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Abstract

Gamba Camacho, Juan David; Candea Leite, Antonio (Advisor);
Johan From, Pål (Co-Advisor). A Robust Visual Servoing
Approach for Robotic Fruit Harvesting. Rio de Janeiro, 2018.
139p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In this work, we present different eye-in-hand visual servoing control sche-

mes applied to a robotic harvesting task of soft fruits in the presence of

parametric uncertainties in the system models. The first scheme combi-

nes position-based visual servoing (PBVS) and image-based visual servoing

(IBVS) approaches in order to perform respectively an approach phase to

the fruit and then a fine tuning of the end-effector to harvest. The second

scheme uses a hybrid visual servoing (HVS) approach to fulfill the complete

harvesting task, by designing a suitable control law which combines error

vectors defined in both the image and operational spaces. For detecting the

fruits, an algorithm based on the combination of the OHTA color space

and Otsu’s threshold method for a fast recognition of mature fruits in com-

plex scenarios. In addition, a more accurate detection method employs a

pre-trained deep encoder-decoder algorithm based on a minimized Segnet

version for a fast and cheap inference during the task execution. The object

localization is accomplished by employing an image triangulation technique,

which combines the speeded-up-robust-features (SURF) and the-random-

sample-consensus (RANSAC) or the Oriented FAST and Rotated BRIEF

and the Brute-Force Matcher (BF-Matcher) algorithms to extract the fruit

image feature and match it to its correspondent feature-point into the other

view of the stereo camera. However, since these algorithms are computa-

tionally expensive for the task requirements, a faster estimation method

uses the fruit centroid and a homogeneous transformation for discovering

matching points. Finally, a vision-based sliding-mode-control scheme and a

switching monitoring function are employed to cope with uncertainties in

the calibration parameters of the camera-robot system. In this context, it is

possible to guarantee the asymptotic stability and convergence of the image

feature error, even if the misalignment angle, around the z-axis, between the

camera and end-effector frames is uncertain. 3D computer simulations and

preliminary experimental results, obtained with a Mitsubishi robot arm RV-

2AJ carrying out a simple strawberry picking task, are included to illustrate

the performance and effectiveness of the proposed control scheme.
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Resumo

Gamba Camacho, Juan David; Candea Leite, Antonio; Johan From,
Pål.Uma Abordagem de Servovisão Robusta para Colheita
Robótica de Frutas. Rio de Janeiro, 2018. 139p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Neste trabalho, apresenta-se diferentes esquemas de controle servovisuais
para tarefas robóticas de colheita de fruta, na presença de incertezas pa-
ramétricas nos modelos do sistema. O primeiro esquema combina as abor-
dagens de servovisão baseada em posição (PBVS) e servovisão baseada em
imagem (IBVS) para realizar, respectivamente, a aproximação até a fruta
e, em seguida, um ajuste fino para a colheita. O segundo esquema usa uma
abordagem de servovisão híbrida (HVS) para realizar a tarefa de colheita
completa, projetando uma lei de controle adequada que combina vetores de
erro definidos no espaço operacional e no espaço da imagem. A fase de de-
tecção utiliza um algoritmo baseado no espaço de cores OTHA e limiar da
imagem Otsu para um rápido reconhecimento de frutos maduros em cená-
rios complexos. Além disso, um método de detecção mais preciso emprega
uma Rede Neural Convolucional Profunda (DCNN) pré-treinada baseada
em uma versão Segnet minimizada para uma inferência rápida durante a
execução da tarefa. A localização do objeto é realizada empregando uma
técnica de triangulação de imagem, que combina os algoritmos SURF e
RANSAC ou ORB e BF-Matcher para extrair a característica da imagem
da fruta e associa-lo com o seu ponto correspondente na outra visualização.
No entanto, como esses algoritmos exigem um elevado custo computacional
para os requisitos da tarefa, um método de estimativa mais rápido utiliza
o centróide da fruta e transformação homogênea para descobrir os pontos
correspondentes. Finalmente, um esquema de controle em modos deslizan-
tes (SMC) baseado em visão e uma função de monitoramento de comutação
são empregados para lidar com incertezas nos parâmetros de calibração do
sistema de câmera-robô. Nesse sentido, é possível garantir a estabilidade
assintótica e a convergência do erro da característica da imagem, mesmo
que o ângulo de desalinhamento, em torno do eixo z, entre os sistemas de
coordenadas da câmera e do efetuador seja incerto.

Palavras-chave
Servovisão; Robôs Agrícolas; Colheita de Frutas Automática; Con-

trole Cinematico.
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Imagination is more important than knowl-

edge. For knowledge is limited, whereas imag-

ination embraces the entire world, stimulating

progress, giving birth to evolution.

Albert Einstein, “ What Life Means to Einstein”.
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1
Introduction

Machines picking apples from trees by using vacuums in the US, octopus

robots for collecting strawberries in Spain, others devices feeding and milking

cows in the UK. These are some examples of how robots are being incorporated

into different agricultural applications around the world. In fact, robots are

expected to help and/or replace humans in repetitive and fatigue duties such

as agricultural chores (Fig. 1.1).

As the world population is growing, the agricultural industry is expected

to grow by around twenty-three percent annually, requiring around 90,000

workers a year by 2021 just in Europe [1].

On the economic side, with these exponential production growing, chal-

lenges as maintaining low cost and maximum profit become an obligation for

any who wants to continue in business; on the other hand, food production

processes need to be re-structured reducing the waste of resources and increas-

ing the productivity of small cultivated areas, in order to decrease its negative

environmental impact [2].

Figure 1.1: Strawberry pickers, mostly from Poland, in poly-tunnels on a farm
in Kent, UK. Photograph: Graeme Robertson for the Guardian [2]

These concerns about food production do not belong exclusively to
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Chapter 1. Introduction 18

Europe and can also be considered in many countries of Central and South

America, particularly, in Brazil. Although, the Brazilian agricultural industry

has a high degree of automation for the planting and harvesting of grains and

sugarcane in large areas, farmers still do not use autonomous robotic systems to

perform basic and complex agricultural tasks in small areas, such as vegetable

gardens and orchards. Some basic agricultural tasks include sowing, fertilizing,

and irrigation, while some complex agricultural tasks consist of harvesting

fruits, killing weeds and plant phenotyping [2].

1.1
Motivation

A new trend for agricultural robotics, following the recent advances in

robotic technology around the world; is to combine and integrate advanced

control theory, computer vision algorithms, and machine learning techniques

into visual servoing approaches, allowing robots to perform agricultural tasks

with a high level of autonomy and better response to decision-making assign-

ments into complex and very dynamic scenarios [3, 4, 5].

Figure 1.2: From left-to-right and top-to-bottom: Iron Ox Lettuce Robot,
Robot Gardener, Agrobot SW6010 and Hamster Bot.

Over the last years, the technological advances of sensors and communica-

tion systems have encouraged the agricultural industry to employ and design

intelligent autonomous robots to carry out a number of repetitive and dull

tasks for farmers in orchards, vineyards, poly-tunnels and farms [7, 8].

Fruit harvesting and picking, weed control, autonomous mowing, prun-

ing, seeding and spraying, plant phenotyping, sorting and packing (Fig. 1.2)

are just a few examples of how robots are taking over fields around the world.
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Chapter 1. Introduction 19

In general, these robots are equipped with complex systems with specialized

accessories for navigation and different kind of tools (e.g., gripper and pickers),

in order to accomplish challenging tasks successfully, safely and efficiently [8].

In addition to being mobile, the robot must contain a sensor package inte-

grated into an autonomous navigation system so that it can move freely and

autonomously in the open field or between rows of the plants [9].

Agricultural environments introduce several challenges and difficulties,

particularly, for robotic harvesting and 3D navigation of mobile robots. Indeed,

changes in seasons and weather conditions, crop growth, and rotation, dense

vegetation, different maturity levels of fruits, the existence of diseases and fungi

in plants, all these factors create a dynamic and poorly structured environment.

Thus, the automatic fruit harvesting system has to incorporate perception and

cognition capabilities in the gripper design [10] as well as intelligent sensors

and systems for fruit detection, recognition and localization [11].

In general, crop environments include four important sources of variations

for robotic harvesting tasks [8]:

– Target objects: fruits and vegetables can vary in position, size, shape,

colors, and texture;

– The production conditions: orchard, greenhouse, indoor, or open field

may generate a lot of variation in light conditions, visibility, and acces-

sibility of the target objects;

– Type of crops: plants geometry differs among crops and it can drasti-

cally change technical details for robotic harvesting tasks, e.g., type of

grippers;

– Obstacles: foliage, stems, other fruits, leaves may block access to the tar-

get object, reducing the visibility and creating difficulties for localization

purposes.

Thus, robotic harvesting tasks for fruits and vegetables in the presence of these

sources of variations and disturbances still remains an open and challenging

research problem.
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Chapter 1. Introduction 20

1.1.1
Visual-Servoing

Visual servoing is the area of robotics that concerns the pose control

of robot arms or mobile robots based on the feedback of visual information

extracted from one or more image features, by using a single or multiple

cameras [12]. Such cameras may have different models (e.g., monocular, stereo

and RGB-D) and be mounted in different configurations: fixed in the robot

workspace (i.e., eye-to-hand) or attached to the robot end-effector (i.e., eye-

in-hand). More advanced applications, however, can use different types and

settings of cameras simultaneously [13].

Figure 1.3: Eye-to-hand camera configuration. [13]

In general, the direct measurements provided by the vision system are

related to the image feature parameters in the image space (Fig. 1.4)., while

the robotic task is defined in the operating or task space in terms of the

relative pose of the robot end-effector with respect to the target object (Fig.

1.3). In this context, vision-based controllers can be classified into two main

Figure 1.4: Eye-in-Hand Camera Configuration [13].

groups: position-based visual servoing (PBVS), image-based visual servoing

(IBVS) as well as hybrid visual servoing (HVS) that combines the benefits of

both approaches [14]. A key difference between PBVS and IBVS approaches is

related to the space where the quantities used to calculate the control action

are defined: task-space or image space. One of the main advantages of the
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Chapter 1. Introduction 21

IBVS approach over the PBVS approach is its higher robustness to camera

calibration errors, which results in better positioning accuracy for the vision

system. For executing a successful robotic harvesting task of horticultural

products there are two challenges to be considered; firstly, the recognition and

localization system needs to detect the target pose (position and orientation)

by employing a vision system for detecting fruits or vegetables; secondly, the

control system has to move the robot end-effector - with a suitable tool -

attached - towards the location of the object of interest accurately to perform

the harvesting task [15].

A key operation in visual servoing is the camera calibration phase, which

consists of obtaining the intrinsic and extrinsic parameters of the camera

in order to compute a suitable pose (position and orientation) of the image

features at the image projection plane. Another challenging aspect is to obtain

the geometric model of the target object to carry out the depth control by

using a single camera. On the other hand, by using stereo vision systems this

information can be directly obtained by processing the images obtained from

two or more cameras.

Following this motivation, in this master thesis, we aim to develop an

integrated methodology for semi-autonomous fruit harvesting based on the

combination of computer vision, machine learning, visual servoing and control

theory techniques, to be applied to orchards, vineyards and farms [8].

1.2
Review Of The State Of The Art

Currently, crops are usually harvested when most of the plants are ready

to be collected, minimizing the probability of picking fruits that do not meet a

certain threshold of quality. Alternatively, using a proper selective harvesting,

it is possible to collect only the matured enough fruits, leaving the others to

be collected in the near future, maximizing the production performance and

the quality of fruits [7, 16]. Selective harvesting applications are well known

in forestry, where quality and size are key patterns for choosing the right tree

and let the remaining to improve their quality and size for future harvesting.

Following this trend, picking or harvesting tasks are being carried out

by using cutting tools, soft-manipulators (Fig. 1.5) or mechanized harvesting

technologies. Manually-placed limb actuators can be used to apply vibrations

to effect fruit release in sweet cherry crops [17]. In this context, different

approaches such as SLAM, computer vision, and machine learning techniques

are used to improve the performance and accuracy of the harvesting task.

Moreover, a color-based object extraction method based on OHTA color space
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was developed by Wei et al. and used to carry out robotic strawberry picking

tasks under complex agricultural background [18].

Figure 1.5: Soft Robotics demonstrates its air-actuated gripper in the robotics
company’s Cambridge, Massachusetts, laboratory.

For carrying out the fruit picking, it is crucial to choose a well-fit gripper

that meets the task requirements. This decision may facilitate the design of

the control algorithm improving the performance of robotic harvesting task. In

this context, Bac et al., present different results achieved for harvesting sweet

peppers by using two different types of tools, say Fin Ray and Lip Type [19].

1.2.1
Computer Vision and Machine Learning

A proper image segmentation into complex scenarios has demonstrated to

be one of the main challenges of using data obtained from vision systems, which

may difficult the computation of an accurate 3D measurement of the object of

interest. In this sense, applications involving machine learning are becoming

more and more popular every day for challenging scenarios commonly found

in the agricultural sector.

Lottes et al. have developed a precision system for selective recognition

and spraying of weeds and invasive species, by using a camera mounted on

a mobile field platform to obtain data from the environment and a machine

learning algorithm called random forest classification to detect and remove

weeds [20].

Considering the robotic harvesting problem in vineyards and fields of

grape vines, a mobile robot system was developed for automatic pruning, by

using a trinocular stereo camera to build a more accurate three-dimensional

(3D) model of the vines. Hereafter, a machine learning algorithm decides which
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Figure 1.6: Weeds Detection and Identification [21].

canes to prune by using a six-degree-of-freedom (6-DOF) robot arm to perform

the cutting assignment [22].

Botterill et al. have developed an artificial intelligence algorithm for

pruning after recognizing the structure of the plant, wherein the AI algorithm

determines where to prune, knowing the hardware limitations of the robotic

arm [22].

Deep encoder-decoder architectures have been used recently to perform

semantic segmentations into very complex backgrounds, due to their ability for

learning textures and image features of a given interest object, these algorithms

demonstrate the possibility of carrying out detection and localization tasks

in non-controllable scenarios [23]. Hung et al. [24] introduce a segmentation

scheme using multispectral images, sparse autoencoders, and support vector

machine (SVM) schemes to segment leaves.

A framework for detecting and counting of apples was developed by Bar-

goti et al. , where by using machine learning schemes such as Multilayered

Perceptron (MLP) and Convolutional Neuronal Networks (CNN) and classic

computer vision approaches such as Watershed Segmentation (WS) and Cir-

cular Hough Transform (CHT) algorithms it is possible to detect and count

individual fruits [25]. Senthilnath et al. have designed a fruit detection al-

gorithm by using spectral-spatial methods in remotely sensed RGB images

captured by an UAV, which could be used for tomato harvesting [30].

Dias et al. [26] have proposed a robust flower identification algorithm

based on fully convolutional neuronal networks (FCNs), they have demon-

strated how FCNs are able to deal with very challenging segmentation assign-

ments.
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1.2.2
Visual Servoing

Vision plays an important role in robotics systems, where data obtained

by vision systems from the environment where the robot operates, presents a

rich geometrical and qualitative information critical for achieving a successful

task execution [37].

Barth et al. have proposed a visual servoing approach which uses the eye-

to-hand camera configuration for sweet pepper harvesting in dense vegetation

[27].

Figure 1.7: Robot arm reaching to prune the last of six cutpoints on a Sauvi-
gnon Blanc vine at the Lincoln University vineyard (left). The visualization
on the right shows the model of the robot arm, the vines, and the cutpoints.
[22]

.

Mehta and Burks have designed a vision-based estimation and control

system for robotic citrus harvesting based on the combination of large field-of-

view of a fixed camera and the accuracy of a mobile camera [28].

A detection and localisation algorithm applied to robotic apple harvest-

ing which detects red and bicoloured fruits on tree by using an RGB-D camera

was developed by Nguyen et al. [29].

1.2.3
Adaptive and Robust Control Schemes

Modeling inaccuracies or model imprecision at the extrinsic and intrin-

sic camera calibration parameter or robot kinematics due to simplified rep-

resentations, may represent a real challenge from the control point of view.

In particular, this inaccuracies can be classified in structure (parametric) and

unstructured uncertainties(unmodeled dynamics). Two major and complemen-

tary control schemes for dealing with model uncertainties are robust control

and adaptive control [60].
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Robust controllers present useful techniques for rejecting external distur-

bances by employing a high-frequency commuted control action to constraint

error trajectories on a sliding subspace. In this sense, Queiroz et al. presents a

robust controller without envolving visual serving control schemes, the design

and stability analysis of a variable structure adaptive backstepping controller

(VS-ABC) for linear plants. The proposed approach uses switching laws for

increasing the system robustness to parametric uncertainties and disturbances

[31].

Cheah et al. use an adaptive visual servoing design for motion, and

force tracking application in the presence of uncertainties in the surface, robot

kinematics and dynamics, and camera model. This control approach intends to

update online the uncertain internal and external parameters for the successful

execution of the interaction task [32].

Roux et al. address a robust visual servoing strategy by using switching

and sliding mode control techniques to deal with uncertainties in the intrinsic

camera parameters and camera orientation angle with respect to the robot

base frame to perform a trajectory tracking task [33].

Leite et al. consider a 3D visual tracking problem with uncertainties at

the kinematics and dynamics model of the robot arm, and intrinsic camera

parameters, they introduce an adaptive visual servoing scheme based on a

kinematic approach for an image-based-look-and-move system to perform a

3D tracking task [34].

Mehta et al. present an autonomous citrus harvesting by employing a co-

operative scheme based on eye-to-hand and eye-in-hand cameras configuration

[35].

1.3
Goals and Objectives

The main goal of this work is to explore different visual servoing control

technique in terms of model design, simulation, and practical implementation.

The key idea is to combine different schemes from different areas like visual

servoing, robust control theory, and computer vision to face the main challenges

found in soft fruit manipulation applications, very common in greenhouses and

farms [15].

Model, design and implement a visual-servoing based control scheme for

recognizing and picking soft-fruits using a robot manipulator and different

camera configurations in the presence of kinematic singularities and parametric

uncertainties in system models and external perturbations.

Present verification and validation results of the proposed visual servoing
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methodology for soft-fruits harvesting tasks in Matlab and Virtual Robot plat-

form (V-REP). The author also intends (if possible) to carry out experimental

tests with an autonomous robotic system for fruit picking, on a strawberry

farm, in Sylling, Norway.

The objectives, regarding theoretical and practical aspects in short- and

long-term scenarios, are the following:

– Carry out a prospective study on the state-of-the-art of soft fruit harvest-

ing devices based on robotic systems to understand the main challenges

involved in the design and practical implementation of the control sys-

tem;

– Evaluate different computer vision techniques for soft-fruit detection,

recognition, and selection at low computational cost (e.g., color segmen-

tation, machine learning);

– Evaluate the complexity and performance trade-offs between different

vision-based control schemes such as (i) position-based visual servoing

(e.g., 3D reconstruction), (ii) image-based visual servoing and (iii) hybrid

visual servoing.

– Image-based visual servoing: prospective study on the reliability and

robustness of the existing vision-based controllers to uncertainties in the

camera calibration parameters.

– Identify the main advantages and disadvantages of vision-based con-

trollers in the presence of model uncertainties and external disturbances,

in terms of theoretical and practical aspects.

– Analyse and design a robust solution for the fruit picking problem which

is able to deal with these types of perturbations.

– Carry out numerical simulations, 3D graphical animations and experi-

mental tests of a good-fit visual-servoing control scheme for robotic har-

vesting task of soft fruits

1.3.1
Methodology

In this work, we address the soft-fruit harvesting problem by using a

visual servoing approach based on the combination of computer vision, machine

learning, and control theory methodologies [36].

Basically, a visual system setup is composed of only one camera or

multiple cameras. An experimental setup with two or more cameras for

parameters extraction is referred as 3D vision or stereo vision, which is capable
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of retrieving the depth information evaluating the distance of the target object

to the vision system. 3D vision can be also implemented by using a single

camera and using two images of the target object from different poses. By

processing and combining both images simultaneously depth information can

be extracted. If the camera images are restricted to a single pose, from the

knowledge of the target geometric model it is also possible to estimate the

distance from the target to the camera.

As discussed early, the task of interest in visual servoing is to control the

robot end-effector, relative to the target object, using visual features extracted

from the image. In particular, this task can be performed by using eye-to-

hand camera configuration, where the camera is located in a fixed position

of the workspace and the robot end-effector is being observed for the visual

sensor for computing the desired motion (Fig. 1.3). Other camera configuration

consists of mounting the camera at the robot end-effector, making the visual

sensor mobile, which is called eye-in-hand camera configuration (Fig. 1.4). On

the other hand, the presence of error components in the image space helps

keep the image features in the camera field of view, which is a difficult task in

position-based approaches [37].

A relevant constraint for visual servoing is the camera calibration prob-

lem, which consists of obtaining the intrinsic (or internal) and extrinsic (or

external) parameters of the camera. The focal length of the camera lens, scal-

ing factors, skew angle and the position of the principal point are known as

intrinsic parameters for a pinhole or monocular camera model , whereas the

camera pose with respect to the base frame (or inertial frame) is known as

extrinsic parameters. There exist many several techniques for calculating the

camera calibration parameters, and there are different camera projection mod-

els, for instance, fish-eye lens, pinhole, catadioptric and spherical. The control

design uses a kinematic control approach based on a recently proposed method

to deal with the existence of singular configurations for the robot arm during

the harvesting task. A robust vision-based control scheme which combines

the image-based visual servoing (IBVS) and the position-based visual servoing

(PBVS) approaches is designed to cope with parametric uncertainties in the

camera-robot system.

The hybrid approach combines the benefits of PBVS and IBVS, its name

deerives from the fact that the control error is defined in the operational space

for some components and in the image space for the others. This implies

that the desired motion can be specified, at least partially, in the operational

space so that the camera trajectory during visual servoing can be predicted in

advance for some components.
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In this work, the harvesting problem is achieved by using a visual

servoing approach based on the combination of sliding mode control approach

with a switching monitoring function. A robust vision-based control scheme

which combines the IBVS and the PBVS approaches is designed to cope

with parametric uncertainties in the camera-robot system. The proposed HVS

control scheme ensures the asymptotic stability and convergence of the image

feature error under a planar camera rotation miscalibration angle |ϕ̃| greater

than π/2 radian.

The color feature extraction method for fruit detection is based on OHTA

color space, which is a more suitable option for real-time image processing than

most of the DCNN algorithms [18]. The fruit localization method uses a combi-

nation of the fruit centroids and a Homogeneous transformation for performing

a simpler and fast feature recognition and matching process, compared with

other well-known algorithms as SURF, SIFT, RANSAC, ORB, BF-Matcher.

Moreover, when the object of interest is out of camera focus, it is difficult to

ensure the proper features extraction from the image, then the centroid of the

fruit contour projected in the main camera plane is used to compute the fruit

3D position.3D Computer simulations and experimental results obtained with

a Mitsubishi RV-2AJ robot, performing a simple strawberry picking task, illus-

trate the performance and efficiency of the proposed visual servoing scheme.

1.4
Contribution of this Thesis

In this work, a robust hybrid visual servoing (HVS) strategy combined

with sliding mode control and switching monitoring function is presented to

deal with intrinsic, extrinsic and kinematics uncertainties during a robotic

picking application.

Some variations and/or contributions presented in this document, in

contrast with [33] assumptions are:

– An eye-in-hand camera configuration with a stereo camera is used instead

of an eye-to-hand setup with a monocular camera;

– In this work, we assumed parametric and non-parametric uncertainties

at the length of the last link of the robot and at the rotation between

the end-effector and camera frames;

– A hybrid visual servoing method is used to achieve the three-dimensional

(3D) position of the object of interest rather than the image-based visual

servoing for planar tracking.
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– A hybrid control stability analysis is introduced, with sliding-mode and

switching-based control methods. This analysis involves the presence of

continuous and discrete terms into an extension of the Lyapunov Stability

Theorem.

For applying the robust visual servoing control scheme to realistic situ-

ations; it was necessary to develop some other computer vision and machine

learning algorithms, like:

– A segmentation algorithm based on the Otsu adaptive thresholding

method of a pre-filtered OHTA color space image for fast detection and

localization of fruits in real-world harvest situations.

– A circular sliding window procedure is used to resolve the problem of

selecting a particular target in complex background scenarios.

