for low frequencies because one of the
Gassmann’s assumptions is that the wave induced pore pressure must dissipate
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in a seismic period. On the other hand, the T-Matrix rock physics model is a
frequency-dependent model and the frequency is an input parameter that must
be settled in the T-Matrix. In this way, it is possible to simulate, in the T-
Matrix, different frequencies from low frequencies (seismic) to high frequencies
(lab measurements). In fact, in the next section, some parameters which are
exclusively of the T-Matrix rock physics model will be approached, not only the
frequency (ω) but also the connectivity (β) and the relaxation time constant
(τ).

Most of the time, in a reservoir column profiled by well log measurements,
it is very frequent the presence of more than one type of fluid. In this case,
for more accurate elastic attributes estimations of the rock physics model, it
is necessary to compute the bulk modulus and density of the fluids mixture
present in each sample of the well log. In order to accomplish such a task, it is
necessary to take the proportion of each kind of fluid throughout the reservoir
column using the water saturation log (Sw). In this way, the oil saturation can
be obtained through the following relation – taking into consideration a two
phases system (So):

So = 1− Sw (5-14)

Thus, it is standard procedure to use the Reuss’ Average (76) to calculate
the bulk modulus of a fluid mixture, as described in section 3.1.3.1.

1
Kfl

=
N∑
i=1

fi
Ki

(5-15)

Therefore, taking into consideration the presence of brine (fbrine) and oil
(foil), Kfl can be obtained, as follows:

Kfl = 1∑N
i=1

fi

Ki

= 1
foil

Koil
+ fbrine

Kbrine

(5-16)

After the computation of Kfl, it is necessary to obtain the density of
the fluids mixture for each sample of the profiled reservoir. In order to achieve
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this, the ρfl can be calculated through the Voigt’s Average (83) as can be seen
in section 3.1.3.1:

ρfl =
N∑
i=1

fiρi (5-17)

Then:

ρfl = foil ∗ ρoil + fbrine ∗ ρbrine (5-18)

This is the standard procedure for both rock physics models to obtain
the values of bulk modulus and density of the fluid mixture present in each
sample of the well log.

5.2.2.2
Frequency, Relaxation Time Constant and Connectivity

In the last section of this Chapter some parameters will be discussed,
which are exclusive of the T-Matrix rock physics model, and the implications to
set each one of them in the right manner will also be discussed. It is important
to mention that they were also treated deterministically in the Bayesian
framework and also in the sensitivity analyses in Chapter 6. In this way, taking
into consideration that the T-Matrix is a frequency-dependent rock physics
model, it is possible to work with different values of frequency as inputs in the
T-Matrix. Therefore, it is possible to simulate not only seismic frequencies (low
frequencies) which can vary between 0.1 Hz to 50 Hz approximately but also
well log and laboratory frequencies, which are, approximately, in the following
ranges, respectively: 1 kHz to 100 kHz and 100 kHz to 10 MHz.

During all the rock physics modelings generated through the T-Matrix
rock physics model in this dissertation, only low frequencies were used as
inputs, generally the frequency parameter assumed the following value: ω = 10
Hz. In fact, the main reason to estimate the elastic attributes through the T-
Matrix model in a low frequency perspective is to make a fair comparison with
the Xu & Payne model. As it was already explained, the Xu & Payne model
only estimates elastic attributes in a low frequency perspective because the

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



Chapter 5. Methodology 73

Gassmann’s relations are embedded in the model workflow. Thus, in order to
evaluate which model has a better performance regarding the elastic attributes
estimations of coquinas, both of them will estimate the attributes in a low
frequency perspective.

The other input which is exclusive of the T-Matrix approach due to the
fact that this rock physics model takes into consideration the squirt flow effect
is the relaxation time constant. In Chapter 3, a quick review about this subject
was already addressed and it was shown how many parameters are needed to
obtain the relaxation time constant. In fact, Jakobsen et al., (2003b) (53)
stated that a lot of uncertainties can be discovered related to the relaxation
constant (τ). In this way, taking into consideration that the elastic attributes
estimations using the T-Matrix were computed only for low frequencies, the
relaxation time constant used was the standard value of τ = 10−5 extracted
from the article of Jakobsen et al., (2003b) (53).

Last but not least, the connectivity (β) input, it is a binary parameter
which can only assume two values: 1 or 0. In fact, in the T-Matrix rock physics
model, it is possible to connect or disconnect the families of pores inside of
the elastic solid media. In this way, when β = 1 all the pores embedded in the
same family are connected whereas when β = 0, the pores are disconnected
from each other. This parameter is also very important because when all the
communications between the possible families of pore shapes in the elastic solid
media are closed, it is possible to simulate high frequency elastic attributes
estimations because the wave induced pore pressure will not dissipate within
in a seismic period. On the other hand, when all the pores families are
connected, a low frequency model is simulated, and the rock physics model
will generate low frequency elastic attributes estimations. In all cases during
this dissertation, using the T-Matrix rock physics model, the two families of
pore shapes α1 and α2 are connected, inclusive, in the parameters evaluation
through the Bayesian framework and in the sensitivity analyses.
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Results and Discussions

In this chapter, all the outcomes obtained through this dissertation will
be described and discussed. All the information given in the previous chapters
during the dissertation will be used to run the parameters evaluation using
the Bayesian framework, the elastic attributes estimations and comparisons
through both rock physics models and the sensitivity analyses. It was possible
to achieve those tasks executing the following steps:

– The parameters related to the generation of the elastic solid media (K
and G) as well as the parameters related to the pore network (V1, α1

and α2) were posed in a Bayesian framework in order to evaluate and
optimize those parameters using the DREAM algorithm.

– The maximum à posteriori (MAP) – deterministic values which better
represent the posterior parameters distributions – values were taken from
the posteriors parameters distributions generated through the Bayesian
framework and applied in both rock physics models. Therefore, it was
possible to run the rock physics models parametrization and calibration
at the well location (Well 49). Besides that, with both models calibrated,
it was also possible to validate if both of them had a good power of
extrapolation estimating elastic attributes for other wells. Furthermore,
the elastic attributes estimations of Xu & Payne and T-Matrix were
compared in order to understand which model has a better estimation
of elastic attributes for the coquinas reservoir which has been studied.

– Taking into consideration the availability of 14 sets of dry Vp and Vs lab
measurements of core samples which represent the same facies of the
carbonate reservoir profiled by the well logs, the calibrated and validated
rock physics models applied using the well log data were also applied
using the core samples data in order to estimate the elastic attributes of
those samples. However, it is important to highlight that with the core
samples, a wider analysis was done. It was possible to validate not only
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P wave velocities (Vp) but also S wave velocities (Vs) and Vp/Vs ratios.

– The rock physics model that had the better performance with respect
to the carbonate elastic attributes estimations regarding well logs was
chosen to run deterministic sensitivity analyses related to pores as-
pect ratios, fluids and mineralogical content. The goal of running the
sensitivity analyses is to obtain a quantitative sense about how the
carbonate elastic attributes change due to the simulations of possible di-
agenetic processes through the variations in the model input parameters.

Each one of the aforementioned items will be described, explained and
discussed in light of all the previous information delivered in Chapters 2, 3, 4
and 5.

6.1
Rock Physics Parameters Evaluation Through the DREAM Algorithm

Since the prior parameters distributions were already settled and ex-
plained, as can be seen in section 5.2, it is possible to input those distributions
in the DREAM algorithm and obtain not only the posterior distributions and
their properties (MAPs, means and variances) for each parameter but also the
information about how correlated those parameters can be. It is important
to remember that this approach will be executed only for the well logs. In
this way, the Well 49 was chosen to be posed in the Bayesian framework. In
fact, in Table 6.1, the means, variances and bounds of each prior parameter
distribution are described. All those distributions were explained together
with Figures 5.2, 5.3, 5.5, 5.6 and 5.7 in Chapter 5.

Table 6.1: Means, Variances and Lower (LB) and Upper bounds (UB) of the
Prior Parameters Distributions

Parameter Mean Variance LB UB

V1 0 0,1

α1 0,015 0,004 0,001 0,03

α2 0,4 0,1 0,01 0,8

K (GPa) 70 1,7 63,7 76,8

G (GPa) 30 0,5 28 32
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It is important to mention that the T-Matrix rock physics model was
chosen to be illustrated in the next figures because the T-Matrix model
demonstrated a better performance over the rock physics model of Xu & Payne
in the DREAM’s simulations. In fact, the RMSE of the MAP values of the T-
Matrix model was lower than the RMSE of the MAP values of the Xu & Payne
approach, as can be seen in Table B.1. In this way, in order to start the analyses
of the DREAM’s outcomes, Figure 6.1 illustrates the 95% uncertainty intervals
of the T-Matrix rock physics model for Well 49. The black region is related
to the parameters uncertainty, whereas the gray region is related to the total
uncertainty (parameters uncertainty + model uncertainty). The red dots are
the measurements of the P wave velocities.

