

José Eduardo Vasconcellos Amarante

Caracterização das Propriedades Mecânicas de Zircônias Policristalinas Tetragonais Estabilizadas com Ítria

Tese Doutorado

Tese apresentada ao Programa de Pós-graduação em Ciências dos Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio como requisito parcial para obtenção do grau de Doutor em Engenharia de Materiais e de Processos Químicos e Metalúrgicos.

Orientador: Prof. Marcos Venicius Soares Pereira Co-orientadora: Profa Grace Mendonça de Souza

Rio de Janeiro Dezembro de 2017

JOSÉ EDUARDO VASCONCELLOS AMARANTE

Caracterização das Propriedades Mecânicas de Zircônias Policristalinas Tetragonais Estabilizadas com Ítria

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marcos Venicius Soares Pereira

Orientador Departamento de Engenharia Química e de Materiais – PUC Rio

Profa. Grace Mendonça Dias de Souza

Co-Orientador U.TORONT

Prof. Fathi Aref Ibrahim Darwish Universidade Federal Fluminense - UFF

Prof. Claudinei dos Santos Universidade Estadual do Rio de Janeiro - UERJ

> Prof. Carlos Nelson Elias Instituto Militar de Engenharia - IME

Prof. Luiz Carlos Pereira Universidade Federal do Rio de Janeiro - UFRJ

Prof. Marcio da Silveira Carvalho

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC- Rio

Rio de Janeiro, 20 de dezembro de 2017

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da Universidade, do autor e do orientador.

José Eduardo Vasconcellos Amarante

Graduado em Odontologia pela Faculdade de Odontologia de Nova Friburgo, mestrado em Clínica Odontológica pela Universidade Federal Fluminense, mestrado em Engenharia de Materiais e de Processos Químicos e Metalúrgicos pela Pontifícia Universidade Católica do Rio de Janeiro. Atualmente, professor da Universidade Federal Fluminense da Faculdade de Odontologia do Campus Universitário de Nova Friburgo. Doutorando em Engenharia de Materiais e de Processos Químicos e Metalúrgicos pela Pontifícia Universidade Católica do Rio de Janeiro.

Ficha Catalográfica

Amarante, José Eduardo Vasconcellos

Caracterização das propriedades mecânicas de Zircônias Policristalinas Tetragonais estabilizadas com Ítria / José Eduardo Vasconcellos Amarante ; orientador: Marcos Venicius Soares Pereira ; co-orientadora: Grace Mendonça de Souza. – 2017.

182 f. : il. color. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Química e de Materiais, 2017. Inclui bibliografia

1. Engenharia de Materiais – Teses. 2. Engenharia Química – Teses. 3. Zircônia. 4. Cerâmicas dentárias. 5. Degradação hidrotérmica. 6. Degradação a baixa temperatura. 7. Y2O3. I. Pereira, Marcos Venicius Soares. II. Souza, Grace Mendonça de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Química e de Materiais. IV. Título.

CCD: 620.11

Agradecimentos

Aos meus filhos e minha família, sempre.

A Pontifícia Universidade Católica do Rio de Janeiro (PUCrio), a Universidade de Toroto (UofT), ao Centro Brasileiro de Pesquisas Físicas (CBPF), ao Instituto Militar de Engenharia (IME), a Escola de Engenharia de Lorena (EEL-USP) e a Universidade Estadual do Rio de Janeiro (UERJ-Volta Redonda) pela oportunidade dos estudos, pelo apoio e utilização das suas instalações.

A minha co-orientadora professora Grace Mendonça de Souza, por todo suporte fornecido no Canadá.

Ao professor Claudinei dos Santos pela ajuda, amizade, orientação e conhecimentos passados para realização deste trabalho.

Ao meu orientador professor Marcos Venícius Soares Pereira.

A Patricia Hanna pelo companheirismo e também a Renally Wanderley, Luciano Costa, Júlio Spadotto, Manuel Alves, Bruno Simba, Roberto Marques Cavalcanti, Beshr Hamid, Talita Gama, Cilene Labre, Isabela Martins, Felipe Campos e todos os amigos do PDSE e da PUC pelo incentivo, ajuda e amizade.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

A Universidade de Toronto, principalmente a Faculdade de Odontologia, pela oportunidade concedida do Doutorado Sanduíche

A todas as pessoas que direta ou indiretamente estiveram ao meu lado em algum momento desta importante etapa da minha vida.

Amarante, José Eduardo Vasconcellos; Pereira, Marcos Venicius Soares. **Caracterização das Propriedades Mecânicas de Zircônias Policristalinas Tetragonais Estabilizadas com Ítria**, Rio de Janeiro, 2017. 182p. Tese de Doutorado - Departamento Engenharia de Materiais e de Processos Químicos e Metalúrgicos. Pontifícia Universidade Católica do Rio de Janeiro.

Materiais à base de zircônia apresentam excelentes propriedades mecânicas, estabilidade química e dimensional, tenacidade, juntamente com um módulo de Young na mesma ordem de grandeza de ligas de aço inoxidável. Devido à essas características, a zircônia tem sido utilizada em uma ampla gama de aplicações, incluindo a fabricação de peças protéticas. As modificações na composição da zircônia e o desenvolvimento do CAD-CAM (computer assisted design) fizeram com que as próteses à base de zircônia se tornassem um procedimento clinico frequentemente realizado na atual Odontologia restauradora. Blocos présinterizados de zircônia, fabricados industrialmente, homogêneos e com falhas mínimas são usinados em um ambiente industrial controlado para receberem a forma desejada. Após a usinagem, as peças em zircônia são sinterizadas para promover sua densificação final. Este processo reduz os possíveis defeitos criados por etapas laboratoriais manuais e intermediárias na confecção de restaurações dentárias. O objetivo deste estudo foi avaliar o efeito da degradação hidrotérmica e do jateamento com óxido de alumínio nas propriedades mecânicas de três tipos de zircônia tetragonal policristalina estabilizada por ítria (ZTPI). Três tipos de zircônias contendo diferentes concentrações de ítria e grau de translucidez foram utilizadas: ZTPI com 5,2% mol (Prettau Anterior Super-Translúcida da Zirkonzahn), ZTPI com 3% mol de Y₂O₃ (VIPI Block Zirconn) e ZTPI com 3% mol de Y₂O₃ com translucidez melhorada (VIPI Block Zirconn Translucent). Todas indicadas para uso em próteses odontológicas monolíticas. 15 corpos de prova de cada zircônia testada foram sinterizados e divididos em três grupos de acordo com o tratamento de superfície e processo de degradação. No Grupo I as zircônias sofreram jateamento com óxido de alumino. No grupo II as zircônias foram lixadas e polidas. No grupo III as zircônias foram lixadas, polidas, recuperadas e degradadas em reator hidrotérmico por 5 horas a 134ºC e 2 bar. Para a caracterização microestrutural foram realizados ensaios de difração de raios-X,

espectrometria Raman, densidade relativa, microdureza Vickers, rugosidade superficial e análise de tamanho médio de grão por MEV. Os resultados mostraram que a densidade de todos os grupos ficou acima de 99% e que a degradação promoveu a transformação de fase monoclínica e afetou os valores de resistência à flexão. No entanto, a indicação clínica das cerâmicas não foi alterada. O tamanho médio de grão ficou entre 0,367 e 0,621 µm. A dureza e tenacidade à fratura do material não sofreram alterações em função do teor de ítria ou das fases cristalinas presentes. A degradação não afetou de forma significativa os valores de rugosidade, porém, o jateamento com óxido de alumínio não só afetou os valores de flexão como alterou a indicação clínica de cerâmicas utilizadas neste trabalho.

Palavras-chave

Zircônia; Cerâmicas dentárias; Degradação hidrotérmica; Degradação a baixa temperature; Y₂O₃

Amarante, José Eduardo Vasconcellos; Pereira, Marcos Venicius Soares. Characterization of the mechanical properties of Yttria-Stabilized Tetragonal Zirconia Polycrystals, Rio de Janeiro, 2017. 182p. Tese de Doutorado - Departamento Engenharia de Materiais e de Processos Químicos e Metalúrgicos. Pontifícia Universidade Católica do Rio de Janeiro.

Zirconia-based materials present excellent mechanical properties, tenacity, chemical, and dimensional stability as well as their Young modulus is similar to stainless steel alloys. Due to these characteristics, zirconia has been largely applied in the fabrication of dental prostheses. Modifications in the zirconia composition and the development of CAD-CAM systems has allowed zirconia-based restorations to become a common clinical procedure in current dentistry. Fully sintered and homogeneous blocks from industry are machined at controlled environments seeking to obtain the desired geometry of the restorations. After the machining process, the restorations are sintered to improve their density. This process reduces the failures caused by manual and laboratorial manipulations during fabrication procedure. The aim of this study is to evaluate the effect of hydrothermal aging and sandblasting with aluminum oxide on the mechanical properties of three Yttria-containing tetragonal zirconia polycrystalline (Y-TZP). Three types of Y-TZP, containing different yttria dioxide, were used in the study: Y-TZP with 5,2% mol Y₂O₃ (Prettau Anterior Super-Translúcida da Zirkonzahn), Y-TZP with 3%mol de Y₂O₃ (VIPI Block Zirconn) and Y-TZP with 3%mol Y₂O₃ and optimized translucency (VIPI Block Zirconn Translucent). All the zirconias are indicated for being used as monolithic restorations. 15 specimens from each zirconia tested were sintered and distributed to three groups according to the surface treatment and the aging process. In the group I, the specimens were sandblasted with aluminum oxide particles. For the group II, the zirconia specimens were abraded and polished. In the group III, the specimens were abraded, polished, recovered and aged in a reactor controller for 5 hours at 134 °C and 2 bar. The characterization of the zirconia microstructure has been carried out by means of: Xray diffraction, relative density, Raman spectroscopy, Vickers microhardness, superficial roughness. In addition, the average grain size analysis by scanning

electron microscopy were made. The results show that the relative density values were above 99%, and that the hydrothermal aging causes monoclinic phase transformation and affects flexural strength values. However, the clinical indications of materials did not change. The average grain size was between 0.367 and 0.621. The microhardness and tenacity values of materials did not change by yttria concentration or crystallographic phases. The roughness values were not significantly affected by the hydrothermal aging. On the other hand, the flexural strength values were affected by sandblasting process and clinical indication of ceramics tested was changed.

Keywords

Zircônia; Dental ceramics; Hydrothermal aging; Low-temperature degradation; Y_2O_3

Sumário

1. Introdução	
2. Objetivo	23
3 . Revisão bibliográfica	24
3.1. Estrutura cristalina	24
3.1.1. Zircônia Parcialmente Estabilizada	26
3.1.2. Zircônia Tetragonal Policristalina	26
3.1.3. Cerâmica Tenacificada com Zircônia	27
3.2. Estabilização da zircônia	29
3.3. Tenacificação da zircônia	33
3.4. Degradação a Baixa Temperatura (LTD)	37
3.5. Tecnologia CAD-CAM	42
4 . Materiais e métodos	46
4.1. Processamento e obtenção dos corpos de prova	48
4.1.1. Usinagem dos corpos de prova	48
4.1.2. Sinterização dos corpos de prova	48
4.1.3. Jateamento dos corpos de prova	49
4.1.4. Acabamento e polimento dos corpos de prova	50
4.2. Determinação da massa específica e densidade relativa	51
4.3. Módulos elásticos	51
4.4. Degradação hidrotérmica	52
4.5. Caracterização microestrutural	52
4.5.1. Análise por difractometria de raios-X	52

4.5.2. Espectrometria Raman	56
4.5.3. Microscopia	58
4.5.3.1. Processamento digital de imagem	58
4.6. Análise da rugosidade superficial	61
4.7. Propriedades mecânicas	61
4.7.1. Dureza Vickers	61
4.7.2. Resistência mecânica flexural	62
4.8. Análise estatística de Weibull	64
5 . Resultados e discussão	66
5.1. Caracterização das matérias-primas	66
5.1.1. Densidade relativa das zircônias pré-sinterizadas	66
5.1.2. Difração de raios-X	66
5.2 Caracterização anós sinterização	68
5.2.1 Difração de raios X	68
5.2.2. Espectrometria Raman	70
5.2.3. Microscopia eletrônica de varredura (MEV)	75
5.2.4. Análise de imagens – determinação do tamanho médio de grão	77
5.2.5. Densidade relativa e propriedades mecânicas	83
5.2.6. Rugosidade 3D	84
5.2.7. Resistência a flexão e estatística de Weibull	89
5.3. Caracterização após sinterização e subsequente jateamento	95
5.3.1. Difração de raios-X	95
5.3.2. Rugosidade 3D	97

5.3.3. Resistência a flexão e estatística de Weibull	101
5.4. Caracterização após sinterização, polimento, recuperação de fase tetragonal e degradação	109
5.4.1. Difração de raios X	109
5.4.2. Microscopia eletrônica de varredura (MEV)	110
5.4.3. Rugosidade 3D	112
5.4.4. Resistência a flexão e estatística de Weibull	117
6. Conclusões	125
7 . Trabalhos futuros	127
8 . Referências bibliográficas	128
9 . Anexo	138

Lista de Figuras

Figura 1 - Estrutura cristalina cúbica fm3m (a), tetragonal P42/nmc (b) e monoclínica P21/c (c)	24
Figura 2 - Diagrama de fase Pressão X Temperatura para ZrO ₂	25
Figura 3 - Diagrama de fase da zircônia parcialmente estabilizada com ítria	31
Figura 4 - Retenção da fase tetragonal. Tamanho crítico de grão X conteúdo de ítria na zircônia tetragonal	33
Figura 5 - Inibição da propagação de trinca por transformação de fase	34
Figura 6 - Gráfico temperatura X tempo de transformação da zircônia	38
Figura 7 - Detalhamento experimental realizado neste trabalho	47
Figura 8 - Características das partículas de óxido de alumínio comercial utilizado na etapa de jateamento das amostras de zircônia sinterizadas	49
Figura 9 - a) Etapa de jateamento realizada com o equipamento microetcher II e óxido de alumínio da Polidental de partículas de 100 micra por 10 segundos; b) Grupos amostrais jateados; c) Amostra antes do jateamento; d) Após jateamento	50
Figura 10 - Imagem original	59
Figura 11 - Imagem de limiarização no modo Otsu, após o pré- processamento com filtro sigma e correção de contraste	59
Figura 12 - Segmentação watershared após eliminação de algumas espúrias	60
Figura 13 - Análise dos grãos	61
Figura 14 - Esquema de suporte e punção para realização do ensaio de Flexão Biaxial	63
Figura 15 - Difratogramas de raios X da superfície das amostras pré-sinterizadas como recebidas	67
Figura 16 - Difratograma de raios X da superfície da amostra ZrO₂ (3%Y₂O₃) sinterizada e polida Z3OP	68

Figura 17 - Difratograma de raios X da superfície da amostra ZrO ₂ (3%Y ₂ O ₃) sinterizada e polida Z3MT	69
Figura 18 - Difratograma de raios X da superfície da amostra de ZrO ₂ (5%Y ₂ O ₃) sinterizada e polida Z5HT	69
Figura 19 - Espectro Raman da amostra Z3OP	71
Figura 20 - Espectro Raman da amostra Z3MT	71
Figura 21 - Espectro Raman da amostra Z5HT	72
Figura 22 - Espessura da camada monoclínica transformada após degradação hidrotérmica	73
Figura 23 - Espectro Raman característico da fase monoclínica	73
Figura 24 - Espectro Raman característico da fase tetragonal	74
Figura 25 - Espectro Raman característico da fase cúbica	74
Figura 26 - Influência da fase cúbica no background do espectro Raman na zircônia TZP	75
Figura 27 - MEV (Superfície de fratura) das amostras de ZrO ₂ - $3\%Y_2O_3$ (Z3OP)	75
Figura 28 - MEV (Superfície de fratura) das amostras de ZrO ₂ - 3%Y ₂ O ₃ (Z3MT)	76
Figura 29 - MEV (Superfície de fratura) das amostras de ZrO ₂ - 5%Y ₂ O ₃ (Z5HT)	77
Figura 30 - MEV (Superfície polida e atacada) das amostras de ZrO ₂ -3%Y ₂ O ₃ (Z3OP) sinterizadas a 1530 °C – 2 h	78
Figura 31 - MEV (Superfície polida e atacada) das amostras de ZrO ₂ -3%Y ₂ O ₃ (Z3MT) sinterizadas a 1450 °C – 2 h	78
Figura 32 - MEV (Superfície polida e atacada) das amostras de ZrO ₂ -5%Y ₂ O ₃ (Z5HT) sinterizadas a 1450 °C – 2 h	78
Figura 33 - Análise de imagens e quantificação de ZrO ₂ Z3OP	79
Figura 34 - Análise de imagens e quantificação de ZrO ₂ Z3MT	80
Figura 35 - Análise de imagens e quantificação de ZrO ₂ Z5HT	81

Figura 36 - Análise de Variância (Anova) e Tukey do tamanho de grãos das amostras contendo 3% e 5% de itria (Z3OP. Z3MT e Z5HT)	82
Figura 37 - Captura 3D da região utilizada para amostras Z3OP, submetida a lixamento e polimento	86
Figura 38 - Captura 3D da região utilizada para caracterizar amostras Z3MT, submetida a lixamento e polimento	87
Figura 39 - Captura 3D da região utilizada para caracterizar amostras Z5HT, submetida a lixamento e polimento	88
Figura 40 - Distribuição de Weibull e curvas de probabilidade de falhas para zircônias sinterizadas e polidas Z3OP	90
Figura 41 - Distribuição de Weibull e curvas de probabilidade de falhas	91
Figura 42 - Distribuição de Weibull e curvas de probabilidade de falhas para zircônias sinterizada e polida Z5HT	92
Figura 43 - Comparativo da distribuição de Weibull e probabilidade de falha entre os diferentes grupos de zircônias estudadas (amostras polidas)	93
Figura 44 - Difração de Raios X para amostras sinterizadas e posteriormente jateadas	96
Figura 45 - Mapeamento de rugosidade 3D para amostras Z3OP, sinterizadas, polidas e posteriormente jateadas	99
Figura 46 - Mapeamento de rugosidade 3D para amostras Z3MT, sinterizadas, polidas e posteriormente jateadas	100
Figura 47 - Mapeamento de rugosidade 3D para amostras Z5HT, sinterizadas, polidas e posteriormente jateadas	101
Figura 48 - Distribuição de Weibull e curva de probabilidade de falhas para zircônias sinterizadas e jateadas Z3OP	102
Figura 49 - Distribuição de Weibull e curva de probabilidade de falhas para zircônias sinterizadas e jateadas Z3MT	103
Figura 50 - Distribuição de Weibull e curva de probabilidade de falhas para zircônias sinterizadas e jateadas Z5HT	104
Figura 51 - Comparativo da distribuição de Weibull e probabilidade de falha entre os diferentes grupos de zircônias estudadas (amostras jateadas)	105

Figura 52 - Comparativo da distribuição de resistência a fratura média entre os diferentes grupos de zircônias estudadas (amostras polidas e jateadas)	107
Figura 53 - Difratogramas de raios X da superfície das amostras sinterizadas, recuperadas a 1200 °C e degradadas hidrotermicamente por 134 °C – 5h – 2 bar	110
Figura 54 - Micrografias de amostras Z3OP, submetidas a degradação hidrotérmica de 134ºC – 5h – 2 bar	111
Figura 55 - Captura 3D da amostra Z3OP, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar	111
Figura 56 - Micrografias de amostras Z5HT, submetidas a degradação hidrotérmica de 134 °C – 5h – 2 bar	112
Figura 57 - Captura 3D da amostra Z3OP, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar	114
Figura 58 - Captura 3D da amostra Z3MT, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar	115
Figura 59 - Captura 3D da amostra Z5HT, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar	116
Figura 60 - Distribuição de Weibull e curvas de probabilidade de falhas para zircônia sinterizada e degradada Z3OP	118
Figura 61 - Distribuição de Weibull e curvas de probabilidade de falhas	119
Figura 62 - Distribuição de Weibull e curvas de probabilidade de falhas para zircônia sinterizada e degradada Z5HT	120
Figura 63 - Comparativo da distribuição de Weibull e probabilidade de falha entre os diferentes grupos de zircônias estudadas (amostras degradadas)	121
Figura 64 - Comparativo de comportamento das cerâmicas VIPI Block Zirconn e VIPI block Zirconn Translucent	122
Figura 65 - Comparativo de comportamento das cerâmicas utilizadas neste trabalho	124
Figura 66 - Disposição dos corpos de prova dentro dos blocos cerâmicos, criado pelo software de usinagem	138
Figura 67 - Sistema de Fresagem ultracompacto VIPI MINI K4 e o layout de retirada de corpos de prova dentro do bloco de Y-TZP	138

Figura 68 - Politriz Modelo 900 da South Bay Technology	139
Figura 69 - Cuba ultrassônica 1510 - Branson	139
Figura 70 - Reator hidrotérmico	140
Figura 71 - Difratômetro de raios-X	140
Figura 72 - Espectrômetro Raman	141
Figura 73 - New View 7100 Profilometer	141
Figura 74 - Máquina universal de ensaios EMIC	142
Figura 75 - Suporte da amostra com as esferas de aço	142
Figura 76 - Amostra posicionada sobre as esferas de aço	143
Figura 77 - Carga aplicada com um pistão plano de diâmetro de 1,4 mm no centro da amostra	143
Figura 78 - Imagem original da amostra Z5HT	144
Figura 79 - Imagem de limiriarização no modo otsu, após o pré- processamento com filtro sigma e correção de contraste da amostra Z5HT	144
Figura 80 - Segmentação watershared após eliminação de algumas espúrias da amostra Z5HT	145
Figura 81 - Mensuração da unidade da escala da amostra Z5HT	145
Figura 82 - Análise dos grãos da amostra Z5HT	146
Figura 83 - Imagem original da amostra Z3MT	152
Figura 84 - Imagem de limiriarização no modo otsu, após o pré- processamento com filtro sigma e correção de contraste da amostra Z3MT	153
Figura 85 - Segmentação watershared após eliminação de algumas espúrias da amostra Z3MT	150
Figura 86 - Mensuração da unidade da escala da amostra Z3MT	154
Figura 87 - Análise dos grãos da amostra Z3MT	154
Figura 88 - Imagem original da amostra Z3OP	173

Figura 89 - Imagem de limiriarização no modo otsu, após o pré- processamento com filtro sigma e correção de contraste da amostra Z3OP	173
Figura 90 - Segmentação watershared após eliminação de algumas espúrias da amostra Z3OP	174
Figura 91 - Mensuração da unidade da escala da amostra Z3OP	174
Figura 92 - Análise dos grãos da amostra Z3OP	175
Figura 93 - Resultados da difração de Raios X para as superfícies das zircônias com 5% Y ₂ O ₃ – 2h e jateadas	181
Figura 94 - Resultados da difração de Raios X para as superfícies das zircônias com 3% Y ₂ O ₃ – 2h e jateadas	182

Lista de tabelas

Tabela 1 - Terminologia utilizada para descrever sistemas contendo ZrO ₂	26
Tabela 2 - Blocos de zircônias utilizados neste trabalho e seus respectivos grupos experimentais	46
Tabela 3 - Característica dos materiais utilizados neste trabalho (dados dos fabricantes)	48
Tabela 4 - Ciclos de sinterização utilizados neste trabalho	49
Tabela 5 - Padrão de difração da ZrO ₂ Cúbica (DRX)	54
Tabela 6 - Padrão de difração da ZrO ₂ Tetragonais (DRX)	54
Tabela 7 - Padrão de difração da ZrO ₂ monoclínica (DRX)	55
Tabela 8 - Densidade dos blocos pré-sinterizados, como recebido	66
Tabela 9 - Resultados obtidos para amostras de zircônia sinterizadas	83
Tabela 10 - Parâmetros de rugosidade para os 3 grupos de cerâmicas estudadas neste trabalho: amostras sinterizadas e posteriormente polidas	85
Tabela 11 - Parâmetros de rugosidade para os 3 grupos de cerâmicas estudadas neste trabalho: amostras sinterizadas e posteriormente jateadas	97
Tabela 12 - Classificação, resistência flexural e indicação de alguns sistemas cerâmicos dentários	108
Tabela 13 - Resultados da rugosidade 3D das amostras sinterizadas, polidas, posteriormente recuperadas termicamente e degradadas a 134 °C – 5h – 2 bar	113
Tabela 14 - Análise das partículas da amostra Z5HT	146
Tabela 15 - Análise de grãos da amostra Z3MT	155
Tabela 16 - Análise de grãos da amostra Z3OP	175

Lista de Símbolos

Vo	Vacância de oxigênio
ΔK_t	Incremento de tenacificação
E t	Volume de deformação
E	Modulo de Young
Kltip	Intensidade de tensão na ponta da trinca
Klish	Fator de intensidade de proteção da tensão aplicada
Kı	Fator de intensidade de tensão aplicada
Kıc	Tenacidade a fratura
K ₀	Tenacidade da matriz do material
ΔK_{c}	Mecanismos de proteção contra trinca
ΔK_{ct}	Transformação de endurecimento por deformação
Xm	Quantidade de fase monoclínico
Kp	Constante de proporcionalidade
t	Тетро
nc	Expoente cinético
Kv	Constante de velocidade
А	Frequência cinética
Ea	Energia de ativação
R	Constante universal dos gases
Т	Temperatura
σ_{Co}	Fator pré-exponencial da condutividade do material
k	Constante de Boltzmann
ρ	Massa específica
$ ho_{a}$	Massa específica aparente
$ ho_{\circ}$	Massa específica da água
$ ho_L$	Massa específica do ar
Dr	Densidade relativa
F _m	Fração volumétrica
h	Profundidade de penetração
θ	Ângulo de difração
I	Intensidade do feixe de raios X difratados

lo	Intensidade de feixes de raios X incidido
μ	Coeficiente de absorção
С	Velocidade da luz no vácuo
h	Plank
λ	Comprimento de onda
Km	Constante de mola
φ	Frequência de vibração
Hv	Dureza
Р	Carga
σ	Tensão
σ_0	Tensão característica
v	Coeficiente de Poisson
m	Modulo de Weibull

1 Introdução

É de fundamental importância a compreensão das relações de causa e efeito que permitam prever com razoável certeza o comportamento mecânico dos materiais restauradores dentários ao longo do tempo.

Dentistas e engenheiros possuem objetivos semelhantes nas suas profissões: desenvolver, construir e avaliar dispositivos ou estruturas que podem estar sujeitas a uma ampla gama de condições ambientais. Em 1936, E. W. Skinner descreveu a necessidade de se aplicar os princípios da física e da química na odontologia restauradora da mesma forma que são aplicados na engenharia de estrutura e expressou também a grande preocupação a respeito da necessidade de conhecimentos sobre a Ciência dos Materiais. (Anusavice, Shen & Rawls, 2013).

Ha décadas as restaurações metalocerâmicas (subestrutura metálica recoberta por cerâmica feldspática) tem sido a escolha ideal para a fabricação de próteses dentárias (Bona, Pecho, & Alessandretti, 2015). Porém, apesar da alta precisão das próteses metálicas, as restaurações não metálicas (metal-free) são cada vez mais solicitadas. As recentes demandas rumam a substituição das próteses metálicas pelas próteses não metálicas, devido a sua estética e biossegurança. (Ardlin, 2002), (Deville et al., 2003), (Miyazaki, et al., 2013), (Gahlert et al., 2015).

Na Odontologia, as cerâmicas são referidas como estruturas não metálicas, inorgânicas, contendo principalmente compostos de oxigênio com um ou mais elementos metálicos ou semi-metálicos (Lyon, Chevalier, Gremillard, & Cam, 2011). Devido à existência de planos de deslizamento independentes, ligações iónicas e/ou covalentes, são materiais duros e frágeis com pouca tenacidade e ductilidade. A ausência de elétrons livres torna-os bons isolantes térmicos e elétricos. Têm geralmente temperaturas de fusão bastante elevadas e grande estabilidade química, o que lhes confere uma boa resistência à corrosão. (Elshazly, El-Hout, & Ali, 2011).

Porém, as cerâmicas odontológicas, têm apresentado problemas devido a falhas mecânica quando em uso. Numerosos pesquisadores têm tentado reforçar a cerâmicas com diferentes fases cristalinas, objetivando a melhoria das suas propriedades mecânicas. (Johansson, et al., 2014).

A origem do interesse da zircônia como um biomaterial cerâmico na Odontologia foi devido a estética além da boa estabilidade química e dimensional, resistência mecânica e tenacidade, juntamente com um módulo de Young na mesma ordem de grandeza de ligas de aço inoxidável (Chevalier & Gremillard, 2011), (Raut, Rao, & Ravindranath, 2011), (Madfa, et al., 2014), (Heimann & Lehmann, 2015).

Em 1975, Garvie, Hannink e Pascoe publicaram um artigo intitulado "Ceramic Steel?" relatando o potencial da zircônia ZrO₂ para aumentar sua resistência e dureza utilizando para isto uma transformação de fase tetragonal para monoclínica. Transformação esta, induzida pela presença de um campo de tensão à frente de uma trinca.(Garvie, Hannink, & Pascoe, 1975), (Ban, 2008), (Heimann & Lehmann, 2015). Entende-se por fase uma porção de matéria formada pela combinação de determinados átomos, ligados por determinas ligações químicas e arranjados no espaço de uma determinada maneira.(Marino & Boschi, 1998).

Na década de 1990, a zircônia foi introduzida em ortopedia como alternativa à alumina devido à sua maior resistência à fratura. Seu uso também possibilitou o projeto de implantes de quadril e articulações do joelho. No entanto, em 1997, a Food and Drug Administration (FDA) dos Estados Unidos relatou que o procedimento padrão de esterilização a vapor levava à rugosidade superficial dos implantes de cabeça temporais. Isso resulta em bilhões de detritos de desgaste sub-micrométrico sendo derramados nos tecidos circundantes. A interação biológica com pequenas partículas no corpo torna-se crítica: as partículas de desgaste geradas nas superfícies de contato entram nos tecidos peri-implatares desencadeando a reação dos macrófagos. Em seguida, os macrófagos liberam citocinas pró-inflamatórias que estimulam a reabsorção óssea osteoclástica, levando a osteólise e a necessidade de substituição do implante. (Chevalier, Gremillard, Virkar, & Clarke, 2009).

No final da década de 1990, iniciou-se o desenvolvimento de componentes para restauração dentária, como coroas e pontes em zircônia. Em parte, isso ocorre porque a zircônia pode ser facilmente matizada para combinar as diferentes nuances dentárias existentes, mas é surpreendente, no entanto, porque o material pode ser tão suscetível a falhas como em aplicações ortopédicas. Embora as consequências da falha de um implante dentário ou dispositivo de restauração dentária seja menos crítica para um paciente do que a de um implante ortopédico. (Denry & Kelly, 2008).

Em cerâmicos transformáveis a tenacidade pode ser aumentada pela transformação alotrópica. Este fenómeno tem sido explorado, com bastante sucesso na zircônia. A zircônia pura sofre uma transformação do tipo martensítica quando da passagem da estrutura tetragonal para monoclínica (Wang et al., 2017). Esta transformação está associada a deslizamentos e reorganização de planos apresentando variação em seu volume. (Kelly & Ball, 1986). Quando a transformação é continua, a expansão de volume provoca trincamentos e rachaduras graves na estrutura, que eventualmente levam à falha catastrófica. No entanto, se a transformação é localizada, os esforços de compressão criados irão reduzir a propagação de trincas e, consequentemente, melhorar a tenacidade à fratura. (Gui & Xie, 2016).

Com o surgimento e desenvolvimento dessas zircônias e a utilização da usinagem em sistemas CAD-CAM, as restaurações estéticas indiretas dentárias passaram a ser cada vez mais fornecidas. O processamento de restaurações em um ambiente industrial controlado, reduz os possíveis defeitos criados por etapas laboratoriais intermediárias. Além disso, os blocos fabricados industrialmente são mais homogêneos com falhas mínimas (Ramesh, et al., 2012) (Wendler et al., 2016).

2 Objetivo

Este trabalho tem como objetivo geral avaliar as propriedades mecânicas, a resistência à degradação hidrotérmica e ao jateamento com óxido de alumínio, da zircônia tetragonal policristalina estabilizada com 5,2%mol (Prettau Anterior Super-Translúcida da Zirkonzahn) em comparação à zircônia tetragonal policristalina estabilizada com por 3%mol de Y₂O₃ (VIPI Block Zirconn) e também a zircônia tetragonal policristalina estabilizada com por 3%mol de Y₂O₃ (VIPI Block Zirconn) e também a zircônia tetragonal policristalina estabilizada com por 3%mol de Y₂O₃ com translucidez melhorada (VIPI Block Zirconn Translucent). Todas indicadas para uso em próteses odontológicas monolíticas.

Como objetivo específico este trabalho pretende avaliar:

- A distribuição e tamanho de grãos das diferentes zircônias.

- A degradação hidrotérmica de zircônias com diferentes concentrações de itria.

- A influência do jateamento nas indicações das cerâmicas odontológicas adotada pela ISO 6872.