– A memetic random restart strategy was developed to choose the optimal

picking order when two or more objects are displayed in a scene (a

traveling salesman problem).

1.5
Organization of the Thesis

This work is organized according with the following chapters:

– Chapter 2: Introduces dynamic and differential kinematics methods for

robot controllers and robust control theory. Some practical examples

involving uncertainties and/or perturbations during the execution of

regulation and tracking assignments; are shown. Also, it is demonstrated

how to deal with perturbed systems and possible specific solutions using

adaptive and robust control theory.

– Chapter 3:Comments a general structure of common visual servoing

systems in different camera configuration and control schemes. A rigorous

stability analysis of an IBVS scheme is presented and combined with

sliding mode and SMC control schemes.

– Chapter 4: Describes how the tasks of strawberries detection and

recognition are carried out for a usual harvesting scenario. After detecting

and recognizing phases, some image-processing algorithms are used to

improve the features detection, to triangulate an accurate 3D target

position. Finally, a combination of switching and sliding mode control

schemes, presented in chapters two and three, are applied to the proposed

hybrid visual servoing system (HVS), a further robustness analysis is also

discussed at the end of the chapter.

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



2
Kinematics Modeling and Control Design

In this chapter, we consider the kinematic approach for modeling and

controlling a robot arm. Most commercial robots usually have an internal

velocity controller to control their joints positions and/or velocities when

the control signal is applied to the manipulator space. In this context, we

assume that the joint velocities can be directly controlled by a low-level control

loop with high-performance, which imposes any specified reference velocity as

system input [37]. Hence, if the tasks assigned to the robot end-effector are

carried out at low speeds/slow accelerations and the transmissions have high-

gear reduction ratios, the dynamic coupling effects can be neglected during

the robot motion ensuring satisfactory performance of the overall system i.e.

ignores dynamics.

2.1
Forward and Differential Kinematics

Here, we consider the kinematic model of a robot manipulator. In this

framework, the operational space variables are related to the joint space vari-

ables by means of the following forward kinematics and differential kinematics

mappings:
p = h(q) , ṗ = Jp(q) q̇ , (2-1)

where q, q̇∈Rn denote the position and velocity vectors of the robot joints, and

p, ṗ∈Rm denote the position and linear velocity of the end-effector frame Fe

with respect to the base frame Fb. Notice that, h(·) :Rn 7→Rm is a nonlinear

function and Jp(q) = (∂h/∂q) ∈ R
m×n is the position part of the analytical

Jacobian [37].

The orientation of the end-effector frame Fe with respect to the base

frame Fb can be described by the unit quaternion representation. In contrast

with Euler angles quaternions approach give a global parameterization of

SO(3) given by φ = {η, ǫ} where η ∈ R is the scalar part and ǫ ∈ R
3 is the

vector part, subject to the unit norm constraint η2 + ǫ2 =1 [68]. The so-called

quaternion propagation rule relates the time-derivative of the unit quaternion

φ̇ to the angular velocity of the end-effector frame Fe with respect to the base

frame Fb, denoted by ω∈R3, as:
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φ̇ =
1

2
E(φ)ω , E(φ) =





ǫT

ηI −Q(ǫ)



 , (2-2)

where Q(·) : R3 7→ so(3) denotes the skew-symmetric operator(so(3) ∈ R
3×3

is a skew-symmetric matrix) and the matrix Jr(φ) = 2ET(φ) ∈ R3×4 is the

well-known representation Jacobian.

The differential kinematics equation provides the relationship between

the joint velocities and the corresponding linear and angular velocities of the

end-effector frame Fe with respect to the robot frame Fb as:

v =





ṗ

ω



 =





Jp(q)

Jo(q)



 q̇ = J(q) q̇ , (2-3)

where J(q) ∈ Rm′×n is the geometric Jacobian of the robot manipulator.

Notice that, in general, the orientation of the robot end-effector is given in

terms of the robot joint angles as φ = g(q), where g(·) : Rn 7→ R4 is a

nonlinear function. Thus, considering (2-3) implies that Jo(q) = Jr(φ) Jφ(q),

where Jφ(q)=(∂g(q)/∂q)∈R4×n, which is the so-called orientation part of the

analytical Jacobian. The kinematic model introduced in (2-3) has the following

properties that will be considered in the analysis and control design for robot

manipulators with revolute joints:

(P1) J(q) is bounded for all possible values of q(t), that is:

||J(q)||∞ ≤ c0, ∀ q∈ [0, 2π] , (2-4)

since this term depends on q(t) as an argument of bounded trigonometric

functions, and c0 ∈R is a known positive constant.

(P2) The product of the Jacobian J(q) with any known vector ν(t) ∈ Rm can

be linearly expressed by,

W (q, ν) b = J(q) ν , (2-5)

where W (q, ν) ∈ Rn×nk is the differential kinematics regressor matrix,

ν ∈Rn is a generic input signal, b∈Rnk denotes the constant kinematic

parameter vector, and nk denotes the number of uncertain kinematic

parameters of the Jacobian matrix J(q). The lower and upper bounds,

denoted as bmin, bmax ∈R
nk , are assumed to be known for each parameter

b and satisfies the following property:

bmin,i ≤ bi ≤ bmax,i , i = 1, 2, · · · , nk , (2-6)

where bmin,i, bmax,i ∈R denote the i-th element of bmin and bmax respec-

tively, and bi ∈R denotes the i-th element of b.
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Notice that, the property (P1) holds not only for robot arms with revolute

joints, but also for mechanisms with prismatic joints since these have physical

limitations from the practical point of view [37].

2.2
Kinematic Control

Consider the kinematic control problem for a n-DoF robot manipulator.

In this framework, the robot motion can be simply described by

q̇i ≈ ui , i = 1, · · · , n , (2-7)

where q̇i is the velocity of the i-th robot joint and ui is the velocity control signal

applied to the i-th joint motor drive. Then, from the differential kinematic

equation (2-3) and considering the kinematic control approach (2-7), we obtain

the following control system:

v =





ṗ

ω



 = J(q) u(t) . (2-8)

For the cases where the Jacobian matrix J(q) is non-square (m′ < n), the

velocity control signal u(t)∈Rn can be given simply by:

u(t) = J⋆(q) v = J⋆(q)





vp

vo



 , (2-9)

where v=[ vT

p vT

o ]T is a Cartesian control signal, for position and orientation,

to be designed and J⋆(q) ∈ R
n×m′

may be replaced by the right pseudo-inverse

Jacobian J†(q) = JT(JJT)−1 or the transpose Jacobian J⊤(q) to avoid the

inverse J−1(q) or pseudo-inverse J†(q) calculations [37]. Notice that, the control

signal (2-9) locally minimizes the norm of the joint velocities, provided that

(i) the robot kinematics is fully known and (ii) the Cartesian control signal

v(t) does not lead the robot to singular configurations. The failure of the last

assumptions is a fairly open-problem in robotics area, and will be discussed

later on.

2.3
Inverse Kinematics Problem

In this section, we have discussed how to obtain the end-effector pose

x = [ p⊤ φ⊤ ]⊤ from the joint angles q. Other interesting problem from the

practical point of view consists on computing the joint angles q from the

end-effector pose x. Its solution is of fundamental importance to transform

the desired motion, naturally prescribed to the end-effector in the workspace,

into the corresponding joint motion. This is called the inverse-kinematics (IK)
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problem and it can be written in a functional form as:

q = f−1(x) , (2-10)

where f(·) : Rn 7→ Rm is a nonlinear function, obtained by the stacking of the

functions h(·) and g(·) respectively.

In general, the IK problem is much more complex for the following

reasons: multiple solutions may exist; infinite solutions may exist, e.g., in the

case of a kinematically redundant manipulator; there might be no admissible

solutions, in view of the manipulator kinematic structure [37]. Finally, since

the equations to solve are in general nonlinear, it is not always possible to find

a closed-form solution. Usually, it is possible to employ analytical methods

for the solution of the IK problem such as kinematic decoupling, Paden-

Kahan subproblems and inverse differential kinematics algorithms, as will be

introduced below [37, 62].

2.4
Inverse Kinematics-Based Algorithms

Now, suppose that a given trajectory in the Cartesian space is assigned

to the robot end-effector in terms of its linear velocity ṗ and the initial position

p(0). Here, without loss of generality, we assume that the orientation of the

robot end-effector is of no concern or it is kept constant during the robot

motion. The goal is to compute a feasible trajectory in the joint space described

by q(t) and q̇(t) which reproduces the given trajectory. From (2-3), the joint

velocities can be obtained via simple inversion of the Jacobian matrix as:

q̇ = J†
p(q) ṗ , (2-11)

and if the initial position of the robot joints q(0) is known, joint positions can

be computed by simple integrating the joint velocities over time:

q(t) =
∫ t

0
q̇(τ) dτ + q(0) . (2-12)

Notice that, the integration can be carried out in discrete time by using

numerical integration techniques, such as the Euler method among others.

However, it is well-known that reconstruction of joint variables q via numerical

integration is subject to drift phenomena of the solution and, thus, the

corresponding end-effector position p differs from the desired one pd.

To overcome this inconvenience we can employ a suitable algorithm that

considers the position error in the Cartesian space ep := pd −p in the proposed

solution. First, we take the time-derivative of such error ep and according to

the time-derivative of forward kinematics map:

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Chapter 2. Kinematics Modeling and Control Design 34

ṗ = Jp(q) q̇ , (2-13)

where Jp(q) ∈R
m×n is the position part of the geometric Jacobian, we obtain

the following position error dynamics:

ėp = ṗd − Jp(q) q̇ . (2-14)

Notice that, to devise an inverse kinematics-based algorithm, it is necessary to

establish the relationship between the joint velocity q̇ and the position error ep

in order to obtain a suitable error dynamics and ensure the convergence of the

error to zero or a residual set. In particular, the choice of u as a function of q

and ep allow us to find inverse kinematics-based algorithms to satisfy different

task requirements [37].

2.4.1
Jacobian (Pseudo-)inverse

Under the assumptions that (i) Jp(q) is a nonsingular matrix, (ii) the

velocity of the reference trajectory ṗd(t) is previously known, and considering

the kinematic control approach q̇(t) ≈ u(t), we design the following control

signal
u(t) = J†

p(q) vp , vp = Λ ep + ṗd , (2-15)

where J†
p =JT

p (JpJ
T

p )−1 is the right pseudo-inverse of Jp and Λp ∈Rm×m is the

position gain matrix. Then, (2-15) can be substituted into (2-14) to obtain:

ėp = ṗd − Jp(q) J†
p(q) [ Λp ep + ṗd ] , (2-16)

resulting in the following linear error system:

ėp + Λp ep = 0 , (2-17)

provided that the kinematic parameter bi ∈R for i = 1, 2, · · · , nk is assumed to

be fully known. Notice that, if Λp is a positive definite matrix the error system

is asymptotically stable and the convergence rate depends on the eigenvalues

of Λp, that is, the larger the eigenvalues, the faster the convergence. Moreover,

the term J†
p(q) is introduced to compensate for Jp(q) and linearize the error

system, while the term ṗd(t) ensures the convergence of the position error

ep to zero, independently of the chosen reference trajectory pd(t) [37]. The

feedback control design (2-15) can be easily implemented as illustrated in the

block diagram of the inverse kinematics-based algorithm with pseudo-inverse

Jacobian (Fig. 2.1).
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Figure 2.1: Block diagram of the inverse kinematics-based algorithm with
pseudo-inverse Jacobian [37].

2.4.2
Kinematic Singularities

The solution of (2-9) can be calculated only when the Jacobian matrix

has full rank, that is, when the robot arm is far from singular configurations.

Otherwise, its calculation becomes meaningless and the control system (2-8)

has linearly dependent equations. It is worth mentioning that, if v∈R(J) it is

possible to find a feasible solution for (2-9) by using all the linearly independent

equations. This means that path assigned to the robot arm, in the Cartesian

space, is physically executable even though it is in the vicinity of a singular

configuration. Conversely, if v /∈ R(J), the equations have no solution and it

means that the path assigned to the robot arm cannot be executed at the

given posture [37]. Therefore, finding all possible singular configurations for

a particular robot arm is of great interest since when a singularity occurs

the Jacobian matrix J(q) has deficient rank. Singularities can be classified

into boundary singularities and internal singularities, as such examples can be

found in [37].

It is well known that when the robot arm is in the neighborhood of a

singularity, the mobility of the mechanism may be reduced (i.e., loss of degrees

of freedom), infinite solutions to the inverse kinematics problem may exist

or small velocities in the Cartesian space may cause large velocities in the

joint space, which can compromise the successful execution of a given task.

In this context, different methods have been proposed to deal with kinematic

singularities such as the Damped Least-Squares (DLS) inverse method [38]

and the Filtered Inverse method [39]. The DLS inverse algorithm intends to

approximate the pseudo-inverse Jacobian matrix J†(q) in the neighborhood of

a kinematic singularity by

J†(q) ≈ Jdls(q) , Jdls(q) = J⊤(q) [J(q)J⊤(q) + α I ]−1 , (2-18)
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where alpha is a damping factor which makes the inversion better conditioned

from a numerical point of view, and it is given by:

α =







0 , wm ≥ w0 ,

α0

(

1 − wm

w0

)

, wm < w0 ,
(2-19)

where wm =
√

det (J(q) J(q)⊤) is the manipulability measure, α0 is a scaling

factor and w0 is the boundary of the singularity neighborhood [38]. Notice

that, in case of kinematic singularities, it is necessary to resort to an inverse

kinematics-based algorithm that does not require inversion of the Jacobian

matrix.

2.4.3
Jacobian Transpose

A computationally simpler approach consists of finding a suitable rela-

tionship between q̇ and ep in order to ensure the convergence of the position er-

ror to zero without resorting to the system linearization as discussed in (2-15).

Considering the position error dynamics (2-14), we design the following control

law
u(t) = J⊤

p (q) Λp ep . (2-20)

Then, considering the kinematic control approach q̇(t)≈u(t) and substituting

(2-20) into (2-14), the position error dynamics is governed by a nonlinear

differential equation:

ėp = ṗd − Jp(q) J⊤
p (q) Λp ep . (2-21)

In this context, the Lyapunov direct method can be used to analyze the

convergence and stability properties of the error system. Let us choose the

following Lyapunov function candidate 2V (ep) = e⊤
p Λp ep, which is positive

definite, that is, V (0) = 0 and V (ep)>0 for ∀ ep 6= 0. From the time-derivative

of V (ep) and considering (2-21) we obtain:

V̇ (ep) = e⊤
p Λp ṗd − e⊤

p Λp Jp(q) J⊤
p (q) Λp ep , (2-22)

For the regulation task, that it, ṗd = 0, the Lyapunov function is negative

definite V̇ (ep)< 0 if and only if Jp has full rank (N (JT

p ) = ∅). The condition

V̇ (ep) < 0 and V (ep) > 0 implies that the system trajectories converges

uniformly to ep =0, that is, the position error system is asymptotically stable.

When Jp has deficient rank (N (J⊤
p ) 6= ∅), the time derivative of V (ep) is only

negative semi-definite, since V̇ (ep) = 0 for ep 6= 0 with Λp ep ∈ N (J⊤
p ). In such

case, the inverse kinematics-based algorithm can get stuck for q̇=0 with e 6=0,

which corresponds to the situations where the assigned position pd(t) is not
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reachable from the current joint configuration q(t).

For the tracking task, that is, ṗd(t) 6= 0, it is possible to see that the

first term of the right-hand side of (2-22) is not cancelled and nothing can

be said about its sign. As a consequence, the asymptotic stability along the

assigned position pd(t) cannot be achieved, but the position error ep(t) is norm-

bounded and converges to a residual set. Then, the larger the norm of Λp, the

smaller is the norm of ep, but from the practical point of view there is an

upper bound on the norm of Λp which depends on the chosen sampling time

for the discrete-time implementation [37]. The feedback control design (2-20)

can be easily implemented as illustrated in the block diagram of the inverse

kinematics-based algorithm with transpose Jacobian (Fig. 2.2).

Figure 2.2: Block diagram of the inverse kinematics-based algorithm with
transpose Jacobian [37].

2.5
Perturbed Systems

Modeling errors, external disturbances, aging of components, parametric

and nonparametric uncertainties are some examples of perturbations that may

disrupt a given control system in a realistic situation. Perturbations that do not

change the order of a given system, are commonly classified into vanishing and

nonvanishing perturbations and are presented later in this section. For both

cases, perturbations are represented as an additive term in the right hand side

of the state equation [41].

2.5.1
Vanishing Perturbation

A vanishing perturbation consist of any uncertainty or disturbance term

that disappears at the origin and it is usually represented by state-dependent

functions. In this case, the origin is an equilibrium point of the perturbed

system. Considering the presence of kinematic uncertainties at the nominal
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model of the robot arm, presented in (2-13), we obtain:

ṗ = Ĵp(q) q̇ + ηk(q, q̇) , (2-23)

with
ηk(q, q̇) = [ Jp(q) − Ĵp(q) ] q̇ , (2-24)

where Ĵp(q) ∈Rm×n denotes the uncertain Jacobian matrix and ηk(q, q̇) ∈Rm

is the perturbation term due to modeling errors in the robot arm. Notice that,

from the practical point of view, the perturbation term ηk(·) is assumed to be

uncertain, norm-bounded and state-dependent. In addition, we consider that

the origin is the only equilibrium point of the nominal system [41].

Then, for the regulation task, that is, ṗd = 0, and considering the

kinematic control approach q̇(t) ≈u(t), we obtain the following position error

dynamics:
ėp = −Ĵp(q) u(t) − ηk(q, q̇) , (2-25)

and in order to perform the exact linearization of the error system, we design

the following control law:

u(t) = Ĵ†
p(q) Λp ep , (2-26)

provided that the robot arm is far away from singular configurations.

Now, in order to analyze the stability and convergence properties of the

error system (2-25), we consider the Lyapunov candidate function given by

2V (ep)=e⊤
p ep, that satisfies,

∥

∥

∥

∥

∥

∂V

∂ep

∥

∥

∥

∥

∥

≤ c , c > 0 . (2-27)

Then, taking the time-derivative of V (ep) along the system trajectories, we

obtain,
V̇ (ep) = −e⊤

p Ĵp(q) u(t) − e⊤
p ηk(q, q̇) , (2-28)

and by using the control law (2-26) yields:

V̇ (ep) = −e⊤
p Λp ep − e⊤

p ηk(q, q̇) . (2-29)

Notice that, the first term on the right-hand side of (2-29) is a negative definite

quadratic form, which converges asymptotically to zero. Now, let us analyze the

second term on the right-hand side of (2-29), which consists of a non quadratic

form due to the parametric uncertainty ηk(q, q̇) and, in general, is indefinite.

According to the property (P1), the position part of the Jacobian matrix Jp(q)

has a lower and upper limited norms, where the following inequality holds:

0 < Jpm
≤ || J†

p(q) || ≤ JpM
< ∞ , ∀q , (2-30)

for some positive constants Jpm
and JbM . Then, a choice for Ĵp(q) always exists
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which satisfies:
|| I − J†

p(q) Ĵp(q) || ≤ αJ ≤ 1 , ∀q . (2-31)

where αJ is a positive term. Indeed, by setting Ĵp(q) as:

Ĵp =
2

Jpm
+ JpM

I , (2-32)

and from (2-31) implies that:

|| J†
p(q) Ĵp(q) − I || ≤ JpM

− Jpm

JpM
+ Jpm

s
= αJ < 1 . (2-33)

Notice that, if Ĵp is a more accurate estimate of the nominal Jacobian matrix

Jp, the above inequality is satisfied with values of αJ that can be made

arbitrarily small, wherein when αJ = 0 implies that Ĵp = Jp. In this sence,

by recalling that Ĵp(q) q̇ in (2-24) is a function of q and q̇, without loss of

generality the following assumption is made:

|| η(q, q̇) || ≤ γk || ep || , γk > 0 , ∀q, q̇ , (2-34)

where the model-uncertainty ηk(q, q̇) is a state-dependent function (2-24) that

vanishes when Jp(q) = J̃p(q) and at the origin ep = 0. If the nonnegative

constant γk is bounded by
γk <

λmin(Λp)

c
, (2-35)

where λmin(Λp) is real and positive (λmin(·) is the minimum eigenvalue of a

matrix) since Λp is assumed to be symmetric and positive definite, and from

(2-29) (satisfying assumptions (2-34) and (2-35)) we obtain:

V̇ (ep) ≤ −(λmin(Λp) − γk c) ||ep||2, (λmin(Λp) − γk c) > 0 . (2-36)

Hence, the origin is semiglobally exponentailly stable [41].

2.5.2
Nonvanishing Perturbation

A nonvanishing perturbation consist of any uncertainty or disturbance

term that does not disappear at the origin. In this case, the origin is not an

equilibrium point of the perturbed system. In general, this type of perturbation

can not be represented by state-dependent functions [41].

Let us consider the same scenario presented in the previous section, as

described in (2-23) and (2-24), but now we consider a time-varying reference

trajectory pd(t), previously known, with the control signal u(t) designed in

(2-15). By using the kinematic control approach q̇(t) ≈ u(t), we obtain the

following error dynamics:

ėp = ṗd − Ĵp(q) u(t) − ηk(q, q̇) . (2-37)
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In order to analyze the stability and convergence properties of the error system

(2-25), we consider the Lyapunov candidate function given by: 2V (ep)=e⊤
p ep.

Then, taking the time-derivative of V (ep) along the system trajectories,

expanding the disturbance term due to the uncertain kinematics ηk(q, q̇) and

using the control law,

u(t) = J†
p(q) vp , vp = Λ ep + ṗd , (2-38)

yields:
V̇ (ep) = −e⊤

p Λp ep − e⊤
p [ Jp(q) Ĵ

†
p(q) − I ] vp . (2-39)

Again notice that, the first term on the right-hand side of (2-39) is in a

negative definite quadratic form, However, nothing can be said about the sign

of the second term. Indeed, due to the presence of parametric uncertainty in

the position part of the Jacobian matrix Jp(q) it is not possible to ensure

its negative-definiteness. As a consequence, asymptotic convergence of the

position error ep along of a given trajectory pd(t) cannot be achieved. Notice

that, the negative definiteness of V̇ (ep) will depend on the magnitudes of Λp, ṗd

and ηk(q, q̇). It means that the norm of ep can be reduced by simply increasing

the norm of Λp as much as possible. Nonetheless , this is a very restrictive

condition from the practical point of view.

In this context, to deal with this nonvanishing perturbations it is possible

to design an adaptive control scheme for minimizing the error norm in the

presence of uncertainties. Another promising solution consists of designing

a robust control scheme to deal with this type of disturbance during the

execution of the tracking task, as will be shown next.

2.5.2.1
Adaptive Controller

The following subsection illustrates the use of an adaptive control scheme

for dealing with the presence of parametric uncertainties into the Jacobian

matrix Jp(q) for the tracking problem defined as:

p → pd(t) , ep = pd(t) − p → 0 . (2-40)

Here, we first assume that the forward kinematics map can be linearly

parameterized as
p = h(q) = Wk(q) b , (2-41)

where Wk(q) ∈Rm×nk is the kinematics regressor matrix, b∈Rnk denotes the

constant kinematic parameter vector, and nk denotes the number of kinematic

parameters of the forward kinematics map h(q). Considering the existence of

parametric uncertainties in the kinematic model (2-41), the estimated position

of the end-effector p̂ can be expressed as:
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p̂ = ĥ(q) = Wk(q) b̂ , (2-42)

where ĥ denotes the estimated forward kinematics map and b̂ ∈ Rnk is the

estimated kinematic parameter vector. According to Slotine and Li [60] it is

well-known that the linear parameterization models (2-41) and (2-42) can be

used to perform an online parametric estimation provided that p and Wk can

be measured from the system signals. In this context, we assume that p and q

are measurable from a laser tracker and joint encoders respectively.

Now, let ǫ ∈ Rm be the position estimation error computed from the

difference between the measurable position p and the estimated position p̂ as:

ǫ = p− p̂ . (2-43)

Then, the estimation error (2-43) can be related to the parametric error b̃

using:
ǫ = p−Wk(q) b̂ = Wk(q) b̃ , b̃ = b− b̂ . (2-44)

Due to the presence of uncertainties in the robot kinematics, the control law

(2-38) can be rewritten as:

u(t) = Ĵ†
p(q) vp , vp = Λ ep + ṗd , (2-45)

where Ĵp(q) ∈ R3×n is the estimated Jacobian matrix related to the position

part of the Jacobian matrix J(q) and vp is the position control signal choose to

ensure the proper stability and zero-convergence of the position error ep which

will be proved later on.

