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Abstract 

Díaz Rodríguez, Jorge Guillermo; Freire, José Luiz de França (advisor); 

Linear Elastic Fracture Mechanics Analysis of Fatigue Crack Growth 

under Complex Loading using the Digital Image Correlation Technique. 

Rio de Janeiro, 2018. 176p. Doctoral thesis – Mechanical Engineering 

Department, Pontificia Universidade Catolica do Rio de Janeiro. 

 

Fatigue crack propagation assessment includes identifying the crack 

direction, knowing the equivalent Stress Intensity Factor (SIF) range, determining 

a crack length growth rate per number of cycles (da/dN), and establishing a crack 

propagation rule connecting the equivalent SIF and da/dN rate, such as a Paris type 

of rule. When mixed and non-proportional loading occur, those parameters are not 

fully understood yet. This thesis deals with some of the variables that influence 

crack propagation under non-proportional mixed mode loading. 

The Digital Image Correlation (DIC) technique was used to acquire images 

of test specimens subjected to cyclic proportional and non-proportional loading. 

Two types of specimen samples were used. Firstly, two different plate test 

specimens were tested; a disk compact tension (DCT), and a modified compact 

tension, C(T). They were subjected cyclic loading inducing crack opening mode I 

or proportional crack opening modes I and II. Secondly, the previously and 

elsewhere acquired DIC data for five thin tubes subject to cyclic loading were 

analyzed. The thin tubes had pre-fabricated slit-notches from which fatigue cracks 

initiated and propagated. Those five thin tubes were subjected to different cases of 

proportional and non- proportional loading. One tube specimen was exposed to 

axial loading and presented mode I crack opening. The other four were subjected to 

torsion loading or mixed axial-torsional loading and exhibited all three I, II and III 

crack-opening modes. The experimentally acquired DIC displacement fields were 

processed to independently calculate SIF for each existing opening mode using 

linear elastic fracture mechanics (LEFM) formulations. One formulation used full 
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field displacement data acquired in small areas that surrounded the crack tip. 

Another formulation used data acquired from a pair of points located along the 

opposite crack flanks. The determined SIFs were used to find equivalent SIFs and 

equivalent SIF ranges using the maximum tensile stress criterion (for both 2D and 

3D versions of combinations of modes I-II and modes I-II-III respectively) which 

implicitly included the crack propagation angle. It was found that the inclusion of 

the experimentally determined mode III SIF indeed makes a difference in the 

determined equivalent SIF and equivalent SIF ranges.  

A da/dN versus equivalent SIF ranges plot was drafted with the 

experimentally measured crack growth rates and the SIF ranges that were found by 

using the widely accepted assumption that the cracks grew in the direction that 

maximizes the tensile stress. For this, extensions of the Schöllmann et. al. model as 

well as of the Erdogan-Sih model, which are generally applied to proportional 

loading, were used to determine equivalent SIFs and equivalent SIF ranges for the 

cases of proportional and non-proportional loading. Finally, the second stage of the 

Paris rule (da/dN versus SIF range) was plotted for the five thin tubes loading cases 

showing that they fell inside a reasonably thin scattered band.  

 

 

Keywords 

Stress Intensity Factor; Linear Elastic Fracture Mechanics; Digital Image 

Correlation; Crack Opening Displacement; Least Square method; Multiaxial 

loading; Non-proportional loading. 
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Resumo 

Díaz Rodríguez, Jorge Guillermo; Freire, José Luiz de França (orientador). 

Análise do Crescimento de Trincas de Fadiga pela Mecânica de Fratura 

Elastica Linear sob Carga Complexa utilizando a Técnica de Correlação 

de Imagens Digitais. Rio de Janeiro, 2018. 176p. Tese de Doutorado - 

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do 

Rio de Janeiro. 

 

A avaliação da propagação de trincas de fadiga inclui a identificação da 

direção da trinca, o conhecimento do Fator de Intensidade de Tensões (SIF) 

equivalente, a determinação de uma taxa de crescimento de comprimento de trinca 

por número de ciclos da/dN e o estabelecimento de uma regra de propagação de 

trinca conectando SIF e da/dN, como uma regra de tipo Paris. Quando ocorrem 

cargas mistas e não proporcionais, esses parâmetros ainda não são totalmente 

compreendidos. Esta tese trata de algumas das variáveis que influenciam a 

propagação de trincas sob carregamento no modo misto não proporcional. 

A técnica de Correlação de Imagens Digitais (DIC) foi utilizada para a 

aquisição de imagens de corpos de prova submetidos a carregamento proporcional 

e não proporcional cíclico. Dois tipos de corpos de prova foram utilizados. 

Primeiramente, dois corpos de prova planos foram testados; um disk compact 

tension (DCT, em inglês) e um compact tension modificado (C (T) em inglês). Eles 

foram submetidos a carregamento cíclico induzindo o modo I de abertura de trinca 

ou modos I e II de abertura de trinca proporcionais. Em segundo lugar, os dados 

DIC adquiridos anteriormente, e em outro lugar, para cinco tubos finos sujeitos a 

carregamento cíclico foram analisados. Os tubos finos tiveram entalhes usinados a 

partir dos quais as trincas por fadiga iniciaram e se propagaram. Esses cinco tubos 

finos foram submetidos a diferentes casos de carga proporcional e não proporcional. 

Um corpo de prova tipo tubo fino foi exposto a carga axial e apresentou modo de 

abertura de trinca tipo I. Os outros quatro foram submetidos a carregamento de 

torção ou carga axial-torcional mista e exibiram todos os três modos de abertura de 
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trinca I, II e III. Os campos de deslocamento adquiridos experimentalmente com a 

técnica DIC foram processados para calcular independentemente o SIF para cada 

modo de abertura existente usando formulações de mecânica de fratura elástica 

linear (MFLE). Uma formulação delas utilizou dados de deslocamento de campo 

completos adquiridos em pequenas áreas que circundavam a ponta da trinca. Outra 

formulação usou dados adquiridos de um par de pontos localizados ao longo dos 

flancos opostos das faces da trinca. Os SIFs determinados foram usados para 

encontrar os SIFs equivalentes e faixas de SIF equivalentes usando o critério da 

tensão máxima de tração (para ambas as versões 2D e 3D de combinações dos 

modos I-II e modos I-II-III respectivamente) que implicitamente incluíram o ângulo 

de propagação de trinca. Verificou-se que a inclusão do SIF no modo III 

experimentalmente determinado efetivamente faz diferença nas faixas do SIF e dos 

SIF equivalentes estimados. 

A curva da/dN versus faixa do SIF equivalente foi elaborado com as taxas de 

crescimento de trinca medidas experimentalmente e as faixas de SIF que foram 

encontradas usando a suposição amplamente aceita de que as trincas cresceram na 

direção que maximiza a tensão de tração. Para isso, extensões do modelo de 

Schӧllmann et. al. e bem como o modelo de Erdogan-Sih, que são geralmente 

aplicados ao carregamento proporcional, foram usados para determinar os SIFs 

equivalentes e faixas de SIF equivalentes para os casos de carregamento 

proporcional e não proporcional. Finalmente, a segunda zona da regra de Paris 

(da/dN versus faixa do SIF equivalente) foi plotada para os cinco casos de 

carregamento nos tubos finos mostrando que eles caíram dentro de uma faixa 

razoavelmente fina e dispersa. 

 

 

Palavras-Chave 

Fator de Intensidade de Tensões, Mecânica de Fratura Linear Elástica, 

abertura da ponta da trinca, método dos mínimos quadrados, carregamento 

multiaxial, carregamentos não proporcionais. 
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1.  

Introduction 

In 1982, the US department of commerce estimated a loss in order of 119 

billion dollars due to structural integrity failures. It also estimated that the annual 

losses could be reduced to $35 billion if available technology was applied [1]. 

Bridges, buildings, airplanes, ships, pipes and pressure vessels - which are large, 

critical, and expensive structures - have flaws that make them must-monitor-for-

cracks targets. Theoretical and/or numerical models are used to predict crack 

growth and stress fields caused by a diverse number of different types of flaws. 

Some of these models advise users about errors in calculation, mainly due to their 

inherently complex geometry, whereas others work only with very particular ranges 

of parameters. 

For Mechanics of Materials calculation, the material is assumed as a 

continuum, whereas with Fracture Mechanics, the internal flaws are considered. 

Therefore, it can be said that a flaw (several microns or several millimeters long) 

undermines the macrostructure load bearing capacity. Models for integrity 

assessment around flaws are based on limiting states that compare loading and 

material capacity. On the other side, structural load, component geometry, and 

crack length are combined as “crack parameters” such as: the Stress Intensity Factor 

(SIF), the Crack Tip Opening Displacement (CTOD, δ), the J integral (⌡), and the 

Energy release rate (Ǥ). They were proposed analytically, verified experimentally 

with different techniques and numerically with the Finite Element Method (FEM) 

or its derivations. The material strength properties for integrity assessment, such as 

fracture thoughness, are determined following standards (Zhu and Joyce [2] did a 

very thorough review in 2012). Once calculation of the chosen crack parameter is 

performed, it is compared to the respective material property. A graphical 

comparison with Mechanics of Materials is shown in Figure 1-1. In Mechanics of 

Materials the acting load, in conjunction with geometry, produces an acting stress 

state (σ) which is increased if a stress concentrator (Kt) is present. That combination 

σ*Kt must be lower than the material property, such as: the yield strength, the 
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ultimate strength, the maximum allowable strain, etc. However, in Fracture 

Mechanics only acting crack opening positive loads are considered, producing an 

acting stress. The flaw dimensions in conjunction with the applied stress produce a 

SIF (or ⌡, δ or Ǥ depending on what parameter is used). For Linear Elastic Fracture 

Mechanics (LEFM), if the SIF surpasses the equivalent material toughness property 

(KI c or Kc) according to a standard criteria, that body is labeled as not fit for service. 

Therefore, calculating those parameters (SIF, ⌡, δ or Ǥ) is a key step while 

performing a structural integrity assessment. 

 

Figure 1-1. Comparison between Mechanics of Materials and Fracture Mechanics 

There are several methods, based on different experimental techniques to 

calculate fracture mechanics parameters. One of them is the Digital Image 

Correlation technique (DIC), which is non-intrusive, requires little sample 

preparation, and can map the whole surface stress field in a body. It has 

disadvantages as well; such as moderately high cost, the need for a level of 

expertise, the data post processing can be awkward, and their limitation to see how 

stress changes inside the sample. Overall, it is more advantageous than traditional 

methods such as strain gages (SG) and photoelasticity 

Structural integrity standards, such as API 579, define levels of assessment, 

being level I the most conservative and level III closer to reality than the levels I 

and II. Cracked body problems, for which there is no analytical or tabulated 

solution, or that do not pass level I and II of said norm, need to be solved by 

sophisticated techniques (FEM is a popular option). However, a helpful FEM 

simulation relies on reproducing accurately boundary conditions and creating an 

appropriate mesh, which can be time consuming. Such procedures are used in 

industries where time is of the essence by having unproductive assets. Experimental 
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measures provide the basis for understanding the physics of problems and they are 

the base to propose models that later are used in simulations. 

This thesis presents the experimental analysis of three kind of samples 

subjected to fatigue crack growth: a Disk Compact Test (DCT) specimen under pure 

mode I, a modified Compact Test (C(T)) specimen under proportional modes I and 

II, and five thin tubes under: pure and proportional or non-proportional mixed-mode 

loading. Furthermore, it also presents how the SIF and SIF ranges were calculated. 

Finally, it attempts to explain how the cracks direction behave and how they 

propagate. 

 

1.1 

Fracture Mechanics 

The problem of dealing with geometric discontinuities dates back to German 

engineer Ernst Gustav Kirsch in 1898 when he proposed a stress solution for an 

infinite plate with a circular hole. In 1913, British engineer Charles Inglis widened 

the solution to elliptical holes showing that stress will grow as the ellipse flattens. 

In 1920, British engineer Alan Arnold Griffith used an energy approach in brittle 

materials, relating crack growth with stored potential energy. It is what is known as 

Energy release rate (Ǥ). It, however, intrinsically neglects energy associated with 

metal plasticity. In 1939, Danish professor Harold Malcolm Westergaard, working 

at Harvard, used complex functions to develop a whole stress field solution for an 

infinite cracked plate with equibiaxial loads [1–3]. 

Meanwhile, World War II (WWII) came and there was a need to quickly 

manufacture ships. Welding was the chosen method for that, but its rapid 

manufacturing time came with problems that were unknown of back then. Famous, 

is the case of the Liberty ships that cracked even while at port. Bad quality welds, 

rough conditions in the North Atlantic Ocean, and low toughness materials were 

the causes for such failures. After WWII, from October 1953 to April 1954, three 

British De Havilland Comets, the first commercial jetliner produced, crashed in 

mid-flight for no apparent reason. A posteriori analysis determined that sharp 

corner windows caused fatigue cracks to growth to critical length. The entire fleet 

was grounded until 1958. Once the problem was fixed, the company had such a bad 
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of reputation that it could not recover financially and eventually lost the market to 

American Boeing 707 and Douglas DC8 jets. On a different, but conclusive event, 

in 1969 the crash of American bomber F111, due to an overseen crack in a D6aC 

steel (a type of SAE 4340) pin that held a wing, made the aeronautic industry 

implement fail-safe design policies based on Fracture Mechanics [3]. 

Nearly twenty years later after Westergaard, American physicist George 

Rankine Irwin, while working at the US Naval Research Laboratory, showed that 

Westergaard´s solution could be simplified in the area surrounding the crack tip. He 

proposed the SIF concept, fathering modern Fracture Mechanics [4].  

The advantage of Irwin´s solution (which is simplified) over Westergaard´s 

(exact) are: 

 Irwin´s solution is accurate at the crack tip, exactly where it matters. 

Only the crack tip surroundings regulate how fast the crack can 

grow, in what path, and whether it fails catastrophically or not [3]. 

 Irwin´s solution lead to the SIF definition, probably the paramount 

of fracture mechanics. 

The same year, American professor Max L. Williams [5] from CalTech, 

arrived at the same solution using trigonometric functions. The result is an 

expansion series that is identical to Irwin solution when using only the first term in 

the expansion. They both arrived to the same solution.  

Figure 1-2 shows the three possible opening modes for cracked bodies. 

Mode I is opening perpendicular to crack faces, mode II is sliding parallel to crack 

faces, and mode III is out of plane sliding. 

 

Figure 1-2. Opening modes for cracks 
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Three years later, a team lead by Dr. Paul Paris [6] at the University of 

Washington proposed the SIF range (ΔK) as the driving force for fatigue crack 

growth. 

If loads do not produce large plastic zones ahead of the crack tip or the 

material does not exhibit plastic work, SIF works just fine. Otherwise, a different 

parameter needs to be used to describe stress field. In 1960 after observing that 

bending specimens deformed too much to be characterized with SIF, British 

scientist Alan Wells, from The Welding Institute (TWI), came up with the COD, 

nowadays termed CTOD (Crack Tip Opening Displacement). He was able to show 

that a critical CTOD, in wide plate specimens of the same thickness under bending 

were equivalent, proving that fracture toughness can be transferred from test 

coupons to field geometries [2]. In 1967, Russian scientist Gerady Cherepanov [7], 

from the Institute of Mechanics Moscow, and American professor James Rice [8], 

from Brown University in 1968, independently proposed a method to calculate the 

energy strain release rate per surface in a cracked material. It was a follow up on 

work done in 1956 by Dr. John D. Eshelby at the University of Birmingham. It was 

named J integral (⌡) which it is a purely mechanic model that does not take into 

account microstructure [3]. Hutchinson, Rice and Rosengreen showed that ⌡ 

characterizes stresses and strains at the crack tip for nonlinear materials, making it 

an energy parameter and a stress intensity parameter as well [1]. 

The first attempt to explain crack path (CP) direction was done in 1963 by 

professors Fazil Erdogan and George Sih [9] from Lehigh University who proposed 

that cracks under mixed-mode (proportional I and II modes) grow in the direction 

of maximum tangential stress (MTS). Later in 1973, prof. Sih proposed that a crack 

grows along the direction where strain energy density (SED) is minimum [10]. In 

1974 Goldstein and Salganik [11] proposed a criteria named local symmetry (LS) 

which gave very close results as MTS. Same year, Strifors [12] proposed a criteria 

for mixed mode based on the ⌡, treating them as vectors, named the apparent crack 

extension force criterion (CEF). One year later, R. J. Nuismer [13] proposed that 

cracks grow in the direction which guarantees that they release the maximum 

energy (MEER). In 1981 Chang [14] proposed a model assuming cracks advance 

in the direction where the tangential strain energy is maximum. One year later, P. 

Theocaris and N. P. Andrianopoulos [15] proposed a model based on the 

DBD
PUC-Rio - Certificação Digital Nº 1322103/CA



  19 

 

assumption that cracks propagate when the dilatational strain energy reaches a 

critical value. In 1989 Papadopoulos [16] took into account the third stress 

invariant, stating that the angle for crack growth is controlled on the condition that 

the norm of the stress tensor takes a maximum value. However, in 1992 

Spyropoulos challenged its foundations, stating it is composed of two different 

magnitudes, so they cannot be added freely. Same year, prof. Chingshen Li [17] 

from the Taiwan University of Technology proposed that cracks take the direction 

of the rate of SIF in mixed mode. Maccagano and Knott [18] came up with a model 

based on the Maximum Shear Stress (MSS) for materials prone to shear or for 

loading cases where shear is dominating. A team led by Schöllmann and Richard 

[19] proposed a model that included KIII in the input variables as well as the crack 

angle. Wasiluk and Golos [20] in 2000 proposed a model based on an 

adimmensional plastic zone radius. More recently, in 2016 Demir et. al. [21] 

proposed an empirical model fitting experimental data to a polynomial and 

logarithmic model. All in all, it can be said that all CP prediction models state a 

hypothesis for crack increase direction and increment generally is created when an 

equivalent SIF (Keq) surpasses a material property. 

In the present century, a couple of researchers stand out for their work on 

crack path prediction. Prof Hans Albert Richard from Universität Paderborn. Prof. 

Sylvie Pommier from École Normale Supérieure Paris-Saclay (Cachan), and Prof. 

Michael Vormwald from Technische Universität Darmstadt, both in Germany. The 

first one introduced a crack twisting angle model and an equivalent SIF model 

which included mode III with an implicit crack kinking angle [19] that later was 

reduced to an empirical model [22]. It has been implemented in the 

ADAPCRACK3D 1 FEM software. The second one has been working extensively 

on modeling fatigue crack growth aiming to include non-linear effects such as 

fatigue history, damage accumulation, plasticity and roughness induced crack 

                                                 

 

1 

http://www.dlr.de/Portaldata/23/Resources/dokumente/wsk_2012/Simulation_der_Rissausbreitung

_unter_komplexen_Lasten.pdf 

Last accessed January 4, 2018 

http://www.sciencedirect.com/science/article/pii/001379449290034C
http://www.dlr.de/Portaldata/23/Resources/dokumente/wsk_2012/Simulation_der_Rissausbreitung_unter_komplexen_Lasten.pdf
http://www.dlr.de/Portaldata/23/Resources/dokumente/wsk_2012/Simulation_der_Rissausbreitung_unter_komplexen_Lasten.pdf
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closure, creep, corrosion and thermal effects. Finally, the last researcher has tackled 

the problem equivalent SIF and crack path under non-proportional loading. 

In the last few years, there has been a number of works in non-proportional 

loading. There are works describing the macroscopical aspects of fatigue crack 

growth under non-proportional loading for hollow tubes [23], the microstructure 

transition when going from tensile to shear dominating fracture [24]. One more 

work identifying factors that affect crack behavior, among them are: crack tip 

plasticity, load reversal ratio, material anisotropy, geometry, mean applied stress, 

and mode-mixity [25]. Another one attempted to numerically reproduce FCG 

results from round samples made out of low carbon steel alternating from a tensile 

to shear dominated crack growth criteria where an attempt to identify fracture mode 

transition was made where, however, they acknowledged that the effect of load 

reversal was not considered [26]. A similar job was performed by Yu, Li and Proust 

[27] but working with Aluminum. However, when calculating SIF, they did so with 

established numerical formulas, and they also did not report KIII, although the 

samples were tubes under torsion and axial load. Their loading cases can compare 

to some of the cases reported in this thesis. However they applied a minimum of 

RL=0,2 and RT=0, as follows: their LC1 is R-028 here, their LC4 is R-030 here. 

Finally, they also used the Erdogan-Sih (MTS), MSS and SED criteria to predict 

crack growth finding the SED is the closest to proportional loading crack path 

prediction. There is one article modeling material behavior under non-proportional 

loading using a Caboche material model and considering kinematic hardening with 

the Amstrong-Frederick rule [28]. Mei et. al. [29] applied an equivalent SIF model, 

using compliance functions for C(T) specimens made out of AISI/SAE 1070 steel 

under modes I and III, that accounts for loading path history by combining da/dN 

data from different loading tests founding that it can successfully correlate FCG 

data from both, proportional and non-proportional mixed-mode loading conditions. 

Frémy, Pommier, Poncelet, et. al. [30] subjected a plate to a three independent-axis 

loading conditions, however with an RL=0,33 to avoid crack closure effects, 

measuring FCG rates with the DIC technique. The applied SIF and their sequence 

were chosen carefully to always achieve the same SIF peaks at the same time. They 

showed that non-proportional crack growth is influenced by loading path for the 

tested conditions, something was mentioned earlier in 1983 by Tschegg et. al [31] 

DBD
PUC-Rio - Certificação Digital Nº 1322103/CA



  21 

 

but, in a way, challenged in 1985 by Pook [32] who stated that despite noisy results, 

non-proportional FCG in modes I and III could be described by Paris rule except 

for out-of-phase crack growth. 

This thesis uses the experimental data from [33] taking advantage of the 

measured DIC displacement fields to calculate LEFM parameters and establish a 

FCG rule combining different loading conditions. 

 

1.2 

Methods to calculate Fracture Mechanics parameters 

Right after models to calculate fracture mechanics parameters were proposed, 

calculation using experimental techniques has been comprehensively explored. In 

literature is well documented the working principle, input / output variables and 

data posprocessing for local measurements (strain gages) and optical methods 

(photoelasticity, caustics, Moiré, and more recently DIC). 

For many years Irwin´s method [34], along with Wells and Post [35], were 

used to extract SIF from photoelastic patterns. It was Irwin [4] in 1957 who 

suggested using SG to measure SIF, but Dally and Sanford [36] in 1987 were the 

first who successfully used them to calculate SIF in different configurations of CT 

specimens. Barker et. al. [37] proposed in 1984 a general algorithm to calculate 

stress-field parameters in mode I. Although it was developed for Moiré, it can be 

labelled as the first approach to calculate stress field parameters for opaque 

materials, as it can be extended to any technique that gives full field displacements. 

In 1987,  McNeill et. al. [38] fitted DIC data to Westergaard solution using LSM to 

establish KI. Sanford in 1989 [39] extended Barker´s method [37] to include non-

singular terms in the solution. Lopez-Crespo et. al [40] in 2008 calculated SIF by 

fitting DIC measurements to Muskhelishvili stress functions, and attempted to 

locate crack tip location using image processing techniques. The same year, Yates 

et. al [41] used DIC to measure SIF, T-stress and crack tip opening angle (CTOA) 

from displacement fields using Williams solution. In 2012 Zhang and He [42] used 

DIC to compute SIF, T-stress, rigid body motion, and rotation by fitting 

displacement fields under mixed loading conditions to Williams equations in a 

Plexiglas C(T) sample. In 2014, Hos, Vormwald, and Freire [43, 44], used 
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commercial DIC to calculate SIF in thin tubes loaded in mixed mode under complex 

tension-torsion loading using DIC strain data to fit Irwin´s solution. Harilal et. al. 

[45] introduced crack tip coordinates as unknowns into Williams solution. 

Kotousov et. al. [46] measured SIF variation through thickness by taking DIC data 

on a rotated angle from the focal plane, and same authors in [47], using a semi disk 

in a three-point bending test collecting DIC displacement data, established the radii 

at which 3D effects can be estimated. 