The parameters uncertainty (black region) represents the simulations
generated by the DREAM algorithm when occur the parameters stabilization
around the posterior distributions. For instance, take into consideration that
100 combinations of parameters were found out through the Markov Chains
search in the parameters space. Thus, each set (α1, V1, α2, K and G) of these
combinations will generate one simulation, gathering all those 100 simulations
regarding those 100 different combinations of parameters, it is possible to
generate the black region if we only consider the 95% interval of confidence.
The total uncertainty is the sum of the parameters uncertainty and the model
uncertainty. The DREAM algorithm uses the RMSE (Root mean squared
error) which is related to the difference between the modeled and the measured
P wave velocities. Therefore, computing the RMSE values for all the 100
aforementioned simulations around the posterior parameters distributions,
taking into consideration a normally distributed error and a 95% interval of
confidence, it is possible to generate the gray region.

It is possible to notice in Figure 6.1 that almost all the red dots
(measurements) lie in the black or grey regions, inside of the parameters or total
uncertainty 95% intervals of confidence. In fact, only 5 of 232 measurements
are out of both regions and the corresponding RMSE (root mean squared error)
using the MAP values was approximately 133 m/s (Table B.1 in Appendix B).
In this way, it is possible to conclude that the T-Matrix rock physics model
matched the well log measurements of the P wave velocities very well for this
carbonate reservoir.
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Figure 6.1: Intervals of 95% uncertainty regarding the parameters (black
region) and total uncertainty (gray region) using the T-Matrix Rock Physics
Model – Well 49.
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Before continuing the explanation about the DREAM’s outcomes, it is
important to mention that in Figures 6.2 and 6.3, the values of K and G
(coquinas bulk and shear elastic moduli) are in the decimal scale. Those values
were settled in this way to facilitate the simulation because it is not intuitive
to run the simulations with values in the order of 10−1 (V1, α1 and α2) and 109

(K and G), because the unit of K and G are in GPa (Giga Pascal). Therefore,
after the simulation, the decimal values of K and G were multiplied for 1011.
In fact, Tables 6.2 and 6.3 already show the values of K and G in GPa.

It is also important highlight that Table 6.2 is related to the DREAM’s
simulations using the T-Matrix rock physics model for the Well 49. On the
other hand, in Table 6.3, it is also possible to analyze the DREAM’s outcomes
for the Well 49 using the Xu & Payne rock physics model. In this way, taking
into consideration the aforementioned information, Figure 6.2 illustrate the
histograms of the posteriors parameters distributions, where the blue crosses
represent the MAP (maximum à posteriori) values which are described in
Table 6.2 with their respective values of variance and standard deviation.

Figure 6.2: Histograms of the marginal posterior distributions of the parame-
ters V1, α1, α2, K and G (Well 49) – T-Matrix Model. The blue crosses represent
the MAP values.
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Table 6.2: DREAM’s Outputs - Well 49 - T-Matrix Model

Parameter MAP Mean Standard Deviation

V1 0,048 0,053 0,015

α1 0,016 0,017 0,003

α2 0,360 0,393 0,102

K (GPa) 63,7 64,0 0,1

G (GPa) 28,2 28,2 0,2

Table 6.3: DREAM’s Outputs - Well 49 - Xu and Payne Model

Parameter MAP Mean Standard Deviation

V1 0,051 0,048 0,011

α1 0,016 0,015 0,003

α2 0,404 0,408 0,099

K (GPa) 63,7 63,8 0,1

G (GPa) 28,3 28,3 0,2

As was already mentioned almost all the inputs in the Bayesian frame-
work through the DREAM algorithm were Gaussian. Despite that, in Figure
6.2, it is possible to observe three different approximate posterior distributions
in the histograms: Gaussian (V1), Bimodal (α1) and Log Normal (K, G and
α2). In Figure 6.3, the blue histograms are the marginal posterior distribu-
tions of each parameter optimized in the Bayesian framework: V1, α1, α2, K
and G. In this same figure, it possible to observe through the bivariate scatter
plots how the parameters are related to each other. Therefore, it is possible
to conclude that there is a strong positive correlation between parameters V1

and α1 in the simulation using the T-Matrix rock physics model. This corre-
lation may signify that when the values of the cracks aspect ratios (α1) tend
to increase, the volume of those cracks (V1) also tends to increase. In fact, an-
alyzing Figure 6.3 carefully, it is also possible to realize a smooth correlation
between V1 and α2 which present almost the same behavior already described
in the correlation between V1 and α1. Despite all those aforementioned con-
siderations, analyzing Figure 6.3, all the other parameters do not express any
strong positive or negative correlations. As a matter of fact, the other param-
eters demonstrate approximately zero correlation or slightly positive and/or
negative correlations.

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



Chapter 6. Results and Discussions 80

Figure 6.3: Marginal distributions (blue histograms) and bivariate scatter plots
regarding the correlation between the parameters of the posterior distributions
outputted through the DREAM algorithm (Well 49) – T-Matrix Model.

In order to finish this section, it is important to mention that during
the deterministic rock physics modelings using the well logs and core samples
measurements in this chapter, both models were inputted with the MAP
values provided by the Bayesian framework using each rock physics model. In
this way, the MAP values inputted in the T-Matrix and Xu & Payne regarding
well logs and core samples measurements are shown in Tables 6.2 and 6.3,
respectively.

6.2
Rock Physics Modelings Validations and Comparisons - Well Logs

In this section, using the well log data of the Wells 49, 36 and 10,
it will be possible to compute and compare the coquinas elastic attributes
estimations generated through the rock physics models of Xu & Payne and
T-Matrix. In fact, using both models, deterministic rock physics modelings
will be accomplished. Therefore, after posing the measurements of Well 49
in the Bayesian framework through the DREAM algorithm, it is possible to
take the MAP values (values which better represent the posterior parameters
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distributions) and run the elastic attributes estimations not only locally in
Well 49 but also extrapolate the models estimations to Wells 10 and 36. The
MAP values which were obtained related to Well 49 data through the Bayesian
framework are described in Tables 6.2 and 6.3, for the T-Matrix and Xu &
Payne models, respectively, in section 6.1. In this way, in Figure 6.4, the rock
physics models of Xu & Payne and T-Matrix are settled over the crossplots
Vp− φ of Wells 49, 36 and 10, which are colored by water saturation log (Sw).
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Figure 6.4: Rock Physics Models of Xu and Payne and T-Matrix settled over
the crossplots Vp−φ of the Wells 36, 49 and 10 colored by the water saturation
log (Sw).

Analyzing Figure 6.4, some important points should be highlighted:

– It is possible to observe that the crossplots Vp − φ of Wells 49, 36 and
10 present the same trend.

– The crossplot of Well 49 shows some apparent outliers for low porosities.
However, those possible outliers were not removed because they remained
in Vp measurements even after the cut-offs of GR, Vsh and Caliper. In
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this way, the rock physics modelings and the Bayesian framework were
applied taking into consideration those possible outliers.

– In the crossplot Vp − φ of Well 10, it is possible to observe a much
more scarcer well log sampling. In fact, the caliper log of this well
presented a lot of anomalous high values almost in the entire well log
sampling. Thus, those anomalous measurements that may indicate pos-
sible washouts were removed from the analysis in order to obtain more
accurate elastic attributes estimations.

– As it was expected, both curves have the same start point, and this
happens because when the porosity tends to zero, the bulk and shear
moduli of the carbonate reservoir tend to be the bulk and shear moduli
of the calcite mineral. On the other hand, it is clear that the T-Matrix
curve is above of the Xu & Payne curve. For higher porosities the Xu &
Payne curve tends to underestimate the P wave velocities in comparison
to the T-Matrix approach where a difference in the order of 200 m/s can
be observed comparing both models for φ = 0.2.