3 Revisão bibliográfica

3.1. Estrutura cristalina

Um cristal é definido como um sólido que contém seus componentes (átomos, moléculas ou íons) com um alto grau de ordenamento interno tridimensional de longo alcance. O componente mais simples deste padrão tridimensional é chamado de "célula unitária". É análogo a um tijolo de construção. A rede cristalina representa a repetição do conteúdo da célula unitária dentro do cristal. É uma rede tridimensional infinita de pontos, repetida e regular. (Glusker & Trueblood, 1998).

As cerâmicas à base de zircônia, mais utilizadas na odontologia, são as de dióxido de zircônio parcialmente estabilizado com óxido de ítrio (ZrO₂ + 3%molar de Y₂O₃) e apresentam estruturas cristalinas polimórficas monoclínicas, tetragônicas e cúbicas. A monoclínica é a fase predominante à temperatura ambiente. Adota o número de coordenação 7, com oxigênios ocupando os interstícios tetragonais, simetria espacial P2₁/c (a = 5.142Å b = 5.206Å e β = 99°18') e é estável até 1170°C. Acima dessa temperatura, a fase monoclínica se transforma reversivelmente na fase tetragonal que por sua vez, possui simetria espacial P4₂/nmc (a = 3.653Å e c = 5.293Å) e número de coordenação 8. Ambas apresentam características estruturais distorcidas da fluorita (Kelly & Ball, 1986) (Fabris, Paxton, & Finnis, 2002), (Hannink, Kelly, & Muddle, 2004), (Raut et al., 2011), (Assis, 2014).

Figura 1 - Estrutura cristalina cúbica fm3m (a), tetragonal P4₂/nmc (b) e monoclínica P2₁/c (c) (Hannink et al., 2004)

De 2370°C até a temperatura de fusão 2680°C, a zircônia apresenta a estrutura cristalina cúbica da fluorita, de simetria espacial Fm3m (a = 5.272Å) e número de coordenação 8. A transformação da fase cúbica para tetragonal (c-ZrO₂ -> t-ZrO₂) não apresenta grandes mudanças, pois a mudança corresponde, teoricamente, à diminuição do comprimento do parâmetro de rede. Porém, a transformação de fase tetragonal para monoclínica (t-ZrO₂ -> m-ZrO₂) envolve uma considerável expansão volumétrica (~4%) que é fortemente anisotrópica, com mudanças abruptas nos parâmetros de rede, provocando grandes variações na estrutura cristalina. (Cain, 1990), (Samis, 1995), (Rendtorff, 2009), (Umeri, 2010), (Gallino, Valentin, & Pacchioni, 2011), (Simba, et al., 2016)

Uma liga de zircônia com vários tipos de solutos como MgO, CaO, Y₂O₃ ou CeO₂, dependendo do seu tratamento térmico e da sua composição, pode apresentar a estabilidade de polimorfismo afetada, resultando em materiais multifásicos. A ocorrência de uma fase ou fases com simetria ortorrômbica em ligas ZrO₂ e ZrO puras foi relatada em algumas ocasiões. Atualmente, o diagrama de fase de pressão X temperatura de equilíbrio, mostra duas fases ortorrômbicas, uma com uma estrutura de cristal de fluorita distorcida (grupo espacial Pbcm), cuja estabilidade à temperatura ambiente se estende de 3,5 a 9 GPa, e uma segunda, isoestrutural com a estrutura de um material mineral chamado cotunnite de fórmula PbCl₂, estável a altas pressões. (Bestgen, Chaim, & Heuer, 1988), (Fadda, Truskinovsky & Zanzotto, 2002).

Figura 2 – Diagrama de fase Pressão X Temperatura para ZrO₂ (BESTGEN et al., 1988)

25

3.1.1. Zircônia Parcialmente Estabilizada

A concentração do agente estabilizador ou dopante tem um papel determinante no desempenho mecânico do material. Quando adicionada uma grande quantidade (8-12%mol) de dopante na zircônia, uma fase cúbica totalmente estabilizada pode ser produzida. A fase cúbica é então tratada termicamente para formar precipitados tetragonais coerentes suficientemente pequenos de modo que não se transformem espontaneamente dentro da matriz de zircônia, mas apenas como um resultado de stress. (Kelly & Rose, 2002), (Raghavan, 2012).

O tratamento térmico a realizar consiste na sinterização a 1800°C e resfriamento rápido, o que mantém a fase cúbica, existente a altas temperaturas, metaestável. O reaquecimento a 1400°C durante algum tempo, e posterior resfriamento, origina a precipitação da estrutura tetragonal, mantendo-se neste estado metaestável à temperatura ambiente. (Kelly & Benetti, 2011).

Com isso, por volta de 1960 a Zircônia Parcialmente Estabilizada (PSZ) tornou-se disponível. O composto após a adição de óxidos possui uma microestrutura, à temperatura ambiente, constituída de uma matriz de zircônia na fase cúbica com grãos de 40 a 60µm e precipitados nanométricos tetragonais e monoclínicos, finamente dispersos. (Manicone, Lommetti, & Raffaelli, 2007). Os precipitados tetragonais e monoclínicos representam cerca de um terço do volume do material. Uma PSZ comercial geralmente possui 58% de fase cúbica, 37% de fase tetragonal e 5% de fase monoclínica. (Cannon, 1989), (Yoshimura, et al., 2007), (Ramesh, et al., 2012).

3.1.2. Zircônia Tetragonal Policristalina

Picconi relatou que entre os aditivos analisados, o melhor desempenho ocorre quando é incorporado 3%mol de Y₂O₃. Esse composto

foi primeiro descrito por Gupta et al. (1977). Usando uma baixa concentração de ítria na zircônia e microestruturas de granulação fina, aproximadamente 100% de zircônia tetragonal policristalina (TZP) foi fabricada. (Piconi & Maccauro, 1999).

Em termos estruturais, a Y-TZP possui somente 2 pares possíveis de simetria devido a uma particular distribuição de maclas. Isso restringe seriamente a capacidade de se transformar sob certas condições externas (ou interna), como a presença de um campo de tensões. Deste modo, a Y-TZP torna-se bastante estável a temperatura ambiente. (Heuer, Ruhle, & Marshall, 1990), (Hannink et al., 2004).

Assim como a Zircônia Parcialmente Estabilizada por ítria (Y-PSZ), a Zircônia Tetragonal Policristalina (Y-TZP) é metaestável em temperatura ambiente, porém quando exposta a um esforço mecânico, a fase tetragonal metastável é transformada na fase monoclínica estável, com um aumento subsequente de cerca de 4% em volume. (Pashley, et al., 1995). Essa expansão local de grãos, gera tensões de compressão perto de áreas de microtrincas, dificultando assim a sua progressão. Este fenômeno é conhecido como endurecimento de transformação. (Ramesh, et al., 2012), (Nakamura et al., 2016).

3.1.3. Cerâmica Tenacificada com Zircônia

Partículas de zircônia podem ser dispersas em vários tipos de matrizes. Na Zirconia-Toughened Ceramics (ZTC) as partículas podem estar envoltas por matrizes de Alumina, β-Alumina, Mulita, Nitreto de Silício, Espinélio, Vidros, Forsterita e Magnésia. Os requerimentos são que a matriz não reaja com zircônia (a matriz e a zircônia devem ser insolúveis) e haja compatibilidade térmica entre as fases. A introdução de uma pequena quantidade (1000 a 2000 p.p.m.) de zircônia em uma matriz cerâmica permite a formação de uma solução sólida que promove os processos de densificação pela introdução de defeitos de rede. As

microestruturas da ZTA são caracterizadas pela presença das duas fases distintas, que não reagem entre si para formar uma solução sólida. (Wang & Stevens, 1989), (Lyon et al., 2011), (Ramesh, et al., 2012), (Piconi, Condo, & Kosmač, 2014).

A presença de grãos de zircônia na matriz de alumina como uma segunda fase, permite que o primeiro se comporte de maneira intrínseca, isto é, podendo sofrer transformação tetragonal-monoclínica ou ser retido na forma tetragonal metaestável durante o resfriamento. É a expansão do volume e a tensão de cisalhamento associada à transformação tetragonal-monoclínica que resulta em vários mecanismos de endurecimento nestes compósitos. A trinca principal tendem a se mover em direção aos aglomerados de zircônia (uma vez que a matriz possui um módulo de elasticidade maior do que a zircônia), a energia de deformação associada à frente da trinca é absorvida pelos mecanismos de endurecimento incluindo, endurecimento de microtrincas, tensões de superfície compressivas e deflexão de trincas (Wang & Stevens, 1989), (Lyon et al., 2011), (Ramesh, et al., 2012), (Piconi, Condo, & Kosmač, 2014).

Várias cerâmicas foram identificadas como possíveis candidatas a transformações de fase conforme mostrado na Tabela 1:

DZC	Dispersed zirconia ceramics – compreende de um material com ZrO ₂ disperso em uma matriz que age como agente tenacificante
MPZ	Monoclinic polycrystalline zirconia – Um aglomerado de grãos m-ZrO ₂ adicionados a Matrizes cerâmicas e após processamento adequado, formarem refratários de alta densidade.
PSZ	Partially stabilized zirconia – Geralmente consiste de uma matriz c-ZrO ₂ com precipitados tetragonais dispersos
Ca-PSZ CaO-PSZ	Calcium-cation-doped PSZ – Geralmente consiste em 7.5 a 8.7 mol% de CaO-ZrO ₂
Mg-PSZ MgO-PSZ	Magnesium-cation-doped PSZ – Geralmente são adicionados 8.5 a 10 mol% de MgO ou Mg2CO3
ТТА	Transformation-toughened alumina

ттс	Transformation-toughened ceramics -
	Cerâmicas cujas propriedades mecânicas
	tenham sido melhoradas através da adição de
	um constituinte ZrO ₂ , geralmente culminando
	em uma única fase ou partição / precipita em
	uma matriz hospedeira que pode ou não ser
	ZrO ₂
TTZ	Transformation-toughened zircônia (ou TZC,
	Toughened zirconia ceramics) os grupos de
	cerâmicas com matriz ZrO ₂ que abrangem os
	sistemas PSZ e TZP
ТΖР	Tetragonal zirconia polycrystals - Uma
	cerâmica à base de ZrO ₂ onde os grãos da
	matriz são estabilizados, em geralmente, a
	uma única fase tetragonal à temperatura
	ambiente (as duas formas mais comuns de
	TZP são com Ce ou CeO₂ para denotar
	estabilização de céria ou com Y ou Y ₂ O ₃ para
	denotar estabilização de ítria, e um número na
	frente do acrônimo geralmente denota a
	porcentagem em mol do agente dopante)
Y-TZP	Yttrium-cation-doped tetragonal zirconia
	polycrystals – Geralmente adicionados 2–3
	mol% Y ₂ O ₃ : Y ₂ O ₃ –ZrO ₂ (2–3Y-TZP) (~7–
	8%peso Y ₂ O ₃ –ZrO ₂)
ZTA	Zircônia endurecida por Alumina
ZTC	Zircônia endurecida por Cerâmicas

Tabela 1 – Terminologia utilizada para descrever sistemas contendo ZrO2

Os sistemas cerâmicos acima incluem dissilicato de cálcio, sulfetos refratários etc. Resultados preliminares demonstram potencial para usar algumas dessas cerâmicas como agentes de endurecimento em diferentes matrizes. Por exemplo, uma dispersão de silicato de dicálcio monoclínico (β) em zirconato de cálcio resultando em um aumento de tenacidade de cinco vezes. No entanto, essas possíveis alternativas foram de interesse científico, mas nenhuma foi fabricada para exibir comportamentos mecânicos que tenham sido bem-sucedidos comercialmente. (Hannink et al., 2004).

3.2. Estabilização da zircônia

As ligas de zircônio se oxidam quase que inteiramente devido à migração para o interior dos íons de oxigênio, isso acarreta a geração de vacâncias de oxigênio. O impacto das vacâncias de oxigênio na estrutura da rede cristalina é uma teoria líder para a estabilização da zircônia

tetragonal. As ligas de zircônio contêm uma variedade de elementos de liga, alguns dos quais, como o ferro e o cromo, demonstraram anteriormente estabilizar a fase tetragonal quando usada como dopante. No entanto, deve notar-se que estes elementos de liga estão presentes no óxido em quantidades muito pequenas em comparação com os dopantes típicos utilizados na zircônia atualmente. (Platt, et al., 2014).

Aumentando a concentração de dopante, o material se transforma em uma forma tetragonal parcialmente estabilizada, e depois em uma cúbica, chamada totalmente estabilizada. Numa concentração fixa, as temperaturas elevadas desestabilizam as fases tetragonais, favorecendo as cúbicas. Da mesma forma, a temperatura fixa, maiores quantidades de impurezas estabilizam as fases cúbicas. (Fabris et al., 2002). A presença de cátions de baixa valência (Ex: Y⁺³) na zircônia, estabiliza as fases cúbica e tetragonal a temperaturas mais baixas, podendo estas fases se tornarem viáveis a temperatura ambiente. (Heuer et al., 1989), (Meriani and Palmonari, 1989), (Greenberg & Ho, 2001).

Guo & Schober, (2004) simularam a reação de H₂O com O₂ na ZrO₂ para formar grupos hidroxilos, com difusão pelos contornos de grãos e preenchimento das vacâncias de oxigênio, portanto, simularam a formação de defeitos protônicos. Eles relataram a ocorrência de uma transformação tetragonal em monoclínica quando a concentração de vacâncias de oxigênio foi reduzida.

A estabilização da PSZ é possível devido a adição de cálcio, ítria ou magnésio em quantidades insuficientes para estabilizar 100% da fase cúbica. O material é então sinterizado seguido por um tratamento térmico capaz de fornecer a coexistências das fases cúbicas e tetragonal. Este tratamento térmico deve ter um tempo suficiente para a fase tetragonal se precipitar, mas não longo o bastante para que ocorra o crescimento do grão acima do tamanho crítico a partir da qual, a transformação tetragonal em monoclínica acontece de forma espontânea. (Cannon, 1989).

A TZP é obtida através da adição de Ítria ou cério, em quantidades suficientes para estabilizar 100% da fase tetragonal. (Cannon, 1989) observou ainda que a utilização de Ítria em teores que variam de 2 a 4% mol, reduzem a temperatura da transformação martensítica e leva a um aumento do tamanho crítico de grão, facilitando seu processamento (Cain, 1990). A liga com óxidos de valência mais baixos, como CaO, MgO e Y₂O₃, desfavorecem a fase monoclínica tensionada à temperatura ambiente e favorecem estruturas metaestáveis de rede cúbica e tetragonal mais simétricas. Estas fases cúbica e tetragonal são análogas às da zircônia pura, mas têm íons dopantes substituídos em sites Zr⁴⁺ e possui vacâncias de oxigênio para reter a neutralidade da carga. (Kelly & Denry, 2008). A Figura 3 apresenta o diagrama binário ZrO₂-Y₂O₃.

Figura 3 – – Diagrama de fase da zircônia parcialmente estabilizada com ítria (Gogotsi & Domnich, 2003)

Os mecanismos de estabilização relativos à zircônia podem ser melhor racionalizados pela presença de defeitos na zircônia dopada. Por exemplo, numa zircônia cúbica, com íons dopantes M⁺² substituindo íons Zr⁺⁴ existe a criação simultânea de vacâncias de O⁻² (V_o") para manter a

estequiometria. (Cain, 1990)

$$Zr^{+4}O_2^{-2} \longrightarrow M^{+2}V_0^{"} + O^{-2}$$
 (I)

Num estudo de estabilização mecânica baseado em simulações estáticas e dinâmicas, (Fabris et al., 2002) afirmou que a configuração atômica da zircônia dopada é semelhante energeticamente a configuração de uma zircônia pura com presença de vacâncias de oxigênio. Que a estabilização das estruturas tetragonais e cúbicas podem ser alcançadas na teoria por doping de cristais de zircônia apenas com vacâncias de oxigênio e apoia a ideia de que as propriedades eletrônicas e estruturais da zircônia estabilizada são controladas pela desordem estrutural. (Platt et al., 2014).

Porém, a estabilidade da zircônia tetragonal é certamente um problema de vários parâmetros. Garvie (Garvie, 1965) demonstrou que ~30nm representa um tamanho crítico abaixo do qual a zircônia tetragonal pura pode ser estabilizada somente pelo tamanho de grão. Portanto, é plausível admitir que tamanho de grão seja um fator contribuinte para estabilização da fase tetragonal.

A literatura considera ainda a estabilidade dos grãos ou, ainda mais, a estabilidade da estrutura cristalográfica. De acordo com Christian (Christian, 2003), o equilíbrio de energia livre entre as fases tetragonal (t) e monoclínica (m) contém uma contribuição da rede pura. Além disso, a estrutura atômica em um grão transformador T-M sofre uma expansão de rede que é dificultada devido à matriz elástica circundante. A situação leva a um estresse compressivo estabilizando a fase tetragonal.

O tipo e concentração de dopantes são essencialmente determinantes para o controle do tamanho de grãos, para o grau de tetragonidade (ou seja, a relação de comprimento de c / a da rede cristalina) e para a expansão térmica anisotrópica das células unitárias. Em geral, maior tetragonidade contribui para um material menos estável. Com base

na tetragonidade, o ítrio parece ser um estabilizador mais forte do que o cério. (Kelly & Denry, 2008).

Segundo Schubert & Frey (Schubert & Frey, 2005) os parâmetros microestruturais como o conteúdo do estabilizador, o tamanho e a forma do grão, a quantidade de fase vítrea intergranular, as fases cristalinas secundárias podem e devem ser rastreados considerando sua influência no balanço energético entre as fases tetragonal e monoclínica.

A Figura 4 apresenta resultado de estudo que indica tamanhos críticos de grãos de ZrO₂, para retenção de fase tetragonal à temperatura ambiente.

Figura 4 - Retenção da fase tetragonal. Tamanho crítico de grão X conteúdo de ítria na zircônia tetragonal (Lyon et al., 2011)

3.3. Tenacificação da zircônia

Quando a fase tetragonal é retida a temperatura ambiente, esta encontra-se numa situação metaestável. Em resposta a estímulos

mecânicos, como tensões trativas desenvolvidas nas proximidades de uma trinca que se propaga, esta zircônia tetragonal metaestável pode se transformar em uma zircônia de fase monoclínica que é termodinamicamente mais estável a temperatura ambiente. Esta transformação, é uma transformação de fase do tipo martensítica na qual a ZrO₂ tetragonal (T) transforma-se em ZrO₂ monoclínico (M) acarretando em uma tenacificação da cerâmica. O incremento de tenacificação (∆K_T) pode ser calculado da seguinte maneira:

$$\Delta K_{\rm T} = A V_{ZrO_2} \varepsilon_T E w^{\frac{1}{2}}$$
(II)

Onde A é uma constante inserida ao volume da fração de partículas metaestáveis de zircônia, ε_T é o volume da deformação que acompanha a transformação, E é o módulo de Young e W é a largura ao redor da trinca que contém partículas transformadas conforme demonstrado na Figura a seguir. (Cahn & Lifshitz, 1992), (Ban, 2008).

Figura 5 - Inibição da propagação de trinca por transformação de fase (Lyon et al., 2011)

A célula primitiva tetragonal contém 2 ZrO₂ unitárias. A célula unitária monoclínica possui 4 ZrO₂ unitárias. Somente isto já justificaria o aumento de volume da transformação T-M. (Hannink et al., 2004).

O interesse mundial nas transformações martensíticas em materiais

não metálicos popularizou-se com a publicação sobre endurecimento por transformação em cerâmicas de zircônia em 1975 por Garvie. A resistência de uma cerâmica poderia ser aumentada por um fator de 4 ou mais. Para que ocorra uma transformação martensítica na zircônia, primeiro deve haver uma fase metaestável presente, neste caso a fase tetragonal. Esta fase metaestável deve ser capaz de sofrer uma transformação para uma condição mais estável quando induzida por um campo de tensão localizado na ponta de uma trinca. A fase estável da zircônia a temperatura ambiente é a monoclínica como já exposto. Em segundo lugar, a transformação deve praticamente instantânea, não apresentando ser características difusionais. E por último, ela deve estar associada a uma mudança de forma e/ou volume. Finalmente, para garantir que haja um aumento significativo na dureza do material, o produto transformado não deve ser menos resistente do que a fase principal a partir da qual houve a transformação. (Kelly & Rose, 2002).

Segundo Aaronson, (Aaronson, Enomoto, & Lee, 2010), uma transformação martensítica é uma mudança atermal na estrutura do cristal (uma mudança de fase) no estado sólido, sem difusão que envolve um movimento simultâneo e cooperativo dos átomos, por mecanismo de cisalhamento, em distâncias inferiores a um diâmetro atômico, de modo a resultar em uma mudança macroscópica de forma da região transformada. (Cain, 1990), (Kelly & Denry, 2008).

Em 1964, Bailey (1964) relatou um estudo de microscopia eletrônica de transmissão da transformação, onde uma das características observadas foi o aparecimento de maclas em (100) M e {110} M. Desde então, a associação entre a transformação de fase tetragonal em fase monoclínica, está associada a maclação da fase monoclínica.

McMeeking e Evans (McMeeking e Evans, 1982) desenvolveram um modelo de tenacificação por transformação, no qual a transformação induzida por tensão leva a um K_{lsh} de proteção do fator de intensidade de esforço aplicado K_l. Isso significa que o verdadeiro fator de intensidade de
tensão na ponta da trinca K_{Itip} é menor que o aplicado pelas forças externas, de acordo com:

$$K_{Itip} = K_I - K_{Ish}$$
(III)

Além disso, microtrincas também originam uma proteção da ponta da trinca e isso é geralmente denominado endurecimento por microtrincas. As microtrincas podem ser subdivididas em residuais e induzidas por estresse. As microtrincas residuais são devidas à expansão do volume e à tensão de cisalhamento associada à transformação tetragonal, monoclínica, que ocorre no resfriamento a partir da temperatura de sinterização nas zircônias puras. Nas zircônias estabilizadas, as microtrincas são originadas pela expansão do volume e tensões cisalhantes associadas à transformação induzida durante o processo de fratura. (Wang & Stevens, 1989).

Essas microtrincas formam uma estrutura de descontinuidade a propagação da trinca principal, absorvendo sua energia ou desviando a trajetória da trinca principal, que teria que contorná-las para poder se propagar. Como a energia necessária para contornar este defeito é alta, muitas vezes a propagação da trinca simplesmente deixa de acontecer dando origem a uma blindagem microestrutural. (Sato & Shimada, 1985), (Green, 1998), (Barsoum, 2003).

Hannink, (2004) relatou que a tenacidade a fratura de um material multifásico frágil, K_{lc}, é comumente descrito por:

$$K_{Ic} = K_0 + \Delta K_c \tag{IV}$$

Onde,

K₀ = Tenacidade da matriz

ΔKc = Diferentes mecanismos de proteção contra trinca

Para as ligas ZrO₂, três mecanismos de blindagem principais foram identificados: A transformação de endurecimento por deformação, ΔKct;

Endurecimento por transformação induzido microtrincas, Δ Kcm; e endurecimento por deflexão da trinca Δ Kcd (Hannink et al., 2004).

3.4. Degradação a Baixa Temperatura (LTD)

Se a transformação de T-M for obtida a partir da presença de uma trinca, essa transformação aumenta a tenacidade da cerâmica o que não acontece quando a transformação possui origem química pela presença de umidade. A transformação química é superficial alterando desta maneira a rugosidade, micro fissuração e desprendimentos de grãos desencadeando a perda de resistência mecânica da cerâmica. (Guo & Schober, 2004), (Chevalier et al., 2009).

Por razões estéticas, a zircônia monolítica é normalmente glaseada. No entanto, esta camada será desgastada pelo esmalte do dente antagonista após um período estimado de 180 dias. Uma vez que as restaurações de zirconia monolíticas estão em contato direto com a saliva, há a preocupação quanto à sua estabilidade a longo prazo devido a LDT. (Pereira et al., 2015).

As medidas da cinética da degradação induzida pela umidade de cerâmicas sinterizadas, obtidas por difração de raios X ou espectroscopia Raman, indicam que no processo de transformação de fase isotérmica, a fração de volume transformada com o tempo pode ser expressa em termos da equação V de Mehl-Avrami-Johnson. (Chevalier et al., 2009), (Elshazly et al., 2011).

$$X_m = 1 - \exp(-k_p t)^{nc} \tag{V}$$

Onde:

*Considerando que Vt + Vm = 1

K_p = constante de proporcionalidade

t = tempo de exposição a umidade

nc = expoente cinético, dependente do mecanismo de transformação de fase e do crescimento de grãos.

Compilando dados de diferentes temperaturas, a curva da cinética das transformações tem a forma de "C" em um gráfico tempo-temperatura.

A Figura 6 apresenta o gráfico TTT para ZrO₂ (Y-TZP).

Figura 6 - Gráfico temperatura X tempo de transformação da zircônia (Jerome Chevalier et al., 2009)

Nas temperaturas abaixo da "curva", a cinética segue uma dependência de Arrhenius, ou seja, existe uma dependência da velocidade da reação com a temperatura. (Chevalier et al., 2009).

$$K_{v} = A \exp \frac{-Ea}{RT}$$
(VI)

K_v = constante de velocidade

A = frequência "cinética"

Ea = Energia de ativação

R = constante universal dos gases (\cong 8,31x10⁻³)

T = Temperatura

$$\ln K = -\frac{E_a}{R} \frac{1}{T} + \ln A$$
 (VII)

Assim como ocorre nas transformações de nucleação e crescimento de grãos, a curva em forma de "C" pode ser interpretada em termos de competição entre a força motriz para a formação do sólido, que depende da variação de temperatura e o crescimento com a criação de uma interface e consequentemente o incremento da energia de superfície. Em baixas temperaturas, abaixo da curva, há uma alta taxa de nucleação e em altas temperaturas, a taxa de nucleação é limitante. (Chevalier et al., 2009).

O mesmo autor observou ainda que superfícies da zircônia tetragonal policristalina expostas à umidade mostram a nucleação e o crescimento de pequenas regiões de fase monoclínica. A espectroscopia Raman confirma que as regiões transformadas são de fato monoclínicas e que não se estendem profundamente na superfície, geralmente menos de alguns micrometros antes que a superfície inteira seja transformada. Observações cuidadas também indicam que existe uma preferência por nucleação nos contornos e cantos de grãos.

Alguns autores afirmam que a exposição à umidade aumenta os parâmetros de rede da fase tetragonal devido a incorporação de moléculas de água na rede de ZrO₂ (Guo & Schober, 2004), enquanto outros afirmam que os parâmetros de rede diminuem nas mesmas condições devido a presença de deformações internas sem a presença de tensões externas (Eigenstresses) resultante da mudança de fase. O preenchimento de vacâncias de oxigênio por "derivados de água", modificando a configuração local de oxigênio em torno de íons Zr, leva a uma diminuição da Energia livre baseado na teoria de que a exposição à umidade leva os íons hidroxílicos a difundir-se na rede por meio de um mecanismo de difusão de vacâncias de oxigênio. (Schubert & Frey, 2005).

A difusão interna da umidade gera tensões hidrostáticas trativas nos grãos (Schubert & Frey, 2005) que podem levar a uma desestabilização da fase tetragonal. As grandes tensões de cisalhamento e os deslocamentos que acompanham a transformação também podem criar fissuras ao longo dos limites de grãos que, por sua vez, permitem que a umidade penetre mais profundamente no material e o processo é repetido. (Soldera, et al., 2008).

Existem duas principais teorias para a reação do Y-TZP na água. A primeira teoria vem de Lange (Lange, Dunlop, & Davis, 1986). O mecanismo de degradação postulado pelos autores foi que um grão superficial tetragonal se transformaria em monoclínico a medida que o vapor de água extrai ítrio (Y) suficiente do grão tetragonal. À medida que o núcleo monoclínico cresce por depleção de ítria, eventualmente alcançará um tamanho crítico. No tamanho crítico, o crescimento é espontâneo, portanto, não requer mais difusão de ítria para se transformar completamente em um grão tetragonal.

A segunda teoria foi demonstrada por Yoshimura et. al. (Yoshimura et. al., 2000) Durante seus estudos concluíram que a água é absorvida quimicamente na superfície da cerâmica. Os hidróxidos de zircônia e / ou ítrio formados na superfície atuam como locais de concentração de tensão. Esses locais de concentração de tensões crescem a medida que os grupos de hidróxido migram pela rede cristalina. Esses defeitos, por sua vez, atuam como um sítio para a nucleação da fase monoclínica. Abaixo segue as etapas do processo:

1º passo: a adsorção química de H₂O na superfície.

2º passo: a formação de Zr-OH e / ou Y-OH na superfície onde sítios de tensões são criados.

3º passo: migração de OH⁻ da superfície para o interior da rede
 4º passo: nucleação da fase monoclínica nos grãos tetragonais

Portanto, parece ser adequada a afirmação de que o processo de

degradação em condições úmidas começa a partir da quimisorção de água na superfície da zircônia, o que cria defeitos pontuais de vacância. Em seguida, o processo de degradação envolve a lixiviação dos íons metálicos dopantes, o que torna a estrutura cristalina instável e, portanto, sofre uma transformação de fase. (Hou, et al., 2016).

A degradação num reator hidrotérmico pode ser considerada um teste acelerado que dá em pouco tempo a quantidade de transformação que pode ocorrer em corpos humanos ao longo dos anos (Elshazly et al., 2011). Na presença de água ou vapor de água a temperaturas relativamente baixas, A zircônia tetragonal sofre transformação para monoclínica.

A energia de ativação para condução iônica de uma Zr₂O estabilizada com 3% de Y₂O₃ a temperaturas < 500°C é de 88-89 kJ/mol. Este valor, segundo Guo & Schober (2004), está acima da entalpia de ativação para uma degradação hidrotermal que é de 73 kJ/mol para vários tamanhos de grãos. (Cattani-lorente, et al., 2015).

A condução de íons de oxigênio depende da condutividade elétrica do material. A dependência da condutividade elétrica com a temperatura é expressa pela equação VIII do tipo Arrhenius:

$$\sigma_{\rm c} = \frac{\sigma c_0}{T} \exp\left[\frac{-E_a}{kT}\right] \tag{VIII}$$

 σ_{CO} = fator pré-exponencial da condutividade do material

T = temperatura absoluta

E_a = Energia de ativação

k = constante de Boltzmann

A condução de íons de oxigênio se dá por meio de sucessivos saltos em posições vacantes na estrutura cristalina. Assim, um dos parâmetros mais importantes para a obtenção de alta condutividade é a concentração de vacâncias de oxigênio. As estruturas tetragonal e cúbica, na zircônia estabilizada com ítria, apresentam condutividades muito próximas em temperaturas em torno de 400°C. Em baixas temperaturas, a difusão de vacâncias aniônicas favorece o ordenamento a curto alcance destas ao redor dos cátions Zr_4^+ . A razão para o ordenamento a curto alcance das vacâncias de oxigênio é que isto provoca uma relaxação na distorção anisotrópica da rede cristalina causada pela substituição do Y₃⁺ que possui um raio bem maior que o do Zr₄⁺. (Muccillo, 2008).

Em uma revisão sistemática da literatura, objetivando avaliar os impactos deletérios da simulação da Degradação de Baixa Temperatura (LTD) em autoclave, promovendo significante diminuição nas propriedades mecânicas e um aumento importante no conteúdo da fase monoclínica nas cerâmicas Y-TZP os autores descrevem como etapas para uma efetiva degradação: tempo acima de 20 horas, pressão de 2 bar e temperatura de 134°C. (Pereira et al., 2015).

Devido à transformação de fase T-M da zircônia ser ativada termicamente e acelerada pela presença de água, os envelhecimentos em autoclave com vapor, a temperaturas aumentadas, mostraram ser um bom método para acelerar a LTD (Chevalier, Cales, & Drouin, 1999), (Lee, et al., 2012). Este método foi especificado no padrão ISO (ISO 13356, 2008) como a simulação entre 5 anos e 20 anos de exposição à temperatura corporal (Chevalier et al., 1999).

3.5. Tecnologia CAD-CAM

A tecnologia CAD-CAM (CAD / Computer Aided Design - CAM / Computer Aided Manufacturing) dental utiliza blocos ou discos de cerâmica ou compósitos para confeccionar restaurações dentárias estéticas. Este tipo de processamento diverge das técnicas tradicionais, na medida em que os blocos ou discos são usinados de forma subtrativa e computadorizada. (Belli et al., 2016). Isto permite uma redução no tempo do tratamento, um processo mais confortável para o profissional e o paciente e possibilita a confecção de restaurações monolíticas de cerâmicas de alta resistência como as zircônias. (Li, Chow, & Matinlinna, 2014), (Richert, et al., 2017).

Ao oferecer próteses monolíticas, os dentistas são capazes de superar um dos principais problemas associados às restaurações multicamadas, que é a fratura da camada de revestimento de baixa resistência, geralmente feita de cerâmica dentária de recobrimento feldspática. No entanto, ao usar uma restauração de zircônia monolítica, outros problemas clínicos podem surgir, como o desgaste da dentição antagonista e a difícil correspondência estética da dentição natural. (Denry & Holloway, 2010).