 

1.3 

Motivation 

There are numerous techniques available in literature that address SIF, and 

da/dN vs. ΔK calculation from experimental data. However, several problems arise 

when calculating them. In the case of SIF they are: 

 The exact location of the crack tip is fundamental to determine an accurate 

SIF value. 

 The number of terms used in Williams’ series influences the solution 

depending on how far from the CTL one goes to extract data to determine 

and to analyze SIF. 

 When using DIC data, one can use Williams’ series for displacement, strain 

or stress. The two latter may give erroneous results due to inherent noise. 

 The high deformation gradient around the crack tip may induce an error in 

the solution by feeding models false data. 

 When in presence of induced plasticity or a partially opened crack, readings 

need to be analyzed properly to avoid false interpretations[48–50] . 

 For non-proportional loading, crack path and equivalent SIF is not fully 

understood yet [23–25, 51]. 

SG have a problem with their finite size. In addition to that, in the past the 

availability of other more efficient experimental methods, such as photoelasticity, 

and compliance made SG a second choice to measure Fracture Mechanics 

parameters. On the other hand, photoelasticity may have difficulties in opaque 

materials and compliance techniques are not practical in dynamic applications [52]. 

The radial location of SG is restricted by inherent problems, such as plasticity 
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effects, three-dimensional effects and high strain gradients. Large strain gradients, 

near the crack tip, also cause large averaging errors due to the finite size of SG [52]. 

This was confirmed by Kotousov [47] using DIC and numerical techniques. 

Hos, Vormwald and Freire [43] analyzed data for subjected thin-walled 

pipes to five types fatigue loading: pure tension-compression, pure torsion, 

proportional tension- torsion, out-of-phase tension- torsion with a phase angle of 

45°, and out-of-phase tension- torsion with a phase angle of 90°. They estimated 

crack length, crack growth, near crack edge deformation, and crack closure using 

3D DIC. SIF were reported for loads in tension calculated by fitting DIC stresses to 

Westergaard’s equations. Results are compared to FEM results using ABAQUS´® 

⌡ routine. In another paper [44], same authors determined SIF via COD (a pair of 

points with simplified William´s equations) and with strains from many points 

which were reduced using LSM using DIC strain data, both ways at the working 

maximum and minimum loads for pure tension-compression, proportional tension-

torsion, and pure torsion. Additionally, they plotted the da/dN vs. ΔK curve for the 

pure tension-compression case only. The authors identified some problems: 

 SIF values were calculated with strains and stresses from DIC data. As 

pointed out before, they might lead to inaccurate readings due to inherent 

noise. 

 Reported SIF values differ between COD and LSM using DIC strain data 

for axially loaded sample. Such difference may be attributed to the 

difficulty of pinpointing the CTL and to the inherent noise when derivating 

displacements to calculate strains. 

As mentioned before, crack path is not fully understood yet [53] [20]. There 

are models based on stress, energy, and critical plane calculation. For mode I, they 

give accurate predictions and for in-phase mixed-mode loading some of them 

perform well, and actually they are used in commercial crack growth simulation 

software. Miranda et. al [54] investigated crack propagation under proportional 

mixed-mode comparing, and founding excellent agreement, experimental results 

with numerical simulations with a considerably reduction in computing time by 

using the Maximum Tangential Stress criterion (MTS) and self-adapting meshes to 

calculate SIF at each crack increment. However, the question remains open when 

loads are out-phase. Yang [26] performed simulations on thin tubes subjected to 
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proportional and non-proportional loads, similar to [23] [43], alternating MTS and 

Maximum Shear Stress criterion (MSS) criteria looking for a parameter that could 

tell when the crack path changes from tensile to shear dominated growth. Although 

there were differences in crack growth rates, being the simulated ones more 

conservative, the simulated crack path was close to experiments. Vormwald [53] 

observed that there is a predisposition to underestimate fatigue lives when non-

proportional loading is involved, and at the same time, he acknowledged several 

issues in FCG that affect accurate prediction such as mixed-mode ratio and crack 

closure. 

Although this thesis does not answer the question of crack path under non-

proportional loading, models for crack kinking were evaluated for in-phase and out-

of-phase loading using SIF calculated from the experimentally obtained DIC 

displacement fields. A comparison of crack growth rates is made for the thin tubes 

finding they might be explained by an Erdogan-Sih propagation rule, although with 

a high dispersion. 

 

1.4 

Thesis Objective 

From the experimental data acquired by Hos [33] published and analyzed in 

[28, 43, 44, 48], there is still much more information that can be analyzed such as, 

SIF, a da/dN vs. ΔK curve, and crack path prediction, for the five types of loading. 

After those parameters were calculated, an attempt will be made to explain their 

behavior, such as SIF, SIF range, and crack path in mixed mode for the complex 

loading cases. It is important to highlight that the experiments related in [29, 30], 

were performed at Technische Universität Darmstadt (Germany), and processed at 

PUC´s Photomechanics lab using the software 3D-VIC from Correlated 

Solutions®. To gain confidence in calculating SIF from displacement fields, 

simpler experiments (sections 4.1 and 4.2) were performed to tests the methods and 

models and experimental results were compared to FEM modeling solutions. 

As a result, this thesis determines SIF and SIF range for fatigue tests that 

involve tension and torsion loads including complex loading such as the ones 

described at the beginning of this section. For this, it was conducted a study of 
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methods that could be used with DIC, analyzing their physical fundamentals, 

input/output variables, and sensitivity to change in input variables. The suitable 

methods were implemented to process the collected data, so information could be 

properly analyzed. The research question at hand is to answer whether the da/dN 

vs. ΔK curve correlates for different types of loading or not. Thus, the objectives 

can be summarized as follows: 

 To determine a FCG rule that combines proportional and non-proportional 

mixed mode loading cases. 

 To study LEFM formulations for SIF, SIF ranges and equivalent SIF, the 

methods to calculate them using displacement field such as the ones acquired 

by the DIC technique. 

 To perform an evaluation of crack kinking models for the determined SIF and 

SIF ranges calculated from the experimentally acquired displacement fields. 

 

1.5 

Thesis Outline 

This thesis is divided in seven chapters. The first is the introduction and 

presents the objectives. The second has the relevant theoretical background needed 

to develop the work. The third one presents a review on models for crack path 

propagation. The fourth describes the performed tests and how the methods were 

used to analyze results, especially how an existant equivalent SIF for proportional 

loading can be used to evaluate equivalent SIF under non-proportional loading. The 

fifth chapter reports findings on SIF, SIF ranges, and equivalent SIF ranges. Then, 

the sixth chapter discusses such results, how models for crack kinking perform for 

the specimens tested, and it shows the comparison of equivalent SIF ranges using 

Paris rule. Finally the seventh chapter draws conclusion and suggests future work. 
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2.  

Literature Review 

This chapter reviews the derivation and definition and of necessary concepts 

and techniques used to analyze the performed tests. The nomenclature for the 

relevant mechanical models, derived in the past, may have been altered here to 

comply with only one arbitrary standard. 

 

2.1. 

Digital Image Correlation 

DIC started in 1982 at the University of South Carolina [55]. Later in 1983 

[56], a paper described a method to estimate deformation from a photographed 

deformed sample and another one [57] described how to compute rigid body 

displacements. Nowadays, it is the most extensively used technique for 

experimental mechanics, and it has its own dedicated annual conference2.  

DIC is a non-contact optical technique that uses one (DIC-2D) or more (DIC-

3D) cameras to account for displacement, rigid body, rotation and out-of-plane 

displacement in case of DIC-3D. The technique uses a virtual mesh to discretize the 

aerea of interest (AOI) in smaller elements called subsets, see Figure 2-1. 

DIC takes advantage of the gray intensity change within a subset in sequential 

photographs taken on a sample before and after deformation [58]. Photographs are 

acquired digitally, i.e. by a digital camera (CMOS or CCD), or by traditional 

methods which subsequently are digitalized as maps of bytes f(x,y) making possible 

to compare grey intensity before and after deformation to obtain displacement fields 

using a correlation criteria. Eq. (1) shows the squared sum of difference correlation 

criterion, SSD. Sutton et. al. [58] warns that although the SSD is the least influenced 

                                                 

 

2 http://idics.org/  

http://idics.org/
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by-light-variation optimization criteria, it is also the most computer time consuming 

method. 

 

Figure 2-1. Notation before and after deformation images (adapted from [42]) 

 
2

min ( ´ ') ( , )
M N

x M y N

SSD g x y f x y
 

    (1) 

where SSD is the correlation criteria, f(x, y) and g(x’, y’) represent the grey 

levels of reference before and after deformation; and(x, y) and (x’, y’) are the 

coordinates of a point in the subset before and after deformation. The coordinate 

(x’, y’), after deformation, is related to the coordinate (x, y), before deformation, 

with Eq. (2) following the schematics depicted in Figure 2-1. 

2 2 2
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            

     

    
            

     

 (2) 

DIC provides independent values of displacement u and v in directions X, Y; 

in the case of 3D DIC, the w displacement in Z direction can be obtained as well. 

Moreover, DIC technique that can be used to measure small or large samples, static 

or dynamics events, and rigid or soft materials. The speckles can be added by ink 

spray, can be etched, or stamped [52, 58, 59].  

One of the most important task in experimental work is preparing the sample, 

organizing the equipment (Cameras, light source, and computer controller), and 

calibrating the experiment. The DIC technique is not exempted of doing so. Here it 
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is briefly described how to perform those tasks for hard materials while performing 

solid mechanics measurements. 

Sample preparation. The sample should be clean and polished to minimize 

external interference. Then, the speckles are added over a white coating with 

speckles size in accordance with spatial resolution and lens magnification. As rule 

of thumb, speckles should about 3 to 4 pixels in size. They can be applied with 

airbrush, with a standard spray aerosol, a regular brush, off the shelf stickers, or 

rubber stamped. Nonetheless the method, the pattern should non-repetitive, 

isotropic and exhibit a high contrast. Because the cameras are usually black and 

white, those colors are recommended for the speckles. 

Equipment: Cameras are usually monochromatic and with a high 

resolution (nowadays a 6MPixels resolution is easily achieved). The light source 

should be in accordance with the camera´s minimum exposure time being room 

light the one that needs the longest and a stroboscope the fastest exposure time. 

The 3D-VIC user manual3 recommends keeping external motion under 0.02 

pixels therefore, the light frequency should be chosen according to the frame 

acquisition rate. Finally, the computer controller triggers cameras, synchronizes 

the testing matching to record analog signals. 

Experiment calibration. Its objective is to provide a field of view from 

known coordinates. This is achieved by placing grids of known separation in 

front of the cameras, recording them and processing them to create such 

envelope. The calibration includes intrinsic parameter (focal length, aspect ratio, 

and sensor center) as well as extrinsic parameters (such as relative linear and 

angular position between cameras). The latter will change in case the cameras 

are moved during the experiment 3. 

 

                                                 

 

3 For details and a more extentive instructions, see the “3D-VIC 2010 testing and reference 

guide” or “A Good Practices Guide for Digital Image Correlation” availbable at: 

https://doi.org/10.32720/idics/gpg.ed1  

https://doi.org/10.32720/idics/gpg.ed1
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2.2 

Stress Intensity Factor 

When stressed bodies are in presence of macroscopic flaws, they exhibit a 

non-linear intensification near the crack tip. Westergaard [1] proposed an Airy 

stress function (ϕ) and developed a complex number solution for an infinite plate 

with a crack in the center. The proposed solution describes the whole stress field 

around the crack, which is summarized in Table 1. A thorough deduction and proof 

can be found in [1] or [3]. 

 

Table 1. Summary of the Westergaard complex function 

Function ϕ Re( ) Im( )Z i Z    

Z 

 
2

( )
1

Z z
a z




 

Z  
 Z 

Z   Z 

Z z=x+iy 

 

where a is crack length, z position, and σ remote stress. 

Stress fields around a crack´s vicinity exhibit a non-linear intensification near 

the crack tip, which depends on 1/√r. However, Westergaard solution was awkward 

to use in engineering practice. The stress field ahead of a crack tip (Figure 2-2) in 

an isotropic linear elastic material, can be accurately represented by the SIF, as 

shown in Eq. (3). 
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Figure 2-2. Notation for stress, displacements, and position near a crack 

( )    ( , )
2

ij ij

K
f higher order terms r

r
  


 

 
(3) 

which is known as the Irwin solution. The term fij (ϴ) is a function of the 

measured angle and geometry. When approaching the crack, the prevalent term is 

the first one, so higher order terms can be dismissed. It can be seen how stresses 

vary linearly with the SIF, so in presence of a crack, the stress field is described by 

the SIF. It has to be pointed that the equations in Table 2, Table 3, and Table 4 

include a 1/√r term, which describes the influence of distance from the CTL on 

stress and displacements and reveals a singularity at r=0. So, in theory stresses go 

to infinite for points closer to the CTL. For mode I (opening mode) stress and 

displacements are summarized in Table 2 [1]. 

 

Table 2. Stress and displacements for mode I 

Stress Displacement 
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For mode II (in-plane) stress and displacements are presented in Table 3 [1]: 

Table 3. Stress and displacements for mode II 

Stress Displacement 

3
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Finally, mode III (out of plane) stress and displacements are presented in 

Table 4 [1]. 

 

Table 4. Stress and displacements for mode III 

Stress Displacement 
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where k is the Kolosov constant given by (4). 

3 4 ;

 3
;
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


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(4) 

On the other hand, Williams’ solution is expressed as an infinite series of n 

terms [5], as shown in Eq. (5) for displacement. 
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(5) 

where a1= KI/√2π, b1=KII/√2π, c1=KIII/√2π, a2=σox/4, 

 

2.3 

Crack Tip Opening Displacement 

SIF mode I can be also calculated from COD, and CTSDII for mode II and 

CTSDIII for mode III, if points A and B, from Figure 2-2, are considered to be ±180 

degrees from the crack tip. Then Eqs. (5) are simplified to Eqs. (6). 
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 (6) 

However, if points A and B do not fall within the ±180 degrees assumption of 

Eq. (6), SIF can be represented by Eq. (7) by using the first term of Eq. (5). 
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(7) 

where Δu, Δv and Δw are the relative displacement between points A and B 

from Figure 2-2 in x, y and z direction respectively. It can be seen in Eq. (6) and Eq. 
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(7) that SIF should not depend on the position of the evaluation points because 

further-from-the-CTL-points exhibit larger displacements and viceversa. 

Therefore, SIF describes the displacement field and, it is proportional to the relative 

displacements between two-opposite-to-the-crack points. Henceforth, COD 

indistinctly refers to COD, CTSDII, and CTSDIII unless specified otherwise. 

 

2.4 

J integral 

Path-independent integrals are used in exact sciences to estimate the intensity 

of a field with a singularity and /or with profile uncertainty in the vicinity of the 

singularity, and they are derived from conservation laws. ⌡ can be physically 

interpreted as the system potential energy relief rate in relation to the variation of 

crack length [7, 8]. It is presented in Eq. (8). 

;  ( , )i
i

i

u
Wdy s i x y

x







 
   

 
  (8) 

where W is the strain energy density, ui is displacement, x the crack growth 

direction, T is stress vector, and δs is length increment along the chosen path. ⌡ is 

path independent for an open path [8, 59]. 

Because ⌡ works on plastic zones, even though the path is arbitrary (i.e. 

Figure 2-3), a sufficiently small contour can be made. A rectangular path is 

probably the most common, but a curvilinear one has advantages as well. As 

pointed out before, there are problems evaluating ⌡. Therefore, it is important to 

understand what all of ⌡ terms represent when evaluated it those two paths. Below 

is the ⌡ deduction for a rectangular path implemented in [49]. 

 

Figure 2-3. Different paths for ⌡. Quasi-rectangular and quasi-circular, 

adapted from [1]. 
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In Eq. (8), with the normal vector shown in Figure 2-4, the stress vector can 

be expressed as: 

i ij j
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xy yy y

ds n ds
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 

 
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Figure 2-4. Normal Vector to Crack Position 

For a position at a distance r and at angle θ measured from the crack tip, as 

shown in Figure 2-4, the normal vector n can be expressed as n= cos θi+senθj: 

The increments dx and dy along the path can be expressed as: 

x
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dx
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Then, replacing them in Eq. (8), and for a rectangular path, ⌡ can be 

calculated as Eq. (9). 

vu
Wdy Tx Ty s

x y

 


 
 

 
   

 
   (9) 

Expanding the traction vector, Eq. (9) becomes Eq. (10). 
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(10) 

where the strain energy, W, is a function of principal stresses and strains 

shown in Eq. (11). 

 1 1 2 2

2
W
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The expression in Eq. (10) represents the energy per unit area [J/m2, J/mm2] 

spent in opening the crack. Therefore, if more than one loading mode is present, ⌡ 

represents the sum of energy per unit area in each loading direction, or: ⌡= ⌡I+ ⌡II+ 

⌡III [60, 61]. 

 

2.5 

Methods to determine SIF using DIC 

With the recorded data from DIC measurements, posprocessing has to be 

done. Using full field displacement data, Barker, Sanford and Chona [37] fit data to 

Westergaard equations (Table 1) mounting a linear system shown in Eq. (12). 

    h b 
 (12) 

where matrix [b] contains the functions of position terms described in Eq. (5), 

{Δ} is the unknown vector coefficients of the stress function, and {h} the 

concatenated vector of known displacements. One can see it may yield an over-

determined system that can be solved by LSM, as shown in Eq. (13). 

     
1 TTb b b h
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(13) 

McNeill et. al. [38], using DIC displacements, established KI in small areas 

(1.27 cm x 1.27 cm) from a C-specimen made out Plexiglas and compared results 

to ASTM solution. They fit measured displacements to Eq. (14). 
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(14) 

where h1 is the measured point displacement and A2 and f2 account for body 

rigid motion. It becomes imperative that CTL location has to be chosen correctly. 

They ran a routine repeatedly using different CTL until the error was minimized. 

Sanford [39] extended Barker´s method [37] to include non-singular terms in 

the solution. He claimed an increase in accuracy and a back-then non-existent 

capability to deduce additional information about fracture parameters from the 

added nonsingular terms. He applied the method to holographic interferometry, 

Moiré and photoleasticity. For photoelasticity, the series are expressed in Eq. (15), 
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where N’o is the the fringe order, fp the unknown initial fringe order, and t the 

material thickness. 

1
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N f N
A r Cos n B r Cos m

t
 

 

 

      (15) 

which returns an over determined system that can be resolved by the LSM 

method showed in Eq. (12). More recently, Zhang and He [42] computed SIF from 

DIC displacements fields on an Aluminum C(T) sample with a RL= 0,4 by 

expressing Williams’ displacement fields as Eq. (16). 
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(16) 

where N is the number of terms of the expansion of the displacement field, Tx 

and Ty are the rigid body components in x and y respectively and Ryn and Rxn the 

rigid body rotation. The two equations can be rewritten as matrix form as Eq. (12), 

where [b(r, θ)] is a matrix composed of functions described in Eq. (17). 
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(17) 

where functions in Eq. (17) are detailed in Eq. (18). This method was 

implemented and used in [49]. 
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(18) 

In an analog way, Williams series, expressed in Eq. (5), for mode III can be 

rewritten as Eq. (19). 

( , )

1

N

n n r z n

n

w c p T Rz



    (19) 

where Tz is rigid body displacement in perpendicular-to-plane and Rzn 

rotation about perpendicular-to-crack-plane axis.  

The expansion is arranged as Eq. (20), which may yield an over determined 

system that can be solved by the LSM, as presented previously in Eq. (13). 

    III III IIIh b   (20) 

with hIII, ∆III, and bIII defined in Eq. (21). 

1 11( , )

1 1

( , )
; = ;

1

1

M M

T

r

III III III M r

M M

p
w C

h b p
w C





 
     
     
       
     
     
     

 

 
(21) 

where M is the number of data points, and functions pi(r,θ) of [bIII] are 

expressed in Eq. (22). 
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 (22) 

Hos, Vormwald, and Freire [44] calculated SIF from strain using derived DIC 

displacement data using Eq. (23). 
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(23) 

Once again, Eq. (23) is a linear system that can be solved by the LSM. For 

only mode I, KII =0 and Eq. (23) can be simplified to Eq. (24). It has to be noted 

that this was the first study found where SIF were measured via DIC with the load 

inversion ratio (RL) set at -1 and performed in a ductile material so crack closure 

was largely visible. 
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
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(24) 

To calculate SIF via COD, Eq. (6), Eq. (7) or LSM via Eq. (12), one needs to 

choose at least two points (as shown in Figure 2-2), identify their position with 

respect to CTL, and extract orthogonal displacements. 

He and Kotouzov [62], performing a numerical regression with the w-field 

DIC data from a 3-point bending test, identified crack corner effects and found a 

correlation between SIF mode I and said field. The expression is described by Eq. 

(25). 

1,34
w( , , )

2
I

t
r t K

E





 

 

(25) 

Their method is somewhat restricted to: relatively brittle materials, thick 

plates or low loads at which the plastic zone is much smaller than 1/20th of plate 

thickness, t. 

 

2.6 

Methods to Determine ⌡ using DIC 

The advantage of using DIC to calculate ⌡, is that DIC measures the whole 

displacement field, whereas strain gages measure displacements along a selected 

contour which is fixed. Furthermore, if the selected contour lies within the elastic 

part of the field, the non-linear area around the CTL can be avoided [63]. Yoneyama 

et. al. [59] evaluated ⌡ using path and area formulations, that included plasticity, by 
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modeling the stress-strain behavior with a Ramberg-Osgood material model. 

Moreover, strains and stresses can be estimated using continuum mechanics 

equations. Therefore, terms in Eq. (8) are already known, minimizing DIC post 

processing. However, Eq. (8) was implemented following a recommendation found 

in the ANSYS manual and implemented in [49] to calculate derivatives as follows. 

a) Choose a path that encloses a crack 

b) Measure the length of the path 

c) Calculate Δxi as a 1% of the chosen path. 

d) Dislocate the path on –Δxi/2  and +Δxi/2 

e) Extract directional displacement along the alleged dislocated paths 

f) Calculate derivatives as shown in Eq. (26): 

/2 /2i i
i ix xi

i i

u uu

x x

 



 

 

(26) 

g) Repeat d), e) and f) for the other direction 

The procedure is graphically explained in Figure 2-5, where the original and 

dislocated paths enclosing the crack can be seen. 

Because the resulting small path shifts from the above recommendation, it 

was very difficult to manually extract that kind of information on VIC-3D. A 

Matlab ® algorithm [49] was used which reads DIC data (position and 

displacement), computes the derivatives, and ⌡with Eq. (8) by using path 

formulation. In this case, the path length is chosen as 100 times the pixel spacing. 

 

Figure 2-5. Path dislocation to obtain derivatives [49]. 

Because ⌡ calculates the total energy per unit area spent to grow a crack 

regardless of the loading direction(s), a technique named M-integral was devised 

by Yau et. al [64] in 1980 from the University of Illinois to separate the ⌡ value in 

each loading direction using auxiliary displacement fields with a beforehand known 
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solution [26, 60]. Another way to separate ⌡ in each direction is taking advantage 

of the displacements field symmetry and antisymmetry with respect to the crack 

axis [61]. 

 

2.7.  

da/dN vs. ΔK curve 

The linear portion of Paris curve [6] can be obtained by plotting the logarithm 

of crack growth rate (da/dN) versus the logarithm of SIF range (ΔK), as shown in 

Eq. (27). 

( )
da

Log mLog K LogC
dN

 
   

   

(27) 

Taking a logarithm on both sides of Eq. (27), it gives a straight line, becoming 

Eq. (28). 

 
mda

C K
dN

 
 

(28) 

Coefficients (C and m) for Eq. (27) are fitted experimentally, using for 

example the Levenberg-Marquardt or the least squares algorithms. Paris rule is 

plotted in Figure 2-6, where there are three distinctive zones A, B and C. Zone A is 

where no crack growth is perceived, zone B is where a linear relation is visible, and 

zone C is where the crack growth advances very rapidly. However, Eq. (27) does 

not represent the following situations: 

 Because Eq. (27) is a linear relation, da/dN works only in zone B, leaving 

zones A and C out of prediction estimates. Althought there are several 

variations, and additions, to Paris rule many of them are thoroughly 

reviewed by [3]. 