Explain in a concise manner the latter bullet of the aforementioned
considerations it will be very important in order to understand the elastic
attributes estimations presented in the following pages. In fact, differences
in the order of 200 m/s can be found out between the rock physics models
of Xu & Payne and T-Matrix for φ = 0.2 in Figure 6.4. Therefore, it was
already explained in previous sections, that both models are very different in
several aspects. One of these differences which was widely addressed during
this dissertation is related to how both models approach fluids inclusions,
whereas the T-Matrix uses inclusion based theory, the Xu & Payne uses
the Gassmann’s relations and also inclusion based theory (Section 3.1.3.2).
However, the differences of Vp for higher porosities of both models are not
related to fluids, because the Xu & Payne model works in a low frequency
perspective due to the Gassmann’s relations and the T-Matrix was also settled
to estimate elastic attributes in a low frequency perspective too. It is also
possible to state that those Vp differences with the increase of porosity are not
likely to be related to the mineralogical content, because, when the porosity
increases the effect of mineralogical content tends to decrease because the pore
space occupies the matrix. As a matter of fact, the changes in mineralogical
content are likely to be more related to the models intercepts than to their
gradients.
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Taking into consideration the information delivered during the Chapter
2 of this dissertation, it is possible to notice that the main factors which alter
the elastic attributes in carbonates reservoirs are the: porosity and aspect
ratios. The latter, in fact, is one of the reasons why both models for higher
porosities are different: The Xu & Payne model is grounded in the DEM
(Differential effective medium) modeling which is based in ordinary differential
equations (ODEs), whereas the T-Matrix is based on the physically integral
equation methods (Jakobsen et al., (2003) (53)). Mathematically speaking,
differential and integral equations have lot of differences. However, the main
point that should be highlighted herein, is that both of them work differently
regarding their approximation of the multiple interactions. The T-Matrix
rock physics model approximates the multiple interactions by second order
correlation, whereas the Xu & Payne approach does not work in the same
manner (Mavko et al., (2009) (68) and Jakobsen et al., (2003a,b) (54) (53)).
Thus, taking into account that the foundations of both models are different
and their approximations of the multiple interactions are also different, it is
comprehensible a variation between the estimations of both models for higher
porosities in Figure 6.4, where more space to store different aspect ratios is
provided in the elastic solid media.

After the brief aforementioned highlights and explanations regarding
Figure 6.4, it will be possible to better comprehend, analyze and compare
the elastic attributes estimations of both rock physics models for Wells 49, 36
and 10 in Figures 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10. Through those figures, it will
be shown not only the comparisons between the measured and the modeled
P wave velocities and bulk densities computed by each rock physics model,
but also the effective porosity (PHIE) well logs. Besides that, it will be also
illustrated the Vp−φ crossplot of each well with the models curves settled over
the crossplots and the error histograms (as mentioned in section 4.3) regarding
the difference between the modeled and the measured P wave velocities. It is
important to mention that the focus of this section is to analyze the P wave
velocity estimations. Therefore, the statistical analyses regarding the metrics
of accuracy and histograms will be limited to the Vp estimations, whereas the
bulk density estimations and effective porosity logs are illustrated in order to
better comprehend and discuss the P wave estimations of both rock physics
models.
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Figure 6.5: Comparison between the elastic attributes estimations of both rock
physics models for Well 49 and the effective porosity (PHIE) well log.

Figure 6.6: Rock physics models curves settled over the crossplot Vp−φ of Well
49 and error histograms regarding the difference between the modeled and the
measured P wave velocities.
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Figure 6.7: Comparison between the elastic attributes estimations of both rock
physics models for Well 36 and the effective porosity (PHIE) well log.

Figure 6.8: Both rock physics models curves settled over the crossplot Vp − φ
of Well 36 and error histograms regarding the difference between the modeled
and the measured P wave velocities.
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Figure 6.9: Comparison between the elastic attributes estimations of both rock
physics models for Well 10 and the effective porosity (PHIE) well log.

Figure 6.10: Both rock physics models curves settled over the crossplot Vp− φ
of Well 10 and error histograms regarding the difference between the modeled
and the measured P wave velocities.
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Therefore, regarding the previous figures, it is very important to make
the following considerations:

– The performance of the T-Matrix rock physics model regarding reliable
estimations of Vp is superior in comparison with the Xu & Payne model
following the histograms analyzes in Figures 6.6 and 6.8.

– As it was expected, following the histograms in Figure 6.6, better elastic
attributes estimations were obtained in Well 49. This fact is explained
because this well log suite was used as calibration data in the Bayesian
framework in order to run the parameters evaluation.

– For Wells 49 and 36, the rock physics model of Xu & Payne generates
picks of underestimation for intervals of lower velocities and higher
porosities whereas this effect in intervals of higher velocities and lower
porosities is much softer (Figures 6.5 and 6.7). That is one of the
consequences regarding the underestimations of the Xu & Payne model
observed in Figure 6.4 for higher porosities.

– In Figures 6.5, 6.7 and 6.9, the bulk densities estimations computed
through both rock physics models are superimposed. Besides that, it
is also possible to notice that both rock physics models are generating
picks of underestimation for intervals of higher porosities whilst for
intervals of lower porosities the estimations are more accurate.

The latter bullet of the aforementioned highlights should be explained in
a detailed manner. Differently from the Vp estimations which are dependent of
pores aspect ratios and other intrinsic rock properties, it is possible to estimate
the bulk density regardless the information of the rock pore geometry. In fact,
both rock physics models estimate bulk densities through the weighted average
already described in Chapter 3, Equation 3-43. The bulk density estimation
only depends of the matrix, fluid and porosity information. Thus, that is the
reason why in Figures 6.5, 6.7 and 6.9 the estimations of the bulk densities of
both models are superimposed.

It is also possible to notice, analyzing the same previously mentioned
figures, that the bulk densities estimations are underestimated for intervals of
higher porosities whereas the estimations for intervals of lower porosities are
more accurate. In Chapter 5, specifically in section 5.2.1.1, it was explained
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why a matrix 100% composed by calcite was taken into consideration in
the parameters evaluation through the Bayesian framework and in the rock
physics modelings: Most of the XRD analyses showed that the core samples
were almost 100% composed by calcite with lower local presence of the miner-
als dolomite and quartz. In this way, taking into consideration Table 5.1, the
density of the mineral calcite for almost all values of bulk and shear moduli
(K and G) was 2.710 Kg/m3. Thus, this value was used in the rock physics
modelings in order to estimate the elastic attributes of the coquinas reservoir
rock which has been studied. Taking into account those premises, two possible
options explain why both models are underestimating the bulk densities:

1. Despiting the fact that the coquinas reservoir was modeled taking into
consideration a matrix 100% composed by calcite, these results led us
to think about a possible mix of minerals in the rock matrix which were
not captured in the XRD analyses. Thus, the value of density settled is
not representing well the density embedded in the carbonate reservoir.

2. Taking into account that the bad estimations are related to intervals of
higher porosities, it is possible to suppose that the Sw logs presented
some mismeasurements due to the fact that they could had been mis-
calculated. In this way, impairing the estimations of the bulk densities
through both models. In the same way, it is also possible to believe that
possible miscalculations of the effective porosity (PHIE) well log can
also be impairing the estimations of the bulk densities for both models.

Despite all those considerations about the bulk density, it is important
to mention that we could not give up of the choice made of the following
very important premise which is corroborated by the XRD measurements:
The reservoir rock was composed 100% of the mineral calcite. It would not
be fair to settle the density beyond the values encountered in Table 5.1 only
to best fit the model in order to estimate bulk densities. In the sense that
we also strict obeyed the values of bulk modulus, shear modulus and density
presented in this table in order to provide geological reasoning and boundaries
in the optimization process in the Bayesian framework.

After all those explanations regarding the estimations of the bulk den-
sities, in this very moment, it will be possible to verify the performance of
both models regarding the Vp estimations. In fact, Tables 6.4, 6.5 and 6.6
summarize the metrics of accuracy used to evaluate the Vp estimations of
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both rock physics models in Wells 49, 36 and 10. These tables corroborate
that the T-Matrix rock physics model has a better performance in the matter
of reliable elastic attributes estimations in comparison to the Xu & Payne
model for Wells 49 and 36. In fact, the three metrics of accuracy of Well 49 –
at the well location – show a better performance regarding elastic attributes
estimations of the T-Matrix in comparison to the Xu & Payne (Table 6.4).
The differences are not huge, mainly talking about the mean error, however,
in Figure 6.5, it is very clear that the T-Matrix estimations present a more
regular behavior than the Xu & Payne estimations.

