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Abstract

Monteiro, Ruhan dos Reis; Endler, Markus (Advisor). A Real-
Time Reasoning Service for the Internet of Things. Rio de
Janeiro, 2018. 85p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The growth of the Internet of Things (IoT) has brought the opportunity
to create applications in several areas, with the use of sensors and actuators.
One of the problems encountered in IoT systems is the difficulty of adding
semantic relations to the raw data produced by the sensors and being able
to infer new facts from these relations. Moreover, due to the fact that
many IoT applications are online and need to react instantly on sensor
data collected by them, they need to be analyzed in real-time. Streams
are a sequence of time-varying data elements that should not be stored
forever and queried on demand. Streaming data needs to be consumed
quickly through ongoing queries that continue to analyze and produce new
relevant data, i.e. stream of output/result events. The ability to infer new
semantic relationships over streaming data is called Stream Reasoning.
We propose a semantic model and a mechanism for real-time data stream
processing and reasoning based on Complex Event Processing (CEP), RDF
(resource description structure) and OWL (Web Ontology Language). This
work presents a middleware service that supports continuous reasoning
on data produced by sensors. The main advantages of our approach are:
(a) to consider time as a key relationship between information; (b) flow
processing can be implemented using CEP; (c) is general enough to be
applied to any data flow management system (DSMS). It was developed
in the Advanced Collaboration Laboratory (LAC) and a case study in the
field of fire detection is conducted and implemented, elucidating the use of
real-time inference on streams.

Keywords
Middleware; Internet of Things; Complex Event Processing; Re-

asoning; Real-Time;
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Resumo

Monteiro, Ruhan dos Reis; Endler, Markus. Um Serviço de
Raciocínio Computacional em Tempo Real para a Internet
das Coisas. Rio de Janeiro, 2018. 85p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

O crescimento da Internet das Coisas (IoT) nos trouxe a oportunidade
de criar aplicações em diversas áreas com o uso de sensores e atuadores.
Um dos problemas encontrados em sistemas de IoT é a dificuldade de adi-
cionar relações semânticas aos dados brutos produzidos por estes sensores
e conseguir inferir novos fatos a partir destas relações. Além disso, devido
à natureza destes sistemas, os dados produzidos por eles, conhecidos como
streams, precisam ser analisados em tempo real. Streams são uma sequência
de elementos de dados com variação de tempo e que não devem ser tratados
como dados a serem armazenados para sempre e consultados sob demanda.
Os dados em streaming precisam ser consumidos rapidamente por meio de
consultas contínuas que analisam e produzem novos dados relevantes. A ca-
pacidade de inferir novas relações semânticas sobre dados em streaming é
chamada de inferência sobre streams. Nesta pesquisa, propomos um modo
semântico e um mecanismo para processamento e inferência sobre streams
em tempo real baseados em Processamento de Eventos Complexos (CEP),
RDF (Resource Description Framework) e OWL (Web Ontology Language).
Apresentamos um middleware que suporta uma inferência contínua sobre
dados produzidores por sensores. As principais vantagens de nossa aboda-
gem são: (a) considerar o tempo como uma relação-chave entre a informação;
(b) processamento de fluxo por ser implementado usando o CEP; (c) é ge-
ral o suficiente para ser aplicado a qualquer sistema de gerenciamento de
fluxo de dados (DSMS). Foi desenvolvido no Laboratório de Colaboração
Avançada (LAC) utlizando e um estudo de caso no domínio da detecção de
incêndio é conduzido e implementado, elucidando o uso de inferência em
tempo real sobre streams.

Palavras-chave
Middleware; Internet das Coisas; Processamento de Eventos Comple-

xos; Inferência; Tempo Real;
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1
Introduction

The Internet of Thing (IoT) is a system of physical objects that can
be discovered, monitored, controlled or interacted with by electronic devices
that communicate over various networking interfaces and eventually can be
connected to the wider internet. "Things", in IoT, can refer to a variety of
devices such as automobiles with built-in sensors or even biochip transponders
on farm animals. These devices collect useful data that can be processed by
other systems, by demand or real-time.

IoT is the new impetus in the industrial sector and is empowering
industrial engineering with sensors, software and data analysis to create
smart automated systems. The driving philosophy behind IoT is that digital
transformation, with intelligent machines, is more accurate and consistent than
humans in data communication, and that data can help companies detect
inefficiencies and problems sooner.

Major technology companies, such as Amazon, have invested in the
emerging IoT market, putting the area in evidence. These intelligent so-called
"Things" are then integrated into a network infrastructure, with their respective
identifiers, physical attributes and interfaces. It is estimated that by the year
of 2020, more than 30 billions objects are connected to the to the network 1.

Examples of potential applications include monitoring vehicles to opti-
mize driving routes, intelligent highways with warming messages and diversions
according to climate conditions, for example. In industry, we can use IoT to
build a smart manufactory. In short, smart manufacturing is the use of IoT
devices to improve the efficiency and productivity of manufacturing opera-
tions. Typically, this involves retrofitting sensors to existing manufacturing
equipment, but new manufacturing equipment often comes with IoT sensors
pre-installed.

The next biggest revolution in industry is being carried out by IoT, and
it’s called Industry 4.0. Industry 4.0 is an expression that encompasses some
technologies for automation and data exchange and uses concepts of cyber-
physical Systems, Internet of Things and Cloud Computing. This new revolu-
tion facilitates the viewing and execution of "Intelligent Factories" with their

1https://www.idc.com/infographics/IoT
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modular structures, cyber-physical systems monitor physical processes, create
a virtual copy of the physical world and make decentralized decisions. With the
Internet of Things, cyber-physical systems communicate and cooperate with
each other and with humans in real-time, and through cloud computing, both
internal and intra-organizational services are offered and used by value chain
participants.

However, so far in current IoT systems, sensing and actuation is mostly
done at the lowest data level. In contrast, many IoT applications demand
higher level situation awareness. To achieve this, semantic models for data
stream analysis are necessary. Semantic models are formally defined concepts
and relations on which reasoning engines can operate to derive new information
and knowledge about a system and its environment. The main problem is that
current semantic models (designed for the Semantic Web) are not suitable for
efficient and real-time reasoning. Current data analysis for IoT systems is either
done off-line or lacks any semantic-based reasoning. Real-world IoT systems
must be able to interpret and reason about uncertain sensor observations to
effectively operate in the physical world.

There is thus an increasing need to build scalable systems to support such
applications. The complex nature of these systems and their rapid evolution,
coupled with the huge volume of streaming data and the need for real-time
processing, raise many computational challenges that have not been addressed
in prior work.

1.1
Problem Statement

Since IoT nodes (sensors and actuators) produce low level data, it is
a challenge to extract higher level knowledge, which would facilitate the
understanding of complex situations and allow to address them properly.
Suitable knowledge models and processing approaches are required to make it
possible to deduce new knowledge for IoT applications in an efficient manner.
Structuring the data semantically and relating them to an ontology, brings the
possibility to contextualize the data, relate them to the environment’s stimuli
and consequently extract a higher level information or even implicit knowledge
that can be used to automate some kind of work.

Knowledge bases and reasoning techniques are good options for handling
and managing the acquisition of new knowledge and deduction. The related
Semantic Web technologies are widely accepted as the data model for seman-
tically representing static information. However, the approaches developed by
the Semantic Web community are designed for a static processing over knowl-
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edge data and one of the main characteristics of an IoT system is the need of a
fast response over an environment stimuli. IoT systems often refer to real-time
data analysis systems, like monitoring a smart manufacturing, a smart home
or even an autonomous vehicle. These kind of application needs a response in
seconds, or, in the case of an autonomous vehicle, in milliseconds. So, besides
having a semantic annotated data with a knowledge representation, we need
to manage this knowledge in a spectrum of a real-time system.

1.2
Objective and Contribution

The main objective of this dissertation is to propose a processing model
for IoT that deals with the challenges presented in the previous section. For
which, we created a Real-Time service that collects the data from the Things,
relates them to a semantic model and derive higher level semantic annotated
data and implicit knowledge. We propose here an approach for the discovery
and analysis of IoT nodes and later we use semantic and reasoning techniques,
over real-time generated data, in order to discover new implicit facts that are
more tangible for a system actor.

As a contribution, this dissertation addresses 1) the discover of IoT nodes
placed in the environment, 2) the generation of semantic annotated data, 3)
semantic reasoning over streams, creating a Stream Reasoning Service and 4)
a systematic evaluation if this real-time approach is able to scale in relation
to the volume of data collected from sensors and also the complexity of the
knowledge model.

1.3
Outline

The sequence of this dissertation is organized as follows:

– Chapter 2 - Fundamentals: In this chapter we present the fundamen-
tal concepts and technologies that were used to build this work.

– Chapter 3 - Related Works: This chapter presents and discusses some
works related to Stream Reasoning.

– Chapter 4 - Stream Reasoning Service: In this chapter we introduce
our approach and implementation to deal with the Stream Reasoning for
IoT.

– Chapter 5 - A fire detection application: In this chapter we present
an IoT application, in the area of fire detection, that makes use of our
service.

DBD
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– Chapter 6 - Performance Analysis: We analyze the performance of
our Stream Reasoning Service on several different aspects.

– Chapter 7 - Discussion: We discuss the results obtained in the service
implementation and performance analysis.

– Chapter 8 - Conclusion: The work is summarized and future research
is suggested.

The research has been carried out in the scope of the ESMOCYP
cooperation project between PUC-Rio, Federal University of Maranhão and
University of Stuttgart.
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2
Fundamentals

This chapter presents the fundamental concepts and technologies used
in this dissertation. Section 2.1 introduces the concept of Complex Event
Processing, which is a fundamental part of this work. Section 2.2 discusses the
Semantic Web, from which we use RDF and OWL to represent the semantic
modeling. Then, Section 2.3 explains the concept of Description Logics and
Reasoning, which is used to obtain implicit knowledge about an ontology. In
Section 2.4, we present the concept of Stream Reasoning, a discipline that joins
sections 2.1, 2.2 and 2.3. Finally, section 2.5 presents the ContextNet, which
was responsible for all the discovery and communication with the sensors and
actuators.

2.1
Complex Event Processing

Complex Event Processing (CEP) is a technology for dynamically pro-
cessing near-real-time event data flows. It was proposed in the mid-1990s by
David Luckham (3). In contrast to the DBMS (Database Management Sys-
tem) paradigm, where data is stored for a later query, CEP stores continuous
queries and performs a data flow on them. In other words, CEP allows the
continuous analysis of an event data flow through stored queries.

Classical database systems and data warehouses are concerned with what
happened in the past. In contrast, CEP is about processing events upon their
occurrence, with the goal to detect what has just happened or what is about
to happen. For example, an event may represent a sensor reading, a stock price
change, a complied transaction, a new piece of information, a content update
made available by a Web service and so forth. In all these situations, it is
reasonable to compose simple (atomic) events into derived (complex) events,
in order to structure the course of affairs and describe more complex dynamic
matters. CEP deals with real-time recognition of such derived events, i.e., it
processes continuously arriving events with the aim of identifying occurrences
of meaningful derived events (according to predefined event patterns or event
operations).

A stream of events within a CEP engine is a sequence of events created
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Chapter 2. Fundamentals 19

and sent by producer elements (3). Events are processed according to defined
queries and the result is sent to consumer elements. In the IoT spectrum,
the producing events are the sensors that collect the raw data from the
environment, from users or from components/nodes of the communication and
computing system. The figure 2.1 represents the basic architecture of a CEP
engine.

Figure 2.1: CEP engine architecture (63)

An event producer is an entity that introduces events into a system
which implements an CEP architecture. An event producer is also known as
an event source. The producer listens to an environment that is attached to,
and provides events from that environment to an attached Event Processing
Agent (EPA). For example, an event producer can be attached to a physical
sensor so that the sensor detects a change, the producer creates an object that
represents the change and emits it as an event.

An event consumer is an entity that receives events from a system which
implements an EPA. An event consumer consumes events and uses them for
real-time analytics or further computation.

An EPA is a software module that processes events (19). An EPA takes
events as input and, by applying an CEP operation, it outputs complex events.
In (20), the authors give EPAs the following classification:

– Filter agent - filters out irrelevant events with respect to a filtering
condition. For example, filters out temperature events whose temperture
is bellow 30 celsius. The goal is to increase performance by discarting
irrelevant events.

– Pattern detection agent - detects an event pattern based on condi-
tions (e.g., temporal, spatial). For instance, an agent may detect the
temperature increasing of x% whitin a particular time.
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– Transformation agent - transforms input events according to trans-
formations operations.