 When the body is subjected to remote plastic loading, ΔK no longer 

describes the stress field. In that case, Δ⌡ [65, 66] and CTOD [67] have 

been used as crack driving parameters in analogous da/dN curves. 
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Figure 2-6. Paris´ Law 

It is expected that the plastic deformation ahead of the tip of the crack will 

leave a residual stress. When the specimen is unloaded, it builds up residual 

compressive stresses ahead of the crack tip. When the load goes to zero, a higher 

maximum SIF (Kmax) must be applied to overcome the residual compressive 

stresses and accumulated plasticity on the crack flanks (and open the crack) so that 

the measured SIF range threshold (ΔKth) needed for crack growth is augmented. In 

other words, if the specimen is completely unloaded, a higher SIF has to be applied 

in order to open the crack because the applied SIF has to overcome accumulated 

effects of plastic deformation ahead and before the CTL. 
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3.  

LEFM Mixed-Mode Criteria  

One of the problems in mixed-mode loading to be yet fully understood is to 

predict crack grow direction [20, 51, 53]. Nonetheless, the problem of crack kinking 

and equivalent SIF already has several postulated criteria. 

This chapter presents the principles and deduction of selected fracture criteria 

models to determine crack path and to calculate SIF under mixed mode. Models are 

stress based, energy based, or/and suported on experimental observations. The 

understanding of crack and SIF performance is fundamental for modeling cracked 

bodies behavior using numerical techniques, such as FEM. Although most of the 

models were initially proposed for brittle materials, they have extended (and used) 

for ductile materials [27]. Comprehensive and contemporary reviews are available 

in literature. Recently, Rozumek and Macha [68] summarized equivalent SIF 

models, whereas Mróz and Mróz [51] did the same for crack kinking and twisting 

angles. Vormwald [25] summarized problems encountered in crack growth under 

non-proportional loading being mode-mixity the most important, whereas Pommier 

[69] pointed that load amplitude and history, material non-linear behavior, and 

crack roughness as relevant factors. Although most of the work presented in current 

literature has been done for crack initiation, this chapter presents some of the 

models used to predict crack path direction. 

 

3.1 

Models Based on Stress  

Several authors derived crack kinking angle formulation using stress field 

equations. Here there are presented some of them. 
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3.1.1 

Maximum Tangential Stress Criterion (MTS or ES) 

The Maximum Hoop Stress, Maximum Tangential Stress (MTS), Maximum 

Tensile Stress or Maximum Normal-to-Crack Stress or simply Erdogan-Sih 

Criterion (ES) [9] postulates that a crack under mixed-mode (I-II) loading will 

propagate in the direction perpendicular to the maximum tangential stress (σθθ) and 

ahead of the crack tip. 

 

Figure 3-1. Notation for stress 

The stress acting ahead of a crack, shown in Figure 3-1, are given by Eq. (29). 
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(29) 

Now, the angle of maximum tangential stress (θ*, which according to this 

hypothesis is the crack propagation angle as well), is full filled by Eq. (30). 

2

2
0   and    0  

 

 
 

   

(30) 

That hypothesis implicates that the shear stress σrθ in Eq. (29) is zero, which 

is given in Eq. (31). 
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 (31) 

There is a trivial solution for θ=±180 degrees, which corresponds to crack 

faces. The solution for the terms inside the parenthesis in Eq. (31) gives θ* as shown 

in Eq. (32). 
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   

(32) 

Because the ES criterion is based solely on stress, it does not depend on plane 

stress/strain conditions4. The sign of the radical in Eq. (32) takes the opposite value 

of the ratio KI/KII, which means the kinking angle depends on the direction of SIF 

mode II. A negative KI does not make physical sense, but as it is shown later, KII 

indeed may take negative values. 

 

3.1.2 

Maximum Shear Stress Criterion (MSS)  

It was proposed in 1992 by Maccagno and Knott [18] for materials mainly 

sensible to a shear-dominated loading, especially for pure mode II or at elevated 

KII/KI ratios, where the fracture path is macroscopically prone to shear. The MSS 

criterion predicts crack growth on the direction along the plane of maximum σrθ 

when it exceeds a critical shear stress (τcr). The angle θ* of this maximum shear 

plane is found by solving: 

2

2
0   and    0r r  

 

 
 

 
 (33) 

There is no analytical solution for the derivative shown in Eq. (33). 

Hinghsmith [24] cites a polynomial solution depending on the tan−1(KI/KII) 

parameter. In 2012, Habousa et. al. [70] performed data fitting finding Eq. (34). 

                                                 

 

4 Panasuk developed a criteria based on the same principle. (Panasuk, V.V., 1968. Limiting 

balance of brittle bodies with cracks. publ. Naukova Dumka, Kiev, 246 p. (in Russian). 
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(34) 

where the crack angle, θMSS, has the same sign of KII. 

3.1.4 

Richard Criteria  

Richard criteria assumes that a crack will grow perpendicular to the principal 

stress and from the crack front when the equivalent SIF, under mixed mode 

conditions (I and II), exceeds KIc. For planar mixed mode conditions, this 

hypothesis is equivalent to the MTS criterion. They proposed a solution [71] in 

terms of normalized SIF for each direction, as seen in Eq. (35). 

2

2* 115 83, 4
II IIo o

R D

I II I II

K K

K K K K


  
         

 (35) 

where θ* is the crack kinking angle measured from an axis aligned with the 

crack growth direction. 

3.1.5 

Schӧllmann Criteria  

For 3D problems, Schӧllmann et. al. [19] proposed a model which included 

KIII. Assuming σz = 0 (orthogonal to surface stress), they found the equivalent 

principal stress, and then differentiated σ1(θ, KI, KII, KIII) partially with respect to 

θ, to find an implicit function for crack kinking shown in Eq. (36). 
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(36) 

In [19] they claimed  that this criterion “is appropriate for the description of 

crack growth, except in cases such as crack growth in anisotropic materials or the 
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sliding of cracks under pure Mode II or Mode III loading”. From the same principle, 

they also proposed Eq. (37) for crack twisting. 

( *)1
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 (37) 

One can see that Eq. (36) is implicit, so there is no analytical solution that 

readily gives the crack kinking angle. After many experimental tests a few years 

later, Richard et. al. [22] fit results and proposed the expression shown in Eq. (38). 
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 (38) 

As one can see, the application of this crack criteria was simplified by going 

from an implicit, Eq. (36), to and explicit equation, Eq. (38) in the same manner as 

it was done in Eq. (35) by the same author. 

 

3.2 

Models Based on Energy  

Some authors derived crack kinking angle predictions using energy 

principles. This section presents some of them. 

 

3.2.1 

Strain Energy Density Criterion (SED) 

In 1974 Sih [10] proposed the strain energy density criterion, which predicts 

crack growth along the direction of the minimum strain energy density (S) under 

mode I and II, as shown in Eq.(39b). 
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(39a) 
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where k is the kolosov constant and Ψ is the angle of crack twisting (out of 

plane) as observed in the upper rigth hand of Figure 5-43a. Therefore, in this thesis 

the SED equations use the initial Ψ value measured from the DIC photos at the 

internal slit surface. In 1980 Badaliance [72] extended the model to include mode 

III loading, as presented in Eq. (39b). 
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(39b) 

Badaliance himself found a good agreement with the MTS criterion. 

However, according to Highsmith [24], this criterion does not represent shear 

controlled crack growth accurately.  

 

3.2.2 

Maximum Energy Release Rate Criterion (MEER) 

The Griffith criteria states that crack growth implicates energy dissipation. 

An amount of energy is needed to create two new separated surfaces (the two new 

crack faces). The energy release rate Ǥ is shown in Eq. (40) for isotropic, linear 

elastic solids. 

 
2

2 21
I IIG K K

E


 

 

(40) 

The MEER was proposed by Nuismer [13] and states that a crack will 

propagate in the direction which the energy release rate is maximum. Before its 

publication, it had been discussed earlier by Erdogan and Sih [9], and they 

concluded that crack initiation happens when such rate attains a critical value.  

For a kinked crack, the MEER can be calculated as a function of angle θ from 

the crack tip using stress field equations, such as the ones from Irwin formulation. 

Nuismer matched the SIF for the straight and kinked cracks in order to project the 

kinking angle as seen in Eq. (41), where ki are the SIF for the kinked crack. 
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(41) 

Upon taking Eq. (41) first derivative with respect to θ and matching it to zero, 

one will find the crack kinking angle given by the MEER criterion. 

 

3.2.3 

Maximum Tangential Strain (MTSN) 

Chang [14] developed a criteria based on the assumption that crack growth 

happens in the direction on which the normal strain factor attains a maximum value. 

It is an extension of Saint Venant's maximum normal strain theory, and it is shown 

in Eq. (42). 
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(42) 

Upon using an analog derivative such as Eq. (30), one can find the 

propagating kink angle according to the MTSN criterion. 

 

3.3  

Other Criteria 

This section presents two more criteria that do not fit into the aforementioned 

categories. One that depends on crack tip opening and another one that uses curve 

fitting to experimental data to get a predicting equation. 
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3.3.1 

Demir Criteria 

Demir and Ayhan (2016) [21] fitted experimental and numerical data from 

two different coupons (T and CTS test samples) to a multiparameter equation to 

find a mixed- mode I/II kink angle criteria, leaving out pure mode I loading, as seen 

in Eq. (43).  

2 3 4 5

2 3 4 5

* ln ln ln ln lnI I I I I

II II II II II

a b K c K d K e K f K

hK gK iK jK kK

       

     
(43) 

where the coefficients are seen in Table 5. 

Table 5. Coefficients for Demir criteria 

a b c d e f g h i j k 

-0,7907 2,0365 -3,4144 2,2844 -0,5928 0,0456 1,1736 -2,6539 1,8244 -0,533 0,0565 

 

The difference of this model is that they included the assembly (pins, bushes, 

and grips) and not only the test coupons in the numerical modeling rather than just 

the sample. 

 

3.3.2 

Crack Tip Displacement Criterion (CTD)  

The crack tip displacement (CTD) criterion was proposed in 1989 by Li [17]. 

It is based on the hypothesis that a crack will grow according to the vector crack tip 

displacement direction. The vector CTD is represented by the vector summation of 

the CTOD vector (corresponding to mode I) and the CTSD vector (corresponding 

to mode II) as seen in Figure 3-2.  

 

 

Figure 3-2. Displacements in an open crack, adapted from [17]. 
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The crack is assumed to propagate along the direction of the resultant vector 

as shown in Eq. (44). 

tan CTD

CTSD

CTOD


 
  
 

 (44) 

It is possible to replace SIF in Eq. (44) to obtain Eq. (45). 

1tan II
CTD

I

K

K
   

  
   

(45) 

This criteria is cited in literature when describing micro crack behavior [73]. 

It should be highlited that the Schollman et. al. and the SED criteria are the 

only two models that account for mode III influce in the crack kinking angle. 

 

3.4 

Equivalent SIF 

When more than one loading is present, it is understood that a corresponding 

SIF represents the combination of the present loading modes. This section presents 

the physical principles used by some of the most important models to calculate SIF 

under mixed mode loading. 

 

3.4.1 

Tanaka  

Tanaka [74] deducted an equivalent SIF expression by treating displacement 

as vectors and applying the result to the rigid plastic strip model proposed by Bilby, 

Cottrell and Swinden. They proposed that crack growth happens when the 

displacements (or the sum of them) in a strip ahead of the crack tip attains a critical 

value, and it is a factor of SIF to the 4th power. Later on, Miranda et. al. [75] showed 

Tanaka´s model could be extended to include out-of plane sliding. The model is 

shown in Eq. (46), and it was originally tested in a thin Aluminum plate with an 

inclined-to-stress slit. 
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(46) 

 

3.4.2 

Asaro 

Pei and Asaro [76] proposed a SIF for in-plane problems of functionally 

graded materials, treating the SIF as complex quantity, as shown in Eq. (47). 

i

eqK K e  (47) 

where θ is the phase angle as defined by Eq. (48) and |K| is the vector norm 

as described in Eq. (49) which is the same as the CTD model, Eq. (45). 

1tan II

I

K

K
   

(48) 

and the magnitude of equivalent SIF is given by Eq. (49). 

2 2

Asaro I IIK K K 
 

(49) 

 

3.4.3 

Pook 

L. Pook [77] proposed a criteria based on stress in mode I for a three-point 

bending test sample with an inclined-to-normal crack.  
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(50) 

Later on [78], the criteria was expanded to include mode III as well. 
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3.4.4 

Erdogan-Sih 

It is based on the maximum MTS criterion [9]. It states that crack growth 

occurs in the direction which has the maximum tangential stress and a shear stress 

of zero. It is shown in Eq. (52). 

3* 3 * * 3 *
3cos cos sin sin

4 2 2 4 2 2
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K K
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      
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   
 

(52) 

The θ* angle in Eq. (52) is defined in Eq. (32), and another way to find it, 

is by giving values to θ within an interval and identify the angle that makes KES 

maximum. 

 

3.4.5 

Schӧllmann 

In 2002 [19], Schӧllmann et. al. proposed a generalized failure criterion for 

the three opening modes as a function of angular position θ as shown in Eq. (53). 
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 (53) 

Eq. (53) is implicit as it includes the kinking angle, so it cannot be solved 

directly. If KIII is zero, the Schӧllmann et. al. model becomes the ES model. 

The extension from monotonic to cyclic loading has been addressed in 

literature. Several authors state that monotonic loading criteria can be extended to 

fatigue loading [22, 51, 68, 73, 79, 80]. That means that an equivalent SIF can be 

replaced by an equivalent SIF range (∆K) in the aforementioned criteria. 

As stated at the beginning, the models mentioned in this chapter are based on 

a physical principle. They are used to predict the two most important characteristics 

in fracture mechanics: crack path (angle of crack), and crack growth; when an 

equivalent SIF surpasses a material property, the crack advances a finite distance. 

Such prediction could be done with software (usually FEM) which relies in models 
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like the ones just presented here. In chapter 6 they will be evaluated with the 

experimentally calculated SIF and SIF ranges determined in chapter 5. 

To close this chapter, it can be said that the research community agrees that 

crack growth has a preference for growing under mode I. However, crack path 

kinking for non proportional loading is not completely understood yet. Zerres and 

Vormwald [25] identified seven factors that affect crack growth under non-

proportional loading: material’s sensitivity to shear dominated fracture, plastic 

deformation ahead of crack tip, crack closure, the specimen´s geometry, the mean 

stress, mode mixity, and the variability of mode-mixity. The last two are the main 

agents responsible for making cracks turn. 
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4.  

Materials and Methods  

Two set of tests, a Disk Compact Tension sample (DCT) and a modified 

Compact Test sample C(T), were conducted at the fatigue lab at PUC-Rio by 

doctoral student Julián Andrés Ortiz González and Dr. Giancarlo Luis Gómez 

Gonzáles. A second set of experiments, five thin tubes with horizontal slits, were 

tested at the materials and structures lab at Technische Universität Darmstadt by 

Prof. Michael Vormwald, Prof. José Luiz de França Freire and doctoral student 

Yigiter Hos. This section describes the performed tests in order to obtain SIF under 

mixed mode loading using the DIC technique as well as the procedures used to 

further process the measured displacement fields. 

 

4.1 

Disk Compact Tension (DCT) 

A DCT sample made out of AISI-SAE 4340 machined from a 3” round 

bar heat treated to tempered martensite with 200 Vickers hardness [49] with 

material composition 5 shown in Table 6, was subjected to pure mode I loading. 

For the measurements reported here, the coupon had a fatigued grown crack size 

of 4.7mm, as shown in Figure 4-1a. 

Both sample’s faces were polished with sand paper, and the sample was 

primed in white paint and then, black speckles were applied on the polished 

surface for DIC data acquisition. A traveling optical microscope was placed in 

the rear to allow crack´s growth optical observation. The sample was mounted 

                                                 

 

5 Material composition was obtained with a portable Thermo Scientific ® NITON XL5 XRF 

analyzer, performed by Mr. Humberto de Matos Andrade from HCG Equipamentos, São Bernardo, 

SP. 
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in an INSTRON 8501 universal testing machine equipped with a 100kN load 

cell. The test set up is shown in Figure 4-1b. 

 

Figure 4-1. DCT coupon dimensions 

Table 6. Material composition for DCT sample 

Element Fe Ni Cr Mn Al Si Other 

% 95.41 1.76 0.76 0.69 0.25 0.24 0.4 

 

For DIC data acquisition images were recorded using two five megapixel 

digital cameras (Point Grey GRAS -50S5M with 2448 x 2048 pixels) attached to 

lenses Tamron ® A031 AF28-200mm F /3.8-5.6, and the applied load was recorded 

with a NI ® DAQ NI9215 card. Images were processed with 3D VIC ® from 

Correlated Solutions with a subset size 41 pixels, a step of 15 pixels and a strain 

window of 15. It was loaded with a quasi-static load up to 14400 N, R=0.1 and KI 

MAX = 34 MPa√m, calculated via ASTM E-399 for plain strain, as shown in Eq. 

(54). The coupon had undergone previous fatigue crack growth. 
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          

       
 

(54) 

where t is sample thickness, W is width, a is crack length (all of them in m), 

and P the applied load in N. 

For the purpose of validation, numerical simulations were performed in 

ANSYS using 2 mm hexahedral elements (Solid 185) and 0.25mm quarter-point 
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elements in a 7 mm radius around the crack edge. There were 59 partitions around 

the crack front and 6 countours around the crack tip. Details of the mesh are shown 

in Figure 5-4. 

 

 

4.2 

Modified Compact Tension C(T) 

A modified Compact Test C(T) sample was subjected to axial loading. The 

sample had a drilled hole ahead of the crack front so proportional mode I and II 

conditions existed. The hole-modified C(T) specimen was made of a low carbon 

steel, with material composition 6 shown in Table 7; see appendix A for complete 

results on the optical emission spectroscopy test. After the tests, the sample was 

subjected to a Nital etching and observed under an optical microscope showing a 

Ferritic-Perlitic structure. This confirmed the material was indeed a low carbon 

steel. The sample’s lateral faces were polished with sand paper No. 350 to minimize 

the presence of surface micro cracks and to better visualize the crack path with a 

traveling optical microscope placed on the back of the specimen.  

Table 7. Material composition for modified C(T) sample 

Element Fe C Si Mn P S Other 

% 98.9 0.268 0.046 0.68 0.0042 0.025 0.0768 

 

Figure 4-2(a) shows the specimen’s dimension where the drilled hole can be 

observed, and Figure 4-2(b) shows the sample’s speckled side mounted in the 

Instron machine. 

                                                 

 

6 Material compostion was obtained with the optical emission spectroscopy techinique 

according to ASTM A751-2014a 
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Figure 4-2. (a) Holed CT specimen; (b) Testing set up 

The modified C(T) coupon was subjected to a cyclic axial load P, using an 

INSTRON 8501 universal testing machine equipped with a 100 kN load cell. The 

crack was propagated via fatigue loading at 10 Hz, and about every 1 mm of crack 

growth lenght, the load frequency was lowered to 0.1Hz to allow DIC image 

recording. Figure 4-3 shows the schema used to propagate and to photograph the 

C(T) sample. 

 

  

Figure 4-3. Crack propagation and DIC recording loading schema 

 

Even though the drilled hole presence caused mixed-mode conditions, the 

tests were run under load control adjusting P to keep ΔKI and KMAX constants 

(ΔK=22 MPa-m1/2 and R=0.1) using ASTM E647-13 as a guide. The applied load 

was recorded with a NI ® DAQ NI9215 card. The specimen’s polished face was 

primed with white paint and sprayed with random black speckles, according with 

DIC technique procedures. DIC photographs were taken when the optically-
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observed crack-growth increment was about 1 mm. Crack size measurements were 

directly measured with an optical microscope following the horizontal component 

of the crack growth in the non-speckled side of the specimen. The loads P was 

synchronously recorded and stored along with the corresponding speckled images. 

Images were acquired with the 3D-VIC Snap ® software and processed later by the 

VIC-3D® digital image correlation software, both from Correlated Solutions 

(Columbia, SC). The 3D DIC system consisted of two 5-MP cameras (Point Grey 

GRAS-50S5M with 2448 x 2048 pixels) in a stereo configuration equipped with high 

magnification lenses (Tamron ® A031 AF28-200mm F /3.8-5.6). The DIC analysis 

was performed using a subset of 25 pixels, step of 6 pixels, and strain window size 

of 15. The spatial image resolution was of approximately 8.4 μm/pixel. 

 

4.3 

Thin tubes 

Five thin tubes were subjected to constant amplitude fatigue tests with 

different combinations of axial load (RL = -1) and alternated torsion (RT = -1) [33]. 

The experiments were conducted at the Materials Mechanics group laboratory from 

TU Daarmstadt (Daarmstadt, Germany). Some results are published in references 

[28, 33, 48, 81, 82]. The specimens were machined from longitudinally welded 

tubes. A horizontal slit, diameter 4 mm and 10 mm (length of an arc measured at 

the outer surface) between their centers was drilled on the opposite-to-the-

longitudinal weld as shown in Figure 4-4. The material was steel S235 with 

measured mechanical properties as follows: Young’s modulus, E = 210GPa, yield 

strength (0.2% plastic offset), Sy = 378MPa, and ultimate tensile strength Su = 

420MPa [28]. Table 8 presents a summary of the loading combinations. 

 

 

Figure 4-4. Thin tubes, dimensions im mm [33]. 
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The five fully alternated loading combinations were: pure tension-

compression (P) loading (R-028 specimen), pure alternated torsion (T) loading (R-

029 specimen), proportional loading resulting from the superposition of in-phase 

axial and torsional loading (R-030 specimen), and out-of-phase loading with phase 

angles (ϕ) of 90° (R-031 specimen), and 45° (R-033 specimen). 

 

Table 8. Designation and values of fully alternated loading combinations used for 

testing the thin tubes samples 

Specimen 
P [kN] 

Axial load 

T [N-m] 

Torsion load 

ϕ 

phase angle 

R-028 ± 44 0 - 

R-029 0 ± 532 - 

R-030 ± 33 ± 382 0 

R-031 ± 33 ± 382 90 

R-033 ± 33 ± 382 45 

 

In Figure 4-5 can be seen one of the samples mounted in the tension-torsion 

testing machine. The experiments were conducted under axial load control and 

torsion load control, respectively, using a servo-hydraulic, four-pillar tension-

torsion Schenck testing machine with frequency of 2 Hz. Every so often, the load 

frequency was lowered to 0.1Hz during 3 cycles to allow DIC recording. The 

machine´s controller was a MTS FlexTest® SE device and temperature at 23°C 

with a relative humidity of 60% were kept steady throughout all the experiments. 

Additional experiment details can be found in [33]. 

Depending on the loading type, two or four cracks, initiating at the notch, 

were witnessed [48] The cracks were assumed to be through-wall cracks with a 

straight crack front. Two cameras (Allied Vision Tech ® GT 2450) with resolution: 

2448x2050 pixels, equipped with Rodagon ® 1:4 / 80mm lenses, and 3D VIC ® 

were used for the DIC data image collecting. The actual loads, P and T at the instant 
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of each snapshot (100 shots/cycle of image acquisition) were recorded and stored 

together with the corresponding pictures. Figure 4-6 shows the applied loads in a 

force versus torque plot for the five thin tubes as well as the “slow down” procedure 

used to take the DIC pictures.  

 

 

Figure 4-5. Thin tube being tested on the tension-torsion machine [33]. 

 

It can be seen in Figure 4-6 (bottom left), the loading frequency was lowered 

to allow DIC recording during three cycles. These data were acquired at a frequency 

of 0.1Hz for each crack length at intervals of 400, 500 or 1000 cycles. 

 

4.4 

DIC data selection 

The area around the crack lips presents a high noise level, which is inherent 

to the DIC technique. As pointed before, the correlation algorithm identifies the 

gray intensities best-matching subsets between the reference and the deformed 

images. When in presence of a crack, the algorithm cannot distinguish crack sides, 

possibly matching gray intensities from opposite crack edges, therefore, calculating 
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unrealistic strains that, if used in the analysis, can lead to false readings. Hence, 

they should be cropped out from the AOI (Area of Inspection) to analyze the DIC 

acquired data. 