Devido à sua cor característica branco leitosa e à opacidade utilizase as cerâmicas de alta resistência como a zircônia, em infraestrutura de peças protéticas, que são revestidas por uma vitrocerâmica estética com o objetivo de melhor reproduzir as características ópticas dos dentes naturais. Porém, dados clínicos indicam que o número de falhas adesivas e coesivas relacionadas a esta interface zircônia-revestimento estético são altos em comparação às próteses tradicionais metalocerâmicas. Para contornar este problema, busca-se o desenvolvimento de uma zircônia de maior translucidez, através do controle de sua microestrutura e composição, de forma a possibilitar a produção de próteses monolíticas cujo revestimento cerâmico estético é dispensado. (Santos, 2017).

O processo computadorizado começa quando uma impressão óptica de um dente preparado é feita usando um scanner intraoral. As informações 3D digitais são transmitidas para um computador, no qual o dentista, então, projeta de forma interativa a restauração (CAD - Computer-Aided Design). Estes dados são utilizados para usinagem de um bloco ou disco cerâmico industrial em uma unidade de fresagem. (CAM - Computer-Aided Manufacturing), (Fages, et al., 2017).

A captura da imagem pode ser realizada de forma passiva ou ativa. As técnicas passivas utilizam somente a iluminação ambiental para iluminar os tecidos intraorais e dependem de um certo nível de textura do objeto. As técnicas ativas utilizam luzes estruturadas brancas, vermelhas ou azuis projetadas da câmera para o objeto que depende menos da textura real e da cor dos tecidos para a reconstrução. Em técnicas ativas, um ponto luminoso é projetado em um objeto e a distância ao objeto é calculada por triangulação. A triangulação baseia-se no princípio de que a posição de um ponto de um triângulo (o objeto) pode ser calculada sabendo as posições e os ângulos de dois pontos de vista. Esses dois pontos de vista podem ser produzidos por dois detectores, um único detector usando um prisma, ou capturado em dois momentos diferentes. A reconstrução da superfície pode ser conseguida com uma compilação de imagens. (Geng, 2011), (Richert et al., 2017).

Um dos principais desafios é a reconstrução de um modelo numérico 3D. Usando algoritmos, o cálculo de similaridade define os pontos coincidentes em imagens diferentes. Estes pontos podem ser encontrados por detecção de áreas de transição, como curvaturas fortes, limites físicos ou diferenças de intensidade cinza. Uma matriz de transformação é então calculada para avaliar similaridade entre todas as imagens. Pontos extremos também podem ser eliminados estatisticamente para reduzir o ruído. Cada coordenada (x, y e z) é extraída da matriz de projeção, e um arquivo é gerado. (Richert et al., 2017), (Soenen, 1995).

A primeira restauração produzida por CAD-CAM foi fabricada em 1985 usando um bloco cerâmico com cerâmica feldspática de grão fino. Porém, uma taxa de falhas de 36% após 2 anos foi relatada na literatura. (Mo & Bindl, 2002).

Em 1991, VitaTM Mark II (Vita Zahnfabrik, Bad Sackingen, Alemanha), foi introduzida especificamente para o CEREC (CerecTM -Siemens GmbH, Bensheim, Alemanha) com uma resistência a flexão na ordem de 100 a 160 MPa, quando glaseada. Esses blocos eram produzidos sob pressão e secos por vários dias antes da sua sinterização. (Li et al., 2014). Apesar da sua excelente estética, a cerâmica feldspática não é considerada suficientemente forte para áreas de suporte de carga posterior. (Sen & Us, 2017).

Após a introdução da Vita TM Mark II, várias cerâmicas foram desenvolvidas. As cerâmicas de mica como a Dicor (Dentsply, York, USA). As cerâmicas reforçadas com leucita como a ProCAD (Ivoclar-Vivadent, Schaan, Liechtenstein), a Paradigm C (3M ESPE, Seefeld, Germany) e a IPS Empress (Ivoclar-Vivadent). Porém, todos estes sistemas cerâmicos apresentam baixa resistência flexural (100-150 MPa) e são consideradas com risco de falhas se utilizadas na confecção de próteses posteriores. Alguns outros sistemas com melhores propriedades mecânicas foram introduzidos ao longo do tempo, como as cerâmicas reforçadas com dissilicato de lítio como a IPS e.max CAD (Ivoclar-Vivadent), com resistência a fratura mais elevada, em torno de 350 MPa a 450 MPa), as cerâmicas de alumina e zircônia infiltradas com vidro. InCeram Alumina. Spinell and Zirconia possuindo resistência a fratura de 450 a 600 MPa e mais recentemente surgiram as cerâmicas policristalina como a Alumina e a Zirconia (Y-TZP) que apesar de serem relativamente opacas, possuem resistência a fratura na ordem de 600 a 1000MPa respectivamente. (Tinschert, et all 2000), (Rizkalla & Jones, 2004), (Sen, 2017).

4. Materiais e métodos

A zircônia tetragonal policristalina estabilizada com 5,2%mol (Prettau Anterior Super Translúcida da Zirkonzahn), a zircônia tetragonal policristalina estabilizada com por 3%mol de Y₂O₃ (VIPI Block Zirconn) e também a zircônia tetragonal policristalina estabilizada com por 3%mol de Y₂O₃ com translucidez melhorada (VIPI Block Zirconn Translucent) foram utilizadas neste trabalho conforme destacado em anexo na Tabela 2.

Designação	Tipos de Zircônias – número do lote de fabricação			
Prettau HT Zirkonzhann	Prettau HT Zirkonzhann polida - lote: LB4180E			
(Z5HT)	Prettau HT Zirkonzhann jateada - lote: ZB4180E			
VIPI Block Zirconn	VIPI Block Zirconn Translucent polida - lote: 0ZY302112B			
Translucent	VIPI Block Zirconn Translucent jateada - lote: 0ZY302112B			
(Z3MT)	VIPI Block Zirconn Translucent polida degradada - lote: 0ZY302112B			
VIPI Block Zirconn	VIPI Block Zirconn polida - lote: 00S304315B			
(73OD)	VIPI Block Zirconn jateada - lote: 00S304315B			
(2501)	VIPI Block Zirconn polida degradada - lote: 00S304315B			

Tabela 2 – Blocos de zircônias utilizados neste trabalho e seus respectivos grupos experimentais.

A sequência de caracterizações realizadas neste trabalho, é apresentada abaixo na Figura 7.

Figura 7 - Detalhamento experimental realizado neste trabalho

4.1. Processamento e obtenção dos corpos de prova

4.1.1.

Usinagem dos corpos de prova

Blocos comerciais pré-sinterizados, com 98 mm de diâmetro e 20 mm de altura foram utilizados neste trabalho. A Tabela 3 apresenta as principais características destes materiais. Para cada tipo de zircônia, utilizando fresadora CAD-CAM modelo VIPI Maxx K-4, foram usinados em torno de 135 discos formando 3 grupos com 3 subgrupos de 15 unidades, de acordo com a composição, e o tratamento recomendado. (Figuras 66 e 67 do anexo)

Material	Composição química básica (% peso)	Dimensões	Massa específica (g/cm³)	Retração linear (%)
Z3OP	$\label{eq:roya} \begin{array}{c} ZrO_2\text{-}Y_2O_3\text{-} 99,0\% \text{ em peso} \\ Al_2O_3 - 0,1\% \\ SiO_2 - 0,05\% \\ Fe_2O_3 - 0,05\% \\ Na_2O - 0,05\% \\ HfO_2 - 0,75\% \end{array}$	Ø 98,5 x 20 mm	6,05	20,02%
Z3MT	$\label{eq:royalpha} \begin{array}{l} ZrO_2\text{-}Y_2O_3\text{-} & 99,0\% \text{ em peso} \\ \\ Al_2O_3 &= 0,25\% \\ SiO_2 &= 0,05\% \\ Fe_2O_3 &= 0,05\% \\ Na_2O &= 0,05\% \\ HfO_2 &= 0,6\% \end{array}$	Ø 98,5 x 20 mm	6,05	20,05%
Z5HT	ZrO ₂ componente principal Y ₂ O ₃ < 9% peso Al ₂ O ₃ < 1 % SiO ₂ max. 0,02 % Fe ₂ O ₃ max. 0,02 %	Ø 98,5 x 20 mm	6,06	20,00%

Tabela 3 – Característica dos materiais utilizados neste trabalho (dados dos fabricantes)

Cada disco foi usinado de maneira que após a sinterização, possuíssem um diâmetro entre 12 mm e 14 mm e uma espessura aproximada de 1 mm a 1,4 mm de acordo com a ISO 6872 (ISO 6872, 2015). Esta norma especifica os requisitos e métodos de ensaios de flexão para materiais cerâmicos dentários.

Z3OP Z3MT Z5HT Parâmetros de sinterização 5°C / minuto 5°C / minuto 5°C / minuto Taxa de Aquecimento **Temperatura Final** 1530°C 1450°C 1450°C Patamar 2 horas 2 horas 2 horas 5°C / minuto Taxa de Resfriamento 5°C / minuto 5°C / minuto

A Tabela 4 apresenta um resumo dos ciclos de sinterização adotados neste trabalho.

Tabela 4 - Ciclos de sinterização utilizados neste trabalho

4.1.3. Jateamento dos corpos de prova

As amostras sinterizadas do GRUPO I foram jateadas com Microetcher II (Cosmedent – Chicago / USA) conforme mostrado nas Figuras 8 e 9, seguindo protocolo usual de preparação de superfície da infraestrutura de ZrO_2 para fixação do cimento resinoso, com óxido de alumínio Wilson, fino (Polidental) com partículas de tamanho médio 150 µm, por 10 segundos, com 45º de inclinação e uma pressão de 2 bar.

Figura 8 – Características das partículas de óxido de alumínio comercial utilizado na etapa de jateamento das amostras de zircônia sinterizadas.

Figura 9 - a) Etapa de jateamento realizada com o equipamento microetcher II e óxido de alumínio da Polidental de partículas de 150 μm por 10 segundos; b) Grupos amostrais jateados; c) Amostra antes do jateamento; d) Após jateamento.

4.1.4. Acabamento e polimento dos corpos de prova

Todos os corpos de prova, exceto os jateados, após sinterização, foram embutidos em resina epóxi de baixa viscosidade da marca Redelease e tiveram suas faces desbastadas com lixas de papel e carboneto de silício (Buehler Ltd, Lake Buff, III) com granulação de 320, 400 e 600, sob refrigeração e pressão manual a 200 rpm numa politriz modelo 900 da South Bay Technology (Figura 68 do anexo). No mesmo equipamento, as amostras foram polidas com pastas diamantadas de granulometria 3 e 1 µm, efetuando a lavagem das amostras em água corrente e a substituição dos panos a cada diferente granulometria. Concluído o polimento, os corpos de prova foram removidos do embutimento e imersos em acetona pura em cuba ultrassônica, modelo 1510 da marca Branson, (Figura 69 do anexo) durante 10 minutos e logo após, imersos em álcool isopropílico nas mesmas condições.

4.2. Determinação da Massa Específica e Densidade Relativa

Para determinação da massa específica aparente das amostras de zircônia sinterizadas, utilizou-se o método de imersão proposto por Arquimedes. Amostras em forma de pastilhas (ø12 mm x 1,3mm) tiveram suas superfícies desbastadas lixadas e polidas.

No método de imersão proposto por Arquimedes baseado na norma ASTM B962 (2015), foi utilizada balança eletrônica da marca Ohaus®, modelo Discovery®, com precisão de ± 0,0001g, sendo realizadas 10 medições por amostra. Cada amostra foi primeiramente colocada no prato superior da balança, para medição do peso seco. Em seguida, cada amostra foi colocada em uma cesta imersa em água destilada, para medição do peso imerso. A determinação da massa específica aparente da amostra é dada pela equação IX:

$$\rho_{a} = \frac{A}{A-B}(\rho_{o} - \rho_{L}) + \rho_{L}$$
 (IX)

onde ρ_a é a massa específica aparente da amostra (g/cm³), *A* é o peso da amostra ao ar (g), *B* é o peso da amostra na água (g), ρ_o é a massa específica da água em uma dada temperatura (g/cm³) e ρ_L é a massa específica do ar (0,0012 g/cm³).

A determinação da densidade relativa (DR) das amostras foi dada pela equação X:

$$DR = \frac{\rho_{aparente}}{\rho_{real}} x100 \,[\%] \tag{X}$$

sendo $\rho_{aparente}$ a massa específica medida pelo método de Arquimedes (g/cm³) e ρ_{real} a massa específica fornecida pelo fabricante (g/cm³).

4.3. Módulos elásticos As medidas para determinação dos módulos elásticos das amostras foram realizadas utilizando a técnica de Excitação por impulso, utilizando um medidor não destrutivo, modelo SONELASTIC, segundo a norma E-1876. (Astm E1876, 2015). Essa técnica se baseia nas frequências naturais de vibração dos materiais: Ao sofrer um leve impacto mecânico, o corpo-de-prova emite um som característico que depende de suas dimensões, massa, e propriedades elásticas. A atenuação e as frequências presentes nesta resposta acústica, permitem a determinação precisa dos módulos elásticos e de amortecimento. Foram submetidas a estas medidas uma amostra das zircônias Z3OP, Z3MT e Z5HT, cilíndricas, com Ø14mm x Ø1,3mm sinterizadas e com as superfícies polidas que posteriormente foram submetidas ao ensaio de flexão.

4.4. Degradação Hidrotérmica

Diferentes metodologias têm sido empregadas para estimar a transformação tetragonal em monoclínica. Considerando que o envelhecimento pode ser ativado termicamente, os testes de envelhecimento acelerado podem ser realizados em temperaturas superiores a 37°C, combinando umidade, temperaturas intermediárias (134°C) e pressão. (Chevalier et al., 1999), (De Souza, et al., 2017).

As amostras dos 3 grupos, Z5HT polidas, Z3OP polidas e Z3MT polidas foram degradadas no Reator Hidrotérmico Parr (Figura 70 do anexo) por 5 horas, a uma temperatura de 135°C e pressão de 2 bar.

4.5. Caracterização Microestrutural

4.5.1. Análises por Difractometria de Raios-X

As fases presentes nas amostras foram identificadas por difração de raios X utilizando um difratômetro modelo Panalytical Empyrean (Figura 71

do anexo). A análise foi realizada na superfície das amostras présinterizadas, sinterizadas polidas, antes e após a degradação utilizando geometria Bragg-Brentano, radiação Cu-Kα, 40 kV, 40 mA, (2θ) 10 a 90°, passo de 0,02°, fenda de emissão de 0,6 mm e fenda de recepção de 0,1 mm.

Para determinação das fases presentes, os difratogramas obtidos foram comparados com as fichas catalogadas na base de dados JCPDS (JCPDS-International Centre for Diffraction Data, 1978).

O teor volumétrico de fase monoclínica pode ser calculado utilizando as intensidades integradas do plano cristalino tetragonal (101) de dos planos monoclínicos (111), ($\overline{1}$ 11) aplicando a equação XI, equação modificada de Garvie e Nicholson (Garvie & Nicholson, 1972).

$$X_{m} = \frac{[I_{m}(111) + I_{m}(\overline{1} 11)]}{[I_{m}(111) + I_{m}(\overline{1} 11)] + I_{t}(101)}$$
(XI)

 X_m é o conteúdo monoclínico, I_m (1 11) 2θ = 28,0° a intensidade de pico integrada da primeira fase monoclínica, I_m (111) 2θ = 31,2° a intensidade de pico integrada da segunda fase monoclínica, I_t (101) 2θ = 30,0° a intensidade integrada do pico da fase tetragonal. As áreas de pico integradas foram determinadas e substituídas na equação anterior para calcular a quantidade de conteúdo monoclínico obtido na superfície da amostra e então, foi possível determinar a fração volumétrica, utilizando a equação XII. (Elshazly et al., 2011), (Kern, Lindner, & Gadow, 2016).

$$F_{\rm m} = \frac{1,311 X_m}{1+0,311 X_m} \tag{XII}$$

As Tabelas 5 a 7 a seguir, apresentam as fichas catalográficas das fases presentes na zircônia.

No.	h	k	1	d [A]	2Theta[deg] I [%]
1	1	1	1	2,96800	35,081	100,0
2	2	0	0	2,57100	40,720	25,0
3	2	2	0	1,81800	58,948	55,0
4	3	1	1	1,55000	70,494	40,0
5	2	2	2	1,48400	74,137	6,0
6	4	0	0	1,28500	88,232	5,0
7	3	3	1	1,17900	98,699	10,0
8	4	2	0	1,14900	102,248	6,0
9	4	2	2	1,04900	117,018	10,0
10	5	1	1	0,98910	129,475	6,0
11	4	4	0	0,90860	159,790	3,0

Tabela 5 - Padrão de difração da ZrO2 Cúbica (DRX)

No.	h	k	1	d [A]	2Theta[deg]] I [%]
1	1	0	1	2,95975	35,182	100,0
2	0	0	2	2,58361	40,513	7,0
3	1	1	0	2,55344	41,013	12,0
4	1	0	2	2,10118	50,392	1,0
5	1	1	2	1,81616	59,013	35,0
6	2	0	0	1,80567	59,391	22,0
7	0	0	3	1,72256	62,569	1,0
8	2	0	1	1,70480	63,296	1,0
9	1	0	3	1,55456	70,256	10,0
10	2	1	1	1,54132	70,950	18,0
11	2	0	2	1,47998	74,372	5,0
12	0	0	4	1,29190	87,640	1,0
13	2	2	0	1,27653	88,971	3,0
14	2	1	3	1,17810	98,801	6,0
15	3	0	1	1,17232	99,463	4,0
16	1	1	4	1,15274	101,788	2,0
17	2	2	2	1,14456	102,801	2,0
18	3	1	0	1,14196	103,129	2,0

Tabela 6 - Padrão de difração da ZrO2 Tetragonais (DRX)

No.	h	k	1	d [A] 2	2Theta[deg]	I [%]
1	0	0	1	5,08701	20,255	3,0
2	1	1	0	3,69765	27,999	14,0
3	0	1	1	3,63907	28,459	10,0
4	-1	1	1	3,16470	32,837	100,0
5	1	1	1	2,84063	36,709	68,0
6	2	0	0	2,62268	39,884	21,0
7	0	2	0	2,60618	40,147	11,0
8	0	0	2	2,53992	41,241	13,0
9	-2	0	1	2,49945	41,940	2,0
10	-2	1	0	2,34250	44,898	1,0
11	1	2	0	2,33404	45,069	4,0
12	0	1	2	2,28450	46,102	1,0
13	-2	1	1	2,25274	46,791	1,0
14	-1	1	2	2,21377	47,665	12,0
15	2	0	1	2,19188	48,171	5,0
16	-1	2	1	2,18053	48,438	5,0
17	2	1	1	2,02030	52,560	7,0
18	-2	0	2	1,99101	53,394	6,0
19	-2	1	2	1,85933	57,513	2,0
20	2	2	0	1,84810	57,896	18,0
21	0	2	2	1,81874	58,921	22,0
22	-2	2	1	1,80383	59,457	13,0
23	-1	2	2	1,78297	60,224	5,0
24	0	0	3	1,69371	63,759	11,0
25	2	2	1	1,67723	64,460	1,0
26	1	2	2	1,66070	65,181	11,0
27	3	1	0	1,65712	65,339	11,0
28	-3	1	1	1,65245	65,547	9,0
29	0	3	1	1,64394	65,929	6,0
30	-1	1	3	1,61000	67,503	7,0
31	-1	3	1	1,59235	68,354	4,0
32	-2	2	2	1,58220	68,854	3,0
33	1	3	1	1,54586	70,711	8,0
34	-2	0	3	1,53932	71,056	7,0
35	3	1	1	1,50952	72,680	5,0
36	-3	1	2	1,49596	73,446	5,0
37	1	1	3	1,4//6/	74,508	8,0
38	3	4	0	1,45201	76,056	1,0
39	4	3	0	1,44856	76,270	2,0
40	0	3	4	1,43432	//,165	1,0
41	-2	3	1	1,42616	77,689	2,0
42	0	2	3	1,42006	78,086	6,0
43	-1	3	2	1,41654	78,318	4,0
44	2	3	1	1,36150	82,143	1,0
45	3	2	1	1,34937	83,044	1,0
46	-3	2	4	1,33980	83,770	1,0
47	-2	2	3	1,32534	84,897	2,0
48	-4	0	1	1,32165	85,190	4,0
49	4	0	0	1,31130	86,024	1,0
50	-2	3	2	1,30888	86,222	1,0
51	0	4	0	1,30348	86,667	1,0
52	3	1	2	1,30050	86,915	1,0
53	-3	1	3	1,28622	88,127	1,0
54	0	0	4	1,26995	89,556	2,0
55	1	4	0	1,26469	90,030	4,0
56	-1	1	4	1,24548	91,812	1,0
57	3	3	0	1,23211	93,103	1,0
58	4	0	1	1,22298	94,010	1,0
59	0	3	3	1,21273	95,054	1,0

Tabela 7 – Padrão de difração da ZrO2 monoclínica (DRX)

PUC-Rio - Certificação Digital Nº 1412663/CA

Buscando identificar o efeito da profundidade de penetração nos resultados, o cálculo da profundidade de penetração de raios X na superfície analisada foi baseado na absorção destes raios pelo material. A profundidade de penetração de raios X foi dada pela equação XIII.

$$h_{p} = -\frac{sen \theta}{2 \left(\frac{\mu}{\rho}\right)\rho} \left[\ln \frac{I}{I_{0}} \right]$$
(XIII)

Com:

$$\left(\frac{\mu}{\rho}\right) = w_1(\frac{\mu}{\rho})_1 + w_2(\frac{\mu}{\rho})_2 + w_3(\frac{\mu}{\rho})_3 + \cdots$$

Em que:

 $\left(\frac{\mu}{\rho}\right)$ = coeficiente de absorção de massa [cm²/g] (Zr = 143; O = 11,5; Y = 134) h = profundidade de penetração [µm] θ = ângulo de difração l = intensidade do feixe de raios X difratados l₀ = intensidade de feixes de raios X incidido µ = coeficiente de absorção w = fração em peso de elemento ou componente ρ = massa específica [g/cm³] (Zr = 6,511; O = 1,354; Y = 4,472; ZrO₂.3%Y₂O₃ = 6,051).

4.5.2 Espectrometria Raman

Espectroscopia Raman é uma técnica que usa uma fonte monocromática de luz a qual, ao atingir um objeto, é espalhada por ele, gerando luz de mesma energia (espalhamento elástico) ou de energia diferente (espalhamento inelástico). Na prática, um feixe de radiação laser de baixa potência é usado para iluminar pequenas áreas do objeto de interesse e ao incidir sobre a área definida, é espalhado em todas as direções, sendo que uma pequena parcela dessa radiação é espalhada inelasticamente, isto é, com frequência (ou comprimento de onda) diferente da incidente. A diferença de energia entre a radiação incidente e a espalhada corresponde à energia com que átomos presentes na área estudada estão vibrando e essa frequência de vibração permite descobrir como os átomos estão ligados e ter informação sobre a geometria molecular. (Clark & Dines, 1986), (Faria, Temperini, & Sala, 1999), (Faria, 2011).

$$\lambda = \frac{ch}{\Delta E} \tag{XIV}$$

h = Plank

 ΔE = variação de energia

As ligações moleculares ou cristalinas também podem ser modeladas como uma mola que liga duas massas (m1 e m2) com uma constante de força k. A frequência de vibração pode ser calculada como

$$\varphi = \frac{1}{2\pi} \sqrt{\frac{k_m}{\mu_m}} \tag{XV}$$

Onde

 K_m = constante de mola $\mu_m = \frac{m_1 m_2}{m_1 + m_2}$

Cada molécula ou cristal específico possui suas próprias frequências de vibração que podem ser caracterizadas e identificadas. (Barberis, Merle-Méjean, & Quintard, 1997), (Wulfman, Sadoun, & Chapelle, 2010).

Os espectros Raman deste trabalho foram coletados com um SENTERRA Dispersive Raman Microscope (Bruker / Massachusetts, EUA) na Universidade de Toronto. Um Ar-ion Laser foi usado como fonte de excitação a 532nm de comprimento de onda, objetiva de 50x, incidência de 20mW. O tempo de integração foi de 120 segundos. A Figura 72 do anexo, apresenta ilustração do equipamento utilizado.

4.5.3. Microscopia

Para análise da microestrutura do material por microscopia eletrônica de varredura (MEV), as superfícies polidas das cerâmicas foram reveladas por ataque térmico utilizando forno para sinterização a alta temperatura Modelo Brody NBD-B1700-12IT, com taxa de aquecimento de 25°C/min, temperatura final de 1400°C, com patamar de 15 minutos e resfriamento controlado e taxa de 25°C/min.

Para a observação da microestrutura, promoveu-se também a metalização da superfície das amostras com filme de ouro, tornando-as condutoras, através de metalizadora Bal Tec modelo MED 020.

As observações dos materiais por microscopia eletrônica de varredura foram executadas utilizando microscópio eletrônico de varredura JEOL, modelo JSM-6510LV e EDS - Live Time: 102.1 sec. / Acc.Voltage: 20.0 kV Take Off Angle: 35.0 deg. / Detector: NanoTrace

4.5.3.1. Processamento digital de imagem

Para o processamento digital das imagens foi utilizado o software ImageJ da FIJI. Um modelo do processamento e análise digital de grãos realizado com suas diferentes etapas está descrito abaixo. O processamento digital utilizou uma imagem obtida por MEV com magnificação de 15000x. (Figura 10)

Figura 10 - Imagem original

O filtro Sigma foi aplicado para suavizar a imagem original e logo após uma limiarização no modo Otsu foi realizada.

Figura 11 - Imagem de limiarização no modo Otsu, após o pré-processamento com filtro sigma e correção de contraste

Para a eliminação das espúrias foi utilizado o comando OPEN para eliminação de objetos pequenos (erosão), porém mantendo a área dos

objetos maiores utilizando na sequencia a dilatação.

Para refinar a remoção de espúrias foi utilizada a opção NOISE > REMOVE OUTLIERS seguida da separação dos objetos utilizando o comando WATERSHED (Figura 12).

Figura 12 - Segmentação watershared após eliminação de algumas espúrias

A configuração da unidade escalar foi realizada, utilizando 150 pixels como sendo igual a 1 micrometro.

Foram obtidos os seguintes dados a partir da análise do software (Figura 13):

- Área: Avalia a área. A unidade é sempre elevada ao quadrado
- Perimeter: É o comprimento do limite exterior dos objetos
- *Feret's diameter:* A maior distância entre dois pontos quaisquer ao longo da borda selecionada

- Aspect Relation: Calcula e exibe a Relação de aspecto (é a relação entre o eixo maior e o eixo menor do objeto

Figura 13 - Análise dos grãos

4.6. Análise da rugosidade superficial

A análise da rugosidade superficial foi realizada de um perfilômetro 3D (*New View 7100 Profilometer*), ilustrado na Figura 73 do anexo. Dois parâmetros de rugosidade superficial foram obtidos (Ra e Rz). 4 amostras de cada lote de Y-TZP foram submetidas à avaliação da rugosidade e apresentaram uma área amostral de 0.47 mm x 0.35 mm. Para cada amostra foram analisadas 3 áreas distintas com visualização de 3 linhas cada, sendo utilizado os dados da média desses valores. (Santos, 2017)

4.7. Propriedades mecânicas

4.7.1. Dureza Vickers

A metodologia utilizada para a determinação dos valores de dureza das amostras seguiu a norma ASTM C1327-03 (ASTM C1327, 2003) a qual fornece o método de teste padrão para a obtenção da dureza Vickers de cerâmicas avançadas. Por razões estatísticas, foram realizadas cerca de 5 impressões Vickers nas superfícies de cada uma das 05 amostras de cada grupo, aleatoriamente escolhidas, utilizando-se e aplicando carga de indentação de 1000gF.

As impressões foram realizadas de tal forma que as distâncias entre os centros das impressões fossem superiores a quatro vezes a diagonal da indentação (4d), evitando qualquer possibilidade de interferência do campo de tensão da indentação anterior na nova indentação. As diagonais de impressão são medidas utilizando o microscópio óptico e analisador de imagens acoplado ao microdurômetro, com aumento de 100 x.

Após a medição das diagonais de impressão, foram calculados os valores da dureza Vickers do material (GPa), conforme a Equação XVI:

$$HV = 1,8544 \frac{P}{d^2}$$
(XVI)

Onde *P* é a carga teste aplicada (N), *d* é o comprimento da diagonal da indentação (μ m) e 1,8544 é a constante geométrica do indentador piramidal de diamante.

4.7.2. Resistência mecânica flexural

A resistência mecânica à flexão foi determinada através do ensaio de flexão biaxial, conforme metodologia sugerida pela norma ISO/CD 6872 (ISO 6872, 2015), que descreve os métodos padronizados de testes para resistência à flexão de materiais cerâmicos pra restaurações totalmente cerâmicas, para restaurações metalo-cerâmicas e para próteses dentárias cerâmicas em geral.

Para o ensaio de flexão biaxial em quatro pontos o suporte da amostra possui três esferas de aço com um diâmetro entre 2,5 mm e 6,5 mm, posicionadas 120° em um círculo com um diâmetro de 10 mm a 12 mm. A amostra deve ser colocada concêntrica sobre estes suportes e a carga deve ser aplicada com um pistão plano com diâmetro de 1,4 ± 0,2

mm no centro da amostra, conforme esquematizado na Figura 14.

Figura 14 – Esquema de suporte e punção para realização do ensaio de Flexão Biaxial

O ensaio foi realizado na máquina universal de ensaios EMIC modelo DL 10000 (EMIC Equipamentos e Sistemas de Ensaio LTDA) do laboratório de ensaios mecânicos da Faculdade de Tecnologia da UERJ – Resende (Figura 74 do anexo), com taxa de carregamento de 1 mm/min e célula de carga de 1000 N. O suporte da amostra, para realização deste ensaio, possuía três esferas de aço com um diâmetro entre 2,5 mm, posicionadas 120° em um círculo com um diâmetro de 10 mm (Figura 75 do anexo). A amostra foi colocada concentricamente sobre estes suportes (Figura 76 do anexo) e a carga foi aplicada com um pistão plano com diâmetro de 1,4 mm no centro da amostra (Figura 77 do anexo). Uma película de material não rígido foi colocada entre as esferas de suporte e a amostra e outra película entre o pistão de carga e a amostra para distribuir uniformemente as pressões de contato.

Todas as dimensões dos espécimes foram medidas não admitindo variações acima de 0,01 mm. Em seguida, os espécimes foram posicionados um de cada vez sobre as esferas de apoio da máquina de ensaio de modo que a carga fosse aplicada no centro do corpo de prova. A resistência máxima à flexão foi calculada de acordo com as orientações da norma ISO/CD 6872 (ISO 6872, 2015), através da equação XVII:

$$\sigma = \frac{-0.2387P(X-Y)}{b^2}$$
(XVII)

onde,

 σ = tensão de flexão máxima (MPa)

P = força de ruptura (N)

$$X = (1 + v) \ln \left(\frac{r_2}{r_3}\right)^2 + \left[\frac{(1 - v)}{2}\right] \left(\frac{r_2}{r_3}\right)^2$$

$$Y = (1 + v) \left[1 + \ln \left(\frac{r_1}{r_3}\right)^2 + (1 - v) \left(\frac{r_1}{r_3}\right)^2\right]$$
(XIX)

v = coeficiente de Poisson r_1 = raio do círculo de suporte (mm) r_2 = raio da área carregada (mm) r_3 = raio da amostra (mm) b = espessura da amostra (mm)

Coeficiente de Poisson (v) = 0,25 (Belli et al., 2016)

4.8. Análise Estatística de Weibull

A análise estatística dos grupos de zirconia, submetidos ao ensaio de flexão biaxial foi realizado através da estatística de Weibull (Rinne, 2008) que define um parâmetro para o risco para falha. A função biparametizada da distribuição Weibull foi usada de acordo com a equação XX.

$$Pf = 1 - \exp\left\{\left[\frac{\sigma}{\sigma_0}\right]^m\right\}$$
(XX)

Onde

Pf = probabilidade de falha,

m = modulo de Weibull

 σ_0 = tensão característica para uma probabilidade de resistência de 0.37

(1/e)

 σ = tensão de flexão máxima (MPa)

Os parâmetros de Weibull "m" e σ_0 são obtidos a partir do gráfico:

$$\ln\ln\left[\frac{1}{\left(\frac{1}{w}\right)}\right] vs\ln\sigma$$

Onde

$$w = 1 - (i/(N+1))$$
 (XXI)

 i = posição do corpo de prova ranqueada em uma ordem crescente de resistência

N = número total de corpos de prova utilizados no ensaio

Para resolver uma probabilidade de sobrevivência de 99,9% utilizase a equação XXII

$$0,999 = \exp\left[-\left(\frac{\sigma}{\sigma_0}\right)^m\right] \tag{XXII}$$

5. Resultados e discussão

5.1. Caracterização das matérias-primas

5.1.1.

Densidade relativa das zircônias pré-sinterizadas

A Tabela 8 apresenta os resultados de densidade relativa a "verde" dos corpos-de-prova, antes da sinterização.