Notice that, from the evaluation of the structure of the right pseudo-

inverse Jacobian matrix J†
p(q) it is well-known the direct adaptation method

cannot be applied to solve the adaptive control problem, since the right-hand

side of (2-45) cannot be linearly parameterized [60]. In this case, the kinematic

parameters of the robot arm may not be directly estimated by a gradient-type

adaptation law. Conversely, the indirect adaptation method is an alternative

approach which consists of estimating the kinematic parameters by solving

an algebraic equation and, then use the estimates indirectly to compute the

control law at each instant of time [60].

Then, considering that the kinematic uncertainties affect only the po-

sition coordinates, the differential kinematic equation (2-13) can be linearly

parameterized according to the property (P2) as:

ṗ = Jp(q) q̇ = WJ(q, q̇) b , (2-46)

where WJ ∈ Rm×nk is a kinematic regressor matrix. From the position error

(2-40) and adding and subtracting the terms Ĵp(q) q̇ and Λp ep, the position

error equation is given by:
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ėp = ṗd − Ĵp(q) q̇ − [ Jp(q) − Ĵp(q) ] q̇ . (2-47)

Then, using the control law (2-45) and parameterized model (2-46), we obtain:

ėp = −Λp ep −WJ(q, q̇) b̃ . (2-48)

In this section, we consider an estimation algorithm based on the gradient

method to estimate the kinematic parameters of the robot arm. The goal of

the estimation algorithm is to update the uncertain parameter vector b̂ so that

the position error ep and the estimation error ǫ can be minimized. Then, a

composite adaptation law to update b̂ can be given by:

˙̂
b = −Γk [W⊤

J (q, q̇) ep −W⊤
k (q) ǫ ] , Γk = Γ⊤

k > 0 , (2-49)

where Γk is the adaptation gain matrix. Notice that, the adaptation law (2-49)

is said to be composite since it extracts the information about the kinematic

parameters from both position and estimation errors simultaneously. In order

to analyze the stability and convergence properties of the error system (2-48),

we consider the following Lyapunov candidate function given by:

V (ep, b̃) = e⊤
p ep + b̃⊤ Γ−1

k b̃ . (2-50)

Then, taking the time-derivative of V (ep, b̃) and by using the composite

adaptation law (2-49) we obtain:

V̇ (ep, b̃) = −e⊤
p Λp ep − b̃⊤ W⊤

k (q)Wk(q) b̃ . (2-51)

Note that, since Λp is assumed to be a positive definite matrix, the first term

of the right-hand side of (2-51) is negative definite. Thus, V̇ (ep, b̃) is negative

definite if and only if the second term of the right-hand side of (2-51) is negative

definite, that is, W⊤
k (q)Wk(q) is positive definite. In fact, it is possible to show

that this last condition holds provided that the robot-arm is far from singular

configurations.

Therefore, since V (ep, b̃)> 0 and V̇ (ep, b̃)< 0 it is possible to guarantee

that limt→∞ ep(t) = 0 and limt→∞ ǫ(t) = 0 over the time, ensuring a successful

execution of the tracking task. Notice that, the composite adaptation scheme

not only ensures the overall stability of the adaptive control system, but also

leads to rapid parametric convergence and smaller tracking errors [60].

2.5.2.2
Validation Adaptive Controller

The following subsection demonstrates the proposed adaptive controller

performance into a tracking task with uncertainty at the last link length of

ten percent, of a two-link robot arm. Figs. 2.3-2.6 demonstrate the adaptive
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Figure 2.3: Adaptive Controller Position Error Behavior.
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Figure 2.4: Adaptive Controller Parametric Error.

controller performance, where the Cartesian error ep converges to zero along

the time. Moreover, Fig. 2.4 demonstrates the adaptation performance of

the proposed adaptation law (2-49), by analyzing the parametric error ǫ

performance. Finally, Fig.2.6 demonstrates the smoothness of the velocity

control signal q̇ applied to the robot joints.

2.5.3
Robust Control

Recalling the same parametric uncertainty introduced in (2-23) and the

bounding property presented in (2-33), it is possible to compute a new term

Ψ to vanish the perturbation during the task execution (state ep is out of the

equilibrium point) or in the existence imperfect compensation. By augmenting

the system order , we obtain
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Figure 2.5: Adaptive Controller Cartesian Trajectory.
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Figure 2.6: Adaptive Controller Joint Velocity.

ζ =





x1

x2



 , (2-52)

as the system state, where x1 =
∫ t

0 ep(τ)dτ and x2 = ep. Then, the control

system can be represented by the following closed-loop differential equation

ζ̇ =





0 I

0 0



 ζ +





0

I





(

ṗd − Ĵ(q) u(t) + ηk(q, q̇)
)

, (2-53)

and taking the following control law

u(t) = Ĵ†(q)
(

ṗd +
[

Λp1 Λp2

]⊤
ζ + Ψ

)

, (2-54)

where Λp1,Λp2 ∈ R3×3 are positive definite gain matrices, and substituting

(2-54) into (2-53), yields
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ζ̇ =





0 I

−Λp1 −Λp2



 ζ +





0

I



 (ηk(q, q̇) − Ψ) . (2-55)

Noting that ηk(q, q̇) is a function of ζ , it is possible to assume that

ηk(q, q̇) < Φ < ∞ ∀ζ , (2-56)

where q and q̇ are bounded due to the existence of joint ranges and saturation

at the joints velocity. In other words infinity positions and velocities are not

considered in practice.

Considering the Lyapunov candidate function

V (ζ) = ζ⊤Qζ > 0 ∀ζ 6= 0 , (2-57)

where Q∈R
6×6 is a positive definite matrix, deriving (2-57) we obtain

V̇ (ζ) = ζ⊤(A⊤Q+QA)ζ + 2ζ⊤QB(ηk(q, q̇) − Ψ) . (2-58)

Since A has eigenvalues with negative real part, it is necessary to compute a

positive definite matrix P as:

A⊤Q+QA = −P , (2-59)

injecting (2-59) into (2-58), V̇ (ζ) leads to

V̇ (ζ) = −ζ⊤Pζ + 2ζ⊤QB(ηk(q, q̇) − Ψ) . (2-60)

Regarding the left term of (2-60), it is possible to see that it is negative definite

for any state ζ value, regarding the second term, it is necessary to choose Ψ

for vanishing the parametric uncertain ηk(q, q̇) along the task execution [42].

Adopting Ψ(Z), where
Z = B⊤Pζ . (2-61)

The Ψ(Z) vector can be computed based on a classic Siliding Mode Unit Vector

Control scheme (SM-UVC) approach [42], as:

Ψ =
ρ

||Z|| Z ρ > 0 , (2-62)

gives

ZT (ηk(q, q̇) − Ψ) ≤ ||Z|| ||ηk(q, q̇)|| − ρ ||Z||
= ||Z|| (||ηk(q, q̇)|| − ρ) .

(2-63)

Hence, choosing ρ ≥ ||ηk(q, q̇)||, it is possible to vanish the perturbed term

ηk(q, q̇), guaranteeing the asymptotic stability of 2-60.

V̇ (ζ) = −ζ⊤Pζ + 2ζ⊤QB

(

ηk(q, q̇) − ρ

||Z|| Z
)

< 0 ∀ζ 6= 0 . (2-64)
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Figure 2.7: UVC Position Error Behavior.
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Figure 2.8: UVC Sliding Surface and unit vector control signal.

2.5.3.1
Validation SM-UVC

In this section we demonstrate the introduced UVC controller to perform

a tracking task with uncertainty at the last link length of ten percent,

of a two-link robot arm. Figs. 2.7-2.10 demonstrate the UVC controller

performance, where the Cartesian error ep remains close to zero along time.

Moreover, Fig. 2.8 demonstrates the unit vector control Ψ(Z) and the sliding

surface Z performance of the proposed algorithm in (2-62). Finally, Fig.2.10

demonstrates the smoothness of the velocity control signal applied to the robot

joints.
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Figure 2.9: UVC Cartesian Trajectory.
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Figure 2.10: UVC Joint Velocity.

2.5.4
Nonvanishing Perturbation

Considering the Lyapunov candidate function 2V (ep) = e⊤
p ep and the

nominal system introduced in (2-14), for tracking a trajectory pd obtained by

an external sensor e.g. camera, laser, etc. Where ṗd is not available or very

noisy, and the links-length ηk(q, q̇) of the robot arm, with the following control

law
u(t) = Ĵ†(q)[Λp ep] , (2-65)

V̇ (ep) leads to

V̇ (ep) = −e⊤
p Λp ep − e⊤

p [J(q) Ĵ†(q) − I] Λp ep + e⊤
p ṗd . (2-66)

From (2-29) and (2-33), it is possible to notice that the first two terms from

left to right are quadratic and negative definite. In view that the tracking task

considers an uncertain trajectory ṗd, the last term e⊤
p ṗd cannot be canceled
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by the control law proposed in (2-65). Hence, the system behavior over the

time t is not asymptotically stable when performing any tracking task using

the regulation control law (2-65).

2.5.5
Robust Extended Control UVC

Similarly to the tracking task of an uncertain trajectory noted in (2-66)

with a second-order system denoted in (2-53), and the following control law

u(t) = Ĵ†(q)
( [

Λp1 Λp2

]

ζ + Ψ
)

, (2-67)

we obtain

ζ̇ =





0 I

−Λ1 −Λ2



 ζ +





0

I



 (ṗd + ηk(q, q̇) − Ψ) . (2-68)

By recalling the property of ηk(q, q̇) from (2-33), and assuming that ṗd is a

bounded term, as
supt≥0||ṗd|| < QM < ∞ ∀ṗd. (2-69)

where infinity trajectories ṗd are despised. In the same way that the Lyapunov

candidate function was used in (2-57) and the P matrix in (2-59), V̇ (ζ) leads

to
V̇ = −ζ⊤Pζ + 2ζ⊤QB(ṗd + ηk(q, q̇) − Ψ). (2-70)

Notably the left term of (2-70) is negative definite, regarding the other term,

Ψ needs to be chosen for vanishing the uncertain term ηk(q, q̇) and ṗd when

they are different to zero.

By setting a sliding region Z ∈R3×1 = 2BT Qζ , the perturbed term can

be rewritten as ZT (ṗd + ηk(q, q̇) + Ψ). The Ψ control vector can be computed

as,
Ψ =

ρ

||Z|| Z + ̺Z ρ, ̺ > 0, (2-71)

substituting (2-71) into the perturbed term gives

ZT ((ṡd + ηk(q, q̇)) − Ψ) = ZT (ṡd + ηk(q, q̇)) − ρ

||Z|| Z
T Z − ̺ZT ||Z||, (2-72)

By choosing ρ and ̺, as

||(ṡd + ηk(q, q̇))|| < Z

(

ρ

||Z|| + ̺

)

, (2-73)

it is possible to vanish the perturbed term (ṡd + ηk(q, q̇)), guaranteeing the

asymptotic error convergence over the time t.
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Figure 2.11: UVC Position Error Behavior.
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Figure 2.12: UVC Sliding Surface and unit vector control signal.

2.5.5.1
Validation Extended SM-UVC

In this section we demonstrate the introduced UVC controller to perform

a tracking task with uncertainties at the trajectory ṗd and the last link length

of ten percentĴ(q), of a two-link robot arm. Figs. 2.11-2.14 demonstrate

the UVC controller performance, where the Cartesian error e remains very

close to zero along time even when the desired trajectory ṗd is uncertain.

Moreover, Fig. 2.12 demonstrates the unit vector control Ψ and the sliding

surface Z performance of the proposed algorithm in (2-71). Finally, Fig.2.14

demonstrates the smoothness of the velocity control signal applied to the robot

joints in order to perform the tracking task.
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Figure 2.13: UVC Cartesian Trajectory.
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Figure 2.14: UVC Joint Velocity.

2.6
Concluding Remarks

In this chapter we have introduced robot controller methodologies based

on inverse Jacobian schemes, and how the presence of parametric and non-

parametric uncertainties into the robot model may cause marginal stability

during a tracking task even if ṗd is known (2-39). These parametric uncertain-

ties can be minimized or vanished by introducing an adaptive controller for

ensuring the error convergence to zero (2.4). On the other hand, in cases of

non-parametric uncertainties or external disturbances, a robust controller is a

more suitable choice for ensuring the system stability, in this chapter we have

demonstrated a robust controller based on sliding surface methodology.
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3
Visual Servoing Systems

Visual servoing or vision-based control consists of using visual informa-

tion obtained from a single or multiple cameras to control the pose of a robot

arm with respect to a target object or a set of image features. We also could

consider a mobile robot, wherein the visual servoing problem is to control the

pose of the vehicle with respect to a number of landmarks. In computer vision,

an image feature may be any geometric characteristic that could be extracted

from a given image. In general, an image feature can be obtained from the

projection of a physical feature of the target object onto the camera image

plane. Among the image features that have been used for vision-based control

we have, for example, the centroid coordinates, the area of a projected surface,

the parameters of lines, an ellipse or the distance between two points in the

image space [12].

3.1
Visual Servoing Schemes

Visual servoing theory meets two classical approaches position-based

visual servoing (PBVS) and image-based visual servoing (IBVS), there also

may exist a third hybrid approach which combines both methods. The main

differences between PBVS and IBVS approaches are related to how the pose of

the target object is obtained (e.g., pose estimate or feature measurements) and

which coordinates space the output error is computed (e.g., task or image).

The main advantages of using the visual information directly into a feedback

control loop are twofold: (i) there is no need to estimate the pose of the target

frame Ft with respect to the camera frame Fc (i.e., the object pose) in real-

time; (ii) the lower sensitivity to calibration errors in the camera [12].

3.2
Position-based Visual Servoing Control Design

Consider the pose control problem for a n-DoF robot arm. Here, we

assume that the task of interest is to move the robot end-effector towards a

fixed target, located at the robot workspace (i.e., regulation task) using the

eye-in-hand camera configuration. The control goal is to regulate the current
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pose of the robot end-effector x = [ p⊤ φ⊤ ]T - estimated by the camera - to a

constant desired pose xd =[ pd φd ]T, assumed to be bounded, that is:

lim
t→∞





p(t)

φ(t)



 =





pd

φd



 . (3-1)

The position error ep is defined as ep := pd −p, however the orientation error

eo should be defined in terms of the algebra of rotation groups, instead of

the vector algebra [37]. Thus, considering the unit-quaternion representation,

it is usual to define the orientation error eo as the vector part of the error

quaternion:
eo := ∆ǫ = η(q)ǫd − ηdǫ(q) −Q(ǫd)ǫ(q) , (3-2)

where the pair φd ={ηd, ǫd} denotes respectively the scalar and vector parts of

the desired quaternion. The error quaternion is defined as ∆φ := {∆η,∆ǫ} =

φd ∗ φ−1, where the symbol “∗” denotes the quaternion product operator.

Notice that, we have ∆φ = {1, 0T} if and only if the quaternions φ and φd

are coincident, which means that the corresponding coordinates frames are

aligned.

Now, we are able to compute the velocity control signal u using a control

algorithm based on J⋆ which may denote the Jacobian pseudo-inverse or

transpose:

u(t) := J⋆(q)





vp

vo



 = J⋆(q)





Λp ep

Λo eo



 , (3-3)

where Λp = ΛT

p > 0 and Λo = ΛT

o > 0 are the position and orientation

gain matrices, assumed to be definite positive. The stability and convergence

analysis of the kinematic control approach is based on the Lyapunov stability

theory and can be found in [43].

3.3
IBVS Approach

Here, we consider a visual servoing approach using an RGB-D stereo

camera attached to the robot end-effector. Let pc = [ xc yc zc ]T be the

coordinates of a 3D point expressed in the camera frame Fc. From the

perspective projection model, the 3D point is projected in the image space

as a 2D point with the coordinates pv =[ xv yv]T expressed in pixels, say:




xv

yv



=
f

zc





αx 0

0 αy









xc

yc



+





xv0

yv0



 , (3-4)

where {xv0, yv0, f, αx, αy} is the set of camera intrinsic parameters: xv0 and yv0

are the coordinates of the principal point; f is the focal length; αx and αy are

the scaling factors in pixel per millimeter. The 3D point is projected in the
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image plane as a 2D point with normalized coordinates pp =[ xp yp]
T given by:

xp =
xv − xv0

fαx

, yp =
yv − yv0

fαy

. (3-5)

Now, we suppose that the robot end-effector is moving with linear velocity

vc ∈ R
3 and angular velocity ωc ∈ R

3 both expressed with respect to the

(instantaneous) camera frame Fc. Then, using the well-known relationship of

velocity transformation between the target frame Ft and the camera frame Fc,

we obtain the following motion equation [12]:

ṗct = −vc −Q(ωc) pct , (3-6)

with vc = R̄T

bc ṗbc and ωc = R̄T

bcQ(bωbc). From the analysis of the camera-image

coordinate transformation (3-4), we can observe that by using a bidimensional

image may not be possible to obtain any explicit information on depth

coordinate. Thus, we can not explicitly compute the depth between the target

frame Ft and the camera frame Fc by using a single camera. This information,

however, can be recovered (i) indirectly, using the image projected area of the

object or (ii) directly, using a stereo vision system.In the indirect approach, the

key idea is to use a target with spherical geometry so that the projected area

in the image space becomes invariant with respect to the object rotations [12]

Let av ∈R+ be the projected area of the target object expressed in the image

frame Fv. The dynamics of the depth-to-area transformation is given by:

ȧv =
−2av

zc

żc . (3-7)

Here, the following two assumptions can be considered: (A3) The image

projected area av is bounded and satisfies the inequality 0 < amin < av(t) <

amax for all time t; (A4) The sign of zc is assumed to be constant and known.

Indirect depth estimation is employed to increase the system depth range in

situations where the image feature is out of field-of-view of the right camera.

Taking the time-derivative of (3-5) and using (3-6) yields:

ṡ = Ls(s) vc ,











ẋp

ẏp

ȧv











= Ls(s)





vc

ωc



 , (3-8)

with

Ls(s)=



















− 1

zc

0
xp

zc

xp yp −(1 + x2
p) yp

0 − 1

zc

yp

zc

(1 + y2
p) −xp yp −xp

0 0
2 av

zc

2 av yp −2 av xp 0



















,
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where Ls(s)∈R
3×6 is the interaction matrix related to the state vector s∈R

3,

composed of the 3D point coordinates expressed in the image space.

3.4
IBVS control design

Here, we assume that the control goal is to drive a set of features s to a

desired set value sd say:

s → sd , es := sd − s → 0 , (3-9)

where es ∈ R3 is the image feature error. From the differential kinematics

equations (2-8) and (3-8), we obtain the following control system:

ṡ = Ls(s) R̄
T

bc J(q) u . (3-10)

From the time-derivative of (3-9), we define the velocity control signal u as:

u := J†(q) R̄bc L
†
s(s) Λs es , Λs = ΛT

s > 0 , (3-11)

where Λs is a positive definite gain matrix, which ensures the asymptotic

convergence of the image feature error es to zero, that is, limt→∞ es(t) = 0,

provided that:

– (i) the robot arm is far from singular configurations

– (ii) the calibration parameters of the camera-robot system are fully

known.

3.4.1
Vanishing Perturbation

In general, this last condition regarding the fully know of the intrinsic and

extrinsic camera-robot model, may not be satisfied into a practical scenario,

as a result of this uncertainty, an approximation or an estimation of the

interaction the matrix Ls(s) as well as the Jacobian matrix J(q) needs to

be realized during the task execution [12]. In this context, the IBVS control

system (3-10), in the presence of modeling errors or uncertainties, can be simply

defined as:
ṡ = L̂s(s) R̄

T

bc Ĵ(q) u+ ηv(s, q, q̇) , (3-12)

where ηv(·) is a state-dependent nonlinear modeling uncertainty, since Ls(s) is

a matrix with lower and upper limited norms, the following inequality holds,

Lsm
≤ ||L†

s(s)|| ≤ LsM
< ∞ (3-13)

Then L̂s(s) always satisfies
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L̂s(s) =
2

Lsm
+ LsM

I, (3-14)

now, the interaction matrix uncertainty can be bounded by positive term αL

as
||Ls(s)L̂

†
s(s) − I|| ≤ LsM

− Lsm

LsM
+ Lsm

= αL ≤ 1 ∀ es. (3-15)

Here, we also assume that ηv(·) is a nonlinear function that vanishes at origin,

locally Lipschitz in s, q, q̇ and uniformly in time t for all t ≥ 0 [41]. Notice

that, without loss of generality, we represent the perturbation term ηv(·) as an

additive bounded term,

||ηv(s, q, q̇)|| ≤ γv||es|| , γv > 0 , (3-16)

on the right-hand side of the system equation (3-10). Therefore, an approxi-

mation or an estimation of the interaction matrix Ls(s), the rotation matrix

Rbc as well as the Jacobian matrix J(q) must be considered for the stability

analysis [12]. In this case, the velocity control signal (3-11) takes the form:

u := Ĵ∗(q) ˆ̄RbcL̂
∗
s(s) Λs es , (3-17)

where ˆ̄Rbc = diag{R̂bc, R̂bc}, R̂bc =Rbe(q)R̂ec(ϕ), and ϕ∈R is the misalignment

angle between the camera frame Fc and the end-effector frame Fe around the z-

axis, assumed to be uncertain. Notice that, the estimated Jacobian matrix can

be obtained from the DLS inverse method, say Ĵ∗(q)= ĴT(q)(Ĵ(q)ĴT(q)+α I)−1

where α is a damping factor that avoids the ill-conditioning problem of the

Jacobian matrix.

Here, we also assume that (A3) Ĵ(q) Ĵ∗(q) is bounded for all possibles

values of q, that is ||Ĵ(q) Ĵ∗(q)|| = c1 for ∀q ∈ [0, 2π] where 0 < c1 ∈ R is

a known positive constant, because J(·) depends on q(t) as the argument

of bounded trigonometric functions; (A4) R⊤
bc R̂bc ∈ SO(3) is bounded for all

possible values of q and ϕ, that is ||R̄⊤
bc

ˆ̄Rbc||=c2, where 0 < c2 ∈R is a known

positive constant; (A5) L̂s(s) L̂
∗
s(s) is bounded for all possible values of s, that

is ||L̂s(s) L̂
∗
s(s)|| = c3, where c3 > 0 ∈R is a known positive constant, because

we previously assumed that ηv(·) is state-dependent and vanishes at origin [41].

To analyse the stability and convergence properties of the IBVS control

scheme, we employ the Lyapunov stability formalism. Here, we consider the

following positive-definite candidate Lyapunov function given by V (es) =

eT

s P es, with P =P⊤>0. The time-derivative of V along the system trajectories

(3-9), (3-12) and (3-17), is given by

V̇ (es)=−2 e⊤
s P L̂s(s) R̄

⊤
bc J(q) Ĵ∗(q) ˆ̄Rbc L̂

∗
s(s) Λs es + 2 e⊤

s P ηv(s, q, q̇) . (3-18)

Then, for P =(1/2) I, the first term of the right-hand side of V̇ (es) is negative
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definite. Since the second term, due to the effect of the perturbation, satisfies

(3-15) we have

V̇ (es) ≤ −c1 c2 c3 λmin(Λs)||es||2 + γv ||es||2 . (3-19)

Notice that, the time-derivative of V is definite negative if the matrices Ĵ∗(q)

and L̂∗
s(s) are assumed to be full-rank, which can be guaranteed respectively if

the robot arm has redundant degrees of freedom and the IBVS control scheme

uses one or more than two image features. The condition V̇ < 0 with V > 0

implies that the system trajectories uniformly converge to the origin, that is,

the error system is exponentially stable. Moreover, since the robot kinematics

and camera calibration intrinsic parameters are positive values, the presence

of uncertainties in any or both matrices, J∗(q) and L∗
s(s), is not capable to

violate the condition of negative definiteness (3-18).