Exemplary data for measured displacement fields ,without cropping, is shown 

in Figure 4-7 a) v, b) w, fields respectively for directions Y, and Z and d) principal 

strain field, for sample R-030 at 10400 cycles and crack length of 3.66 mm at 

maximum load, P= 32kN and T=382 N-m in-phase. The axis X (parallel to crack), 

Y (orthogonal to crack direction) and Z (orthogonal to surface) and respective u, v, 

and w displacement fiels have been oriented to coincide with the crack propagation 

angle. Notice there is no data along the crack. 

The CTL (Crack Tip Location) must be determined accurately in order to 

achieve precise results when calculating SIF. At first, the CTL was identified on 

3D-VIC by: 

1. First of all, remove the rigid body movement of the measurements. 

2. The principal strain field shows an extremely high gradient around the 

crack edges and crack tip, as seen in Figure 4-7d. 

3. Location of maximum correlation error Sx, Sy, Sz in each direction. 

Around the crack, these errors are higher because of the discontinuity 

over the crack lips. When there is a high gradient in such error, most 

likely the CTL is located there, as seen in Figure 4-7c for the 

correlation error in the parallel to crack direction. 

4. The vertical displacement, v, goes from positive to negative when 

crossing crack edges. If one moves axially going to the CTL, there is 

a point where such gradient stops, as seen in Figure 4-7a. Most likely, 

that is the CTL. Such procedure is reported in literature [45, 67] 

5. The out-of-plane displacement, w, presents a zone with a high 

gradient ahead of the CTL (seen in Figure 4-7b), as documented by 

Kotousov [47]. 

 

With a pre-identified CTL in the 3D VIC system, the data was fed to an 

algorithm [49] which fit displacement fields to the Westergaard's stress function. A 

refined grid was used to pinpoint more accurately the CTL by minimizing the error 
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between the experimental displacements and the fitted displacements. Such error 

was arbitrarily set to 0.05 mm. 

 

Figure 4-6. Applied loads for thin tubes. a) R-028, b) R-029, c) R-030, d) R-

031, e) R-033 and e) procedure for recording DIC pictures. 
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In the thin tubes, the data for the COD method using Eq. (7) was taken 

between one and two millimeters behind the crack tip to minimize the error due to 

the cylinder’s curvature when approximating an arc length with a straight line 

formed between the CTL and the chosen points, as seen in Figure 4-8b. That 

distance also, ensures the reading are out of the plastic zone. In the DCT and C(T) 

samples, as they can be treated as a plate, displacement data was taken parallel to 

the crack lines. In section 5.1 is shown and explained the importance of choosing 

carefully the data points to extract displacement data. 

 

 

Figure 4-7. Exemplary results for DIC displacement data for sample R-030 

at 10400 cycles, crack length of 3.66 mm, a) v, b) w, c) parallel to crack error, and 

d) principal strain fields. 

 

For the LSM method, shown in Eq. (5), the area close to the crack lips and 

ahead of the crack tip was cropped out to avoid the noise mentioned previously. 
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The method used data from behind and ahead of the crack tip. For CTL, all the field 

was used. 

Finally, displacement field data was exported to be further processed in a 

Matlab® routine [49] to calculate mixed mode SIFs values. It has to be highlighted 

here that in order to comply with Williams expansion series, Figure 2-2 and Eq. (5), 

the displacement data was rotated to coincide with the crack´s edges; this is crack 

the edges were parallel to the X axis. 

 

 

Figure 4-8 .Exemplary data for thin tubes (R-030 specimen after 10400 

cycles and crack length of 3.66 mm) at maximum loads, a) data used for CTL and 

b) location of points used for COD method. 

 

4.5 

Evaluation of SIF and SIF ranges 

The equivalent SIF models presented in section 3.4, strictly speaking apply 

for monotonic proportional loading. However, several authors [51, 68, 73, 83] 

suggest they can be extended to alternating proportional loading. In other words, 

SIF becomes SIF range. There are two models that include the crack kinking angle 

in their formulation: the ES SIF equivalent model presented in Eq. (52), and 

Schӧllmann et. al. equivalent SIF model described by Eq. (53). Therefore, the 

equivalent ES SIF range is described by Eq. (55). 
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(55) 

whereas, the Schӧllmann et. al. SIF range is described by Eq. (56). 
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 (56) 

Eq. (55) and Eq. (56) can be used straightforward as long as the mixed-mode 

SIF ratios do not change inside a loading cycle. Therefore, for non-proportional 

loading is necessary to find the θ* which maximizes KES and KS3D. So next, it is 

presented how Eq. (55) and Eq. (56) are used to extract the crack kinking angle 

from the assumption [51, 68, 73, 83] that SIF is exchangeable with SIF range. 

To find the θ* angle in the KES, Eq. (55), there were given values to θ within 

an interval to identify the angle that made KES maximum along one mixed-mode 

loading cycle. The procedure can be graphically summarized in Figure 4-9, as 

follows. For each j row (load), the maximum and minimum values of KES(θ) were 

extracted when θ was varied from -75 to +75º. Then, the respective θ at which 

KES(θ) MAX occurs was identified. So, the equivalent ES SIF range was adopted by 

subtracting the maximum from the minimum found SIF.  

 

Figure 4-9. Schema to evaluate KES(θ) 

Conversely, the Schӧllmann et. al. equivalent SIF model, KS3D Eq. (56), is 

not explicit. The square root term makes all terms positive allocating them in the 
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first quadrant of a Cartesian plane. Therefore, calculating ΔKS3D by direct 

evaluation of Eq. (56) may lead to smaller amplitudes due to possible negative KII 

values. However, KS3D, Eq. (53), can be evaluated by rewriting it as Eq. (57), which 

for the case of negative KII loading situations, it will keep the sign. 
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S D j j j
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

 (57) 

Then, Eq. (57) is plotted in a Cartesian plane representing the Xj and Yj 

quantities for any triple of SIFs I, II and III at any time as seen in Figure 4-10. To find 

the maximum range, one needs to find the maximum distance (ΔKS3D) between any 

two points, namely KS3D-p for point p, and KS3D-q for point q as seen in Figure 4-10. 

In other words, subtraction of the vectors representing instant p and q for a trial 

angle gives the vector range ∆XY, and its algebraic addition to (Xp – Xq) results in 

the equivalent range ∆KS3Dp,j as shown in Eq. (58). 

     
2 2

3  ,S D p q p q p q p qK X X X X Y Y        (58) 

 

Figure 4-10. Explanation of graphic schema to evaluate KS3D and ΔKS3D. 

 

The representative equivalent SIF range for the cycle is the result for the 

maximum value of KS3Dp,q, after the entire  range (-75 to +75º) is been swept. 

 
X

Y

(2X, 2Y2)|-p

(2X, 2Y2)|-q

KS3D -p 

KS3D -q 
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Such procedure finds not only the maximum KS3D value, but also the crack kinking 

angle at which it occurs. 

4.6 

Evaluation of crack kinking models 

This section presents how the described crack kinking models were evaluated. 

It has to be noted that despite the models mentioned in section 3.1 to 3.3 use SIF 

(monotonic load), in literature [22, 48] is found that an exchange between SIF and 

SIF ranges, for proportional load, is assumed valid.  

The crack kinking models in sections 3.1 and 3.2 are explicit. Therefore, they 

were evaluated directly as follows. For the modified C(T) specimen, the models 

were evaluated with maximum SIF at each crack length (a pair of SIFs), whereas 

for the thin tubes the models were evaluated using all the measured SIF ranges 

during each measured crack length (concurrent triplets of SIFs). Therefore, Eqs. 

(32), (34), (35), and (38), (43), and (45) were evaluated directly. This process 

furnished an angle value with respect to the crack axis. The reported value here is 

with reference to an axis perpendicular to the axial load. 

On the other hand, the crack kinking models in section 3.2, Eqs. (39), (41) 

and (42) are implicit. So that, a schema similar to the one presented in Figure 4-9 

was followed. For each pair of SIFs (modified C(T) specimen) or triplet of SIFs 

(thin tubes), θ was varied from -75 to +75º plotted, and picked the value that 

produced the minimum SED, the maximum MEER, and the maximum MTSN 

accordingly. Then, the respective θ at which said parameter occurs was identified. 

Such approach was used in [48] to evaluate crack propagation under non-

proportional loading. 

Because of the influence on SED criterion evaluation, a note on Ψ has to be 

explained here. Table 9 presents the observed values for Ψ used in the SED 

criterion, Eq. (39).  

Table 9. Observed out-of-plane (Ψ) angle 

Specimen C(T) R-029 R-030 R-031 R-033 

Observed Ψ 0 0 0 20 0 
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The presented Ψ values correspond to the angle initially formed at the slit 

inner surface, which is the only observable angle. An example of this is shown in 

Figure 5-43a where a Ψ value of approximately 20o is seen.  

This chapter presented the experiments performed detailing materials, 

geometries and loading characteristics. On top of that, the course of action to 

process the displacement fields before LEFM data fitting was also described, along 

with the schemas used to evaluate crack kinking models from the SIF and SIF range 

results. 
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5.  

Results 

This chapter presents SIF, SIF range, and equivalent SIF range results for the 

DCT, holed C(T), and the five loading cases for the thin tubes. 

 

5.1 

DCT 

DCT coupons with a/W= 0.25 and a crack size of 4.7mm, were tested under 

a quasi-static mode I load up to 14400 N with an applied KI max of 34 MPa√m, 

calculated via ASTM E-399 as shown in Eq. (54), with a R=0.1 until the crack was 

about 0.1 mm, when the loading frequency was adjusted to 20Hz. So, the sample 

underwent fatigue crack growth. DIC displacement data was taken on 101 points 

along two lines parallel to the crack edge. The location of such points are plotted 

over the perpendicular-to-crack displacement field as seen in Figure 5-1c. Figure 

5-1b shows the variation of KI, using the COD method or Eq. (6), with horizontal 

distance measured from the CTL. It can be seen how, in this case, KI stabilizes after 

about 1.5 mm. That variation is attributed to the fact that points closer than 1.5 mm 

to the CTL do not fit the ±π angular position with respect to the CTL as it is assumed 

in the COD simplification, Eq. (6). Another deviation is seen after 3.0 mm aprox. 

As one can see in Figure 5-1b, the crack is not completely straight, which makes 

the drafted lines not simetric with the crack edges. 

Additionally, Williams’ solution for displacement was fitted to experimental 

data using the LSM, or Eq. (16). First, it was calculated the influence of n-terms on 

KI results by varying the number of terms in Williams’ expansion for displacement 

evaluated at maximum load. This analysis, of course, depends on how far from the 

CTL the data is from. 
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Figure 5-1. a) Perpendicular-to-crack strain; b) KI vs. horizontal distance 

from CTL via COD, c) Perpendicular-to-crack displacement field on DCT sample. 

 

The input data, for the results in Figure 5-2, was the yellow square with an 

internal lenght of 2 mm, as shown in Figure 5-3. Results, shown in Figure 5-2, agree 

with literature [84, 85] on the number of converging terms. 

 

 

Figure 5-2. KI variation with number of terms in Williams’s expansion 
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Figure 5-3. Path, points, and area used to extract data for KI for DCT sample 

 

To validate SIF calculations, results were compared to FEM simulations 

performed with ANSYS using a mesh as described in section 4.1, and depicted in 

Figure 5-4 where the first countour around CTL can be seen in detail. 

 

 

Figure 5-4. General view and zoom of first countour around CTL of DCT 

sample´s mesh 

Figure 5-5 shows the comparison of KI against applied force P. KI values were 

obtained with the LSM shown in Eq. (16), ⌡ shown in Eq. (10), and COD shown in 

Eq. (6) methods, ASTM values with Eq. (54) and FEM results. For DIC data LSM, 

⌡ and COD, the input data was the yellow square with an internal lenght of 2 mm, 

the rectangular path (about 4 mm in lenght) around the 4.7 mm crack, and an 

example of a pair of points (hollow stars) behind the CTL, as shown in Figure 5-3. 

4 mm 
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Figure 5-5. Comparison of KI from DIC (COD and LSM), and ASTM 

values for DCT sample [49]. 

 

The crack closure phenomena can be seen clearly in the DIC measured curve 

(COD and LSM) in Figure 5-5 as indicated by the arrow in the horizontal axis. It 

should be noted from the plot in Figure 5-5 that the crack stays pretty much closed, 

albeit there is a positive applied load, until about 3.8 kN for LSM and COD methods 

when the crack opens and the SIF starts showing positive values. This is expected 

due to the residual deformation the sample experienced during previous fatigue 

crack growth. Crack closure results obtained here agree with similar studies using 

DIC [86, 87] and other studies using the TSA technique [88]. In addition, this 

pseudo-KI should be interpreted carefully as a sum of elastic and plastic SIF [86, 

89] SIF as non linear phenomena such crack closure and blunting are present [49]. 

Moreover, values for ⌡ were calculated for a rectangular path around the 

crack tip, as depicted in the green dashed path of Figure 5-3. Because there were 

linear elastic conditions along the selected path, KI is computed with the elastic 

relation between ⌡ and SIF (J=KI
2/E). Figure 5-6 shows the comparison of ⌡ values 

for DIC, ANSYS and ASTM. The J teor value uses the KI value calculated via 

ASTM E-399 for plain strain, as shown in Eq. (54). The presented J ANSYS value 

is taken from the surface in the same numerical simulation used to calculate KI, 

whereas ⌡ is the experimental value obtained with Eq. (10). One can see how the 

values agree after the crack is open, about 6kN. However, one has be carefull when 
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interpreting ⌡ DIC results. At low loads, the crack is not open, therefore the physical 

phenomena cannot be described by experimental ⌡ values whereas the numerical 

simulation assumes the crack is always open. 

 

  

Figure 5-6. Comparison of ⌡ for DIC, FEM and ASTM values. 

 

In this section, it was shown a comparison of SIF experimentally obtained 

with the COD, LSM and ⌡ methods. The COD and LSM methods are validated, see 

Figure 5-5 and Figure 5-6, as the values for COD and LSM coincide with original 

numerical simulations, ASTM values and ⌡ calculations. It was also verified how 

the crack closure phenomena observed by Elber was present in the sample as 

measured by the DIC technique using LEFM formulations. The offset between 

numerical and experimental values is attributed to the crack closure phenomena. 

 

5.2 

Holed C(T) 

 

The modified C(T) specimen initially grew a horizontal crack, which later 

curved due to the influence of the drilled hole. SIFs were calculated at total crack 

lengths of 2.1, 4.1, 6.3, 8.2, 10.2, and 11.9 mm, named 0, a, b, c, d, and e 

respectively, with location depicted in Figure 5-7. Those six crack lengths were 

used to collect data to perform SIF evaluation. 
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Figure 5-7. Location of the six measured points for the C(T) sample 

 

Figure 5-8a depicts v-component of the displacement field for a crack length 

of 4.1 mm at maximum applied load where only mode I is expected to influence on 

the crack. It can be seen that the displacements are perpendicular to the crack faces 

corresponding to the opening mode. Figure 5-8b depicts u-component of the 

displacement field at maximum applied load for a crack length of 11.85 mm. In this 

situation mode I and also mode II are expected. It is observed that the displacements 

were oriented in such way that they are normal to the crack edge and parallel to the 

crack faces corresponding to the opening and sliding mode, respectively. 

 

 

Figure 5-8. Exemplary results of measured displacement fields via DIC: a) 

Vertical displacement field for total crack length of 4.1 mm b) Horizontal 

displacement field for total crack length of 11.9 mm. 

 

Moreover, Figure 5-9a (for total crack length of 4.1mm) and Figure 5-9b (for 

total crack length of 11.85 mm) depict the expected plastic butterfly-like strain field 

ahead of the crack tip at maximum applied load, where the highest strain values are 

found. 
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Figure 5-9. Exemplary results for measured strain distribution via DIC on 

the perpendicular-to-the-crack direction for: a) total crack length of 4.1 mm b) 

total crack length of 11.9 mm. 

 

For the COD method, as shown in Eq. (7), the symmetrical points were 

located starting at a distance of about 1 mm behind the crack tip and at about ±0.5 

mm from the crack faces to avoid the high noise level resulting from abrupt changes 

in displacement when the crack opens and closes during the fatigue loading. Figure 

5-10 a, b, and c depict the CTL (represented by a red star) and four data points used 

in the COD method for 4.1, 8.2 mm, and 11.86 mm crack lengths respectively.  

 

  

Figure 5-10. Exemplary data used for COD-LSM for crack length (a) 4.1 

mm, b) 8.2 mm, c) 11.86 mm.π 

In Figure 5-11a, b, and c are shown the areas of inspection used for acquisition 

of data to apply the over-deterministic LSM formulation, as shown in Eq. (16), for 

4.1, 8.2 mm, and 11.86 mm crack lengths respectively along with their CTL 

represented by a red star. In order to avoid the intensively non-linear behavior ahead 

of the crack tip and around the crack edges, those data points were excluded from 

the DIC analyses. Notice that in order to comply with Williams’ equations, the 

(a) (b) (c) 
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displacement fields u and v were rotated to coincide with the crack propagation 

angle. 

 

 

 

Figure 5-11. Exemplary displacement data used for LSM method a) 4.1 mm, 

b) 8.2 mm, c) 11.86 mm 

 

In a similar manner to the DCT sample, a 3D finite element analysis was 

performed using the Autodesk Simulation Multiphysics ® software, performed by 

doctoral student Julian Andrés Ortiz González. The material properties were 

assumed to be linear isotropic. The mesh used was about 3 mm tetragonal, and 

tetrahedral elements in the general body, whereas a mesh refinement was made 

around the crack tip in a 10 mm radius, with quarter-point elements of 

approximately 0.37 mm. Figure 5-12 shows results for the parallel-to-load stress 

field for a 10.2mm crack length. 

 

  

Figure 5-12. Modified C(T)´s FEM parallel-to-load stress field for a 10.2 

mm crack 
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A Matlab® routine [49, 82] was used to obtain the SIF values using the two 

approaches from experimentally acquiered DIC displacement data. From Figure 

5-13 through Figure 5-18, it can be seen a comparison of SIFs values obtained from 

COD, LSM and FEA simulations performed at total crack lengths of 2.1 mm, 4.1 

mm, 6.3 mm, 8.2 mm, 10.2 mm and 11.9 mm, respectively. Both experimental 

methods (COD and LSM) show very close behavior. The ⌡ method was not used 

in this sample for two reasons: the rotated fields made the shifted path (as described 

in Figure 2-5) overlap with one another generating random results. Additionally, 

and as mentioned in section 2.4, under mixed-mode loading, ⌡ is the result of the 

contribution of each mode. A method to separate them, as suggested in [60, 61], 

needs to be implemented. 

It can be seen in Figure 5-13, for a 2.1 mm straight crack, that the KI values 

exhibit a nonlinear behavior at low loads, which is compatible with crack closure 

as identified by Elber [3]. For FCG at low load ratios (R = 0.1 in this case), crack 

closure is expected to be visible. This phenomenon causes an offset between the 

FEM simulation and the experimental SIF values. It is understood that the FEM 

simulation assumes that the crack is fully open at any point, neglecting the non-

linear effects induced by crack closure and crack rugosity. The crack faces start to 

open at about 0.27 P/PMAX. Additionally, it is observed that the KII values are zero 

for FEM and near-to-zero for experimental data, as the crack is straight, and it still 

is away from the stress concentration region induced by the drilled hole. A very 

similar behavior, showing crack closure, an offset with the FEM results and KII non-

existent, but this time with larger SIF values, is seen in Figure 5-14 for a 4.1 mm 

crack length.  

Although the crack has turned about 5 degrees, similar results - as the two 

previous points - are still observed in Figure 5-15 for a crack length of 6.3 mm. KI 

follows the same line while loading and unloading. However, at low loads, it shows 

a smaller slant than at bigger loads. The crack starts to open at about 0.2 P/PMAX. 

As the crack propagates, it grows towards to the hole staring to curve its path.  

 

DBD
PUC-Rio - Certificação Digital Nº 1322103/CA



  78 

 

 

Figure 5-13. SIF for a 2.1 mm crack on modified C(T) specimen 

 

 

Figure 5-14. SIF for a 4.1 mm crack on modified C(T) specimen 

In Figure 5-16, it is seen that KII values are slightly different from zero, but 

the crack closure phenomenon is still visible. The offset between experimental and 

FEM results is still clearly visible. It is seen the crack faces start to open at about 

0.15 P/PMAX. Note that the maximum KI value clearly increases with crack length 

increase. 

In Figure 5-17 (total of 10.2 mm crack length), the crack has turned 7o and 

the crack closure phenomenon can be observed in the non-linear behavior displayed 

by KI, measured by both COD-LSM and LSM methods. The crack starts to open at 

about 0.1 P/PMAX. However, the offset with FEM becomes smaller than in the 

previously measured points, and KII values are now clearly different from zero. It 

can also be seen that for KI, the loadin up and loading down routes follow a slightly 

different path.  
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Figure 5-15. SIF for a 6.3 mm crack on modified C(T) specimen 

 

 

Figure 5-16. SIF for an 8.2 mm crack on modified C(T) specimen 

 

 

Figure 5-17. SIF for a 10.2 mm crack on modified C(T) specimen 
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In Figure 5-18a (total of 11.9 mm crack length), the crack has turned about 

24o, and the KI curve shows a nonlinear behavior as it does not follow the same path 

when opening and closing the crack. This could be an indicator that there is blunting 

as the crack stays open when the load is dropping. Additionally, there is no evidence 

of crack closure, therefore the KI values agreed with the FEM simulation values. 

Moreover, KII values are larger than those previously measured. At this point, there 

is a clearly visible mixed-mode SIF (KII and KI) under which the crack grows. KII 

presence, different than zero and the asymmetric stress conditions produced by the 

stress concentration factor caused by the drilled hole, would - at least partially - 

explain the crack kinking seen in the experiment. Also, in Figure 5-18b is seen the 

crack opening displacement parallel (COD-x), and crack opening displacement 

perperdicular (COD-y) to the crack, which were taken at about 2 mm before the 

CTL, where one can clearly see the proportionality between SIF and COD. 

 

 

Figure 5-18. Results for 11.9 mm crack on modified C(T) specimen. a) SIF 

modes I and II obtained with differente methods b) COD 

 

Figure 5-19 presents a comparison of mode II versus normalized load for 

three different crack lengths (8.2, 10.2 and 11.9 mm). Just like in mode I, there is 

visible change of slope in KII around the opening load seen for KI. This could be 

explained by the fact that when the crack is closed, or partially closed, its faces are 

still in contact making crack roughness, and interlocking, interfere with mode II (in 

plane sliding mode), as suggested in [90] [51] , so there is needed a bigger KII before 

the crack opens. Particularly Kibey et. al. [90] affirmed that slanted cracks may 
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have the capacity to propagate in mode II, although crack lips are in contact, due to 

complete slip. In such case, mode I is not the only source of crack growth, which 

would, at least partially, explain the deviation from a straight path seen in this test. 

Moreover, Tong et. al. [91] admited that due to the nature of actual crack roughness 

surfaces, and ideal SIF mode II cannot be seen because wedging interferes with 

crack opening possibly augmenting mode I, whereas friction impacts crack sliding, 

weakening mode II SIF development. The previous discussion is supported by the 

crack models presented in section 3 and developed in section 6.3. 

 

 

Figure 5-19. SIF mode II versus normalized applied load for modified C(T) 

 

Figure 5-20 shows the evolution of crack angle and SIF (mode I and II). It is seen 

the influence of KII as the crack kinks when KII becomes present. It is also seen that 

KII slope is less steep after the opening load has been surpassed. This behavior is 

due to the fact that the crack faces partially or completely slip in mode II after or 

before crack opening in mode I. When the crack opens, crack closure is overcomed, 

leaving the crack edges free to slide, hence they are not afected by their rugosity 

[51] making KII less steep. At the same time however, such rugosity may amplify 

KI as the crack flanks slide parallel to the inclined planes. Furthermore, Kibey et. 

al. [90] suggested that corrosion and grain size might hinder KII development. 

Figure 5-20 shows a comparison of, both experimental SIF schemes and 

FEM, maximum SIF with the observed kinking angle (θ*). It is observed a relation 

between the crack kinking angle and KII presence. However, the effect of mode-
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mixity (KII/KI ratio) is more visible in Figure 5-21. One case see that when the ratio 

KII/KI grows, the crack path starts curving. 