Table 6.4: Metrics of Accuracy - Well 49 - P Wave Velocity

Model MAE RMSE Mean Error

T - Matrix 104,3 133,4 0,019

Xu Payne 129,2 161,9 0,025

Table 6.5: Metrics of Accuracy - Well 36 - P Wave Velocity

Model MAE RMSE Mean Error

T - Matrix 152,6 193,5 0,029

Xu Payne 172,2 220,6 0,033

Table 6.6: Metrics of Accuracy - Well 10 - P Wave Velocity

Model MAE RMSE Mean Error

T - Matrix 144,6 184,1 0,028

Xu Payne 139,6 179,9 0,027

In terms of rock physics extrapolation, through the analyses of the
metrics of accuracy of Table 6.5, it is possible to notice that both models have
a good power of extrapolation with mean errors around 3%. Despite the low
mean errors for both models, in the estimations of Well 36, in Figure 6.7, the
Xu & Payne model generated two intervals of underestimation, approximately
between the well log samplings 0 and 40 and also between the samplings 150
and 220. Certainly, the errors in those intervals are not 3% and the Xu &
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Payne did not generate good estimations at those intervals whereas the T-
Matrix approach presented much more accurate estimations on those intervals.
Well 10, was the only well which the Xu & Payne had a better performance,
however, the metrics for both models are very similar, almost equal. Thus, due
to the fact that just a short interval of Well 10 could be analyzed and the
metrics are very similar for both models, it is not possible to state that the Xu
& Payne was really superior. In fact, it can be stated that both models had
good elastic attributes estimations for this well.

In a general manner, it is possible to say that the T-Matrix approach
demonstrated better elastic attributes estimations in comparison with the
Xu and Payne rock physics model for Wells 49 and 36 due to the picks of
underestimation generated by the Xu & Payne model. However, for Well 10, the
estimations of both models were very similar. Therefore, in order to corroborate
this statement – T-Matrix is superior over the Xu & Payne –, it is very easy
to see through histograms analyses that the T-Matrix approach reaches better
estimations where most of the errors stand near to ±2% for Well 49 (Figure
6.6), approximately ±4% for Well 36 (Figure 6.8) and around ±2.5% for Well
10 (Figure 6.10). On the other hand, also through histograms analyses, the
Xu and Payne estimations present most of the errors near to ±4% in Well 49
(Figure 6.6), around −4% and +6% for Well 36 (Figure 6.8) and approximately
±2.5% for Well 10 (Figure 6.10).

Still regarding the histograms analyses of both rock physics models, it is
possible to notice that the difference between the modeled and the measured Vp
through the rock physics model of Xu and Payne generates histograms with a
wider range of error around ±8% for Well 49, approximately -10% and +16%
for Well 36 and around -9% and +6% for Well 10. On the other hand, the
T-Matrix rock physics model presents the following maximum range of errors
for Wells 49, 36 and 10, respectively: -8% and +6%, -10% and +12%, and -9%
and +6% (Figures 6.6, 6.8 and 6.10).

Gathering all the information provided by the histograms and the metrics
of accuracy MAE, RMSE and Mean Error, it is possible to state that for this
carbonate reservoir rock the T-Matrix approach has a better performance in
the matter of elastic attributes estimations than the Xu & Payne rock physics
model. Furthermore, it was also possible to verify through the analyses of
Figures 6.5, 6.7 and 6.9 that the T-Matrix rock physics model had a good
parametrization and calibration in Well 49 – at the well location – where most
of the errors presented low percentage values and also has a good extrapolation
power, hence, well validated for Wells 36 and 10.
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6.3
Rock Physics Modeling Validations and Comparisons - Core Samples

The approach of estimate the elastic attributes using the rock physics
models of T-Matrix and Xu & Payne for Wells 49, 36 and 10 in the previous
section will be also applied in this section using the core samples information.
However, it is important to highlight that with the core samples, a wider
analysis will be done, not only estimating P wave velocities (Vp) but also S
wave velocities (Vs) and Vp/Vs ratios. In this way, in order to achieve such a
task, 14 core samples will be addressed in this section and it was possible to
obtain dry Vp and Vs lab measurements for each core sample.

It is important to mention that all those core samples were obtained
from different wells, however, all of them have the same carbonate facies of the
reservoir profiled by the well logs in Wells 49, 36 and 10: coquinas. Taking into
consideration the dry Vp and Vs measurements from the lab, it was necessary to
saturate those measurements through Gassmann’s relations already explained
in the section 3.1.3.2. The following water saturation value was used in order
to saturate the core samples through Gassmann’s relations: Sw = 0.28. We
reached this value making the averages of the Sw logs of Wells 36 and 49. In
fact, Costa et al., (2016) (93) state that Vasquez (2015) (94) showed that lab
experiments corroborate the application of Gassmann’s relations in coquinas.
Grounded in this premise, it was possible to make the saturation through the
Gassmann’s relations. Besides that, in Figure 6.11, it is possible to observe
how the saturated P wave velocities are settled over the crossplots Vp − φ of
the Wells 49, 36 and 10.

Taking into consideration that the core samples are composed by the
same carbonate facies of the reservoir which has been studied in this disser-
tation and the Gassmann’s relations work for coquinas, in Figure 6.11, it is
possible to notice that the saturated P wave velocities follow the Vp − φ trend
of Wells 49, 36 and 10 very well. In this way, it is possible to plausibly use the
MAP values of each parameter (V1, α1, α2, K and G) optimized in the Bayesian
framework using Well 49 data in order to estimate the elastic attributes of the
core samples through the rock physics models of Xu & Payne and T-Matrix. In
fact, those MAP values were presented in Tables 6.2 and 6.3 for both models.
It is also important to mention an interesting fact regarding Figure 6.11: The
saturated P wave velocities of the carbonate core samples present low values of
porosity which vary in the following manner, approximately: 0.02 6 φ 6 0.09,
whereas the porosities range of Wells 49, 36 and 10 presents approximately the
following variation: 0.001 6 φ 6 0.2.
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Figure 6.11: Saturated P wave velocities of the core samples following the trend
of the three Wells 49, 36 and 10.

All the aforementioned explanations delivered regarding the core samples
will be very important in order to obtain a more clear comprehension of the
results in Figures 6.12, 6.13, 6.14, 6.15, 6.16 and 6.17. As a matter of fact,
in those figures will be shown the comparisons between the elastic attributes
estimations provided by the rock physics models of Xu & Payne and T-Matrix,
their respective error histograms and the models settled over the crossplots
Vp − φ, Vs − φ and Vp/Vs − φ. Besides that, Tables 6.7 and 6.8 summarize
the metrics of accuracy (MAE, RMSE and Mean Error) related to each rock
physics model for Vp, Vs and Vp/Vs. Nevertheless, before start the analyses
regarding the rock physics modelings using the core samples data, it is also
important to explain the meaning of each acronym in the following figures.
Therefore, VP|VS|VP/VS CS TM, VP|VS|VP/VS CS XP and VP|VS|VP/VS
CS, respectively, signify: the Vp, Vs and Vp/Vs estimations obtained through
the T-Matrix rock physics model, the Vp, Vs and Vp/Vs estimations obtained
through the Xu & Payne rock physics model and the saturated Vp, Vs and
Vp/Vs estimations provided by the Gassmann’s relations.
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Figure 6.12: Comparison between the elastic attributes estimations of both
rock physics models regarding the core samples and the models settled over
the crossplot Vp − φ.

Figure 6.13: Error histograms regarding the difference between the modeled
and the measured P wave velocities for both models.
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Figure 6.14: Comparison between the elastic attributes estimations of both
rock physics models regarding the core samples and the models settled over
the crossplot Vs − φ.

Figure 6.15: Error histograms regarding the difference between the modeled
and the measured S wave velocities for both models.
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Figure 6.16: Comparison between the elastic attributes estimations of both
rock physics models regarding the core samples and the models settled over
the crossplot Vp/Vs − φ.

Figure 6.17: Error histograms regarding the difference between the modeled
and the measured Vp/Vs ratio for both models.
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Table 6.7: Metrics of Accuracy - Core Samples - Xu & Payne

Xu Payne MAE RMSE Mean Error

VP 138,7 157,6 0,025

VS 67,8 79,94 0,022

Vp/Vs 0,036 0,046 0,020

Table 6.8: Metrics of Accuracy - Core Samples - T-Matrix

T-Matrix MAE RMSE Mean Error

VP 123,7 147,7 0,022

VS 69,3 80,17 0,023

Vp/Vs 0,031 0,039 0,017

Analyzing and relating the results in Figures 6.12, 6.13, 6.14, 6.15, 6.16
and 6.17 to Tables 6.7 and 6.8, some important insights are obtained:

– Analyzing the histograms, most of the errors regarding Vs and Vp/Vs

ratio estimations were in the order of ±2.5% (Figures 6.15 and 6.17) for
both models. Only in the Vp estimations, most of the errors were around
±2.5% using the T-Matrix approach, whereas the Xu & Payne model
presented most of the errors in the order of ±5% (Figure 6.13).

– In Tables 6.7 and 6.8, mean errors found out for Vp and Vs were around
2.2% and for Vp/Vs was approximately 2%. Regarding the metrics of
accuracy MAE and RMSE in Tables 6.7 and 6.8, the T-Matrix model
demonstrated better elastic attributes estimations for Vp and Vp/Vs

whereas for Vs both models had similar performances regarding reliable
elastic attributes estimations where the Xu & Payne approach showed
to be slightly better in comparison with the T-Matrix.