Transformation agents can be classified based on the cardinality of their
inputs and outputs.

– Translate agent - takes each incoming event object and operates on
it independently of preceding or subsequent event objects. It performs a
single event in, single event out kind of operation.

– Split agent - takes a single incoming event and emits a stream of
multiple event objects.

– Aggregate event - takes a stream of incoming event objects and
produces an output event that is a function of the incoming events.

– Compose agent - takes two streams of incoming event objects and
operates on them to produce a stream of output events. This is similar
to the join operator in relational algebra, except that it joins streams of
events rather than tables of data.

CEP generated events are denominated as complex events because they
can produce another events to be processed or reinserted in the CEP machine.
The engine allows the composition of events, in which intermediate events can
be used to define other complex events at a higher level. For example, an event
called Fire Alarm can be built from the presence of high temperature and low
humidity.

In most Stream processing engines like Storm 1 and S4 2, users write
code to create the operators, wire them up in a graph and run them. Then the
engine runs the graph in parallel using many computers. In contrast, in CEP
engines, users can write queries using a higher level language such as an SQL
like query language. Also CEP has build in operators such as time windows
and temporal event sequences.

The queries are defined by a language denominated CQL (Continuous
Query Language), which is very similar to SQL (Structured Query Language)
from relational database systems. The Esper implementation defines a lan-
guage denominated EPL (Event Processing Language). To illustrate, at Listing
2.1, we have a query that looks for events in which their temperature is higher
than a certain level. This query searches for events contained in a 5-second
window, and, with these events, does a mean calculation.

1http://storm.apache.org/
2http://incubator.apache.org/projects/s4.html
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1 SELECT avg ( sensorValue )
2 FROM Event . win : time (5 sec )

Listing 2.1: CEP query example

Another very important concept in CEP are windows. Windows allow to
define a search scope on a data stream, such as an interval of time or amount
of events. Having defined a window of x seconds, it is possible to detect, for
example, if an event happens or not within a predefined interval.

There are two kinds of CEP windows, batch and time windows. Batch
windows have fixed length size and waits until a certain number of events
or time units (defined in the window) is reached. On the other hand, a time
window processes only the events that have happened between the last x units
of time.

There are several implementations of CEP available, such as Esper 3,
Microsoft StreamInsight 4 and Apache Flink 5. In this work we chose Esper for
being open-source and distributed under the GNU GPL license. Esper follows
an object-oriented pattern with dynamic data types, which allows you to easily
map an event to an object in a language such as Java, for example. In addition
Esper has an available Android implementation, called Asper (26), making
possible the use of CEP on smartphones.

Complex event processing is a key enabler in IoT settings and Smart
Cyber-physical systems (CPS) as well. Processing dense and heterogeneous
streams from various sensors and matching patterns against those streams
is a typical task in such cases (21). The majority of these techniques rely
on the fact that representing the IoT system’s state and its changes is more
efficient in the form of a data stream, instead of having a static, materialized
model. Reasoning over such stream-based models fundamentally differs from
traditional reasoning techniques and typically require the combination of model
transformations and CEP (22).

2.2
Semantic Web

The term "Semantic Web" was coined by Tim Berners-Lee (1), the
inventor of the World Wide Web and director of the World Wide Web
Consortium ("W3C"), which oversees the development of proposed Semantic
Web standards. He defines the Semantic Web as "a web of data that can
be processed directly and indirectly by machines". Some technologies used to

3http://www.espertech.com/esper/
4https://msdn.microsoft.com/pt-br/library/ee362541(v=sql.111).aspx
5https://flink.apache.org/
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describe the Semantic Web are the Resource Description Framework (RDF)
and the Web Ontology Language (OWL).

On the Semantic Web (SemWeb), computers do the browsing (and
searching, and querying, and...) for us. The SemWeb enables computers to seek
out knowledge distributed throughout the Web, mesh it, and then take action
based on it. Take an analogy: the current web is a decentralized platform for
distributed presentations, while the SemWeb is a decentralized platform for
distributed knowledge. Resource Description Framework (RDF) is the W3C
standard for encoding knowledge.

2.2.1
Resource Description Framework

RDF is a standard model for data interchange. RDF has features that
facilitate data merging even if the underlying schemas differ, and it specifically
supports the evolution of schemas over time without requiring all the data
consumers to be changed (34).

RDF extends the linking structure of the Web to use URIs to name
the relationship between things as well as the two ends of the link (this is
usually referred to as a “triple”). Using this simple model, it allows structured
and semi-structured data to be mixed, exposed, and shared across different
applications.

The foundation is breaking knowledge down into a labeled, directed
graph. Each edge in the graph represents a fact, or a relation between two
things. The edge in the example from the node vincent donofrio labeled
starred in to the node the thirteenth floor represents the fact that actor
Vincent D’Onofrio starred in the movie "The Thirteenth Floor." A fact
represented this way has three parts: a subject, a predicate, and an object.
The subject is what’s at the start of the edge, the predicate is the type of edge
(its label), and the object is what’s at the end of the edge.

The RDF metadata model is based upon the idea of making statements
about resources in the form of a subject-predicate-object expression, called
a triple in RDF terminology. The subject is the resource, the "thing" being
described. The predicate is a trait or aspect about that resource, and often
expresses a relationship between the subject and the object. The object is the
object of the relationship or value of that trait.
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2.2.2
Web Ontology Language

An ontology defines the terms used to describe and represent a domain,
that is, an ontology is a description of concepts and relationships that can be
used by people or software agents that want to share information within a
domain. For these characteristics, ontologies are one of the key technologies in
the emerging Semantic Web.

The Web Ontology Language (OWL) is a Semantic Web language
designed to represent rich and complex knowledge about things, groups of
things, and relations between things (64). OWL is a computational logic-
based language such that knowledge expressed in OWL can be exploited by
computer programs, e.g., to verify the consistency of that knowledge or to
make implicit knowledge explicit. OWL documents, known as ontologies, can
be published in the World Wide Web and may refer to or be referred from other
OWL ontologies. OWL is part of the W3C’s Semantic Web technology stack 6.
According to Harmelen and McGuinness (23), an OWL has three incremental
sub-languages:

– OWL Lite: is a sub-language of OWL DL that uses only some character-
istics of the OWL language and has more limitations than OWL DL or
OWL Full.

– OWL DL: is used by users who want maximum expressiveness, with
completeness (all conclusions are guaranteed to be computable) and
decidability (all computations will end in a finite time) computational. It
includes all constructions OWL language, but these constructs can only
be used under certain restrictions. DL stands for description logics (DL),
a research area that studies a particular piece of first-order logic.

– OWL Full: is used by users who want maximum expressiveness with no
computational guarantee. OWL Full and OWL DL support the same
set of OWL constructs, although with a little difference. While OWL
DL imposes restrictions on the use of RDF and requires disjunction of
classes, properties, individuals, and data values, OWL Full allows to mix
OWL with RDF Schema and does not require the disjunction of classes,
properties, individuals and data values. That is, a class can be both a
class and an individual.

6https://www.w3.org/OWL/
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2.2.3
SPARQL

SPARQL is the standard query language and protocol for Linked Open
Data on the web or for semantic graph databases (also called RDF triplestores)
(17). SPARQL, short for “SPARQL Protocol and RDF Query Language”,
enables users to query information from databases or any data source that
can be mapped to RDF. The SPARQL standard is designed and endorsed by
the W3C and helps users and developers focus on what they would like to know
instead of how a database is organized. In addition, a SPARQL query can also
be executed on any database that can be viewed as RDF via a middleware.
For example, a relational database can be queried with SPARQL by using a
Relational Database to RDF (RDB2RDF) mapping software (35).

RDF data can also be considered a table with three columns – the subject
column, the predicate column, and the object column. The subject in RDF is
analogous to an entity in a SQL database, where the data elements (or fields)
for a given business object are placed in multiple columns, sometimes spread
across more than one table, and identified by a unique key. In RDF, those
fields are instead represented as separate predicate/object rows sharing the
same subject, often the same unique key, with the predicate being analogous
to the column name and the object the actual data. Unlike relational databases,
the object column is heterogeneous: the per-cell data type is usually implied
(or specified in the ontology) by the predicate value. Also unlike SQL, RDF
can have multiple entries per predicate; for instance, one could have multiple
"child" entries for a single "person", and can return collections of such objects,
like "children".

Thus, SPARQL provides a set of analytic query operations such as
JOIN, SORT, AGGREGATE for data whose schema is intrinsically part of
the data rather than requiring a separate schema definition. However, schema
information (the ontology) is often provided externally, to allow joining of
different datasets. In addition, SPARQL provides specific graph traversal
syntax for data that can be thought of as a graph.

The example in Listing 2.2 demonstrates a simple query that leverages
the ontology definition foaf ("friend of a friend"). Specifically, the following
query returns names and emails of every person in the dataset:

This query joins together all of the triples with a matching subject, where
the type predicate, "a", is a person (foaf:Person), and the person has one or
more names (foaf:name) and mailboxes (foaf:mbox). The result of the join is
a set of rows – ?name and ?email.
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1 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
2 SELECT ?name
3 ? emai l
4 WHERE
5 {
6 ? person a f o a f : Person .
7 ? person f o a f : name ?name .
8 ? person f o a f :mbox ? emai l .
9 }

Listing 2.2: SPARQL query example

Forging data with URIs allows data to be unambiguously referenced
across applications and overcomes the constraints posed by local search.
Consequently, additional application-specific APIs can be developed and can
refer to that data.

These design choices – enabling queries over distributed sources on non-
uniform data – are not accidental. SPARQL is designed to enable Linked
Data for the Semantic Web. Its goal is to enrich data by linking it to other
global semantic resources, thus sharing, merging and reusing data in a more
meaningful way.

2.3
Description Logics and Reasoning

Description logics (DL) (49) are a family of formal knowledge represen-
tation languages. Many DLs are more expressive than propositional logic but
less expressive than first-order logic. In contrast to the latter, the core reason-
ing problems for DLs are (usually) decidable. There are general (59), spatial
(52, 53, 54), temporal (55, 56, 60), spatio-temporal (51, 61, 62), and fuzzy de-
scriptions logics (57, 58), and each description logic features a different balance
between DL expressivity and reasoning complexity by supporting different sets
of mathematical constructors (65).

Knowledge representation system based on DLs consists of two compo-
nents - T-Box and A-Box. The T-Box describes the basic types of concepts
(i.e. terminology), i.e., the ontology in the form of concepts and roles defini-
tions (e.g. Person, Sensor), while the A-Box is an assertion component — a
fact associated with a terminological vocabulary within a knowledge base (e.g.
james, sensor1). Concepts describe sets of individuals, roles describe relations
between individuals. Both can be represented using OWL and RDF formats
(50).

A reasoning engine is a piece of software able to infer logical consequences
from a set of asserted facts or axioms. Every reasoner works with some set of
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axioms and an axiom describes some logical fact. The capabilities of a reasoner
depend on the expressiveness of the kind of logic that the reasoner uses and
the axioms provided for the reasoner and logic to work against.

Reasoners are sometimes referred to as inference engines because while,
as stated above, reasoners work with asserted facts and can also use the rule
of logic to deduce theorems. Theorems are indirectly deduced facts. Theorems
are deductions which can be proven by constructing a chain of reasoning by
applying axioms. Basically, a reasoner and an inference engine are the same
thing 7. The inference rules are commonly specified by means of an ontology
language, like OWL, and often a DL language. Many reasoners use first-order
predicate logic to perform reasoning; inference commonly proceeds by forward
chaining and backward chaining (43).

Most of the IoT systems lack of semantic representation of their environ-
ment, nodes/devices, and users, that are directly related to the probed sensor
data and the issued activation commands. By adding a semantic model to the
IoT application and applying reasoning techniques, we can derive new facts
based on the current state of the system. For example, consider that a person is
in the range of a proximity sensor and another person is also near to the same
sensor. By adding a semantic annotation that this same sensor is connected
to a room and put these facts in a reasoning engine, we can infer a logical
consequence that the two people are near each other or even they are in the
same room.

2.4
Stream Reasoning

Stream reasoning is defined as the capacity of generating a stream of
conclusions by means of reasoning over terminological or assertional axioms (4).
Stream reasoning combines reasoning and stream processing techniques. Such a
combination enables handling data continuously produced from a large amount
of sources, processing several streams on-the-fly, and implementing real-time
services. In general, stream reasoning meets the requirements of processing
dynamic, heterogeneous, and scalable data for IoT (5). A stream reasoning
system must cope with several things (16):

– Heterogeneous formats and access protocols: Streams can appear
in different formats, from text streams from Twitter8 to relation data over
binary protocols, such as data streams originated by sensor networks.