 

Figure 5-20. SIF and θ* vs. crack kinking angle for modified C(T) specimen 

 

 

Figure 5-21. Mode mixity (KII/KI) versus crack kinking angle for modified C(T) 

specimen 

Figure 5-22 depicts the variation of mixed-mode ratios during a cycle and 

from cycle to cycle for the six crack lengths presented in Figure 5-7. It can be seen 

how the ratio within a cycle remains quasi constant but grows from one crack length 

to the next one. Additionally, it is and more visible for the longer cracks where KII 

is more perceptible, it is depicted the role of crack closure. If the crack faces are in 

contact, rugosity affects the ratio at lower loads, as for the same crack length, the 

ratio KII/KI exhibits a slightly different slope before the crack opens. Finally, it is 

observed how for the 4.1 and 6.3 mm crack lengths (points a and b from Figure 5-7) 

there is a drop in KII after the crack seems to open. This may be attributed to the 
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crack being small enough so that rugosity, and crack flanks locking (induced by the 

crack’s curvature) interfere with in-plane sliding. 

 

 

Figure 5-22. Variation of mixed-mode ratio, KII/KI for modified C(T) 

specimen 

Finally, a summary of SIF results, experimental and numerical, is presented 

in Table 10 for the six measured points. Notice how as the crack length increases, 

the crack tip curves and gets closer to the stress concentration factor produced by 

the hole, KI and KII augment as well. 

 

Table 10. C(T)´s maximum SIF for crack lengths depicted in Figure 5-7 

Point a [mm] θ* KI 

COD 

KII 

COD 

KI 

LSM 

KII 

LSM 

KI 

FEM 

KII 

FEM 

0 2.1 0 13.12 0.46 13.41 0.61 21.2 0 

a 4.1 0 17.78 0.47 16.48 0.65 22.5 0 

b 6.29 -5 18.14 0.59 18.05 0.83 22.7 1.0 

c 8.24 -5 19.67 1.17 18.83 1.09 23.6 1.0 

d 10.17 -7 22.0 1.55 21.82 2.59 24.7 2.1 

e 11.85 -24 26.85 3.55 26.14 3.96 25.2 3.2 
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5.3 

Thin tubes 

This section presents results and analysis for the five loading cases, described 

in Table 8, performed on the thin tubes. The exhibited results are: angle of principal 

stress calculated from the applied nominal stresses, SIF and SIF range calculated 

via the COD method, Eq. (7), with data from the experimentally obtained fields. An 

analysis on how to evaluate the equivalent SIF ranges, from the ES and Schӧllmann 

et. al. models, with corresponding angle at which they happen is presented. The 

samples presented two or four cracks. However, the DIC data presented here is for 

the left crack only. 

 

5.3.1 

Specimen under tensile alternated loading (R-028) 

The sample presented two initial cracks which grew perpendicular to the 

applied nominal stress. They were noticed starting at about 9,200 cycles from the 

outer most, left and right, notch boundaries. Figure 5-23 shows the angle of 

principal stress (calculated with nominal stress), θi=-2τxy/(σxx- σyy), not changing 

with the variation of applied principal nominal normal stress (σyy=P/A). In this case, 

the initiatial crack propagation angle coincided with the angle of principal stress. It 

has to be noted that no change in the angle of principal stress is seen when adding 

the stress concentration factor produced by the notch. 
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Figure 5-23. Variation of principal stress and corresponding angle for 

sample R-028. 

 

Figure 5-24a shows the left-hand-side speckled photograph with the 

artificially highlighted 8.27 mm left crack at maximum applied load. Figure 5-24 

(b), (c), and (d) show u, v and w DIC displacement fields, respectively. Figure 5-24e 

shows how three loading cycles are applied. It can be seen that the torsion load was 

zero. About 100 pairs of images were determined at a rate of 10 pairs of images/s 

for each of the three cycles. Load frequency for these image acquisition cycles was 

0.1 Hz. 

Figure 5-25a shows loading and SIFs values determined from the methods 

described in section 2: LSM method Eq. (16), relative crack flank opening 

displacements COD Eq. (7), and ⌡ Eq. (10). It can be seen that SIFs KI and KII, the 

later practically zero, are proportional to the axial and torsional load, respectively. 

Results for the three methods agree for most of the loading range except for negative 

load where the crack flanks touch and are stressed in compression (by the external 

axial load), therefore ⌡ would not make sense under a close crack hence is only 

presented when the crack is belived to be open. Figure 5-25b depicts the analyzed 

Y total strain data as given by the software VIC-3D®. Figure 5-25b also shows the 

total (elastic plus plastic) strain data at maximum axial load. It is observed a red 

contour delimiting total strains equal to 0.2%. Figure 5-25c, Figure 5-25d, and 

Figure 5-25e present data collection points for COD, LSM using seven Williams´ 

terms, and LSM using one Williams´ term, respectively. Furthermore, Figure 5-25d, 

shows the path used to evaluate ⌡, superimposed on the image as a continuous red 

-20

-10

0

10

20

-150

-100

-50

0

50

100

150

0 100 200 300 400

θi [deg][MPa] R-028

σyy

θini

DBD
PUC-Rio - Certificação Digital Nº 1322103/CA



  86 

 

line, and how the AOI used for the LSM method using 7 terms was cropped to avoid 

the very large fictitious strains in the region near the crack flanks. 

 

 

Figure 5-24. Representative R-028 specimen’s results for an 8.27mm crack 

length (17720 cycles) (a) crack length (b) u displacement DIC field, (c) v 

displacement DIC field, (d) w displacement DIC field, (e) applied load. 

 

COD variations with applied external load are presented in Figure 5-26a, 

whereas a comparison between KI results determined from the LSM, COD and ⌡ 

methods is depicted in Figure 5-26b and calculated SIFs (both methods, COD and 

LSM). The load and crack geometry caused that the parallel-to-crack and out-of-

plane direction relative COD to be zero as seen in Figure 5-26a. COD orthogonal-

to-the crack direction is also presented in Figure 5-26a. The non-linear behavior 

(characteristic of plasticity, hysteresis, and crack closure opening) is observed in 

the plot where the applied load varies from low negative values to high positive 

values. Relative crack flank displacements for increasing and decreasing loads are 

respectively represented by the bottom and top branches of the COD-load loop, 

shown in Figure 5-26a. A closed crack is seen for the major part of the negative 

load represented by the COD-load curve being almost completely horizontal in that 

part of the plot; see section 6.1 for a deailed explanation. Figure 5-26c presents the 
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perpendicular-to-crack total strain variation versus load for a point distant about 1 

mm ahead of the CTL. 

 

Figure 5-25. R-028 specimen’s results for a 2.85 mm crack length at 9,970 

cycles; (a) SIFs obtained with COD, ⌡,and LSM; (b) total orthogonal to the crack 

path DIC strain distribution; (c) CTL and pair of points A and B locations used to 

determine COD and related SIF; (d) CTL, area of inspection used to determine 

SIF using the LSM method with seven terms in Williams´s series, and path used 

to determine ⌡; (e) CTL and area of inspection used to determine SIF using the 

LSM method with one term in Williams´s series. 

 

From the simmetry, load and crack geometry, it can be inferred that this 

behavior is representative for the area ahead of the crack tip. This strain-load loop 

displays a very close appearance to the COD-load, ⌡ and LSM-load loops for the 

positive loads, but for the negative part of the load. A more evident slope on the 

lower negative part of the loop, just where the crack is closed, is seen for the LSM-

loops. In this case, a portion of the positive plastic strains that occurred when the 

crack was opened are reversed. Therefore, for points near the crack tip, the 

observed-by-DIC strains (caused by the negative load) is a superposition of 

plasticity reversion and elastic compression. This behavior is the cause of the 

differences between the SIF values when calculated by the LSM, and COD methods 
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for the crack-closed part of all curves. Therefore, the calculated SIF values are very 

similar for the three methods for the open crack, but disagree for the closed part of 

the crack. Besides, with the crack closed, the singularity expected by the 

Westergaard stress function simply does not exist. 

The outcome obtained with the ⌡ deserve a note of its own. Although, and as 

stated above, the results for positive load values are the same for the SIF calculated 

with the LSM, COD and ⌡ methods, there is a substantial difference for the negative 

loads. Such result comes from the fact that when the load is negative, the crack lips 

are in touch so technically there is no crack. Thus, for negative loads, the sample´s 

configuration simply does not comply with Rice´s formulation. Such analysis is 

also extended for the lower portion of the positive loads. At that stage, the crack is 

still closed or partially closed, most likely due to crack closure, so again, Rice´s 

formulation will not work. Therefore, those values are omitted from the ⌡ plot here. 

Figure 5-27 shows the three SIF mode variations and how their respective 

ranges were calculated from the COD method after 17,220 load cycles for a 7.8 mm 

crack. It can be seen that, although there is a dominant mode I SIF, there is also a 

slim mode III sliding that appears actuating, which did not appear at previous 

measurements. It also can be seen that mode III shows behavior similar to mode I 

opening, especially for the negative part of the load. This is attributed to the fact 

that for the crack is more difficult to slide when the crack flanks are touching, as 

discussed previously for the holed C(T) specimen in section 5.2, making out-of-

plane displacement zero or near zero. 

Figure 5-28a shows the evolution of SIF equivalent ranges versus crack size. 

It is clear that the mode I and equivalent range values are identical due to mode II 

and III ranges being absent or very small. Figure 5-28b shows the variation rate of 

the maximum mode II and mode III ranges over maximum mode I range with crack 

size along with experimentally determined crack-path tangent angle  o. Figure 

5-28c shows experimentally measured ( o) and calculated (Erdogan-Sih o ES 

and Schöllmann et al.  *o S3D) crack-path tangent angles for each crack length. 

Figure 5-28d shows how mixed-mode behave during one cycle and from cycle to 

cycle. 
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Figure 5-26. R-028 specimen’s results for a 2.7mm crack length at 9,970 cycles; 

(a) COD for mode I, mode II, and mode III; b) SIF mode I calculated with LSM, 

COD and ⌡methods; c) normal-to-axis strains for a point 1 mm ahead of CTL. 

 

 

Figure 5-27. All mode SIF variations and ranges as calculated from the COD 

method after 17220 load cycles for a 7.8 mm crack length. 
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Figure 5-28. Crack tip parameters measured and calculated for specimen R-028; 

(a) evolution of mode I, II and III and equivalent SIF ranges versus crack length 

(b) variation of the maximum II and III over maximum mode I ranges and θ*o 

versus crack size, (c) θ*o, θ*o ES and θ*o S3D versus crack length (d) mode-

mixity ratio during one cycle and from cycle to cycle.  

Table 11 shows experimental results for specimen R-028: number of cycles 

(N), crack length (a*) in mm, SIF ranges in MPa√m that occur when maximum ΔKI 

occur as shown in Figure 5-27, experimental angle θ*o, Erdogan-Sih (θo ES) 

Schӧllmann et al (θo S3D), Erdogan-Sih and Schӧllmann SIF ranges in MPa√m. 

The last two are the SIF ranges produced by the evaluation of Eq. (55) and Eq. (56), 

as described in section 4.5. 

As a comparison, the same quantities are presented in Table 12, but this time 

using the maximum SIF range for each cycle regardless when they happen or in 

other words, SIF ranges that do not occur simultaneously. It shows results for 

specimen R-028: number of cycles (N), accumulated crack length (a*) in mm, 

maximum SIF ranges in MPa√m, Erdogan-Sih (θo ES), Schӧllmann et al (θo S3D), 

Erdogan-Sih and Schӧllmann et al SIF (ranges in MPa√m). It can be seen how, in 

this case, neither ES and S3D SIF ranges nor ES and S3D kink angles differ 

substantially from the presented values in Table 11. 
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Table 11. Experimental and calculated parameters for specimen R-028  

N  a* ΔKI ΔKII ΔKIII θ*o θo S3D  θo ES ΔK S3D ΔK ES 

9420 2.32 30.87 3.27 6.6 0 -1 -1 30.4 30.4 

9970 2.85 36.55 2.89 3.35 0 1 1 36.5 36.4 

10720 2.97 35.84 3.12 6.04 0 -1 -1 34.8 34.8 

11220 3.24 36.86 2.51 4.54 0 1 1 36.9 36.8 

12220 3.85 38.3 2.44 5.38 0 1 1 38.3 38.2 

13220 4.38 43.27 5.53 5.2 0 -1 -1 42.9 42.9 

14720 5.02 49.84 4.58 5.06 0 3 3 49.9 49.9 

15720 6.45 51.17 3.98 7.07 0 1 1 51 50.9 

16720 7.51 54.06 2.65 5.85 0 -1 1 53.8 53.5 

17220 7.8 63.73 6.36 9.0 -8 3 -5 63.9 63.3 
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Table 12. Experimental and calculated parameters for specimen R-028 using maximum SIF ranges for each cycle 

N a* ΔKI ΔKII ΔKIII θo S3D θo ES ΔK S3D ΔK ES 

9420 2.32 30.87 3.27 6.60 -11 -11 32.70 31.38 

9970 2.85 36.55 2.89 3.35 -7 -7 37.67 36.89 

10720 2.97 35.84 3.12 6.04 -6 -6 37.21 36.24 

11220 3.24 36.86 2.51 4.54 -7 -6 37.66 37.11 

12220 3.85 38.30 2.44 5.38 -8 -5 39.26 38.53 

13220 4.38 43.27 5.53 5.20 -14 -14 44.89 44.30 

14720 5.02 49.84 4.58 5.06 -8 -6 50.58 50.46 

15720 6.45 51.17 3.98 7.07 -8 -7 52.57 51.62 

16720 7.51 54.06 2.65 5.85 -8 -6 55.00 54.25 

17220 7.80 63.73 6.36 9.00 -11 -11 66.10 64.66 
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5.3.2 

Specimen under alternated torsional load (R-029)  

 

This section presents exemplary and typical results determined for specimen 

R-029. As expected, four symmetrical initial cracks started from both (left and 

right) notch boundaries at about 45o from the horizontal slit axis. Figure 5-29 shows 

the angle of principal stress, θi=-2τxy/(σxx- σyy), which is proportional with the sign 

of applied principal nominal stress (τxy). In this case, the initiatial crack propagation 

angle coincided with the angle of principal stress. 

 

 

Figure 5-29. Variation of principal stress and angle with principal stress for 

sample R-029 

 

Figure 5-30a shows the left top crack of 3.2 mm artificially highlighted for 

the sake of visualization. In Figure 5-30b and Figure 5-30c, it can be seen how 

displacement fields u and v are positioned parallel and perpendicular-to-the-crack, 

respectively, whereas the out-of-plane displacement field w is seen in Figure 5-30d. 

Additionally, Figure 5-30e shows the applied torsional load during 3 cycles. It can 

be seen that the axial force is zero. 
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Figure 5-30. Representative R-029 specimen’s results for crack length of 

3.2mm at 18000 cycles (a) crack length (b) parallel-to-the-crack path DIC 

displacement distribution; (c) perpendicular-to-the-crack path DIC displacement 

distribution; (d) DIC out-of-plane displacement distribution; (e) applied loads. 

 

Figure 5-31a presents three loading cycles for a 3.2 mm crack length at 18000 

cycles. About 100 pairs of images were determined at a rate of 10 pairs of images/s 

for each of the three cycles. Load frequency for these image acquisition cycles was 

0.1 Hz. It can be seen that the torsional load induces KI and KII and KIII different 

from zero, with all of them varying in phase with the torsional load. Figure 5-31a 

also shows SIFs values determined from LSM method (modes I and II) and COD 

method (modes I, II, and III). Results for both methods agree for the entire load 

range. Figure 5-31b depicts the analysed Y (parallel to the specimen axis) total strain 

data as given by the software VIC-3D®. Figure 5-31b also shows the total (elastic 

and plastic) strain data at maximum torque, 532N-m. It can be seen a red contour 

delimiting total strains equal to 0.07%, which is the maximum at that applied torque. 

In this case, symmetry occurs when four cracks (two on right and two on the left to 

the slit) propagate. Tensile and compressive strains alternate for each crack zone 

depending on the signal of the torsional load. Figure 5-31c shows the data points A 
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and B (located about 1.8 mm from the CTL) used to calculate SIFs applying the 

COD method. Figure 5-31d exhibits the AOI from which full-field displacement 

data were collected to determine the SIFs using the LSM method. This type of AOI 

was selected to avoid the very large fictitious strains in regions near the crack 

flanks. 

 

 

Figure 5-31. Representative R-029 specimen’s results for a 3.2 mm crack at 

18000 cycles; (a) applied loads and determined SIFs using both methods; (b) 

orthogonal to the specimen´s axis DIC total strain distribution; (c) CTL and pair 

of points A and B locations used to determine COD and related SIF; (d) CTL and 

cropped AOI used to determine SIF using the LSM method. 

 

A comparison between SIF results (mode I and II) determined from the LSM 

and COD methods versus applied torque is presented in Figure 5-32a for the crack 

depicted in Figure 5-30a. Differently from specimen R-028, there are not observed 

relevant differences among SIFs calculated using both methods for the negative part 

of the loading. Furthermore, in Figure 5-32b is seen the perpendicular-to-crack 

strain taken about 1 mm ahead of the CTL. Opposite to what happened in specimen 
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R-028, the strain slant for negative torque values is almost flat. This behavior could 

explain the similar values and shapes for SIF measured by COD and LSM methods. 

 

Figure 5-32. Specimen R-029 at a 3.2 mm crack length at 18000 cycles; a) 

SIF variation (calculated with COD and LSM) with the applied torsional load, b) 

perpendicular to crack strain. 

 

An example of crack flank relative displacements (orthogonal-to-the crack, 

parallel to-the crack, and out-of-plane) for the top left versus applied torque are 

shown in Figure 5-33a, whereas in Figure 5-33b the same relative displacements 

are shown for the bottom left crack. One can easily observe the symmetry the 

relative displacements exhibit for the alternating torsional load signal. 

 

 

Figure 5-33. Exemplary relative crack flank displacements for specimen R-

029 at 18000 cycles (a) top crack, (b) bottom crack. 

 

Figure 5-34 shows SIF variation for modes and respective ranges calculated 

from the COD method after 18000 load cycles for a 3.2 mm crack. It can be seen 
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that, although there is a prominent mode I SIF and a medium mode II SIF, a mode 

III sliding is also present with high SIF values. It also can be seen that modes I and 

II actuate in phase. 

 

 

Figure 5-34. SIF variations and ranges for the three modes as calculated 

from the COD method after 18,000 load cycles for a 3.2 mm crack size 

 

Figure 5-35a shows the evolution of SIF equivalent ranges versus crack size. 

It can be seen that mode III sets apart equivalent range values, as the Schöllmann 

et al, Eq. (56), is the only evaluated criterion that considers mode III. Figure 5-35b 

shows the variation rate of the maximum II and III mode ranges over maximum 

mode I range with crack size along with experimentally determined crack-path 

tangent angle o. Figure 5-35c shows experimentally measured (o) and 

calculated (Erdogan-Sih *o ES and Schöllmann et al. *o S3D) crack-kinking 

angles for each crack length with respect to the sample´s horizontal axis. Figure 

5-35d shows how mixed-mode ratios change during one cycle and from cycle to 

cycle for specimen R-029. 

Table 13 shows experimental results for specimen R-029: number of cycles 

(N), crack length (a*) in mm, SIF ranges in MPa√m that occur at maximum ΔKI as 

shown in Figure 5-34, θo, Erdogan-Sih (θo ES) calculated angle, Schӧllmann et al 

(θo S3D) calculated angle, Erdogan-Sih and Schӧllmann et al SIF ranges in 

MPa√m. The last two are the SIF ranges produced by the evaluation of Eq. (55) and 

Eq. (56), as described in section 4.5. 
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Figure 5-35. Crack tip parameters measured and calculated for specimen R-

029, 532N-m max. torque (a) Evolution of mode I, II and III and equivalent SIF 

ranges versus crack length (b) variation of the maximum II and III over maximum 

mode I ranges and θ*o versus crack size, (c) θ*o, θo ES (Erdogan-Sih) and θo 

S3D (Schöllmann et al.) versus crack length (d) mode-mixity ratio during one 

cycle and from cycle to cycle. 

 

As a comparison in Table 14 are presented the same quantities but this time 

using the maximum SIF range for each cycle, regardless where they occur. It shows 

results for specimen R-029: number of cycles (N), crack length (a*) in mm, 

maximum SIF ranges in MPa√m, Erdogan-Sih (θo ES) calculated angle, 

Schӧllmann et al (θo S3D) calculated angle, Erdogan-Sih and Schӧllmann et al SIF 

(ranges in MPa√m). It can be seen how both ES and S3D SIF ranges and kink angles 

differ from the presented values in Table 13. This could be explained by the fact 

that although the values presented in Table 13 are calculated with the concurrent 

SIF, and the values of Table 14 are done so with the maximum SIF values regardless 

of when they occur, the noise in the SIF results makes the values vary, i.e., see the 

plot of KIII in Figure 5-34, where is also seen that at the time of maximum KI KII, 

and KIII present a smaller value than their respective ranges. Therefore, the 

difference observed in ΔK ES and ΔK S3D between Table 13 and Table 14. 
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Table 13. Experimental and calculated parameters for specimen R-029 

N a* ΔKI ΔKII ΔKIII θ*o θo S3D θo ES ΔK S3D ΔK ES 

12000 1.21 10.6 5.5 12.4 -45 -19 -33 19.6 13.9 

13000 1.92 16.2 10.5 17.8 -45 -13 -27 33.4 19.4 

14000 2.4 18.5 12.5 15.7 -45 -15 -27 32.2 21.9 

15000 2.55 26.0 15.6 19.1 -45 -17 -25 38.6 28 

16000 2.65 29.2 3.2 18.9 -45 -1 -5 43 28.9 

17000 2.91 32.7 5.0 24.9 -45 -3 -9 47.3 32.5 

18000 3.2 33.3 13.1 27.4 -45 -11 -19 52.2 36.4 
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Table 14. Experimental and calculated parameters for specimen R-029 using maximum SIF ranges for each cycle 

N a* ΔKI ΔKII ΔKIII θo S3D θo ES ΔK S3D ΔK ES 

12000 1.21 10.63 11.24 15.62 -17 -31 24.79 16.59 

13000 1.92 16.23 11.50 23.53 -13 -25 35.27 21.45 

14000 2.40 18.51 12.95 23.97 -13 -25 37.59 24.37 

15000 2.55 26.03 15.85 22.32 -17 -23 43.31 32.74 

16000 2.65 29.15 7.00 26.26 -1 -5 44.74 29.98 

17000 2.91 32.66 7.71 29.44 -3 -9 50.42 34.14 

18000 3.20 33.34 13.73 30.40 -9 -21 53.43 38.37 
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5.3.3 

Specimen under in-phase alternated axial-torsional load (R-030) 

 

Two symmetric cracks started at the slit notch boundaries, one at the left and 

another at the right notch boundary at about 20o. Figure 5-36 shows how the angle 

of principal stress, θi=-2τxy/(σxx- σyy), does not change with the variation of applied 

nominal stress (σyy and τxy). In this case, the initiatial crack propagation angle was 

very close to the angle of principal stress. 

 

 

Figure 5-36. Angle of principal stress with applied stress for specimen R-

030  

 

Figure 5-37a shows the right-hand-side speckled photograph for a 9.21 mm 

crack at 14250 cycles artificially highlighted. Figure 5-37b, Figure 5-37c, and 

Figure 5-37d show parallel-to-the-crack, perpendicular-to-the-crack, and out-of-

plane DIC displacement fields, respectively. The fields u and v are positioned 

parallel and perpendicular-to-the-crack. Figure 5-37e shows how three loading 

cycles are applied. The loads can be seen acting in phase. About 100 pairs of images 

were determined at a rate of 10 pairs of images/s for each of the three cycles. Load 

frequency for these image acquisition cycles was 0.1 Hz. Figure 5-38 and Figure 

5-39 show results obtained for a 3.86 mm crack at 10000 cycles that emanated from 

the right boundary point located at an angle of approximately 18o relative to the 

horizontal slit-notch machined in the specimen. Figure 5-39 shows SIFs for modes 

DBD
PUC-Rio - Certificação Digital Nº 1322103/CA



  102 

 

I and II determined from the LSM and COD methods and opening strains (Y 

direction, perpendicular to crack axis) during one cycle for a point near the CTL. 