Material	Composição	Densidade aparente (g/cm³)	Densidade relativa (%D.T.)
Z3OP	ZrO ₂ (3%mol Y ₂ O ₃)	4,853 ±0,02	80,23 ±0,3
Z3MT	ZrO ₂ (3%mol Y ₂ O ₃)	4,843 ±0,02	80,05 ±0,4
Z5HT	ZrO ₂ (5.2%mol Y ₂ O ₃)	4,831 ±0,01	80,01 ±0,2

Tabela 8 – Densidade dos blocos pré-sinterizados, como recebido

Os resultados indicam que os diferentes materiais apresentam densidade relativa próxima a 80%, ou seja, 20% de porosidade média para ambos os produtos.

Como todos os blocos de zircônia possuem porosidade próxima a 20%, este parâmetro não influencia de forma significativa o grau de tensão imposta a cerâmica durante a usinagem dos corpos de prova utilizados neste trabalho.

5.1.2. Difração de raios-X

A Figura 15 apresenta os resultados da Difração de Raios X dos blocos pré-sinterizados como recebido dos fabricantes.

Figura 15 - Difratogramas de raios X da superfície das amostras pré-sinterizadas como recebidas.

Observa-se que nos blocos convencionais compostos de ZrO₂ com 3% de ítria (VIPI Block Zirconn e VIPI Block Zirconn Translucent), não foi detectada fase monoclínica residual nos blocos pré-sinterizados, dentro dos limites de detecção do difratômetro (3% de volume).

Os blocos contendo 5,2% de ítria (Prettau HT) possuem pequena quantidade de fase monoclínica residual, da ordem de 13,8% volume além da fase cúbica (ZrO₂). Do ponto de vista de usinabilidade, a presença da fase monoclínica pode criar dificuldades na obtenção de geometrias mais complexas com pequenas espessuras. Porém, na usinagem dos corpos de prova propostos neste trabalho, isso não foi observado.

Como se sabe, acima da temperatura de 1170 °C (Barsoum, 2003), os grãos de natureza monoclínica, possivelmente os correspondentes ao menor diâmetro crítico, são submetidos a recuperação de fase tetragonal. Portanto, devido as elevadas temperaturas de sinterização as quais os materiais foram submetidos (1450 °C e 1530 °C), a microestrutura resultante da sinterização é composta majoritariamente de grãos tetragonais, conforme será visto posteriormente.

5.2. Caracterização Após Sinterização

5.2.1 Difração de Raios X

As Figuras 16 a 18 apresentam as análises de difração de raios X das amostras após sinterização e polimento.

Figura 16 - Difratograma de raios X da superfície da amostra ZrO_2 (3%Y₂O₃) sinterizada e polida Z3OP

Figura 17 - Difratograma de raios X da superfície da amostra ZrO_2 (3%Y₂O₃) sinterizada e polida Z3MT

Figura 18 - Difratograma de raios X da superfície da amostra de ZrO₂ (5%Y₂O₃) sinterizada e polida Z5HT

Nota-se nas Figuras, que não existe indicação, dentro dos limites de detecção do difratômetro, da presença da fase monoclínica residual nas amostras contendo 5%Y₂O₃ (Z5HT). Além disso, no caso da Z5HT, observa-se a presença concomitante das fases tetragonal e cúbica, que devido a aproximada relação de parâmetro de rede das duas estruturas, impõe ao difratograma a sobreposição de picos cristalinos, dificultando a precisa quantificação de fase.

Como esperado, este comportamento se deve a altas temperaturas de sinterização utilizadas e a taxa de resfriamento utilizada após a sinterização. Em casos críticos, onde altas taxas de resfriamento são utilizadas (choque térmico), a tensão residual gerada pela variação de temperatura pode resultar em transformação espontânea Tetragonal-Monoclínica nos grãos que excedem o raio crítico.

Nas amostras sinterizadas e polidas das cerâmicas contendo 3%Y₂O₃, Z3OP e Z3MT, nota-se uma discreta transformação de fase T-M, resultante da preparação ceramográfica, com lixamento e posterior polimento, resultando em 7% e 4% volume de fase monoclínica na superfície polida das cerâmicas contendo 3%Y₂O₃ e sinterizadas a 1530 °C e 1450 °C respectivamente.

5.2.2. Espectroscopia Raman

As Figuras 19 a 21 apresentam os espectros de Raman das amostras Z3OP, Z3MT e Z5HT, sinterizadas e polidas.

Figura 19 – Espectro Raman da amostra Z3OP

Figura 20 – Espectro Raman da amostra Z3MT

Figura 21 – Espectro Raman da amostra Z5HT

Os resultados desta análise revelam que somente a fase tetragonal foi obtida nas amostras sinterizadas e posteriormente polidas. Uma pequena diferença é observada na amostra 5%Y₂O₃ (Z5HT), que não exibe o pico com comprimento de onda de 611 cm⁻¹, característico da fase tetragonal, provavelmente devido a presença do pico da fase cúbica que se sobrepõe nesta região a esse pico característico.

Na previsibilidade de restaurações dentárias em zircônia, é importante tentar identificar e mensurar alguma fase cúbica ou monoclínica transformada seja ela gerada por tensões ou por umidade. A espectrometria Raman mostra-se como uma alternativa para a análise da transformação tetragonal-monoclínica. Porém, a profundidade de penetração da radiação utilizada pelo Raman pode chegar a 100 µm e a fase monoclínica, quando presente, está em uma camada superficial muito fina como demonstrado na Figura 22. (Nakamura et al., 2016).

Figura 22 - Espessura da camada monoclínica transformada após degradação hidrotérmica. (Nakamura et al., 2016)

A seguir, nas Figuras 23 a 25, estão demonstrados os espectros característicos de Raman para as fases monoclínica, tetragonal e cúbica respectivamente. (Gogotsi & Domnich, 2003).

Figura 23- Espectro Raman característico da fase monoclínica (Gogotsi & Domnich, 2003)

Comprimento de onda (cm⁻¹)

Figura 24- Espectro Raman característico da fase tetragonal (Gogotsi & Domnich, 2003)

Figura 25 – Espectro Raman característico da fase cúbica (Gogotsi & Domnich, 2003)

Muitas vezes, o perfil de "background" se confunde com o espectro cúbico de baixa intensidade, mostrado na Figura 26. A intensidade cúbica influencia os espectros de Raman até números de onda de 800 cm⁻¹. O

conhecimento desses perfis de fundo ainda é um problema não resolvido. Estudos experimentais devem ser realizados para melhorar a espectroscopia Raman quantitativa para casos multi-fase. Isso pode explicar o não aparecimento da fase cúbica na zircônia Z5HT. (Gogotsi & Domnich, 2003).

Figura 26 - Influência da fase cúbica no background do espectro Raman na zircônia TZP. A área riscada indica conteúdo da fase cúbica. (Gogotsi & Domnich, 2003)

5.2.3.

Microscopia Eletrônica de Varredura (MEV)

As Figuras 27 a 29 apresentam fractografias de superfície de fratura das amostras sinterizadas.

Figura 27 - MEV (Superfície de fratura) das amostras de ZrO₂-3%Y₂O₃ (Z3OP)

Figura 28 - MEV (Superfície de fratura) das amostras de ZrO₂-3%Y₂O₃ (Z3MT)

Figura 29 - MEV (Superfície de fratura) das amostras de ZrO₂-5%Y₂O₃ (Z5HT)

A análise da superfície de fratura das amostras sinterizadas indica que os grãos de zircônia em ambos os materiais estudados, são semiesféricos, com tamanhos diferentes em relação ao tipo de zircônia analisada: A zircônia Z3OP (estabilizada com 3% mol de Y₂O₃, sinterizada a 1530 °C – 2 h) notadamente apresenta os grãos maior tamanho médio. Além disso, a zircônia Z3MT (com 3% mol de Y₂O₃, sinterizada a 1450 °C – 2 h), possui os menores grãos entre as zircônias estudadas. Uma análise mais detalhada em função da microestrutura será realizada mais adiante.

5.2.4. Análise de imagens - determinação do tamanho de grão

As micrografias das superfícies polidas e posteriormente atacadas termicamente, representativas das três cerâmicas sinterizadas, são apresentadas nas Figuras 30 a 32.

Figura 30 - MEV (Superfície polida e atacada) das amostras de ZrO₂-3%Y₂O₃ (Z3OP) sinterizadas a 1530 °C – 2 h

Figura 31 - MEV (Superfície polida e atacada) das amostras de ZrO_2 -3% Y_2O_3 (Z3MT) sinterizadas a 1450 °C – 2 h

Figura 32 - MEV (Superfície polida e atacada) das amostras de ZrO_2-5%Y_2O_3 (Z5HT) sinterizadas a 1450 $^\circ\text{C}$ – 2 h

As rotinas de análises de imagem, resultantes da quantificação de grãos, bem como a planilha contendo essas medições, são apresentadas nas Figuras 78 a 92 do anexo e nas Tabelas 14 a 16 do anexo.

As Figuras 33 a 35 apresentam os resultados da análise de imagem

realizada pra diferentes cerâmicas sinterizadas.

Figura 33 - Análise de imagens e quantificação de ZrO2Z3OP

A análise da Figura 33 indica que as amostras de ZrO_2 Z3OP, apresentam um tamanho médio de grãos de 0,621 µm com um desvio padrão de +/- 0,271µm, majoritariamente compostos de grãos tetragonais. A distribuição de tamanho de grãos indica uma distribuição do tipo monomodal, com grãos que variam de 0,1 até 1,2 µm.

Estudos anteriores relatam que nessa temperatura, (Palmeira, Bondioli, Strecker, & Santos, 2016) há condições térmicas para a total densificação dessa cerâmica e que as partículas cerâmicas iniciais presentes nos pós de partida, são responsáveis pelo espalhamento de tamanho de grãos. Além disso, nessa temperatura, e com o tempo de patamar de sinterização utilizado, não é possível ter crescimento de grãos em escalas consideráveis.

A Figura 34 apresenta os resultados da análise realizada para a ZrO_2 (3%mol Y₂O₃) sinterizada a 1450 °C – 2 h.

Figura 34 - Análise de imagens e quantificação de ZrO2Z3MT

Os resultados apresentados indicam que o tamanho médio de grãos da zircônia tetragonal é da ordem de 0,367 μm com um desvio padrão de +/- 0,133 μm, e distribuição de tamanho de grãos monomodal, de característica estreita em comparação com a ZrO₂ Z3MT.

A Figura 35 apresenta os resultados da análise realizada para a ZrO₂ Z5HT.

Figura 35 - Análise de imagens e quantificação de ZrO₂ Z5HT

É observado uma microestrutura com tamanho médio de grãos da ordem de 0,604 μm com um desvio padrão de +/- 0,319 μm. A distribuição de tamanhos indica que o material possui variações de tamanhos e uma tendência não consolidada com as análises realizadas, de comportamento bimodal.

Uma análise comparativa entre os materiais que possuem 3%mol (Y₂O₃) leva a considerar que o aumento da temperatura de sinterização de 1450 °C – 2 h para 1530 °C – 2 h seria o principal motivo para o aumento do tamanho médio dos grãos de 0,367 μ m para 0,621 μ m.

A análise química fornecida pelo fabricante, indica que apesar do teor de Y₂O₃ ser semelhante, as características químicas dos pós utilizados são diferentes: no caso do Z3MT, há a presença de 0,25% Al₂O₃ na composição. Estudos anteriores relatam que a zircônia sinterizada (Zhang, 2014) com pós de características nanométricas semelhantes, apresentam características que permitem que o material seja sinterizado a temperaturas inferiores, com alta densificação e menores tamanhos médios de grãos.

Assim, uma análise individualizada, comparando estes dois materiais não seria totalmente conclusiva, porém pode-se inferir que a temperatura contribui decisivamente com o menor tamanho de grãos das zircônias contendo $3\%Y_2O_3$ e sinterizada a 1450 °C – 2 h.

A análise Anova indica que houve diferença significativa entre os tamanhos de grãos. O teste Tukey foi realizado, indicando que houve diferença significativa para p<0,05 entre as zircônias Z3OP e Z3MT e também entre as zircônias Z5HT e Z3MT conforme mostrado na figura 36.

Figura 36 – Análise de Variância (Anova) e Tukey do tamanho de grãos das amostras contendo 3% e 5% de itria (Z3OP. Z3MT e Z5HT)

Considerando a composição química como o parâmetro para a análise de resultados, há indícios que a presença de maior teor de Y₂O₃

leva a formação de uma estrutura duplex composta de grãos de ZrO₂ tetragonal e grãos de ZrO₂ cúbico, conforme observado nas caracterizações de difração de raios X e espectrometria Raman. Com isso, essa cerâmica é composta de zircônia parcialmente estabilizada e cada fase cristalina presente no material sinterizado, apresenta tamanho de grãos distintos, porém no tocante ao tamanho médio de grãos, a zircônia Z5HT não difere significativamente da zircônia Z3OP que possui tamanho de grãos mais uniformes.

Evidentemente, a falta de informações prévias relativas as condições de processamento dos blocos pré-sinterizados (pressão de compactação, tipo de prensagem etc.), além do não conhecimento completo da natureza química dos pós de partida, inviabilizam uma conclusão definitiva, porém, os resultados indicam um comportamento microestrutural bifásico na zircônia Z5HT.

5.2.5. Densidade relativa e propriedades mecânicas

A Tabela 9 apresenta os resultados das caracterizações físicas e mecânicas das amostras sinterizadas.

Material	Composição	Densidade aparente (g/cm ³)	Densidade relativa (%T.D.)	Dureza Vickers (HV _{1000gF})	Módulo de Elasticidade (GPa)
Z3OP	ZrO2 (3%mol Y2O3)	6,044±0,03	99,89±0,21	1285±45	197±2
Z3MT	ZrO2 (3%mol Y2O3)	6,047±0,02	99,02±0,12	1278±15	198±3
Z5HT	ZrO ₂ (5.2%mol Y ₂ O ₃)	6,036±0,02	99,95±0,18	1292±29	195±5

Tabela 9 - Resultados obtidos para amostras de zircônia sinterizadas

Os resultados apresentados na Tabela 9 indicam que a densidade relativa em todas as cerâmicas estudadas, foi superior a 99% da densidade teórica, comprovando a efetiva densificação ao utilizar os parâmetros de sinterização recomendados pelos fabricantes. De fato, ao utilizar as temperaturas recomendadas, os resultados até agora apresentados, levam a alta densificação e otimização da fase tetragonal (imprescindível para alta resistência mecânica).

Observando os resultados de dureza Vickers, nota-se que os valores estão na ordem de 1275-1295 HV, o que demonstra a similaridade em os grupos de zircônia estudadas, e não permite, dentro dos limites deste estudo, determinar uma tendência de variação na dureza em função do pequeno aumento de ítria em sua composição química.

Da mesma forma, os valores de módulo de elasticidade são da ordem de 195-198 GPa e não variam consideravelmente em função do teor de ítria ou das fases cristalinas presentes.

5.2.6. Rugosidade 3D

Neste estudo, a Rugosidade 3D objetiva mensurar os danos superficiais causados na zircônia na resistência a fratura das amostras sinterizadas e promover uma análise mais aproximada do comportamento mecânico da zircônia em aplicações reais como prótese dentária.

Vários são os aspectos negativos do aumento da rugosidade superficial em restaurações odontológicas entre eles o aumento do coeficiente de atrito ocasionando um maior desgaste do dente antagonista, o aumento da retenção de biofilme bacteriano ocasionando precoce perda de implantes, dentes naturais e restaurações com términos nesta região, entre outros. (SANTOS, 2017).

O software NewView, utilizado neste trabalho, é uma ferramenta de perfiladores ópticos que caracteriza e quantifica a rugosidade da superfície com alto grau precisão. Todas as medidas são rápidas, não destrutivas e não requerem preparação de amostras.

A Tabela 10 apresenta os resultados de rugosidade nas amostras polidas.

Z3OP – POLIDA										
	Ra PV rms Pico Rz Vale R3z Srmax									
Amostra	μm	μm	μm	nm	nm	nm	nm	Nm		
1	0,031	2.178	0,048	961,42	1319,19	-1216,63	1128,46	2108,72		
2	0,022	2.180	0,027	1053,32	1409,36	-1126,31	1360,04	1400,01		
3	0,037	4.952	0,069	2913,95	3039,42	-2037,65	2280,53	4951,6		
4	0,042	4.891	0,067	3134,93	2903,12	-1755,61	2555,01	4890,54		
Faixa	0,02	3.110	0,042	2297,29	1741,41	1034,04	1504,1	3551,59		
Média	0,033	3.208	0,051	1780,25	1993,82	-1427,96	1674,99	3008,58		
Desvio Padrão	0,008	1.570	0,018	1141,03	894,56	445,76	694,35	1764,06		
Número regiões	4	4	4	4	4	4	4	4		
			Z3N	IT – POLIDA	4					
	Ra	PV	rms	Pico	Rz	Vale	R3z	Srmax ISSO		
Amostra	μm	μm	μm	nm	nm	nm	nm	Nm		
1	0,036	6.288	0,06	5130,12	4548,22	-1157,82	4064,82	5843,87		
2	0,064	8.108	0,097	2907,36	3870,99	-5201,07	3232,12	7491,36		
3	0,056	6.907	0,103	4038,87	6423,68	-2868,49	6440,68	6907,36		
4	0,047	7.103	0,086	4577,43	3070,49	-2526,06	2457,17	6242,5		
Faixa	0,028	1.820	0,043	2222,76	3353,19	4043,25	3983,52	1647,49		
Média	0,049	7.108	0,083	4212,88	4325,84	-2895,59	3908,89	6724,04		
Desvio Padrão	0,012	0,655	0,018	828,85	1285,04	1457,88	1525,82	670,44		
Número regiões	4	4	4	4	4	4	4	4		
				<u> 25HT – PO</u>	LIDA					
	Ra	PV	rms	Pico	Rz	Vale	R3z	SRmax ISSO		
Amostra	μm	μm	μm	nm	nm	nm	nm	Nm		
1	0,031	2,178	0,048	961,42	1319,19	-1216,63	1128,46	2108,72		
2	0,022	2,18	0,027	1053,32	1409,36	-1126,31	1360,04	1400,01		
3	0,038	2111,20	0,048	1160,4	2018,55	-1309,59	2011,50	2338,64		
4	0,024	1,799	0,039	519,99	1245,80	-1279,26	1313,63	1682,34		
Faixa	0,02	3,11	0,042	2297,29	1741,41	1034,04	1504,1	3551,59		
Média	0,040	3,208	0,051	1780,25	1993,82	-1427,96	1674,99	3008,58		
Desvio Padrão	0,008	1,57	0,018	1141,03	894,56	445,76	694,35	1764,06		
Número regiões	4	4	4	4	4	4	4	4		

Tabela 10 – Parâmetros de rugosidade para os 3 grupos de cerâmicas estudadas neste trabalho: amostras sinterizadas e posteriormente polidas

Os resultados indicam que, após o polimento, a rugosidade média (Ra) é da ordem de 0,033 +/- 0,008 μ m para as amostras de Z3OP, de 0,049 +/- 0012 μ m para as amostras Z3MT e 0,040 μ m para as amostras Z5HT.

As Figuras 37 a 39 apresentam exemplos de regiões analisadas neste trabalho.

Figura 37 – Captura 3D da região utilizada para amostras Z3OP, submetida a lixamento e polimento

Figura 38 – Captura 3D da região utilizada para caracterizar amostras Z3MT, submetida a lixamento e polimento

Figura 39 – Captura 3D da região utilizada para caracterizar amostras Z5HT, submetida a lixamento e polimento

Os resultados apresentados na Tabela 10 indicam que a ordem de grandeza da rugosidade Ra é da ordem de 0,033 a 0,049 μ m e indicam baixa rugosidade do conjunto de amostras de zircônia.

Apesar dos valores de Ra apresentados, o valor Rz (relação entre picos e vales) apresenta distinções entre Z3OP e Z3MT, sendo que este último grupo apresenta Rz médio de 4325 nm (4,32 μ m) em comparação com Rz médio de 1993 nm (1,99 μ m).

Esta diferença pode ser caracterizada pela diferença observada nas

duas microestruturas, onde os tamanhos médios de grão são da ordem de 0,6 μm e 0,3 μm para Z3OP e Z3MT respectivamente. Assim, assumindo que os processos de lixamento e polimento tenham sidos similares, materiais com menor tamanho de grão são mais sensíveis a variação de Rz (faixa de picos e vales encontrados nos espaços amostrais analisados).

O grupo de zircônia contendo 5%Y₂O₃ não pode ser analisado comparativamente pois, com será visto posteriormente, possuem energia de fratura distintas das outras zircônias e, portanto, o seu comportamento frente ao processo de preparação superficial é único, porém observa-se baixo Ra e baixo Rz.

5.2.7.

Resistência a flexão e estatística de Weibull

As Figuras 40 e 42 apresentam os resultados das curvas de probabilidade de falha em função da resistência a fratura por flexão, bem como as distribuições de Weibull, de forma individual e comparativamente, entre as cerâmicas à base de zircônia estudas neste trabalho.

Figura 40 – Distribuição de Weibull e curvas de probabilidade de falhas para zircônias sinterizadas e polidas Z3OP

Figura 41 – Distribuição de Weibull e curvas de probabilidade de falhas para zircônias sinterizada e polida Z3MT

Figura 42 – Distribuição de Weibull e curvas de probabilidade de falhas para zircônias sinterizada e polida Z5HT

Figura 43 – Comparativo da distribuição de Weibull e probabilidade de falha entre os diferentes grupos de zircônias estudadas (amostras polidas)

A análise comparativa da Figura 43, indica que o grupo de zircônia Z3OP, apresenta os maiores resultados médios, em torno de 1205 Mpa e os maiores valores absolutos entre os grupos analisados neste trabalho. Além disso, os grupos sinterizados a 1450 °C – 2 h, demonstram que zircônia dopada com $3\%Y_2O_3$, possui resultados médios superiores de resistência a fratura, da ordem de 860 ,70 MPa, em comparação a zircônia dopada com $5\%Y_2O_3$ que apresenta os menores valores médios, cerca de 440,06 MPa.

Apesar do valor médio absoluto da zircônia Z3OP ser superior ao grupo Z3MT, o espalhamento de valores desse segundo grupo é menor, indicando maior confiabilidade desta zircônia frente ao produto sinterizado a 1530 °C. Os valores do módulo de Weibull confirmam este comportamento, com m = 10,93 (Z3MT) em relação a m = 6,04 (Z3OP). Esta maior confiabilidade apresentada pela zircônia Z3MT pode estar relacionada ao histórico microestrutural apresentado por esta zircônia, com grãos de tamanho médio de 0,36 μm e desvio padrão de 0,133 μm.

Conforme caracterização apresentada anteriormente, esta cerâmica possui fase cristalina majoritariamente de estrutura tetragonal (ZrO₂ tetragonal) com capacidade tenacificante. A distribuição estreita e monomodal de tamanho de grãos desta zircônia (Z3MT) contribuem para uma maior homogeneidade de valores de resistência a flexão, frente as amostras Z3OP, o que pode promover maior previsibilidade de falha durante ensaio de flexão biaxial: grãos de tamanhos próximos e formato equiaxial, permitem que a propagação da trinca, durante seu crescimento, ocorra de forma mais coerente e portanto, as falhas por flexão sejam mais uniformes.

A análise dos resultados da zircônia com alta translucidez Z5HT, comparativamente com as ZrO₂ (3%Y₂O₃), indica perdas significativas na resistência a fratura média deste material, com valores na ordem de 48,87% menores do que a zircônia Z3MT, com módulo de Weibull compatível.

A perda de resistência mecânica, apesar de indesejável, é justificada pelo incremento de translucidez que esse material apresenta, decorrente da quantidade de grãos ZrO₂-cúbico presente na microestrutura e comprovados pela análise de EDS (Figuras 93 e 94 do anexo) que indicam 7,78 % em peso de ítrio em comparação com 4,3 % em peso de ítrio para as amostras contendo 3%mol Y₂O₃, na indicação dos fabricantes e comprovado pelas análises de difração de Raios X.

Essa população de grãos cúbicos presentes na microestrutura desses materiais (ZrO₂ 5% molY₂O₃), não possui capacidade tenacificante e, portanto, são caminhos "livres" para a propagação de trincas Intergranulares durante a fratura. Como a análise de tamanho de grão apresenta distribuição do tipo bimodal, com dois grupos de tamanhos de grão bem definidos, acredita-se que a boa confiabilidade deste lote, que apresenta módulo de Weibull na ordem de 6,21, está relacionado ao grupo de grãos de menor tamanho médio, convencionados a pertencer a família de grãos tetragonais, que são majoritários, e que permitem a tenacificação da zircônia.

5.3. Caracterização Após Sinterização e Subsequente Jateamento

5.3.1. Difração de raios-X

Observa-se na Figura 44 que existe presença de fase monoclínica nos difratogramas das amostras contendo 3%mol Y₂O₃. Considerando-se a quantificação, é possível notar a presença de 16,34%, 7,19% e 0% de volume de fase monoclínica para a Z3OP, Z3MT e Z5HT respectivamente.

Figura 44 – Difração de Raios X para amostras sinterizadas e posteriormente jateadas

Dentre as zircônias analisadas, aquela sinterizada a 1530 °C – 2 h, foi a mais suscetível a transformação de fase T-M durante o processo de jateamento abrasivo com Al_2O_3 .

O processo abrasivo de modificação superficial, tecnologicamente necessário para promover aumento da rugosidade superficial dos componentes de zircônia e consequentemente, favorecer a união dessa cerâmica com o cimento resinoso utilizado na cimentação de restaurações dentárias, indicou uma transformação 16,3% em volume dos grãos existentes na camada detectada durante a difração de raios X. Conforme equação teórica utilizada neste estudo (equação XIII), a profundidade de penetração do feixe de raios X na ZrO_2 (Y₂O₃) é da ordem de 6 µm, o que significa que, considerando tamanho médio de grãos de ZrO_2 (Y₂O₃) em torno de 0,621 +/- 0,27 µm, cerca de 9 a 10 camadas internas, a partir da superfície, foram detectadas na análise de raios X e indicaram que 16% desses grãos se transformaram em fase monoclínica.

A cerâmica com 5%Y₂O₃, sinterizada a 1450°C - 2 h, não indica

transformação T-M na camada atingida pelo feixe de difração de raios X (6 μ m de profundidade). Porém, vale ressaltar que apesar de não ter sido possível detectar a presença da fase monoclínica pela análise de difração de raios X, esta pode ocorrer em níveis inferiores ao limite de detecção do difratômetro utilizado neste estudo, que é de cerca de 3% e, portanto, não se pode afirmar a inexistência dessa fase na superfície.

5.3.2. Rugosidade 3D

O grupo de amostras sinterizadas submetidas à jateamento, foi analisado por rugosidade 3D e os resultados estão apresentados na Tabela 11.

Z3OP - JATEADA										
	Ra	PV	rms	Pico	Rz	Vale	R3z	Srmax ISO		
	μm	μm	μm	nm	nm	nm	nm	nm		
1	0.626	22.303	0.865	13559.15	13940.78	-8743.93	11250.89	17865.44		
2	0.466	39.442	0.642	33308.78	23831.40	-6133.00	28157.71	37107.45		
3	0.698	16.142	1.047	6208.81	12404.92	-9933.16	11598.41	12549.99		
4	0.396	12.619	0.578	6242.76	9430.44	-6376.52	8332.07	9737.52		
Faixa	0.302	26.822	0.470	27099.98	14400.96	3800.17	19825.64	27369.93		
Média	0.546	22.627	0.783	14829.88	14901.89	-7796.65	14834.77	19315.10		
Desvio Padrão	0.139	11.903	0.215	12795.13	6240.50	1848.11	9001.93	12331.07		
Número regiões	4	4	4	4	4	4	4	4		
				Z3MT - JA	TEADA					
	Ra	PV	rms	Pico	Rz	Vale	R3z	Srmax ISO		
	μm	μm	μm	nm	nm	nm	nm	nm		
1	0.825	12.575	1.035	6054.62	10504.00	-6520.54	10746.01	11295.77		
2	0.832	20.477	1.087	12362.13	11891.74	-8115.30	10338.79	18888.90		
3	1.546	17.130	1.964	7210.55	11602.70	-9919.91	9954.08	13470.97		
4	1.965	23.690	2.497	6099.50	15612.22	-17590.70	14261.55	21006.54		
Faixa	1.140	11.115	1.462	6307.51	5108.23	11070.16	4307.47	9710.77		
Média	1.292	18.468	1.646	7931.70	12402.66	-10536.61	11325.11	16165.54		
Desvio Padrão	0.562	4.755	0.709	3001.62	2221.65	4903.47	1984.15	4539.72		
Número				4	4	4	4			
regiões	4	4	4	4	4	4	4	4		
regiões	4	4	4	4	4	4	4	4		

	Ra	PV	rms	Pico	Rz	Vale	R3z	Srmax ISO
	μm	μm	μm	nm	nm	nm	nm	nm
1	1.758	24.315	2.226	7233.91	16183.08	-17081.49	15340.27	19665.62
2	1.535	33.860	1.997	18771.49	27986.54	-15088.73	27435.69	25614.96
3	1.099	20.518	1.388	4797.91	16912.37	-15719.96	16559.65	19391.56
4	1.741	26.870	2.200	6598.91	16744.60	-20271.34	14472.57	26468.39
Faixa	0.659	13.342	0.838	13973.58	11803.45	5182.61	12963.12	7076.82
Média	1.533	26.391	1.953	9350.56	19456.65	-17040.38	18452.04	22785.13
Desvio Padrão	0.307	5.622	0.390	6364.80	5695.14	2308.91	6049.97	3778.09
Número regiões	4	4	4	4	4	4	4	4

Tabela 11 – Parâmetros de rugosidade para os 3 grupos de cerâmicas estudadas neste trabalho: amostras sinterizadas e posteriormente jateadas

Os resultados apresentados na Tabela 11, apresentam rugosidades médias na ordem de 0,546 +/- 0,13 μ m para Z3OP. Os outros dois grupos de zircônias analisadas e sinterizadas a 1450 °C – 2 h, apresentam rugosidade Ra = 1,292 +/- 0,56 μ m e 1,533 +/- 0,31 μ m para Z3MTe Z5HT, respectivamente, indicando que estas zircônias foram mais suscetíveis a abrasividade imposta pelo jateamento com partículas de alumina.

Isso pode ter ocorrido devido ao tamanho dos grãos de zircônia característicos de cada material. Os grãos de maior tamanho médio presentes na Z3OP, possuem capacidade de resistir ao impacto das partículas de alumina, possivelmente por serem submetidos a transformação de fase durante o impacto. No caso dos grãos menores, pode estar ocorrendo uma transformação instantânea dessa fase tetragonal em monoclínica e os grãos ficam mais suscetíveis ao descolamento. Este comportamento parece ter sido semelhante para a Z5HT.

Comparativamente, este grupo de amostras apresenta rugosidade muito maior do que o grupo de amostras polidas.

O parâmetro Rz indica valores de 14,901 +/- 6 μ m para Z3OP, 12,4 +/- 2,22 μ m para Z3MT e 19,456 +/- 5,69 μ m para Z5HT. Esses valores são

superiores aos valores obtidos na análise das amostras polidas e devem ser considerados no comportamento mecânico destes materiais.

As Figuras 45 a 47 apresentam capturas de regiões representativas de superfícies jateadas.

Figura 45 – Mapeamento de rugosidade 3D para amostras Z3OP,sinterizadas, polidas e posteriormente jateadas

Figura 46 – Mapeamento de rugosidade 3D para amostras Z3MT, sinterizadas, polidas e posteriormente jateadas

Figura 47 – Mapeamento de rugosidade 3D para amostras Z5HT, sinterizadas, polidas e posteriormente jateadas

5.3.3. Resistência a flexão e estatística de Weibull

As Figuras 48 a 50 apresentam os resultados dos ensaios de flexão biaxial realizado nas amostras submetidas a jateamento.

Figura 48 – Distribuição de Weibull e curva de probabilidade de falhas para zircônias sinterizadas e jateadas Z3OP

Figura 49 – Distribuição de Weibull e curva de probabilidade de falhas para zircônias sinterizadas e jateadas Z3MT

Figura 50 – Distribuição de Weibull e curva de probabilidade de falhas para zircônias sinterizadas e jateadas Z5HT

Figura 51 – Comparativo da distribuição de Weibull e probabilidade de falha entre os diferentes grupos de zircônias estudadas (amostras jateadas)

A análise comparativa da Figura 51, indica que o grupo de zircônias jateadas Z3OP, apresenta os maiores resultados médios, em torno de 920,29 Mpa e o grupo de zircônias jateadas Z5HT o menor valor médio, em torno de 276 MPa. Os grupos sinterizados a 1450 °C – 2 h, demonstram

que zircônia dopada com 3%Y₂O₃, possui resultado médio superior de resistência a fratura, da ordem de 677 MPa, em comparação a zircônia dopada com 5%Y₂O₃.