3.4.2
Uncertain camera-robot System IBVS

Evaluating (A4) into the first part of the system (3-18), where Ĵ∗(q)

and L̂∗
s(s) are chosen correspondingly Ĵ†(q), L̂†

s(s) for simplifying purposes,

obtaining:

V̇ (es) = − e⊤
s R̄

⊤
ce(ϕ) R̄ce(ϕ̂) Λs es (3-20)

Now evaluating R⊤
ce(ϕ)Rce(ϕ̂)at a planar misalignmenta around z-axes:

– |ϕ̃| < π
2

rad, the principal minors of R⊤
ce(ϕ)Rce(ϕ̂) are positive and have

positive and negative complex parts, turning the system into stable.

– |ϕ̃| = π
2

rad, the principal minors of R⊤
ce(ϕ)Rce(ϕ̂) have zero real part

and positive-negative complex parts, turning the sytem into marginally

stable.

– |ϕ̃| > π
2

rad, the principal minors of R⊤
ce(ϕ)Rce(ϕ̂) are negative and have

positive and negative complex parts, turning the system into unstable.

Eventually, the misalignment angle ϕ̃ between the camera and the end-effector

frames needs to be less than π
2

rad,that is

|ϕ̃|< π

2
, (3-21)

in order to ensure the positive-definiteness property of the matrix R̂ec(ϕ̂).
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Figure 3.1: IBVS Position Error Behavior.

3.4.2.1
Validation Perturbed IBVS System

In this section, we demonstrate the introduced IBVS controller, config-

ured as:
u := Ĵ⊤(q) R̂bcL̂

⊤
s (s) Λs es , (3-22)

to perform a regulation task with:

– Misalignment angle ϕ̃ between the camera and the end-effector frames

around the z-axis of −π/6 as commented in property (3-21).

– Uncertainty of ten percent into the intrinsic camera parameters.

– Uncertainty of ten percent at last link-length of the robot arm.

Simulations were carried out with a Denavit-Hartenberg representation of

the Mitsubishi RV-2AJ robot arm [37]. Figs. 3.1-3.3 demonstrate the IBVS

controller performance, where the feature error es converge to zero over the

time. Moreover, Fig. 3.2 demonstrates the feature trajectory into the image

plane and the successful performance of the algorithm proposed in (3-22).

Finally, Fig.3.3 demonstrates the smoothness of the velocity control signal

applied to the robot manipulator.

3.4.3
Experimental Validation PBVS - IBVS

In this section, we present experimental results for a fruit harvesting task

carried out in a strawberry farm (Sylling, Norway) in order to illustrate the

effectiveness of the proposed visual servoing scheme (Fig. 3.4). We consider a

RGB-D stereo camera attached to the end-effector of a 5-DoF robot arm, which
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Figure 3.2: IBVS Image Trajectory: initial position: blue “◦”, desired position:
red “∗” and final position: red “◦”.
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Figure 3.3: IBVS Manipulator Velocity.

is visually controlled at the velocity level by an image-based visual servoing

approach in the neighborhood of singular configurations.

Numerical simulations were carried out on a Lenovo laptop with Intel

Core i7-6500U Processor (4M Smart Cache, 2.5 GHz) 16 GB RAM, run-

ning Windows OS 64 bits. The control algorithm was implemented in MAT-

LAB/Simulink (The MathWorks Inc.) Release 2017a and V-REP PRO EDU

version 3.4.0 used as a robotic simulation platform. A set of scripts and func-

tion blocks were created to perform all necessary calculations and execute the

control loop. Experiments were carried out using the Mitsubishi robot RV-

2AJ and the controller Mitsubishi Melfa CR1. The communication channel

between the laptop and the controller was established through RS-232C com-

mand protocol by means of an own-built cable, based on manufacturer manual.

The camera attached to the end-effector was the ZED 2K Stereo Camera dis-
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tributed by STEREOLABS and simple gripper was built ad-hoc using a pair

of blades driven with a 24-VDC ABB motor. The parameters of the visual ser-

voing system are f=10 mm, αx =αy =100 pixel mm−1, xv0 =yv0 = 500 pixel,

z0 =0.4640 m. The Denavit-Hartenberg parameters [37] of the robot arm are:

α1 = −π/2, and α4 =π/2 and the offsets of joints two and four are −π/2 and

π/2, where all angles are expressed in radians; a2 =0.25, a3 =0.16; d1 =0.3, and

d5 = 0.072, where all lengths are expressed in meters. The control gains were

chosen as: Λp = 7 × 102 I, Λo = 8 × 104 I, Λs = 3 × 104 I. All other parameters

are assumed to be zero.

Figure 3.4: Experimental setup at the strawberry farm.

In this section, we describe some aspects of design and practical imple-

mentation of the proposed visual servoing approach. The flowchart of the fruit

harvesting algorithm is shown in Fig. 3.5. From the calculation of the same

image feature in both cameras of the stereo vision, we can compute the 3D

point coordinates of the target in the operational space by using a triangu-

lation technique [37]. In computer vision, a well-known problem consists on

recognizing matching points that belong to the same image feature in different

scenes, along with object extraction or image segmentation [44].
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Figure 3.5: Fruit harvesting algorithm flowchart.
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Figure 3.6: OTHA Segmentation Flowchart [64].
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In this context, the OHTA color space has been chosen due to its simple

implementation and accurate performance in comparison with HSV and RGB

color spaces. An approach introduced by Vasthi et al. has demonstrated to be

accurate and a computationally simple solution for fruit recognition by linearly

transforming the image from an RGB space to an OHTA color space denoted

by,

I1 =
R +G+B

3
, I2 =

R− B

2
, I3 =

2G−R −B

4
, (3-23)

where R,G and B are the red, green and blue channels from the RGB space,

during the algorithm execution two specific OHTA features are chosen,

I2 =
R− B

2
, I ′

2 = R− B , (3-24)

for executing the OHTA Segmentation algorithm as presented in Fig. 3.6 [64].

Before running the segmentation algorithm, the two OHTA color features

(I2 and I ′
2) are preprocessed with a Median filter (available at the OpenCV

library) to obtain a smoothed image and more consistent bounds at the mask

obtained from the segmentation phase. Then a gray-scale image obtained from

the original image is thresholded with the segmentation-mask obtained from

the filtering phase to complete the fruit-image extraction.

After extracting the object of interest from the scene, a smoothed image

(obtained from a Gaussian smoothing filter) is subtracted from the original

image to obtain sharper edges facilitating the image-features extraction which

is crucial for matching and triangulation phases. The SURF algorithm [45]

is used to obtain image-features from both images and, then, the RANSAC

algorithm [44] for identifying the corresponding or matching points. It is worth

noting that when performing the extraction of image features after object

segmentation, a lower computational cost and more simple calculations are

required than if the process is performed in the reverse order. On the other

hand, it is well-known that RANSAC algorithm is a stochastic algorithm which

does not guarantee the total recognition of the inliers features. In addition, by

performing a triangulation with outliers features from a considerable distance

will result in a target position which is very different from expected. Therefore,

it is not always possible to ensure the system stability by performing an end-

point open-loop control based on the PBVS approach, using as a target object

the corresponding 3D point coordinates obtained from the visual system.

Under this constraint, a closed-loop control system seems to be the more

appropriate to ensure the reliability and safety of tasks performed by vision-

based controllers. The proposed visual servo system involves different control

techniques: (i) PBVS scheme for approaching the target object (approaching
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phase); (ii) IBVS scheme to maintain the object in the field of view of the stereo

vision system (fine tuning phase); (iii) quaternion-based orientation control to

ensure the proper pose of the robot end-effector for harvesting the selected

fruit (picking phase). To deal with the minimum and maximum depth range

presented in the stereo vision system as well as the depth needed for collecting

the fruit properly, a depth estimation method based on the object projected

area is used to calculate the object depth with respect to the camera. From a

proper camera calibration, it is possible to compute the 3D point coordinates

of the target using a single camera. After reaching the desired distance, a final

image-based height adjustment is carried out for positioning the gripper close

to the fruit stem, cut it and store the fruit in a storage box, completing the

harvesting task successfully.
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Figure 3.7: PBVS+IBVS: camera pose and image feature errors.
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Figure 3.8: PBVS: pose control signals.

The experimental results1 for a fruit picking task, performed with the

Mitsubishi robot RV-2AJ at the strawberry farm in Sylling, Norway (Fig. 3.4)
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are presented in Figures 3.7-3.10. The behavior in time for position, orientation

and image regulation errors can be observed in Fig. 3.7, where it is possible

to see the asymptotic convergence of the errors. From Fig. 3.8, we can verify

the time history of the position and orientation control signals provided by the

PBVS scheme during the approaching phase. Conversely, the behavior in time

of the position and orientation control signals provided by the IBVS scheme

during the picking phase is shown in Fig. 3.9. The time history of the velocity

control signals applied to the joints is shown in Fig. 3.10(a). We can observe

the smooth behavior of the joint velocities, and the satisfactory performance

of the orientation control scheme. The angular position of joint 5, q5, is critical

for the successful execution of the fruit harvesting task and the orientation

controller ensures that the values assumed by q5 remain close to zero as seen

Fig. 3.10(b).

0 5 10 15 20
-40

-20

0

20

40

0 5 10 15 20
-1

-0.5

0

0.5

1
10 4

Figure 3.9: IBVS: linear and angular velocities.
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Figure 3.10: PBVS+IBVS: joint positions and velocities.

1The preliminary experiments can be viewed in the accompanying video clip in:
https://youtu.be/Hi10oiuG0_I

https://youtu.be/Hi10oiuG0_I
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3.4.4
Uncertain and Unconstrained robot-camera System IBVS

In the following section, it is assumed that property (3-21) cannot be

satisfied into (3-18), thus the stability of the system cannot be guaranteed

because R⊤
ce(ϕ)Rce(ϕ̂) becomes negative definite for |ϕ̃| > π

2
or indefinite for

|ϕ̃| = [π
2
, π].

Here, the key idea is to employ a recently proposed robust visual

servoing scheme based on a sliding mode control (SM) and a switching

monitoring (SMC) function to cope with the performance degradation due

to modeling uncertainty and camera calibration errors [46]. The proposed

switching mechanism selects a suitable discrete pre-compensator out of a finite

indexed set of matrices Sj , according to an appropriate monitoring function

ψm(t), to correct any mismatch from the nominal orientation Rec(ϕ̂) of the

camera and the real one Rec(ϕ); with respect to the end-effector.

Here, we consider that the plant control direction is unknown (and

constant) as Fig. 3.11 shows, in the sense that the uncertain parameter of

the matrix
KP =Ls(s) R̄bc (3-25)

where R̄bc = diag{Rbc, Rbc} belong to some compact set Ωp where we assumed

that: det (KPK
T

P ) 6=0, and there exists a finite index set Ω of known matrices

Sj ∈R3×3 such that the matrix −KP SjK
⊤
P is Hurwitz stable for some j∈Ω.

Figure 3.11: Robotic fruit picking tasks on V-REP robot simulator.
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Hybrid Control Systems

Based on the SM and SMC controller introduced by [33], where a hybrid

control scheme is used to deal with the calibration problem presented between

the camera and end-effector frames alignment, the following SMC algorithm

is proposed for an eye-to-hand visual servoing application.

Bringing the System to a Hybrid control system formalism and using

a basic switching approach of four operating regions Xl, l = {0, 1, 2, 3}; we

obtain:

fl(ės) = −KP Sl K
⊤
P Λ es l ∈ L = {0, 1, 2, 3} (3-26)

where the vector fl(ės) represents the dynamics of the l − th mode into a

continuous function, and L is a finite index set. For a state-dependent switching

task, the switching times are denoted as k and it is assumed that for every

discrete index NL, exists an operating region Xl limited by a guard set G(l, l′).

Note that, a discrete transition to lk+1 occurs when the continuous state es

into operating region Xl meets its corresponding guard set G(l, l′) [47].

By defining the discrete state Sl as:

S0 =





1 0

0 1



 , S1 =





0 −1

1 0



 , S2 =





0 1

−1 0



 , S3 =





−1 0

0 −1



 ,

and setting four discrete state values under the constraint (3-21), the following

operating regions into the radiant space are obtained X0 = [−π
2
, ..., π

2
], X1 =

[0, ..., π], X2 = [π, ..., 2 π] and X3 = [π
2
, ..., −π

2
] as shown in Fig.3.12.

X1, X3 X0, X1

X0, X2X2, X3

x

y

Figure 3.12: Operating Regions.

Analyzing the continuous system state variable we have that for any

ti ∈ [0, tM ] and, by using the comparison lemma [41], we obtain:

||es(t)|| ≤ ξ(t) , ∀t∈ [ti, tM ] , (3-27)
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where
ξ(t) := ||es(ti)|| e−λm(t−ti) , (3-28)

where λm is a positive constant.

Constructing the guard set G(l, l′) as a monitoring function ψm(·) based

on the norm bound for the feature error es given in (3-27) following the ideas

introduced in [48, 46]. Notice that, (3-27) holds when the matrix Sl is correct

(Sl = S), it seems natural to use the term ξ(t) as a benchmark to decide

whether a switching of Sl is needed, that is, the switching occurs only when

the condition (3-27) is violated. On the other hand, since Sl is unknown, the

following function ψk is defined in the interval [tk, tk+1], to replace the term

ξ(t) as:
ψk(t) = ||es(tk)||eλ(t−tk) + γ a(tk) e

−t
a(tk) , (3-29)

where the switching time tk sets the change of index l ∈ L, cycling through

the Sl matrices for l= 1, 2, and a(tk) is any positive monotonically increasing

unbounded sequence. The monitoring function ψm can be defined as:

ψm(t) := ψk(t) , ∀t ∈ [tk, tk+1] ⊂ [t0, tM ] . (3-30)

Note that, from (3-29) and (3-30), we have ||es(tk)||<ψk(tk) at t= tk. Hence,

the switching time tk is defined as the time instant when the state ||es(t)||
meets the guard set G(l, l′) (monitoring function ψm(t)) , that is,

tk+1 :=







tM , if ||es(t)|| ≥ ψm(t),

tk, otherwise,
(3-31)

where k = 0, 1, · · · and t0 := 0. From (4-30), the following inequality can be

obtained:
||es(t)|| ≤ ψm(t) , ∀t∈ [0, tM ] . (3-32)

3.4.4.1
Validation Uncertain and Unconstrained IBVS System

In this section, we demonstrate the introduced Hybrid Con-

troller(Switching Monitoring Controller, SMC), configured as

– λ = 1,

– γ = 0.05,

to perform a faster respond of the SMC, two independent monitoring function

ψm have been employed. The regulation task was performed with:

– Misalignment angle ϕ̃ between the camera and the end-effector frames

around the z-axis of 2.056 π as commented in (3-21).

– Uncertainty of ten percent into the intrinsic camera parameters.
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Figure 3.13: IBVS/SMC Position Error Behavior.
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Figure 3.14: IBVS/SMC Image Trajectory: initial position: blue “◦”, desired
position: red “∗” and final position: red “◦”.

– Uncertainty of ten percent at last link-length of the robot arm.

Simulations were carried out with a Denavit-Hartenberg representation of the

Mitsubishi RV-2AJ robot arm [37]. Figs. 3.13-3.15 demonstrate the SMC

controller performance, where the feature error es converge to zero over the

time, Fig. 3.13 demonstrates the switching times (3-26) of the SMC controller,

the algorithm starts in the region X0 then it switches three times to reach X3.

Moreover, Fig. 3.14 illustrates the feature trajectory into the image plane and

the successful performance of the algorithm for maintaining the image feature

s into the screen. Finally, Fig.3.15 shows the velocity control signal applied to

the robot manipulator.
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Figure 3.15: IBVS/SMC Manipulator Velocity.

3.4.5
Nonvanishing Perturbations IBVS

The following section analyses an IBVS task exposed to external pertur-

bations d(t), a robust approach is presented to guarantee the system stability

during the control execution. Computing the closed-loop differential equation,

ζ̇ =





0 I

0 0



 ζ +





0

I





(

d(t) − Ls(s)R
⊤
bc J(q) u(t) + ηv(s, q, q̇)

)

, (3-33)

where ζ = [x1, x2]T , x1 =
∫ t

0 es(τ)dτ and x2 = es = sd − s; d(t) is a non-state

dependent bounded function, thus it is not possible to analyze stability at the

equilibrium point because the perturbed system may have not an equilibrium

point at the origin [41]. Taking the control law

u = Ĵ† R̂bcL̂
†
s

( [

Λ1 Λ2

]

ζ + Ψ
)

, (3-34)

into (3-33), we obtain

ζ̇ =





0 I

−Λ1 −Λ2



 ζ +





0

I



 (d(t) + ηv(s, q, q̇) − Ψ). (3-35)

By recalling that ηv(s, q, q̇) in (3-12) is a function of ζ , the following assump-

tions are made:
supt≥0||d(t)|| < QM < ∞ ∀d(t) (3-36)

ηv(s, q, q̇) < Φ < ∞ ∀x1, x2 (3-37)

Assumption (3-36) is practically satisfied since any sd trajectory cannot require

an infinite velocity. Regarding assumption (3-37), ηv(s, q, q̇) is a function of q

and q̇, where q and q̇ are bounded due to the existence of joint ranges and

saturation at the joints velocity. In other words infinity positions and velocities
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are not considered in practice.

To determine Ψ, consider the Lyapunov candidate function

V = ζ⊤Qζ > 0 ∀ζ 6= 0, (3-38)

where Q is a positive definite matrix. Then, obtaining the derivative of (3-38)

V̇ = ζ⊤(A⊤Q+QA)ζ + 2ζ⊤QB(d(t) + ηv(s, q, q̇) − Ψ), (3-39)

Since A has eigenvalues with negative real part, it is necessary to compute a

positive definite matrix P as:

A⊤Q+QA = −P, (3-40)

then (3-39) becomes in

V̇ = −ζ⊤Pζ + 2ζ⊤QB(d(t) + ηv(s, q, q̇) − Ψ). (3-41)

Regarding the left term of (3-41), it is possible to see that it is negative definite,

now the Ψ term needs to be chosen in order to vanish the uncertain term

ηv(s, q, q̇) and d(t) when they are different to zero. this term can be modeled

based on a Variable Structure Control (VSC) our Unit Vector Control (UVC)

approaches.

By setting a sliding region Z ∈R3×1 = 2BT Qζ , the perturbed term can

be rewritten as ZT (d(t) + ηv(s, q, q̇) + Ψ).

3.4.5.1
Unit Vector Control (UVC)

The nonlinear robust control design that relies on unit vector control

(UVC) based on the norm function instead of the usual sign switching control

of variable structure controller (VSC)[49]. In this context, the Ψ vector can

be computed as,
Ψ =

ρ

||Z|| Z + ̺Z ρ, ̺ > 0, (3-42)

gives

ZT ((d(t) + ηv(s, q, q̇)) − Ψ) = ZT (d(t) + ηv(s, q, q̇)) − ρ

||Z|| Z
T Z − ̺ZT ||Z||,

(3-43)
By choosing ρ and ̺, as

||(d(t) + ηv(s, q, q̇))|| < Z

(

ρ

||Z|| + ̺

)

, (3-44)

it is possible to vanish the perturbed term (d(t) + ηv(s, q, q̇)), guaranteeing the

asymptotic error convergence over the time t.

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Chapter 3. Visual Servoing Systems 70

0 2 4 6 8 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 3.16: UVC Position Error Behavior.

3.4.5.2
Validation UVC

In this section we demonstrate the introduced UVC controller to perform

a tracking task of an unknown trajectory with the following control law,

u = Ĵ⊤ R̂bcL̂
†
s

( [

Λ1 Λ2

]

ζ + Ψ
)

, (3-45)

whit the following assumptions,

– A ten percent uncertainty at the length of the last link.

– A ten percent uncertainty at the intrinsic camera parameters.

– Misalignment angle ϕ̃ between the camera and the end-effector frames

around the z-axis of 2.056 π as commented in (3-21).

– An unknown circular trajectory of 2π rad/s.

Figs. 3.16-3.19 demonstrate the UVC controller performance, where the

Cartesian error e remains close to zero along time, even when the desired

trajectory d(t) is unknown. Moreover, Fig. 3.17 demonstrates the unit vector

control Ψ and the sliding surface Z performance of the proposed algorithm in

(3-42), it is possible to see how the unit vector Ψ presents a very discontinues

performance. Finally, Fig.3.19 demonstrates how the inconsistency of the unit

vector Ψ control is propagated to the robot joints velocities. In fact, due to the

irregularity of the control signal, a practical application could end in damaging

the robot motors.

In this sense, a second-order sliding mode controller may be able to

minimize common robust-control problems like chattering very common in

first-order sliding mode controllers [63].
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Figure 3.17: UVC Sliding Surface and vector control signal.
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Figure 3.18: UVC Cartesian Trajectory.
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Figure 3.19: UVC Joint Velocity.
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3.4.5.3
Super Twisting Sliding Mode (ST-SM)

Chattering are very dangerous effects presented into conventional slid-

ing mode controllers due to the infinite discontinuous responses (switching)

because of the sign function. Modified first-order sliding mode controllers sub-

stitute the conventional sign function by tanh or sat functions to minimize

chattering effects but compromising performance and robustness of the algo-

rithm [49].

Second order sliding mode controllers have demonstrated a more robust

alternative for solving the chattering problem without compromising robust-

ness properties [63]. Following this trend, the vector Ψ is computed as,

Ψ = ρ1

√

|Z| sign(Z) + υ + ̺Z ̺ > 0, (3-46)

υ̇ = ρ2 sign(Z). (3-47)

where,

Z⊤((d(t) + ηv(s, q, q̇)) − Ψ) = Z⊤(d(t) + ηv(s, q, q̇)) − ρ1

√

|Z| sign(Z)

− ρ2

∫ t

0
sign(Z)dt− ̺Z . (3-48)

By choosing ρ and ̺, as

||(d(t) + ηv(s, q, q̇))|| < ρ1 ||
√

|Z| sign(Z)|| + ρ2

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0
sign(Z)dt

∣

∣

∣

∣

∣

∣

∣

∣

+ ̺ ||Z|| ,
(3-49)

and for simplicity, the parameters ρ1 and ρ2 can be set as

ρ1 =
√
ρ ρ2 = 1.1 ρ ρ > 0, (3-50)

where ρ and ̺ are positive and sufficient large constants for vanishing any

perturbation added to the nominal system [49].

3.4.5.4
Validation ST-SM

In this section we demonstrate the introduced ST-SM controller to

perform a tracking task of an unknown Cartesian trajectory with the same

control law and assumptions commented in the last subsection.

Figs. 3.20-3.23 demonstrate the ST-SM controller performance, where

the projection error es remains close to zero along time, even when the

desired trajectory d(t) is unknown. Moreover, Fig. 3.21 demonstrates the

unit vector control Ψ and the sliding surface Z performance of the proposed

algorithm in (3-42), it is possible to see how the unit vector Ψ presents a
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Figure 3.20: ST-SM Feature Error.
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Figure 3.21: ST-SM Sliding Surface and vector control signal.
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Figure 3.22: ST-SM Image Trajectory.
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Figure 3.23: ST-SM Joint Velocity.

more continues performance in comparison with the UVC algorithm. Finally,

Fig.3.23 demonstrates the smooth performance the robot joints velocities.

3.5
Concluding Remarks

In this chapter, we have demonstrated how PBVS and IBVS control

schemes can be used to approach or reach a desired 3D position with respect to

an object of interest and how the IBVS approach demonstrates more robustness

to uncertainties than the PBVS approach.

In this sense, a critical uncertainty to the IBVS control scheme belongs

to the rotation between the camera an end-effector frames, a hybrid control

scheme inspired in the SMC and SM controllers presented by Roux et al. [33] is

used to deal with an uncertain planar rotation along the z-axes of the camera

and end-effector frames. However, being that the switching order is fixed it is

not possible to guarantee Vl(k+1)
(es(k + 1)) ≤ Vl(k)

(es(k)) in certain switching

times k.