7http://xbrl.squarespace.com/journal/2015/7/30/understanding-the-utility-of-a-
reasoner-or-inference-engine.html

8www.twitter.com
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– Semantic Modeling: A stream is observed through a window, which
can be a span in time or a number of elements. By their very nature,
streams of data can be inspected only while they flow. If information is
not captured and immediately summarized (aggregated, for example),
then information reconstruction may be impossible. Given that aggrega-
tion can perform lossy data compression, stream reasoning will require
methods to determine which inferences are possible even after summa-
rization and which must be performed before summarization.

Data streams are naturally time-stamped, but the time validity of
static information sources is normally not stated. Thus, merging data
streams with static information can create hybrid data that must be
carefully managed. Also needed are vocabularies to state future validity
of information.

– Scale: Scale is an issue for stream reasoning due both to the high
throughput of incoming data from sensors and to the need to link stream-
ing data with large static knowledge bases. But for many applications,
a limited amount of streaming data and knowledge are sufficient for a
specific stream-reasoning task. In these cases, the streaming data should
be sampled, abstracted, and approximated.

– Continous Processing: Stream reasoning requires continuous process-
ing, because queries, once registered, remain continuously active while
data flows into the stream-reasoning system.

– Real-Time Constraints: Stream-reasoning systems must provide an-
swers, of knowledge-based queries, before they become useless.

Stream reasoning is a natural advance of stream processing. The
most advanced stream processing systems were developed in the context of
Data Stream Management Systems (DSMSs) and Complex Event Processors
(CEPs). DSMSs transform data streams in time-stamped relations and pro-
cess them with well known techniques such as relational algebras (24). DSMSs
allow the construction of systems able to compute aggregations and statis-
tics (e.g. averages and Pearson correlation) over streaming data. On the other
hand, Complex Event Processing Systems (CEPs) look for patterns in the
streams to identify when complex events occur (3) and focus on the derivation
of (complex) events from the inbound stream of data with patterns of events
(e.g., sequences). CEP, DSMS, Knowledge Representation (KR) and SemWeb
supplied the ingredients to Stream Reasoning (16).

Extending DSMS and CEP to do reasoning tasks is one of the first
issues researched in stream reasoning (8). In SemWeb this was addressed by
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adding the reasoning techniques to SPARQL (6). Entailment regimes brought
an inference process in SPARQL (7). They affect the basic graph pattern
evaluation by extending the matching definition to take the edges and the
nodes that can be logically inferred from those explicitly stated into account.

The stream reasoning reference model described in (8) and illustrated
in Figure 2.2, shows us that it is possible to take the inference at different
moments. Inference can take place before or after the window (giving, respec-
tively, stream and window-level entailments), or still after that the window
content is merged (giving graph-level entailment).

Figure 2.2: Stream Reasoning Reference Model (8)

The window operators create a time-dependent finite views over the
streams, namely windows, over which processors perform the tasks. Window
contains a portion of the input streams, i.e. a set of timestamped data items,
that represents the data needed to solve the task at the current time instant.
Several types of window operators exist, defined in CEP and DSMS research
(25).

In the graph-level entailment the inference process occurs after the
window merges. That means a window captures a portion of the stream and
a merge operation creates a collection from the stream item contents. This
enables the execution of typical DSMS-like queries, e.g. aggregations and filters,
but make not possible to evaluate CEP-like queries, since temporal annotations
are lost and it is not possible to verify if temporal constraints are satisfied.

CEP performs the processing over time annotated data, since engines
use them to determine if temporal constraints defined in the event patterns
are satisfied. The stream time mapped behaviour is modelled through landmark
windows. A initial time instant is fixed and the window expands over time to
capture portions of the stream.
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DSMSs perform operations that do not require to process time annota-
tions after that windows have been computed, like aggregations and filters.
The window merge is an operation that moves from temporal data to atempo-
ral one. The sliding window operator creates a window with a fixed width of
units or data items. The operator slides the window over time, capturing the
most recent part of the stream.

The window-level entailment applies the inference process on the non-
merged stream items captured by the window operators declared in the query.
Differently from graph-level entailment, which works on graphs (ontologies),
the window-level entailment applies the inference process to a window, i.e. a
finite sequence of time-stamped data items. This type of entailment overcomes
the main drawback of the window-level entailment that is the process uses only
a subset of the information available in the stream: it considers the data item
contents but not the relative temporal annotations.

Stream-level entailment consideres a larger portion of the stream than the
one defined by the user through window operator. In this case the reasoning is
made on the top of a landmark window, which is a window that captures the
stream from an initial time instant (e.g. when the source starts to supply the
data when the engine starts to monitor the stream) up to now.

Stream reasoning is one approach for querying and reasoning over contin-
uous distributed data streams. With a streaming query engine, simultaneous
queries can be passed to a reasoner as an input. Thus, new knowledge can
be inferred and RDF graphs can be updated on-the-fly (5). Stream reasoning
techniques over a time-based data model where data items can be annotated
with time-stamps, either occurrence time or validity time period. Defining a
suitable time processing model is probably one of the main contributions of
stream reasoning technologies to IoT.

2.5
ContextNet

ContextNet is a scalable middleware for the Internet of Mobile Things
(27). It is composed of a) SDDL, a suite of cloud-based services for communi-
cation and processing, interacting through DDS, and b) Mobile-Hub, a smart-
phone based component that discovers, connect with and acts as an internet
proxy for Bluetooth-enabled smart objects. ContextNet also provides CEP en-
gines for sensor data stream processing both in SDDL and Mobile-Hub, on
smartphones, at the IoT edges.
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2.5.1
SDDL

The most basic layer of the ContextNet architecture is its communication
middleware, named Scalable Data Distribution Layer (SDDL), which connects
stationary nodes of a wired “core” network with all the mobile nodes. SDDL
employs two communication protocols: DDS’s (Distribution Service for Real-
Time Systems) RTPS (37) for the wired communication within the ContextNet
core network, and the Reliable UDP protocol (RUDP) for the inbound and
outbound communication between the core network and the mobile nodes.

The DDS 9 is a standard from the OMG, which specifies a high perfor-
mance, robust and scalable middleware architecture for real-time data distri-
bution, with Quality of Service (QoS) contracts between producers and con-
sumers of data (e.g. best effort or reliable communication, data persistency
and several other message delivery optimizations, etc.).

The Reliable UDP (RUDP) 10 protocol is the basis for the Gateway-
mobile node interaction. It implements some TCP functionality on the top
of UDP, and has been customized to handle intermittent connectivity, Fire-
wall/NAT traversal and robustness to changes of IP addresses and network
interfaces.

As part of the core network based on DDS, two types of SDDL nodes
have distinguished roles: a) the Gateway (GW) that defines a unique Point
of Attachment (PoA), for connection with the mobile nodes and b) The PoA-
Manager is responsible for two things: to periodically distribute PoA-List to
the mobile nodes, and to eventually request some mobile nodes to switch to
a new Gateway/PoA. The PoA-List is always a subset of the group of all
available Gateways in the SDDL, and the order in the list is relevant, i.e. the
first element points to the preferred Gateway/PoA.

In the SDDL, every mobile node and every Gateway have a unique
identifier (ID). While RUDP messages carry only the mobile node’s ID, the
ID of the GW currently serving the mobile node is automatically attached
to any message (or location update) entering the SDDL core network. By
this, any corresponding node can learn which is the mobile’s current GW, and
most messages addressed to a mobile node will thus carry also a Gateway ID,
allowing them to be directly routed to the corresponding Gateway. However, if
the mobile node becomes suddenly unreachable/disconnected, its most recent
Gateway, will notify this to all other nodes in the SDDL core network, by
which the Gateway ID will be omitted in future messages to the mobile node.

9http://portals.omg.org/dds/
10https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00
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However, even in this case where the current Gateway of a mobile node is not
specified, messages to the mobile node will be delivered, because they will be
received by all Gateways.

2.5.2
Mobile-Hub

The concept of the Mobile Hub (M-Hub) (28) is independent of the pro-
tocol/technology used for Internet connectivity and communication with the
cloud. The current implementation is based on the utilization of SDDL, which
connects mobile nodes with IP-based wireless data connection to stationary
nodes in a wired core network, the SDDL Core. The mobile nodes become
the gateways (hubs) of communication for providing Internet connectivity to
Smart Objects, as shown in Figure 2.3.

Figure 2.3: Example of M-OBJs sensing using the SDDL and M-Hubs

As a key feature, M-HUB enable us to enrich the Mobile Objects (M-
OBJ’s) data streams with contextual information, obtained from its own
sensors, such as current geographic position, temperature or humidity. M-
Hub, which is represented by Figure 2.4, is multi-threaded and consists of
the following services and managers:

– Location Service - is responsible for sampling the M-Hub’s current
position and attaching it to a message that is sent by the M-Hub to the
Gateway.

– S2PA Service - uses the S2PA library (Short-Range Sensor, Presence
and Actuation API) and is responsible for periodically doing scanDevies
in all the supported WPAN technologies, registering discovered the
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M-OBJ’s IDs and theie capabilities in the SensServie Registry, and
transcoding sensor data and commands from the specific SF protocol
format to Java objects to be transmitted to the GW, and vice-versa.

– Connection Service - manages a msg buffer of ready-to-send messages.

– MEPA Service (29) - enables a CEP engine in the M-Hub. The MEPA
Service is subscribed to all the messages that are sent from the S2PA
and Connection services, since the former collects the data from the M-
OBJs, and the latter receives commands from the cloud to modify the
behavior of the MEPA Service itself (e.g. deploy a new CEP rule). Every
time an event pattern is detected (which leads to the generation of a new
complex event), it will be published to any interested component that
could be the Connection service, or another rule in the MEPA Service.

– Energy Manager - controls the device’s current energy level (LOW,
MED, HIGH). From time to time sample’s the device’s battery level and
checks if it is connected to a power source.

– Handover Manager - interacts with other M-Hubs (detected nearby) so
as to proactively share information and parameters about M-OBJs, and
ultimately swap responsibility for handing-out or handling-in M-OBJs,
with these M-Hubs.

Figure 2.4: M-Hub architecture
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2.6
Summary

This chapter presented the fundamental topics that underprints this
dissertation, the Complex Event Processing (CEP), Semantic Web and its
related technologies, Description Logics/Reasoning, Stream Reasoning and,
finally, the ContextNet middleware.

First we presented the Complex Event Processing concept, a real-time
data stream processing paradigm. CEP provides logical operators, primitives
and time windows to react and process event streams in real-time. These
concepts are used to specify continuous queries, that analyze, process and
produces higher level events. Each query is executed by an Event Processing
Agent (EPA), which continuously receives incoming events and outputs derived
facts that are delivered to the event consumers.

In sequence, the Semantic Web and its related technologies brought the
opportunity the structure the web data and relate them to semantic models.
Several frameworks and languages were proposed. The Resource Description
Framework (RDF) defines a general method for the conceptual description or
information modeling based on triples, the Web Ontology Language (OWL),
which is a language to define and instantiate ontologies and SPARQL, which
is a query language that is able to retrive and manipulate data storage in RDF
format.

The Description Logics language, together with reasoning techniques,
brings the possibility to infer logical facts from a set of asserted facts or axioms.
Having a semantically structured data based on an ontology, we can use the
Reasoning Engines to discover new facts that are implicit to the model and
make them explicit, thus generating facts of higher level complexity.

The Stream Reasoning concept is a combination of technologies and
techniques presented by the Semantic Web and CEP. The Semantic Web
works on a static knowledge that rarely changes. CEP, in turn, processes
heterogeneous low level data in real-time, applying operators and pattern rules
that generates other types of events. Stream Reasoning was born to mitigate
the limitations of these two parts, enabling real-time processing of semantic
models and continuously inferring new facts.

Finally, we presented the ContextNet middleware, responsible for the
discovery and processing of IoT M-OBJs data. In addition, ContextNet also
enables data processing in the cloud through the SDDL Core.
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3
Related Work

A market overview on real-time complex event processing systems and
tools is provided in (9). Some of the existing CEP systems can integrate and
access external reference data sources. However, these systems do not provide
any inference on external KBs and do not consider reasoning on relationships of
events to other non-event concepts. In (18, 19), the authors propose a semantic
model for for data stream processing and real-time reasoning based on the
concepts of Semantic Stream and Fact Stream as natural extension of Complex
Event Processing and RDF.