– Despite the fact that the inputs used in order to estimate the elastic
attributes of the core samples were obtained in the Bayesian framework
using the data of Well 49, good elastic attributes estimations were
obtained as it was possible to see in the previous two bullets regarding
the metrics of accuracy and the histograms analyses.
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6.4
Sensitivity Analyses

This section is very important for the whole scope of this dissertation.
Despite the fact that both models were used to compute the P and S
wave velocities of the coquinas reservoir using well logs and core samples,
in sections 6.2 and 6.3, in a general manner, it was possible to verify that
the T-Matrix rock physics model had a better performance regarding elastic
attributes estimations. Therefore, the T-Matrix model was also used in this
section to run the sensitivity analyses regarding different pores aspect ratios,
fluids and mineralogical content. The results obtained in sections 6.2 and
6.3 demonstrated that the T-Matrix rock physics model can estimate with
a low error, the carbonate elastic attributes not only locally in Well 49,
but also using the data of Wells 36, 10 and core samples, showing a good
power of extrapolation. In this way, it is possible to state that this calibrated,
parametrized and validated rock physics model can represent the elastic
attributes of this carbonate reservoir facies very well or at least with a good
level of accuracy.

Taking into consideration the calibration of the rock physics model at
the well location (Well 49) and accurate elastic attributes estimations in other
wells through the rock physics extrapolation, it is possible to state that any
changes in the input parameters of the calibrated T-Matrix rock physics model
would generate the same outcome that the real reservoir would generate if
were possible to change the intrinsic characteristics of the reservoir in the
real environment. In this way, the motivation to run the sensitivity analyses
is to try to simulate different scenarios that may happen away from the well
location. Regarding heterogeneous carbonate reservoirs, it is very important to
understand what may happen – in a quantitative manner – if the fluids change
or if some diagenetic process of dissolution or even silicification/dolomitization
also occurs.

Several scenarios can be simulated through the T-Matrix changing the
input parameters, for instance: increasing the pores aspect ratio (α), it is
possible to simulate a kind of dissolution process because this diagenetic
process tends to generate moldic pores in the carbonate rocks, changing the
fluids bulk modulus (Kfl) and density (ρfl), it is possible to simulate different
kind of fluids and altering the bulk and shear moduli (K and G) of the rock
matrix, it is possible to simulate diagenentic processes of dolomitization and
or silicification. Therefore, each one of those will be approached in sections
6.4.1, 6.4.2 and 6.4.3, respectively. Nevertheless, it is important to mention
that the start point of the three sensitivity analyses will be the validated T-

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



Chapter 6. Results and Discussions 98

Matrix rock physics modeling in Well 36 illustrated in Figure 6.7, where the
input parameters are illustrated in Table 6.2.

6.4.1
Sensitivity Analyses - Pores Aspect Ratios

In sections 6.2 and 6.3, it was possible to analyze the elastic attributes
estimations of both rock physics models for Wells 49, 36 and 10 and for the
core samples. In this way, during this section, sensitivity analyses regarding
different aspect ratios will be conducted. In fact, only one well and one rock
physics model will be approached: The T-Matrix rock physics model in Well
36. Through this model it was possible to obtain the best elastic attributes
estimations in comparison to the other results provided by the Xu & Payne
approach as was already explained in the introduction of this chapter. Taking
into consideration that the parameters inputted in this model are presented
in Table 6.2, during the sensitivity analyses conducted in this section, only
the aspect ratio (α1) will be changed and the other parameters will be kept
constant. It is important to remind that this aspect ratio (α1) represents
approximately 5% of carbonate pore space volume. Therefore, Figures 6.18
and 6.19 illustrate the first sensitivity analysis regarding different aspect ratios:
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Figure 6.18: Sensitivity analyses regarding different aspect ratios in the rock
physics model of T-Matrix with α = 0.016, 0.01 and 0.1.
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Figure 6.19: Rock physics modelings regarding different aspect ratios using the
rock physics model of T-Matrix with α = 0.016, 0.01 and 0.1 over the crossplot
Vp − φ of Well 36.

Figure 6.18 is illustrating what happens when approximately 5% of the
total volume of the carbonate reservoir rock aspect ratio is changed. Therefore,
throughout the first three tracks from left to right it is possible to see the
comparison between the real Vp well log (black) with the rock physics modelings
with 5% of the coquinas pore volume with α = 0.016, 0.01, 0.1. In this way, the
first track from the left to right represents the rock physics modeling estimation
of Figure 6.7 (The validated T-Matrix) with the real Vp well log. Comparing
the first and second tracks, it is possible to see the huge difference between
the elastic attributes estimations for α = 0.016 and α = 0.01, as the reservoir
gets much softer with this kind of pore type only occupying 5% of total rock
volume. In the same way, when α = 0.1, the rock gets much stiffer and it
is possible to see differences between the first and the third tracks around
500 m/s. Nonetheless, in Figure 6.19, it is also possible to observe how the
T-Matrix rock physics modelings using different aspect ratios are settled over
the crossplot Vp − φ of Well 36.

It is possible to state that the variation of 5% of the aspect ratios pore
volume from 0.016 to 0.01 and 0.016 to 0.1 are enough to generate huge changes
in the rock physics model estimations. In fact, the first track in Figure 6.18, the
measured Vp and the modeled Vp are almost superimposed throughout the well
log. The only interval with a bad estimation is related to the log first samples.
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Despite all this, comparing the second and third tracks to the first one, it is
very easy to find differences of velocities in the order of 600 m/s. Finally, the
last two tracks in Figure 6.18 show an illustrative comparison between all the
modelings generated.

In Figure 5.4, in Chapter 5, among the 105 pores aspect ratios measured
in the 22 thin section images, it is possible to notice that the predominant
volume is represented by the aspect ratios included in the following range:
0.1 6 α 6 0.8. Taking into consideration that crack pores make the carbonate
rock softer and moldic pores make the same rock stiffer, it was possible to
observe in Figure 6.18 that the slight change of α = 0.016 to α = 0.01 hugely
affects the carbonate elastic attributes mainly for low velocities intervals
where the porosities tend to be higher. In this way, it should be interesting
to run a further analysis addressing the effects of moldic or stiff pores in
the carbonate elastic attributes through the T-Matrix rock physics model.
Therefore, it will be possible to analyze in quantitative manner how the
carbonate elastic attributes change due to the presence of stiff pores. Thus,
in Figures 6.20 and 6.21, it is possible to see how the P wave velocity of
the carbonate reservoir changes when approximately 5% of the reservoir pore
volume has the following values of aspect ratio: α = 0.016, 0.1, 0.2, 0.4, 0.6, 0.8.

0

50

100

150

200

250

W
el

l 
L

o
g

 S
am

p
li

n
g

4000 5000 6000 7000
P Wave Velocity (m/s)

VP - TM |  = 0.016
VP - W36

0

50

100

150

200

250

W
el

l 
L

o
g

 S
am

p
li

n
g

4000 5000 6000 7000
P Wave Velocity (m/s)

VP - TM |  = 0.1
VP - W36

0

50

100

150

200

250

W
el

l 
L

o
g

 S
am

p
li

n
g

4000 5000 6000 7000
P Wave Velocity (m/s)

VP - TM |  = 0.2
VP W36

0

50

100

150

200

250

W
el

l 
L

o
g

 S
am

p
li

n
g

4000 5000 6000 7000
P Wave Velocity (m/s)

VP - TM |  = 0.4
VP - W36

0

50

100

150

200

250

W
el

l 
L

o
g

 S
am

p
li

n
g

4000 5000 6000 7000
P Wave Velocity (m/s)

VP - TM |  = 0.016

VP - TM |  = 0.1
VP - TM |  = 0.2

VP - TM |  = 0.4
VP - TM |  = 0.6

VP - TM |  = 0.8
VP - W36

Figure 6.20: Sensitivity analyses regarding different aspect ratios using the
rock physics model of T-Matrix with α = 0.016, 0.1, 0.2, 0.4, 0.6 and 0.8.
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Figure 6.21: Rock physics modelings regarding different aspect ratios using the
rock physics model of T-Matrix with α = 0.016, 0.1, 0.2, 0.4, 0.6 and 0.8 over
the crossplot Vp − φ of Well 36.

Some immediate considerations can be quickly obtained through Figures
6.20 and 6.21, when 5% of the carbonate reservoir pore space is represented
with the following values of aspect ratios: α = 0.016, 0.1, 0.2, 0.4, 0.6, 0.8.