Another strategy presented is an IBVS sliding mode design for tracking a

desired feature sd where d(t) is unavailable or very noisy. In cases where ||d(t)||
is large enough to cause instability into the system (3-39), the UVC scheme

demonstrates a very chattered response for preserving the system stability, this

chattering return can be very problematic at real applications damaging the

robot motors. In this context, the chattering problem is treated with an ST-

SM scheme, which by combining continuous and discontinuous and continuous

control laws and an appropriate gains configuration, it is possible to vanish

the chattering problem without compromising robustness properties.
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4
Robust Hybrid Visual Servoing (HVS)

The following section describes our proposal in terms of detection, recog-

nition, and collection of many strawberries presented into a scene (crop). Even-

tually, the task starts by gathering information from the scene with a vision-

system (stereo camera). Then, the obtained images are processed concerning

object identification and correspondence points matching to construct an ac-

curate 3D position. Finally, this 3D position and the data obtained from the

camera in real time is used to run a Hybrid Visual Servoing algorithm for

reaching the fruit position completing the harvesting task (Fig. 4.1).

Wei et al. have presented a fruit segmentation scheme which transforms

the fruit image from RGB space to OHTA color space and adds an adaptive

thresholding based on the Otsu proposal [67], obtaining as result an image

segmentation process more robust to light changes and able to extract straw-

berries from complex backgrounds [18].On the other hand, color segmentation

algorithms are not able to extract specific objects in clusters configurations,

with occlusion or different maturity levels. To solve the different maturity lev-

els presented into a single fruit, a pre-trained deep encoder-decoder algorithm

based on the "SegNet" architecture proposed by Badrinarayanan et al. [61] is

used due to its capability to learn image features from the object of interested.

Nowadays, learning multiple image features demands very complex algorithms,

turning the deep network into a computationally expensive solution at training

and inference phases. In this way, Deep encoder-decoder algorithms are a non-

viable option where the required computational resources are not available

or inexistent. The experiment presented in this chapter employs a modified
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Figure 4.1: Fruit picking algorithm flowchart.
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version of the Wei approach [18] to segment the fruit from the background.

Correspondence points matching has been considered as the base for

3D position reconstruction from two or more views of the same scene, where

the data from views is usually gathered by a single camera or a vision-

system (stereo camera). In this sense, recent researches in feature detection

from images come up with robust, complex and/or computationally expensive

solutions such as Harris Detector, Scale-Invariant Feature Transform (SIFT),

Speeded Up Robust Features (SURF), Oriented FAST and Rotated BRIEF

(ORB) and others [65], [66], [45], [54].

SURF and ORB algorithms have demonstrated to be the more suitable

tools for discovering image features at soft-fruit images over SIFT and Harris

detector, In view of fast image processing task requirements (features detection

algorithm is intended to run into a closed-loop robot controller) and the

lack of sharp edges and corners (rounded shape). Image features obtained by

using SURF and ORB algorithms come with an image descriptor wichs adds

histograms information that surrounds the image feature ensuring invariance

at the location, scale, orientation, and illumination. In this way, this feature-

description information is used by mathing algorithms like Random Sample

Consensus (RANSAC), Brute-Force Matcher (BF Matcher) and others to

discover corresponded points.

At the experiment of chapter three where a harvesting task involving a

single strawberry into the scene is considered, it is possible to demonstrate

the feasibility of detecting and matching image features thru the use of SURF

and RANSAC algorithms. In applications where harvesting more than one

strawberry into a scene, the feature descriptor information tends to be very

similar to other features (various similar fruits presented into the scene) which

means that is not possible to ensure a proper features correspondence nor

an accurate 3D reconstruction. Alternatively, a simpler feature detection and

matching solutions are proposed, assuming that:

– fruits presented into the scene are widely separated (non-cluster config-

urations);

– images obtained from the vision-system do not present occlusion config-

urations.

In this sense, the fruit centroid is used as an image feature and the corre-

spondence problem is carried out by finding the closest point to an estimated

pixel position, which is calculated with the scene homogeneous transformation

(Homography). By this way, the correspondence points matching problem is

achieved by simply discovering fruit centroids and estimating a pixel position
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into the other view,
p̂r = Ĥ pl. (4-1)

After segmenting and finding matching points, fruits 3D positions are obtained

by employing a triangulation technique.

To achieve the a desired cartesian position into the task operating

space for harvesting a fruit of interest, a visual-robot-controller based on

the well-known Visual Servoing methodology is proposed, which combines

the strengths from classical approaches as PBVS and IBVS. In this sense,

the most simple technique to reach the fruit position may be use an open-

loop PBVS control scheme under the strict assumption that there are not any

model uncertainties into the robot and camera models (robot and camera well

calibrated) nor external perturbations. Nevertheless, many control problems

involve uncertain parameters due to slow time variation of the parameters

(e.g., ambient air pressure during an aircraft flight), an abrupt change in

parameters (e.g., internal parameters at robot grasping application) and/or

hard-modeling nonlinearities at the control system [60]. On the other hand, by

employing a closed-loop PBVS control scheme to minimize a given Cartesian

error vector ep. Since this error vector only belongs to the Cartesian space, it

is not possible to guarantee the presence of the image feature into the camera

Field Of View (FOV) during task execution. Then, it may not be possible to

feed the closed-loop controller by estimating the object 3D position (feedback

from the environment) breaking the control loop [13].

For ensuring a successful task execution in terms of VS controller, the

proposed algorithm needs to contemplate a closed-loop strategy for adding ro-

bustness to model uncertainties and controlled external perturbations. More-

over, the algorithm requires to be able to perform 3D tasks and to ensure at

the same time that the object image feature always remains into the FOV

along the task execution. In this context, the proposed Hybrid Visual Servoing

scheme (HVS) combines the planar image vector es employed into the classic

IBVS approach and the depth parameter from the PBVS strategy to obtain a

Hybrid controller that meets the discussed requirements [37].

Given the task of collecting more than one object, a memetic random

restart strategy is employed to minimize the collecting time, also a sliding

window is used to satisfactory reach the desired fruit. Finally, the robust

algorithm combines Sliding Mode and Switching Monitoring control methods

to execute a particular picking-task successfully into the presence of non-

parametric uncertainties.
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4.1
Problem Formulation
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Figure 4.2: Visual servoing system for robotic harvesting tasks.

In this work, we address the robotic fruit harvesting problem using a

visual servoing scheme with an RGB-D stereo camera mounted on the robot

end-effector (Fig. 4.2). Here, the following notation is considered: pij ∈R3 and

Rij ∈ SO(3) denote respectively the position vector and orientation matrix

of the frame Fj with respect to frame Fi; Tij ∈ R4×4 is the homogeneous

transformation matrix, which denotes the pose of the frame Fj with respect

to frame Fi. In this context, the pose of the camera frame Fc with respect to

the base frame Fb is given by Tbc =Tbe Tec, say:

Tbc =





Rbc pbc

0T 1



 =





Rbe Rec Rbe pec + pbe

0T 1



 . (4-2)

Here, we assume that (A1) the homogeneous transformation matrix Tbe can be

obtained from the forward kinematics map by using, for example, the Denavit-

Hartenberg convention. In this case, implies that pbe =pbe(q) and Rbe =Rbe(q).

For simplicity, we also assume that (A2) the camera frame Fc and the end-

effector frame Fe are aligned only with respect to z-axis, but the relative

translation between their origins and the relative orientation of their z-axes,

denoted by φ, may be uncertain. In this context, implies that Rec =Rec(φ).

The fruit harvesting task we consider consists of moving the robot arm

to the vicinity of the fruit, cut the stem using a suitable device attached to

the robot end-effector and store the fruit in a storage device.
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In this context, the harvesting execution-loop is presented in Fig. 4.1,

where the first goal is to solve the image segmentation and interpretation

problem, that is, to detect and recognize the target object located in the

robot workspace by using a deep encoder-decoder algorithm. Once the target

object is tracked by using a stereo vision system, the next step is to solve the

correspondence and 3D reconstruction problem, that is, to compute the 3D

coordinates of the fruit with respect to the camera by using, for example, a

simple triangulation technique [37]. Thus, the pose of the target frame Ft with

respect to the base frame Fb is given by Tbt =Tbc Tct, say:

Tbt =





Rbt pbt

0T 1



 =





Rbc Rct Rbc pct + pbc

0T 1



 . (4-3)

where Tct is the homogeneous transformation matrix whose entries can be

computed from the application of the segmentation algorithm and the trian-

gulation technique. Finally, since the homogeneous transformation matrix Tbt

is computed, we can employ an inverse kinematics-based algorithm to trans-

form the motion specifications, assigned to the robot end-effector in the task

space, into the corresponding joint space motions, allowing for the successful

execution of the desired motion.

4.2
Detection and Recognition

It is well-known that by detecting and recognizing matching points of

two or more images taken from different perspectives of the same scene,

we can compute a 3D point coordinates of a given object of interest into

the operational space by using a triangulation technique [37]. Moreover,

recognizing and matching points that belong to the same image feature in

different views is difficult along with, object extraction or image segmentation

in complex backgrounds [44].

Here, a color based segmentation algorithm combined with an adaptive

threshold obtaining segmentation-robustness to different light conditions [18].

A machine learning solution is also proposed based on a deep encoder-decoder

network structure, where the main idea is to perform a wise-segmentation

based on shape, image-texture, and color. Finally, due to the high computa-

tional cost demanded by the deep encoder-decoder algorithm during execution,

a modified version of the Wei et al. proposal is presented by performing an

image filtering with a Gaussian smoothing filter before running the adaptive

thresholding step, this to obtain more uniform segmentation.
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4.2.1
OHTA-Otsu Image Segmentation

In this context, Wei et al. have presented a more robust image segmenta-

tion scheme based on the OHTA color space and Otsu adaptive thresholding

[18]. As a result the algorithm is able to deal with light variations at crops,

Figure 4.3: from left-to-right and top-to-bottom: Original Image, Result pro-
cessed by second normalized OHTA channel, Result processed by first OHTA
normalized OHTA channel.

detect and segment fruits and vegetation in complex agriculture situations

(Fig. 4.3) by a linear transformation of a given image from an RGB space to

an OHTA color space, there are two kinds of expressions for converting this

image to the OHTA color space denoted by,

I1 =
R +G+B

3
, I2 =

R− B

2
, I3 =

2G− R− B

4
, (4-4)

and,
I ′

1 = R−G , I ′
2 = R −B , I ′

3 =
2G− R− B

2
, (4-5)

where R,G and B are the red, green and blue channels from the RGB space

[18]. As presented in Fig 4.4, the main advantages of this algorithm are its

simplicity, low computational and fast execution. An area-thresholding step

has been added at the end of the segmentation phase for removing objects

with an area less than a certain threshold (ten pixels) which are considered as

noise.

4.2.2
Deep Encoder-Decoder Image Segmentation

Traditional encoder-decoders minimize a given loss function
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Figure 4.4: Flow chart of the automatic method of fruit object extraction for
vision system of fruit picking robot [18].
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Figure 4.5: Deep Encoder-Decoder algorithm.

L(Y, Ŷ ), Ŷ = g(f(X))), (4-6)

where L(·) is a loss function regarding the dissimilarity from a desired output

(ground of truth) Y and the output g(f(X)) where f(·) and g(·) are the encoder

and decoder stages respectively.

In this context, deep convolutional encoder-decoders algorithms may be-

come a very useful tool for semantic segmentation by learning a certain set of

features of a given object (pixel-wise classification task). Being that the seman-

tic segmentation is intended to be performed at every frame during the task

execution, a simplified encoder-decoder version based on SegNet architecture

[61] (Fig. 4.5) (four convolutional and deconvolutional layers) is introduced to

reach a faster inference than the original network. Subsequently, dropout layers

were added to the simplified model for improving training results in very small

datasets [52]. At the encoder side, there are four convolutional layers with

different kernel dimension (Fig. 4.5 ) and an activation function ReLU [50],

there are also a max-pooling layer after every convolutional layer to add small

translation invariance to the model. Decoder side has four deconvolutional

layers with same kernel dimensions to preserve the model-symmetry into the

model, then an upsampling layer is added before every deconvolutional layer.

Finally, in aims of improving algorithm performance but also maintaining a

computationally cheap solution, the convolutional kernels dimension of the

encoder-decoder layers were modified based on Chao et al. proposal [70].
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4.2.2.1
Data-set

The following custom dataset (4.6) was created from images available at

the Internet (4.6), for exploring the DCNN performance in terms of accuracy,

complexity and frame-rate. A manual selection process with super-pixels [51]

Figure 4.6: Data-set samples.

was used to create the different images annotations. An annotation relates to

the desired output for each input image, it contains every pixel membership

to a certain class.

The custom data-set contains fifty images of 480x360 dimensions, where

ninety and ten percent of it are used for training and validation purposes.

4.2.2.2
Training

During segmentation, pixels are classified into background, strawberry

and strawberry leaf. By adopting a specific class for background, it is possible

to facilitate the fruit extraction from background. The encoder-decoder model

is not only able to learn textures and features information from fruits but also

from the background, that can become very complex in some situations. The

algorithm obtains information from both classes which helps to make a more

accurate segmentation in comparison with the OHTA cascade segmentation

method introduced by Wei et al. [18]. Due to the small number of samples

obtained from the custom dataset a Dropout layer was added after every

convolutional and deconvolutional layer, to avoid interdependent learning

among the neurons and take more advantage of the encoder − decoder model

[52].
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Network training was carried out on a Desktop PC with an Intel

Core i7-7700 Processor, 8 GB RAM and a Nvidia Geforce GTX 1080 GPU.

Training was executed by running 220,000 steps, with four images by step,

a dropout of 0.3 and a learning rate of 0.001, Adam optimizer was chosen

due to its computationally efficient architecture and ability to deal with

very noisy and/or sparse gradients [53], training took around of twenty

hours approximately into an Ubuntu 18.04 OS, Python, and TensorFlow-GPU

framework.

Figure 4.7: Training-Test Accuracy.

Confidence Bounds (α = 0.05)
Lower Bound Upper Bound Median

Trainig Dataset 0.945 0.969 0.957
Validation Dataset 0.922 1.011 0.967

Table 4.1: Accuracy Results

After the training phase, the algorithm obtained the accuracy results

dysplayed in table 4.1. Notice that results presented in Fig. 4.7 very noisy and

to facilitate their proper interpretation a smoothing filter has been applied to

the shaded signal, which denotes the real value, the orange signal represents

the smoothed output.

4.2.2.3
Results

The following section presents the results obtained with the simplified

SegNet model at the strawberry segmentation task. Figure 4.8 demonstrates

the results obtained from the deep encoder-decoder algorithm, images at:

– left side demonstrate the algorithm input X,

– middle side are the expected output Y ,

– right side denote the algorithm output Ŷ .
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Figure 4.8: Results test samples.

The background class is denoted by black color, the strawberry class by yellow

color and the strawberry leaves class by blue color. Figure 4.8 demonstrates

the algorithm achievement with test images (unknown images for the network).

It also possible to see the difficulties to extract the strawberry leaves due to

its big similarity to the background class. Furthermore, The algorithm is able

to recognize and segment strawberries successfully, which demonstrates its

capacity for generalizing over unknown data to make accurate predictions.

For improving the algorithms accuracy during the strawberry identifica-

tion, it is necessary to train the model with a larger dataset of images obtained

from the application scenario (Fig. 4.9). Running the network inference pro-

cess into a Dell, Alienware laptop with an Intel Core i5-6300 Processor, 8 GB

RAM and a Nvidia Geforce GTX 1060 GPU reached five frames-per-second

for segmenting a live video stream from the stereo camera.

4.2.3
Modified OHTA and Otsu Segmentation

After obtaining a successful output from the Ohta-Otsu algorithm in

terms of performance and time-execution, a modified version has been intro-

duced by filtering each Ohta channel with a Gaussian filter before of the adap-

tive thresholding calculation, this to obtain a better histogram distribution,

facilitating the adaptive threshold estimation(Otsu).
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Figure 4.9: Strawberries samples.

4.2.4
Segmentation Algorithms Comparison

By using the introduced strawberries database to compute different

outputs for each algorithm, it is possible to note which algorithm achieves

better results than the others based on the Structural SIMilarity (SSIM) index

[69] of the image ground of truth and its corresponding output.

In this context, fig. 4.10 demonstrates that color segmentation algorithms

are capable of extracting mature (red) strawberries from the background and

discriminate them from immature (green) strawberries, strawberries which

are not completely matured have demonstrated to be a big limitation of

this algorithm. On the other hand, the encoder-decoder algorithm was able

to extract mature (red) strawberries and eliminate strawberries that are not

completely mature.

Confidence Bounds (α = 0.05)
Algorithm Lower Bound Upper Bound Median

OHTA + Otsu 0.878 0.929 0.904
OHTA + G. Filtering + Otsu 0.892 0.94 0.916

Deep Encoder-Decoder 0.945 0.968 0.957

Table 4.2: SSIM Results of the Segmentation Algorithms

Table 4.2 demonstrates that the encoder-decoder algorithm obtained

the highest SSIM and the lowest variance rate. In this sense, deep learning

algorithms achieved a more stable and accurate response by using its capability

to learn images features for image segmentation tasks in complex scenarios. The

modified OTHA have obtained a small improvement by adding the Gaussian
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Figure 4.10: from left-to-right and top-to-bottom: Original Image, Result
processed by OHTA and Otsu algorithm, Result processed by OHTA and Otsu
modified algorithm, Result processed by encoder-decoder algorithm.

filter than the Wei proposal, but it still experiencing the same problem related

to occlusion and false positives as shown in Fig 4.10.

4.2.5
Fruit Localization

In this section, we describe some aspects of design and practical imple-

mentation of the proposed visual servoing approach. By obtaining the same

image feature in both cameras of the stereo vision system, we can compute the

3D Cartesian position of the target into the operational space using a trian-

gulation technique [37]. In computer vision, a well-known problem consists on

recognizing and matching points that belong to the same image feature in dif-

ferent scenes, along with object extraction or image segmentation [44]. Due to

the irregular feature recognition performance presented by the ORB [54] and

SURF [45] algorithm for extracting interest points into the images obtained by

the stereo system, resulting into null results from the matching algorithm and

other inconsistencies, it was necessary to simplify the feature extraction phase

by using the fruit centroid to compute an approximate 3D position. Ensuring a

fast and computationally cheap localization method. In the presence of many

isolated fruits in the scene (non-fruits-clusters ), the matching process was car-

ried out by computing a homogeneous transformation (homography matrix)

between both camera images. This homography matrix is calculated every time

that the scene changes based on a similarity measure (mean squared error).

As noted, the object 3D position is an estimation, therefore, it is not
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always possible to ensure the system stability by performing an end-point open-

loop PBVS control scheme, to reach the corresponding 3D point coordinates

obtained from the triangulation. Under this constraint, a HVS control scheme

seems to be the more appropriate to ensure the reliability and safety of tasks

performed by vision-based controllers.

To deal with the minimum depth range presented in the stereo vision

system as well as the depth needed for collecting the fruit properly, a depth

estimation method based on the object projected area is used to calculate the

object depth with respect to the main camera.

4.3
HVS modeling approach

The control goal is to drive a set of features w to the desired values of

the hybrid features wd say:

w → wd , ew = wd − w → 0 , (4-7)

where ew ∈ R
3 is the hybrid image feature error. The key idea consists

of computing the position in the scene of the 3D points projected on the

image plane of the two cameras using a triangulation technique [37]. Let

z̄c := ln (zc/zd) ∈ R be a supplementary normalized depth coordinate, where

ln (·) denotes the natural logarithm function. Taking the time-derivative of

(3-5) and z̄c, and using (3-6) yields:

ẇ = Lw(w) vc ,











ẋp

ẏp

˙̄zc











= Lw(w)





vc

ωc



 , (4-8)

with

Lw(w) =













− 1
zc

0 xp

zc
xp yp −(1 + x2

p) yp

0 − 1
zc

yp

zc

(1 + y2
p) −xp yp −xp

0 0 − 1
zc

−yp xp 0













where Lw(w)∈R3×6 is the interaction matrix related to w∈R3, which denotes

the 3D point coordinates expressed in the image and operational spaces.

Notice that, since the target object is assumed to be fixed with respect

to the base frame Fb the desired values for image features are assumed to be

constant, and changes in s depends only on camera motion.

Since the camera is attached to the robot end-effector (i.e., eye-in-hand

configuration) and vc = RT

bc v, we can combine (2-3), (2-7) and (3-8) obtaining

the following control system:
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ẇ = Lw(w)RT

bc J(q) u(t) . (4-9)

From the equation (4-9), we can design the velocity control signal u as:

u(t) := J∗(q)Rbc L
∗
w(w) Λw ew , Λw = ΛT

w > 0 , (4-10)

where Λw is a proportional gain matrix, J∗(q) and L∗
w(w) are generic matrices

to be properly defined in order to guarantee the asymptotic convergence of the

image feature error ew to zero, that is, limt→∞ ew(t)=0.

Notice that, a computationally simple control algorithm can be derived

by finding a suitable relationship between u and ew that ensures error con-

vergence to zero. The algorithm can be designed using the pseudo-inverse of

Jacobian and interaction matrices, J†(q) and L†
w(w), in order to compensate

J(q) and Lw(w), making the error system linear. In this case, implies that:

(i) if J∗(q) ≡ J†(q) the robot arm must be far from singular configurations,

which is difficult to ensure, in practice, using the interaction matrix Lw(w)

represented in Cartesian or polar coordinates; (ii) if L∗
w(w)≡L†

w(w), the HVS

system must use one image feature to perform a 3-DoF taks or more than two

image features, by stacking all interaction matrices, to perform a 6-DoF task

and avoid some configurations for which Lw(w) has deficient rank and

On the other hand, to avoid linearization of the error system, the al-

gorithm can be designed using the transpose of the Jacobian and interaction

matrices, J⊤(q) and L⊤
w(w). As a consequence, the algorithm is computation-

ally more efficient and the error dynamics will be governed by a first-order

nonlinear differential equation. In this case, implies that: (i) if J∗(q) ≡ J⊤(q),

it is possible to deal with kinematic singularities since the control algorithm

does not require matrix inversion; (ii) if L∗
w(w)≡L⊤

w(w), it is possible to cope

with the ill-conditioning problem of the interaction matrix Lw(w), even if the

HVS system uses only two image features to perform a 6-DoF task.

4.4
HVS Robust Controller Design

In this section, the control schemes introduced in chapter two and three

are mixed to obtain a robust HVS controller for achieving a picking task.

The velocity performance of a given image feature w ∈ R3 into an uncertain

camera-robot system and subject to external perturbations can be represented

as
ẇ = L̂w(w) R̄⊤

ec(ϕ) R̄⊤
be Ĵ(q) q̇ + η(w, q, q̇) + d(t), (4-11)

where Lw(w)∈R3×6 is the interaction matrix related to w∈R3, which denotes

the 3D point coordinates expressed in the image and operational spaces;

R̄ec(ϕ) = diag(Rec(ϕ), Rec(ϕ)) ∈ R6×6,Rec(ϕ) ∈ SO(3) means the unknown
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planar rotation misalignment between end-effector and camera frames around

the z-axis; R̄be = diag(Rbe, Rbe) ∈ R
6×6, Rbe means the known rotation

obtained by direct-kinematics (h(q)) between robot-base and end-effector

frames; J(q) ∈ R6×n of a n-DOF robot arm, the Robot Jacobian provides

the relationship between the joint velocities and the corresponding linear and

angular velocities of the end-effector frame Fe with respect to the robot frame

Fb; and q̇ ∈ R
n denotes the robot joints velocity; d(t) ∈ R

3 is a non-state

dependent bounded function that describes common external disturbances that

can perturb the proper functionality of the nominal system, commonly this

external perturbations do not have an equilibrium point [41]; the camera-robot

system uncertainties η(w, q, q̇)∈R3×n are represented by

η(w, q, q̇) = L̂w(w) R̄⊤
ec(ϕ) R̄⊤

be(J(q) − Ĵ(q)) q̇

+ (Lw(w) − L̂w(w)) R̄⊤
ec(ϕ) R̄⊤

be Ĵ(q) q̇

+ (Lw(w) − L̂w(w)) R̄⊤
ec(ϕ) R̄⊤

be(J(q) − Ĵb(q)) q̇ , (4-12)

and can be separated as

η(w, q, ˙q, q̇) = ηk(q̇) + ηv(w) + ηkv(w, q, q̇) , (4-13)

from left to right, the first and second terms ηk(q̇), ηv(w) are assumed to be

bounded as mentioned in (2-33) and (3-15), respectively. For simplification

purposes, a new term is introduced Jw(w, ϕ, q) ∈R3×n denoted as the image-

jacobian
Jw(w, ϕ, q) = L̂w(w) R̄⊤

ec(ϕ) R̄⊤
be Ĵ(q) , (4-14)

based on assumptions (2-33) and (3-15) the term ηkv(w, q, q̇) can be denoted

as
||ηkv(w, q, q̇)|| ≤ αL αJJw(w, ϕ, q) q̇ ∀q, q̇ , (4-15)

and bounded as,
||ηkv(w, q, q̇)|| ≤ γ ||ew|| γ ≥ 0. (4-16)

Then, defining the state variables as

w1 =
∫ t

0
ew(τ)dτ w2 = ew, (4-17)

where w1, w2 ∈R3 represent the continuous system states and ew ∈R3 denotes

the system error vector the actual position w to the desired position wd.