 

 

Figure 5-37. Representative R-030 specimen’s results for a 9.21 mm crack 

at 14250 cycles (a) crack length (b) u DIC displacement field; (c) v DIC 

displacement field; (d) w displacement field; (e) applied loads. 

 

Figure 5-38a presents three loading cycles relative to a 3.86 mm crack and 

10000 cycles. It can be seen that the torsional load induces KI and KII different from 

zero, the later higher than the former, both varying in phase with the torsional load. 

Figure 5-38a also shows SIFs values determined from both methods, LSM and 

COD. Results for both methods agree for the positive part of the load range but 

there are observed relevant differences for the negative load range. Similar effects 

occurred for specimen R-028, and they are related with the parts of the load range 

that caused the phenomena of crack closing-opening, and crack flank roughness in 

phase with relative displacements and crack blunting. 
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Figure 5-38. Representative R-030 specimen’s results for a 3.86 mm crack 

at 10000 cycles; (a) applied loads and determined SIFs for mode I, II and III; (b) 

orthogonal-to-the-crack DIC total strain distribution, (c) CTL and pair of points A 

and B locations used to determine COD and related SIF; (d) CTL and cropped 

AOI used to determine SIF using the LSM method 

 

Figure 5-38b shows an AOI without excluding the crack zone flanks. 

Executing an analysis with such AOI would cause the determination of very large 

fictitious strains along the crack length due to the very high relative displacements 

that occur inside a DIC subset near or at the crack lips. Figure 5-38b also shows the 

fictitious total (elastic plus plastic) strain data at maximum axial load. It can be seen 

a red contour delimiting total fictitious strains as high as 0.82%. Figure 5-38c 

depicts the data points A and B (located in this case about 3.0 mm from the CTL) 

used to calculate SIFs applying the COD method. Figure 5-38d presents the AOI 

from which full-field displacement data were collected from to determine the SIFs 

using the LSM method. This cropped AOI was selected to avoid very large fictitious 

strains in regions near the crack flanks. 

Figure 5-39a presents a comparison of SIF using the COD and the LSM 

method for the modes. For mode I, the values are pretty much the same and the 

behavior is very close to what was seen on specimen R-028 for both, the positive 
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and negative parts of the load. The SIF mode I for the COD method shows none or 

little slant for the negative part of the load, whereas the same component for the 

LSM method a slant is clearly visible. Figure 5-39b shows perpendicular-to-crack 

strain as given by the software VIC-3D. There is a slope difference at the negative 

part of the load for the SIF mode I determined values. Plasticity ahead of CTL 

causes difference between COD (when using exemplary points shown in Figure 

5-38c) and LSM (when using AOI shown in Figure 5-38d). Mode II SIF show very 

close values and similar shapes. Although there is an apparent contradiction in the 

SIF for mode III sign, both methods present near zero values, as the same for other 

crack lengths. So that, such small difference can be disregarded as noise. 

 

 

Figure 5-39. Specimen R-030 for a 3.86 mm crack at 10000 cycles, a) LSM 

and COD calculated SIF, b) perpendicular-to-crack strain 

 

 

Figure 5-40. All mode SIF variations and ranges as calculated from the 

COD method after 13000 cycles for a 6.5 mm crack. 
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Figure 5-40 shows the three COD-determined SIF mode variations after 

13000 load cycles for a 6.5 mm crack. It can be seen that SIFs for modes I and II 

SIF are about the same order of magnitude, whereas SIF mode III range is very 

small compared to them. It can also be noted that SIFs mode I and II occur in-phase, 

as expected by the applied type of loading. 

 

 

Figure 5-41. Crack tip parameters for specimen R-030 (a) Evolution of 

mode I, II and III and equivalent SIF ranges versus crack length (b) variation of 

maximum mode II and III over maximum mode I ranges and θ*o versus crack 

size, (c) θ*o, θo ES and θ*o S3D versus crack length (d) mode-mixity ratio during 

one cycle and from cycle to cycle. 

 

Figure 5-41a shows the evolution of SIF equivalent ranges versus crack size. 

Figure 5-41b shows the variation rate of the maximum II and III mode ranges over 

maximum mode I range with crack size along with experimentally determined 

crack-path tangent angle  o. It is noted how the ratios do not change as the crack 

growths. Figure 5-41c shows experimentally measured (o) and calculated 

(Erdogan-Sih o ES and Schöllmann et al. o S3D) crack-path tangent angles for 
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each crack length. Figure 5-41d shows how mixed-mode ratios change during one 

cycle and from cycle to cycle. It is observed how the variations occurring during 

the cycle and from cycle to cycle are small due to reasonably proportional mixed-

mode I and II ratios. 

Table 15 shows experimental results for specimen R-030: number of cycles 

(N), accumulated crack length (a*) in mm, SIF ranges in MPa√m that occur at 

maximum ΔKI as depicted in Figure 5-40, experimental angle θ*o, Erdogan-Sih (θo 

ES) calculated angle, Schӧllmann et. al. (θo S3D) calculated angle, Erdogan-Sih 

and Schӧllmann et. al. SIF ranges in MPa√m. The last two are the SIF ranges 

produced by the evaluation of Eq. (55) and Eq. (56), as described in section 4.5. 

As a comparison, the same quantities are presented in Table 16, but this time 

using the maximum SIF range for each cycle. It shows results for specimen R-030: 

number of cycles (N), accumulated crack length (a*) in mm, maximum SIF ranges 

in MPa√m, Erdogan-Sih (θo ES) calculated angle, Schӧllmann et al (θo S3D) 

calculated angle, Erdogan-Sih and Schӧllmann et. al. SIF (ranges in MPa√m). It can 

be seen how both ES and S3D SIF ranges and kink angles differ from the presented 

values in Table 15. This difference could be explained by the fact that whereas the 

values presented in Table 15 are calculated with the simultaneous SIF, the values 

presented in Table 16 are done so with the maximum values regardless of when 

they occur. In Figure 5-40 is seen that at the time of maximum KI, KII, and KIII 

present a smaller value than their respective ranges. Therefore, the difference 

observed in ΔK ES and ΔK S3D between Table 15 and Table 16. 
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Table 15. Experimental and calculated parameters for specimen R-030  

N a* ΔKI ΔKII ΔKIII θ*o θo S3D θo ES ΔK S3D ΔK ES 

7500 3.17 31.7 18.8 1.5 -18 -25 -25 37.6 37.55 

8000 3.03 33.6 21.7 3.8 -18 -25 -25 41.9 41.37 

8400 3.26 34.8 21.2 4.0 -18 -25 -25 43.2 42.51 

8800 3.45 39.8 22.2 0.9 -18 -25 -25 46.7 46.74 

9200 3.16 39.6 22.8 0.3 -18 -25 -25 47 46.98 

9600 3.36 42.5 26.3 3.9 -18 -25 -25 51.9 51.35 

10000 3.56 43.5 18.3 2.3 -18 -21 -21 47.8 47.67 

10400 3.66 44.4 28.8 0.4 -18 -25 -25 54.9 54.8 

10800 4.12 47.0 31.6 1.1 -18 -27 -27 58.7 58.59 

11200 4.3 47.6 26.0 0.2 -18 -23 -23 55.9 55.86 

11600 4.38 51.3 29.6 0.3 -18 -25 -25 61.6 61.64 

12000 5.38 52.7 32.5 2.0 -18 -25 -25 63.9 63.88 
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12500 5.95 53.1 36.3 2.8 -18 -27 -27 65.7 65.67 

13000 6.5 55.0 45.6 7.9 -18 -29 -29 73.8 73.17 

13500 7.8 61.7 45.2 12.4 -18 -27 -27 81.1 79.26 

13750 8.3 66.8 45.6 2.2 -18 -27 -27 83.8 83.67 

14000 8.65 67.2 52.2 7.7 -18 -27 -29 89.1 88.3 

14250 9.21 67.4 55.3 27.7 -18 -27 -29 96.6 90.36 

 

Table 16. Experimental and calculated parameters for specimen R-030 using maximum SIF ranges for each cycle 

N a* ΔKI ΔKII ΔKIII θo S3D θo ES ΔK S3D ΔK ES 

7500 3.17 31.7 19.7 6.7 -44 -44 45.20 44.34 

8000 3.03 33.6 22.4 8.0 -44 -45 49.57 48.47 

8400 3.26 34.8 22.4 7.7 -42 -45 50.41 49.40 

8800 3.45 39.8 23.3 7.6 -40 -40 55.14 54.23 

9200 3.16 39.6 23.4 5.5 -41 -40 54.68 54.20 
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9600 3.36 42.5 26.5 7.7 -44 -44 60.34 59.50 

10000 3.56 43.5 18.6 4.2 -37 -38 53.25 52.95 

10400 3.66 44.4 29.4 6.9 -43 -42 64.46 63.84 

10800 4.12 47.0 32.3 8.3 -45 -40 69.53 68.69 

11200 4.30 47.6 26.8 7.3 -43 -41 64.56 63.85 

11600 4.38 51.3 31.2 7.6 -44 -43 71.75 71.06 

12000 5.38 52.7 33.7 9.0 -44 -44 75.52 74.62 

12500 5.95 53.1 37.0 10.7 -47 -47 79.40 78.20 

13000 6.50 55.0 46.4 13.5 -50 -50 90.92 89.28 

13500 7.80 61.7 47.6 18.2 -46 -48 98.28 95.49 

13750 8.30 66.8 46.3 8.2 -46 -47 98.73 98.15 

14000 8.65 67.2 54.0 13.6 -48 -49 107.68 106.25 

14250 9.21 67.4 56.5 28.2 -48 -50 114.73 109.00 
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5.3.4 

Specimen under 90o phase axial-torsional alternated load (R-031)  

 

This specimen presented two cracks that started at the slit notch boundaries, 

one at the left and another at the right notch boundary. Figure 5-42 shows how the 

angle of nominal applied principal stress, θi=-2τxy/(σxx- σyy), changes with the 

variation of applied nominal stress (σyy and τxy). As opposed with the previous 

specimens, the initial crack propagation angle did not coincide with the angle of the 

nominal principal stress. 

 

 

Figure 5-42. Angle of principal stress with applied stress for specimen R-

031 

 

Figure 5-43a presents the entire path of the left crack. Selected points were 

marked and denoted from A to I to highlight the path. Two abrupt kink angles are 

shown at points D and F. The crack initiates from the slit left boundary and 

propagates (along points A, B, C) making an angle equal to 45o with the horizontal 

axis. At approximately 9.28 mm length and after 30000 cycles, point D, the path 

kinks and the crack grows following an angle of 14o for 1500 cycles until point F. 

After this second kink, it continues growing following a path with angle -22o. The 

u, v and w displacement components at maximum axial load for point I, given by 

the VIC-3D® output (rigid motion already compensated), are depicted respectively 

in Figure 5-43b, Figure 5-43c and Figure 5-43d respectively. Relative (opposite) 

motion of the crack flanks can be clearly seen. Mode III opening is evidently 
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depicted in Figure 5-43d, whereas Figure 5-43e shows how three loading cycles 

were applied. It can be observed that axial force and torsion load are out of phase. 

About 100 pairs of images were determined at a rate of 10 pairs of images/s for 

each of the three recorded cycles. Load frequency for these image acquisition cycles 

was 0.1 Hz. 

 

 

Figure 5-43. Representative R-031 specimen’s results: (a) the entire crack 

path with respective number of cycles for points A to I shown in Table 17. (b) 

parallel-to-the-crack path DIC displacement field for F to I crack path; (c) 

perpendicular-to-the-crack path DIC displacement field for F to I crack path; (d) 

DIC out-of-plane displacement field for F to I crack path; (e) applied out-of-phase 

loads. 

 

For this specimen, SIF values in all three modes, using the LSM method, were 

calculated using the displacements in each direction as shown in Eq. (5). Due to the 

specimen radius, there is an error when approximating a distance between two 

points in a curved surface by the simple subtraction of coordinates between them, 

just like it has to be done when calculating the distance from CTL. The AOI for the 

LSM with 1 term was chosen by selecting two 1 x 1 mm squares located at oposite 

sides of the crack edges and about 1 mm behind the CTL, as seen in Figure 5-44d. 
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Figure 5-44a, Figure 5-44c, and Figure 5-44e show the comparison for KI, KII, and 

KIII respectively obtained with COD, LSM method with one term, and LSM method 

with seven terms with their respective AOI. 

By keeping the AOI close to the CTL, the error when calculating the 1/√r 

distance is lowered. Additionally, the compressive applied axial load would create 

negative strains ahead of the crack tip, possibly generating fictitious KI values (see 

section 6.1 for details about the interpretation of negative KI), so the AOI to gather 

displacement data should be kept behind the CTL. It can be seen that KI obtained 

with 7 terms (using AOI data shown in Figure 5-44f) shows larger values than the 

ones obtained the LSM method. For those reasons, the COD values are more 

representative of the stress field than the LSM 7 terms. Figure 5-44 depicts the non-

linear behavior usually seen when there is accumulated plasticity and crack closure 

represented by the negative KI non-linear variation for both negative axial and 

torsional loads as seen in Figure 5-44a. It can also be seen the almost straight lines 

of almost constant KII and KIII values, in Figure 5-44c and Figure 5-44f respectively 

for both COD and LSM method. They can be interpreted as the crack permanently 

slides (or stays open) in those modes regardless of change in the loading condition. 

Moreover, the three SIF modes do not express a proportional behavior to neither 

axial nor torsional loads, showing dependence on both of them. 

In Figure 5-44a and according to the COD method, it is observed when crack 

opens in mode I at about -7kN, stays open all the way to the maximum axial load, 

to finally close at about -17kN during the unloading stage. Therefore, SIF mode I 

must depend on both axial and torsional loads for the crack to stay open at such 

high compressive load. During that axial load range, if KI shows positive values, 

the sample crack faces are not touching each other allowing KII and KIII to slide 

freelier. That assumption would explain the relatively high values for KII and KIII, 

in addition to the cyclic strain hardening increase produced by the non-proportional 

loading. It can be also seen how the change of sign for KII and KIII represents the 

crack shifting sliding directions, which occurs even when the crack is closed 

probably making the crack surfaces get smoothed under compressive forces. 

The variation of all SIF modes during only cycle for selected crack lengths 

versus applied axial load are depicted in Figure 5-45a for point C for 28000 cycles, 

Figure 5-45b for point E for 31500 cycles, and Figure 5-45c for point H for 32600 
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cycles. All SIF values were calculated using the COD method. Finally, in Figure 

5-45d is shown perpendicular-to-crack strains for points ahead about 1 mm of CTL. 

 

 

Figure 5-44. Three modes SIF for specimen R-031 at 28000 cycles: a) KI 

results from COD, LSM with 7 terms and LSM with 1 term; b) points used for 

COD method; c) KII results from COD, LSM with 7 terms and LSM with 1 term; 

d) AOI for LSM with 1 term; e) KI results from COD, LSM with 7 terms and 

LSM with 1term; f) AOI for LSM method with 7 terms. 
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Figure 5-45. SIF (from COD method) versus axial force for selected crack 

lengths along the kinked crack path (a) 28000 cycles or point C in Figure 5-43a; 

(b) 31500 cycles or point F in Figure 5-43a; (c) 32600 cycles or point H in Figure 

5-43a; (d) applied axial load versus torque for specimen R-031. 

 

 

Figure 5-46. SIFs variation and maximum SIF ranges as calculated from the 

COD method after 30000 load cycles for a 9.28 mm crack, point D in Figure 

5-43a. 
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Figure 5-47. Crack tip parameters measured and calculated for specimen R-

031, axial load 32 kN and 382N-m max. torque (a) Evolution of mode I, II and III 

and equivalent SIF ranges versus crack length (b) variation of the maximum II and 

III over maximum mode I ranges and θ*o versus crack size, (c) θ*o, θo ES 

(Erdogan-Sih) and θo S3D (Schöllmann et. al.) versus crack length; (d) mode-

mixity ratio during one cycle and from cycle to cycle. 

 

Figure 5-47a shows the evolution of SIF and equivalent SIF range values 

along the crack growth. The influence of KIII turns out to be very important, 

making the equivalent 2D and 3D SIF calculated ranges differ reasonably. The 

ratios between cycle maximum values of KII and KI change (and grow) 

considerably. Figure 5-47b shows the variation rate of the maximum II and III mode 

ranges over maximum mode I range with crack size along with experimentally 

determined crack-path tangent angle θ*o. It can be seen that the ratio ΔKII / ΔKI is 

above 0.5 for the first path kink and above 1.0 after the second path kink. 

Additionally, it is clearly noted that for this case of out-of-phase loading the ratio 

ΔKII / ΔKI changes not only during a cycle but also from cycle to cycle. It is 

noteworthy to remember that in these experiments, the nominal out-of-phase 

loading ratio, Φ = τ / σ = T / F, was maintained constant from cycle to cycle; in 
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other words, it was not changed abruptly, see Figure 5-46. Therefore, local 

conditions, as local specimen geometry and crack path were the significant 

variables influencing change in mode-mixity rates KII/KI and ΔKII / ΔKI. Figure 

5-47c shows the experimentally observed θ*o angle and the calculated (Erdogan-

Sih θo ES and Schӧllmann et al. θo S3D) crack-path tangent angles for each crack 

length. The way these angles are presented would enforce coincidence with 

experimentally measured and calculated path-directions. That is seen in some cases 

for the determined Schöllmann et. al. angles, but it is not seen for the Erdogan-Sih 

angles. The explanation comes from the fact that the 3D analyses take into 

consideration the large KIII values which are not accounted for in the ES model. 

Figure 5-47d shows how mixed-mode ratios (KII versus KI) change during one cycle 

and from cycle to cycle for specimen. Mode-mixity variation occurs inside each 

cycle and gets accentuated when the crack grows with the number of cycles. 

Table 17 shows experimental results for specimen R-031: named points as in 

Figure 5-43a number of cycles (N), crack length (a*) in mm, SIF ranges in MPa√m 

that occur at maximum ΔKI as depicted in Figure 5-46, experimental angle θ*o, 

Erdogan-Sih (θo ES) calculated angle, Schӧllmann et. al. (θo S3D) calculated angle, 

Erdogan-Sih and Schӧllmann et al SIF ranges in MPa√m. The last two are the SIF 

ranges produced by the evaluation of Eq. (55) and Eq. (56) and the method proposed 

in section 4.5, using the schema shown in Figure 4-10 and calculations from Eq. 

(57) and Eq. (58), as shown in section 4.5. 

As a comparison, the same quantities are presented in Table 18, but this time 

using the maximum SIF range for each cycle regardless of when they occur. It 

shows results for specimen R-031: number of cycles (N), accumulated crack length 

(a*) in mm, maximum SIF ranges in MPa√m, Erdogan-Sih (θo ES) calculated 

angle, Schӧllmann et. al. (θo S3D) calculated angle, Erdogan-Sih and Schӧllmann 

et. al. SIF (ranges in MPa√m). It can be seen how both ES and S3D SIF ranges and 

kink angles differ from the presented values in Table 17. This is explained by the 

fact that, whereas the values presented in Table 17 are calculated with the 

concurrent SIF, the values of Table 18 are done so with the maximum values in 

spite of when they happen. In Figure 5-46, it is seen that at the time of any KI, KII, 

and KIII present a smaller value than their respective ranges. Therefore, the 

difference observed in ΔK ES and ΔK S3D between Table 17 and Table 18. 
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Table 17. Experimental and calculated parameters for specimen R-031  

Point N a* ΔKI ΔKII ΔKIII θ*o θo S3D θo ES ΔK S3D ΔK ES 

- 23500 3.34 24.1 6.8 12.0 45 1 -19 33.2 26.07 

A 24000 3.66 31.2 12.7 6.4 45 3 -21 39 34.86 

B 26000 4.93 33.3 17.6 2.4 45 -7 -25 40.8 39.1 

- 27000 6.68 33.1 4.0 8.9 45 25 -25 39.4 34.97 

C 28000 6.76 35.0 16.5 7.0 45 9 -23 42.9 40.33 

- 28500 7.79 39.9 22.3 11.3 45 -21 -23 49.3 47.12 

D 30000 9.28 40.6 10.9 15.8 45 9 -23 52.6 43.66 

- 30500 10.58 44.8 11.2 17.2 45 -11 -15 53 47.55 

- 31000 11.26 38.2 5.9 16.9 14 15 13 56 38.63 

E 31500 12.38 55.9 2.1 15.5 14 19 17 80.9 57.32 

F 32000 14.67 54.6 9.9 27.6 14 25 29 93.1 64 

- 32200 16.17 47.6 15.4 7.1 -22 -31 -37 82.9 64.57 
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G 32400 17.81 53.5 49.0 29.6 -22 -31 -37 101.9 78.51 

H 32600 22.06 75.0 64.9 55.4 -22 -31 -39 171 123.3 

 
 

Table 18. Experimental and calculated parameters for specimen R-031 using maximum SIF ranges for each cycle 

N a* ΔKI ΔKII ΔKIII θo S3D θo ES ΔK S3D ΔK ES 

23500 3.34 24.09 14.41 25.69 -37 -43 45.83 33.12 

24000 3.66 31.23 19.23 30.51 -37 -44 57.63 43.48 

26000 4.93 33.26 23.09 32.54 -38 -47 63.29 48.88 

27000 6.68 33.06 33.02 21.55 -51 -52 64.88 59.10 

28000 6.76 35.01 26.91 36.96 -41 -48 70.57 54.10 

28500 7.79 39.86 24.41 28.48 -40 -43 66.04 55.36 

30000 9.28 40.61 29.03 43.09 -41 -47 80.40 60.53 

30500 10.58 44.83 26.65 25.07 -40 -44 69.35 61.48 

31000 11.26 38.25 27.18 46.44 -39 -46 80.14 56.84 
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31500 12.38 55.85 48.13 65.61 -46 -50 121.48 91.70 

32000 14.67 54.57 73.54 73.43 -50 -58 147.31 118.34 

32200 16.17 47.64 68.48 55.26 -54 -58 126.85 108.06 

32400 17.81 53.51 84.79 72.90 -55 -60 156.50 130.17 

32600 22.06 75.02 142.96 122.34 -56 -61 254.46 209.59 
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5.3.5 

Specimen under 45o phase axial-torsional alternated load (R-033)  

 

This section presents exemplary and typical results determined for specimen 

R-033. Two cracks started at the slit notch boundaries, one at the left and another 

at the right notch boundary. Figure 5-48 shows how the angle of principal stress, 

θi=-2τxy/(σxx- σyy), changes with the variation of applied nominal stress (σyy and τxy). 

 

 

Figure 5-48. Angle of principal stress with applied stress for specimen R-

033  

 

Figure 5-49 shows results obtained for the crack that emanated from the slit 

left notch boundary. The crack initiated at the slit boundary, at 40o, but it continued 

propagating along an angle direction of approximately 0o relative to the horizontally 

machined slit-notch. Figure 5-50 shows the AOI and exemplary results for SIF in 

three modes. Figure 5-51 shows variations of SIFs determined for the three opening 

modes for three different crack lengths along the kinked crack path. Figure 5-52 

depicts SIF variation and ranges after 15,000 load cycles for a crack corresponding 

to 15000 cycles. Figure 5-53 shows measured and calculated crack tip parameters. 

Table 18 shows experimental and calculated values for R-033´s parameters. Finally, 

Table 19 shows maximum SIF ranges and calculated parameters regardless when 

they occur. 
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Figure 5-49. Representative R-033 specimen’s results: (a) crack path with 

named CTLs from A to D; (b) parallel-to-the-crack path DIC displacement field 

for C to D crack path; (c) perpendicular-to-the-crack path DIC displacement field 

for C to D crack path; (d) DIC out-of-plane displacement field for C to D crack 

path; (e) applied out-of-phase loads. 