– The huge change regarding elastic attributes estimations still happen
when α = 0.016 goes to α = 0.1.

– It is possible to see the small differences in the rock physics modelings
when α = 0.1 goes to α = 0.2, 0.4.

– The differences in the rock physics modelings estimations when α = 0.4
goes to α = 0.6 or α = 0.8, technically, are almost imperceptible. In this
way, there is almost no difference regarding elastic attributes estimations
using any of those higher values of aspect ratios.

– The T-Matrix rock physics modelings settled over the crossplot Vp − φ
of Well 36 in Figure 6.21 corroborate and illustrate the analyses made in
the previous bullets.
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Through Figures 6.18 and 6.20, it is possible to conclude that the change
of 5% of the reservoir volume proportion from α = 0.016 to α = 0.1 makes
the reservoir much stiffer, increasing the P wave velocity, and the changes
are very significant. It is very easy to find differences between the first and
third tracks in the order 500 m/s. However, in Figure 6.20, when the aspect
ratio goes from α = 0.1 to higher values, such as: α = 0.2, 0.4, 0.6 and 0.8,
some sort of velocity increase happens but it is very modest. It is important
to mention again that the big differences were found out for low velocities
intervals where the porosities tend to be higher. For high velocities intervals
where the porosities tend to be lower, the differences between the modelings
using different aspect ratios, tend to be smoother.

Those kind of sensitivity analyses regarding pores with different aspect
ratios are especially important for coquinas. In fact, Junior (2016) (43) in his
Master’s dissertation, approaching coquinas reservoirs, basically stated that
this kind of carbonate reservoir with interparticle porosity shows intermediate
values of porosity but good values of permeability whereas higher presence of
moldic pores indicates good values of porosity but lower values of permeability.
Bizotto (2014) (15) follows almost the same conclusions of Junior (2016) (43)
and also states that coquinas reservoirs with interparticle pores – more deposi-
tional developed – tend to present higher values of porosity and permeability.
In this way, for the coquinas reservoir, it is very important to understand the
quantitative elastic attributes alterations regarding pore shapes because moldic
pores can be modeled with higher values of aspect ratio and the presence of
those pores, in this specific carbonate rock, can indicate higher porosities but
lower permeabilities.

Certainly, at first glance, there is an intuitive feeling about what happens
when the increase of the moldic pores occurs in the rock physics model: the
reservoir gets stiffer, in the same way; increasing the crack pores, the reservoir
gets softer. However, the goal of using rock physics models is to obtain a
quantitative feeling/sense of those changes regarding the aspect ratio varia-
tions. In this way, it is possible to better understand quantitatively how the
P wave velocity vary, through the rock physics modeling, altering the input
parameters. Nevertheless, as was already mentioned in Chapter 2, the changes
in the aspect ratios can be also related to diagenetic processes and other
events, as it was described that the moldic pores are related to dissolution
and crack pores can be related to fractures.
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6.4.2
Sensitivity Analyses - Fluids

During this section, it will be possible to understand and analyze in a
quantitative manner how different kinds of fluids affect the elastic attributes
estimations of the coquinas reservoir through the T-Matrix rock physics
model. In this way, Figure 6.22 shows the difference between rock physics
modelings with different kinds of fluids. In fact, in the first track, it is possible
to see the validated T-Matrix rock physics modeling estimation for Well 36 of
Figure 6.7. This estimation was obtained using a fluid mixture where each well
log sampling in depth assumed proportional values of fluids bulk modulus and
density according to the proportion of oil and brine in the Sw well log. This
procedure was detailed explained in section 5.2.2.1 in Chapter 5. Therefore,
the same model with α = 0.016 was used to compute the elastic attributes
estimations of the carbonate reservoir but instead of using a fluid mixture
(Oil/Brine), it was modeled the hypotheses that the rock pore space is totally
fulfilled by brine or oil, tracks two and three, in Figure 6.22, respectively.

0

50

100

150

200

250

W
e
ll

 L
o

g
 S

a
m

p
li

n
g

4000 4500 5000 5500 6000 6500
P Wave Velocity (m/s)

VP - TM -  = 0.016
VP - W36

0

50

100

150

200

250

W
e
ll

 L
o

g
 S

a
m

p
li

n
g

4000 4500 5000 5500 6000 6500
P Wave Velocity (m/s)

VP - TM - SW = 1
VP - W36

0

50

100

150

200

250

W
e
ll

 L
o

g
 S

a
m

p
li

n
g

4000 4500 5000 5500 6000 6500
P Wave Velocity (m/s)

VP - TM - SW = 0
VP W36

Figure 6.22: Sensitivity Analyses regarding fluids inclusions taking into con-
sideration the hypotheses of all the pores fulfilled by brine (Track 2) and oil
(Track 3).
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In this way, through Figure 6.22, in track two, an increase of P wave
velocity can be observed, mainly in the interval of low velocities between
samples 150 and 215. On the other hand, in track three of the same figure
almost any change can be noticed. In fact, the reason why there is almost no
difference between tracks one and three can be illustrated in Figure 6.23.
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Figure 6.23: Crossplot Vp − φ of the Well 36 colored by the water saturation
log (Sw).

In this figure, it is possible to notice that in this well, the carbonate reser-
voir is almost fully saturated by oil, mainly for higher values of porosities and
consequently, for lower values of velocity. Therefore, it is totally comprehensi-
ble that when the fluids mixture is substituted for oil, the difference regarding
elastic attributes estimations through the T-Matrix rock physics model will
not be relevant after all. In fact, it is possible to better illustrate that the
modelings (Validated T-Matrix and the hypothesis of Sw = 0) in tracks one
and three of Figure 6.22 are very similar in Figures 6.24 and 6.25. In Figure
6.24, in the second track, it is possible to notice that both plots are superim-
posed whereas in Figure 6.25, also in the second track, the simulations of both
models are also almost superimposed.
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Figure 6.24: Sensitivity Analyses taking into consideration the hypotheses of
all the pores fulfilled by brine or oil.
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Figure 6.25: Simulations of the T-Matrix rock physics model representing the
hypotheses of all the reservoir pores fulfilled by oil (Sw = 0) or water (Sw =
1) and the crossplot Vp − φ colored by the water saturation log (Sw).
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It is important to mention that all the other parameters were kept
constant and the saturating fluid bulk modulus and density were the only
parameters changed. In fact, no unusual values of fluid bulk modulus (Kfl)
and density (ρfl) to run the fluid sensitivity analyses were used. The fluid
mixture was composed by the oil bulk modulus (Ko) and density (ρo) plus the
brine bulk modulus (Kb) and density (ρb) following the respective proportions
of each fluid in all well log samples along the reservoir column. The only change
made was to substitute all the well log samplings with the proportional fluid
mixture for constant values of brine bulk modulus or oil bulk modulus (Kb|Ko)
and brine density or oil density (ρb|ρo) in the entire reservoir column in each
well log sample.

Taking into consideration the first and second tracks of Figure 6.22, it is
possible to see a slight increase of P wave velocity, mainly in the interval of
lower velocities between the samples 150 and 215. This interval presents higher
porosities and it is almost fully saturated by oil as it can be seen in Figure 6.23.
Therefore, running the fluid sensitivity analyses in this interval with brine is
a good example to observe the fluids effects on this carbonate reservoir. As a
matter of fact, analyzing some samples of this same interval, it was possible to
find out differences between the velocities in the order of 200 m/s and even 260
m/s in the well log sampling 183, comparing tracks 1 and 2 of Figure 6.22. In
comparison with the difference of velocities encountered due to the aspect ratio
changes in section 6.4.1, those variations are very modest. One of the reasons
that may explain why such small differences of velocity were discovered in
the fluid sensitivity analyses is because of the intrinsic carbonate stiffness, as
was already mentioned in Chapter 2 of this dissertation. In this way, through
those analyses, it is possible to verify that this carbonate reservoir tends to be
somehow insensitive regarding the fluid changes.

6.4.3
Sensitivity Analyses - Mineralogical Content

In the two previous sections it was possible to analyze how the P wave
velocity of the coquinas reservoirs behave due to the alterations in the pores
aspect ratios and fluids. During this section it will be possible to understand
in a quantitative manner how the elastic attributes of the coquinas reservoir
behave due to the changes regarding the mineralogical content of the rock
matrix. In fact, to be more specific, the bulk and shear moduli (K and G)
inputs of the T-Matrix rock physics model will be changed in order to simulate
three different scenarios. Therefore, the diagenetic processes of dolomitization
and low and intense silicification will be modeled taking into consideration the
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information available in the literature about the bulk and shear moduli of the
minerals dolomite and quartz.