Some stream reasoning languages and processing approaches are also
proposed. Stream reasoning approaches like (10) are proposed for reasoning
on RDF stream. These engines typically make use of extended SPARQL-
based query languages over continuous data streams. Continuous SPARQL
(C-SPARQL) language (11, 12), CQELS-QL (13) and SPARQLstream (38).
Such languages share the idea of extending SPARQL with sliding windows. C-
SPARQL extends the FROM clause in order to support sliding windows, while
CQELS-QL pushes sliding windows in the GRAPH clause. morph-stream,
an implementation of SPARQLstream, adopts an OBDA-like approach: it
processes relational streams by transforming the query from SPARQLstream
to one to be registered to a DSMS engine such as Esper. Other approaches are
also proposed, like STARQL (39), IMaRs (40), Streaming Knowledge Bases
(41), Sparkwave (42), INSTANTS (44) and The Streaming Linked Data (45).

C-SPARQL (Continuous SPARQL) is one of the first contributions
in the area of stream reasoning. It is a language for continuous queries
over streams of RDF data. C-SPARQL extends SPARQL for querying
RDF streams. An RDF stream is defined as an ordered sequence of pairs,
where each pair is constituted by an RDF triple and its timestamp t: <

Subjecti, P redicatei, Objecti >

C-SPARQL supports timestamped RDF triples, continuous queries over
RDF streams, and integration with both background data and streams. In C-
SPARQL, a time window always selects the most recent items from a stream,
and can be either count-based (a fixed number of items) or time-based (a
variable number of items occurring in a fixed time interval).
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STARQL (39) proposes a framework to access and query heterogeneous
sensor data through ontologies. STARQL is structured as a two-layer frame-
work, composed of an Ontology Language, to model the data and its schema,
and an Embedded Constraint Language, to compose the queries. STARQL
offers window operators, clauses to express event matching and a layer to inte-
grate static and streaming data. STARQL uses a sequence of time-annotated
ontologies to make inference taking into account the temporal annotations of
the streaming data.

ETALIS (Event TrAnsaction Logic Inference System) (14) is a CEP-
based stream reasoning engine. This query model processes streams where
data items are annotated with two timestamps (i.e., time intervals). ETALIS
defines two declarative rule-based languages, ETALIS Language for Events
(ELE) and Event Processing SPARQL (EP-SPARQL). The former language is
more expressive than the latter, even if it is less usable. A common point is that
complex events are derived from simpler events using deductive prolog rules.
EP-SPARQL supports backward temporal reasoning over RDFS, continuously
evaluating the query over the whole stream received by the engine. Similar to
other solutions, EP-SPARQL also provides windowing operators for isolating
portions of the streams. However, EP-SPARQL is a solution that inherits
the language constructs and processing model of CEP systems. EP-SPARQL
focuses more on detection of RDF triples in a specific temporal order. Another
important difference of EPSPARQL with respect to other languages such as
C-SPARQL, is in the data model and consists in the way time is associated to
RDF triples. While C-SPARQL associates one single timestamp to each triple.

IMaRS (Incremental Materialization for RDF Streams) is developed on
top of C-SPARQL and it focuses on materialization (40). IMaRS utilizes an
incremental reasoning approach and the specific data and processing models
of C-SPARQL to compute the expiration time of streaming RDF triples based
on the windows of deployed queries. By annotating each RDF triple with its
expiration time and utilizing a hash table to index triples by their expiration
time, IMaRS reduces the amount of computation that needs to be performed
to update the results of reasoning. However, IMaRS relies on the strong
assumption that the expiration time of each triple can be pre-computed, which
limits its applicability.

Streaming Knowledge Bases is built on top of the TelegraphCQ
DSMS (66) and provides reasoning using a subset of RDFS and OWL over
streaming RDF triples (41). This approach allows to pre-compute and store
inferences to reduce the overall computational effort, and consequently, the
delay, during the evaluation of the queries.
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Sparkwave (42) is a system designed for high performance and on-the-
fly reasoning over RDF data streams. Sparkwave poses several limitations to
the size of the background knowledge, which has to fit into the main memory
of a single machine. Moreover, it operates with a pre-loaded RDF schema and
provides limited reasoning functionality. Sparkwave implements a variant of the
RETE algorithm (43), in which a preprocessing phase is used to materialize
derived information before performing pattern matching. The portions of data
considered during the processing are isolated through traditional windowing
mechanisms, similar to those used by DSMSs and C-SPARQL.

INSTANS, The Incremental eNgine for STANding Sparql (44), takes
a different perspective on RDF Stream Processing. Users model their task
as multiple interconnected SPARQL 1.1 queries and rules. Next, INSTANS
performs continuous evaluation of incoming RDF data against the compiled
set of queries, storing intermediate results into a Rete-like structure. When
all the conditions are matched, the result is instantly supplied. In this sense,
INSTANS does not require continuous extensions to RDF or SPARQL.

The Streaming Linked Data (SLD) framework (45) wraps the C-
SPARQL engine and it adds new features. SLD offers a set of adapters that
transcode relational data streams in streams of RDF graphs (e.g. a stream
of micro-posts as an RDF stream using the SIOC vocabulary (46), or a
stream of weather sensor observation using the Semantic Sensor Network
vocabulary (47)), a publish-subscribe bus to internally and externally exchange
RDF streams (following the Streaming Linked Data Format (48)), facilities to
record and replay RDF streams, and extendible layer to plug components that
decorate RDF streams (e.g. adding sentiment annotations to micro-posts).

3.1
Summary

Stream reasoning enables associating reasoning tasks to time windows de-
scribing data validity and therefore producing time-varying inferences. Stream
reasoning introduces new query and reasoning models, based on time model
and continuous queries, enable on-the-fly processing of streaming data for IoT.
We notice that stream processing technologies for IoT are still in the beginning.
Research on stream reasoning has mainly focused on query processing.

Most of the systems proposed for Stream Reasoning are based on the
concepts that we saw in the previous chapter, Semantic Web with the use
of RDF, OWL and SPARQL together with CEP. In addition, these engines
usually provide a SPARQL-based processing language, making some extensions
to enable continuous processing over data streams.
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However, the current developed solutions do not fulfill requirements of
IoT. Querying, reasoning and handling uncertainties on big IoT data streams
is still a challenge. Which data structures to adopt, and how to better exploit
the limited size of main memory, how to reduce the expensive communication
between reasoning nodes are challenges which remain unsolved.
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Stream Reasoning Service

In this chapter, we present the architecture and implementation of the
Stream Reasoning Service. This approach involves the use of the M-Hub,
where CEP rules can be written and that will be executed in the Hub-serving
devices, producing RDF triples. As well as C-SPARQL, which is responsible
for executing continuous queries on RDF streams.

4.1
Conceptual Architecture

The architecture and its implementation must be able to handle two
functional requirements, 1) the discovery of M-OBJs that are placed in the
environment, 2) generate a real-time higher level contextualized information
based on the data collected from the environment in which the M-OBJs are.
Also, the implemented service must cope with some non-functional require-
ments: 1) Scaling: The service must have a high throughput of incoming data
from sensors and to the need to link streaming data with large static knowl-
edge bases; 2) Continuous Processing: Since IoT data is continuously gener-
ated, there must be a continuous evaluation of this data; 3) Real-Time: IoT
systems must have a rapid reaction to the environment changes. To achieve
these points, the service’s architecture will define two levels of transformation,
where the first level transforms the event/stream into a stream of RDF triples
(fact units) using CEP. The second level takes these facts, and runs a con-
tinuous query in a stream reasoning system that can deduce new facts. The
architecture’s overview is illustrated in Figure 4.1.

We chose C-SPARQL for the continuous query module because it sup-
ports the processing of RDF triples streams in a SPARQL-like language, in-
cludes the possibility to merge static A-Box and dynamic RDF data and sup-
ports integration with ontologies described in RDF, RDFS or OWL. Moreover,
it is open source, easily extendable and well documented. Its source code can
be downloaded at Github 1.

Initially, the first level of processing receives a) an unique identifier
(UUID) of the smart Thing’s sensor and b) the related raw data that reveals

1https://github.com/streamreasoning/CSPARQL-engine
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Figure 4.1: Stream Reasoning Service Conceptual Architecture

if the thing is subject to some action, experiencing a state change or any
other transformation. For example, if the Thing is moving, the CEP engine
will receive the UUID and the ever changing values of geographic coordinates
(latitude, longitude). Otherwise, when monitoring temperature sensors, it will
receive the UUID of the sensor and the temperature value. Then, by matching
a sequence of data against some pattern in a pre-defined time window, the
CEP layer is able to produce a semantically annotated stream of triples (facts)
like <UUID, has-type, HighTemperature>.

The second level of processing takes as input the facts generated by the
first level and runs a continuous stream reasoning engine (e.g. C-SPARQL).
The engine uses a Knowledge Base (KB) which provides a background knowl-
edge (conceptual and assertional, T-Box and A-Box of an ontology) about the
events and other resources of the application domain, such as entities, rela-
tions, states. This means that events can be detected based on reasoning on
their type hierarchy and their relationship to other objects in the applica-
tion domain. For example, we have the fact that the temperature sensor with
UUID(x) measured a high temperature value and, as we mentioned before, the
first level of processing generates the triple <UUID, has-type, HighTempera-
ture>. Adding the background knowledge that the sensor is connected – i.e.
being worn by a person (Bill) and this person is currently a patient, and, by
doing a ontology reasoning, leads to the conclusion that Bill has high temper-
ature. Also, we can extend this by adding a rule that high temperature is a
sub class of fever, so the reasoner could infer that the patient Bill has fever.

One of the benefits of using background knowledge with complex event
processing is that we can have a higher expressiveness than if just using
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CEP. Expressiveness means that an event processing system can now precisely
express more complex events or states of entities, which are only revealed by
combining the witnessed events with the background knowledge, the knowledge
of the actors, the environment and the system. Returning to our example,
adding another relationship to the KB that the temperature sensor belongs
to a room numbered 123 and remembering that the sensor is being worn by
Bill, it would be possible to precisely infer and inform a nurse or a doctor that
patient Bill in room 123 has fever.

4.2
Implementation

In this section we describe the Stream Reasoning Service for the IoT. The
service consists of three parts, 1) CEP layer provided by the MEPA Service
in M-Hub, 2) SDDL Core Application (SCA), which is the backstage service
implemented and hosted in a SDDL Core node, responsible for integrating
the two processing layers and 3) A reasoning module, which makes use of
C-SPARQL.

4.2.1
Complex Event Processing using M-Hub

The first level, where we have the transformation of raw sensor data by
the CEP rules, can be achieved with the use of the M-Hub, since the M-Hub is
both the direct acceptor of sensor data from (embedded or Bluetooth) sensors,
and the element capable of making CEP computations on the stream of raw
sensor data.

Once the M-Hub is connected with a gateway, it will start collecting
information from the M-OBJs. Such information is in JSON2 format and is
of three types: LocationData that samples the current location of the M-Hub,
SensorData which is the raw sensor values obtained from the M-OBJs as well
the EventData, which describes events obtained from processing over the sensor
data. Some examples are illustrated in Listing 4.1.

1 {
2 " tag " : " LocationData " ,
3 " uuid " : " b06de58d−6a20−44f9−8cd4−83f074c2edd6 " , // M−Hub UUID
4 " l a t i t u d e " : −22.98137128 ,
5 " l ong i tude " : −43.23421961 ,
6 " bat te ry " : 50 ,
7 " charg ing " : f a l s e ,
8 " timestamp " : 1442169467

2https://www.json.org/
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9 }
10

11 {
12 " tag " : " SensorData " ,
13 " uuid " : " b06de58d−6a20−44f9−8cd4−83f074c2edd6 " , // M−Hub UUID
14 " source " : " 00000000−0000−0000−0001−bc6a29aece f5 " , // M−OBJ UUID
15 " a c t i on " : " found | connected | d i s connected | read " ,
16 " s i g n a l " : −48,
17 " sensor_name " : " Temperature " ,
18 " sensor_value " : [ 8 0 . 0 , 8 3 . 0 ] ,
19 " l a t i t u d e " : −22.98137128 ,
20 " l ong i tude " : −43.23421961 ,
21 " timestamp " : 1442169467
22 }
23

24 {
25 " tag " : " EventData " ,
26 " uuid " : " b06de58d−6a20−44f9−8cd4−83f074c2edd6 " , // M−Hub UUID
27 " l a b e l " : "AVGTemp" ,
28 " data " : { " va lue " : 80 .0} ,
29 " l a t i t u d e " : −22.98137128 ,
30 " l ong i tude " : −43.23421961 ,
31 " timestamp " : 1442169467
32 }

Listing 4.1: M-Hub messages

To obtain the data from the applied CEP rules, the SCA must send a
MEPAQuery to the M-Hub. Listing 4.2 shows the JSON message that SCA
sends to M-Hub.