Apesar do valor médio absoluto da zircônia Z3OP ser superior ao grupo Z3MT, o espalhamento de valores desse segundo grupo é menor, indicando maior confiabilidade desta zircônia frente ao produto sinterizado a 1530 °C. Os valores do módulo de Weibull confirmam este comportamento, com m = 10,93 (Z3MT) em relação a m = 6,04 (Z3OP). Esta maior confiabilidade apresentada pela zircônia Z3MT pode estar relacionada ao histórico microestrutural apresentado por esta zircônia, com grãos de tamanho médio de 0,36 µm e desvio padrão de 0,133 µm.

A análise comparativa da Figura 51, indica que os resultados apresentados para o grupo das amostras jateadas com partículas de alumina (Al₂O₃), notadamente indicam uma redução considerável de resistência a fratura por flexão nos corpos sinterizados jateados frente às amostras com superfícies polidas.

A considerável redução dos valores de resistência à fratura está diretamente relacionada ao aumento da rugosidade superficial apresentados por todos os tipos de zircônia estudados neste trabalho. De fato, a rugosidade e as alterações geométricas, dessas falhas, possibilitam diferentes pontos para início da propagação de trincas, conforme será avaliado posteriormente.

Do ponto de vista superficial, a distribuição de falhas superficiais (provocada pelo jateamento abrasivo, com picos e vales heterogêneos), aliado ao aumento da fase monoclínica transformada, pode acarretar em diminuições consideráveis na resistência a fratura.

A Figura 52 apresenta gráfico indicando a perda da resistência a fratura média, após o jateamento abrasivo.

Figura 52 – Comparativo da distribuição de resistência a fratura média entre os diferentes grupos de zircônias estudadas (amostras polidas e jateadas)

A análise da Figura 52 indica que, do ponto de vista das normas de uso das cerâmicas ZrO₂ (Y₂O₃) para próteses dentárias, é necessário levar em consideração o tratamento superficial ao qual o material está submetido durante a sua preparação laboratorial, restringindo o uso das cerâmicas a situações-limite de trabalho.

O desempenho e indicação corretos das cerâmicas odontológicas estão diretamente relacionadas a resistência da restauração. A Tabela 12 mostra um exemplo de alguns sistemas cerâmicos utilizados na odontologia, relacionados com a classificação das cerâmicas adotada pela ISO 6872 em amostras polidas, e as propriedades mecânicas relacionadas ao uso clínico. (ISO 6872, 2015)
Classe	Indicação clínica recomendada	<u>Resistência</u> <u>Flexural [</u> MPa] Valores mínimos	Tipos de Cerâmicas [Resistência Flexural em MPa]
1	 a. Cerâmica estética para cobertura de infraestrutura cerâmica ou metálica b. Cerâmica monoclínica: unitária anterior próteses, veneers, inlays ou onlays. 	a. 100 b. 100	Feldspática [60] Leucita [90 a 160]
2	 a. Cerâmica monolítica: cimentada adesivamente, unitária anterior e posterior b. Infraestrutura cerâmica para prótese unitária anterior ou posterior, cimentada adesivamente 	a. 100 b. 100	Feldspática [60] Leucita [90 a 160] Dissilicato de lítio [300 a 400]
3	Cerâmica monolítica: não adesiva, unitária anterior e posterior	300	Cerâmicas aluminizadas [130] Sistema cerâmica infiltrado por vidro Spinélio [280 a 380] Dissilicato de lítio [300 a 400]
4	 a. Infraestrutura cerâmica para cimentação não adesiva, unitária anterior e posterior b. Infraestrutura cerâmica para prótese de 3 elementos não envolvendo molares. 	a. 300 b. 300	Sistema cerâmica infiltrado por vidro Alumina [250 a 600] Dissilicato de lítio [300 a 400]
5	Infraestrutura cerâmica para próteses de 3 elementos envolvendo molares	500	Sistema cerâmica infiltrado por vidro Zircônia [420 a 700] Dissilicato de lítio [300 a 400] até 2º pré-molar
6	Infraestrutura cerâmica para próteses envolvendo 4 ou mais elementos.	800	Cerâmica policristalina de zirconia [900 a 1200]

Tabela 12 – Classificação, resistência flexural e indicação de alguns sistemas cerâmicos dentários

Os resultados apresentados para o grupo das amostras jateadas com partículas de alumina (Al₂O₃) neste trabalho, mostram que a redução considerável de resistência a fratura por flexão nos corpos sinterizados jateados frente às amostras com superfícies polidas é passível de acarretar também uma mudança em sua indicação clínica.

Para o grupo Z3OP o valor médio encontrado reduz de 1205 MPa para 920 MPa quando a cerâmica sofreu jateamento. Uma redução de 23,65% nos valores médios. Este grupo não sofreu alteração em sua indicação clínica.

O mesmo comportamento é observado em amostras Z3MT, que apresenta redução de resistência a flexão média de 860 MPa (polidas) para 676 MPa nas amostras jateadas, o que corresponde a uma redução de 21,39%. Esta redução acarreta em uma mudança de indicação clínica, de acordo com a norma ISO 6872, que se não considerada pelo dentista pode resultar no insucesso no tratamento odontológico.

O grupo Z5HT apresenta reduções de 440,06 MPa (polidas) para 275,84 MPa nas amostras jateadas, o que corresponde a uma redução de 37,31%. Esta redução também acarreta uma mudança de indicação clínica, de acordo com a norma ISO 6872, que se não for considerada pelo dentista, pode resultar no insucesso no tratamento odontológico em médio e longo prazo, da mesma maneira que o grupo Z3MT.

5.4.

Caracterização Após Sinterização, Polimento, Recuperação de Fase Tetragonal e Degradação

5.4.1 Difração de Raios X

A Figura 53 apresenta os difratogramas das superfícies das amostras degradadas hidrotermicamente por 134 °C, 5 horas e 2 bar de pressão.

Figura 53 – Difratogramas de raios X da superfície das amostras sinterizadas, recuperadas a 1200 $^{\circ}$ C e degradadas hidrotermicamente por 134 $^{\circ}$ C – 5h – 2 bar

Os resultados da quantificação de fase monoclínica baseados na equação XI indicam que as amostras Z5HT não apresentam fase monoclínica transformada, dentro dos limites de detecção do difratômetro, ou seja, se existem, são menores do que 3% vol., da camada de 6 µm onde existe a penetração do feixe de raios X. Isso indica que esse material é o mais resistente a degradação hidrotérmica dentre as amostras analisadas e nas condições experimentais deste trabalho.

As amostras contendo 3%Y₂O₃, Z3OP ou Z3MT, apresentam teores de fase monoclínica de 16,06% vol. e 5,7% vol., respectivamente, indicando que o material submetido a sinterização a 1450 °C – 2 h é mais resistente a degradação hidrotérmica do que o material sinterizado a 1530 °C – 2 h.

5.4.2. Microscopia eletrônica de varredura (MEV)

As Figuras 54 a 56 representam micrografias das amostras de zircônia após teste de degradação hidrotérmica realizados em reator

Figura 54 - Micrografias de amostras Z3OP, submetidas a degradação hidrotérmica de 134 °C – 5h- 2 bar.

Figura 55 - Micrografias de amostras Z3MT, submetidas a degradação hidrotérmica de 134 °C – 5h- 2 bar

Figura 56 - Micrografias de amostras Z5HT, submetidas a degradação hidrotérmica de 134 °C – 5h – 2 bar

Uma análise microestrutural preliminar indica o aparecimento de vazios superficiais que são sugeridos terem se originado pelo despendimento de grãos transformados e subtraídos durante o teste de degradação.

Comparativamente, fica evidenciado que as amostras Z3OP são mais suscetíveis a este comportamento e somando-se ao fato que os resultados de difração de raios X indicam considerável teor de fase monoclínica (16% vol.), pode-se inferir que este material possui a menor resistência a degradação hidrotérmica entre os grupos experimentais estudados.

A amostra Z5HT, praticamente não apresentaram este comportamento.

5.4.3. Rugosidade 3D

A Tabela 13 e as Figuras 57 a 59 apresentam resultados da

	Z3OP - DEGRADADA											
	Ra	PV	rms	Pico	Rz	Vale	R3z	SRmax ISO				
	μm	μm	μm	nm	nm	nm	nm	nm				
1	0,013	1,897	0,023	1234,69	1145,12	-662,68	898,7	1606,49				
2	0,018	0,253	0,022	65,63	141,23	-187,53	109,43	235,85				
3	0,019	1,637	0,03	656,13	1232,64	-981,1	1181,84	1251,22				
4	0,021	0,46	0,027	198,12	213,31	-261,48	133,21	331,39				
Faixa	0,013	2,978	0,015	1911,61	1451,31	1065,96	1072,41	2994,88				
Média	0,019	1,496	0,028	826,36	864,97	-669,25	653,29	1331,14				
Desvio Padrão	0,005	1,205	0,006	789,56	650,29	457,43	497,48	1213,45				
Número regiões	4	4	4	4	4	4	4	4				
Z3MT - DEGRADADA												
	Ra	PV	rms	Pico	Rz	Vale	R3z	SRmax ISO				
	μm	μm	μm	nm	nm	nm	nm	nm				
1	0,021	3,427	0,052	2383,76	2185,13	-1043,27	2518,84	3427,03				
2	0,016	0,585	0,021	371,1	334,83	-213,6	325,34	374,3				
3	0,035	0,555	0,043	227,46	239,53	-327,79	178,37	346,73				
4	0,023	1,694	0,035	785,35	1221,38	-908,49	1188,75	1506,34				
Faixa	0,023	2,872	0,036	2156,3	1945,6	829,66	2340,48	3080,29				
Média	0,021	1,414	0,033	841,61	890,3	-572,18	920,31	1244,02				
Desvio Padrão	0,009	1,217	0,015	886,14	820,72	375,88	976,32	1309,2				
Número regiões	4	4	4	4	4	4	4	4				
Z5HT - DEGRADADA												
	Ra	PV	rms	Pico	Rz	Vale	R3z	SRmax ISO				
	μm	μm	μm	nm	nm	nm	nm	nm				
1	0,019	3,549	0,053	2327,29	2135,13	-1221,52	1637,2	3548,36				
2	0,009	3,976	0,018	2746,72	1791,83	-1229,15	1544,66	3491,97				
3	0,011	1,329	0,019	565,21	965,71	-763,99	819,73	1326,27				
4	0,009	2,247	0,018	1392,03	1036,67	-855,28	795,2	2247,31				
Faixa	0,01	2,647	0,038	2181,52	1274,62	565,28	887,35	2222,09				
Média	0,012	2,489	0,024	1542,06	1357,97	-946,76	1109,33	2391,37				
Desvio Padrão	0,004	1,23	0,016	973,31	569,38	263,17	441,57	1095,94				
Número regiões	1	Δ	Λ	1	4	1	1	4				

rugosidade 3D obtidas para as amostras submetidas a teste de degradação hidrotérmica.

Tabela 13 – Resultados da rugosidade 3D das amostras sinterizadas, polidas, posteriormente recuperadas termicamente e degradadas a 134 °C – 5h – 2 bar

Figura 57 – Captura 3D da amostra Z3OP, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar

Figura 58 – Captura 3D da amostra Z3MT, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar

Figura 59 – Captura 3D da amostra Z5HT, polida, após tratamento térmico a 1200 °C e degradada a 134 °C – 5h – 2 bar

Os resultados de rugosidade 3D medidos nas amostras submetidas a degradação hidrotérmica e apresentados na Tabela 13 indicam que mesmo após os testes de envelhecimento em reator hidrotérmico, o grau de polimento dessas amostras é extremamente elevado, com rugosidade Ra média de 0,019 (+/- 0,005) μ m, 0,021 (+/- 0,009) μ m e 0,012 (+/- 0,004) μ m para as amostras Z3OP, Z3MT e Z5HT respectivamente. Os níveis de Rz apresentam-se extremamente baixos, com valores de 865 nm até 1357 nm.

Se forem comparados esses valores, com aqueles obtidos com as

amostras polidas, (Tabela 10) esses resultados indicam que o grau de polimento nestes lotes foi superior. Porém, nenhuma conexão pode ser inferida aos testes de degradação, pois os lotes das amostras foram lixados e polidos em épocas distintas. Portanto, não há possibilidade de relacionar os resultados com as degradações sofridas pelos materiais.

Por outro lado, o alto grau de polimento alcançado nestes materiais pode ter influenciado a resistência a flexão das cerâmicas, como será visto posteriormente.

5.4.4.

Resistência a flexão e estatística de Weibull

As Figuras 60 a 62 apresentam os resultados dos ensaios de flexão e da análise estatística das amostras submetidas a ensaio de degradação hidrotérmica.

Figura 60 – Distribuição de Weibull e curvas de probabilidade de falhas para zircônia sinterizada e degradada Z3OP

Figura 61 – Distribuição de Weibull e curvas de probabilidade de falhas para zircônia sinterizada e degradada Z3MT

Figura 62 – Distribuição de Weibull e curvas de probabilidade de falhas para zircônia sinterizada e degradada Z5HT

Figura 63 – Comparativo da distribuição de Weibull e probabilidade de falha entre os diferentes grupos de zircônias estudadas (amostras degradadas)

Os resultados de flexão das amostras submetidas ao teste de degradação hidrotérmica, indicam que as amostras com ZrO_2 (3%Y₂O₃) possuem resistência a flexão média de 1074,36 MPa (m = 10,32) e 899,31 MPa (m = 7,08) quando sinterizadas a 1530 °C – 2 h e 1450 °C – 2 h

respectivamente.

A Figura 64 apresenta um comparativo de comportamento, aliando os parâmetros de interesse para cada grupo cerâmico com 3%mol Y₂O₃.

Figura 64 - Comparativo de comportamento das cerâmicas VIPI Block Zirconn e VIPI block Zirconn Translucent

A análise destes resultados demonstra que a zircônia Z3OP com os melhores resultados de resistência a fratura, mesmo após o teste de degradação. Um considerável aumento da fase monoclínica foi observado e coerente com os dados da literatura (Inokoshi et al., 2014), e é reconhecido neste trabalho como o maior responsável pela queda na resistência a fratura (cerca de 11%). É observado ainda que o módulo de Weibull não sofre variações consideráveis e mesmo com o maior grau de polimento, essas amostras sofrem redução na resistência mecânica.

Ao analisar as amostras Z3MT, observa-se um discreto aumento na resistência a fratura, e uma pequena fase monoclínica transformada, cerca de 5,7% em volume, após os testes de degradação.

Alguns autores (Amaral, Cesar, Bottino, Lohbauer, & Valandro, 2016), (Aurélio, Marchionatti, Montagner, May, & Soares, 2016) asseguram que uma transformação T-M precoce, pode melhorar a resistência a fratura.

Porém neste trabalho, acredita-se que os valores estão elasticamente similares, e que a menor rugosidade Ra pode ter levado a manutenção dos valores de resistência a fratura. De qualquer forma, comparativamente este material apresenta maior confiabilidade que o Z3OP (m = 10,9) e é muito mais resistente a degradação hidrotérmica que os sinterizados a 1530°C.

Os resultados dos ensaios de flexão realizados nas amostras Z5HT, indicaram que estes materiais não apresentam transformação T-M perceptível as técnicas de caracterização realizadas. De forma surpreendente, os resultados médios de resistência a fratura indicaram valores médios superiores a 618 MPa, enquanto as amostras apenas polidas, apresentaram resistência de 460 MPa. Os valores de módulo de Weibull permaneceram na ordem de 6 a 7, indicando que não há alterações confiabilidade cerâmicas dessas após processo de na 0 recuperação/degradação, nos parâmetros de testes adotados neste trabalho. Não é possível notar alterações microestruturais que justifiquem estes resultados de resistência mecânica após teste de degradação. Assim, associa-se que os maiores valores obtidos podem estar relacionados ao maior grau de polimento (Ra 0,036 μ m – 0,012 μ m) entre os lotes.

Figura 65 - comparativo de comportamento das cerâmicas utilizadas neste trabalho

A comparação dos resultados dos grupos estudados (Figura 65), mostra que as alterações na resistência mecânica das amostras degradadas, após as condições de degradação utilizadas neste trabalho (ISO 13356, 2008), não foram suficientes para alterar a indicação clínica de acordo com a Tabela 12. Porém, o jateamento com óxido de alumínio, responsável pelo aumento da resistência de união entre a restauração de zircônia e o agente cimentante resinoso, diminuiu de forma considerável a resistência mecânica de todas as zircônias, alterando a indicação clínica

6. Conclusões

Esta pesquisa teve como objetivos, avaliar as propriedades mecânicas, a resistência à degradação hidrotérmica e ao jateamento com óxido de alumínio, da zircônia tetragonal policristalina estabilizada com 5,2%mol (Prettau Anterior Super-Translúcida da Zirkonzahn) em comparação à zircônia tetragonal policristalina estabilizada com por 3%mol de Y₂O₃ (VIPI Block Zirconn) e também a zircônia tetragonal policristalina estabilizada (VIPI Block Zirconn) de Y₂O₃ com translucidez melhorada (VIPI Block Zirconn Translucent).

Com base nos resultados obtidos podemos concluir que:

A sinterização promoveu o crescimento de grãos com uma distribuição do tipo monomodal nas zircônias com menor teor de Y₂O₃ enquanto a presença de uma fase duplex na zirconia com maior teor de Y₂O₃, promoveu um crescimento de grãos com uma distribuição do tipo bimodal, devido a presença da fase cúbica.

Após os tratamentos realizados, (Grupo I - polimento, Grupo II - polimento e jateamento e Grupo III - polimento, recuperação e degradação), a única zircônia que não apresentou fase monoclínica foi a Z5HT. A zircônia com Z3OP, foi mais suscetível a degradação hidrotérmica apresentando maior transformação T-M.

O teor de ítria e a tempertura de sinterização não afetaram de forma significativa a dureza e o módulo de elasticidade das zircônias estudadas.

O grupo de zircônia Z3OP, apresentou os maiores resultados médios e absolutos de resistência flexural, porém com um maior espalhamento de resultados. O grupo de zircônia contendo 5% de Y₂O₃, apresentou os menores resultados médios e absolutos de resistência a flexão.

O jateamento reduziu consideravelmente a resistência a fratura por flexão de todos os grupos, promovendo a mudança na indicação clínica das cerâmicas Z3MT e Z5HT.

7 Trabalhos futuros

Sugestões para futuros trabalhos complementares

 Análise microscópica de difração de elétrons no Microscópio Eletrônico de Varredura (EBSD - Electron BackScattered Difraction) e no Microscópio Eletrônico de Transmissão, para identificação das fases tetragonal e cúbica.

- Ensaio flexural de 4 pontos com amostras entalhadas previamente, comparando os resultados obtidos e realizando também análise de tenacidade a fratura.

 Análise de Raman com diferentes comprimentos de onda e escalonamento de foco para mensurar a quantidade de fase cúbica superficial.

- Determinação do raio crítico de falha através da teoria clássica de materiais frágeis de Griffith.

8 Referências bibliográficas

AARONSON, H., ENOMOTO, M., & LEE, J. Mechanisms of Diffusional **Phase Transformations in Metals and Alloys.** 1^a ed. 2010. CRC Press. https://doi.org/10.1201/b15829

AMARAL, M., CESAR, P. F., BOTTINO, M. A., LOHBAUER, U., & VALANDRO, L. F. Fatigue behavior of Y-TZP ceramic after surface treatments. Journal of the Mechanical Behavior of Biomedical Materials, 57,149–156, 2016. https://doi.org/10.1016/j.jmbbm.2015.11.042

ANUSAVICE, KENNETH J. SHEN, CHIAYI RAWLS, H. R. Phillips Materiais Dentários 12 ed., 2013.

ARDLIN, B. I.. Transformation-toughened zirconia for dental inlays, crowns and bridges: Chemical stability and effect of low-temperature aging on flexural strength and surface structure. **Dental Materials**, 18(8), 590–595, 2002. https://doi.org/10.1016/S0109-5641(01)00095-1

ASSIS, J. M. K. de. Estudo da Estabilização de Fases Cristalinas de Cerâmicas do Sistema Nióbia – Ítria – Zircônia, 213, 2014. https://doi.org/sid.inpe.br/mtc-m21b/2014/02.17.18.50

ASTM B962-17, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle. www.astm.org

ASTM C1327-03, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, 2003. www.astm.org

ASTM E1876-15, **Standard Test Method for Dynamic Young's Modulus**, **Shear Modulus**, and **Poisson's Ratio**, 2015. www.astm.org

AURÉLIO, I. L., MARCHIONATTI, A. M. E., MONTAGNER, A. F., MAY, L. G., & SOARES, F. Z. M., Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis. **Dental Materials**, 32(6), 827–845, 2016 https://doi.org/10.1016/j.dental.2016.03.021

BAILEY, J. E.. The Monoclinic-Tetragonal Transformation and Associated Twinning in Thin Films of Zirconia. Proceedings of the Royal Society A: **Mathematical, Physical and Engineering Sciences**, 279(1378), 395–412, 1964. https://doi.org/10.1098/rspa.1964.0112

BAN, S. Reliability and properties of core materials for all-ceramic dental restorations. **Japanese Dental Science Review**, 44(1), 3–21, 2008. https://doi.org/10.1016/j.jdsr.2008.04.001

BARBERIS, P., MERLE-MÉJEAN, T., & QUINTARD, P. On Raman spectroscopy of zirconium oxide films. **Journal of Nuclear Materials**, 246(2–3), 232–243, 1997. https://doi.org/10.1016/S0022-3115(97)00038-X

BARSOUM, M. W. Fundamentals Of Ceramics. Vasa, 622, 2003.

BELLI, R., WENDLER, M., DE LIGNY, D., CICCONI, M. R., PETSCHELT,
A., PETERLIK, H., & LOHBAUER, U. Chairside CAD/CAM materials. Part1: Measurement of elastic constants and microstructural characterization.DentalMaterials,
33(1),
1-15,
2016.https://doi.org/10.1016/j.dental.2016.10.009

BESTGEN, H., CHAIM, R., & HEUER, A. H. Thin Foil Phase Transformations of Tetragonal ZrO_2 in a ZrO_2 -8 wt% Y_2O_3 Alloy. Journal of the American Ceramic Society, 71(10), 826–831, 1988. https://doi.org/10.1111/j.1151-2916.1988.tb07530.x

BONA, A. DELLA, PECHO, O. E., & ALESSANDRETTI, R. Zirconia as a dental biomaterial. **Materials**, 8(8), 4978–499,12015. https://doi.org/10.3390/ma8084978

CAIN, M. G. **Zirconia Toughened Ceramics**, 1990. http://wrap.warwick.ac.uk/35750/1/WRAP_THESIS_Cain_1990.pdf

CANNON, W., Transformation Toughned Ceramics for Structural Applications. apud J. B. WACHTMAN, **Treatise on Materials Science and Technology** (p. 195–228), 1989.

CATTANI-LORENTE, M., DURUAL, S., AMEZ-DROZ, M., WISKOTT, H. W. A. W. A. A. W. A., & SCHERRER, S. S., Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. **Dental Materials**, 32(3), 394– 4022015. https://doi.org/10.1016/j.dental.2015.12.015

CAHN, R.W. LIFSHITZ, E.M.. Concise Encyclopedia of Materials Characterization R.W. Cahn and E.M. Lifshitz Eds. University of Cambridge, Cambridge, UK. 691p. 1992

CHEVALIER, J., CALES, B., & DROUIN, J. M. Low-Temperature Aging of Y-TZP Ceramics. Journal of the American Ceramic Society, 82(8), 2150–2154, 1999. https://doi.org/10.1111/j.1151-2916.1999.tb02055.x

CHEVALIER, J., & GREMILLARD, L. Zirconia as a Biomaterial. **Comprehensive Biomaterials** (Vol. 20, p. 95–108). Elsevier, 2011. https://doi.org/10.1016/B978-0-08-055294-1.00017-9

CHEVALIER, J., GREMILLARD, L., VIRKAR, A. V., & CLARKE, D. R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. **Journal of the American Ceramic Society**, 92(9), 1901–1920, 2009. https://doi.org/10.1111/j.1551-2916.2009.03278.x

CHRISTIAN, J. W. The Theory of Transformations in Metals and Alloys. Materials Today, vol. 6, 2003. https://doi.org/10.1016/S1369-7021(03)00335-3

CLARK, R. J. H., & DINES, T. J. Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. **Angewandte Chemie** Int. Ed., 25, 131–158, 1986. https://doi.org/10.1002/anie.198601311

DE SOUZA, G. M., ZYKUS, A., GHAHNAVYEH, R. R., LAWRENCE, S. K., & BAHR, D. F. Effect of accelerated aging on dental zirconia-based materials. Journal of the Mechanical Behavior of Biomedical Materials, 65, 256–263, 2017. https://doi.org/10.1016/j.jmbbm.2016.08.023

DENRY, I., & HOLLOWAY, J. A. Ceramics for dental applications: **A review. Materials**, 3(1), 351–368, 2010. https://doi.org/10.3390/ma3010351

DENRY, I., & KELLY, J. R. State of the art of zirconia for dental applications.DentalMaterials,24(3),299–307,2008.https://doi.org/10.1016/j.dental.2007.05.007

DEVILLE, S., CHEVALIER, J., FANTOZZI, G., BARTOLOMÉ, J. F., REQUENA, J., MOYA, J. S., DÍAZ, L. A. Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. **Journal of the European Ceramic Society**, 23(15), 2975–2982, 2003. https://doi.org/10.1016/S0955-2219(03)00313-3

ELSHAZLY, E. S., EL-HOUT, S. M., & ALI, M. E. S. Yttria Tetragonal Zirconia Biomaterials: Kinetic Investigation. Journal of Materials Science and Technology, 27(4), 332–337, 2011. https://doi.org/10.1016/S1005-0302(11)60070-4

FABRIS, S., PAXTON, A. T., & FINNIS, M. W. A stabilization mechanism of zirconia based on oxygen vacancies only, **Acta Materialia**, 50, 5171–5178, 2002. https://doi.org/10.1016/S1359-6454(02)00385-3

FADDA, G., TRUSKINOVSKY, L., & ZANZOTTO, G. Unified Landau
description of the tetragonal, orthorhombic, and monoclinic phases of
zirconia.PhysicalReview,
66(17),2002.https://doi.org/10.1103/PhysRevB.66.174107

FAGES, M., RAYNAL, J., TRAMINI, P., CUISINIER, F., & DURAND, J.-C. Chairside Computer-Aided Design/Computer-Aided Manufacture All-Ceramic Crown and Endocrown Restorations: A 7-Year Survival Rate Study. **The International Journal of Prosthodontics**, 2–6, 2017 https://doi.org/10.11607/ijp.5132

FARIA, D. L. A. Entenda o que é espectroscopia Raman. **Quimica Viva** - CRQ-IV, 4. 2011.

http://www.crq4.org.br/default.php?p=texto.php&c=quimica_viva

FARIA, D. L. A. DE, TEMPERINI, M. L. A., & SALA, O. Vinte anos de efeitoSERS.QuímicaNova,22(4),541–552,1999.https://doi.org/10.1590/S0100-40421999000400013

GAHLERT, M., KNIHA, H., WEINGART, D., SCHILD, S., GELLRICH, N.-C., & BORMANN, K.-H. A prospective clinical study to evaluate the performance of zirconium dioxide dental implants in single-tooth gaps. **Clinical Oral Implants Research**, 0, 1–9, 2015. https://doi.org/10.1111/clr.12598

GALLINO, F., VALENTIN, C. DI, & PACCHIONI, G. Band gap engineering of bulk ZrO₂ by Ti doping, **Physical Chemistry Chemical Physics**, 17667–17675, 2011. https://doi.org/10.1039/c1cp21987a

GARVIE, R. C. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. **The Journal of Physical Chemistry**, 69(4), 1238–1243, 1965. https://doi.org/10.1021/j100888a024

GARVIE, R. C., HANNINK, R. H., & PASCOE, R. T. Ceramic steel? **Nature**, 258(5537), 703–704, 1975. https://doi.org/10.1038/258703a0

GARVIE, R. C., & NICHOLSON, P. S. Phase Analysis in Zirconia Systems. Journal of the American Ceramic Society, 55(6), 303–305, 1972. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x

GENG, J. Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3(2), 128, 2011. https://doi.org/10.1364/AOP.3.000128

GLUSKER, J. P. & TRUEBLOOD, K. N. **Crystal Structure Analysis: A Primer**, 3ed. 276p, 1998. https://global.oup.com/academic/product/crystalstructure-analysis-9780199576357?cc=pr&lang=en&#

GOGOTSI, Y., & DOMNICH, V. **High-Pressure Surface Science and Engineering**. Department of Materials Science and Engineering, Drexel University, USA, Institute of Physics Publishing Bristol and Philadelphia 632p, 2003.

GREEN, D. J. An Introduction to the Mechanical Properties of Ceramics., Cambridge Solid State Science Series, Cambridge University Press, 336p. 1998. https://doi.org/10.1017/CBO9780511623103

GREENBERG, J. R., & HO, P. P. Communicating facial plane information to the dental laboratory: Introducing the facial plane relator device. **Journal of Prosthetic Dentistry**, 86(2), 173–176, 2001. https://doi.org/10.1067/mpr.2001.116773

GUI, J., & XIE, Z. Phase transformation and slow crack growth study of Y-TZP dental ceramic. **Materials Science and Engineering**, 676, 531–535, 2016. https://doi.org/10.1016/j.msea.2016.09.026 GUO, X., & SCHOBER, T. Water Incorporation in Tetragonal Zirconia. **Journal of the American Ceramic Society**, 87(4), 746–748, 2004. https://doi.org/10.1111/j.1551-2916.2004.00746.x

GUPTA, T. K. BECHTOLD, J. H. KUZNICKI, R. C. CADOFF, L. H. Stabilization of tetragonal phase in polycrystalline zirconia, **Journal of Materials Science**, 2421–2426, 1977.

HANNINK, R. H. J., KELLY, P. M., & MUDDLE, B. C. Transformation Toughening in Zirconia-Containing Ceramics. **Journal of the American Ceramic Society**, 83(3), 461–487, 2004. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

HEIMANN, R., & LEHMANN, H. Bioceramics - A Historical Perspective. In Bioceramic Coatings for Medical Implants. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2015. https://doi.org/10.1002/9783527682294.ch1

HEUER, A. H., LANTERI, V., FARMER, S. C., CHAIM, R., LEE, R. R., KIBBEL, B. W., & DICKERSON, R. M. On the orthorhombic phase in ZrO2based alloys. **Journal of Materials Science**, 24(1), 124–132, 1989. https://doi.org/10.1007/BF00660943

HEUER, A. H., RUHLE, M., & MARSHALL, D. B. On the Thermoelastic Martensitic Transformation in Tetragonal Zirconia. **Journal of the American Ceramic Society**, 73(4), 1084–1093, 1990. https://doi.org/10.1111/j.1151-2916.1990.tb05161.x

HOU, B., KIM, S., KIM, T., KIM, J., HONG, S., BAHN, C. B., KIM, J. H. The Hydration Structure at Yttria-Stabilized Cubic Zirconia (110)-Water Interface with Sub-Ångström Resolution. **Nature**, 6(1), 27916, 2016. https://doi.org/10.1038/srep27916

INOKOSHI, M., VANMEENSEL, K., ZHANG, F., MUNCK, J. DE, ELIADES, G., MINAKUCHI, S., VLEUGELS, J. (). Aging resistance of surface-treated dental zirconia. **Dental Materials**, 1–13, 2014. https://doi.org/10.1016/j.dental.2014.11.018

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, Dentistry – Ceramic materials, **ISO 6872**, 2015-06: 28p.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, Implants for surgery – Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP), **ISO 13356**, 2015: 13p

JCPDS - International Centre For Diffraction Data, License Agreement For Pdf-2, 12 Campus Boulevard, Newtown Square, PA 19073-3273 U.S.A., 2013.

JOHANSSON, C., KMET, G., RIVERA, J., LARSSON, C., & VULT VON STEYERN, P. Fracture strength of monolithic all-ceramic crowns made of

high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. **Acta Odontologica Scandinavica**, 72(2), 145–153, 2014. https://doi.org/10.3109/00016357.2013.822098

KELLY, J. R., & BENETTI, P. Ceramic materials in dentistry: Historical evolution and current practice. **Australian Dental Journal**, 56(SUPPL. 1), 84–96, 2011. https://doi.org/10.1111/j.1834-7819.2010.01299.x

KELLY, J. R., & DENRY, I. Stabilized zirconia as a structural ceramic: An overview. **Dental Materials**, 24(3), 289–298, 2008. https://doi.org/10.1016/j.dental.2007.05.005

KELLY, P. M., & BALL, C. J. Crystallography of Stress???Induced Martensitic Transformations in Partially Stabilized Zirconia. **Journal of the American Ceramic Society**, 69(3), 259–264, 1986. https://doi.org/10.1111/j.1151-2916.1986.tb07421.x

KELLY, P. M., & FRANCIS ROSE, L. R. The martensitic transformation in ceramics--its role in transformation toughening. Progress. **Materials Science**, 47(5), 463–557, 2002. papers2://publication/uuid/4879555D-AB69-472F-A092-EFC962EB3543

KERN, F., LINDNER, V., & GADOW, R. Low-Temperature Degradation Behaviour and Mechanical Properties of a 3Y-TZP Manufactured from Detonation-Synthesized Powder, **Journal of Ceramic Science and Technology**, 322, 313–322, 2016. https://doi.org/10.4416/JCST2016-00036

LANGE, F. F., DUNLOP, G. L., & DAVIS, B. I. Degradation During Aging of Transformation-Toughened Materials at 250 °C, **Journal of the American Ceramic Society**, 40, 237–240, 1986.