Those kind of sensitivity analyses are very important because it is not
unusual to find out in the literature that the mineralogical content has little
effect on the carbonates elastic attributes in comparison with other properties,
such as: porosity or pores aspect ratios. The dolomitization and silicification
processes were chosen to be modeled in this section because they are some of
the most common diagenetic processes which affect the carbonate rocks – in
a general manner – together with processes of cementation and dissolution.
In fact, the diagenetic process of dissolution was already simulated in section
6.4.1 where it was possible to analyze the increase of P wave velocity when the
pores aspect ratios increased, leading the reservoir to get much stiffer. Besides
that, Junior (2016) (43) and Bizotto (2014) (15) pointed out that the dia-
genetic processes of dolomitization and silicification are common in coquinas
reservoirs. Nevertheless, Figure 6.26 illustrate how the P wave velocities and
Vp/Vs ratios of the coquinas reservoir change due to three different scenarios:
dolomitization, low silicification and intense silicification.
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Figure 6.26: Sensitivity analyses regarding different values of bulk and shear
moduli using the T-Matrix rock physics model.
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In the first track of Figure 6.26, it is possible to observe the T-Matrix
rock physics model parametrized with the optimized parameters generated
through the DREAM algorithm using the Bayesian framework where the
matrix 100% composed by the mineral calcite (validated T-Matrix) was
considered. In the second track, it is clear to notice the increase of the P wave
velocity in the carbonate reservoir taking into consideration that the reservoir
matrix is composed by the following proportions: 65% calcite – 35% dolomite
(dolomitization scenario). The calcite bulk and shear moduli were extracted
from Table 6.2 and those values can also be seen in Table 6.9 whereas the
dolomite bulk and shear moduli were also taken from Table 6.9. The dolomite
elastic moduli were chosen among the three references available in the book of
Mavko et al., (2009) (68).

The Voigt and Reuss bounds together with the mixing law of Hill were
applied in order to obtain the resultant bulk and shear elastic moduli of the
new matrix of the carbonate reservoir which will be simulated. The new values
of K, G (bulk and shear moduli) and ρ (density) of the new matrix can be
analyzed in Table 6.10 (dolomitization scenario). Regarding the density, the
Voigt’s average was used to obtain the resultant density of the new elastic solid
media. In fact, in Figure 6.26, it is very easy to discover differences between
the first and the second tracks in the order of 300 m/s for intervals of lower
velocities and higher porosities whereas in intervals of higher velocities and
lower porosities, such as: between the well log samplings 25 and 75, differences
of Vp in the order of 500 m/s were found out. Thus, through this modeling,
it was possible to see in a quantitative manner how the P wave velocity of
this carbonate reservoir behaves when a sort of dolomitization happens in the
coquinas reservoir.

It is important to mention that is not intuitive to evaluate sensitivity
analyses of the diagenetic processes of low and intense silicification analyzing
the variations of P wave velocities. In fact, when Vp/Vs is used instead of Vp in
order to make such an evaluation, it is possible to cut the effect of density and
leverage the effects bulk and shear moduli. Therefore, through Vp/Vs analysis,
it is possible to have a more clear evaluation without any ambiguities. Despiting
the fact that we did not have the DTS logs available of the three wells studied
in this dissertation and taking into consideration good estimations of Vs values
for the core samples, the Vp/Vs estimations of the third track of Figure 6.26
(black solid line) were estimated using the real Vp well log from Well 36 and the
Vs estimations generated through the T-Matrix rock physics model. Likewise,
in the same track, it is possible to notice the estimations of the parametrized
and calibrated T-Matrix rock physics model (green solid line). Nevertheless, in
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the fourth and fifth track of Figure 6.26, it is possible to analyze how the elastic
attributes of the coquinas reservoir behave taking into account the scenarios
of low and intense silicifications.

The same procedure addressed to simulate the diagenetic process of
dolomitization was approached to simulate the hypotheses of low and intense
silicifications using the following mineralogical content proportions, respec-
tively: 85% Calcite – 15% Quartz and 35% Calcite – 65% Quartz. The bulk
and shear moduli of the minerals calcite and quartz were extracted from Table
6.9. In fact, the values of K, G (bulk and shear moduli) and ρ (density) of the
new matrix regarding the diagenetic processes of low and intense silicification
can be analyzed in Table 6.10. In this way, in Figure 6.26, it is possible to
observe that for the scenario of low silicification, the Vp/Vs ratio differences
between the third and fourth tracks is not too expressive (in the order of 0.1).
On the other hand, taking into consideration the scenario of intense silifica-
tion, it is possible to notice expressive variations comparing the Vp/Vs ratio
estimations of the third and fifth tracks (in the order of 0.3).

Table 6.9: Values of Shear and Bulk moduli of Calcite, Dolomite and Quartz
Minerals.

Mineral Bulk Modulus (GPa) Shear Modulus (GPa) Density (Kg/m3)

Calcite 63,7 28,2 2,710

Dolomite 94,9 45 2,870

Quartz 37 44 2,650

Dolomite and quartz elastic moduli extracted from Mavko et al., (2009) (68).

Table 6.10: Bulk and Shear Moduli obtained using the Voigt-Reuss averages
together with the Mixing Law of Hill and Density obtained through the Voigt’s
average.

Diagenetic
Process

Bulk Modulus (GPa) Shear Modulus (GPa) Density (Kg/m3)

Dolomitization 73,3 33,2 2.766

Low Silicifi-
cation

58,6 30,1 2.701

Intense Sili-
cification

44,8 37,6 2.671
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7
Conclusions, Final Remarks and Future Work

It is hard to believe how granular pack rock physics models – such
simplistic models – can represent siliciclastic reservoirs elastic attributes, as
Dvorkin et al., 2014 (30) has already mentioned in their book. Following the
same perspective, this work was conducted: how can a rock physics model
embedded with so many assumptions, idealizations and limitations estimate
elastic attributes of carbonates? Particularly, coquinas, such a heterogeneous
reservoir rock, composed by so much debris, organism shelfs and geological
components all mixed and unified in a single geological structure that we gave
the name of reservoir rock. Therefore, since the beginning of this research, we
knew that it would be a challenge to accomplish such a task with a low degree
of error, due to all the heterogeneities embedded in the coquinas reservoirs
and carbonates in a general manner. In fact, that was one of the reasons why
some input parameters of the rock physics models were posed in a Bayesian
framework. Through this approach, it was possible to stochastically evaluate
the main parameters of those models and take into consideration inherent
uncertainties related to the measurements needed as inputs. In this way, it
was possible to reach more reliable elastic attributes estimations from both
models.

Rock physics is not a new research field but some applications just came
up in the recent years and during this time, the industry has been recognizing
the applicability of rock physics as a whole in exploratory process, mainly,
due to the good results obtained in the literature, in several aspects, such
as: model driven seismic inversions, pore type characterizations, synthetics
generation through rock physics models, among others. This dissertation is
just one more little contribution in the scope of Rock Physics which shows the
application of those models in order to reliably estimate elastic attributes of
carbonate reservoirs. Moreover, it was also demonstrated – in a quantitative
manner – how the coquinas elastic attributes behave regarding the changes
in pores aspect ratios, mineralogical content and fluids through sensitivity
analyses. In this way, taking into consideration the scope of this work and
the results achieved during this dissertation, the following conclusions were
obtained:

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



Chapter 7. Conclusions, Final Remarks and Future Work 111

1. Regarding well logs, it was possible to reach through the rock physics
models of Xu & Payne and T-Matrix accurate elastic attributes esti-
mations for Wells 49, 36 and 10. However, it is important to mention
that the Xu & Payne approach generated picks of underestimation in
Wells 49 and 36 for intervals of lower velocities and higher porosities.
In this way, for a more complete evaluation of the models performance
regarding elastic attributes estimations, the analyses of the metrics of
accuracy (MAE and RMSE) and mainly the error histograms were also
necessary, where it was possible to observe not only the most frequent
errors but also the maximum errors obtained between the modeled and
measured Vp for each well. Therefore, it was possible to conclude that in
a general manner the T-Matrix had a better performance in the matter
of elastic attributes estimations over the rock physics model of Xu &
Payne regarding well log data.

2. In respect of the elastic attributes estimations of the T-Matrix rock
physics model using the well log data, it is possible to state that this
model was well parametrized in the well location (Well 49) following the
metrics of accuracy and the histograms between the modeled and the
measured Vp. Besides that, the same calibrated model was extrapolated
and validated for Wells 36 and 10, where most of the errors presented
low percentage values and good metrics of accuracy were also obtained.
In this way, it was possible to conclude that the calibrated T-Matrix
rock physics model not only had a good performance and it was well
calibrated at the well location (Well 49), but also had a good power of
extrapolation estimating the elastic attributes with accuracy for other
wells (Wells 36 and 10) which were distant from the calibration well.
In fact, the parameters evaluation through the Bayesian framework was
applied with the data of Well 49, which is the calibration well.