1 {
2 "MEPAQuery" : {
3 " type " : " add | remove | s t a r t | stop | c l e a r | get " ,
4 " l a b e l " : "AVGTemp" ,
5 " ob j e c t " : " r u l e | event " ,
6 " r u l e " : "SELECT avg ( sensorValue [ 1 ] ) as va lue FROM
7 SensorData ( sensorName=’Temperature ’ )
8 . win : time_batch (10 sec ) " ,
9 " t a r g e t " : " l o c a l | g l oba l "

10 }
11 }

Listing 4.2: MEPAQuery

The rule field in the JSON message from Listing 4.2 represents the CEP
rule that the M-Hub will apply to the sensors’ data. The rule indicates that,
for a time window of 10 seconds, it should compute the average temperature
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1 {
2 " tag " : " EventData " ,
3 " uuid " : " b06de58d−6a20−44f9−8cd4−83f074c2edd6 " , // M−Hub UUID
4 " l a b e l " : "AVGTemp" ,
5 " data " : { " va lue " : 80 .0} ,
6 " l a t i t u d e " : −22.98137128 ,
7 " l ong i tude " : −43.23421961 ,
8 " timestamp " : 1442169467
9 }

Listing 4.3: EventData

readings. Listing 4.3 shows the M-Hub results of matching the rule pattern,
shown in Listing 4.2, with the stream of sensor data.

Figure 4.2 illustrates the flow of messages in our first processing level,
considering only the M-Hub and the SCA integration. In message {1}, SCA
sends the MEPAQuery. Message {2} is the sensors’ raw data that M-Hub
receives. In {3} we have the sensors’ data with the applied CEP rules {1}
that are sent back to the SCA, that is listening for M-Hub messages. Once the
Message 3 is received by the SCA, it will be transformed into a RDF triple.

Figure 4.2: M-Hub and SCA integration

The RDF triple is related to the data coming from the EventData
response and the underlying ontology. Let’s consider an example that we are
monitoring the temperature of a room and this room has a temperature sensor,
which is connected with M-Hub. To establish the relation between each M-Hub
and the room, we will use an external service, which we will call Relations
DB. It’s important to point out that the service’s developer must know the
ontology in order to translate the EventData message to a RDF triple. So,
from the uuid key in the EventData message, which is originally the M-Hub’s
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UUID, we get the Room-UUID, representing our RDF subject. Also, we have
an implicit mapping in the SCA that tells that temperature 80.0 means a very
high temperature, resulting in the VeryHigh RDF object. Finally, we can map
that AVGTemp represents the has-temperature predicate. As a consequence
of this 3 points, we can generate a triple <Room-UUID, has-temperature,
VeryHigh>. Figure 4.3 illustrates the process.

Figure 4.3: Converting EventData to RDF

4.2.2
Reasoning using C-SPARQL

As stated earlier, the second level of processing takes the RDF triples
generated so far and performs a C-SPARQL query. The C-SPARQL reasoning
engine has access to both A-Box and T-Box data, and can deduce new
facts based on the ontology and the data. For external access to the Stream
Reasoning Service, we have defined a Restful API which will be explained in
sequence.

To be able to make inferences based on an ontology and their individuals,
we first need to define an A-Box, a T-Box and a C-SPARQL query in the
Reasoning Service. The Stream Reasoning engine (C-SPARQL) is responsible
for integrating these three points. In addition, in order to send the reasoning
result to the consumers (e.g. users of a dashboard, mobile users or an actuator
device), we need to know their UUIDs. With these four fundamental pieces
of information, we defined an endpoint called register, which receives the A-
Box, T-Box, C-SPARQL query and the clients’ UUIds, thus making it possible
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to search for inferred facts and send them to consumers. The registration
phase should happen in the SCA start up. Upon initiating, the SCA calls
the endpoint passing the required parameters. After the registration, the SCA
can start sending RDF triples to the service. For this, we defined another
endpoint, called stream, which receives as attributes a RDF triple, containing
the subject, predicate and object. This phase occurs when the SCA receives
the EventData message from the M-Hub and transforms it into a RDF triple.
After this transformation, the endpoint is continuously called and the triples
are inserted into the Reasoning Service. Figure 4.4 illustrates the process.

Figure 4.4: Reasoning Service API workflow

Returning to the example of the previous section where the CEP service
generated the triple with the format <Room-UUID, has-temperature, Very-
High>, assuming the following T-Box described in Listing 4.4 and the A-Box
in Listing 4.5.

1 <!−− http ://www. streamreason ing . com/OnFire −−>
2

3 <owl : Class rd f : about=" http ://www. streamreason ing . com/OnFire ">
4 <owl : equ iva l entC la s s>
5 <owl : Class>
6 <owl : i n t e r s e c t i o nO f rd f : parseType=" Co l l e c t i on ">
7 <rd f : Des c r ip t i on rd f : about=" http ://www.

st reamreason ing . com/Room"/>
8 <owl : Re s t r i c t i on>
9 <owl : onProperty rd f : r e s ou r c e=" http ://www.

st reamreason ing . com/has−temperature "/>
10 <owl : hasValue rd f : r e s ou r c e=" http ://www.

st reamreason ing . com/#VeryHigh "/>
11 </owl : Re s t r i c t i on>
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12 </owl : i n t e r s e c t i onO f >
13 </owl : Class>
14 </owl : equ iva l entC la s s>
15 </owl : Class>
16

17 <!−− http ://www. streamreason ing . com/Room −−>
18

19 <owl : Class rd f : about=" http ://www. streamreason ing . com/Room"/>
20

21 <!−− http ://www. streamreason ing . com/Temperature −−>
22

23 <owl : Class rd f : about=" http ://www. streamreason ing . com/
Temperature "/>

Listing 4.4: T-Box definition

1 <!−− http ://www. streamreason ing . com/#VeryHigh −−>
2

3 <owl : NamedIndividual rd f : about=" http ://www. streamreason ing . com
/#VeryHigh ">

4 <rd f : type rd f : r e s ou r c e=" http ://www. streamreason ing . com/
Temperature "/>

5 </owl : NamedIndividual>
6

7 <!−− http ://www. streamreason ing . com/#room−1 −−>
8

9 <owl : NamedIndividual rd f : about=" http ://www. streamreason ing . com
/#room−1">

10 <rd f : type rd f : r e s ou r c e=" http ://www. streamreason ing . com/
Room"/>

11 <has−temperature rd f : r e s ou r c e=" http ://www. st reamreason ing .
com/#VeryHigh "/>

12 </owl : NamedIndividual>
13 </rd f :RDF>

Listing 4.5: A-Box definition

The T-Box, Listing 4.4, describes two classes, Room and Temperature.
The individual for Room is room-1 and for Temperature is VeryHigh, both
are defined in the A-Box, Listing 4.5. Additionally we have the OnFire
axiom, which is derived when there is a triple with the <Room-UUID, has-
temperature, VeryHigh> format. This axiom represents a room on fire. Using
C-SPARQL, we can assemble a query that repeatedly searchs for rooms that
may be on fire. The query described in Listing 4.6.

The REGISTER QUERY clause on line 1 registers the continuous query
named "onFireRoom" at the C-SPARQL engine. The query considers a sliding
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1 REGISTER QUERY onFireRoom AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ?room a : OnFire
9 } ;

Listing 4.6: C-SPARQL Query

window of 1 second that slides 1 second (line 5) and receives the RDF stream
(clause FROM STREAM at line 5). The clause FROM at line 6 opens the RDF
graph containing the static data (A-Box), which considers the individuals. The
line 8 matches the room which is a OnFire room. Finally, line 4 constructs the
RDF triples that are streamed out for down stream analysis.

Let’s assume that the first level (CEP) continuously generates the triple
<room-1, has-temperature, VeryHigh> and this triple is inserted by the
endpoint stream into the continuous query engine. The query, described above,
is executed in a time window of 1 second, which means that we consider only
the last 1 second streamed data. So, every 1 second the reasoning engine takes a
snapshot of the window, combines the window data with the static A-Box and
the T-Box, and performs the reasoning process. When searching for rooms that
may be on fire (e.g. the room has VeryHigh temperature), due to the streamed
data, the A-Box and the T-Box, the query must generate the result room-1,
since the SELECT clause is projecting the room that may be on fire.

4.3
Summary

In this chapter we have described an architecture for real-time stream
processing using Stream Reasoning techniques in the scope of IoT, followed by
its implementation.

As we have seen, the architecture consists of two processing levels, where
the first level is responsible for the data pre-processing using CEP, which is
possible by the use of the M-Hub. At the second level, we have the Stream
Reasoning service with a semantic model defined by the T-Box, the A-Box
and the RDF stream from the first level. The Reasoning Service outputs a
new stream of facts that are deduced. The SDDL Core Application (SCA)
works as a controller, responsible for activating the two levels and working as
a translator, where an event originating from the M-Hub is translated into a
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RDF triple, based on the model defined by the ontology.
The proposed service implementation addresses the main points that

were defined at the beginning of this chapter. The M-Hub is responsible
for the discovery and processing of the M-OBJs. The SCA and the Stream
Resoning service contextualizes the data by adding a semantic model to them.
Subsequently, this same Stream Reasoning service is responsible for deducting
new facts and sending them to the actuators. All this processing is done in real
time, since the data is continuously generated and treated by the two levels of
processing.
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5
A fire detection application

Fire detection is among the various areas that can benefit from inter-
connecting and monitoring sensors in a building. We have various kinds of
fire detectors and suppression systems to help prevent against fire. The IoT
is helping these products become more intelligent and connected. With IoT,
now safety alerts can be sent to hundreds of people fast and effectively. Several
leading fire safety companies, have already launched IoT-enabled fire detectors.

The most popular connected smoke detector on market is offered by Nest
Labs1, the leading smart home automation products. The company, now a part
of Alphabet Inc.2, offers Nest Protect smoke and carbon monoxide detector.
The Nest Protect detectors are able to communicate with the Nest thermostat
and can shut off the furnace in the event of a fire or carbon monoxide. The
detectors can be accessed anywhere using mobile apps. In the event of an
alarm, the detectors sound a local alarm as well as send notifications on the
mobile phone.

Sensors have been widely used for fire detection (30, 31, 32, 33). Silva et
al. (30) proposed a work for fire detection in mines by using wireless sensor
networks called WMSS. For determining the hazardous factor in the mines,
they used gas sensors and designed a wireless sensor network which collects
and analyses the gas level in mines. The work proposed in (31) used Zigbee-
based wireless sensors for fire detection in forests. They used temperature
sensors to establish the intensity of fire in a forest. They used a CC2430 chip
in their hardware design for network nodes.

Similarly, Buratti et al. (32) also designed a framework for forest fire
detection. In their work, they used a model for fire detection using different
clustering schemes and communication protocols. They performed the simula-
tion for validation and evaluation of their work. W. Tan et al. (33) implemented
a work for forest fire detection. They used multi-sensor and wireless IP cameras
to avoid false alarms. Their system also connected to the internet via gateways
for uploading the data to the cloud.

In subsequent sections, we describe a hypothetical application for fire
1https://nest.com/ca/
2https://abc.xyz/
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detection, based on the temperature and humidity of the environment. The
service developed and described in the previous section was used. As M-OBJs,
we use the SensorTags from Texas Instruments 3. These sensors have BLE
interface and can be discovered using M-Hub. Figure 5.1 shows the M-Hub
with 4 SensorTags, each with 6 sensors (temperature, accelerometer, humidity,
...). The SensorTags have a range up to 50m, then for the M-Hub to be able
to discover and connect to the tags, it needs to be within this distance. The
M-Hub must be an Android smartphone or tablet, since its implementation is
only available for these devices.

This kind of application can be applied to a smart manufacturing or a
smart home for example. We expect, with the modeling that will be described
below, to achieve a real-time system that responds to an environmental
stimulus, e.g. high temperature, in seconds, thus generating an fast alert for
some kind of automation or actuator.