LEE, T. H., LEE, S. H., HER, S. B., CHANG, W. G., LIM, B. S., Effects of Surface Treatments on the Susceptibilities of Low temperatures Degradation by Autoclaving in Zirconia. **Jounal of Biomedical Materials Research.** part B, 100, 1334-1343, 2012

LI, R. W. K., CHOW, T. W., & MATINLINNA, J. P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. **Journal of Prosthodontic Research**, 58(4), 208–216, 2014. https://doi.org/10.1016/j.jpor.2014.07.003

LYON, D., CHEVALIER, J., GREMILLARD, L., & CAM, C. A D. Zirconia as a Biomaterial. **Comprehensive Biomaterials**, 20, 95–108, 2011. https://doi.org/10.1016/B978-0-08-055294-1.00017-9 MADFA, A. A., AL-SANABANI, F. A., AL-QUDAMI, N. H., AL-SANABANI, J. S., & AMRAN, A. G. Use of Zirconia in Dentistry: An Overview. **The Open Biomaterials Journal**, 5(1), 1–9, 2014. https://doi.org/10.2174/1876502501405010001

MANICONE, P. F., ROSSI LOMMETTI, P., & RAFFAELLI, L. An overview of zirconia ceramics: Basic properties and clinical applications. **Journal of Dentistry**, 35(11), 819–826, 2007. https://doi.org/10.1016/j.jdent.2007.07.008

MARINO, L. F. B., & BOSCHI, A. O. A Expansão Térmica de Materiais Cerâmicos Parte I: Introdução, Aplicações e Composição da Massa. **Cerâmica Industrial**. Departamento de Engenharia de Materiais, Universidade Fedral de São Carlos SP, 17-21p, jan-abr, 1998

McMEEKING, R. M., & EVANS, A. G. Mechanics of Transformation??? Toughening in Brittle Materials. Journal of the American Ceramic Society, 65(5), 242–246, 1982. https://doi.org/10.1111/j.1151-2916.1982.tb10426.x

MERIANI S. & PALMONARI, C. Zirconia'88., Journal of the Franklin Institute vol. 278. Dordrecht: Springer Netherlands, 1989. https://doi.org/10.1007/978-94-009-1139-0

MIYAZAKI, T., NAKAMURA, T., MATSUMURA, H., BAN, S., & KOBAYASHI, T. Current status of zirconia restoration. **Journal of Prosthodontic Research**, 57(4), 236–261, 2013. https://doi.org/10.1016/j.jpor.2013.09.001

MO, W. H., & BINDL, A. All-ceramic, chair-side computer-aided design/ computer-aided machining restorations. **Dental Clinics Of North America**, 46, 405–426, 2002. https://doi.org/http://dx.doi.org/10.1016/ S0011-8532(01)00007-6

MUCCILLO, E. N. S. Condutores de íons oxigênio: uma breve revisão. **Cerâmica**, 54(330), 129–144, 2008. https://doi.org/10.1590/ S0366-69132008000200002

NAKAMURA, K., HARADA, A., ONO, M., SHIBASAKI, H., KANNO, T., NIWANO, Y., ORTENGREN, U. Effect of low-temperature degradation on the mechanical and microstructural properties of tooth-colored 3Y-TZP ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 53, 301–311, 2016. https://doi.org/10.1016/j.jmbbm.2015.08.031

PALMEIRA, A. A., BONDIOLI, M. J., STRECKER, K., & SANTOS, C. DOS. Densification and grain growth of nano- and micro-sized Y-TZP powders. Ceramics International, 42(2), 2662–2669, 2016. https://doi.org/10.1016/j.ceramint.2015.10.073

PASHLEY, D. H., SANO, H., CIUCCHI, B., YOSHIYAMA, M., & CARVALHO, R. M. Adhesion testing of dentin bonding agents: a review. **Dental materials,** official publication of the Academy of Dental Materials, 11(2), 117–125, 1995. https://doi.org/10.1016/0109-5641(95)80046-8

PEREIRA, G. K. R., VENTURINI, A. B., SILVESTRI, T., DAPIEVE, K. S., MONTAGNER, A. F., SOARES, F. Z. M., & VALANDRO, L. F. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 55, 151–163, 2015. https://doi.org/10.1016/j.jmbbm.2015.10.017

PICONI, C., CONDO, S. G., & KOSMAČ, T. Alumina- and Zirconia-based Ceramics for Load-bearing Applications. **Advanced Ceramics for Dentistry**, 2014. https://doi.org/10.1016/B978-0-12-394619-5.00011-0

PICONI, C., & MACCAURO, G. Zirconia as a ceramic biomaterial. **Biomaterials**, 20(1), 1–25, 1999. https://doi.org/10.1016/S0142-9612(98)00010-6

PLATT, P., FRANKEL, P., GASS, M., HOWELLS, R., & PREUSS, M. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys. **Journal of Nuclear Materials**, 454(1–3), 290–297, 2014. https://doi.org/10.1016/j.jnucmat.2014.08.020

RAMESH, T.R., GANGAIAH, M., HARISH, P.V., KRISHNAKUMAR, U., NADAKISHORE, B. Zirconia ceramics as a dental Biomaterial - An Over view. Trends. **Biomaterials & Artificial Organs**, 26(3), 154–160, 2012. https://www.researchgate.net/profile/Ramesh_T_r/publication/233933980_Zirconia_Ceramics_as_a_Dental_Biomaterial_-

_An_Over_view/links/02bfe50d1b9ba2adaf000000.pdf?origin=publication_ detail

RAUT, A., RAO, PL., & RAVINDRANATH, T. Zirconium for esthetic rehabilitation: An overview. **Indian Journal of Dental Research**, 22(1), 140, 2011. https://doi.org/10.4103/0970-9290.79979

RAGHAVAN, S & NARAYANACHARI, K.V.L.V., Stress and texture development during sputtering of yttria, zirconia, and yttria stabilized zirconia films on Si substrates. **Journal of Applied Physics** 112, 074910 (2012); doi: 10.1063/1.4757924

RENDTORFF, N. Materiales cerámicos del sistema Mullita Zirconia Zircón; propiedades mecánicas, de fractura y comportamiento frente al choque térmico. 2009. Tese de Doutorado Departamento de Química, Universidad Nacional de La Plata, La Plata.

RICHERT, R., GOUJAT, A., VENET, L., & VIGUIE, G. Review article Intraoral scanner technologies: a review to make a successful impression, **Journal of Healthcare Engineering,** 1–25, 2017. https://doi.org/10.1155/2017/8427595 RINNE, H. **The Weibull Distribution Handbook** 2008. http://reliawiki.org/ index.php/The_Weibull_Distribution

RIZKALLA, A. S., & JONES, D. W. Mechanical properties of commercial high strength ceramic core materials. **Dental Materials**, 20(2), 207–212, 2004. https://doi.org/10.1016/S0109-5641(03)00093-9

SAMIS, Z. M. Degradação da Microestrutura e da Tenacidade à Fratura da Zircônia tetragonal Policristalina com Adições de Ítria em meio Aquoso Fisiológico. Departamento de Engenharia de Materiais, Faculdade de Engenharia, UNICAMP, Dissertação de Mestrado, 1995

SANTOS, H. S. dos. Propriedades Ópticas, Mecânicas e Resistência a Degradação Hidrotérmica da Zircônia Tetragonal Policristalina Parcialmente Estabilizada por Ítria de Translucidez Melhorada com e sem a Adição de Fe₂O₃. Tese de Doutorado, Instituto Militar de Engenharia, 2017

SATO, T., & SHIMADA, M. Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water. **Journal of the American Ceramic Society**, 68(6), 356–356, 1985. https://doi.org/10.1111/j.1151-2916.1985.tb15239.x

SCHUBERT, H., & FREY, F. Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations, **Journal of the European Ceramic Society**, 25, 1597–1602, 2005. https://doi.org/10.1016/j.jeurceramsoc.2004.03.025

SEN, N., & US, Y. O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. **Journal of Prosthetic Dentistry**, 1–7, 2017. https://doi.org/10.1016/j.prosdent.2017.06.012

SIMBA, B. G., SANTOS, C. DOS, STRECKER, K., ALMEIDA JUNIOR, A. A. DE, & ADABO, G. L. Recovery of tetragonal phase from previously transformed Y-TZP. **Materials Research**, 19(4), 829–833, 2016. https://doi.org/10.1590/1980-5373-MR-2015-0426

SOLDERA, F., MU, F., GAILLARD, Y., JIME, E., & ANGLADA, M. Quantification of hydrothermal degradation in zirconia by nanoindentation, **Acta Materialia**, 4206–4216, 2008. https://doi.org/10.1016/j.actamat.2008.04.050

SOENEN, R., OLLING G. J. Advanced CAD/CAM Systems. R. Soenen & G. J. Olling, Orgs, Boston, MA: Springer US, 270p. 1995. https://doi.org/10.1007/978-0-387-34834-6

TINSCHERT, J., ZWEZ, D., MARX, R., & ANUSAVICE, K. J. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics.

Journal of dentistry, 28(7), 529–35, 2000. https://doi.org/10.1016/S0300-5712(00)00030-0

UMERI, A. **Study of Zirconia's ageing for applications in dentistry**. Tese de Doutorado, Departamento de Materiais e Recursos Naturais. Universidade de Estudos de Trieste. 90p. 2010. https://www.openstarts.units.it/bitstream/10077/3446/1/umeri_phd.pdf

WANG, J., & STEVENS, R. Zirconia-toughened alumina (ZTA) ceramics. **Journal of Materials Science**, 24(10), 3421–3440, 1989. https://doi.org/10.1007/BF02385721

WANG, Y., XU, F., GAUVIN, R., KONG, M., KHAN, M., LIU, Z., & ZENG, Y. Growth modes for monoclinic yttria-stabilized zirconia during the martensitic transformation. **Journal of the American Ceramic Society**, May, 4874–4883, 2017. https://doi.org/10.1111/jace.15004

WENDLER, M., BELLI, R., PETSCHELT, A., MEVEC, D., HARRER, W., LUBE, T., LOHBAUER, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. **Dental Materials**, 33(1), 1–11, 2016. https://doi.org/10.1016/j.dental.2016.10.008

WULFMAN, C., SADOUN, M., & LAMY DE LA CHAPELLE, M. Interest of Raman spectroscopy for the study of dental material: The zirconia material example. **Irbm**, 31(5–6), 257–262, 2010. https://doi.org/10.1016/j.irbm.2010.10.004

YOSHIMURA, H. N., MOLISANI, A. L., NARITA, N. E., GONÇALVES, M. P., & CAMPOS, M. F. DE. Zircônia parcialmente estabilizada de baixo custo produzida por meio de mistura de pós com aditivos do sistema MgO-Y2O3-CaO. **Cerâmic**a, 53(326), 116–132, 2007. https://doi.org/10.1590/S0366-69132007000200003

YOSHIMURA, M., NOMA, T., KAWABATA, K., & SOMIYA, S. Role of H₂O on the degradation process of Y-TZP, **Journal of Materials Science**, 6, 465–467, 1987.

ZHANG, Y. Making yttria-stabilized tetragonal zirconia translucent. **Dental Materials**, 30(10), 1195–1203, 2014. https://doi.org/10.1016/j.dental.2014.08.375

Figura 66 – Disposição dos corpos de prova dentro dos blocos cerâmicos, criado pelo software de usinagem

Figura 67 – Sistema de Fresagem ultracompacto VIPI MINI K4 e o layout de retirada de corpos de prova dentro do bloco de Y-TZP

Figura 68 - Politriz Modelo 900 da South Bay Technology

Figura 69 - Cuba ultrassônica 1510 - Branson

Figura 70 – Reator hidrotérmico

Figura 71 - Difratômetro de raios-X

Figura 72 - Espectrofotômetro Raman

Figura 73 - New View 7100 Profilometer

Figura 74 - Máquina universal de ensaios EMIC

Figura 75 – Suporte da amostra com as esferas de aço

Figura 76 – Amostra posicionada sobre as esferas de aço

Figura 77 - Carga aplicada com um pistão plano de diâmetro de 1,4 mm no centro da amostra

Figura 78 - Imagem original da amostra Z5HT

Figura 79 - Imagem de limiarização no modo Otsu, após o pré-processamento com filtro sigma e correção de contraste da amostra Z5HT

Figura 80 - Segmentação watershared após eliminação de algumas espúrias da amostra Z5HT

Figura 81 - Mensuração da unidade da escala da amostra Z5HT

Figura 82 - Análise dos grãos da amostra Z5HT

	area	perimetro	feret x	feret y	feret ângulo	RA
1	0.044	0.99	0.007	0.113	15.173	2.066
2	0.34	2.262	0.3	0.587	48.489	1.229
3	0.145	1.773	0.82	0.007	151.39	1.903
4	4 0.202 2.301 1.313		1.313	0.027	1.236	2.905
5	0.177 1.827 2.16 0.387 35.811		35.811	1.499		
6	0.307	2.419	2.707	0.007	145.911	1.198
7 0.151		2.131	3.227	0.007	178.224	3.292
8	0.47	2.96	4.24	0.833	60.709	1.246
9	0.222	2.24	4.727	0.007	173.29	1.771
10	0.075	1.458	5.527	0.007	153.146	2.297
11	0.377	3.063	5.973	0.027	0.944	2.524
12	0.038	0.809	8.267	0.007	150.573	1.666
13	0.353	2.481	7.013	0.627	42.483	1.255
14	0.373	2.709	7.513	0.66	28.457	1.682
15	0.061	1.109	4.013	0.507	79.261	1.526
16	0.155	2.13	5.46	0.207	163.843	1.878
17	0.105	1.655	0.007	0.807	88.854	2.836

	1 1			1		1
19	0.132	1.541	3.327	0.227	162.759	1.777
20	0.133	1.496	1.627	0.567	30.847	1.761
21	0.496	3.029	7.673	0.973	43.394	1.339
22	0.065	1.212	1.44	0.293	131.186	1.561
23	0.152	1.599	1.133	0.793	61.75	1.019
24	0.047	0.977	2.56	0.373	145.176	1.753
25	0.363	2.622	4.773	0.927	35.433	1.351
26	0.862	4.025	1.387	1.013	15.586	1.237
27	0.075	1.092	6.233	0.413	113.459	1.307
28	0.113	1.476	5.787	0.473	159.179	1.592
29	0.276	2.231	6.733	1.133	82.093	1.348
30	0.661	3.668	2.98	0.653	166.109	1.691
31	1.005	4.246	0.467	1.893	73.276	1.35
32	0.296	2.114	5.473	1.193	75.7	1.19
33	0.083	1.251	1.173	1.007	57.011	1.878
34	0.34	2.345	2.573	1.367	67.595	1.43
35	0.661	3.518	5.647	1.413	13.377	1.224
36	0.138	1.706	4.24	0.96	26.565	1.422
37	0.082	1.097	7.42	1.027	78.486	1.107
38	0.162	1.644	7.027	0.673	117.824	1.097
39	0.04	0.874	0.007	1.093	70.56	2.353
40	0.221	2.085	4.713	0.973	113.334	1.8
41	1.034	4.365	3.42	1.76	4.554	1.408
42	0.133	1.669	7.287	1.207	6.981	2.068
43	0.111	1.34	1.207	1.027	136.771	1.242
44	0.261	2.216	8.253	1.84	75.5	1.639
45	0.103	1.385	5.107	1.167	151.821	1.029
46	0.295	2.633	2.92	1.36	6.116	1.07
47	0.031	0.772	6.76	1.127	168.69	1.507
48	0.348	3.018	0.007	2.34	84.167	2.778
49	0.063	1.064	7.74	1.387	30.256	1.524
50	0.06	1.027	6.947	1.413	37.451	1.815
51	0.081	1.197	1.58	1.173	147.6	1.344
52	0.036	0.737	5.527	1.173	112.62	1.253
53	0.246	2.019	6.713	1.18	93.778	1.244
54	0.206	1.886	7.287	1.24	119.82	1.239

0.756

8.507

0.173

18

0.02

2.511

93.731

55	0.334	2.37	0.953	1.76	15.471	1.291
56	0.865	3.948	2.227	2.393	43.452	1.179
57	0.464	3.076	5.06	1.64	175.629	1.741
58	0.556	3.749	1.913	1.413	103.719	2.41
59	0.373	2.607	6.753	2.2	63.435	1.441
60	0.266	2.147	7.747	1.413	114.228	1.287
61	0.505	2.866	4.873	2.56	79.099	1.13
62	0.346	2.382	6.127	1.72	140.505	1.177
63	0.321	2.839	8.407	2.847	83.884	2.695
64	0.032	0.737	0.9	2.013	82.504	1.138
65	0.267	2.085	3.307	1.773	102.918	1.26
66	0.043	0.924	7.4	1.82	154.44	1.446
67	0.226	1.967	0.273	2.247	18.8	1.486
68	0.846	4.116	1	1.927	111.349	1.693
69	0.571	3.135	3.767	2.107	160.297	1.122
70	0.171	2.018	7.313	2.507	39.068	2.115
71	0.399	2.686	7.9	2.06	94.3	1.32
72	0.124	1.612	3.667	2.067	114.499	1.456
73	0.271	2.238	5.88	2.893	82.528	1.571
74	0.061	1.133	5.56	2.16	114.274	1.289
75	0.261	2.112	3.04	2.213	97.74	1.232
76	0.386	2.817	6.647	2.98	52.087	1.379
77	0.467	2.832	0.507	3.227	68.937	1.404
78	0.336	2.611	0.153	2.26	108.677	2.051
79	0.18	1.939	6.253	3	69.326	2.364
80	0.385	2.44	5.087	2.593	157.944	1.157
81	0.126	1.467	2.127	2.587	6.934	1.434
82	0.075	1.252	7.26	2.647	2.862	1.306
83	0.447	2.854	4.3	3.313	60.403	1.376
84	0.118	1.468	2.553	2.953	61.091	1.396
85	0.29	2.396	3.14	2.933	6.759	1.918
86	0.027	0.74	4.82	2.753	35.096	1.966
87	0.064	1.08	7.667	2.653	94.316	1.274
88	0.72	3.744	6.667	3	138.417	1.567
89	0.19	1.764	1.953	3.313	88.713	1.068
90	0.044	0.891	4.82	2.76	155.136	1.412
91	0.072	1.116	8.1	3.093	70.017	1.329
	1					1

92	0.053	1.219	8.287	2.747	123.207	1.298
93	0.058	0.962	2.393	3.067	61.294	1.064
94	0.042	0.87	3.9	3.093	50.042	1.273
95	0.224	2.084	5.64	3.407	31.232	1.749
96	0.977	4.268	2.48	4.247	65.171	1.547
97	0.057	1.05	4.893	3.16	51.71	1.17
98	0.61	3.341	0.527	3.24	171.198	1.084
99	0.073	1.076	7.733	3.013	143.13	1.489
100	1.123	4.834	3.593	4.413	79.315	1.11
101	0.016	0.517	2.193	3.14	20.323	1.669
102	0.135	1.843	7.66	3.027	106.429	1.144
103	0.04	0.88	0.007	3.033	146.976	1.191
104	0.241	1.989	5.1	3.46	35.348	1.273
105	0.723	3.651	6.44	3.093	117.408	1.413
106	0.059	1.07	3.907	3.1	149.199	1.563
107	0.426	3.108	8.1	3.1	111.926	2.108
108	0.121	1.586	1.533	3.24	154.335	1.792
109	0.187	1.881	4.5	3.487	27.135	1.056
110	0.052	1.063	2.107	3.5	76.218	1.887
111	0.249	2.025	0.007	3.32	149.783	1.169
112	0.174	2.007	6.053	3.267	104.5	2.663
113	0.08	1.183	4.133	3.573	25.346	1.328
114	0.21	2.065	1.207	3.947	29.946	1.607
115	0.213	1.9	5.507	4.02	55.342	1.377
116	0.085	1.21	7.98	3.453	96.613	1.534
117	0.103	1.391	5.033	3.573	168.996	1.802
118	0.096	1.363	1.96	3.96	74.389	1.522
119	0.051	1.017	4.42	3.713	7.667	1.497
120	0.042	0.946	7.7	3.88	63.905	1.95
121	0.029	0.856	0.007	3.647	110.556	1.819
122	0.328	2.49	4.74	3.733	141.618	1.697
123	0.296	2.328	0.147	3.827	169.15	1.47
124	0.027	0.787	4.367	3.96	79.563	1.291
125	0.083	1.174	4.433	3.84	156.541	1.161
126	0.051	0.973	7.713	3.9	171.529	1.157
127	0.392	2.526	7.02	4.147	154.954	1.083
128	0.15	1.593	1.387	4.16	18.642	1.748
L	1	1	1	1	I	1

129	0.207	2.04	2.02	3.92	126.545	1.734
130	0.084	1.177	5.753	4.02	173.66	1.347
131	0.144	1.772	0.007	4.6	88.332	1.623
132	1.187	4.459	4.207	3.96	101.31	1.136
133	0.599	3.126	0.747	4.947	62.339	1.321
134	0.079	1.186	4.573	4.12	161.003	1.269
135	0.601	3.113	7.827	4.113	132.647	1.254
136	0.078	1.156	5.44	4.24	5.194	1.159
137	0.724	3.803	2.733	4.067	119.548	1.215
138	0.049	0.866	6.1	4.207	24.864	1.227
139	0.198	1.857	6.393	4.08	161.565	1.657
140	0.345	2.485	1.487	4.287	141.746	1.576
141	0.215	2.037	5.613	4.7	46.202	1.21
142	0.075	1.046	2.413	4.407	175.601	1.086
143	0.062	1.1	0.26	4.467	26.565	1.134
144	0.284	2.526	4.747	4.813	46.153	1.081
145	0.079	1.246	5.247	4.427	8.616	1.81
146	0.069	1.049	6.16	4.287	127.972	1.148
147	0.076	1.199	6.76	4.533	10.62	1.707
148	0.109	1.453	6.473	4.467	111.801	1.299
149	0.046	0.958	7.207	4.473	134.275	1.651
150	0.401	2.804	2.447	4.493	102.281	1.728
151	0.488	2.848	0.213	5.467	70.32	1.273
152	0.091	1.234	7.48	4.547	128.517	1.207
153	0.155	1.969	5.073	5.007	40.236	1.95
154	0.019	0.571	6.24	4.613	151.113	1.492
155	0.018	0.565	1.46	4.6	122.196	1.877
156	0.604	3.239	6.667	4.893	169.634	1.421
157	0.013	0.562	1.147	4.8	49.97	2.562
158	0.353	3.049	1.047	5.233	30.256	1.326
159	0.027	0.733	5.973	4.773	12.095	1.641
160	0.366	2.414	6.267	4.733	100.091	1.353
161	0.271	2.194	1.867	4.767	104.931	1.285
162	0.108	1.745	5.467	4.96	8.561	2.91
163	0.02	0.659	7.767	4.827	148.173	1.41
164	0.266	2.242	4.5	5.407	27.711	1.28
165	0.117	1.393	0.893	5.36	78.232	1.254
					1	

166	0.093	1.274	8.193	5.18	40.696	1.118
167	0.099	1.386	3.347	5.1	164.814	1.32
168	0.084	1.25	7.78	5.013	153.435	1.804
169	0.366	2.434	2.84	5.013	132.905	1.137
170	0.198	1.802	5.053	5.5	39.5	1.408
171	0.312	2.327	5.567	5.113	149.816	1.242
172	1.387	5.059	7.267	6.393	40.949	1.014
173	0.04	0.985	0.007	5.213	117.897	1.981
174	0.264	2.147	0.2	5.52	172.816	1.428
175	0.518	3.384	1.233	6.093	36.719	1.124
176	0.216	1.963	3.433	5.84	56.014	1.567
177	0.079	1.256	1.033	5.267	110.772	1.267
178	0.316	2.373	3.88	5.84	25.102	1.359
179	0.443	3.05	6.6	6.14	44.136	1.03
180	0.109	1.394	2.027	5.76	38.29	1.606
181	0.691	3.9	5.32	5.533	132.45	1.128
182	0.153	1.845	6.32	6.16	69.146	2.519
183	0.742	5.017	3.947	6.393	32.829	1.436
184	0.352	3.384	2.207	6.033	23.499	1.29
185	0.134	1.571	6.14	6.073	79.875	1.453
186	0.614	3.538	0.007	5.613	138.447	1.25
187	0.071	1.15	3.167	6.007	63.812	1.567
188	0.114	1.571	1.013	5.627	108.199	1.122
189	0.033	0.767	3.627	5.84	46.005	1.474
190	0.063	1.182	3.027	6.113	75.379	2.098
191	0.036	0.809	2.02	5.767	110.854	1.415
192	0.323	2.869	3.127	6.393	35.281	1.401
193	0.079	1.746	3.86	6.14	31.661	1.833
194	0.213	1.932	1.453	6.393	25.084	1.487
195	0.018	0.58	2.2	6.04	120.651	1.585
196	0.045	0.963	6.14	6.08	115.084	1.949
197	0.01	0.41	6.8	6.08	153.435	1.738
198	0.03	0.827	1.073	6.393	69.905	1.312
199	0.054	1.174	2.62	6.393	48.715	1.613
200	0.031	0.815	3.027	6.12	108.853	1.237
201	0.025	0.688	6.627	6.16	110.376	1.417
202	0.048	1.047	2.367	6.167	137.42	1.439

203	0.056	0.961	6.32	6.167	137.42	1.236
204	0.052	0.939	6.72	6.24	151.294	1.278
205	0.041	0.905	7.007	6.393	31.185	1.404
206	0.034	0.846	1.24	6.173	133.21	1.255
207	0.024	0.636	2.047	6.393	69.444	1.363
208	0.029	0.709	0.893	6.24	138.504	1.043
209	0.023	0.582	2.193	6.24	132.397	1.174

Tabela 14 – Análise das partículas da amostra Z5HT

Figura 83 - Imagem original da amostra Z3MT

Figura 84 - Imagem de limiarização no modo Otsu, após o pré-processamento com filtro sigma e correção de contraste da amostra Z3MT

Figura 85 - Segmentação watershared após eliminação de algumas espúrias da amostra Z3MT

Figura 86 - Mensuração da unidade da escala da amostra Z3MT

			AG / Dh 89 70 Ah	
				53 <u>64</u> 63 63 69
65 - 45 /	47	a a a a a a a a a a a a a a a a a a a		39 46 to 50 44
19 00 00 00 49 <u>6</u>	55 67 3 3		87 ⁴⁰ m ⁴⁰ 86	
	100 100 105 89		5 (97) (
	124	22		
		(14) (138	(15) (13) (13) (13) (13)	
		153	(162	
🏴 (022 068 <mark>(174</mark> 028)		070 (185)		
203 202 193	<u>. av</u> / 188 192 - 191) ⁴		204 190	
220 223 223 229 219	216 7 - 2	12 215 208	209	
239 242 239 244 232 224		229 227		275 m 237 433 439
253 270 232	259 250 250 251	248 257	256 459 255	450 450 250
273 274 274 26	19 - 266 / 266 /	265 271	283 268 220	281 282 284 284 285 286
	286 290		297 609	
300 - 311 E09 - 616 - 311		296 610 290 99	500	
	BZG 620 B3G	828 ap 340 / 827		
59 - 343		659	639 856 637 637	
678	383 379 558 367	381 556 572 374		503 659 570 675
	890 7 898 - 4	400 894	686 676 69	898 888 899
		4110 417		408 622 615
429 423 420 430	421 (33)		6 428 428	426
443 (50) (50)	455	445 439 427	442 450 45	
	457	476	468 480	450 455 005 005
	(9/19) 485 (13) (13)	493 500 503 487		
510 510 513 ⁵¹² 521	506	510,140 522 5	20 503 507	25 517 518 578
522 (534) 537 538	527 640 571 555	530 536 538		556 654
559-559 559	546 5	57 556 556	550 645	535 550 558 553 54854
561		533		550

Figura 87 - Análise dos grãos da amostra Z3MT

	area	perimetro	circularidade	feret x	feret y	feret ângulo	RA
1	0.03	0.734	0.711	0	0.247	59.265	1.516
2	0.119	1.354	0.813	0.153	0	151.645	1.241
3	0.154	1.682	0.683	0.573	0	157.329	1.435
4	0.135	1.567	0.691	1.1	0	132.316	1.892
5	0.086	1.186	0.766	1.393	0	163.301	1.309
6	0.048	0.919	0.712	1.78	0	164.932	1.921
7	0.017	0.546	0.726	2.12	0.047	13.134	1.611
8	0.051	0.901	0.796	2.233	0.253	55.62	1.18
9	0.045	0.994	0.578	2.427	0	148.465	1.471
10	0.033	0.755	0.729	2.727	0.173	39.094	1.552
11	0.083	1.141	0.8	2.947	0.013	156.682	1.553
12	0.141	1.548	0.74	3.307	0	164.511	1.53
13	0.031	0.815	0.595	3.8	0	167.989	2.354
14	0.035	0.799	0.681	4.12	0.06	11.821	1.613
15	0.1	1.322	0.718	4.38	0.293	36.254	1.496
16	0.035	0.89	0.557	4.727	0.14	23.629	2.365
17	0.066	1.242	0.541	5.053	0.073	8.344	2.749
18	0.02	0.603	0.685	5.68	0	154.134	2.185
19	0.048	0.995	0.606	5.907	0	163.78	2.234
20	0.046	0.946	0.651	6.247	0	168.887	2.331
21	0.045	1.055	0.51	6.62	0	160.463	3.281
22	0.086	1.267	0.674	7.027	0.093	11.634	1.896
23	0.022	0.622	0.716	7.48	0.093	22.989	2.041
24	0.017	0.674	0.463	8.1	0	173.211	3.646
25	0.074	1.222	0.624	5.493	0.327	36.87	1.124
26	0.052	1.067	0.577	7.887	0.033	140.315	1.843
27	0.154	1.708	0.663	8.307	0.627	68.654	1.864
28	0.048	0.875	0.787	7.733	0.32	60.101	1.196
29	0.024	0.673	0.661	8.147	0.067	108.97	1.302
30	0.113	1.789	0.442	4.033	0.087	124.651	1.685
31	0.016	0.604	0.535	4	0.293	82.405	1.534
32	0.028	0.695	0.742	4.873	0.227	17.928	1.441
33	0.075	1.325	0.535	1.773	0.153	165.174	1.793
34	0.069	1.052	0.789	7.433	0.38	46.469	1.161