By taking

ζ̇ =





ẇ1

ẇ2



 , (4-18)

as the system state vector ζ∈R6, the following differential equation is obtained:

ζ̇ = Aζ +B (η(w, q, q̇) + d(t) − Jw(w, ϕ, q) u(t)) (4-19)
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where A∈R
6×6 and B∈R

6×3 seted as:

A =





0 I

0 0



 B =





0

I



 , (4-20)

with reference to (4-11), the following control signal u(t)∈R
3 is noted as

q̇ := u(t) = Ĵ⊤
w (s, ϕ̂, q) (Λw ζ + Ψ) , (4-21)

and
Ĵw(s, ϕ̂, q) = L̂w(w) S̄l(ϕ̂) R̄⊤

be Ĵ(q), (4-22)

where Λw ∈ R3×6 = [Λw1 Λw2] and Λw1 and Λw2 are positive definite gain

matrices; S̄l(ϕ̂) = diag(Sl(ϕ̂), Sl(ϕ̂) ∈ R6×6 and Sl(ϕ̂) ∈ SO(3) is a switching

matrix which depends of a discrete state l ∈ {0, 1}; and Ψ ∈ R3 represents a

compensation term that will be explained later. Introducing the control signal

u(t) to the nominal system (4-19),

ζ̇ = Ãl ζ +B(η(w, q, q̇) + d(t) − Ψ) (4-23)

where

Ãl =





0 I

−Jw(s, ϕ, q) Ĵ⊤
w (s, ϕ̂, q) Λw1 −Jw(s, ϕ, q) Ĵ⊤

w (s, ϕ̂, q) Λw2



 , (4-24)

Ãl ∈ R6×6 and needs to be Hurwitz to guarantee the asymptotic error

convergence of the camera-robot system limt→∞ ew(t)=0.

4.4.1
HVS controller Verification and Validation

In this section, we present simulation results for a robotic fruit harvesting

task. The simulations tests were carried out considering the presence of

parametric uncertainties in the Jacobian matrix J , interaction matrix Lw and

rotation matrix Rec. We also assumed that robot end-effector is moving in the

neighborhood of singular configurations.

The robustness of the control algorithm will be evaluated by choosing the

misalignment angle between the camera and the end-effector frames around the

z-axis as φ = π/6 rad and 10% of uncertainty in the length of the last link

of the robot arm as well as in the camera intrinsic parameters. The control

goal is to drive the object image feature w to the desired image feature wd

located at the camera center point (xv0, yv0) with desired depth zd =0.1 m. The

numerical simulations were executed in MATLAB and V-REP robot simulator

(see Fig.4.11). To illustrate the performance and effectiveness of the HVS

control scheme, simulations results are shown in Figures 4.12-4.15.

Figure 4.12(a) and (b) shows the behavior over time of the position of
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Figure 4.11: Robotic fruit picking tasks on V-REP robot simulator.

the image feature and the position error during the regulation tasks, where

we can observe a slight disturbance at the beginning of the simulation due to

the existence of the misalignment between the camera and end-effector frames

in the z-axis. We can also note the asymptotic convergence of both signals to

zero. The time history of the HVS control signal is illustrated in Fig. 4.13(a)

0 5 10 15 20 25 30
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.12: Regulation task: feature position error.

and (b), where it is possible to verify the stable behavior of the linear and

angular velocity signals, obtained using the HVS control scheme. Figure 4.14,

(a)-(e), presents the behavior in time of the angular velocities of the robot

joints, where we can see the smoothness of the control signals even if the robot

is close to singular configurations. Figure 4.15 shows the motion of multiple

image features (strawberries) from a given initial position “∗” to a desired

final position “◦”, it is possible to verify the satisfactory performance of the

proposed control scheme, in spite of the existence of parametric uncertainties

in the camera-robot system.
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Figure 4.13: HVS control signal: (a) linear velocity; (b) angular velocity.
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Figure 4.14: Joint angular velocities.
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Figure 4.15: Trajectory of the image features: initial position “∗” and final
position “◦”.
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4.4.2
Hybrid Control Design

Regarding the discrete state Sl(ϕ̂) for assuring the asymptotic stability

of the system even when |ϕ− ϕ̂| ≥ |π
2
|, which violates the Hurwitz property of

the matrix Ãl (4-24) turning the system into unstable.

Bringing the System to a Hybrid control system formalism and using a

basic switching approach of two operating regions Xl, l = {0, 1}; we obtain

fl(ζ̇) = Ãl ζ +B(η(w, q, q̇) + d(t) − Ψ) , l ∈ L = {0, 1} , (4-25)

where the vector fl(ζ̇) represents the dynamics of the l − th mode into a

continuous function, and L is a finite index set. For a state-dependent switching

task, the switching times are denoted as k and it is assumed that for every

discrete index NL, exists an operating region Xl limited by a guard set G(l, l′).

Note that, a discrete transition to lk+1 occurs when the continuous state ζ into

operating region Xl meets its corresponding guard set G(l, l′) [47].

By defining the discrete state Sl(ϕ̂) as

S0 =











1 0 0

0 1 0

0 0 1











, S1(ϕ̂) =











cos(ϕ̂) −sin(ϕ̂) 0

sin(ϕ̂) cos(ϕ̂) 0

0 0 1











, (4-26)

where ϕ̂ is an estimation of ϕ to ensure the Hurwitz property of Ãl (4-24),

this ϕ̂ estimation will be discussed later, and setting two discrete state values

under the constraint (3-21), the following operating regions into the radiant

space are obtained X0 = [−π
2
, ..., π

2
], X1 = [ϕ̂− π

2
, ..., ϕ̂+ π

2
].

Analyzing the continuous system state ζ we have that for any ti ∈ [0, tM ]

and, by using the comparison lemma [41], we obtain:

||ζ(t)|| ≤ ξ(t) , ∀t∈ [ti, tM ] , (4-27)

where
ξ(t) := ||ζ(ti)(ti)|| e−λm(t−ti) , (4-28)

where λm is a positive constant.

Constructing the guard set G(l, l′) as a monitoring function ψm(·) based

on the norm bound for the feature error ζ given in (4-27) following the ideas

introduced in [48, 46]. Notice that, (4-27) holds when the matrix Sl is correct

(Sl = S), it seems natural to use the term ξ(t) as a benchmark to decide

whether a switching of Sl is needed, that is, the switching occurs only when

the condition (4-27) is violated. On the other hand, since Sl is unknown, the

following function ψk is defined in the interval [tk, tk+1], to replace the term

ξ(t) as:
ψk(t) = ||ζ(tk)||eλ(t−tk) + γ a(tk) e

−t
a(tk) , (4-29)
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where the switching time tk sets the change of index l ∈ L, cycling through

the Sl matrices for l= 1, 2, and a(tk) is any positive monotonically increasing

unbounded sequence. The monitoring function ψm can be defined as:

ψm(t) := ψk(t) , ∀t ∈ [tk, tk+1] ⊂ [t0, tM ] . (4-30)

Note that, from (4-29) and (4-30), we have ||ζ(tk)||<ψk(tk) at t= tk. Hence,

the switching time tk is defined as the time instant when the state ||ζ(t)|| meets

the guard set G(l, l′) (monitoring function ψm(t)) , that is,

tk+1 :=







tM , if ||ζ(t)|| ≥ ψm(t),

tk, otherwise,
(4-31)

where k = 0, 1, · · · and t0 := 0. From (4-30), the following inequality can be

obtained:
||ζ(t)|| ≤ ψm(t) , ∀t∈ [0, tM ] . (4-32)

4.4.3
Stability Analysis

Considering the Lyapunov candidate function

Vl(ζ) = ζ⊤Qζ > 0 ∀ζ 6= 0 , ζ ∈ Xl , (4-33)

where Q∈R6×6 is a positive definite matrix, deriving (2-57) we obtain

V̇l(ζ) = ζ⊤(Ã⊤
l Q+QÃ)lζ + 2ζ⊤QB(η(w, q, q̇) + d(t) − Ψ) . (4-34)

Since Ãl is Hurwitz, it is necessary to compute a positive definite matrix Pl

as:
Ã⊤

l Q+QÃl = −Pl , (4-35)

injecting (4-35) into (4-34), V̇l(ζ) leads to

V̇l(ζ) = −ζ⊤Plζ + 2ζ⊤QB(η(w, q, q̇) + d(t) − Ψ) . (4-36)

Regarding the left term of (4-36), it is possible to see that it is negative definite

∀ζ ∈ Xl, for the second term, it is necessary to choose Ψ for vanishing the

perturbed term (η(w, q, q̇) + d(t)) along the task execution [42]. Adopting the

vector Ψ as
Ψ = ρ1

√

|Z| sign(Z) + υ + ̺Z ̺ > 0 , (4-37)

υ̇ = ρ2 sign(Z) , (4-38)

and for simplicity, the parameters ρ1 and ρ2 can be set as

ρ1 =
√
ρ ρ2 = 1.1 ρ ρ > 0, (4-39)
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where ρ and ̺ are positive and sufficient large constants for vanishing any

perturbation added to the nominal system [49]. In this sense the perturbed

term is denoted as
||(η(w, q, q̇) + d(t))|| < ||Ψ|| (4-40)

and the Lyapunov function (4-36) can be rewritten as

V̇l(ζ) ≤ −ζ⊤Plζ − ||Ψ|| 2 ζ⊤QB ∀ζ ∈ Xl . (4-41)

Being that the rotation matrix Rec(ϕ) is constant during the task

execution (ϕ̇ = 0) and by using the switching scheme introduced in 4-25,

only one switching time k + 1 is expected in case that ||ϕ − ϕ̂k|| > π/2 for

ensuring ||ϕ− ϕ̂(k+1)|| < π/2 after switching, then

Vl(k+1)
(ζ(k + 1)) ≤ Vl(k)

(ζ(k)) (4-42)

guaranteeing the system stability and error convergence to zero ζ = 0 limt→∞

before and after the switching occurs k + 1.

4.4.4
Validation HVS Hybrid and ST-SM

In this section we demonstrate the introduced ST-SM controller to track

an image feature wd which is assumed to have an unknown and bounded ẇd

with the following assumptions,

– A ten percent uncertainty at the length of the last link.

– A ten percent uncertainty at the intrinsic camera parameters.

– Misalignment angle ϕ̃ between the camera and the end-effector frames

around the z-axis of 3.32 rad as commented in (3-21).

– An unknown circular trajectory of π rad/s.

Figs. 4.16-4.19 demonstrate the ST-SM controller performance, where

the projection error ew remains close to zero along time, even when the

desired trajectory ṡd is unknown. Moreover, Fig. 4.17 demonstrates the unit

vector control Ψ and the sliding surface Z performance of the proposed

algorithm in (3-42), it is possible to see how the unit vector Ψ presents a

more continues performance in comparison with the UVC algorithm. Finally,

Fig.4.19 demonstrates the smooth performance the robot joints velocities.
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Figure 4.16: ST-SM Feature Error.
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Figure 4.17: ST-SM Sliding Surface and unit vector control signal.
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Figure 4.18: ST-SM Image Trajectory.
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Figure 4.19: ST-SM End-Effector Velocity.

4.5
Task Optimizer

By having a stable control loop for collecting one strawberry, a practical

situation yields on collecting more than one strawberry in a complex real-world

scenario, where many strawberries may be on the screen and a harvest-planning

phase may not be trivial for collecting the strawberries as fast as possible. As

expected, while performing the HVS control scheme to approach an object

of interest, the others objects are considered as external disturbances to the

control loop, which can lead to system instability.

In order to discover the best-path for collecting the objects, an optimiza-

tion scheme is introduced. The main idea is to obtain an initial path and then

optimize it until obtaining an approximation to the best-path. This optimiza-

tion procedure is accomplished based on the cost function, which is defined as

path cost, which means the sum of the distances between each object following

the test-path. The candidate path, the numbers in red shown in Fig. 4.20, is

calculated by choosing the closest point starting with the first image centroid

obtained from the segmentation phase.

Path optimization is carried out by using a learning exploration/exploita-

tion strategy using a memetic random restart strategy [55], which tries to min-

imize the cost function (or path-cost) by choosing a random permutation at an

exploration phase or modifying randomly the test path for exploitation. Then,

the optimization process stops when the cost function converges (“Fully Opti-

mized”) as shown in Fig. 4.21. Since this is a stochastic optimization process,

running the algorithm a certain number of times may improve the obtained

results.

In order to deal with the disturbances presented during the approaching
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Figure 4.20: Harvesting paths: The numbers in black, red and blue, refer
respectively to initial, candidate and optimized paths.

Figure 4.21: Memetic Algorithm Ramdom Restart.
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phase towards a single object of interest in the presence of other fruits, a

self-updating tracking window [56] is used to ensures the object visibility

and be able to compute its corresponding image features. After reaching the

desired distance, a final image-based height adjustment could be carried out

for positioning the gripper close to the fruit stem, cut it and store the fruit in

a storage box, completing the harvesting task successfully.

4.6
Experimental Results HVS

In this section, we present experimental results for a fruit harvesting

task carried out in order to illustrate the effectiveness of the proposed control

scheme (Fig. 4.22). We consider a RGB-D stereo camera attached to the end-

effector of a 5-DoF robot arm, which is visually controlled at the position level

by a hybrid-based visual servoing approach in the neighborhood of singular

configurations.

Numerical simulations were carried out on a Lenovo laptop with Intel

Core i7-6500U Processor (4M Smart Cache, 2.5 GHz) 16 GB RAM, run-

ning Windows OS 64 bits. The control algorithm was implemented in MAT-

LAB/Simulink (The MathWorks Inc.) Release 2017a and V-REP PRO EDU

version 3.4.0 used as a robotic simulation platform. A set of scripts and function

blocks were created to perform all necessary calculations and execute the con-

trol loop. Experiments were carried out using the Mitsubishi robot RV-2AJ and

the controller Mitsubishi Melfa CR1. The communication channel between the

laptop and the controller was established through RS-232C command protocol

by means of an own-built cable, based on manufacturer manual. The camera

attached to the end-effector was the ZED Mini Stereo Camera distributed by

STEREOLABS. The intrinsic camera parameters of the visual servoing system

were provided by the manufacturer (ROS package) The Denavit-Hartenberg

parameters [37] of the robot arm are: α1 =−π/2, and α4 =π/2 and the offsets

of joints two and four are −π/2 and π/2, where all angles are expressed in

radians; a2 = 0.25, a3 = 0.16; d1 = 0.3, and d5 = 0.072, where all lengths are

expressed in meters.
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Figure 4.22: Laboratory Experimental Setup.

4.6.1
ROS Architecture

The HVS algorithm was implemented with the Robot Operating System

(ROS) framework, in this way it was possible to use the camera manufacturer

ROS package and communicate different Python scripts in parallel. Figs 4.23

and 4.24 presents the system nodes and topics implemented for ensuring a

successful execution. The ROS implementation contains four scripts, three in

Python (image segmentation, homography generator, and the robot controller)

and one in Matlab (HVS controller), all of them have been added to a single

launch file for simplicity purposes their initialization.

4.6.1.1
Feature Matching Script

This script intends to solve the matching points problem by employing

the scene Homography, the Homogeneous transformation (Homography) H is
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Figure 4.23: ROS nodes.

Figure 4.24: ROS nodes and topics.

used to map a given pixel location pl from one view (left camera) to another

pr (right camera), this Homography mapping is an approximation hence the

corresponding point is assumed to be the closest to this estimation p̂r (4.25). In

consequence that the Homography Ĥ is an estimation of H which is unknown,

we assumed that the distance between p̂r and pr should be the zero in theory

but in practice, this distance needs to be restricted by a certain threshold for

wrong Ĥ estimations; provided that there are not any close point pr to p̂r, the

algorithm estimates a new homography Ĥ until reaching pr [44].

4.6.1.2
Image Segmentation

This script (4.26) is intended to extract the desired object to track

(specified by the HVS controller), during the task execution; and by using

the scene Homography estimation Ĥ triangulate accurately the 3D position of

the object/s of interest presented in the scene (4.26). Figures 4.27 and 4.28,

demonstrate the input images before and after a specific object is chosen by
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Figure 4.25: Homogeneus Transformation Script.
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Figure 4.26: Image Segmentation Script.
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Figure 4.27: Image Before Selecting an Object (left and right camera images).

Figure 4.28: Image After Selecting an Object (left and right camera images).

the HVS controller, the sliding window is employed to remove similar objects

from the scene to execute the hybrid visual servoing application for an specific

fruit.

4.6.1.3
HVS Controller

This algorithm (Fig. 4.29) estimates the desired end-effector trajectory

to achieve the visual servoing task, the loops starts by reading the identified

features from the image segmentation algorithm (4.26) and after choosing

the object of interest into the scene, the algorithm starts computing the

manipulator trajectory until reaching the desired position wd.

4.6.1.4
Experimental Results

In this section we present the proposed HVS controller performance with

the following control law,

u(t) := q̇ = J⊤(q)RbcL
⊤
w(w)Λw ew , Λw = Λ⊤

w > 0 , (4-43)

with uncertainties at the Jacobian J(q) and Iteration Lw(w) matrices and in

presence of similar objects into the scene.

Figures 4.30 - 4.35 demonstrate the proposed algorithm performance;

figure 4.31 shows the estimate 3D position convergence of a fixed object, this

3D estimation (object position referred to robot base frame) was calculated
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Figure 4.29: HVS Controller Script.
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Figure 4.30: HVS Controller Error Performance.
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Figure 4.31: HVS Controller Object Position.
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Figure 4.32: HVS Controller Jacobian and Iteration Matrices Manipulability.
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Figure 4.33: HVS Controller End-Effector Velocity.
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Figure 4.34: HVS Controller Joints Velocity.

0 10 20 30
-0.2

-0.1

0

0 10 20 30
-2

0

2

0 10 20 30
1

2

3

0 10 20 30
-1

0

1

0 5 10 15 20 25 30
-0.01

-0.005

0

Figure 4.35: HVS Controller Joints Position.
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with an uncertain distance between the camera and manipulator frames; figure

4.31 present the Jacobian an Iteration matrices manipulability during the

task execution, note that the HVS controller is able to deal with singular

configurations during the task execution, performing the a smooth control

signals (Figs. 4.33 and 4.34).
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4.7
Concluding Remarks

In this chapter, we have demonstrated that the HVS is a suitable

and robust option to cope with the ill-conditioning problem of the Jacobian

and interaction matrices, and also to deal with parametric uncertainties for

regulation tasks. Moreover, a sliding mode control (SMC) combined with a

switching monitoring algorithm and state observer have been added to the

HVS controller to deal with the usual limitation of the camera misalignment

angle |ϕ̃|<π/2 rad and external unmodeled perturbations.

The segmentation algorithm based on the OTHA color space combined

with the Otsu method has demonstrated a good and fast segmentation

performance for online applications where time execution is critical for the

control reliability. On the other hand, DCNN algorithms have shown a more

accurate and computationally expensive segmentation into very dynamic and

complex scenarios.

In situations where harvesting task turns into collecting more than one

fruit, by using a path planning algorithm, a Matching algorithm based on the

scene Homography and a self-updating tracking window approaches, it was

possible to demonstrate a satisfactory performance of the proposed solution

into a test harvesting setup.

Finally, the ROS framework was employed to achieve a real harvesting

task with the Mitsubishi robot, where many parallel tasks or nodes are

needed to run in parallel threads and to communicate with each other. Image-

processing and Homography scripts were implemented in Python and for time-

consuming reasons, the HVS controller was implemented in Matlab.
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5
Conclusions

In this work, we have developed a hybrid visual servoing control scheme

based on PBVS and IBVS approaches, for robotic fruit harvesting tasks in the

presence of parametric uncertainties in the camera-robot system.

In chapter two we comment how convenient is to choose the Jacobian-

transpose algorithm for solving the inverse-kinematics problem at singular

joints q configuration into a regulation task. Furthermore, adaptive and robust

control (sliding mode) methodologies where compared into a tracking task

in presence of parametric uncertainties of a two-link planar robot, these to

determine the advantages and disadvantages of both methods with uncertain

models. In this context, the UVC robust control scheme have demonstrated

a better performance compared with the adaptive controller for performing a

regulation control task in presence of constant external perturbations ṗd 6= 0.

Chapter three introduces the PBVS and IBVS controllers for archiving

a regulation task by using a camera attached to the robot end-effector,

experimental results of the first prototype based on PBVS and IBVS indicate

the PBVS low-robustness properties to modeling-errors compared to the IBVS

scheme. Subsequently, a more robust IBVS controller is presented based on

ST-SM and SMC to ensure a successful task execution under vanishing and

non-vanishing perturbations existence. Moreover, the chattering phenomenon

is studied and minimized by employing an ST-SM which combines continuous

and non-continuous control laws.

Based on robustness properties of the IBVS scheme over the PBVS ap-

proach commented in chapter three, chapter four presented an HVS design is

proposed for achieving a desired 3D position with respect to an object of in-

terest. In this ST-SM was added to the control law for obtaining robustness to

model uncertainties and external perturbations. In addition, a semi-adaptive

switching SMC controller based on the state observer strategy has demon-

strated a better performance for minimizing the switchin times in comparison

with the approach used in chapter three.

Numerical simulations and preliminary practical results have shown the

efficiency and feasibility of using robot arms to perform semi-autonomous

harvesting tasks for soft fruits in orchards and poly-tunnels. We expected
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that in the near future other types of crops - that introduce different types of

challenges - may be harvested by the robot arm, and others kinds of agricultural

tasks can be also implemented by using robotic arms, such as weed control.

Some proposed topics for further investigation involve:

– Improve the segmentation algorithm to obtain a stem detection and seg-

mentation to perform fruit harvesting under different stems configura-

tions and rotations. Since just by finding the top of the fruit and adding

a small value to the height it is possible to pick only fruits with a stem

in the upright position;

– Perform the undistortion process to the extracted image features instead

of the whole image to obtain a computationally cheaper segmentation

algorithm;

– Examine other DCNN algorithms for fruits recognition and image seg-

mentation based on atrous convolution schemes, in order to avoid the loss

of information at downsampling phases, also test instance segmentation

to deal with recognition problems presented in occlusion and clustering

situations [57];

– Create a larger training data-set for training a Deep Learning algorithm

for semantic and instance segmentation.

– Examine other methods for fruits recognition and image segmentation

based on machine learning and deep learning techniques for dealing with

clustering and occlusion scenarios such GANs [58].

– Explore other localization methods, like 3D reconstruction techniques

(e.g., disparity maps and position triangulation) and different vision

sensors (e.g., stereo camera, RGB-D sensor, Kinect).

– Analyze other vision-based control approaches, combining different cam-

era models and mounting configurations, that demonstrate more robust-

ness to parametric uncertainties and kinematic singularities.

– Improve the performance of the control scheme by adding an adaptive

control algorithm to estimate the gain values of the Sliding Mode

Controller.

– Examine the feasibility of the proposed Hybrid-ST-SM HVS control

scheme carrying out experimental tests.

– Analyze how the proposed controller deals with uncertainties at robot

encoders q which is non-parametric.

– Propose a dynamic cascade control scheme for performing the task much

faster.

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography

[1] DUROCHER, K.. Should We Fear the Rise of Farm Robots? These

Experts Say No. In: FUTURE OF FOOD A PROJECT OF RED CUP

AGENCY, November 2017.

[2] BUTLER, S.. If EU workers go, will robots step in to pick and

pack Britain’s dinners? In: THE GUARDIAN, Feb 2017.