3. The MAP values of the optimized posterior parameters distributions
obtained through the Bayesian framework using well log data were also
used in order to estimate the elastic attributes of carbonate core samples.
Therefore, it was possible to estimate not only P wave velocities (Vp) but
also S wave velocities (Vs) and Vp/Vs ratios where reliable estimations
were obtained with good metrics of accuracy through the rock physics
models of Xu & Payne and T-Matrix. In a general manner the T-Matrix
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demonstrated to be superior over the rock physics model of Xu & Payne
regarding reliable elastic attributes estimations. In fact, this result is
very interesting because it was possible to verify that optimizing the
parameters through the Bayesian framework only using Vp data, it was
possible to reliably estimate S wave velocities (Vs) and Vp/Vs ratios for
the core samples.

4. In the conclusions 1 and 3, it was stated that the T-Matrix rock physics
demonstrated – in a general manner – to be superior than the Xu &
Payne approach regarding reliable elastic attributes estimations. Both
statements were made in this manner because in the Vp estimations of
Well 10 and in the Vs estimations of the core samples, following the
metrics of accuracy (RMSE, MAE and Mean Error), the Xu & Payne
proved to be slightly better than the T-Matrix, technically almost equal
regarding some metrics of accuracy and histograms analyses. On the
other hand, in the Vp estimations of Wells 49 and 36 and in the Vp and
Vp/Vs estimations of the core samples, following the metrics of accuracy
and histograms, the T-Matrix demonstrated to present much better
elastic attributes estimations in comparison to the Xu & Payne model.
That is why in a general manner the T-Matrix proved to be superior
over the Xu & Payne rock physics model regarding well logs and core
samples data.

5. Through the calibration of the T-Matrix rock physics model at the well
location and the accurate elastic attributes estimations regarding other
wells and core samples – validation –, it was possible to state that this
model can represent the elastic attributes of the carbonate reservoir
which has been studied in this dissertation. Taking into consideration
those premises, it was possible to use the T-Matrix model in order to
quantitatively understand how the carbonate elastic attributes behave
regarding the changes of aspect ratios, fluids and mineralogical content.
Those are the so-called sensitivity analyses and the following conclusions
were obtained in this regard:

– It was possible to conclude that the model is very sensitive re-
garding aspect ratios, mainly when α = 0.016 goes to α = 0.01 or
α = 0.1 where velocities variations in the order of 500 – 600 m/s
were found out. However, when the aspect ratio α = 0.2 goes to
α = 0.4, 0.6 or α = 0.8, the model tends to be insensitive where
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the changes of velocity are almost imperceptible. In fact, those
simulations were made taking into consideration the change of only
5% of the total pore space of the coquinas reservoir.

– During the sensitivity analyses regarding the fluids, it was possible
to verify that this carbonate reservoir tends to be somehow insensi-
tive due to the fluid changes. In fact, variations in the order of 200
m/s even 260 m/s were found out simulating the brine hypothesis.
Those variations in comparison to the variations encountered due
to the aspect ratio changes are very modest.

– The sensitivity analyses regarding the mineralogical content showed
that the dolomitization and intense silicification diagenetic pro-
cesses tend to be more prominent in comparison to the low silicifica-
tion process. In fact, velocity variations in the order of 300 m/s were
discovered for porous intervals, whereas variations approximately of
500 m/s for intervals with lower porosities were found out. Those
simulations were computed taking into consideration that the rock
matrix assumed the following values of mineralogical content: 65%
calcite and 35% dolomite. However, in the hypothesis of low sili-
cification, there were not too expressive changes regarding elastic
attributes estimations whereas with respect of intense silicification
variations in the order of 0.3 were discovered showing strong varia-
tions of Vp/Vs ratios.

In respect to the fifth conclusion, it was possible to verify that the T-
Matrix rock physics model has more sensibility regarding the aspect ratios and
mineralogical changes. Regarding the aspect ratio simulations, this conclusion
corroborates what the literature has been stating through the years: the main
factors which affect the carbonate elastic attributes are porosity and pore
aspect ratios. On the other hand, it is very easy to see in the literature
that the mineralogical content of carbonates has little effect in terms of those
reservoir elastic attributes. Following our conclusions, it was possible to verify
that taking into consideration the hypothesis of dolomitization, differences of
Vp in the order of 300 m/s were achieved for porous intervals whereas for
intervals with lower porosities, P wave velocities variations in the order of 500
m/s were found out. Likewise, simulating the intense silicification diagenetic
process, it was also possible to verify significant changes in the Vp/Vs ratios.
In this way, it is possible to conclude that the mineralogical content also
has an expressive contribution in order to alter the carbonate (coquinas)

DBD
PUC-Rio - Certificação Digital Nº 1521869/CA



Chapter 7. Conclusions, Final Remarks and Future Work 114

elastic attributes despite what has been stated in the literature. Moreover, this
carbonate reservoir demonstrated to be less sensitive to the fluid alterations
even for intervals of higher porosities. This conclusion also corroborates the
information of the literature which states that due to the carbonate stiffness,
this kind of rock tends to be insensitive regarding fluid alterations.

It is important to mention that the rock physics modelings conducted
during this dissertation were applied in order to estimate the elastic attributes
of a specific carbonate reservoir: coquinas. Therefore, the validity of this
work and the models approached herein are related to the reservoir which
was studied during this dissertation. Taking into consideration the wide
variety of carbonate rocks and their different facies, frameworks, pore shapes
and also the different possible diagenetic processes that may happen, those
calibrated models are not likely to be applicable for other carbonate rocks with
different faciological and sedimentological characteristics. In fact, we do believe
that for other carbonate rocks, the rock physics models must be calibrated,
parametrized and validated taking into account new information that must be
acquired which will disclose about the specific features of each carbonate rock,
hence, those characteristics can be embedded in the models in order to estimate
the reservoir elastic attributes. Thus, the conclusions obtained during this work
regarding the rock physics modelings and the sensitivity analyses for coquinas
reservoirs are not likely to be extrapolated for other carbonate reservoirs with
different sedimentological and faciological features.

Certainly, a lot of subjects inside of the Rock Physics scope have been
developed and much more work needs to be done in the years to come. I
believe that in the coming years, rock physics awareness will increase even
more and professionals will still find manners to embed this research field not
only in the exploration process – helping to find the hard oil, because the easy
one is vanishing – but also in the development processes. In recent years, some
techniques related to the machine learning scope have been shown in literature,
in the matter of reservoir characterization, elastic attributes estimations and
others. In fact, those approaches came to help and in some specific areas, such
as: seismic interpretation, those algorithms related to neural networks, support
vector machines, genetic algorithms, image processing and deep learning
will really become paramount regarding the increase of seismic interpreters
productivity. However, taking into consideration the reservoir characterization
scope, only those algorithms working in a data-driven approach, probably will
not solve the issues of extracting petrophysical properties of heterogeneous
reservoirs reliably. Nevertheless, the coupled approach of data-driven and
model-driven – related to rock physics foundations – techniques can be a trend
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in future years to solve these kinds of problems related to the reliable extraction
of petrophysical properties and elastic attributes from heterogeneous reservoirs
using seismic and well logs as inputs.

7.1
Future Work

The following topics can be pointed out as future work or the continuation
of this dissertation:

– Generation of synthetics using an extracted wavelet and analyze in a
quantitative manner how the amplitudes behave regarding the changes
in the input parameters, such as: mineralogical content, fluids and pores
aspect ratios.

– Conduct wider sensitivity analyses through the calibrated and vali-
dated rock physics model. In this way, combine different alterations in
the model inputs at the same time in order to simulate more consis-
tent diagenetic processes and geological events in the carbonate reservoir.

– Explore more the potential of the T-Matrix rock physics model, such as:
rock physics modelings regarding anisotropy.

– Through both rock physics models understand in a quantative manner
the main factors which drive the AVO signatures in carbonate rocks.
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A
Pores Aspect Ratio Measurements in the Thin Sections
Images

Figure A.1: Yellow ellipses fitted in the pores of the thin sections images
through the ImageJ software.
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B
DREAM’s outcomes - Xu and Payne and T-Matrix Rock
Physics Models – Well 49

Table B.1: RMSE of the MAP values using both Rock Physics models in the
DREAM algorithm – Well 49.

RPM RMSEMAP - Well 49

T-Matrix 133,12

Xu & Payne 133,42
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