 

Figure 5-49a presents the entire path of the left crack. Some points were 

marked and denoted from A to D to highlight the path. One abrupt kink angle is 

shown, about one mm after point C. After kinking, the crack continued growing 

following a path with angle of about -20o. The u, v and w displacement fields at 

maximum axial load for point D, given by the VIC-3D® output (rigid motion 

already compensated), are depicted respectively in Figure 5-49b and Figure 5-49c 

and Figure 5-49d respectively. Relative motion of the crack flanks can be clearly 

seen in said figures, as the fields are symmetric over the crack lips. Mode III 

opening is clearly depicted in Figure 5-49d, in the same way it was seen for 

specimen R-031. Figure 5-49e shows the nominal 45o out-of-phase loading cycle 

that was repeated for the entire experiment. About 100 pairs of images were 

determined at a rate of 10 pairs of images/s for each of the three cycles. Load 

frequency for these image acquisition cycles was 0.1 Hz. 
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Figure 5-50. SIF for specimen R-033 at 15000 cycles using different data: a) 

KI results from COD, LSM with 7 terms and LSM with 1 term; b) points used for 

COD method; c) KII results from COD, LSM with 7 terms and LSM with 1 term; 

d) AOI for LSM with 1 term; e) KIII results from COD, LSM with 7 terms and 

LSM with 1term; f) AOI for LSM method with 7 terms.  
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Additionally for this specimen, SIF values in all three modes using LSM 

method was performed using the out of plane displacement component as shown in 

Figure 5-50 for a crack length corresponding to 15000 cycles. Due to the specimen 

radius, there is an error when approximating a distance between two points in a 

curved surface by the simple subtraction of coordinates between them, just like it 

has to be done when calculating the distance from CTL. By keeping said points 

close, that error is lowered, which has been the idea of the COD method 

Additionally, and because the compressive applied axial load would create negative 

strains ahead of the crack tip, possibly generating fictitious KI values (see section 

6.1 for explanation about possible KI results), the AOI was chosen by selecting two 

1 x 1 mm squares located about 1 mm behind the crack tip, as seen in Figure 5-50d. 

Figure 5-50a, Figure 5-50c, and Figure 5-50e show the comparison for KI, KII, and 

KIII respectively obtained with COD and LSM methods, using just one and seven 

terms along with their respective AOI. However, the almost-elliptical KI variation 

with both, axial and torsional, loads in Figure 5-50a depicts a non-linear behavior, 

which is attributed to accumulated plasticity and crack closure. 

According to the KI(COD) curve in Figure 5-50a, the crack opens at about 

14kN, it stays open all the way to the maximum axial load, and it closes at about -

29kN during the unloading stage. So, SIF mode I must depend on both axial and 

torsional loads for the crack to remain open at such high compressive load. During 

that axial load range, if KI(COD) shows positive values, the crack faces are open 

therefore they are not touching each other making KII and KIII less shielded from 

rugosity, which would explain the relatively high values for those SIF modes, in 

addition to the cyclic strain hardening increase produced by the non-proportional 

loading. It can be also seen how the elliptical behavior for KII and KIII, in Figure 

5-50c and Figure 5-50e, respectively for both COD and LSM method, represents 

the crack exhibiting a lag in sliding in those modes while axial unloading occurs. 

Moreover, the change in sign for KII(COD) and KIII(COD) represents the crack 

shifting sliding directions, which occurs even when the crack is closed probably 

making the crack surfaces get smoothed under compressive forces. 

When comparing SIF performance between specimens under proportional 

load (R-028, R-029, and R-030) with non-proportional load (R-031 and R-033) one 
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can see in the second group their behavior does not depend exclusively on either 

load. The plots of SIF vs. load show one straight and one slightly curved part for 

the proportional loaded samples, whereas for the non-proportionally loaded 

samples (Figure 5-44 for specimen R-031 and Figure 5-51 for specimen R-033) is 

not observed a straight line. That shows SIF dependency on axial and torque loads. 

While for proportional load, KI shows a proportionality to the positive part of 

loading, non-proportionally load specimens (R-031 and R-033) show an elliptical 

behavior. 

The chosen area for LSM method, Figure 5-50f, has to be carefully chosen as 

to make sure the displacement field is rotated with the crack. In other words, the 

part of the displacement field perpendicular to the straight part of the crack, until 

point C in Figure 5-49a, needs to be left out for the subsequent crack lengths after 

the kink. 

The variation of all SIF modes during one cycle for three selected crack 

lengths versus applied axial load are depicted in Figure 5-51a for point B for 13000 

cycles, Figure 5-51b for point C for 14000 cycles, and Figure 5-51c for point D for 

15000 cycles. All SIF values were calculated using the COD method. The 

perpendicular-to-crack strains taken about 1 mm ahead of CTL for crack lengths 

before (13000 cycles) and after the kink (14500 cycles), are shown in Figure 5-49d. 

The strains follow a path very different for ascending and descending loads. It 

seems the kink created blunting represented by the strains showing a rather elliptical 

behavior after the kink than the sharper shape seen before. 

Figure 5-52 shows the three SIF mode variations and respective ranges 

calculated from the COD method after 14,000 load cycles for a crack sizing 4.96 

mm, point C of Figure 5-49a. It can be seen that peaks of the three opening mode 

SIFs occur out-of-phase and that mode III SIF is larger than SIFs for mode I and II. 

The peak of mode III SIF occurs for the positive parts of mode I SIF, which is when 

the crack was completely opened. Furthermore, KI(COD)  seems to show the crack 

faces did not close, as it does not present a flat slope at axial load negative values 

as opposed to specimens R-028 and R-030. 
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Figure 5-51.  Specimen R-033´s SIF for three crack lengths along the kinked 

crack path (a) 13000 cycles or point B in Figure 5-49a; (b) 14000 cycles or point 

C in Figure 5-49a; (c) 15000 cycles or point D in Figure 5-49a; (d) perpendicular-

to-crack strains for crack lengths before and after the kink. 

 

 

Figure 5-52. All mode SIF variations and ranges calculated from the COD 

method for specimen R-033 after 14,000 load cycles for a crack sizing 4.96 mm, 

point C of Figure 5-49a  

 

Figure 5-53a shows the evolution of SIF and equivalent SIF range values 

along the crack growth. All SIF values were calculated using the COD method. The 
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ratios between cycle maximum values of ΔKII and ΔKI change (and grow) 

considerably. Again, and just like in specimen R-031, the influence of ΔKIII turns 

out to be very important, making the equivalent 2D and 3D SIF calculated ranges 

differ reasonably. Figure 5-53b shows experimentally observed θ*o angle and 

calculated (Erdogan-Sih θ*o ES and Schöllmann et al. θ*o S3D) crack-path tangent 

angles for each crack length. Calculated θ*o S3D angles are closer to observed 

angle than θ*o ES. Again, and just like in specimen R-031 the explanation comes 

from the fact that the 3D analyses take into consideration the large ΔKIII values. 

Figure 5-53c shows the variation rate of the maximum II and III mode ranges over 

maximum mode I range with crack size along with experimentally determined 

crack-path tangent angle θo. It can be seen that the (interpolated) ratio ΔKII / ΔKI is 

bigger than 0.5 before the crack kinks, and also the ratio ΔKII / ΔKI changes not 

only during a cycle but also from cycle to cycle as the slopes vary for the different 

measured points. 

Figure 5-53d shows how mixed-mode ratios (KII versus KI) change and grow 

during one cycle and from cycle to cycle for the specimen. As commented above, 

the present set of experiments always maintained constant the nominal out of phase 

loading ratio Φ = τ / σ = T / F from cycle to cycle. Hence, local conditions, such as 

local specimen geometry and crack path were the significant variables affecting the 

change in mode-mixity rates KII / KI and ΔKII / ΔKI. This nonstop mode-mixity 

change is clearly illustrated in Figure 5-53d. 

Table 19 shows experimental results for specimen R-033 concurrent SIF: 

named points as in Figure 5-49a number of cycles (N), accumulated crack length 

(a*) in mm that occur at maximum ΔKI as depicted in Figure 5-52, SIF ranges in 

MPa√m, experimental angle θ*o, Erdogan-Sih (θo ES) calculated angle, 

Schӧllmann et. al. (θoS3D) calculated angle, Erdogan-Sih and Schӧllmann et al SIF 

ranges in MPa√m. The last two are the SIF ranges produced by the evaluation of 

Eq. (55) and Eq. (56), and the method proposed in section 4.5, using the schema 

shown in Figure 4-10 and calculations from Eq. (57) and Eq. (58), as described in 

section 4.5. 
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Figure 5-53. Crack tip parameters measured and calculated for specimen R-

033, axial load 32 kN and 382N-m max. torque (a) Evolution of mode I, II and III 

and equivalent SIF ranges versus crack length (b) variation of the maximum II and 

III over maximum mode I ranges and θ*o versus crack size, (c) θ*o, θo ES 

(Erdogan-Sih) and θo S3D (Schöllmann et. al.) versus crack length; (d) mode-

mixity ratio during one cycle and from cycle to cycle. 

 

As a comparison, the same quantities are presented in Table 20 but instead 

using the maximum SIF range for each cycle. It shows results for specimen R-033: 

number of cycles (N), accumulated crack length (a*) in mm, maximum SIF ranges 

in MPa√m, Erdogan-Sih (θo ES) calculated angle, Schӧllmann et. al. (θo S3D) 

calculated angle, Erdogan-Sih and Schӧllmann et. al. SIF (ranges in MPa√m). It can 

be seen how both ES and S3D SIF ranges and kink angles differ from what is 

presented in Table 19. This is explained by the fact that, whereas the values 

presented in Table 19 are calculated with the concurrent SIF, the ones in Table 20 

are done so with the maximum values regardless of when they occur. In Figure 

5-52, it is seen that at the time of any KI KII, and KIII present a smaller value than 

their respective ranges. That is the difference observed in ΔK ES and ΔK S3D 

between Table 19 and Table 20. 
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Table 19. Experimental and calculated parameters for specimen R-033  

Point N a* ΔKI ΔKII ΔKIII θ*o θo S3D θo ES ΔK S3D ΔK ES 

- 10000 1.41 23.8 3.6 11.3 0 -5 -9 33.2 24.03 

- 11000 2.22 29.3 6.4 16.2 0 -9 -13 41.4 29.96 

A 12000 2.74 30.5 9.8 26.3 0 -9 -17 56.5 32.69 

B 13000 4.01 42.2 13.3 15.1 0 -11 -17 49.7 43.57 

C 14000 4.96 51.9 22.0 53.0 0 -13 -21 93.7 57.71 

- 14500 6.39 53.6 34.4 71.1 0 -15 -27 117.9 67.16 

D 15000 9.4 68.6 40.6 147.7 -20 -11 -27 203.3 78.92 
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Table 20. Experimental and calculated parameters for specimen R-033 using maximum SIF ranges for each cycle 

N a* ΔKI ΔKII ΔKIII θo S3D θo ES ΔK S3D ΔK ES 

10000 1.41 23.83 5.57 22.19 -18 -24 38.11 25.63 

11000 2.22 29.27 9.25 28.17 -25 -29 48.55 33.08 

12000 2.74 30.46 13.49 41.98 -28 -37 63.27 37.52 

13000 4.01 42.24 17.12 23.79 -33 -35 59.41 50.69 

14000 4.96 51.92 27.55 71.36 -34 -40 109.97 68.06 

14500 6.39 53.59 42.94 88.69 -38 -49 134.91 84.61 

15000 9.40 68.56 47.49 168.89 -29 -46 218.18 100.65 
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This section presented SIF results for a DCT sample under mode I, for a 

modified C(T) under proportional mixed mode (I and II), and for five thin tubes 

subjected to different loading combinations, pure tension, pure tension-

compression loading, pure alternated torsion loading, proportional loading resulting 

from the superposition of these two, and out-of-phase loading with phase angles of 

45° and 90°, which showed a combination of the three opening modes. The SIF 

were calculated by fitting DIC displacement fields to the Westergaard´s stress 

function. A way to establish SIF range was also presented. 

Finally, the experimentally observed crack angles are reported, as well as the 

angles predicted by two equivalent SIF criteria.  
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6.  

Discussion 

 

6.1  

Analysis of SIF and SIF range 

In order to extract a suitable SIF and SIF range, an appropriate analysis has 

to be performed. But before that is discussed, it is noteworthy to clear out that 

because the SIF is estimated from displacement fields calculated from the reference 

image taken at load zero, the measured SIF should be interpreted as a SIF [82]. On 

the contrary, if the selected reference image has a load different than zero, the 

measured SIF should be interpreted as a SIF range [87]. Moreover, in literature 

there are plenty of cases where the COD is used to quantify SIF and crack 

openening with different techniques [40, 67, 88, 92, 93]. Therefore, the measures 

reported here use widely accepted practices. 

For the holed C(T) specimen, in Figure 5-13 one can see that despite the 

applied load is positive, the crack faces remains closed until about 0.27 P/Pmax. 

This is due to the fact that the crack was grown under cyclic loading, and the 

material was an AISI/SAE 1020 steel (a ductile metal with chemical composition 

shown in Annex A) which created a hardened plastic zone ahead of the CTL as 

measured by DIC and seen in the strains depicted in Figure 5-9. So, part of the 

applied load has to be spent overcoming the residual strain, and when it does, the 

SIF mode I grows proportional to the applied load. In Figure 5-13 the 

experimentally measured SIF is seen parallel to the numerically calculated SIF by 

FEM. This is the same phenomena described by Elber in 1970, although measured 

with a different technique. Therefore, in this thesis, the SIF range is the difference 

between the maximum and minimum SIF. 

The plasticity mechanisms that govern crack closure are directly related to 

COD [90], which in turn are proportional to SIF. Figure 6-1 shows a comparison of 

KI calculated with COD, Eq. (6), and SIF from numerical formulas referenced in 
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[3], named K Teor, for specimen R-028 for a crack sizing 3.24mm after 11220 

cycles. It is observed a difference in values and curve shape, in a similar manner 

how it was described for Figure 5-18. Results for 11.9 mm crack on modified C(T) 

specimen. a) SIF, but in this case, the reversal load ratio is -1, giving negative KI 

values that need to discussed here. 

 

Figure 6-1. Comparison of KI via COD and numerical formulas for 

specimen R-028 for a crack sizing 3.24mm and 11220 cycles. 

 

The points 1 to 7 in Figure 6-1 are numbered in order of appearance, and they 

represent the following: Point 1 represents the reference image used to compare 

displacements with. It has axial load = 0. So, all displacements, therefore strains, 

stresses, and SIF are mapped with respect to it. For each measured crack length, the 

reference image is the initial image at zero load for a selected crack crack lenght 

instead of using just one image for all the measured crack lengths. That way, the 

plastic deformation accumulated during fatigue crack growth and not recorded by 

DIC, is accounted for. Without that precaution, the SIF curve would not start at zero 

for crack lengths different that the first one, but at positive values. Point 2 denotes 

the end of the linear elastic deformation therefore, the area around the CTL shows 

Yield behavior. Point 3 shows the maximum SIF value reached, matching the 

maximum axial load, and the beginning of load reversal. Point 4 shows the instant 
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when applied axial load reaches zero, but the crack is still open. It is noted that 

despite the load is zero, the crack remains open as KI (COD) is positive, therefore 

the crack experiences blunting. Point 5 represents the instant when the crack closes 

as KI (COD) is zero. At this point, the crack technically does not exists anymore. It 

is seen there is a need for a compression load to achieve that stage. At point 6, the 

applied load is minimum and the crack is still closed, compressing its faces 

therefore making the specimen increase its rigidity. Going from minimum negative, 

loading is inverted reaching point 7. At point 7, the crack is still closed, its faces 

experience less compression, and the specimen losses rigidity. Finally at point 1 

again, the applied axial load is 0, but the crack is still closed as KI does not show 

positive values. 

Now, what happens from point to point can be described as follows: from 

point 1 to point 2, the crack opens with KI proportional to applied axial load 

following a straight or quasi-straight line meaning there are linear elastic 

conditions. From point 2 to point 3, KI increases more rapidly than from points 1 to 

2 with the applied axial force until reaching the maximum crack opening. Plastic 

deformation is accumulated between those two points. From point 3 to 4, the 

unloading path is parallel, or quasi-parallel, to the elastic loading path seen from 

point 1 to point 2. From point 4 to point 5, there is a need to close the open crack 

even though the applied axial force is zero, as depicted in Figure 6-2. Hence, the 

accumulated plastic deformation between points 2 and 3 is reversed. From points 5 

to 6, the crack is already closed and it does transmit compression between its faces. 

The applied axial load is consumed on initially deforming the crack rugosity peaks. 

After that is achieved, the load is spent on compressing the specimen, which is what 

makes it more rigid. Such rise in rigidity is observed as the quasi-horizontal line 

from points 5 to 6. As the load decreases, the relative displacement between 

opposite-to-the-crack points, therefore SIF (calculated from COD) as described in 

Eq. (6), stays almost constant. From point 6 to point 7, as the load increases, the 

relative displacement between opposite-to-the-crack points stays the same (the line 

is almost horizontal). Finally, from point 7 to 0, the line presents an almost 

imperceptible slope, but it needs to occur in order for the crack to open as the 

applied axial load is increasing. 
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With that in mind, the observed negative KI values represent the closed crack 

under compression due to the applied negative axial load, inducing negative 

perpendicular-to-the-crack displacements. Such displacements remain quasi-

constant from point 6 to point 7. The crack starts to open at point 7, which for all 

practical reasons has the same value of point 6, making the SIF range as the 

difference between the maximum and the minimum measured SIF.  

 

Figure 6-2. Schematic representation of crack experiencing mode I negative 

relative displacements 

Such analysis is correct when the calculated SIF is done using the COD 

formulation, Eq. (6) or Eq. (7), but for the LSM formulation, Eq. (16), as the SIF 

versus applied load differ in the compression part as is easily seen in Figure 5-26 

for specimen R-028 and Figure 5-39 for specimen R-030. Note that the above 

analysis is based on observations for specimen R-028 with KII and KIII =0. 

For specimens R-029 to R-033, where KII and KIII are different than zero, the 

maximum SIF is reduced by crack roughness, and crack friction. On the other hand, 

they are likely enhanced by crack interlocking as the crack flanks form inclined 

planes at the micro level increasing the sliding between faces, as suggested by 

Kibey et. al [90] and Mróz and Mróz [51], especially under negative axial loads. 

Hence, the SIF range for modes II and III can be calculated by the subtraction of 

the maximum and the minimum measured SIF. 

The thin tubes analyzed here are considered in a plane stress state, so SIF are 

not expected to vary much along the specimen´s thickness even though the 

technique used provides surface information only. Moreover, for the three opening 

modes in the thin tubes, the reported SIF are considered effective SIF, as they 

already account for non-linearities such as crack closure, crack roughness, crack 

friction, oxide crack closure, and crack path direction. 

Blunted crack 
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6.2  

Analysis of equivalent SIF and equivalent SIF range 

The evaluation of an equivalent SIF only makes sense when there is more 

than one SIF mode. As reported in literature crack growth can occur, besides pure 

mode I, only in mode III [31], mode I and III [32], mode I and II [27] [74] and 

modes I, II, and III combined [30, 80]. The holed C(T) specimen did not develop 

visible out-of-plane displacements other than the ones in the very near zone, as 

described by He and Kotouzov [62]. In the thin tubes and holed C(T) specimens, 

the displacements in the very near zone were only used to identify the CTL. Besides 

that, three out of the five thin tubes developed visible out-of-plane displacements 

that were associated with SIF mode III. So, in order to establish a crack growth law 

that appropriately describes the experimental results, includes all three SIF modes, 

accounts for crack kinks, slants, and other non-linearities, an equivalent SIF range 

model has to be found. This section discusses such results. 

The Tanaka, Eq. (46) and Asaro, Eq. (47), equivalent SIF models could only 

be used to describe loading situations when loads are in-phase and the reversal load 

ratio is bigger than zero as the square root term would make the equivalent SIF 

positive. A negative KI does not make physical sense as the crack faces cannot 

penetrate each other, so negative perpendicular-to-crack displacements actually do 

not occur beyond the crack faces. The only possible exception to the previous 

statement could be the case of crack blunting when the crack is forced to close by 

a compressive load. In that case, negative KI values could make sense as reported 

(from COD method) for the thin tubes in chapter 5. Positive or negative KII and KIII 

values may exist depending on the relative displacements between opposite-to-

crack points. Kibey, Sehitoglu, and Pecknold [90] discussed the meaning of 

negative KII displacements. They stated that when those displacements are different 

than zero, the crack is slipping forward if u > 0, slipping in reverse when u < 0 and 

the crack is said to be sticking if u=0. A similar approach could be extended to out-

of-plane displacements for the w displacement field. So, negative values of KII and 

KIII are capable of making an equivalent SIF negative. Therefore, in the case of the 

thin tubes, the Tanaka, Eq. (46) and Asaro, Eq. (47), models cannot be applied as 

the reverse load ratio is negative, which would produce negative KII and KIII values. 
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The ES equivalent SIF model, Eq. (52), and the Schӧllmann et. al., Eq. (53), 

are implicit equations, as they include the kinking angle, so they cannot be solved 

directly. Strictly speaking, they were proposed for static or quasi-static loading. 

However, several authors argue that monotonic loading criteria can be extended to 

proportional fatigue loading. Highsmith [24], citing work by Tanaka, called it a 

“straight forward” step. According to Rozumek and Macha [68], who also cited 

Tanaka´s work, after fitting mixed-mode fatigue test results to Paris rule, a good 

correlation was found using tensile testing material constants that could be used as 

well under different loading conditions. This statement supports the claim made in 

section 6.4, which will be presented ahead. Richard et.al. [22] also claimed that 

extending the SIF to the SIF range is possible and they also argue that crack 

propagation will occur when KI,th < Keq < KI,c. With those ideas in mind, the validity 

of ES SIF range, by Eq. (55), and the Schӧllmann et. al. SIF range, Eq. (56), is 

assumed as correct. 

The devised schema to evaluate the ES and Schӧllmann et. al. SIF ranges 

presented in section 4.5, using the schema shown in Figure 4-10, and calculations 

from Eq. (57) and Eq. (58) delivered results shown in Figure 5-28a for specimen R-

028, Figure 5-35a for specimen R-029, Figure 5-41a for specimen R-030, Figure 

5-47a for specimen R-031, and Figure 5-53a for specimen R-033. For specimen R-

028 (pure alternating axial loading) SIF modes II and III were almost non-existent 

through the measured crack lengths, so there are not evident differences between 

KI and ∆KI. For specimen R-029 (pure alternating torsional loading) the results for 

the three modes were quite noisy especially for KIII, as seen in Figure 5-34. 

Therefore, there is a visible difference between the ES and the Schӧllman et. al. SIF 

ranges, as KIII shows visible values. Despite the noise, the relation KII/KI remains 

quasi-constant from cycle to cycle and along the cycle. For the R-030 specimen (in-

phase alternating axial and torsional loading), the KIII values were very low as 

shown in Figure 5-40, therefore there is not much of a difference between ES and 

the Schӧllman et. al. SIF ranges and the relation KII/KI remains quasi-constant from 

cycle to cycle and along the cycle. According to Highsmith [24], and Yang and 

Vormwald [80], that ratio could be used to indicate when the crack may curve its 

path. For the R-031 specimen (out-phase alternating axial and torsional loading 

with 90o phase angle), SIF range mode II and III at times presented values larger 
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than SIF range mode I. Therefore, there is a very visible difference between the ES 

and the Schӧllman et. al. SIF ranges, being the second one larger than the former. 

The relation KII/KI changes and grows from cycle to cycle and varies during one 

cycle, even though the ratio T/F was kept constant during the experiments. If the 

remote loading ratio does not change, only local conditions could be responsible for 

the KII/KI variation. For specimen R-033 (out-phase alternating axial and torsional 

loading with 45o phase angle), SIFs range mode III presented values larger than SIF 

range modes I and II. Therefore, there is a very visible difference between the ES 

and the Schӧllman et. al. SIF ranges, being the second one much larger than the first 

one. The relation KII/KI changes and grows from cycle to cycle and varies during 

one cycle though, a little less pronounced than in specimen R-031. Because of the 

inclined crack, the crack opens perpendicular, slides parallel, and slides out-of-

plane to its faces producing KI, KII and KIII, respectively. With and inclined and 

slanted crack, the three opening modes are not exclusive of individual acting loads, 

rather than all of them, making KI and KII vary, giving permanently changing 

conditions for the crack tip field. That can be seen in figures Figure 5-39a (R-030), 

where is seen that the crack opens and closes at the same time with either axial or 

torsional load, while in Figure 5-44 (R-031) and Figure 5-50 (R-033) the crack stays 

open albeit the axial load is negative but the torque is positive. This means the 

compressive part of the axial load tends to close the crack but, the torsional load 

exerts crack sliding. If the crack has rugosity, and when the friction force is 

surpassed, the torsional load also exerts opening in mode I. 