36 0.101 1.774 0.405 5.773 0.487 44.397 1.02 37 0.102 1.33 0.728 6.1 0.18 143.471 1.35 38 0.085 1.345 0.588 6.68 0.193 155.556 1.36 39 0.099 1.317 0.715 2.587 0.373 14.783 1.55 40 0.01 0.467 0.602 5.293 0.233 30.256 2.44 41 0.162 1.878 0.576 3.867 0.153 107.676 1.72 42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.56 46 0.098	35	0.012	0.491	0.647	6.467	0.247	49.399	1.896
37 0.102 1.33 0.728 6.1 0.18 143.471 1.35 38 0.085 1.345 0.588 6.68 0.193 155.556 1.36 39 0.099 1.317 0.715 2.587 0.373 14.783 1.53 40 0.01 0.467 0.602 5.293 0.233 30.256 2.44 41 0.162 1.878 0.576 3.867 0.153 107.676 1.72 42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.56 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218	36	0.101	1.774	0.405	5.773	0.487	44.397	1.025
38 0.085 1.345 0.588 6.68 0.193 155.556 1.36 39 0.099 1.317 0.715 2.587 0.373 14.783 1.53 40 0.01 0.467 0.602 5.293 0.233 30.256 2.44 41 0.162 1.878 0.576 3.867 0.153 107.676 1.77 42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.56 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016	37	0.102	1.33	0.728	6.1	0.18	143.471	1.353
39 0.099 1.317 0.715 2.587 0.373 14.783 1.53 40 0.01 0.467 0.602 5.293 0.233 30.256 2.44 41 0.162 1.878 0.576 3.867 0.153 107.676 1.72 42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.56 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.623 0.467 0.333 19.799 1.70 51 0.01	38	0.085	1.345	0.588	6.68	0.193	155.556	1.369
40 0.01 0.467 0.602 5.293 0.233 30.256 2.44 41 0.162 1.878 0.576 3.867 0.153 107.676 1.72 42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.58 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.651 5.353 0.387 59.349 1.5 49 0.324 2.376 0.722 0.78 0.473 160.133 1.66 50 0.18	39	0.099	1.317	0.715	2.587	0.373	14.783	1.534
41 0.162 1.878 0.576 3.867 0.153 107.676 1.72 42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.56 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.651 5.353 0.387 59.349 1.5 49 0.324 2.376 0.722 0.78 0.473 160.133 1.66 50 0.136 1.721 0.575 7.72 0.327 152.904 1.71 51 0.01 0.452 0.623 0.467 0.333 19.799 1.76 52 0.018 0.625 0.595 4.693 0.233 118.74 1.76 53 0.05 0.975 0.657 4.813 0.453 34.992 1.05 54 0.04 0.844 0.709 0.167 0.247 113.025 1.52 55 0.281 2.057 0.835 2.153 0.28 104.036 1.34 56 0.01 0.51 0.504	40	0.01	0.467	0.602	5.293	0.233	30.256	2.441
42 0.031 0.722 0.745 2.38 0.3 17.447 1.03 43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.56 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.651 5.353 0.387 59.349 1.5 49 0.324 2.376 0.722 0.78 0.473 160.133 1.65 50 0.136 1.721 0.575 7.72 0.327 152.904 1.71 51 0.01 0.452 0.623 0.467 0.333 19.799 1.70 52 0.018 0.625 0.595 4.693 0.233 118.74 1.76 53 0.05 0.975 0.667 4.813 0.453 34.992 1.06 54 0.04 0.844 0.709 0.167 0.247 113.025 1.52 55 0.281 2.057 0.835 2.153 0.28 104.036 1.31 56 0.01 0.51 0.504 5.2 0.273 142.306 1.76 57 0.051 $1.$	41	0.162	1.878	0.576	3.867	0.153	107.676	1.724
43 0.024 0.715 0.591 5.047 0.427 66.615 1.74 44 0.01 0.441 0.648 0.013 0.26 27.553 2.24 45 0.133 1.579 0.669 1.58 0.727 69.905 1.58 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.651 5.353 0.387 59.349 1.59 49 0.324 2.376 0.722 0.78 0.473 160.133 1.66 50 0.136 1.721 0.575 7.72 0.327 152.904 1.71 51 0.01 0.452 0.623 0.467 0.333 19.799 1.76 52 0.018 0.625 0.595 4.693 0.233 118.74 1.76 53 0.05 0.975 0.657 4.813 0.453 34.992 1.06 54 0.04 0.844 0.709 0.167 0.247 113.025 1.52 55 0.281 2.057 0.835 2.153 0.28 104.036 1.34 56 0.01 0.51 0.504 5.2 0.273 142.306 1.76 57 0.051 1.091 0.543 0.64 0.28 97.815 1.32 60 0.058	42	0.031	0.722	0.745	2.38	0.3	17.447	1.037
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	0.024	0.715	0.591	5.047	0.427	66.615	1.743
45 0.133 1.579 0.669 1.58 0.727 69.905 1.58 46 0.098 1.349 0.674 7.053 0.18 121.661 1.41 47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.651 5.353 0.387 59.349 1.5 49 0.324 2.376 0.722 0.78 0.473 160.133 1.65 50 0.136 1.721 0.575 7.72 0.327 152.904 1.71 51 0.01 0.452 0.623 0.467 0.333 19.799 1.76 52 0.018 0.625 0.595 4.693 0.233 118.74 1.76 53 0.05 0.975 0.657 4.813 0.453 34.992 1.06 54 0.04 0.844 0.709 0.167 0.247 113.025 1.52 55 0.281 2.057 0.835 2.153 0.28 104.036 1.31 56 0.01 0.51 0.504 5.2 0.273 142.306 1.76 57 0.051 1.091 0.543 0.64 0.28 97.815 1.32 58 0.025 0.706 0.62 4.48 0.293 159.624 1.57 59 0.035 0.642 0.71 5.413 0.54 64.983 1.27 61 0.028 $0.$	44	0.01	0.441	0.648	0.013	0.26	27.553	2.241
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	0.133	1.579	0.669	1.58	0.727	69.905	1.593
47 0.218 2.05 0.652 2.973 0.36 178.282 1.10 48 0.016 0.556 0.651 5.353 0.387 59.349 1.5 49 0.324 2.376 0.722 0.78 0.473 160.133 1.66 50 0.136 1.721 0.575 7.72 0.327 152.904 1.71 51 0.01 0.452 0.623 0.467 0.333 19.799 1.70 52 0.018 0.625 0.595 4.693 0.233 118.74 1.78 53 0.05 0.975 0.657 4.813 0.453 34.992 1.06 54 0.04 0.844 0.709 0.167 0.247 113.025 1.52 55 0.281 2.057 0.835 2.153 0.28 104.036 1.31 56 0.01 0.51 0.504 5.2 0.273 142.306 1.76 57 0.051 1.091 0.543 0.64 0.28 97.815 1.32 58 0.025 0.706 0.62 4.48 0.293 159.624 1.57 59 0.035 0.842 0.657 6.52 0.407 176.009 1.38 60 0.058 1.054 0.651 7.433 0.447 165.7 1.16 61 0.023 0.642 0.71 5.413 0.54 64.983 1.27 63 0.023 $0.$	46	0.098	1.349	0.674	7.053	0.18	121.661	1.417
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	47	0.218	2.05	0.652	2.973	0.36	178.282	1.102
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	48	0.016	0.556	0.651	5.353	0.387	59.349	1.59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	49	0.324	2.376	0.722	0.78	0.473	160.133	1.652
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	0.136	1.721	0.575	7.72	0.327	152.904	1.718
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	51	0.01	0.452	0.623	0.467	0.333	19.799	1.707
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	0.018	0.625	0.595	4.693	0.233	118.74	1.787
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	53	0.05	0.975	0.657	4.813	0.453	34.992	1.058
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	0.04	0.844	0.709	0.167	0.247	113.025	1.527
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55	0.281	2.057	0.835	2.153	0.28	104.036	1.313
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56	0.01	0.51	0.504	5.2	0.273	142.306	1.766
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	57	0.051	1.091	0.543	0.64	0.28	97.815	1.324
59 0.035 0.842 0.627 6.52 0.407 176.009 1.38 60 0.058 1.054 0.651 7.433 0.447 165.7 1.16 61 0.028 0.74 0.652 5.52 0.353 150.945 1.56 62 0.023 0.642 0.71 5.413 0.54 64.983 1.27 63 0.023 0.634 0.717 0 0.547 59.036 1.36 64 0.033 0.763 0.71 3.647 0.36 108.004 1.6 65 0.037 0.832 0.666 6.033 0.567 27.824 1.17 66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039	58	0.025	0.706	0.62	4.48	0.293	159.624	1.579
600.0581.0540.6517.4330.447165.71.16610.0280.740.6525.520.353150.9451.56620.0230.6420.715.4130.5464.9831.27630.0230.6340.71700.54759.0361.36640.0330.7630.713.6470.36108.0041.6650.0370.8320.6666.0330.56727.8241.17660.1721.7080.7396.8470.4118.781.06670.0921.2890.6932.580.38119.9541.48680.0440.9360.632.8530.453152.3011.31690.0390.9890.5024.4530.5416.6992.16	59	0.035	0.842	0.627	6.52	0.407	176.009	1.385
61 0.028 0.74 0.652 5.52 0.353 150.945 1.56 62 0.023 0.642 0.71 5.413 0.54 64.983 1.27 63 0.023 0.634 0.717 0 0.547 59.036 1.36 64 0.033 0.763 0.71 3.647 0.36 108.004 1.6 65 0.037 0.832 0.666 6.033 0.567 27.824 1.17 66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	60	0.058	1.054	0.651	7.433	0.447	165.7	1.166
62 0.023 0.642 0.71 5.413 0.54 64.983 1.27 63 0.023 0.634 0.717 0 0.547 59.036 1.36 64 0.033 0.763 0.71 3.647 0.36 108.004 1.6 65 0.037 0.832 0.666 6.033 0.567 27.824 1.17 66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	61	0.028	0.74	0.652	5.52	0.353	150.945	1.564
63 0.023 0.634 0.717 0 0.547 59.036 1.36 64 0.033 0.763 0.71 3.647 0.36 108.004 1.6 65 0.037 0.832 0.666 6.033 0.567 27.824 1.17 66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	62	0.023	0.642	0.71	5.413	0.54	64.983	1.275
64 0.033 0.763 0.71 3.647 0.36 108.004 1.6 65 0.037 0.832 0.666 6.033 0.567 27.824 1.17 66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	63	0.023	0.634	0.717	0	0.547	59.036	1.365
65 0.037 0.832 0.666 6.033 0.567 27.824 1.17 66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	64	0.033	0.763	0.71	3.647	0.36	108.004	1.67
66 0.172 1.708 0.739 6.847 0.4 118.78 1.06 67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	65	0.037	0.832	0.666	6.033	0.567	27.824	1.179
67 0.092 1.289 0.693 2.58 0.38 119.954 1.48 68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	66	0.172	1.708	0.739	6.847	0.4	118.78	1.062
68 0.044 0.936 0.63 2.853 0.453 152.301 1.31 69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	67	0.092	1.289	0.693	2.58	0.38	119.954	1.487
69 0.039 0.989 0.502 4.453 0.54 16.699 2.16	68	0.044	0.936	0.63	2.853	0.453	152.301	1.319
	69	0.039	0.989	0.502	4.453	0.54	16.699	2.165

70	0.036	0.814	0.685	5	0.553	33.341	1.767
71	0.032	0.839	0.571	1.807	0.58	41.186	1.2
72	0.025	0.67	0.713	5.26	0.393	127.185	1.411
73	0.048	1.01	0.588	6.473	0.407	135	1.856
74	0.046	0.894	0.729	5.833	0.733	55.376	1.364
75	0.071	1.034	0.829	4.647	0.627	16.091	1.261
76	0.194	1.789	0.76	7.367	1.04	84.026	1.097
77	0.046	0.969	0.62	0.347	0.593	172.875	1.229
78	0.06	1.231	0.496	5.347	0.62	13.496	1.2
79	0.066	1.142	0.632	4.187	0.633	162.699	1.75
80	0.09	1.423	0.557	5.54	0.94	61.091	1.778
81	0.089	1.229	0.74	0.073	0.54	145.582	1.19
82	0.023	0.871	0.373	7.64	0.693	34.439	1.741
83	0.014	0.499	0.707	0.753	0.713	79.509	1.46
84	0.036	0.775	0.763	7.88	0.54	138.814	1.312
85	0.019	0.697	0.494	0	0.84	77.196	4.291
86	0.093	1.723	0.395	6.113	0.667	170.538	1.242
87	0.061	1.065	0.671	5.047	0.58	155.41	2.001
88	0.033	0.879	0.544	1.733	0.667	16.46	1.672
89	0.155	1.612	0.75	3.267	0.947	34.651	1.484
90	0.015	0.603	0.527	2.807	0.58	110.772	1.869
91	0.031	0.769	0.661	2.887	0.78	37.648	1.789
92	0.07	1.28	0.538	3.753	0.6	124.418	1.845
93	0.111	1.686	0.49	0.72	1.127	73.369	1.957
94	0.017	0.571	0.643	0.633	0.793	68.962	1.209
95	0.129	1.525	0.7	4.973	0.62	124.651	1.574
96	0.011	0.472	0.593	4.6	0.627	135	1.546
97	0.088	1.26	0.698	5.833	0.74	165.069	1.144
98	0.04	1.079	0.429	8.107	0.653	134.145	1.505
99	0.038	0.858	0.651	8.333	0.893	50.964	1.329
100	0.024	0.732	0.569	4.073	0.773	11.889	1.694
101	0.278	2.114	0.782	1.467	0.867	173.596	1.079
102	0.046	0.979	0.61	6.693	0.973	79.919	1.368
103	0.079	1.39	0.512	7.64	0.713	158.839	1.636
104	0.026	0.701	0.676	0.44	0.74	142.001	1.656

105	0.046	0.861	0.771	3.107	0.72	102.804	1.494
106	0.023	0.682	0.621	4.193	0.893	32.347	1.867
107	0.017	0.599	0.593	7.88	0.733	167.125	1.988
108	0.071	1.207	0.616	2.82	1.073	52.765	1.117
109	0.12	1.464	0.703	2.36	0.933	162.072	1.182
110	0.098	1.23	0.812	4.553	0.807	143.13	1.326
111	0.137	2.119	0.384	8.48	0.76	93.366	1.79
112	0.028	0.791	0.562	4.353	0.92	34.077	1.019
113	0.069	1.096	0.72	5.32	1.12	57.894	1.748
114	0.038	0.8	0.755	6.513	0.8	117.181	1.247
115	0.063	1.141	0.61	8.04	1.14	40.711	1.473
116	0.172	1.657	0.786	0	0.847	164.249	1.133
117	0.071	1.081	0.766	0.947	0.907	157.834	1.562
118	0.05	0.906	0.761	4.013	0.893	139.268	1.357
119	0.154	1.64	0.718	6.667	1.233	34.237	1.564
120	0.146	1.721	0.618	6.02	1.007	165.53	1.841
121	0.05	0.935	0.719	1.313	0.947	137.42	1.503
122	0.1	1.597	0.495	3.633	0.913	111.631	1.032
123	0.058	0.919	0.855	5.847	0.907	98.13	1.131
124	0.106	1.596	0.524	2.127	0.92	127.164	1.423
125	0.214	1.901	0.744	7.153	0.92	110.956	1.34
126	0.098	1.299	0.728	7.587	0.92	102.529	1.413
127	0.088	1.156	0.823	4.26	1	167.367	1.354
128	0.047	0.91	0.719	5.527	0.94	140.356	1.259
129	0.042	0.93	0.603	3.913	0.947	94.399	1.883
130	0.046	1.017	0.556	4.94	0.953	128.157	1.853
131	0.151	1.764	0.61	3.193	1.007	145.905	1.259
132	0.094	1.281	0.721	0.427	1.42	73.217	1.527
133	0.088	1.205	0.758	2.807	1.233	28.887	1.355
134	0.082	1.26	0.646	7.8	1.033	127.954	1.201
135	0.052	1.125	0.52	0	1.493	87.546	2.154
136	0.088	1.209	0.76	0.787	1.107	152.592	1.272
137	0.056	0.98	0.736	1.193	1.347	66.161	1.161
138	0.122	1.543	0.647	4.647	1.573	66.114	1.651
139	0.062	1.153	0.584	5.187	1.08	145.008	1.841
L		1	1		1	1	

140	0.087	1.22	0.734	2.447	1.32	32.471	1.233
141	0.077	1.099	0.797	3.94	1.307	16.22	1.3
142	0.029	0.706	0.741	8.033	1.147	151.26	1.18
143	0.05	0.999	0.634	0.713	1.5	79.875	1.6
144	0.048	0.871	0.793	5.973	1.447	80.34	1.281
145	0.07	1.083	0.748	5.533	1.18	152.969	1.334
146	0.036	0.796	0.717	6.373	1.32	31.866	1.333
147	0.061	1	0.765	1.387	1.433	35.272	1.254
148	0.137	1.486	0.779	4.767	1.54	22.906	1.285
149	0.052	0.931	0.749	6.087	1.407	38.157	1.525
150	0.036	0.885	0.585	6.627	1.187	131.424	1.456
151	0.088	1.158	0.82	2.013	1.26	151.763	1.237
152	0.055	0.964	0.738	4.313	1.213	116.565	1.495
153	0.092	1.409	0.581	1.86	1.733	74.358	1.678
154	0.058	0.992	0.747	0.107	1.433	178.854	1.012
155	0.014	0.476	0.75	1.62	1.393	31.759	1.179
156	0.045	1.026	0.543	2.7	1.54	35.882	1.764
157	0.035	0.763	0.76	3	1.38	172.304	1.125
158	0.095	1.305	0.704	3.84	1.26	95.631	1.593
159	0.062	1.389	0.405	8.04	1.52	14.444	2.275
160	0.042	0.991	0.54	3.433	1.52	32.905	2.233
161	0.079	1.171	0.722	6.833	1.387	161.878	1.087
162	0.136	1.625	0.648	5.32	1.293	114.261	1.295
163	0.046	1.003	0.571	1.013	1.353	171.254	1.416
164	0.058	1.026	0.698	7.487	1.313	105.35	1.609
165	0.056	0.974	0.748	7.727	1.593	52.431	1.313
166	0.054	0.949	0.758	2.393	1.36	150.945	1.699
167	0.063	1.002	0.785	6.247	1.48	9.09	1.196
168	0.234	1.863	0.846	0.867	1.353	106.101	1.398
169	0.143	1.552	0.746	5.667	1.84	66.329	1.43
170	0.214	2.115	0.601	3.893	1.747	17.84	1.066
171	0.094	1.412	0.59	7.98	1.853	80.538	1.669
172	0.188	1.76	0.761	0.493	1.933	78.959	1.184
173	0.189	1.788	0.742	1.52	1.987	71.372	1.461
174	0.076	1.203	0.663	1.293	1.813	78.69	1.592
and the second s							the second se

175	0.136	1.567	0.695	5.987	1.453	120.203	1.392
176	0.042	0.88	0.68	3.1	1.507	12.653	1.986
177	0.162	1.64	0.755	6.6	1.927	65.898	1.344
178	0.05	1.092	0.527	8.253	1.72	52.125	1.714
179	0.09	1.302	0.664	2.687	1.56	172.093	1.525
180	0.051	0.934	0.742	2.047	1.44	118.217	1.09
181	0.027	0.704	0.68	0.007	1.507	145.408	1.404
182	0.116	1.435	0.711	2.32	1.46	101.889	1.451
183	0.115	1.459	0.679	5.187	1.467	92.231	1.4
184	0.056	1.069	0.61	3.313	1.587	166.201	1.568
185	0.072	1.113	0.735	4.467	1.9	79.439	1.651
186	0.25	2.215	0.641	6.86	1.873	17.745	1.229
187	0.152	1.754	0.622	4.707	1.56	138.991	1.662
188	0.165	1.804	0.637	2.56	1.58	122.074	1.243
189	0.07	1.173	0.641	7.533	1.66	153.034	1.324
190	0.103	1.294	0.771	6.367	1.587	101.802	1.384
191	0.201	1.993	0.637	3.253	1.593	99.246	1.236
192	0.107	1.567	0.547	2.947	2.133	65.614	1.843
193	0.063	1.008	0.783	0	1.953	56.889	1.374
194	0.049	0.93	0.709	3.52	1.767	4.316	1.674
195	0.02	0.596	0.691	8.46	1.687	107.447	1.867
196	0.051	1.096	0.537	8.14	1.727	151.631	1.586
197	0.066	1.042	0.762	1.967	1.74	151.232	1.35
198	0.06	1.119	0.598	1.867	2.107	75.719	1.553
199	0.088	1.217	0.747	4.467	1.907	159.775	1.121
200	0.045	0.837	0.804	3.8	1.853	164.407	1.497
201	0.084	1.381	0.555	7.293	2.14	58.736	1.592
202	0.049	1.061	0.551	1.127	1.953	175.84	1.87
203	0.133	1.551	0.693	5.193	2.007	174.806	1.079
204	0.054	1.156	0.51	5.56	1.787	169.778	1.97
205	0.06	1.086	0.637	0.513	2.053	12.633	1.552
206	0.069	1.067	0.762	0.233	1.827	139.514	1.263
207	0.05	0.932	0.725	7.987	2.033	20.556	1.381
208	0.083	1.172	0.755	4.193	1.927	156.038	1.105
209	0.288	2.167	0.77	5.7	2.453	43.264	1.465

210	0.049	1.067	0.539	7.593	2.16	61.928	1.84
211	0.068	1.16	0.632	7.727	2.173	48.215	1.509
212	0.147	1.587	0.735	3.453	2.14	11.165	1.154
213	0.08	1.183	0.721	6.72	1.953	153.435	1.334
214	0.048	1.077	0.517	8.447	1.913	100.981	3.146
215	0.048	0.926	0.708	3.953	2.167	45.807	1.255
216	0.188	1.766	0.759	2.127	2.44	64.041	1.133
217	0.06	1.075	0.653	6.467	2.027	151.991	1.169
218	0.085	1.304	0.625	8.107	2.28	43.069	1.214
219	0.076	1.333	0.537	1.127	2.187	21.14	2.1
220	0.127	1.598	0.624	5.08	2.453	78.541	1.12
221	0.045	0.897	0.696	0	1.967	144.058	1.351
222	0.023	0.699	0.601	0.947	2.007	133.919	1.157
223	0.06	1.053	0.685	0.64	2.213	12.848	1.584
224	0.194	1.945	0.644	1.513	2.1	150.255	1.583
225	0.109	1.313	0.793	6.293	2.44	80.676	1.249
226	0.058	1.202	0.507	0.28	2.16	15.709	1.518
227	0.084	1.58	0.425	4.727	2.487	56.113	1.95
228	0.034	0.734	0.785	7.98	2.04	116.565	1.426
229	0.179	1.727	0.756	4.367	2.453	39.036	1.382
230	0.147	1.614	0.709	2.493	2.4	23.279	1.632
231	0.029	0.911	0.434	2.313	2.413	52.927	2.973
232	0.06	1.163	0.561	1.38	2.567	74.168	2.089
233	0.034	0.922	0.499	3.28	2.46	63.435	2.393
234	0.019	0.551	0.789	0.907	2.253	22.932	1.212
235	0.072	1.044	0.824	4.113	2.467	59.589	1.124
236	0.165	1.777	0.658	6.947	2.7	56.476	1.603
237	0.147	1.572	0.747	7.32	2.147	114.677	1.251
238	0.036	0.878	0.585	7.533	2.147	129.806	1.817
239	0.124	1.43	0.761	0	2.607	58.151	1.565
240	0.043	0.872	0.703	3.087	2.153	122.661	1.394
241	0.047	0.889	0.745	3.96	2.173	116.565	1.522
242	0.092	1.257	0.731	0.28	2.173	106.06	1.421
243	0.044	0.949	0.617	7.793	2.18	116.565	1.284
244	0.112	1.329	0.8	1.167	2.613	66.125	1.175
L			1		i	1	

245	0.104	1.301	0.772	6.607	2.22	125.446	1.502
246	0.058	0.981	0.758	3.3	2.487	29.876	1.599
247	0.011	0.421	0.808	0.633	2.22	118.811	1.208
248	0.132	1.555	0.685	3.72	2.727	75.784	1.158
249	0.02	0.633	0.643	5.373	2.333	7.907	1.639
250	0.078	1.421	0.486	8.2	2.287	120.964	1.404
251	0.256	2.092	0.735	2.787	2.393	130.914	1.187
252	0.024	0.68	0.647	0.893	2.507	51.843	1.348
253	0.049	0.973	0.652	5.62	2.32	94.574	1.469
254	0.037	0.799	0.727	6.093	2.573	65.323	1.293
255	0.161	1.723	0.683	6.513	2.327	93.532	1.114
256	0.183	1.695	0.801	5.013	2.54	169.756	1.321
257	0.028	0.762	0.602	0.647	2.367	149.744	1.689
258	0.057	1.064	0.633	0.42	2.613	10.923	1.251
259	0.034	0.807	0.647	7.64	2.667	82.235	2.158
260	0.05	0.939	0.706	2.38	2.387	110.283	1.534
261	0.119	1.454	0.709	7.813	2.393	102.771	1.481
262	0.047	0.858	0.808	1.547	2.413	107.199	1.298
263	0.044	0.876	0.722	2.093	2.46	140.356	1.208
264	0.065	1.088	0.693	2.5	2.707	46.332	1.397
265	0.174	2.325	0.403	4.18	2.467	122.421	1.216
266	0.179	1.696	0.781	3.353	3.02	68.916	1.261
267	0.021	0.644	0.625	4.027	2.673	55.008	1.753
268	0.151	1.597	0.742	5.64	2.66	172.504	1.076
269	0.189	1.767	0.759	1.62	2.767	10.042	1.517
270	0.063	1.05	0.715	0.78	2.707	16.22	1.688
271	0.175	1.715	0.748	4.547	2.573	157.38	1.419
272	0.016	0.578	0.584	8.513	2.5	94.899	2.052
273	0.025	0.731	0.578	1.393	2.573	140.711	2.298
274	0.084	1.211	0.719	1.293	2.54	95.711	1.167
275	0.034	0.875	0.559	7.98	2.553	157.989	2.19
276	0.063	0.98	0.826	7.213	2.613	139.028	1.252
277	0.019	0.53	0.84	6.1	2.58	150.018	1.325
278	0.094	1.506	0.518	0.333	2.92	33.294	1.764
279	0.131	1.447	0.788	0.067	3.067	67.496	1.46
L	l	·			·		

280	0.027	0.725	0.655	3.847	2.84	59.744	1.845
281	0.079	1.26	0.625	6.993	2.98	60.69	1.195
282	0.151	1.548	0.791	6.727	3.12	72.951	1.258
283	0.081	1.19	0.718	5.347	2.987	48.731	1.615
284	0.036	0.761	0.783	7.473	2.647	114.567	1.125
285	0.09	1.233	0.747	8.347	2.66	101.689	1.165
286	0.112	1.379	0.738	2.273	2.673	111.038	1.14
287	0.029	0.745	0.666	4	2.673	107.199	2.102
288	0.058	1.001	0.724	6.06	2.84	4.399	1.284
289	0.025	0.791	0.505	1.027	2.72	112.109	1.079
290	0.103	1.481	0.589	2.447	3.133	29.445	1.385
291	0.021	0.574	0.789	3.647	2.86	7.853	1.149
292	0.05	0.961	0.684	7.933	2.9	172.725	1.232
293	0.065	1.017	0.792	1.34	2.96	16.39	1.197
294	0.037	0.761	0.805	7.673	3.033	84.428	1.229
295	0.033	0.755	0.732	0.547	3.027	58.57	1.738
296	0.277	2.117	0.775	3.72	3.467	70.382	1.203
297	0.097	1.257	0.769	5.64	2.813	119.407	1.265
298	0.175	1.652	0.805	4.333	3.133	20.045	1.144
299	0.083	1.152	0.789	5.08	2.82	119.358	1.143
300	0.247	1.995	0.781	6.06	3.267	13.079	1.313
301	0.05	0.895	0.79	5.98	3.133	75.964	1.048
302	0.065	1.149	0.62	0.96	3.173	30.51	1.771
303	0.178	1.766	0.717	1.86	3.04	170.218	1.112
304	0.048	1.013	0.592	7.353	2.86	143.696	2.019
305	0.03	0.865	0.512	0.86	2.86	111.318	1.303
306	0.149	1.69	0.657	6.953	3.32	49.467	1.49
307	0.052	1.031	0.613	1.553	3.1	26.98	2.131
308	0.18	1.686	0.795	2.767	3.12	10.421	1.21
309	0.093	1.371	0.625	0.673	3.307	66.801	1.383
310	0.088	1.437	0.537	4.153	2.887	126.573	2.013
311	0.16	1.757	0.653	0.327	2.927	119.578	1.523
312	0.088	1.238	0.721	7.72	3.18	32.106	1.214
313	0.013	0.51	0.632	0.56	3.047	33.69	2.91
314	0.083	1.337	0.585	8.013	3.067	163.465	1.694
-							

315	0.051	1.163	0.472	4.76	3.3	52.374	1.738
316	0.088	1.211	0.754	1.28	3.353	60.018	1.344
317	0.031	0.975	0.413	8.5	2.973	94.467	4.466
318	0.213	1.967	0.691	5.36	2.993	127.326	1.495
319	0.055	1.093	0.575	3.233	3.287	46.397	1.639
320	0.05	0.988	0.638	0	3.027	93.066	1.914
321	0.096	1.331	0.682	1.553	3.107	149.036	1.323
322	0.021	0.648	0.627	2.68	3.133	141.582	2.486
323	0.036	0.818	0.672	5.827	3.28	31.43	1.442
324	0.158	1.691	0.696	7.273	3.373	10.911	1.225
325	0.077	1.126	0.762	6.773	3.107	113.07	1.213
326	0.201	1.861	0.73	2.327	3.26	161.928	1.323
327	0.233	2.002	0.73	4.767	3.713	49.857	1.602
328	0.11	1.321	0.789	3.873	3.42	12.155	1.08
329	0.024	0.665	0.692	0.147	3.333	39.174	1.253
330	0.049	0.882	0.796	7.853	3.413	40.732	1.356
331	0.13	1.423	0.805	0.82	3.293	166.35	1.171
332	0.083	1.201	0.723	8.173	3.213	121.293	1.137
333	0.148	1.729	0.623	1.447	3.72	76.139	1.347
334	0.012	0.53	0.559	2.847	3.34	6.116	1.739
335	0.065	1.044	0.747	2.253	3.627	78.906	1.222
336	0.09	1.465	0.527	3.18	3.293	147.131	1.537
337	0.209	1.892	0.732	5.847	3.3	121.373	1.372
338	0.073	1.1	0.76	3.107	3.68	80.218	1.327
339	0.054	0.987	0.694	7.673	3.593	61.928	1.361
340	0.09	1.228	0.745	4.367	3.447	17.879	1.45
341	0.058	1.006	0.715	0.673	3.313	132.709	1.305
342	0.072	1.12	0.725	6.947	3.327	159.228	1.696
343	0.169	1.872	0.607	0.087	3.373	158.199	1.696
344	0.024	0.711	0.592	4.293	3.587	76.329	1.781
345	0.044	0.829	0.81	1.873	3.587	49.268	1.389
346	0.015	0.498	0.756	6.453	3.473	36.469	1.353
347	0.018	0.557	0.714	1.3	3.547	70.974	1.602
348	0.033	0.724	0.779	6.227	3.373	154.134	1.25
349	0.044	0.868	0.737	6.553	3.473	3.504	1.793

350	0.046	0.912	0.687	8.107	3.687	79.38	1.555
351	0.022	0.63	0.696	0	3.633	72.031	2.174
352	0.05	0.932	0.722	5.247	3.387	96.34	1.624
353	0.031	0.764	0.673	7.86	3.42	132.089	1.198
354	0.073	1.151	0.692	3.587	3.433	147.381	1.39
355	0.025	0.67	0.71	8.447	3.407	110.376	1.385
356	0.114	1.465	0.667	5.293	3.74	22.906	1.338
357	0.014	0.524	0.65	6.84	3.553	5.906	1.698
358	0.148	1.507	0.818	2.827	3.96	73.951	1.08
359	0.178	1.897	0.621	0.76	3.6	169.592	1.701
360	0.044	0.845	0.783	1.787	3.787	81.347	1.463
361	0.029	0.705	0.724	6.333	3.593	12.995	1.573
362	0.041	0.814	0.775	7.333	3.48	114.228	1.404
363	0.058	1.107	0.599	1.873	3.593	165.005	1.828
364	0.048	0.869	0.794	7.533	3.8	79.461	1.047
365	0.058	0.965	0.78	2.26	3.64	152.904	1.251
366	0.099	1.322	0.713	3.96	3.893	51.981	1.26
367	0.178	1.798	0.691	3.08	3.807	22.521	1.146
368	0.092	1.224	0.77	6.547	3.607	148.61	1.402
369	0.128	1.986	0.409	6.92	3.587	132.274	1.17
370	0.088	1.384	0.578	7.7	3.653	168.389	1.745
371	0.02	0.689	0.537	8.153	3.727	36.327	2.798
372	0.072	1.228	0.596	4.207	3.82	31.097	1.694
373	0.088	1.141	0.854	0	3.64	154.323	1.088
374	0.069	1.048	0.787	4.587	3.96	79.695	1.388
375	0.091	1.618	0.438	8.207	3.713	142.943	1.185
376	0.267	2.077	0.777	5.72	3.647	112.751	1.205
377	0.091	1.382	0.6	0.547	4.04	63.06	1.534
378	0.11	1.357	0.748	6.18	3.907	10.521	1.355
379	0.013	0.496	0.672	2.56	3.653	127.304	1.2
380	0.127	1.57	0.646	4.847	4.113	53.673	1.908
381	0.107	1.359	0.731	3.553	4.04	45.516	1.434
382	0.039	0.905	0.595	1.38	3.727	172.333	2.01
383	0.08	1.258	0.638	1.8	3.84	7.125	1.946
384	0.106	1.426	0.658	1.207	4.18	69.814	1.541

E.