Figure 5.1: SensorTags and M-Hubs

The CEP query used for the first processing level (M-Hub) is described
in Listing 5.1. The query gets the average temperature data collected by
the M-Hub from the M-OBJs in a 10 seconds time window. As we saw in
Chapter 4, the M-Hub’s response brings the M-Hub’s UUID, in JSON’s uuid

3http://www.ti.com/
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1 SELECT avg ( temperature . sensorValue [ 0 ] ) as avgTemperature
2 FROM SensorData ( sensorName=’ Temperature ’ ) . win : time (10 sec ) as

temperature

Listing 5.1: CEP Average temperature query

property. To get the UUID of the related room, let’s assume there is a database
service that gives this information. Also, the predicate will be filled according
to the value receive and the type of CEP rule (AVGTemp). If the value is
greater than 80 Celsius, the triple <Room-UUID, has-very-hot-sensor, M-
Hub-UUID> is generated by the SCA and sent to the stream endpoint in
the Reasoning Service. This triple format serves as input for all the scenarios
that are described in this chapter.

An important note is that the ontology writer, since he is not necessarily a
systems developer, does not need to know implementation details, such as using
ContextNet, M-Hub, or C-SPARQL. Because of this, in modeling the ontology,
we can consider that a room has sensors, not M-Hubs, since the second case is
a specific detail of the implementation. So, even if our actual implementation
we have a room related to one or more M-Hubs, we will consider that the
M-Hub is represented by the Sensor class of the ontology.

To better understand our use case, let us consider the following charac-
teristics:

1. Each SensorTag can detect both temperature and humidity

2. Each Room has 3 Sensors (M-Hubs)

3. Each Hall has 10 Rooms

4. Each Floor has 1 Hall

5.1
Scenario 1: Fire detection in a room

The first, and simplest, scenario is described by an ontology where we
have two classes, Room and Sensor, that are defined in the T-Box. In addition,
we have the has-very-hot-sensor relationship, linking these two entities. The
A-Box for this scenario describes the relations between the rooms and sensors.
Figure 5.2 illustrates the ontology.

Additionally, we define an axiom that represents a room in danger. This
axiom, in OWL, is specified by the DangerousRoom class. Below we have the
axiom described in Protégé DL Query 4 format:

4https://protegewiki.stanford.edu/wiki/DLQueryTab
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Figure 5.2: First scenario ontology

1 REGISTER QUERY dangerousRoom AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ?room a : DangerousRoom
9 } ;

Listing 5.2: DangerousRoom C-SPARQL query

– Room and has-very-hot-sensor some Sensor

The axiom indicates that if there is a triple with the <Room-UUID,
has-very-hot-sensor, M-Hub-UUID> format then the DangerousRoom class is
inferred for the related Room-UUID. The some keyword in DL means at least
one, so the DL query indicates that A Room that has at least one very
hot Sensor is a DangerousRoom.

As we saw earlier, in order to find the DangerousRoom, a C-SPARQL,
described in Listing 5.2, must be defined in the Reasoning Service. The query
and, consequently, the Reasoning Service, outputs the Room’s UUID that
might be in danger. Figure 5.3 shows the ontology mapping with the inferenced
class.

Figure 5.3: First scenario ontology with DangerousRoom axiom
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5.2
Scenario 2: Fire detection in a building hall

The second scenario can be seen as an extension of the first, where the
concept of hall is added, which is defined by the class of the same name, Hall.
To relate the Hall and Room classes, the has-hall property was created. For
this scenario, the A-Box, besides having the relations of the first scenario, adds
the relations inherent to the Hall and Room.

In addition to the concept of DangerousRoom, we also add an axiom
representing a hall in danger, which is named DangerousHall. Below we have
its definition, where we first present the simplified version, using the class
inferred in the first scenario and, secondly, the expanded version, where the
axiom that defines DangerousHall encompasses the DangerousRoom axiom.
The axiom means that A Hall that has at least one Room that has at
least one very hot Sensor is a DangerousHall. Figure 5.4 illustrates the
updated ontology with the new additions.

– Hall and has-room some DangerousRoom

– Hall and has-room some (Room and has-very-hot-sensor some Sensor)

Figure 5.4: Second scenario ontology with DangerousHall axiom

In order to find the DangerousHall inference, we had to change the
previous C-SPARQL query. The new one is described in Listing 5.3. Differently
from the query in the first scenario, this one seeks for halls that might be in
danger and outputs the Hall’s UUID.
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1 REGISTER QUERY dangerousHal l AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? ha l l
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? h a l l a : DangerousHall
9 } ;

Listing 5.3: DangerousHall C-SPARQL query

5.3
Scenario 3: Fire detection in a building floor

Extending the scenario further, we added the concept of Floor, repre-
sented by the class of the same name. To relate the Floor and Hall classes, we
created and used the has-floor property. For this scenario, the A-Box adds the
relations between floors and halls, in addition to the relations between halls,
rooms and sensors.

We also add an axiom representing a floor in danger, called Dangerous-
Floor. Below we have its definition, where we first present the simplified ver-
sion, using the class inferred in the first scenario and, secondly, the expanded
version, where the axiom that defines DangerousFloor encompasses the Dan-
gerousHall axiom. The axiom means that A Floor that has at least one
Hall that has at least a Room that has at least one very hot Sensor
is a DangerousFloor. Figure 5.5 illustrates the updated ontology with the new
additions.

– Floor and has-hall some DangerousHall

– Floor and has-hall some (Hall and has-room some (Room and has-
very-hot-sensor some Sensor))

In order to find the DangerousFloor inference, we defined a new C-
SPARQL query, which is described in Listing 5.4. This one seeks for floors
that might be in danger and outputs the Floor’s UUID. Bellow we have the
query used to find this inference.

5.4
Scenario 4: Fire detection by proximity

Proximity fire detection goes through all of the scenarios described
in the previous sections. In this section we will present additions to the
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Figure 5.5: Third scenario ontology with DangerousFloor axiom

1 REGISTER QUERY dangerousFloor AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? f l o o r
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? f l o o r a : DangerousFloor
9 } ;

Listing 5.4: DangerousFloor C-SPARQL query

ontology to make the inference from the temperature measurement in another
environment, possible.

First we will describe how the detection is made considering only the
Room entity. To add the notion of proximity, we define a new property in the
ontology that relates a room to another, we call this property is-near. Recalling
that for this scenario it was not necessary to make any alteration in the first
level of processing, the CEP. The modifications were all done in the T-Box
and A-Box. Figure 5.6 illustrates the updated ontology.

With these modifications, it is possible to infer a new class type, which
is called the AlertRoom. An AlertRoom is defined by A Room that is near
another Room which has a Sensor that is very hot. As we present in
the other scenarios, below we have two ways in which we can define this axiom.
First, the simplest form, already encompassing the concept of DangerousRoom
and, second, the form that we do not consider the axiom defined previously.

– Room and is-near some DangerousRoom
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Figure 5.6: Adding room’s proximity relation

1 REGISTER QUERY alertRoom AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ?room a : AlertRoom
9 } ;

Listing 5.5: AlertRoom C-SPARQL query

– Room and is-near some (Room and has-very-hot-sensor some Sensor)

To find the AlertRoom inference, we defined a continous query, which is
described in Listing 5.5, that seeks for rooms that might be near to rooms that
are in danger. The query outputs the Room’s UUID.

To gradually increase the ontology’s complexity, we apply the concept
of fire detection by proximity to a Hall. For this scenario, we will use the
same property that was defined before, is-near, but, in this case, the relation
is between two halls.

Adding the concept of a hall that can be near to another hall, we can
do the inference like we did in the previous scenario. Considering that a hall
could be in danger and this hall is near to another one, we can say that the
other hall is in alert. To define this type of inference, the AlertHall entity was
created. An AlertHall means A Hall that is near to another Hall which
has a Room that has a very hot Sensor . As in the other scenarios, the
two types of axioms that we can define are presented below, as well the Figure
5.7 illustrates the updated ontology.

– Hall and is-near some DangerousHall
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1 REGISTER QUERY a l e r tHa l l AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? ha l l
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? h a l l a : A l e r tHa l l
9 } ;

Listing 5.6: AlertHall C-SPARQL query

– Hall and is-near some (Hall and has-room some (Room and has-very-
hot-sensor some Sensor))

Figure 5.7: Adding hall’s proximity relation

To find the AlertHall inference, we defined a continuous query, which is
described in Listing 5.6, that seeks for halls that might be near to halls that
are in danger. The query outputs the Hall’s UUID.

The last scenario to be presented represents a Floor that may be on alert.
In this scenario, we use the same property presented in all others that detect
fire by proximity, the is-near property. However, in this case, this property
relates two floors. The proximity fire detection can occur in such a way that
An Alert Floor is a floor that is near a floor that has a hallway
which in turn has a room that has a very hot Sensor . The two types
of axioms that we can define are presented bellow. Figure 5.8 illustrates the
updated ontology.

– Floor and is-near some DangerousFloor

DBD
PUC-Rio - Certificação Digital Nº 1612875/CA



Chapter 5. A fire detection application 57

1 REGISTER QUERY a l e r tF l o o r AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? f l o o r
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? f l o o r a : A l e r tF loor
9 } ;

Listing 5.7: AlertFloor C-SPARQL query

– Floor and is-near some (Floor and has-hall some (Hall and has-room
some (Room and has-very-hot-sensor some Sensor)))

Figure 5.8: Adding floor’s proximity relation

To find the AlertFloor inference, we defined a C-SPARQL query described
in Listing 5.7, which seeks for floors that might be near to floors that are in
danger. The query outputs the Floor’s UUID.

5.5
Summary

In this chapter we proposed an application in the scope of IoT for fire
detection. This application makes use of the architecture and implementation
which were described in chapter 4.
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By using the M-Hub together with the SensorTags, we were able to mon-
itor the temperature measurements. With these measurements, we can infer if
the environment has the temperature out of normality, thus generating a se-
mantically annotated information for the Stream Reasoning Service. Enriching
the environment information data with the ontology and the static relations
(e.g. sensor x is placed in room y), we can infer new facts based on the stream-
ing data, for example, if a room, hall or floor is on fire.

As we have seen, we can divide our ontology according to what is being
monitored. We showed that we can gradually increase the entities presented in
the ontology, so that in the first definition we have only the concept of rooms
and sensors. In the last ontology, we defined concepts for monitoring, as well
as rooms, halls and floors. In addition, we have shown that it is possible to
monitor an environment that does not necessarily have a coupled sensor, which
can be done with the proximity relationship.
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6
Performance Analysis

To determine the service performance we focused on scalability, that is,
on studying the performance of reasoning and data delivery when the amount
of connected IoT nodes and the data volume sizes are varied. Semantic repre-
sentations are known to have a significant effect on resource usage (36). Hence,
different ontology models and methods to make inferences were considered as
one of the most important feature to be tested. Heterogeneous and continu-
ously provided distributed data is assumed as a general characteristic of IoT
systems, thus, the experiments focus on reasoning in real-time with distributed
data providers and data volumes in configurable distributed environment. To
do this, we vary the size of the A-Box, increase and decrease the complexity
of the ontology, and for some cases, we change the frequency with which the
data is generated by the sensors.

For the analysis, we will use time as the measure of the service perfor-
mance. The initial time will be the instant that the data is generated by the
SensorTag. The final time will be counted as the instant of the Reasoning
Service (second processing level) output. We will use the average of 3 mea-
surements to get the service’s response time, eliminating the outliers.

One of the key features of IoT systems is that this kind of application
continuously produce new data and the data to be processed must always
be the most recent. In our tests, due to the difficulty of simulating ambient
conditions such as temperature and humidity, we chose to simulate sensor data
that is processed by the M-Hub. With this, we can also simulate the rate in
which the raw data is generated. For the tests, we set 1 second rate of new data
and simulate the ambient conditions in exactly 1 specific room. For example,
with a rate of 1 second, the triple <room-1, has-very-hot-sensor, sensor-1> is
generated.

Our experimental setup, which includes the M-Hub simulator, the SCA
and the Reasoning Service, are all distributed in the same network connected
by a WiFi 802.11 router. The M-Hub simulator and the Reasoning Service uses
a Core i7 processor with 16GB of RAM, hosted on a macOS 10.13. The SCA
is hosted in a Ubuntu 16.04 virtual machine with Core i7 processor and 4 GB
RAM. The experiments were developed using Java, in version 8.
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6.1
A-Box Size

In this first performance test we will consider only the variation of the
number of individuals (e.g. floors, halls, rooms and sensors) contained in the
A-Box. Each experiment increments the A-Box size gradually, so that we can
see the evolution of the response time. It is important to remember that each
room has 3 sensors. Then, by varying the number of rooms, consequently the
number of sensors also varies.