[3] KAPACH, K.; BARNEA, E.; MAIRON, R. ; EDAN, Y.. Computer Vision

for Fruit Harvesting Robots - State of the Art and Challenges

Ahead. International Journal Computational Vision and Robotics, 3(1/2):4–

34, 2012.

[4] MEHTA, S. S.; MACKUNIS, W. ; BURKS, T. F.. Robust Visual Servo

Control in the Presence of Fruit Motion for Robotic Citrus

Harvesting. Computers and Electronics in Agriculture, 123:362–375, 2016.

[5] MANN, M. P.; ZION, B.; SHMULEVICH, I.; RUBINSTEIN, D. ; LINKER,

R.. Combinatorial Optimization and Performance Analysis of

a Multi-arm Cartesian Robotic Fruit Harvester–Extensions of

Graph Coloring. Journal of Intelligent & Robotic Systems, 82(3-4):399–

411, Jun 2016.

[7] EDAN, Y.; HAN, S. ; KONDO, N.. Automation in Agriculture. In: Nof,

S. Y., editor, SPRINGER HANDBOOK OF AUTOMATION, p. 1095–1128.

Springer-Verlag Berlin Heidelberg, 2009.

[8] BAC, C. W.; VAN HENTEN, E. J.; HEMMING, J. ; EDAN, Y.. Harvest-

ing Robots for High-value Crops: State-of-the-art Review and

Challenges Ahead. Journal of Field Robotics, 31(6):888–911, 2014.

[9] ZAIDNER, G.; SHAPIRO, A.. A Novel Data Fusion Algorithm for

Low-cost Localisation and Navigation of Autonomous Vineyard

Sprayer Robots. Biosystems Engineering, 146:133–148, 2016. Special

Issue: Advances in Robotic Agriculture for Crops.

[10] EIZICOVITS, D.; VAN TUIJL, B.; BERMAN, S. ; EDAN, Y.. Integration

of Perception Capabilities in Gripper Design using Graspability

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography 114

Maps. Biosystems Engineering, 146:98–113, 2016. Special Issue: Advances

in Robotic Agriculture for Crops.

[11] GONGAL, A.; AMATYA, S.; KARKEE, M.; ZHANG, Q. ; LEWIS, K..

Sensors and Systems for Fruit Detection and Localization: A

Review. Computers and Electronics in Agriculture, 116:8–19, 2015.

[12] CHAUMETTE, F.; HUTCHINSON, S.. Visual Servo Control - Part

I: Basic approaches. IEEE Robotics Automation Magazine, 13(4):82–90,

Dec 2006.

[13] CORKE, P. I.. Robotics, vision and control : fundamental algo-

rithms in MATLAB / Peter Corke . Springer Berlin, 2011.

[14] CHAUMETTE, F.; HUTCHINSON, S.. Visual Servo Control - Part

II: Advanced approaches. IEEE Robotics and Automation Magazine,

14(1):109–118, 2006.

[15] PLEBE, A.; GRASSO, G.. Localization of Spherical Fruits for

Robotic Harvesting. Machine Vision and Applications, 13(2):70–79, Nov

2001.

[16] BILLINGSLEY, J.; VISALA, A. ; DUNN, M.. Robotics in Agriculture

and Forestry. In: Siciliano, B.; Khatib, O., editors, SPRINGER HAND-

BOOK OF ROBOTICS, p. 1065–1077. Springer Berlin Heidelberg, 2008.

[17] AMATYA, S.; KARKEE, M.; GONGAL, A.; ZHANG, Q. ; WHITING, M. D..

Detection of Cherry Tree Branches with Full Foliage in Planar

Architecture for Automated Sweet-cherry Harvesting. Biosystems

Engineering, 146:3–15, 2016. Special Issue: Advances in Robotic Agriculture

for Crops.

[18] WEI, X.; JIA, K.; LAN, J.; LI, Y.; ZENG, Y. ; WANG, C.. Automatic

Method of Fruit Object Extraction under Complex Agricultural

Background for Vision System of Fruit Picking Robot. Optik

- International Journal for Light and Electron Optics, 125(19):5684–5689,

2014.

[19] BAC, C. W.; ROORDA, T.; RESHEF, R.; BERMAN, S.; HEMMING, J. ; VAN

HENTEN, E. J.. Analysis of a Motion Planning Problem for Sweet-

pepper Harvesting in a Dense Obstacle Environment. Biosystems

Engineering, 146:85–97, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography 115

[20] LOTTES, P.; HÖRFERLIN, M.; SANDER, S. ; STACHNISS, C.. Effec-

tive Vision-based Classification for Separating Sugar Beets and

Weeds for Precision Farming. Journal of Field Robotics, 34(6):1160–

1178, 9 2016.

[21] BAH, M. D.; HAFIANE, A. ; CANALS, R.. Deep learning with unsuper-

vised data labeling for weeds detection on UAV images. CoRR,

abs/1805.12395, 2018.

[22] BOTTERILL, T.; PAULIN, S.; GREEN, R.; WILLIAMS, S.; LIN, J.; SAXTON,

V.; MILLS, S.; CHEN, X. ; CORBETT-DAVIES, S.. A Robot System for

Pruning Grape Vines. Journal of Field Robotics, 34(6):1100–1122, 10

2016.

[23] LONG, J.; SHELHAMER, E. ; DARRELL, T.. Fully Convolutional

Networks for Semantic Segmentation. In: THE IEEE CONFERENCE

ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), June

2015.

[24] HUNG, C.; NIETO, J.; TAYLOR, Z.; UNDERWOOD, J. ; SUKKARIEH, S..

Orchard fruit segmentation using multi-spectral feature learn-

ing. In: 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLI-

GENT ROBOTS AND SYSTEMS, p. 5314–5320, Nov 2013.

[25] BARGOTI, S.; UNDERWOOD, J. P.. Image Segmentation for Fruit

Detection and Yield Estimation in Apple Orchards. CoRR,

abs/1610.08120, 2016.

[26] DIAS, P. A.; TABB, A. ; MEDEIROS, H.. Multispecies Fruit Flower

Detection Using a Refined Semantic Segmentation Network.

IEEE Robotics and Automation Letters, 3(4):3003–3010, Oct 2018.

[27] BARTH, R.; HEMMING, J. ; VAN HENTEN, E. J.. Design of an Eye-

in-hand Sensing and Servo Control Framework for Harvesting

Robotics in Dense Vegetation. Biosystems Engineering, 146:71–84,

2016.

[28] MEHTA, S. S.; BURKS, T. F.. Vision-based Control of Robotic

Manipulator for Citrus Harvesting. Computers and Electronics in

Agriculture, 102:146–158, 2014.

[29] NGUYEN, T. T.; VANDEVOORDE, K.; WOUTERS, N.; KAYACAN, E.;

BAERDEMAEKER, J. G. D. ; SAEYS, W.. Detection of Red and

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography 116

Bicoloured Apples on Tree with an RGB-D Camera. Biosystems

Engineering, 146:33–44, 2016.

[30] SENTHILNATH, J.; DOKANIA, A.; KANDUKURI, M.; K.N., R.; ANAND,

G. ; OMKAR, S.. Detection of Tomatoes using Spectral-spatial

Methods in Remotely Sensed RGB Images Captured by UAV.

Biosystems Engineering, 146:16–32, 2016. Special Issue: Advances in Robotic

Agriculture for Crops.

[31] KURIOS, Q.; ALDAYR, A. ; SAMAHERNI, D.. Design and stability

analysis of a variable structure adaptive backstepping controller.

Asian Journal of Control, 14(3):641–651, 2011.

[32] CHEAH, C. C.; HOU, S. P.; ZHAO, Y. ; SLOTINE, J. J. E.. Adaptive

Vision and Force Tracking Control for Robots With Constraint

Uncertainty. IEEE/ASME Transactions on Mechatronics, 15(3):389–399,

June 2010.

[33] ROUX, O. T.; CANDEA, L. A.; JACOUD, P. A. ; LIU, H.. Overcoming

Limitations of Uncalibrated Robotics Visual Servoing by means

of Sliding Mode Control and Switching Monitoring Scheme. Asian

Journal of Control, 16(3):752–764, 2014.

[34] LEITE, A. C.; LIZARRALDE, F.. Passivity-based Adaptive 3D Visual

Servoing without Depth and Image Velocity Measurements for

Uncertain Robot Manipulators. International Journal of Adaptive

Control and Signal Processing, 30(8-10):1269–1297, 2016.

[35] MEHTA, S.; MACKUNIS, W. ; BURKS, T.. Nonlinear Robust Visual

Servo Control for Robotic Citrus Harvesting. IFAC Proceedings

Volumes, 47(3):8110 – 8115, 2014. 19th IFAC World Congress.

[36] GAMBA, J.; FROM, P. J. ; LEITE., A. C.. A Visual Servoing Approach

For Robotic Fruit Harvesting in the Presence of Parametric

Uncertainties. CBA Proceedings Volumes, 2018. XXII Congresso Brasileiro

de Automática.

[37] SICILIANO, B.; SCIAVICCO, L.; VILLANI, L. ; ORIOLO, G.. Robotics:

Modelling, Planning and Control. Springer Publishing Company, Inc.,

2009.

[38] NAKAMURA, Y.; HANAFUSA, H.. Inverse Kinematic Solution with

Singularity Robustness for Robot Manipulator Control. ASME

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography 117

Journal of Dynamic Systems, Measurement, and Control, 108(3):163–171,

1986.

[39] VARGAS, L. V.; LEITE, A. C. ; COSTA, R. R.. Overcoming Kinematic

Singularities with the Filtered Inverse Approach. In: PROCEED-

INGS OF THE 19TH IFAC WORLD CONGRESS, p. 8496–8502, Cape Town,

South Africa, Aug 2014.

[41] KHALIL, H. K.. Nonlinear Systems. Prentice-Hall Inc., 2002.

[42] YU, X.; MAN, Z.. Variable Structure Systems with Terminal

Sliding Modes, p. 109–127. Springer Berlin Heidelberg, Berlin, Heidelberg,

2002.

[43] LEITE, A. C.; LIZARRALDE, F. ; HSU, L.. Hybrid Adaptive Vision-

Force Control for Robot Manipulators Interacting with Un-

known Surfaces. The International Journal of Robotics Research,

28(7):911–926, 2009.

[44] FORSYTH, D. A.; PONCE, J.. Computer Vision - A Modern Ap-

proach. Pearson Inc., 2nd edition, 2012.

[45] BAY, H.; ESS, A.; TUYTELAARS, T. ; VAN GOOL, L.. Speeded-Up

Robust Features (SURF). Computer Vision and Image Understanding,

110(3):346–359, June 2008.

[46] OLIVEIRA, T. R.; LEITE, A. C.; PEIXOTO, A. J. ; HSU, L.. Overcoming

Limitations of Uncalibrated Robotics Visual Servoing by means

of Sliding Mode Control and Switching Monitoring Scheme. Asian

Journal of Control, 16(3):752–764, 2014.

[47] PAPACHRISTODOULOU, A.; PRAJNA, S.. Robust Stability Analysis

of Nonlinear Hybrid Systems. IEEE Transactions on Automatic Control,

54(5):1035–1041, May 2009.

[48] YAN, L.; HSU, L.; COSTA, R. R. ; LIZARRALDE, F.. A Variable

Structure Model Reference Robust Control without a Prior

Knowledge of High Frequency Gain Sign. Automatica, 44(4):1036–

1044, 2008.

[49] PERRUQUETTI, W.. Sliding Mode Control in Engineering. Marcel

Dekker, Inc., New York, NY, USA, 2002.

[50] LECUN, Y.; BENGIO, Y. ; HINTON, G.. Deep learning. Nature,

521(7553):436–444, 5 2015.

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography 118

[51] CHANG, S.-F.. Segmentation Using Superpixels: A Bipartite

Graph Partitioning Approach. In: PROCEEDINGS OF THE 2012 IEEE

CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION

(CVPR), CVPR ’12, p. 789–796, Washington, DC, USA, 2012. IEEE Com-

puter Society.

[52] GOODFELLOW, I.; BENGIO, Y. ; COURVILLE, A.. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[53] KINGMA, D. P.; BA, J.. Adam: A Method for Stochastic Optimiza-

tion. CoRR, abs/1412.6980, 2014.

[54] RUBLEE, E.; RABAUD, V.; KONOLIGE, K. ; BRADSKI, G.. Orb: An

efficient alternative to sift or surf. p. 2564–2571, Nov 2011.

[55] Neri, F.; Cotta, C. ; Moscato, P., editors. Handbook of Memetic

Algorithms, volumen 379 de Studies in Computational Intelligence.

Springer, 2012.

[56] QIAN, H.; MAO, Y.; GENG, J. ; WANG, Z.. Object tracking with

self-updating tracking window. In: Yang, C. C.; Zeng, D.; Chau,

M.; Chang, K.; Yang, Q.; Cheng, X.; Wang, J.; Wang, F.-Y. ; Chen, H.,

editors, INTELLIGENCE AND SECURITY INFORMATICS, p. 82–93, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg.

[57] CHEN, L.; PAPANDREOU, G.; SCHROFF, F. ; ADAM, H.. Rethinking

Atrous Convolution for Semantic Image Segmentation. CoRR,

abs/1706.05587, 2017.

[58] GOODFELLOW, I.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-

FARLEY, D.; OZAIR, S.; COURVILLE, A. ; BENGIO, Y.. Generative

Adversarial Nets. In: Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence,

N. D. ; Weinberger, K. Q., editors, ADVANCES IN NEURAL INFORMATION

PROCESSING SYSTEMS 27, p. 2672–2680. Curran Associates, Inc., 2014.

[60] SLOTINE, J.-J. E.; LI, W.. Applied nonlinear control. Pearson, Upper

Saddle River, NJ, 1991. The book can be consulted by contacting: BE-ABP-

CC3: Pfingstner, Juergen.

[61] BADRINARAYANAN, V.; KENDALL, A. ; CIPOLLA, R.. Segnet: A deep

convolutional encoder-decoder architecture for image segmen-

tation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(12):2481–2495, Dec 2017.

http://www.deeplearningbook.org
DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Bibliography 119

[62] DIMOVSKI, I.; TROMPESKA, M.; SAMAK, S.; DUKOVSKI, V. ;

CVETKOSKA, D.. Algorithmic approach to geometric solution of

generalized paden–kahan subproblem and its extension. Interna-

tional Journal of Advanced Robotic Systems, 15(1):1729881418755157, 2018.

[63] SWIKIR, A.; UTKIN, V.. Chattering analysis of conventional and

super twisting sliding mode control algorithm. In: 2016 14TH

INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS

(VSS), p. 98–102, June 2016.

[64] VASTHI, P. I.; KUSUMANINGRUM, R.. Object segmentation for

fruit images using ohta colour space and cascade threshold. In:

2015 INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION

TECHNOLOGY (ICSITECH), p. 321–325, Oct 2015.

[65] HARRIS, C.; STEPHENS, M.. A combined corner and edge detector.

In: IN PROC. OF FOURTH ALVEY VISION CONFERENCE, p. 147–151,

1988.

[66] LOWE, D. G.. Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[67] OTSU, N.. A Threshold Selection Method from Gray-level His-

tograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1):62–66,

1979.

[68] MURRAY, R. M.; SASTRY, S. S. ; ZEXIANG, L.. A Mathematical

Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton,

FL, USA, 1st edition, 1994.

[69] WANG, Z.; BOVIK, A. C.; SHEIKH, H. R. ; SIMONCELLI, E. P.. Image

quality assessment: From error visibility to structural similarity.

IEEE TRANSACTIONS ON IMAGE PROCESSING, 13(4):600–612, 2004.

[70] PENG, C.; ZHANG, X.; YU, G.; LUO, G. ; SUN, J.. Large kernel matters -

improve semantic segmentation by global convolutional network.

CoRR, abs/1703.02719, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



A
ROS Script Files

Listing A.1: ROS System Launch File

<launch>

<inc lude

f i l e=" $( f i nd ␣zed_cpu_ros)/ launch /zed_cpu_ros . launch " />

<node pkg=" mitsubi sh i_robot "

name=" mitsubi sh i_robot "

type="mit . py ">

</node>

<node pkg=" image_segmentation "

name=" image_segmentation "

type=" seg . py ">

</node>

<node pkg=" homography_generator "

name=" homography_generator"

type=" t r i a n . py ">

</node>

</ launch>

Listing A.2: ROS Camera Launch File

<launch>

<arg name=" c o n f i g_ f i l e_ l o c a t i o n "

default=" $( f i nd ␣zed_cpu_ros)/ c on f i g

␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣/SN10026505 . conf " />

<arg name=" camera_namespace " default=" camera " />

<node pkg=" zed_cpu_ros " type=" zed_cpu_ros"

name=" zed_cpu_ros_node " output=" s c r e en "

ns=" $( arg ␣camera_namespace ) " r equ i r ed=" true ">

<param name=" r e s o l u t i o n " va lue=" 3 " />

<param name=" frame_rate " va lue=" 100 " />

<param name=" c o n f i g_ f i l e_ l o c a t i o n "

va lue=" $( arg ␣ c o n f i g_ f i l e_ l o c a t i o n ) " />

<param name=" show_image " va lue=" f a l s e " />
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<param name=" le ft_frame_id " va lue=" le f t_frame " />

<param name=" right_frame_id " va lue=" r ight_frame " />

<param name=" load_zed_config " va lue=" true " />

</node>

<node pkg=" t f " type=" s ta t i c_trans fo rm_pub l i she r "

name=" stat i c_tf_1 " args=" 0 .25 ␣0␣ 0 .4 ␣0␣0␣0␣1

base_l ink ␣ le f t_frame ␣30 " />

</ launch>
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A.1
Python Scripts

Listing A.3: Segmentation Script File

#!/ usr / b in /env python

# −∗− coding : u t f −8 −∗−

import cv2 , math , copy , rospy

from img_pros . msg import point_array , pixel_params

from sensor_msgs .msg import Image , CameraInfo , Jo in tSta te

from geometry_msgs .msg import Point

from cv_bridge import CvBridge , CvBridgeError

import numpy as np

import imu t i l s

import time

from std_msgs .msg import Bool

br idge = CvBridge ( )

#img_params = ImageParams ( )

img_params = point_array ( )

p i x l = pixel_params ( )

p ix r = pixel_params ( )

chng_flag = Bool ( )

AREA_FLAG = 10

def ca l lback_iml (msg ) :

global br idge

global i l

try :

# Convert your ROS Image message to OpenCV2

i l = br idge . imgmsg_to_cv2(msg , " bgr8 " )

except CvBridgeError , e :

print ( e )

def ca l lback_imr (msg ) :

global br idge

global i r

try :

# Convert your ROS Image message to OpenCV2

i r = br idge . imgmsg_to_cv2(msg , " bgr8 " )

except CvBridgeError , e :

print ( e )

def callbackhom ( data ) :
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global H

H = np . ar ray ( [ [ data .X[ 0 ] , data .X[ 1 ] , data .X[ 2 ] ] ,

[ data .X[ 3 ] , data .X[ 4 ] , data .X [ 5 ] ] ,

[ data .X[ 6 ] , data .X[ 7 ] , data .X [ 8 ] ] ] )

def ca l lbackcaml ( data ) :

global pro jMatr l

global Dl

global Kl

pro jMatr l = data .P

Dl = np . ar ray ( [ data .D[ 0 ] , data .D[ 1 ] , data .D[ 2 ] , data .D[ 3 ] ,

data .D[ 4 ] ] ) ∗ 0 . 1

Kl = np . ar ray ( [ [ data .K[ 0 ] , data .K[ 1 ] , data .K[ 2 ] ] ,

[ data .K[ 3 ] , data .K[ 4 ] , data .K[ 5 ] ] ,

[ data .K[ 6 ] , data .K[ 7 ] , data .K [ 8 ] ] ] )

def ca l lbackcamr ( data ) :

global projMatrr

global Dr

global Kr

projMatrr = data .P

Dr = np . ar ray ( [ data .D[ 0 ] , data .D[ 1 ] , data .D[ 2 ] , data .D[ 3 ] ,

data .D[ 4 ] ] ) ∗ 0 . 1

Kr = np . ar ray ( [ [ data .K[ 0 ] , data .K[ 1 ] , data .K[ 2 ] ] ,

[ data .K[ 3 ] , data .K[ 4 ] , data .K[ 5 ] ] ,

[ data .K[ 6 ] , data .K[ 7 ] , data .K [ 8 ] ] ] )

def c a l l b a c k p i x e l ( data ) :

global pixel_cmdl

pixel_cmdl = np . ar ray ( [ data . x , data . y , data . z ] , dtype=np . int )

def pro s s ( imagerw ,K,D, cx , cy , r ) :

h , w = imagerw . shape [ : 2 ]

newcameramtx , r o i=

cv2 . getOptimalNewCameraMatrix(K,D, (w, h ) , 1 , (w, h ) )

image = cv2 . und i s t o r t ( imagerw , K, D, None , newcameramtx)

mask = 255∗np . ones ( (376 ,672 ) , np . u int8 )

i f cx !=0 and cy !=0:

mask = 0∗mask

mask = cv2 . c i r c l e (mask , ( cx , cy ) , r , ( 255 ,255 ,255 ) , −1)

image [ : , : , 0 ] [ mask == 0 ] = 0
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image [ : , : , 1 ] [ mask == 0 ] = 0

image [ : , : , 2 ] [ mask == 0 ] = 0

graym , c l o s i n g = seg ( image )

# get o b j e c t s

im2 , contours , h i e r a r chy = cv2 . f indContours ( c l o s i n g , 1 , 2)

#s or t by area

contours = sorted ( contours , key=cv2 . contourArea , r e v e r s e=True )

po in t s = np . empty ( ( 0 , 7 ) )

for contour in contours :

area = cv2 . contourArea ( contour )

i f area > AREA_FLAG:

M = cv2 . moments( contour )

cX = int (M[ "m10" ] / M[ "m00" ] )

cY = int (M[ "m01" ] / M[ "m00" ] )

x , y ,w, h = cv2 . boundingRect ( contour )

po in t s = np . append ( po ints , [ np . a r ray ( [ cX , cY , x , y , h ,w, area ] ) ] ,

a x i s=0)

return image , c l o s i n g , po ints , mask

def cos_sim (a , b ) :

" " " Takes 2 v e c t o r s a , b and re tu rns the s i m i l a r i t y according

to the d e f i n i t i o n o f the dot product

" " "

c = np . subt ra c t ( a , b )

return np . l i n a l g . norm( c )

def geo ( a ) :

b = np . ar ray ( a )

return b . prod ( ) ∗ ∗ ( 1 . 0 / len (b ) )

def seg ( image ) :

global segp1t

global segp2t

# div i d e image

b , g , r = cv2 . s p l i t ( image )

#gray image

gray = cv2 . cvtCo lor ( image , cv2 .COLOR_BGR2GRAY)

#Ohta c o l o r espace

I2 = cv2 . subt ra c t ( r , b)/2

I 2 l = cv2 . subt r a c t ( r , b )
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I 1 l = cv2 . subt r a c t ( r , g )

#noise removing

#I2 [ I2 < 25] = 0

#I 2 l [ I 2 l < 50] = 0

#Adapt ive Threshold Otsu

I 1 l = cv2 . GaussianBlur ( I1 l , ( 5 , 5 ) , 0 )

segp1 , th1tmp = cv2 . th r e sho ld ( I1 l , 5 0 , 255 , cv2 .THRESH_BINARY+

cv2 .THRESH_OTSU)

I 2 l = cv2 . GaussianBlur ( I2 l , ( 5 , 5 ) , 0 )

segp2 , th2tmp = cv2 . th r e sho ld ( I2 l , 5 0 , 255 , cv2 .THRESH_BINARY+

cv2 .THRESH_OTSU)

segp1t . pop (0 )

segp1t . append ( segp1 )

segp2t . pop (0 )

segp2t . append ( segp2 )

nth1= np .maximum(35 , geo ( segp1t ) )

nth2= np .maximum(35 , geo ( segp2t ) )

_, th1 = cv2 . th r e sho ld ( I1 l , nth1 ,255 , cv2 .THRESH_BINARY)