Finally, it can be added that the use of SIF equations for crack on a planar 

surface on cracks over curved surfaces is acceptable only for short cracks. For long 

cracks the assumption that points A and B (Figure 2-2) are close enough so the 

distance to the CTL can be simplified to a straight line loses validity [94] and 

William´s series, Eq. (6) and Eq. (7), simply will not work. This exclusion applies 

for two of the three tested methods: William´s series using full displacements field 

and ⌡, whereas for the COD method if the points A and B (Figure 2-2) are kept 

sufficiently close, between 1 and 3 mm in case of the thin tubes, the curvature does 

not significantly affect calculations. 
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6.3  

Analysis of crack kinking models 

The result of evaluating the crack kinking models displayed in section 3.1 to 

3.3 is presented and discussed here. 

 

6.3.1  

Analysis of crack kinking models for modified C(T) specimen 

Figure 6-3 shows how the crack kinking models, presented in section 3, 

perform for the modified C(T) sample. The models were evaluated for the 

maximum KI and its concurrent KII. It is seen that most of the models perform well, 

but the MSS, which is shown on a separate scale (right side of Figure 6-3). The low 

carbon steel is not prone to shear dominated failure and, as shown in Table 10, shear 

mode is not dominant. Therefore, the MSS is not expected to achieve an accurate 

prediction, which produced a semi-constant value of 69o, so for the sake of image 

resolution θMSS is not shown in Figure 6-3. The CTD performs well for short crack 

lengths but deviated when the crack became longer. As Highsmith [24] suggested, 

the CTD model works better in short cracks. The Demir criteria does not do a close 

prediction. Although different equations, the MTS and Richard models are based 

on the same principle. Results show that there is virtually no difference between 

them in this specimen. Now, the energy based models do a close prediction. The T-

stress (stress parallel to the crack and not reported here) is known to influence brittle 

fracture when the stress field is result of mode II loading [95] or to impact crack 

path steadiness [96] in pure mode I under mixed-mode loading when in presence of 

small imperfections. Finally, the SED criterion, Eq. (39) using Ψ=0º as shown in 

Table 9, does a close prediction, however running parallel to the observed crack 

path. One point important here is that the machined hole modified the stress field 

ahead of the crak tip inducing a SIF mode II in presence of pure mode I loading. 

This is contrary to the case of applied mixed mode loading that produces SIF mode 

II inducing a change in the stress field ahead of the crack tip. Perhaps such 

difference in the origin of the stress field is what might explain the relatively low 

KII values and difference in crack kinking angles. 
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Figure 6-3. Evaluation of crack kinking models for modified C(T) sample 

 

6.3.2  

Analysis of crack kinking models for specimen R-029 

Figure 6-4 shows the performance of the studied crack kinking models 

presented in section 3.1 to 3.3 using maximum SIF range that occurs at maximum 

∆KI for each measured crack length. Because ∆KIII is present, the Richard 3D 

criterion is also evaluated here. Moreover, the presented angles are referenced to 

the sample´s horizontal axis. 

From the stress based criteria, it is seen that the MTS does the closer 

prediction even though there are a couple points that are off the general tendency 

(KII unexpectedly presented low values at those same points). Richard 2D, as it does 

not account for sliding mode III, seems to do the furthest prediction. The MSS 

criterion performs much better when the ΔKII/ΔKI ratio is above 0.5. It is expected 

that as the crack turns, shear mode becomes more dominant hence, the MSS should 

describe the crack growth. The MTSN and MEER energy based models are off as 

they do not account for the present KIII values. The SED model, Eq. (39b) using 

Ψ=0º as shown in Table 9, on the other hand does account for KIII, and it does an 

excellent prediction even though for the first two values of cracks lengths, the 

criterion returns about the same Strain Energy Density value when the evaluated 

angle ranges between -45 to 45 degrees. Therefore, the presented value for SED is 

the value that would get the closest to the observed path. 
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Figure 6-4. Results for crack kinking models evaluation. 

 

6.3.3  

Analysis of crack kinking models for specimen R-030 

Figure 6-5 shows how the crack kinking models, presented in sections 3.1, 

3.2 and 3.3, fare against crack length. They were evaluated using the maximum SIF 

range occurring simultaneously with maximum ∆KI, as shown in Figure 5-40. 

Although small, ∆KIII is present, therefore the Richard 3D model is also evaluated 

here. Moreover, the presented angles are referenced to the sample´s horizontal axis. 

From the stress based criteria, it is seen that the Richard 2D criteria does the closer 

prediction even though it is off for about 10o. Richard 3D and MTS criteria seem a 

little off by about 20o. The MSS does not perform well, predicting a semi constant 

kinking angle of about -55o as the ΔKII/ΔKI ratio does not change much for the 

entire experiment. The CTD returns a constant value between -30o to -35o, similar 

to the R2D criterion. The MTSN and MEER energy based models are way off 

showing opposite signs. The SED model, Eq. (39b) using Ψ=0º as shown in Table 

9, on the other hand, does an excellent prediction despite a couple of points where 

it is completely off. 
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Figure 6-5. Crack kinking models for R-030 

 

6.3.4 

Analysis of crack kinking models for specimen R-031 

Figure 6-6 shows how the crack kinking models, presented in sections 3.1, 

3.2 and 3.3, perform against crack length for specimen R-031. Because ∆KIII is 

present in this sample, the Richard 3D model is also evaluated here, but not the R2D 

as it does not include SIF mode III. It has to be noted here, that because in this 

specimen the ratio σ/τ changes along the cycle, the models do not predict a constant 

kinking angle as opposed to the previous samples. Nonetheless, they were evaluated 

using the maximum SIF range occurring simultaneously with maximum ∆KI, as 

shown in Figure 5-46. Moreover, the presented angles are referenced to the 

sample´s horizontal axis. From the stress based criteria, MTS, and R3D are very 

close within each other (separated between 0 to 10o) but far from the experimentally 

observed angle. This is surprising as there is visible difference in mode III SIF 

values. However, one must remember that those models were deducted for 

proportional loading, and this is not the case here. The MSS predicts a kinking angle 

of about -60o until the second kink where becomes closer as the crack grows. This 

happens as the ΔKII/ΔKI starts to change and goes above 0.5. The CTD criterion 

returns similar values found in the three stress-based criteria.  
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Figure 6-6. Crack kinking models evaluated with experimentally obtained 

SIF values. 

The MEER models is way off in values, however running kind of parallel to 

the crack angle. Additionally for this criterion, there was no convergence for some 

crack lengths. The MTSN model comes closer before the first kink but after that, it 

stays away from the experimentally observed crack kinking values. Just as a 

reminder, the MTSN and MEER do not account for KIII. Finally, for 11 of the 15 

evaluated crack lengths, the SED criterion, Eq. (39b) using Ψ=0º as shown in Table 

9, exhibited symmetry of minimum strain energy density values at negative and 

positive values of the evaluated θ angle. The presented values here are the middle 

of such range. With that in mind, the SED model does a very close prediction to the 

observed angle. 

 

6.3.5 

Analysis of crack kinking models for specimen R-033 

Figure 6-7 presents how the crack kinking models, presented in sections 3.1, 

3.2 and 3.3, perform against crack length for specimen R-033. Because ∆KIII is 

present in this sample, the Richard 3D model is also evaluated here, instead of the 

R2D model. It has to be noted here, that because in this specimen the ratio σ/τ 

changes along the cycle (the same as with sample R-031), the models do not predict 

a constant kinking angle as opposed to the previous samples. Nonetheless, they 

were evaluated using the maximum SIF range occurring simultaneously with 
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maximum ∆KI, as shown in Figure 5-52. Moreover, the presented angles are 

referenced to the sample´s horizontal axis. From the stress based criteria, MTS, and 

R3D are close to each other (separated between 3 to 12o) but at least 12o away of 

the experimentally observed angle. The MSS predicts a kinking angle between -65o 

to -55o until the kink appears, when it start to hover at about -55o. This happens as 

the ΔKII/ΔKI starts to change and goes above 0.5 and staying about 0.6. The CTD 

returns values similar to the stress-based criteria but a little closer than they do. 

 

Figure 6-7. Crack kinking models for sample R-033 

 

The MEER models is way off in values with an enlarging difference as the 

crack grows. Additionally for this criterion, there was no convergence for one crack 

length. The MTSN model comes closer than the MTSN but, it is still far away from 

the experimentally observed angle. Just as a reminder, the MTSN and MEER do 

not account for KIII, whereas the SED criterion, Eq. (39b), does consider it. Finally, 

just before the first kink, the SED exhibited a constant minimum value when the 

evaluated θ angle ranges from 6o to14o. The presented values here are the middle of 

such range. With that in mind, the SED, Eq. (39) using Ψ=0º as shown in Table 9, 

does a very close prediction to the observed angle. A summary of the performance 

for the SED crack kinking criterion for four out the five thin tubes is presented 

inFigure 6-8. It can be seen how the SED really does a good job predicting crack 

path direction Although literature [24] described the SED as not able to describe 

shear dominated fracture well, in this thesis, the materials used were ductile so that 

case does not apply. 
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Figure 6-8. Summary of SED model for thin tubes 

 

Highsmith [24] observed that stable crack growth remains co-planar under 

continuous KI loading, and it will only deviate from the original path (by a ∆θ) when 

in presence of KII. Now for alternating loads, using the assumption of exchanging 

SIF for SIF range, exploited in section 6.2, crack growth will swerve from its initial 

path (also by a ∆θ) when some ∆KII is exerted on the crack. That is observed in the 

plots of ∆KII/∆KI versus crack kinking angle in Figure 5-21 for the modified C(T), 

Figure 5-35b for R-029, Figure 5-41b for R-030, Figure 5-47b for R-031, and Figure 

5-53c for R-033 specimens. Furthermore, Kibey et. al. [90] had stated that crack 

kinking produces an abrupt decrease in mode I SIF and a matching increase in mode 

II SIF. Therefore, making the ratio KII/KI higher. If such criteria can be extended in 

the same way that Richard et. al. [22] and Rosumek et. al. [68] use it to establish an 

equivalent SIF range from equivalent SIF expressions, the results obtained in this 

thesis show that it is evident how cracks turn when ∆KII becomes significant, 

something, as observed by Yang [26], in the vicinity of ∆KII/∆KI > 0,5. So at that 

ratio, there is crack grow transition between normal stress (MTS dominated) and 

shear stress (MSS dominated), whereas ∆KII/∆KI ratios bigger than 1.5 are 

completely MSS dominant [26]. However, ∆KII/∆KI is not the only describing 

parameter. There were seen cases with high mode-mixity where the crack did not 

turn and cases with low mode-mixity where the crack indeed turned such as for the 

modified C(T) specimen, see Figure 5-21. In that particular case, there is a 

hypothesis regarding on how the KII values are hindered by crack closure and crack 
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rugosity [90] and how the T-stress could influenced crack path [96]. That 

hypothesis would account for the apparent lower KII/KI ratio (see Figure 5-21) that 

could help discern the moment where the crack growth process changes from MTS 

to MSS dominance. 

 

6.4 

Analysis of FCG using Paris rule and equivalent SIF range 

This section aims to answer whether the da/dN curve represents FCG even 

for cases when there is multiaxial loading, variable mode-mixity and crack kinking. 

Total crack length results were calculated from the summation of partial crack 

lengths (resulting in values defined as a*) that were measured along each crack 

growth increment including the presence of kink angles, which occurred in 

specimens R-031 and R-033.  

With that in mind, Figure 6-9 shows the Paris curve using the Erdogan-Sih 

formulation for equivalent ΔK as presented in tables 11, 13, 15, 17 and 19 for each 

cycle.  

 

Figure 6-9 da/dN curve using the equivalent SIF range ES model 

It was shown earlier how SIF mode III was present in four out the five thin 

tubes. Therefore, in order to look for an equivalent SIF, one needs to select a model 

that encompasses mode III, such as Schöllmann et al. Figure 6-10 shows the Paris 
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curve using the Schöllmann et. al. formulation for equivalent ΔK as presented in 

tables 11, 13, 15, 17 and 19 for each cycle.  

 

 

Figure 6-10. da/dN curve using the equivalent S3D SIF range model. 

 

The crack growth rates in Figure 6-9 and Figure 6-10 were calculated by the 

secant method and they show a rather large scatter. Such statement becomes more 

visible when data for all five tube specimens, in terms of number of cycles N and 

total linear crack length a∗, is presented in Figure 6-11. One can see there are 

different crack growth rates for different cycles. 

 

Figure 6-11. Linear crack lenght vs. number of cycles for the tube samples 
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To smooth such scatter, a correction of da/dN values was made using splines7, 

so crack growth rates would fit Eq. (59) [82]. 

1

1
1

0 (1 )
mma a C m

      (59) 

When the sum of squared difference is minimal, coefficients C and m are 

found and upon deriving Eq. (59), it becomes Paris rule, Eq. (28), giving a new 

da/dN plot as presented in Figure 6-12 [82] where one can see that the equivalent 

Schöllmann et al. SIF falls within a narrower band when compared to the non-

smoothed plot of Figure 6-10. The ALL straight line, represents the da/dN values 

using the ΔK S3D for the five samples and the last row of parameters C and m from 

Table 21. 

 

Figure 6-12. Adjusted da/dN vs. ΔK S3D for tube specimens 

 

So, when plotting linear crack length versus number of cycles after doing a 

spline smoothing, one can see the more clearly the different crack growth rates for 

the specimens and even more, how they change when the cracks kink. 

                                                 

 

7 A spline is an adapting fitting procedure that finds a set of linear paraments for each pair of 

consecutive points within a scatter of many points. 
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Figure 6-13. Linear crack lenght vs. number of cycles for the tube samples after 

spline smoothing 

The values of the assumed crack driving force, ∆K S3D, were determined by 

only using measured displacement fields in the vicinity of crack tips. As previously 

mentioned, they take into account influence factors such as crack closure, surface 

roughness, crack flank friction, crack path kinking, and cyclic plasticity. Therefore, 

the ∆K S3D values have to be interpreted as effective.  

In an ideal situation, the obtained data points would closely fall in a narrow 

band. However, the data points fall into a band of a factor 6 in ∆K direction and a 

factor of 8 in crack growth rate. One source of scatter is still due to the experimental 

technique, another source comes from the presumption that the mixed-mode 

Schöllmann et. al. hypothesis might not perfectly describe the FCG behavior, which 

is based on the MTS assumption. An extension of the Schöllmann et al. model from 

an equivalent SIF to an equivalent SIF range might be used to explain FCG behavior 

under and non-proportional mixed-mode loading. Nonetheless, cases have been 

reported in which fatigue crack growth did not obey to a MTS criterion but more to 

maximum shear stress criterion [25, 73, 80]. For such cases, the presented 

hypothesis cannot be expected to correlate all experimental results [82]. Against 

this background, it might not be too surprising that the MTS criterion does not work 

perfectly. Although some indications [73, 80], it is still open which condition leads 

to either normal or shear stress driven fatigue crack growth, respectively [82]. 
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For cases for which the Schöllmann et al. hypothesis is valid, the FCG 

prediction requires to take all influencing phenomena into account which have 

impact on the crack tip fields [25, 53]. 

The scatter of points in Figure 6-12 (spline smoothed) cast the Paris rule 

coefficients, (Eq. (28) da/dN=C ΔK m), shown in Table 21, where R2 is the 

correlation factor in data regression for each specimen separately and all combined. 

If the parameters C and m are in fact material dependent, with m ranging from 

1.5 to 6 for most metals [3], values in Table 21 ought to belong to the same 

distribution. However, under that premise, a projected crack growth rate might get 

affected due to the crack kinks preventing the crack from sliding/opening freely.  

 

Table 21. Paris curve parameters for thin tubes using Figure 6-12´s points for each 

sample. 

Spec. C (1*10-6) m R2 

R-028 0.001 3.47 0.9224 

R-029 2.000 1.42 0.7808 

R-030 0.003 3.04 0.9731 

R-031 0.030 2.73 0.9290 

R-033 0.3 1.97 0.9299 

ALL 0.04 2.5 0.814 

 

Additionally, the experimentally measured crack length for the thin tubes 

account for nonlinear phenomena such as crack closure and crack friction that 

hinders crack growth. For longer cracks, there is a bigger crack surface, therefore 

higher friction forces to overcome. Finally, another reason may be, as stated before, 

that the assumed equivalent SIF range hypothesis is not the best suited criterion to 

describe FCG. Those reasons may explain why the measured crack length is shorter 

than the predicted ones, especially after crack kinks. 

The results shown in this section (6.4) seem to disagree with data published 

by Fremy et. al. [30] as they conclude that FCG under non-proportional loading 

depends on load history. However, the SIF values they used to come up with that 

conclusion were numerically calculated with peak values of KI, KII and KIII that 

produced the same equivalent SIF range for the different tested loading sequences. 
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Furthermore, another difference is that in [30] the crack closure problem was 

avoided by using a R > 0.33 so non-linearities such as roughness, plasticity induced 

closure, and environmental effects were not included as opposed to the SIF values 

used in this thesis which they did, because of the nature of their experimental 

measurement, with R=-1 for the thin tubes. Finally, the results in this section also 

disagree with results from Yu, Li, and Proust [27] who also tested thin tubes under 

some loading conditions very similar to the loading paths reported here. One source 

of disagreement could come from the fact that their numerically calculated SIFs did 

not include mode III opening. So their equivalent SIF range, calculated with the 

MTS criterion, lacks of the out-plane-contribution.  

On the other hand, the findings in this section are not fully conclusive that the 

Schöllmann et al. model, which is MTS based, is able to describe well FCG under 

non-proportional load. Analysis of data presented in this section shows that Paris 

rule could describe FCG, even for non-proportional loading cases when the 

equivalent mixed-mode SIF range can only be calculated using the SIF ranges of 

the existing opening modes if they occur at the same instant. If they do not occur at 

the same time, an estimation process, such as the one presented in this section has 

to be used. SIF values must be determined for each crack length along the cycling 

history, not forgetting that mixed-mode SIF opening ratios vary during the cycle, 

and that non-linearities such as roughness, crack tip plasticity and crack flank 

friction make mixed-mode loading to be non-proportional to mixed-mode SIFs. 

Much better results will be met if experimentally determined SIFs are used in the 

analysis. In other words, the maximum equivalent SIF range should be evaluated 

from all possible equivalent SIFs occurring along a given cycle. This maximum 

equivalent SIF range will depend on the selected criterion for crack propagation. 

Although the present approach used the MTS criterion, first proposed by Erdogan 

and Sih [9] for opening modes I and II, and it was later extended by Schöllmann et 

al. [19] to include mode III, other criteria can be selected and tested using the same 

experimentally acquired displacement fields used in this thesis. 
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7.  

Conclusion and Future Works 

7.1 

Conclusion 

Methods to calculate SIF from DIC displacements using LEFM formulation 

for three kinds of specimens were presented, explained, and analyzed. In some 

cases, results were compared with FEM simulations to corroborate findings. The ⌡ 

method did not work for negative loads, because at that loading stage the crack is 

closed so, it simply does not exist. The application of ⌡ in that stage would violate 

Rice´s formulation. Differences between the experimentally calculated SIF and 

FEM simulation results, where applicable, were attributed to accumulated cyclic 

plasticity, crack roughness, and crack blunting. 

A dependable way to determine opening mode SIFs I, II and III from relative 

crack edges displacements, that were measured using the 3D-DIC technique, was 

presented. The use of the 3D-DIC technique is extremely important because the 2D-

DIC technique is only applicable to plane problems (DCT and modified C(T) 

samples in this case), where the out-of-plane displacements are insignificant. 

Besides, the use of 3D-DIC allows the measurement of out-of-plane displacements, 

the consequently determination of mode III crack openings and associated KIII 

values. In the case of the thin tubes, the use of 3D-DIC is essential due to their 

geometry requires 3D measurement capabilities. Calculations of KIII were useful to 

show that, in some of the thin tubes, they were induced by the combination load-

geometry, that they may be higher than the mode I and II SIFs therefore, making a 
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substantial difference in the calculation of equivalent SIFs and equivalent SIF 

ranges. 

It was shown that mode I SIF is affected not only by the residual strain due to 

FCG but also on roughness between the crack faces, and crack kinking. The crack 

roughness acts as an inclined plane, enhancing mode I. For mode II and mode III 

SIFs, it is concluded they are affected by friction between the crack faces because, 

they need to overcome the friction force first, before any sliding starts happening. 

Some LEFM-based models to predict crack kinking were evaluated using the 

experimentally calculated SIF and SIF ranges for proportional and non-proportional 

loading cases. For proportional loading most of the model (stress and energy based) 

do a close crack path prediction, except the MSS which was expected as the 

materials used in this thesis were ductile carbon steels not prone to shear dominated 

fracture. For the non-proportional loading they do not fare so well, as they were 

originally devised for proportional loading. However, the SED, which was the only 

energy-based model that include KIII in the formulation, got close to the 

experimentally observed crack angle. This is new information as literature does not 

report a success in SED evaluation for non-proportional loading. However, the way 

SIF and SIF ranges are evaluated here shows the SED works for non-proportional 

loading even though the value used for Ψ may change along crack growth, and it 

could not be assessed beyond its initial value. Further experiments with other 

loading secuences migh help analyze other cases with different data. 

A way to evaluate equivalent SIF ranges for non-proportional loading using 

already-existing models for proportional loading was presented. Using the proposed 

method, coefficients of Paris rule were sought to predict crack growth fitting all 
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experimental data points using the Schöllmann et. al. equivalent SIF model. It was 

found that FCG could be acceptably described by Paris rule. 

From the experimentally observed SIF, it was observed the ratio between SIFs 

II and I varied constantly during one cycle and from cycle to cycle for the non-

proportionally loaded specimens even though the ratio axial load / torque was kept 

constant. It is concluded that such variation must be attributed to the constant 

change in local conditions product of local plasticity, geometry and loading 

conditions. 

Finally, it was shown modes I, II and III were present in four of the thin tubes. 

The presence of out-of-plane displacements were not observed at first in the visual 

analysis of the fatigue grown specimens. They were later confirmed after the w-

field DIC analysis in one non-proportional sample. That situation may help other 

researchers, when analyzing similar specimens, who consider only modes I and II, 

and the respective numerically deduced SIFs. Such omission may produce 

difficulties in explaining FCG if the mode III opening mode is not properly 

accounted for. 

 

7.2 

Recommendation for Future Works 

Check the influence of T-stress on crack propagation angles for proportional 

loading cases. For that case, the evaluation of SIFs using full field method should 

be perfected to obtain SIF responses under negative axial load similar to the ones 

obtained with the COD method. Should the SIF be correctly calculated using full 

field information, the T-stress is already accounted for in the William´s series. 
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Continue working on the analysis of DIC measurements for the thin tubes. 

The ∆⌡eff could be calculated if a ⌡ decomposition method for multiaxial loading 

is successfully implemented. 

Perform test on same thin tubes with different non-proportional loading cases 

so SIF, SIF ranges and a FCG can be extracted in the same manner as it was done 

here. This would help to furher clarify what was observed for the unified Paris rule. 

Develop formulations for MEER and MTSN criteria that include KIII in the 

crack driving force and evaluate them using the experimentally calculated SIFs. 

Another possible way to evaluate crack path under non-proportional loading is to 

evaluate crack kinking criteria that includes the T-stress effect. 

Evaluate out-of-plane angle, Ѱ, with stress as a function of SIFs (KI, KII, KIII) 

with a range of angles and compare against KIII/KI. A parameter such as the one 

suggested by Highsmith and Yang could be studied, looking for a threshold that 

could tell where twisting occurs. 
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Appendix A.  
Chemical composition for modified C(T) specimen 
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