In the first experiment (Figure 6.1), which measures the scenario
that looks for rooms that may be in danger, the individuals that were inserted
in the A-Box refer to the number of rooms and sensors being observed.

In the second experiment (Figure 6.2), measures the scenario that
looks for rooms that may be in alert. In this case, the base test must start at
least with 2 rooms because the is-near relation is about connecting 2 rooms.

In the third experiment (Figure 6.3), we collapsed the Hall and Floors
scenarios due to the case that a building can have exactly one floor with one
hall. In this experiment, the x axis refers to the number for floors that we are
observing. Remembering that a floor has 1 hall and a hall has 10 rooms. In
this case, the experiment starts with 1 floor, 1 hall, 10 rooms and 30 sensors.

The fourth experiment (Figure 6.4) is an extension of the third
experiment adding the is-near property. In this experiment, due to proximity,
the test must start with the minimum of 2 floors.

Figure 6.1: First experiment Dan-
gerousRoom inference performance

Figure 6.2: Second experiment
AlertRoom inference performance

The experiments involving the change in A-Box size showed a similar
result. It is important to note that a difference of up to 1 second for one
experiment and another we can consider that time is equal. This happens
because we work with a time window of 1 second in C-SPARQL, so there
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Figure 6.3: Third experiment Dan-
gerousFloor inference performance

Figure 6.4: Fourth experiment
AlertFloor inference performance

may be some delay that affects the comparison between experiments. Another
important point is that all experiments had acceptable results for a real-time
application. Applications of this type require response in seconds, which we
obtained in all experiments. We can also observe that the result, comparing
experiments 1 and 2, following 3 and 4, are practically the same. This leads
us to believe that the addition of the concept of proximity did not influence
the increase of complexity, and consequently of time, of the scenarios. One
negative point is that for values greater than 400 individuals, the reasoning
engine could not complete the processing, staying for more than 20 minutes in
lock. This was due to an internal failure of C-SPARQL.

6.2
T-Box Complexity

In this section we will change the T-Box complexity in several ways. As
in the previous section, we have divided in some experiments which have the
same size variation of the A-Box. In the fifth experiment we will modify
the ontology and simplify the first level of processing (CEP). In the sixth
experiment we will keep the change in the CEP but we will increase even more
the complexity. Finally, in the seventh experiment, we will add humidity
data and compare the results with all the other experiments.

6.2.1
Sensor Subclass

In the fifth experiment we modified the first level of processing by
removing the external service that retrieves the room-sensor relation. With
this, the generated triple is also modified to the format <M-Hub-UUID,
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rdf:type, VeryHotSensor>, which means that The sensor with the related
UUID has the type VeryHotSensor . VeryHotSensor is a specialization
of Sensor and means that a Sensor can be a Very Hot Sensor . With this
small change in the RDF stream format, the base ontology must also undergo
changes to achieve the same inference from the scenarios presented previously.
The axioms DangerousRoom and AlertRoom have also been modified. The
A-Box and the C-SPARQL query had no changes. Figure 6.5 illustrates the
updated ontology and bellow we have the updated axioms.

– DangerousRoom: Room and has-sensor some VeryHotSensor

– AlertRoom: Room and is-near some DangerousRoom

Figure 6.5: Fifth experiment - Adding VeryHotSensor subclass to the ontology

The changes were also applied in the DangerousFloor and AlertFloor
axioms. Figure 6.6 illustrates the updated ontology and bellow we have the
updated axioms.

– DangerousFloor: Floor and has-hall some (Hall and has-room some
(Room and has-sensor some VeryHotSensor))

– AlertFloor: Floor and is-near some DangerousFloor

To find out if there has been any change in the performance of the service,
we plotted the time in seconds represented by the y-axis and the variation of
the A-Box size represented by the x-axis. Figures 6.7, 6.8, 6.9 and 6.10 represent
the charts.

From the results, we see that the performance had few differences
compared to the experiments presented in the previous section. This occurred
because the ontology did not undergo major modifications, and consequently,
the inference steps also did not have a significant change.
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Figure 6.6: Fifth experiment - Adding VeryHotSensor subclass complete on-
tology

6.2.2
Adding Device Specialization

In the sixth experiment, we made a profound change in the ontology
by adding more levels of verification. We add the concept of Device. A room
can be connected to one or more devices.

The Device can have various types of expertise, such as EnergyDevice
or SensingDevice. For this experiment we will consider only the SensingDevice
specialization. A SensingDevice can observe a certain characteristic of interest,
such as temperature or humidity. In case of temperature, it can be high, low
or normal.

With these modifications, looking for, for example, a DangerousRoom, is
a little more complicated. As described above, a Room is connected to one or
more Devices and to be able to detect a high temperature, this Device must
be a SensingDevice and also observe a Temperature which is high.

To fit the changes in the ontology, we need to change the RDF triple
generated by the SCA. In this experiment, we will assume, as in the previ-
ous experiment, that there is no external service that does the room-sensor
mapping. Based on the ontology, the RDF generated must be in the format
<M-Hub-UUID, obverses, high-temperature>. Figure 6.11 shows the updated
ontology and below we see the description of the updated axioms for Danger-
ousRoom and AlertRoom.
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Figure 6.7: Fifth experiment Dan-
gerousRoom inference performance

Figure 6.8: Fifth experiment Alert-
Room inference performance

Figure 6.9: Fifth experiment Dan-
gerousFloor inference performance

Figure 6.10: Fifth experiment
AlertFloor inference performance

– DangerousRoom: Room and has-device some (Device and observes
value high-temperature)

– AlertRoom: Room and is-near some DangerousRoom

It is important to point out that the axioms seem to be simple, but there
are implicit verifications that are made, such as subclasses’ instance checking,
which in this case have the subclasses SensingDevice and Temperature.

As in the previous experiment, the DangerousFloor and AlertFloor were
also modified to undergo the ontology’s modification. Bellow we have the
updated axioms and Figure 6.12 illustrates the updated ontology with this
two more entities.

– DangerousFloor: Floor and has-hall some (Hall and has-room
some (Room and has-device some (Device and observes value high-
temperature)))

DBD
PUC-Rio - Certificação Digital Nº 1612875/CA



Chapter 6. Performance Analysis 65

Figure 6.11: Sixth experiment - Adding device specialization to the ontology

Experiment 1 2 3 4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4
Time in Seconds 6 10 10 10 6 10 8 9 11 23 14 20

Table 6.1: Experiments comparison

– AlertFloor: Room and is-near some DangerousRoom

For this experiment we tried to compare, with the cases already tested,
to the maximum individuals, e.g. 400. The comparison can be seen in Table
6.1.

The comparison of this experiment with the others shows that the
addition of more complexity to the ontology has a great impact on the service’s
performance, even compromising the real-time analysis. We still consider that
the size of this ontology is not very large, so a point to be pondered is whether
it is worth adding a lot of complexity to the ontology in an unnecessary way
because we have seen that for simpler ontology we get equal results with better
performance.

6.2.3
Adding Humidity

In previous experiments we were only considering temperature. However,
in this experiment we will add another data coming from the SensorTag, the
humidity. In addition, we will compare it with all the other experiments already
performed, in order to compare the performance with and without the humidity
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Figure 6.12: Sixth experiment - Adding device specialization complete ontology

1 SELECT avg ( temperature . sensorValue [ 0 ] ) as avgTemperature ,
2 avg ( humidity . sensorValue [ 0 ] ) as avgHumidity
3 FROM SensorData ( sensorName=’ Temperature ’ ) . win : time (10 sec ) as

temperature , SensorData ( sensorName=’Humidity ’ ) . win : time (10 sec
) as humidity

4 WHERE temperature . source = humidity . source

Listing 6.1: CEP query considering temperature and humidity

data. It is worth mentioning that we will use humility below 19% as being
considered low.

In order to obtain the sensors’ humidity, it is necessary to make a
small modification in the CEP query that is applied by the M-Hub, which
is described in Listing 6.1. For optimization purposes, the CEP query matches
both the temperature and humidity data in the same response, through a
normal join. It is worth mentioning that the WHERE clause assures us that
the two information comes from the same sensor. This query is used by all the
experiments that will be described bellow.

Extending the first to fourth experiments, we added the notion
of very-dry-sensor relation between Room and Sensor entities. With this
addition, we must generate another triple that matches this kind of relation. So,
besides the triple with the <Room-UUID, has-very-hot-sensor, M-Hub-UUID>
format, we also generate the triple <Room-UUID, has-very-dry-sensor, M-
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Hub-UUID>. Another import point is that, to preserve the simulated sensors
data rate of 1 second, and, considering that we are sending two kinds of
triple, we will sending with a rate of 500 milliseconds between each triple, thus
maintaining the rate of 1 second considering the temperature’s and humidity’s
triples. The A-Box and the C-SPARQL query remains the same. Figures 6.13,
6.14, 6.15 and 6.16 illustrates the performance comparison and bellow we have
the updated DangerousRoom and DangerousFloor axioms adding the humidity
concept:

– DangerousRoom: Room and (has-very-hot-sensor some Sensor) and
(has-very-dry-sensor some Sensor)

– DangerousFloor: Floor and has-hall some (Hall and has-room some
((Room and has-very-hot-sensor some Sensor) and (Room and has-
very-dry-sensor some Sensor)))

By extending the fifth experiment, we added the VeryDrySensor entity
as a specialization of Sensor. With this modification, like in the previous
experiment, we had to generate another RDF triple. So, besides the triple
with the format <M-Hub-UUID, rdf:type, VeryHotSensor>, we also generate
the triple <M-Hub-UUID, rdf:type, VeryDrySensor>. The A-Box and the C-
SPARQL query remains the same. Figures 6.17, 6.18, 6.19 and 6.20 illustrates
the performance comparison and bellow we have the updated DangerousRoom
axiom adding the humidity concept:

Figure 6.13: First experiment Dan-
gerousRoom inference performance
adding humidity

Figure 6.14: Second experiment
AlertRoom inference performance
adding humidity

Adding humidity to the sixth experiment means adding another
specialization of the class FeatureOfInterest. This new specialization is called
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Figure 6.15: Third experiment
DangerousFloor inference perfor-
mance adding humidity

Figure 6.16: Fourth experiment
AlerFloor inference performance
adding humidity

Figure 6.17: Fifth experiment Dan-
gerousRoom inference performance
adding humidity

Figure 6.18: Fifth experiment
AlertRoom inference performance
adding humidity

Humidity and can have the values low-humidity, normal-humidity and high-
humidity. With this addition, we must pass another RDF triple format, like in
the experiments above. Besides passing the triple <M-Hub-UUID, observes,
high-temperature>, we will pass <M-Hub-UUID, observes, low-humidity>.
Bellow we have the updated ontology. The A-Box and the C-SPARQL query
remains the same.

– DangerousRoom: Room and has-device some (Device and observes
value high-temperature and observes value low-humidity)

– DangerousFloor: Floor and has-hall some (Hall and has-room
some (Room and has-device some (Device and observes value high-
temperature and observes value low-humidity)))
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Figure 6.19: Fifth experiment Dan-
gerousFloor inference performance
adding humidity

Figure 6.20: Fifth experiment
AlertFloor inference performance
adding humidity

Experiment Temperature (seconds) + Humidity (seconds)
1 6 8
2 10 14
3 10 10
4 10 13
5.1 6 7
5.2 10 12
5.3 8 9
5.4 8 13
6.1 11 13
6.2 23 15
6.3 14 16
6.4 20 25

Table 6.2: Experiments comparison with humidity

According to Table 6.2 we can observe that the service response time
increased in almost all scenarios with the addition of the humidity data. Again,
we have to consider whether it is worth adding more data to be checked, when
we can only use the temperature to do this type of verification. Of course, the
more data to be checked, the more certain the service response will be.

6.3
Removing axioms from T-Box

In this section, the seventh experiment, we will show that it is
possible to infer the same data that we obtained in previous scenarios by
removing all axioms from the ontology. To do this, we will take the ontology
from scenarios 1 to 4 and change it to remove the axioms DangerousRoom,
AlertRoom, DangerousFloor, AlertFloor and get service response time again.
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It is important to note that there have been no changes to the A-
Box. In addition, we will use the triple format RDF <Room-UUID, has-very-
dry-sensor, M-Hub-UUID> and <Room-UUID, has-very-hot-sensor, Sensor-
UIUD>.