_, th2 = cv2 . th r e sho ld ( I2 l , nth2 ,255 , cv2 .THRESH_BINARY)

th2 [ th2 > th1 ] = 0

_, contours ,_ = cv2 . f indContours ( th2 , 1 , 2)

i f len ( contours)== 1 :

th2tmp [ th2tmp > th1 ] = 0

th2 = th2tmp . copy ( )

#Improve images

ke rne l = np . ones ( ( 5 , 5 ) , np . u int8 )

# c l o s i n g = g r ay l . copy ( )

for i in range ( 1 , 5 ) :

th2 = cv2 . morphologyEx ( th2 , cv2 .MORPH_CLOSE, ke rne l ) #abetura

th2 = cv2 . morphologyEx ( th2 , cv2 .MORPH_OPEN, ke rne l ) #fechamento

#image mask

gray [ th2 != 255 ] = 0
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return gray , th2

def main ( ) :

rospy . init_node ( ’ segdeep ’ , anonymous=True ) #node name

rospy . Subsc r ibe r ( ’ /camera/ l e f t /image_raw ’ , Image ,

ca l lback_iml )

rospy . Subsc r ibe r ( ’ /camera/ r i g h t /image_raw ’ , Image , ca l lback_imr )

rospy . Subsc r ibe r ( " /camera/ l e f t / camera_info " , CameraInfo ,

ca l lbackcaml )

rospy . Subsc r ibe r ( " /camera/ r i g h t / camera_info " , CameraInfo ,

ca l lbackcamr )

rospy . Subsc r ibe r ( " /camera/cmd/ p i x e l " , Point , c a l l b a c kp i x e l )

rospy . Subsc r ibe r ( " /camera/homography " , point_array , callbackhom )

chng_flag_pub = rospy . Pub l i she r ( ’ /camera/cmd/homography ’ , Bool ,

queue_size=10)

img_params_pub = rospy . Pub l i she r ( ’ /camera/image_params ’ ,

point_array , queue_size=10)

img_pixels_publ = rospy . Pub l i she r ( ’ /camera/ l e f t / p i x e l s ’ ,

pixel_params , queue_size=10)

img_pixels_pubr = rospy . Pub l i she r ( ’ /camera/ r i g h t / p i x e l s ’ ,

pixel_params , queue_size=10)

#pixel_cmdl = np . z e ros ( ( 3 , 1 ) ) . copy ( )

r a te = rospy . Rate (30)

rospy . s l e ep (1 )

#camera Matrices

Pl = np . ar ray ( [ [ pro jMatr l [ 0 ] , pro jMatr l [ 1 ] , pro jMatr l [ 2 ] ,

pro jMatr l [ 3 ] ] ,

[ pro jMatr l [ 4 ] , pro jMatr l [ 5 ] , pro jMatr l [ 6 ] , pro jMatr l [ 7 ] ] ,

[ pro jMatr l [ 8 ] , pro jMatr l [ 9 ] , pro jMatr l [ 1 0 ] , pro jMatr l [ 1 1 ] ] ] )

Pr = np . ar ray ( [ [ projMatrr [ 0 ] , projMatrr [ 1 ] , projMatrr [ 2 ] ,

projMatrr [ 3 ] ] ,

[ pro jMatrr [ 4 ] , projMatrr [ 5 ] , projMatrr [ 6 ] , projMatrr [ 7 ] ] ,

[ pro jMatrr [ 8 ] , projMatrr [ 9 ] , projMatrr [ 1 0 ] , projMatrr [ 1 1 ] ] ] )

val_a = 10000

while not rospy . is_shutdown ( ) :

try :

try :
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prr =np . ar ray ( [ pxr [ : , 0 ] , pxr [ : , 1 ] ] , dtype=np . int )

p r l =np . ar ray ( [ pxl [ : , 0 ] , pxl [ : , 1 ] ] , dtype=np . int )

except :

pr r =[ ]

p r l =[ ]

i f pixel_cmdl [ 0 ] != 0 and pixel_cmdl [ 1 ] != 0 :

#get r i g h t po in t l e f t camera

px_cmd_candl = np . ar ray ( [ pixel_cmdl [ 0 ] , pixel_cmdl [ 1 ] ] )

p r l=np . t r anspo s e ( p r l )

a l=val_a

pc l = np . ar ray ( [ 0 , 0 , 0 ] , dtype=np . int )

for px_l in p r l :

c =cos_sim (px_cmd_candl , px_l )

i f c < a l :

pc l = px_l

a l =c

print ( a l , ’ l e f t ’ )

print ( pcl , ’ l e f t ’ )

print ( pixel_cmdl , ’ l e f t ’ )

i f a l < val_a :

px_cmd_candr = np . dot (np . l i n a l g . inv (H) , [ pc l [ 0 ] , pc l [ 1 ] ,

pc l [ 1 ] / pc l [ 1 ] ] )

px_cmd_candr = np . ar ray ( [ px_cmd_candr [ 0 ] / px_cmd_candr [ 2 ] ,

px_cmd_candr [ 1 ] / px_cmd_candr [ 2 ] ] , dtype=np . int )

#get r i g h t po in t r i g h t camera

prr=np . t r anspo s e ( pr r )

a=10∗( a l+4)

pcr = np . ar ray ( [ 0 , 0 , 0 ] , dtype=np . int )

for px_r in prr :

c =cos_sim (px_cmd_candr , px_r )

i f c < a :

pcr = px_r

a =c

print (a , ’ r i g h t ’ )

print ( pcr , ’ r i g h t ’ )

i f pcr [ 0 ] == 0 and pcr [ 1 ] == 0 :

chng_flag . data = True

else :

chng_flag . data = False

chng_flag_pub . pub l i sh ( chng_flag )
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else :

pcr = np . ar ray ( [ 0 , 0 , 0 ] )

pc l = np . ar ray ( [ 0 , 0 , 0 ] )

else :

pcr = np . ar ray ( [ 0 , 0 , 0 ] )

pc l = np . ar ray ( [ 0 , 0 , 0 ] )

iml , c l o s i n g l , pxl , ml = pro s s ( i l , Kl , Dl , pc l [ 0 ] , pc l [ 1 ] ,

pixel_cmdl [ 2 ] )

imr , c l o s i n g r , pxr ,mr = pro s s ( i r , Kr , Dr , pcr [ 0 ] , pcr [ 1 ] ,

np . int ( pixel_cmdl [ 2 ] ∗ 1 . 1 ) )

except :

iml , c l o s i n g l , pxl , ml = pro s s ( i l , Kl , Dl , 0 , 0 , 0 )

imr , c l o s i n g r , pxr ,mr = pro s s ( i r , Kr ,

Dr , 0 , 0 , 0 )

#more than one point , need to be organized

i f ( len ( pxl [ : , 0 ] ) >1 ) and ( len ( pxr [ : , 0 ] ) > 1 ) :

px_candr = np . dot (np . l i n a l g . inv (H) , [ pxl [ : , 0 ] ,

pxl [ : , 1 ] , pxl [ : , 1 ] / pxl [ : , 1 ] ] )

px_candr = np . ar ray ( [ px_candr [ 0 , : ] / px_candr [ 2 , : ] ,

px_candr [ 1 , : ] / px_candr [ 2 , : ] ] , dtype=np . int )

px_candr=np . t r anspo s e ( px_candr )

#Organize po in t s

pr =np . ar ray ( [ pxr [ : , 0 ] , pxr [ : , 1 ] ] )

pr=np . t r anspo s e ( pr )

pr_ord = np . empty ( ( 0 , 2 ) )

for px_c in px_candr :

a=500

#pc = [ ] ;

for px_r in pr :

c =cos_sim (px_c , px_r )

i f c < a :

pc =

px_r

a =c

pr_ord = np . append ( pr_ord , [ np . a r ray ( [ pc [ 0 ] , pc [ 1 ] ] ) ] , a x i s=0)

pr_ord = np . t r anspo s e ( pr_ord )

p l =np . ar ray ( [ pxl [ : , 0 ] , pxl [ : , 1 ] ] )

#Triangu la t ion with Homography po in t s .

X = cv2 . t r i a ngu l a t ePo in t s ( Pl , Pr , pl , pr_ord )

img_params .X = X[ 0 , : ]
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img_params .Y = X[ 1 , : ]

img_params . Z = X[ 2 , : ]

img_params_pub . pub l i sh ( img_params)

e l i f ( len ( pxl [ : , 0 ] )==0) or ( len ( pxr [ : , 0 ] )==0 ) :

img_params_pub . pub l i sh ( )

else :

ppl =np . ar ray ( [ pxl [ 0 , 0 ] , pxl [ 0 , 1 ] ] )

ppr =np . ar ray ( [ pxr [ 0 , 0 ] , pxr [ 0 , 1 ] ] )

X = cv2 . t r i a ngu l a t ePo in t s ( Pl , Pr , ppl , ppr )

X = np . ar ray ( [X[ 0 , : ] /X[ 3 , : ] ,X[ 1 , : ] /X[ 3 , : ] ,X[ 2 , : ] /X [ 3 , : ] ] ) ;

img_params .X = X[ 0 , : ]

img_params .Y = X[ 1 , : ]

img_params . Z = X[ 2 , : ]

img_params_pub . pub l i sh ( img_params)

p i x l . cx = pxl [ : , 0 ] ;

p i x l . cy = pxl [ : , 1 ] ;

p i x l . x = pxl [ : , 2 ] ;

p i x l . y = pxl [ : , 3 ] ;

p i x l . h = pxl [ : , 4 ] ;

p i x l .w = pxl [ : , 5 ] ;

p i x l . area = pxl [ : , 6 ] ;

p ix r . cx = pxr [ : , 0 ] ;

p ix r . cy = pxr [ : , 1 ] ;

p ix r . x = pxr [ : , 2 ] ;

p ix r . y = pxr [ : , 3 ] ;

p ix r . h = pxr [ : , 4 ] ;

p ix r .w = pxr [ : , 5 ] ;

p ix r . area = pxr [ : , 6 ] ;

img_pixels_publ . pub l i sh ( p i x l )

img_pixels_pubr . pub l i sh ( p ix r )

cv2 . imshow( ’ c l o s i n g l ’ , c l o s i n g l )

cv2 . imshow( ’ c l o s i n g r ’ , c l o s i n g r )

cv2 . imshow( ’ iml ’ , iml )

cv2 . imshow( ’ imr ’ , imr )

cv2 . waitKey (3 )
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r a te . s l e e p ( )

i f __name__ == ’__main__ ’ :

main ( )

Listing A.4: Homography Script File

#!/ usr / b in /env python

# −∗− coding : u t f −8 −∗−

from pyimagesearch . panorama import S t i t c h e r

import cv2 , math , copy , rospy

from img_pros . msg import point_array , pixel_params

from sensor_msgs .msg import Image , CameraInfo

from cv_bridge import CvBridge , CvBridgeError

from std_msgs .msg import Bool

import numpy as np

import imu t i l s

br idge = CvBridge ( )

img_homo = point_array ( )

s t i t c h e r = St i t c h e r ( )

iml_las t = Image ( )

def c a l l b a ckboo l (msg ) :

global chng_flag

chng_flag = msg . data

print ( chng_flag )

def ca l lback_iml (msg ) :

global br idge

global i l

try :

# Convert your ROS Image message to OpenCV2

i l = br idge . imgmsg_to_cv2(msg , " bgr8 " )

except CvBridgeError , e :

print ( e )

def ca l lback_imr (msg ) :

global br idge

global i r

try :
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# Convert your ROS Image message to OpenCV2

i r = br idge . imgmsg_to_cv2(msg , " bgr8 " )

except CvBridgeError , e :

print ( e )

def ca l lbackcaml ( data ) :

global pro jMatr l

global Dl

global Kl

pro jMatr l = data .P

Dl = np . ar ray ( [ data .D[ 0 ] , data .D[ 1 ] , data .D[ 2 ] ,

data .D[ 3 ] , data .D[ 4 ] ] ) ∗ 0 . 1

Kl = np . ar ray ( [ [ data .K[ 0 ] , data .K[ 1 ] , data .K[ 2 ] ] ,

[ data .K[ 3 ] , data .K[ 4 ] , data .K[ 5 ] ] ,

[ data .K[ 6 ] , data .K[ 7 ] , data .K [ 8 ] ] ] )

def ca l lbackcamr ( data ) :

global projMatrr

global Dr

global Kr

projMatrr = data .P

Dr = np . ar ray ( [ data .D[ 0 ] , data .D[ 1 ] , data .D[ 2 ] ,

data .D[ 3 ] , data .D[ 4 ] ] ) ∗ 0 . 1

Kr = np . ar ray ( [ [ data .K[ 0 ] , data .K[ 1 ] , data .K[ 2 ] ] ,

[ data .K[ 3 ] , data .K[ 4 ] , data .K[ 5 ] ] ,

[ data .K[ 6 ] , data .K[ 7 ] , data .K [ 8 ] ] ] )

def und i s t o r t ( imagerw ,K, D) :

h , w = imagerw . shape [ : 2 ]

newcameramtx , r o i=

cv2 . getOptimalNewCameraMatrix(K,D, (w, h ) , 1 , (w, h ) )

image = cv2 . und i s t o r t ( imagerw , K, D, None , newcameramtx)

return imu t i l s . r e s i z e ( image , width=672)

def mse( imageA , imageB ) :

# the ’Mean Squared Error ’ between the two images i s the

# sum of the squared d i f f e r e n c e between the two images ;

# NOTE: the two images must have the same dimension

e r r = np .sum( ( imageA . astype ( " f l o a t " ) −
imageB . astype ( " f l o a t " ) ) ∗∗ 2)

e r r /= f loat ( imageA . shape [ 0 ] ∗ imageA . shape [ 1 ] )
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# return the MSE, the lower the error , the more " s im i l a r "

# the two images are

return e r r

def main ( ) :

rospy . init_node ( ’ segdeep ’ , anonymous=True ) #node name

rospy . Subsc r ibe r ( ’ /camera/ l e f t /image_raw ’ , Image , ca l lback_iml )

rospy . Subsc r ibe r ( ’ /camera/ r i g h t /image_raw ’ , Image , ca l lback_imr )

rospy . Subsc r ibe r ( " /camera/ l e f t / camera_info " , CameraInfo ,

ca l lbackcaml )

rospy . Subsc r ibe r ( " /camera/ r i g h t / camera_info " , CameraInfo ,

ca l lbackcamr )

img_homo_pub = rospy . Pub l i she r ( ’ /camera/homography ’ , point_array ,

queue_size=10)

rospy . Subsc r ibe r ( " /camera/cmd/homography " , Bool , c a l l b a ckboo l )

iml_las t = 255∗np . ones ( (376 ,672 ,3 ) , np . u int8 )

r a te = rospy . Rate (30)

rospy . s l e ep (1 )

while not rospy . is_shutdown ( ) :

iml = und i s t o r t ( i l , Kl , Dl )

imr = und i s t o r t ( i r , Kr , Dr)

#Homography i s c a l c u l a t e d every movement

s = mse ( i l , iml_las t )

try :

i f s > 700 or chng_flag :

zed ,H = s t i t c h e r . s t i t c h ( [ iml , imr ] , Movement=True )

iml_las t = i l . copy ( )

print ( ’ e r r o r ’ , s )

else :

zed ,H = s t i t c h e r . s t i t c h ( [ iml , imr ] , Movement=False )

img_homo .X = np . ar ray ( [H[ 0 , 0 ] ,H[ 0 , 1 ] ,H[ 0 , 2 ] ,H[ 1 , 0 ] ,

H[ 1 , 1 ] ,H[ 1 , 2 ] ,H[ 2 , 0 ] ,H[ 2 , 1 ] ,H[ 2 , 2 ] ] )

img_homo_pub . pub l i sh ( img_homo)

cv2 . imshow( ’ zed ’ , zed )

cv2 . waitKey (3 )

except :

print ( ’NO␣Homography ’ )
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r a te . s l e e p ( )

i f __name__ == ’__main__ ’ :

main ( )

Listing A.5: Mitsubishi Script File

#!/ usr / b in /env python

# −∗− coding : u t f −8 −∗−

import rospy , s e r i a l , a t e x i t

import numpy as np

from sensor_msgs .msg import Jo in tSta te

from geometry_msgs .msg import Point , Twist

from std_msgs .msg import Header

global s e r

global jp

global jp_la s t

global Xbe

global Xbe_last

jp = [ np . f loat ( 0 ) , np . f loat ( 0 ) , np . f loat (120 ) ,

np . f loat (−15) ,np . f loat ( 0 ) ]

jp_la s t = [ np . f loat ( 0 ) , np . f loat (−60) ,

np . f loat (120 ) , np . f loat ( 0 ) , np . f loat ( 0 ) ]

Xbe = Twist ( )

Xbe_last = Xbe

def ca l lba ck_Jo in tSta te (msg ) :

global jp

jp = msg . po s i t i o n

def ca l lback_pose (msg ) :

global Xbe

Xbe = msg

def ex i t_handler ( ) :

print ’My␣ app l i c a t i o n ␣ i s ␣ ending ! ’

def config_com( port=’ /dev/ttyUSB0 ’ ) :

s e r = s e r i a l . S e r i a l ( )

s e r . port = port

s e r . baudrate = 9600
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s e r . s t o pb i t s = s e r i a l .STOPBITS_TWO

se r . pa r i ty = s e r i a l .PARITY_EVEN

se r . timeout = 0 .2

return s e r

def open_cont ( s e r ) :

s e r . wr i t e ( ’ 1 ; 1 ;NEW’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;LOAD=1 ’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;PRTVERLISTL’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;PRTVEREMDAT’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;CNTLON’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;SRVON’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;OVRD=40 ’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . r e se t_input_buf fe r ( )

s e r . r e se t_output_buf fe r ( )

rospy . s l e ep (1 )

def close_com( s e r ) :

print ( ’ c l o s i n g ␣com ’ )

s e r . wr i t e ( ’ 1 ; 1 ;SRVOFF’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;CNTLOFF’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . c l o s e ( )

def joint_pos_cmd ( jp , j o in t_s ta te s , jo int_states_pub , s e r ) :

global jp_la s t

i f len ( jp ) == 5 :

s e r . r e se t_output_buf fe r ( )

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA



Appendix A. ROS Script Files 135

pos_cmd = ’ 1 ; 9 ;EXECJCOSIROP␣=␣ ( ’+’%.3 f ’ % jp [0 ]+ ’ , ␣ ’+

’%.3 f ’ % jp [1 ]+ ’ , ␣ ’+’%.3 f ’ % jp [2 ]+ ’ , ␣ 0 . 000 , ␣ ’+

’%.3 f ’ % jp [3 ]+ ’ , ␣ ’+’%.3 f ’ % jp [4 ]+ ’ ) ’

#pr in t (pos_cmd )

print ( ’ wr i t ing ’ ,pos_cmd)

s e r . wr i t e (pos_cmd)

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

rospy . s l e ep ( 0 . 1 )

s e r . wr i t e ( ’ 1 ; 9 ;EXECMOV␣JCOSIROP ’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

j o i n t_s t a t e s . p o s i t i o n = [ jp [ 0 ] , jp [ 1 ] , jp [ 2 ] , jp [ 3 ] , jp [ 4 ] ]

j o i n t_s t a t e s . header . stamp = rospy . Time . now ( )

jo int_states_pub . pub l i sh ( j o i n t_s t a t e s )

else :

print ( ’ wrong␣cmd␣dimension ’ , len ( jp ) )

jp_la s t = jp

def pose_cmd(Xbe , s e r ) :

global Xbe_last

s e r . r e se t_output_buf fe r ( )

Xbe . l i n e a r . x

pose_cmd = ’ 1 ; 9 ;EMDATP1=( ’+’%.2 f ’ % Xbe . l i n e a r . x+’ ,

␣ ’+’%.2 f ’ % Xbe . l i n e a r . y+’ , ␣ ’+’%.2 f ’ % Xbe . l i n e a r . z+’ ,

␣ ’+’%.2 f ’ % Xbe . angular . x+’ , ␣ ’+’%.2 f ’ % Xbe . angular . y+

’ , ␣ 0 . 0 0 ) ( 6 , 0 ) ’

print ( ’ w r i t t i n g ’ , pose_cmd)

s e r . wr i t e (pose_cmd)

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

rospy . s l e ep ( 0 . 8 )

s e r . wr i t e ( ’ 1 ; 9 ;EXECMOV␣P1 ’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

Xbe_last = Xbe

def joint_read_pub ( jo int_states_pub , jo in t_s ta te s , s e r ) :

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ; JPOSF ’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

#pr in t ( ’ reading ’)
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data = ’ ’

d = ’ a ’

while data . count ( ’ ; ; ’ ) < 1 and d != ’ ’ : #16

d = s e r . read (1 )

i f ’K ’ in d or ’K ’ in data :

data = data+d

e l i f ’R ’ in data :

print ( data , " d " ,d )

i f ’K ’ in data :

data = data . s p l i t ( " ; " )

j o i n t_s t a t e s . p o s i t i o n = [ np . f loat ( data [ 1 ] ) , np . f loat ( data [ 3 ] ) ,

np . f loat ( data [ 5 ] ) , np . f loat ( data [ 9 ] ) , np . f loat ( data [ 1 1 ] ) ]

j o i n t_s t a t e s . header . stamp = rospy . Time . now ( )

jo int_states_pub . pub l i sh ( j o i n t_s t a t e s )

#return j o i n t _ s t a t e s . po s i t i on

def pose_read_pub (pose_pub , pose_state , s e r ) :

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

s e r . wr i t e ( ’ 1 ; 1 ;PPOSF ’ )

s e r . wr i t e ( ’ \ r ’ . encode ( ) )

#pr in t ( ’ reading ’)

data = ’ ’

d = ’ a ’

while data . count ( ’ ; ; ’ ) < 1 and d != ’ ’ : #16

d = s e r . read (1 )

i f ’K ’ in d or ’K ’ in data :

data = data+d

e l i f ’R ’ in data :

print ( data , " d " ,d )

i f ’K ’ in data :

data = data . s p l i t ( " ; " )

pose_state . l i n e a r . x = np . f loat ( data [ 1 ] )

pose_state . l i n e a r . y = np . f loat ( data [ 3 ] )

pose_state . l i n e a r . z = np . f loat ( data [ 5 ] )

pose_state . angular . x = np . f loat ( data [ 7 ] )

pose_state . angular . y = np . f loat ( data [ 9 ] )

pose_pub . pub l i sh ( pose_state )
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#return j o i n t _ s t a t e s . po s i t i on

def main ( ) :

rospy . init_node ( ’ j o i n t_s t a t e s ’ , anonymous=True ) #node name

jo int_states_pub = rospy . Pub l i she r ( ’ /mit/ j o i n t_s t a t e s ’ ,

Jo intState , queue_size=10)

pose_pub = rospy . Pub l i she r ( ’ /mit /pose ’ , Twist , queue_size=10)

j o i n t_s t a t e s = Jo in tSta te ( )

j o i n t_s t a t e s . name = [ ’ j o i n t 0 ’ , ’ j o i n t 1 ’ , ’ j o i n t 2 ’ , ’ j o i n t 3 ’ ,

’ j o i n t 4 ’ ]

j o i n t_s t a t e s . header = Header ( )

j o i n t_s t a t e s . e f f o r t = [ ]

pose_state = Twist ( )

#open s e r i a l comunication

s e r = config_com( ’ /dev/ttyUSB0 ’ )

s e r .open ( )

open_cont ( s e r )

joint_read_pub ( jo int_states_pub , jo in t_s ta te s , s e r )

rospy . Subsc r ibe r ( ’ /mit /cmd/ j o i n t_s t a t e s ’ , Jo intState ,

ca l l ba ck_Jo in tSta te )

rospy . Subsc r ibe r ( ’ /mit /cmd/pose ’ , Twist , ca l lback_pose )

r a te = rospy . Rate (5 ) #Hz

while not rospy . is_shutdown ( ) :

i f jp != jp_la s t :

joint_pos_cmd ( jp , j o in t_s ta te s , jo int_states_pub , s e r )

e l i f Xbe != Xbe_last :

pose_cmd(Xbe , s e r )

else :

joint_read_pub ( jo int_states_pub , jo in t_s ta te s , s e r )

pose_read_pub ( pose_pub , pose_state , s e r )

r a te . s l e e p ( )

s e r . r e se t_input_buf fe r ( )

s e r . r e se t_output_buf fe r ( )

i f __name__ == ’__main__ ’ :

main ( )
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