385	0.062	1.026	0.744	4.727	4.02	51.499	1.558
386	0.155	1.573	0.787	5.293	3.747	119.124	1.199
387	0.044	0.922	0.652	7.26	3.953	33.69	1.179
388	0.172	1.716	0.732	7.507	3.833	151.654	1.317
389	0.046	0.911	0.692	1.667	4.06	73.179	1.148
390	0.281	2.213	0.721	2.073	4.067	7.245	1.342
391	0.066	1.001	0.833	8.02	4.093	63.435	1.055
392	0.23	2.048	0.689	0.2	4.513	77.645	1.37
393	0.117	1.473	0.679	2.873	4.027	3.764	1.242
394	0.097	1.285	0.735	4.193	3.827	130.236	1.25
395	0.053	0.923	0.788	0.647	4.06	22.249	1.507
396	0.144	1.607	0.701	6.607	4.373	68.07	1.195
397	0.016	0.564	0.651	6.107	4.053	71.565	1.987
398	0.016	0.557	0.663	6.92	4.053	82.405	1.563
399	0.026	0.788	0.524	0	4.213	86.634	2.621
400	0.11	1.355	0.751	4.08	4.3	77.661	1.185
401	0.093	1.197	0.819	1.287	4.187	32.4	1.266
402	0.061	1.024	0.733	1.847	3.9	131.553	1.502
403	0.095	1.417	0.594	7.007	3.933	115.159	1.654
404	0.094	1.696	0.412	8.227	4.307	47.951	1.35
405	0.078	1.2	0.684	0.793	4.12	168.341	1.46
406	0.084	1.273	0.652	4.607	3.967	120.114	1.13
407	0.04	0.946	0.566	3.58	4.06	15.945	1.651
408	0.144	1.755	0.589	7.24	4.407	54.462	1.188
409	0.145	1.562	0.747	6.153	4.04	143.267	1.278
410	0.24	1.989	0.761	2.58	4.293	156.879	1.159
411	0.073	1.17	0.673	1.673	4.067	123.959	1.202
412	0.204	1.879	0.725	3.18	4.547	30.867	1.535
413	0.062	1.028	0.74	0.5	4.36	36.431	1.059
414	0.045	1.034	0.528	6.047	4.44	76.201	1.829
415	0.067	1.105	0.687	8.02	4.1	112.166	1.591
416	0.19	1.863	0.687	4.88	4.147	118.996	1.223
417	0.087	1.173	0.795	4.127	4.4	14.47	1.355
418	0.056	1.148	0.536	6.653	4.373	7.989	1.523
419	0.096	1.339	0.673	3.607	4.353	5.064	1.823

420	0.192	2.211	0.495	1.067	4.573	24.394	1.361
421	0.221	1.917	0.758	1.913	4.2	140.631	1.289
422	0.041	0.925	0.603	7.673	4.28	159.829	1.531
423	0.147	1.516	0.807	0.707	4.673	47.121	1.153
424	0.059	0.962	0.794	5.347	4.267	172.333	1.46
425	0.182	1.785	0.718	8.207	4.813	59.744	1.547
426	0.09	1.208	0.779	7.613	4.26	99.162	1.264
427	0.378	2.556	0.727	4.467	5.067	70.133	1.308
428	0.183	1.727	0.772	5.553	4.473	158.962	1.066
429	0.063	1.15	0.6	0	4.747	87.546	2.054
430	0.083	1.265	0.649	1.64	4.34	136.123	1.555
431	0.05	0.873	0.821	2.44	4.62	61.294	1.44
432	0.026	0.722	0.633	0.453	4.447	23.385	1.333
433	0.124	1.572	0.632	3.38	4.86	66.529	1.566
434	0.063	1.039	0.728	5.233	4.72	70.017	1.801
435	0.083	1.103	0.853	6.173	4.74	82.147	1.344
436	0.016	0.551	0.667	6.873	4.46	28.301	1.256
437	0.209	1.863	0.755	6.313	4.74	32.811	1.115
438	0.065	1.158	0.608	7.047	4.753	65.095	1.746
439	0.202	1.941	0.676	4.047	5.053	62.668	1.609
440	0.054	1.019	0.654	7.773	4.647	43.409	1.351
441	0.067	1.179	0.601	7.167	4.72	40.179	1.348
442	0.105	1.354	0.718	5.467	4.447	101.31	1.307
443	0.175	1.727	0.738	0.113	4.693	2.603	1.465
444	0.067	1.024	0.802	8.033	4.46	115.145	1.441
445	0.123	1.516	0.67	3.747	4.467	116.862	1.75
446	0.011	0.419	0.804	6.867	4.467	135	1.272
447	0.019	0.68	0.521	6.767	4.753	71.114	2.331
448	0.244	2.332	0.564	2.6	4.58	168.395	1.395
449	0.097	1.391	0.633	1.367	4.993	55.452	1.477
450	0.052	0.907	0.794	1.033	4.84	41.532	1.081
451	0.011	0.47	0.647	6.887	4.607	143.13	1.377
452	0.084	1.33	0.594	1.653	4.593	132.709	1.641
453	0.07	1.09	0.743	2.353	4.887	50.064	1.144
454	0.02	0.594	0.696	7.48	4.647	147.804	1.453
k	•	•	•	•		•	

455	0.082	1.151	0.78	0.72	4.68	129.936	1.091
456	0.059	1.072	0.645	7.693	4.66	130.292	1.81
457	0.104	1.324	0.745	1.96	4.68	136.219	1.091
458	0.016	0.614	0.523	6.893	4.667	102.339	1.27
459	0.018	0.638	0.569	5.88	4.753	7.496	2.256
460	0.022	0.787	0.457	6.2	5.007	72.646	2.645
461	0.075	1.253	0.603	0	5.187	77.8	1.856
462	0.064	1.11	0.653	4.98	4.773	164.745	1.388
463	0.063	1.022	0.755	3.087	5.02	44.293	1.614
464	0.047	0.882	0.763	6.953	4.907	27.597	1.653
465	0.012	0.444	0.786	6.053	4.84	29.745	1.282
466	0.08	1.267	0.628	7.28	5.18	88.29	1.348
467	0.12	1.519	0.654	1.533	5.233	80.665	1.308
468	0.097	1.401	0.619	5.547	5.073	39.699	1.384
469	0.125	1.455	0.74	6.607	5.173	57.407	1.38
470	0.114	1.375	0.754	3.487	4.84	141.981	1.36
471	0.115	1.717	0.491	7.393	4.813	126.293	1.338
472	0.026	0.723	0.629	0.527	4.84	164.055	1.418
473	0.1	1.311	0.732	1.08	5.2	68.839	1.247
474	0.1	1.441	0.606	6.347	4.787	125.538	1.688
475	0.03	0.747	0.671	7.96	4.967	35.838	1.936
476	0.057	1.004	0.71	4.72	5.047	22.694	1.701
477	0.046	0.928	0.677	8.227	4.82	127.304	1.483
478	0.055	1.024	0.664	0.227	5.113	42.979	2.035
479	0.021	0.74	0.48	8.467	4.84	103.092	3.825
480	0.012	0.45	0.73	6.053	4.947	30.579	1.588
481	0.055	0.995	0.7	3.3	5.147	57.995	1.16
482	0.036	0.742	0.831	7.66	5	10.713	1.13
483	0.067	1.334	0.476	7.9	5.107	36.304	1.774
484	0.111	1.608	0.54	5.173	5.247	39.13	1.598
485	0.081	1.153	0.765	2.287	4.94	171.741	1.492
486	0.034	0.747	0.76	0.647	4.967	141.116	1.538
487	0.082	1.214	0.699	4.773	5.18	28.54	1.599
488	0.045	0.857	0.778	1.867	5.253	70.821	1.796
489	0.021	0.833	0.38	6.807	5.187	47.643	2.395

490	0.06	1.089	0.634	5.94	5.22	46.469	1.112
491	0.022	0.63	0.696	5.927	5.193	80.272	1.488
492	0.101	1.866	0.364	6.807	5.193	158.499	1.179
493	0.074	1.14	0.719	0.38	5.067	164.055	1.321
494	0.039	0.884	0.631	4.087	5.2	46.736	1.367
495	0.02	0.747	0.444	0.84	4.98	135.855	2.602
496	0.071	1.135	0.691	3.933	5.413	82.983	2.116
497	0.014	0.479	0.77	2.073	5.127	53.13	1.093
498	0.011	0.414	0.78	2.18	5.107	48.576	1.315
499	0.124	1.469	0.721	2.6	5.107	152.447	1.318
500	0.048	0.905	0.734	1.253	5.107	153.435	1.408
501	0.043	0.865	0.727	4.333	5	113.839	1.614
502	0.074	1.147	0.704	2.973	5.067	149.216	1.133
503	0.038	0.896	0.601	4.513	5.24	32.471	2.144
504	0.021	0.587	0.773	2.287	5.06	122.005	1.114
505	0.026	0.764	0.554	7.72	5.227	12.095	1.839
506	0.111	1.43	0.68	3.3	5.153	129.508	1.314
507	0.179	2.103	0.51	5.9	5.44	19.047	1.396
508	0.049	0.921	0.724	5.687	5.113	121.891	1.402
509	0.065	1.162	0.605	8.42	5.107	99.019	1.961
510	0.096	1.47	0.557	0.153	5.433	16.477	1.143
511	0.02	0.683	0.539	5.44	5.207	21.251	1.968
512	0.042	0.83	0.771	1.113	5.207	158.199	1.355
513	0.101	1.338	0.71	2.393	5.167	142.792	1.263
514	0.054	0.963	0.738	0	5.467	66.801	1.523
515	0.182	1.721	0.77	0.567	5.367	10.911	1.174
516	0.021	0.614	0.709	3.727	5.333	55.84	1.128
517	0.108	1.301	0.803	7.24	5.273	164.745	1.459
518	0.278	2.279	0.674	4.487	5.26	132.852	1.424
519	0.154	1.657	0.706	7.793	5.607	54.13	1.044
520	0.047	0.929	0.687	4.96	5.287	151.294	1.252
521	0.085	1.481	0.488	1.373	5.353	11.434	2.701
500	0.066	1.112	0.67	4.033	5.4	13.392	1.94
522							
522 523	0.091	1.3	0.676	5.353	5.627	79.216	1.107

525	0.112	1.383	0.738	6.407	5.493	16.771	1.587
526	0.049	1.033	0.578	2.027	5.273	7.386	1.551
527	0.273	2.285	0.658	1.767	5.687	22.62	1.141
528	0.043	0.977	0.564	5.633	5.253	123.024	1.613
529	0.152	1.727	0.642	3.107	5.32	150.173	1.57
530	0.062	1.013	0.753	3.613	5.593	44.275	1.295
531	0.13	1.882	0.462	2.893	5.893	70.128	1.898
532	0.17	1.75	0.699	1.113	5.347	112.457	1.069
533	0.074	1.258	0.589	4.16	5.667	47.49	1.565
534	0.09	1.23	0.748	0.4	5.733	66.801	1.157
535	0.229	2.12	0.64	6.867	5.373	98.297	1.083
536	0.084	1.153	0.79	7.073	5.647	23.575	1.239
537	0.069	1.084	0.741	7.46	5.473	149.036	1.403
538	0.082	1.172	0.746	1.44	5.713	37.794	1.195
539	0.066	1.333	0.465	4.02	5.847	67.891	1.864
540	0.017	0.605	0.581	2.767	5.62	79.046	1.405
541	0.055	0.985	0.716	5.853	5.42	99.293	1.543
542	0.026	0.653	0.759	0.127	5.44	97.696	1.705
543	0.028	0.722	0.681	3.127	5.44	106.699	2.188
544	0.015	0.516	0.727	5.06	5.453	156.801	1.65
545	0.1	1.337	0.704	5.367	5.647	15.479	1.249
546	0.222	2.002	0.696	2.427	5.48	123.071	1.272
547	0.045	1.079	0.489	0.147	5.847	65.726	1.75
548	0.106	1.391	0.687	8.173	5.873	52.633	1.35
549	0.026	0.769	0.562	8.48	5.847	81.085	3.334
550	0.107	1.548	0.559	4.973	5.673	168.366	1.185
551	0.016	0.573	0.593	6.38	5.607	149.036	1.332
552	0.023	0.607	0.783	0	5.56	119.539	1.628
553	0.077	1.227	0.644	7.807	5.64	145.582	1.399
554	0.051	0.947	0.714	0.607	5.847	42.58	1.53
555	0.038	0.819	0.712	0.907	5.847	71.147	1.325
556	0.083	1.239	0.675	4.22	5.84	33.179	1.584
557	0.113	1.523	0.611	3.387	5.82	177.537	2.005
558	0.062	1.048	0.71	7.347	5.64	138.918	1.405
559	0.132	2.097	0.377	6.073	6.193	67.135	1.315

560	0.058	1.074	0.638	7.027	5.813	172.405	1.562
561	0.203	1.843	0.75	1.327	5.84	172.725	1.372
562	0.051	0.944	0.725	3.093	5.693	128.66	1.424
563	0.049	0.957	0.673	7.587	5.947	50.793	1.283
564	0.016	0.543	0.674	4.06	5.733	143.531	1.386
565	0.013	0.475	0.713	5.753	5.893	73.74	1.19
566	0.045	1.018	0.543	0.327	5.753	139.899	1.521
567	0.047	1.045	0.544	6.547	5.773	138.468	1.319
568	0.049	1.159	0.461	0	6.267	79.287	3.994
569	0.099	1.272	0.767	0.58	6.087	32.949	1.242
570	0.045	1.082	0.484	5.427	5.773	117.013	1.757
571	0.096	1.347	0.664	7.78	6.153	33.232	1.132
572	0.109	1.429	0.672	1.047	5.793	99.324	1.069
573	0.161	1.792	0.629	4.327	5.98	159.146	1.169
574	0.043	0.916	0.648	5.667	6.173	79.875	2.205
575	0.104	1.365	0.702	2.107	5.867	135.546	1.622
576	0.112	1.492	0.633	4.773	5.947	169.38	1.198
577	0.207	2.13	0.575	3.353	5.86	141.71	1.202
578	0.039	0.871	0.647	8.447	6.187	75.964	2.123
579	0.062	1.265	0.488	0.153	5.853	107.301	1.374
580	0.033	0.838	0.583	7.053	5.853	104.036	1.677
581	0.102	1.393	0.659	2.08	5.873	102.529	1.838
582	0.024	0.649	0.717	5.207	6.027	27.3	1.486
583	0.027	0.753	0.59	7.307	6.12	59.265	1.483
584	0.08	1.188	0.711	8.173	5.88	130.4	1.322
585	0.02	0.589	0.719	3.007	6.053	43.668	1.181
586	0.035	1.014	0.424	3.86	6.247	67.834	2.524
587	0.062	1.573	0.315	4.02	5.887	102.426	1.31
588	0.013	0.54	0.54	4.193	5.887	175.101	2.376
589	0.011	0.429	0.782	7.453	5.993	40.101	1.396
590	0.034	0.724	0.809	2.807	6.06	39.611	1.236
591	0.034	0.837	0.607	0.333	5.953	150.945	1.301
592	0.029	0.845	0.513	6.273	5.913	123.341	1.875
593	0.016	0.598	0.572	7.18	5.907	110.376	2.501
594	0.033	0.732	0.766	5.42	5.927	91.397	1.309
-							

595	0.03	0.752	0.672	3.16	6.193	57.095	1.526
596	0.06	0.996	0.758	7.547	5.96	124.624	1.186
597	0.161	1.612	0.779	1.113	6.4	19.069	1.383
598	0.016	0.597	0.552	6.107	6.193	49.574	2.476
599	0.022	0.783	0.451	5.907	6.26	65.323	1.855
600	0.102	1.435	0.625	2.493	6.073	155.072	1.707
601	0.043	0.868	0.718	5.2	6.033	105.255	1.345
602	0.016	0.485	0.852	7.433	6.2	69.444	1.229
603	0.037	0.794	0.735	2.973	6.273	51.766	1.447
604	0.114	1.318	0.823	0.713	6.167	149.323	1.193
605	0.107	1.31	0.787	0.287	6.247	160.787	1.415
606	0.106	1.577	0.536	1.607	6.4	9.707	1.565
607	0.021	0.663	0.612	5.68	6.173	155.556	1.544
608	0.025	0.839	0.445	6.607	6.107	111.125	1.983
609	0.074	1.079	0.794	5.347	6.273	159.567	1.192
610	0.105	1.324	0.753	7.727	6.36	13.851	1.776
611	0.037	1.009	0.461	6.9	6.4	52.431	1.513
612	0.046	0.904	0.711	4.92	6.4	50.793	1.626
613	0.04	0.854	0.692	7.187	6.173	132.357	1.396
614	0.052	0.928	0.761	0	6.28	158.629	1.42
615	0.042	0.797	0.832	4.687	6.4	52.595	1.199
616	0.045	1.018	0.551	6.033	6.4	33.69	1.827
617	0.033	0.778	0.691	4.253	6.187	124.509	1.088
618	0.057	1.087	0.611	2.987	6.287	164.055	1.921
619	0.06	1.109	0.616	7.347	6.227	155.854	2
620	0.046	0.921	0.677	2.193	6.4	31.675	1.881
621	0.044	0.851	0.771	4.407	6.4	38.853	1.556
622	0.025	0.694	0.644	5.9	6.4	42.797	1.425
623	0.026	0.666	0.729	3.9	6.333	163.142	1.116
624	0.022	0.793	0.442	6.473	6.26	145.008	1.289
625	0.039	0.858	0.672	8.1	6.373	175.333	1.85
626	0.025	0.64	0.771	5.693	6.247	142.524	1.379
627	0.051	1.288	0.389	3.367	6.333	173.367	4.512
628	0.021	0.577	0.795	2.513	6.287	148.736	1.646
629	0.02	0.598	0.7	5.04	6.4	21.501	1.976

E.

630	0.01	0.421	0.741	2.787	6.333	12.265	1.268

Tabela 15 – Análise de grãos da amostra Z3MT

Figura 88 - Imagem original da amostra Z3OP

Figura 89 - Imagem de limiarização no modo Otsu, após o pré-processamento com filtro sigma e correção de contraste da amostra Z3OP

Figura 90 - Segmentação watershared após eliminação de algumas espúrias da amostra Z3OP

Figura 91 - Mensuração da unidade da escala da amostra Z3OP

Figura 92 - Análise dos grãos da amostra Z3OP

	area	perimetro	circularidade	feret x	feret y	feret ângulo	RA
1	0.142	1.691	0.625	0	0.067	5.654	1.851
2	0.193	1.949	0.639	0.373	0.34	14.664	1.793
3	0.033	0.933	0.473	0.913	0	176.121	2.305
4	0.042	0.99	0.544	1.313	0	167.905	1.631
5	0.055	1.252	0.444	1.673	0	176.468	3.929
6	0.437	2.801	0.699	2.133	0.127	164.564	1.288
7	0.035	0.782	0.713	2.78	0.033	6.789	1.439
8	0.097	1.346	0.673	3.067	0	122.535	1.246
9	0.097	1.405	0.62	3.18	0	177.306	1.861
10	0.282	2.205	0.73	3.773	0	125.48	1.358
11	0.063	1.364	0.423	4.34	0	168.043	5.048
12	0.388	2.562	0.744	4.96	0.827	67.249	1.369
13	0.264	2.489	0.536	5.313	0	159.574	2.612
14	0.135	1.525	0.731	6.173	0	153.741	1.414
15	0.083	1.274	0.639	6.513	0	154.44	1.901
16	0.123	1.503	0.684	6.92	0.08	8.227	1.912
17	0.037	1.137	0.358	7.473	0.073	8.236	6.84

18	0.242	2.045	0.727	7.987	0	136.801	1.161
19	0.276	2.107	0.78	1.247	0.727	81.793	1.299
20	0.029	0.777	0.605	3.68	0.327	74.745	1.957
21	0.101	1.402	0.644	0	0.073	121.464	1.489
22	0.285	2.096	0.815	7.4	0.2	159.326	1.394
23	0.416	2.564	0.795	1.613	0.12	140.024	1.216
24	0.391	2.538	0.762	4.327	0.087	129.644	1.252
25	0.063	1.093	0.66	3.32	0.393	9.462	1.503
26	0.79	3.628	0.754	6.367	0.413	141.34	1.263
27	0.154	1.645	0.715	0.62	0.493	159.744	1.371
28	0.694	3.605	0.671	2.92	0.507	166.592	1.372
29	0.514	2.9	0.767	5.487	0.373	154.601	1.397
30	0.31	2.48	0.634	0.233	1.093	81.027	1.075
31	0.644	3.45	0.68	7.32	1.187	33.515	1.498
32	0.155	1.87	0.556	8.4	0.487	99.7	2.727
33	0.537	3.452	0.566	5.447	0.553	97.66	1.474
34	0.059	1.055	0.667	4.067	0.693	164.578	1.548
35	0.467	2.779	0.76	2.1	1.133	33.582	1.467
36	0.368	2.523	0.727	1.06	1.227	25.984	1.508
37	0.459	3.098	0.601	0.387	1.44	42.51	1.401
38	0.567	2.963	0.812	3.727	1.193	15.686	1.222
39	0.227	2.248	0.563	0	0.793	110.292	1.923
40	0.034	0.904	0.518	4.607	0.853	5.599	1.774
41	0.528	3.219	0.64	6.413	0.82	120.579	1.279
42	0.036	0.765	0.768	1.853	1.007	38.234	1.133
43	0.833	3.721	0.756	2.993	0.92	100.798	1.433
44	0.277	2.263	0.679	4.72	1.66	75.203	1.239
45	0.272	2.07	0.798	5.627	1.547	43.493	1.212
46	0.31	2.347	0.707	7.727	1.507	17.241	1.347
47	0.364	2.556	0.7	1.707	1.827	66.346	1.39
48	0.384	2.438	0.813	7.053	1.167	127.569	1.238
49	0.157	1.967	0.511	3.687	1.22	132.58	1.635
50	0.306	2.241	0.767	1.06	1.233	137.899	1.057
51	0.774	3.537	0.778	1.773	2.14	44.582	1.487
52	0.1	1.562	0.517	8.493	1.907	86.386	2.67
53	0.049	0.971	0.653	6.04	1.54	167.005	1.289
54	0.156	1.752	0.64	7.607	1.433	129.123	1.394

55	0.423	2.657	0.753	0.387	1.447	129.857	1.586
56	0.443	2.719	0.753	4.807	2.387	68.199	1.468
57	0.762	3.932	0.619	3.62	1.747	151.526	1.443
58	0.261	2.01	0.812	5.633	1.56	131.677	1.311
59	0.339	2.564	0.647	0	1.567	114.044	1.821
60	0.044	0.863	0.751	6.16	1.653	158.429	1.237
61	0.057	0.947	0.796	8.073	1.68	107.281	1.082
62	0.27	2.225	0.687	6.573	1.713	130.962	1.544
63	0.111	1.401	0.712	5.42	1.7	137.579	1.489
64	0.247	2.028	0.756	1.113	2.053	16.905	1.367
65	0.384	2.628	0.699	6.233	1.853	122.099	1.593
66	0.076	1.112	0.776	8.173	1.98	159.677	1.347
67	0.065	1.319	0.472	7.133	2.1	25.589	1.818
68	0.554	3.201	0.68	2.24	2.36	167.033	1.33
69	0.122	1.427	0.751	7.38	2.307	46.548	1.616
70	0.242	2.343	0.554	7.747	1.927	147.665	2.263
71	0.67	3.441	0.711	3.247	2.213	162.665	1.338
72	0.14	1.557	0.725	1.1	2.06	106.631	1.309
73	0.634	3.725	0.575	5.233	2.327	167.157	1.853
74	0.049	0.884	0.784	7.127	2.107	140.194	1.175
75	0.177	1.673	0.795	0.453	2.367	19.069	1.202
76	0.019	0.644	0.571	8.513	2.133	94.289	3.028
77	0.552	3.198	0.678	1.247	2.58	176.489	1.366
78	0.303	2.225	0.768	7.62	2.24	130.44	1.367
79	0.101	1.427	0.621	6.7	2.6	25.989	2.017
80	0.578	3.201	0.709	7.227	3.447	81.964	1.447
81	0.094	1.311	0.686	0	2.333	110.925	1.641
82	0.391	2.576	0.741	4.413	2.567	169.405	1.644
83	0.151	1.588	0.754	0.187	2.827	54.713	1.104
84	0.257	2.303	0.61	8.473	2.393	93.759	2.075
85	0.478	2.83	0.75	0.88	3.393	81.347	1.319
86	0.663	3.298	0.766	3.807	2.933	167.628	1.156
87	0.266	2.121	0.743	2.653	3.02	34.992	1.464
88	0.18	1.78	0.713	1.233	2.607	130.426	1.909
89	0.477	2.78	0.776	6.46	3.48	69.877	1.253
90	0.348	2.759	0.575	1.693	3.293	22.13	2.471
91	0.146	1.842	0.54	5.607	2.887	3.453	2.998
	•		•		•	•	•

92	0.134	1.723	0.566	0	2.727	100.204
93	0.378	2.487	0.768	4.847	3.2	17.592
94	0.786	3.735	0.708	3.327	2.8	108.236
95	0.868	3.908	0.715	7.24	3.493	7.633
96	0.113	1.356	0.773	0.193	2.84	148.782
97	0.591	3.128	0.759	5.427	3.367	172.6
98	0.39	2.573	0.741	2.427	3.9	75.964
99	0.257	2.035	0.78	1.073	3.4	21.695
100	0.2	1.831	0.749	0.127	3.413	7.958
101	0.196	1.889	0.689	4.527	3.727	40.914
102	0.439	2.878	0.665	1.687	3.3	140.092
103	0.851	3.654	0.801	5.033	3.293	102.597
104	0.278	2.15	0.756	6.547	3.5	169.114
105	0.188	1.825	0.71	0.6	3.553	170.538
106	0.03	0.747	0.669	0	3.64	77.619
107	0.072	1.493	0.408	8.513	3.453	91.809
108	0.761	3.729	0.688	5.813	4.487	53.629
109	0.277	2.214	0.709	0	3.647	164.181
110	0.388	2.828	0.61	7.247	3.513	137.726
111	0.093	1.248	0.754	3.78	3.867	43.854
112	0.158	1.623	0.756	4.127	3.54	128.558
113	0.211	2.021	0.648	0.767	3.94	21.146
114	0.092	1.366	0.621	1.48	3.667	127.333
115	0.657	3.561	0.652	2.367	4.227	15.562
116	0.282	2.186	0.742	6.773	3.933	160.382
117	0.04	0.829	0.731	4.527	3.747	120.53
118	0.202	2.036	0.613	0	3.847	98.746
119	0.41	2.689	0.712	3.787	3.873	114.555
120	0.146	1.605	0.713	1.867	3.907	108.635
121	0.206	1.809	0.79	8.253	4.54	83.326
122	0.191	1.925	0.646	6.747	3.94	103.241
123	0.336	2.419	0.722	0.273	4.007	162.181
124	0.43	2.639	0.775	3.447	4.773	73.129
125	0.269	2.211	0.691	1.04	4.18	160.942
126	0.188	1.895	0.658	2.193	4.653	78.14
127	0.173	1.715	0.74	4.5	4.02	144.462

4.58

7

30.579

2.198

128

0.146

1.772

0.585

2.305

1.42 1.152 1.154 1.562 1.087 1.289 1.106 1.25 1.651 1.273 1.177 1.438 1.348 1.568 2.469

1.241 1.843 2.021 1.551 1.193 1.795 1.725 1.136 1.106 1.553 2.445 1.071 1.74 1.338 1.566 1.238 1.156 1.354 1.776 1.105

N° 1412663/CA	
tificação Digital	
PUC-Rio - Cer	

129	0.037	0.85	0.647	1.033	4.207	146.929	2.019
130	0.316	2.236	0.793	7.453	4.48	175.156	1.443
131	0.135	1.685	0.595	0.907	4.907	81.027	1.645
132	0.295	2.308	0.696	5.353	4.967	63.658	1.257
133	0.455	2.757	0.752	4.56	4.52	150.412	1.274
134	0.102	1.376	0.678	4.4	4.393	98.931	1.206
135	0.237	2.246	0.59	8.513	4.393	91.312	2.083
136	0.22	1.994	0.696	0.947	4.887	26.075	1.339
137	0.564	2.951	0.814	1.447	5.26	51.582	1.208
138	0.11	1.428	0.677	2.247	4.927	53.409	1.648
139	0.511	3.061	0.685	6.153	4.547	126.193	1.188
140	0.091	1.263	0.716	5.793	4.853	41.566	1.422
141	0.122	1.453	0.727	0.353	4.5	105.186	1.102
142	0.2	1.809	0.766	2.593	4.507	106.526	1.29
143	0.736	3.568	0.726	6.767	5.38	31.192	1.213
144	0.192	1.88	0.681	3.427	4.967	27.553	1.821
145	0.076	1.221	0.641	0	5.053	66.28	1.581
146	0.085	1.28	0.652	0.493	4.967	19.592	1.145
147	0.108	1.356	0.737	3.02	4.687	143.915	1.444
148	0.276	2.16	0.742	3.793	5.027	3.608	1.11
149	0.461	2.866	0.705	7.407	5.6	49.662	1.965
150	0.149	1.517	0.814	0.273	4.813	99.834	1.052
151	0.416	2.61	0.767	2.373	5.713	76.588	1.257
152	0.238	1.998	0.75	5.747	4.873	130.014	1.365
153	0.16	1.664	0.725	0.807	5.353	39.193	1.165
154	0.524	2.911	0.777	2.707	5.627	40.895	1.267
155	0.122	1.533	0.653	0.353	5.333	42.374	1.14
156	0.13	1.503	0.722	5.213	5.08	148.782	1.372
157	0.741	3.688	0.685	3.94	5.653	13.256	1.863
158	0.134	1.648	0.622	1.08	5.593	66.879	1.997
159	0.244	1.976	0.787	3.673	5.713	80.628	1.312
160	0.037	0.923	0.549	0	5.107	95.29	1.619
161	0.228	1.987	0.726	8.107	5.82	75.964	1.558
162	1.115	4.169	0.806	1.087	5.6	160.697	1.226
163	0.054	1.164	0.496	8.333	5.687	68.663	2.653
164	0.077	1.442	0.463	6.213	5.58	21.181	2.262
165	0.272	2.183	0.717	0	6.14	67.878	2.079
166	0.006	1 264	0 755	5.26	5 4 2	170 205	
-----	-------	-------	-------	-------	-------	---------	
100	0.090	1.204	0.755	5.20	5.42	170.395	
167	0.021	0.644	0.63	5.667	5.327	147.265	
168	0.41	2.59	0.768	0.367	5.973	42.122	
169	0.053	1.076	0.571	5.86	5.367	147.6	
170	0.356	2.49	0.721	6.247	5.593	176.241	
171	0.295	2.299	0.701	4.693	5.82	7.45	
172	0.122	1.34	0.854	5.56	5.7	15.611	
173	0.16	1.735	0.67	7.86	5.533	97.853	
174	0.245	2.303	0.58	2.807	5.867	8.253	
175	0.209	2.399	0.456	5.9	6.273	63.435	
176	0.214	2.167	0.572	7.007	5.96	14.452	
177	0.152	1.696	0.665	2.38	6.113	43.315	
178	0.04	0.825	0.741	3.687	5.847	37.117	
179	0.02	0.649	0.602	3.94	5.66	133.958	
180	0.162	1.74	0.673	8.067	5.833	143.393	
181	0.359	2.407	0.779	5.187	6.007	150.9	
182	0.249	2.044	0.748	0.627	6.4	54.707	
183	0.065	1.048	0.748	4.433	5.86	130.365	
184	0.324	2.584	0.61	2.353	6.14	164.946	
185	0.222	2.03	0.677	3.053	6.06	3.27	
186	0.022	0.618	0.732	4.307	6.06	56.31	
187	0.017	0.516	0.806	3.687	5.887	124.824	
188	0.05	1.129	0.493	3.833	5.887	118.951	
189	0.027	0.745	0.601	4.073	6.14	65.898	
190	0.019	0.544	0.797	4.193	5.887	109.654	
191	0.029	0.864	0.48	6.347	5.9	106.928	
192	0.017	0.555	0.675	6.513	5.933	143.13	
193	0.018	0.602	0.614	6.7	5.927	117.979	
194	0.027	0.847	0.475	6.853	6.207	61.189	
195	0.182	1.868	0.656	7.513	5.993	140.5	
196	0.189	1.765	0.763	0.067	6.4	29.291	
197	0.013	0.529	0.587	7.027	5.987	115.821	
198	0.24	2.043	0.723	4.6	6.207	164.836	
199	0.018	0.493	0.922	7.433	6.033	107.745	
200	0.109	1.62	0.522	4.233	6.4	33.917	
201	0.165	1.706	0.713	7.927	6.12	155 225	

0.06

1.213

0.514

6.4

54.462

1.3

7.12

202

1.295 1.418 1.129 1.943 1.695 1.815 1.227 1.401 2.39 1.522 1.436 1.494 1.513 1.682 1.164 1.078

1.173 1.176 1.815 1.246 1.258 1.212 1.366 1.676 1.699 2.011 1.66 1.841 1.985 1.127 1.478 2.779 1.655 1.317 1.149 1.847

203	0.081	1.387	0.529	3.58	6.4	36.69	1.163
204	0.023	0.759	0.512	4.133	6.4	77.989	3.526
205	0.09	1.556	0.468	6.693	6.4	18.199	2.074
206	0.046	1.002	0.578	2.067	6.4	44.326	1.628
207	0.015	0.611	0.512	0	6.147	103.325	4.222
208	0.033	0.827	0.6	3.947	6.4	57.724	1.337
209	0.065	1.271	0.504	6.26	6.2	154.885	2.274
210	0.07	1.323	0.5	5.907	6.28	167.764	2.891
211	0.08	1.895	0.281	1.193	6.36	177.357	8.368

Tabela 16 – Análise de grãos da amostra Z3OP

A figura 93 - Resultados da difração de raios-X para as superfícies das zircônias com 5% Y₂O₃ – 2h e jateadas

	С-К	Atom % Error (+/- <i>O-K</i>	1 Sigma) <i>Y-L</i>	Zŗ-L
Base(1)_pt1	44.20	35.43	1.44	18.94
	С-К	0-К	Y-L	Ζŗ-L
		Atom %		
Base(1)_pt1	+/-1.19	+/-0.74	+/-0.47	+/-0.77
	~ ~	0 11	• -	

Bo	ase(1)_p	t1 +/-2	.93	+/-1.37		+/-0.16	+/-0.	25	
A figura	a 94 -	Resultados d	la difração	de Raios >	K para as :	superfícies	das zircônia	s com 3%	6 Y₂O₃ −

2h e jateadas

10