For this experiment, we need another way of being able to make the
inference. We can transfer this processing directly to the C-SPARQL query, as
we will see below. In the updated queries, the WHERE clause must explicitly
specify all the steps to make the inference. The queries that were used for
this scenario are described in Listing 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9
and Table 6.3 shows the comparison between all the experiments, with 400
individuals.

1 REGISTER QUERY dangerousRoom−temperature AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ?room : has−very−hot−s enso r ? s enso r
9 } ;

Listing 6.2: DangerousRoom considering only temperature

1 REGISTER QUERY dangerousRoom−temperature−humidity AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ?room : has−very−dry−s enso r ? s enso r
9 ?room : has−very−hot−s enso r ? s enso r

10 } ;

Listing 6.3: DangerousRoom considering temperature and humidity

1 REGISTER QUERY alertRoom−temperature AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room2
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
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8 ?room2 : i s−near ?room1
9 ?room1 : has−very−hot−s enso r ? s enso r

10 } ;

Listing 6.4: AlertRoom considering only temperature

1 REGISTER QUERY alertRoom−temperature−humidity AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ?room2
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ?room2 : i s−near ?room1
9 ?room1 : has−very−hot−s enso r ? s enso r

10 ?room1 : has−very−dry−s enso r ? s enso r
11 } ;

Listing 6.5: AlertRoom considering temperature and humidity

1 REGISTER QUERY dangerousFloor−temperature AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? f l o o r
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? f l o o r : has−ha l l h a l l
9 ? h a l l : has−room ?room1

10 ?room1 : has−very−hot−s enso r ? s enso r
11 } ;

Listing 6.6: DangerousFloor considering only temperature

1 REGISTER QUERY dangerousFloor−temperature−humidity AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? f l o o r
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? f l o o r : has−ha l l h a l l
9 ? h a l l : has−room ?room1

10 ?room1 : has−very−hot−s enso r ? s enso r
11 ?room1 : has−very−dry−s enso r ? s enso r
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12 } ;

Listing 6.7: DangerousFloor considering temperature and humidity

1 REGISTER QUERY a l e r tF l oo r−Temperature AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? f l o o r 2
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? f l o o r 2 : i s−near ? f l o o r 1
9 ? f l o o r 1 : has−ha l l h a l l

10 ? h a l l : has−room ?room1
11 ?room1 : has−very−hot−s enso r ? s enso r
12 } ;

Listing 6.8: AlertFloor considering only temperature

1 REGISTER QUERY a l e r tF l oo r−temperature−humidity AS
2 PREFIX :<http ://www. st reamreason ing . com/>
3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 SELECT ? f l o o r 2
5 FROM STREAM <http :// streamreason ing . com/ streams/> [RANGE 1 s STEP 1

s ]
6 FROM <http :// streamreason ing . org /data>
7 WHERE {
8 ? f l o o r 2 : i s−near ? f l o o r 1
9 ? f l o o r 1 : has−ha l l h a l l

10 ? h a l l : has−room ?room1
11 ?room1 : has−very−hot−s enso r ? s enso r
12 ?room1 : has−very−dry−s enso r ? s enso r
13 } ;

Listing 6.9: AlertFloor considering temperature and humidity

From the obtained results at Table 6.3, we noticed that the removal
of axioms from the ontology and the transfer to the C-SPARQL query had
a positive effect on service performance. We were able to obtain, with this
change, the shortest times considering all the scenarios. With these results, we
may consider, depending on the complexity of our application, to use axioms
or transfer the intelligence to the query to search for inferences.
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Experiment Temperature (seconds) + Humidity (seconds)
1 6 8
2 10 14
3 10 10
4 10 13
5.1 6 7
5.2 10 12
5.3 8 9
5.4 8 13
6.1 11 13
6.2 23 15
6.3 14 16
6.4 20 25
7.1 4 4
7.2 2 3
7.3 6 4
7.4 5 4

Table 6.3: All experiments comparison

6.4
Summary

In this chapter we presented a systematic evaluation of the service’s
performance. The performance was measured according to the processing time
from the data generation by the M-OBJ to the Reasoning Service’s output.
In order to obtain more complete metrics, we developed several experiments.
The experiments served to measure the reliability of the service as well as the
level of scalability.

In the first experiments, ranging from 1 to 4, we varied only the number
of individuals contained in the A-Box, following the base ontology proposed in
section 5. In this experiment, we managed to reach a total of 400 individuals
in the A-Box, with a maximum response time of 10 seconds. For the proposed
application, this response time is in accordance with a real-time system,
allowing a fast response of some actuator.

In the subsequent experiment we added a specialization to the Sensor
class, called the VeryHotSensor. In addition, the generated triple the first level
has also been modified, causing the reasoning process to do the relationship
between the room and the sensor, since the streamed triple does not bring
this information. These modifications did not reflect so much on the service
performance because the response time remained practically the same. The
conclusion that we can obtain is that these small modifications in the ontology
and in the streamed triple format did not affected the performance.
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Experiment 6 brought a great change to the ontology, whereas the
generated triple did not have major modifications in relation to the previous
experiment. In this experiment, we based the ontology on the Semantic Sensor
Network Ontology (SSN)1, but using only a small idea of it. With this
modification, we could notice that the response time in the service increased
a lot in relation to the other experiments, reaching up to 25 seconds. This
happened because the reasoning process has to do many more steps. With this,
we can get to the conclusion that a very complex ontology, emphasizing that
we do not use the complete SSN, brings us a significant loss in performance.

Also, we added the humidity measurement from the SensorTag. For this
to be possible, we proceed to generate an extra triple, which contains this
information. In addition, we altered the ontology to reflect this change. For
the performance tests, we revisited all the previous experiments and made
the time measurements again. The results showed a slight increase in response
time, which was expected, since the reasoning process started to have one more
step of inference.

Finally, in the last experiment, we wanted to show that it is possible to
reach the same answer without the use of axioms in the ontology. With this, the
ontology started to have a much smaller complexity, passing its complexity to
the query, since it starts to have explicitly all the steps of inference. The results
showed a drastic reduction in response time because the reasoning process was
greatly simplified. This experiment showed us that, in order to achieve a better
performance, we must consider how complex the ontology should be.

1https://www.w3.org/TR/vocab-ssn/
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7
Discussion

According to the experiments presented in the previous chapter, we
showed that we can model the fire detection application in several ways. This is
not only useful for this application, since the addition, mainly, of a knowledge
base together with an ontology brings us a range of possibilities of what regards
modeling systems.

Adding more complexity to the ontology can become a problem for real-
time systems. This is corroborated by our sixth scenario, where we added
more specializations to the possible devices that the room can have. With
that, the response time of the service increased greatly, and in some cases,
up to 25 seconds. For more critical systems, where the response time must be
at the millisecond level, this time is unacceptable and may even cause major
disasters. A way that can be used to improve performance is, as we saw in
the seventh experiment, is by removing all the axioms from the ontology. This
really brings about a performance gain, but all the complexity of the ontology
is brought into the query, which becomes very detailed and specific to a certain
type of application. Keeping the intelligence of inference in ontology, through
axioms, enables us to write more abstract queries without knowing deeply the
way inferences are made.

The use of CEP, possible through integration with M-Hub, along with
reasoning, which is done through C-SPARQL, brings us the possibility of being
able to transfer some of the processing to one or the other. This is good because
we can overlook C-SPARQL, for example, for very complex scenarios, which
need a very fast response, and keep processing more at the CEP level, which
tends to be faster because its architecture was born to be real-time. However,
one point in favor of the use of ontologies is that they can describe classes and
relations, adding more expressiveness to the data, while the CEP is responsible
for the processing of raw data, not having direct access to the model described
by the ontology. This process is described in experiments 1-4 and 5, where
we eliminate the external service that relates the room-sensor and transfers
the check to the ontology. Despite this, the performance did not have a great
impact. But, for very large A-Boxes, it can lead to a problem, because it
is one more step that we are doing in the inference. Therefore, we should
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consider whether the processing should be more in CEP part or on the ontology
reasoning. A bad choice can compromise the performance and effectiveness of
the application.

One of the negative points that were observed with the use of C-SPARQL
was that from a certain number of instances in the A-Box, the service stops
responding. The maximum we could process, as can be seen in the all the
experiments, was on the order of 400 individuals in the A-Box, which we
consider not to be very high, since a database of a normal application can easily
have thousands or even millions of tuples. Another important point is that for
400 individuals C-SPARQL starts to behave intermittently, so that outliers
in the performance measures begin to appear. In these cases, we disregard
the outliers and consider only the results that are within normalcy. One of the
solutions that can be applied to our service is that we can divide the processing
by floors, for example, where each floor would contain a service being executed,
thus limiting the size for each service to a maximum of 10 rooms and 30 sensors,
which means 40 individuals in the A-Box.

Another way that the CEP can generate a high temperature event, is
not only considering the gross temperature, but its variation within a time
window. In CEP this is possible by using a pattern matching, that is, a match
of an event sequence. This variation can bring us even more interesting facts,
such as an indicator that a room is heating up.

Finnaly, we understand that different IoT applications has different
requirements. Some applications handle frequently updating data and target
low response time, but without complex ontologies and reasoning. However,
other applications do not require low response time, but demand complete
and expressive reasoning. It is very difficult to achieve a single solution for
all the IoT applications, since IoT has a enormous actuation field. Special
data models, query languages, reasoning approaches need to be developed to
address different requirements accordingly. It remains an open issue to match
reasoning ability and expressive power required in different applications.
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8
Conclusions

The current IoT approach, especially in the field of sensor data analysis
and process automation, provides a number of research opportunities and
challenges. An enormous amount of sensors and actuators are present in diverse
environments, such as in our residences, in a hospital or even in the streets
of a city. Through the composition of these sensors and actuators, diverse
applications can be created to bring about improvements in our lives.

One of the great challenges in IoT is being able to extract more complex
information from the sensor-generated data. For this, a paradigm called Stream
Reasoning was created, which deals with this problem in a more general way,
not necessarily focusing on IoT, since many of the systems developed based on
Stream Reasoning do not support one of the great IoT prerequisites, which is
real-time processing.

In view of the introduced challenges, this work presented a Real-Time
Stream Reasoning Service for IoT, which addresses the points 1) generate
higher level complex data from sensors’ raw data using CEP and Stream
Reasoning techniques and 2) do it in real-time. Besides that, this works makes
use of a technology totally implemented in the Laboratory for Advanced
Collaboration (LAC), from PUC-RIO, the ContextNet. One of the greatest
features from the ContextNet is that it abstracts all the discovery and
communication layer between the sensors and, with this, we could focus
directly in the CEP (M-Hub) and reasoning (C-SPARQL) implementation and
experiments.

The service implementation and later the tests and experiments, showed
that it is possible to make real-time stream reasoning system for IoT in
real-time, given some prerequisites. These prerequisites include, as we saw
in Chapter 5, the choice of a not very complex ontology and, due to the C-
SPARQL limitations, also discussed in Chapter 5 and 6, the KB size should
also be carefully chosen.

The study of related works, which have some degree of similarity with the
work developed in this dissertation, showed some of the difficulties and possible
solutions within the scope of Stream Reasoning in IoT. Some of these papers
outline the main points that such a system should have, but the approach
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applied here, which combines the use of ContextNet with CEP processing
capability and also Stream Reasoning, is innovative within this context.

8.1
Future Work

One of the desirable aspects of a stream reasoning mechanism with IoT
focus is its ability to respond quickly to stimuli from the environment that the
sensor is in. As we have seen, this point is still open because for very complex
ontologies and for a large KB, the response time can not be considered more
as real-time.

Results obtained up to now are important. Some of the mature solutions
were exploited in real scenarios, such as social media analytics. We should get
inspired by such results, and see them as the foundations to build new research
and to reach new ambitious achievements. An application of these techniques
that we saw during work, especially Stream Reasoning, in real IoT scenarios,
is still necessary.

Another point that we can analyze as a possible improvement concerns
the M-Hub. As we saw in detail in Chapter 4, the SCA is responsible for
converting the CEP data generated by M-Hub into RDF triples. The idea, as
a future work, is to eliminate the dependency on SCA and genarate the RDF
triple directly on the mobile nodes (M-Hub). This is in line with IoT’s vision of
the future, since we are decentralizing some of the processing and distributing
it.
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