
Pedro Igor Porfírio Sampaio

A Study on Pervasive Games Based on the
Internet of Mobile Things

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Informática.

Advisor : Prof. Bruno Feijó
Co-advisor: Prof. Markus Endler

Rio de Janeiro
October 2018

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Pedro Igor Porfírio Sampaio

A Study on Pervasive Games Based on the
Internet of Mobile Things

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Informática.
Approved by the undersigned Examination Committee.

Prof. Bruno Feijó
Advisor

Departamento de Informática – PUC-Rio

Prof. Markus Endler
Co-advisor

Departamento de Informática – PUC-Rio

Profª. Noemi de La Rocque Rodriguez
Departamento de Informática – PUC-Rio

 Rio de Janeiro, October 2nd, 2018

 Augusto Cesar Espíndola Baffa
Centro Tecnico Cientifico – PUC-Rio

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

 Centro Tecnico Cientifico – PUC-Rio

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

All rights reserved.

Pedro Igor Porfírio Sampaio

The author has graduated in Computer Science by the Uni-
versity of PUC-Rio (Rio de Janeiro, Brasil) in the year 2015,
enrolling for a Master’s Degree in Computing at PUC-Rio in
the year 2016.

Bibliographic data
Sampaio, Pedro Igor Porfírio

A study on pervasive games based on the internet of
mobile things / Pedro Igor Porfírio Sampaio ; advisor:
Bruno Feijó ; co-advisor: Markus Endler. – 2018.

119 f. : il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2018.

Inclui bibliografia

1. Informática – Teses. 2. Jogos pervasivos. 3. Internet
das coisas. 4. Internet das coisas móveis. 5. Jogos mobile. 6.
Sensoriamento participativo. I. Feijó, Bruno. II. Endler,
Markus. III. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

To my parents, family and friends, for their support
and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Acknowledgments

I would like first to thank my advisor Bruno Feijó and co-advisor Markus
Endler for the support and for guiding me through all the work. In addition,
I want to thank all professors that were part of my formation, in special Ivan
Filho, Luiz Seibel, Noemi Rodriguez, Simone Barbosa and Edward Hermann.

I would also like to thank my parents Pedro Porfírio and Fátima Curvelo, for
all the encouragement and love. Sadly, my father was not able to see the final
results of this work, but I will never forget all the support I have throughout
my whole life.

I want to thank my girlfriend Lívia Moreno, my brother Pedro Ivo and
his girlfriend Lívia Mezavila, my grandmother Waldiceia Curvelo, my uncles
Arenildo dos Santos and Pedro Sérgio, my aunts Patrícia Curvelo and Monica
Reis and my cousins Isabelle Curvelo, Caroline Curvelo, Beatriz Reis and
Letícia Reis for all the love and support.

Additionally, I want to thank all my friends, in special Matheus Arnaut, Marcos
Arnaut, Bruno Cister, Ruben Perorazio, Raphael Vassal, Rafael Cipriani,
Felipe Cipriani, Thiago Cipriani, Walter Trajano, Angelo Gomes e Breno
Costa, for the support and friendship throughout my whole life. A special
thanks to Luiz Pitta, Fernando Abreu, Lucas and Augusto Baffa for always
providing me with advice that helped me during my time in the University.

Finally, I want to thank my colleagues of the laboratories ICAD and LAC.
In special, I want to thank José Paulo, Luís Fernando, Douglas Silva and
Felipe Carvalho for helping me throughout my research. Also, I want to thank
Leonardo Abreu, Rafael Damázio, Daniel Zimmer, Jhonatha Neves and Ana
Clara.

Lastly, I would like to thank all the people from the Department of Computing,
in special Vagner Pires, Marcelo Alves, Marcos Pawlowski, Regina Zanon and
Cosme Pereira.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Abstract

Porfírio Sampaio, Pedro Igor; Feijó, Bruno (Advisor); Endler, Mar-
kus (Co-Advisor). A Study on Pervasive Games Based on
the Internet of Mobile Things. Rio de Janeiro, 2018. 119p.
Dissertação de mestrado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.

Mobile pervasive games are a game genre that combines the real
and virtual worlds in a hybrid space, allowing interactions with not only
the virtually created game world, but also with the physical environment
that surrounds the players. The Internet of Mobile Things (IoMT) specifies
situations in which devices on the Internet of Things (IoT) can be moved or
move autonomously, while maintaining remote connectivity and accessibility
from anywhere on the internet. Following the huge success of recent mobile
pervasive games and the coming IoT boom, we provide an integration for
all the technology involved in the development of a mobile pervasive game
that incorporates IoT devices. We also propose a mobile pervasive game
that evaluates the benefits of the union of both fields. This game prototype
explores ways of increasing the experience of players through pervasive
mechanics while taking advantage of the player’s motivation to perform
sensing tasks. It also incorporates serious applications into the gameplay,
such as the localization of facilities and services.

Keywords
Pervasive Games; Internet of Things; Internet of Mobile Things;

Mobile Games; Participatory Sensing.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Resumo

Porfírio Sampaio, Pedro Igor; Feijó, Bruno; Endler, Markus. Um
Estudo Sobre Jogos Pervasivos Baseados na Internet das
Coisas Móveis. Rio de Janeiro, 2018. 119p. Dissertação de Mes-
trado – Departamento de Informática, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

Jogos pervasivos móveis são jogos que combinam os mundos real e vir-
tual em um espaço híbrido, permitindo interações não apenas com o mundo
do jogo virtualmente criado, mas também com o ambiente físico que envolve
os jogadores. A Internet de Coisas Móveis (IoMT) especifica situações em
que os dispositivos na Internet das Coisas (IoT) podem ser movidos ou se
moverem de forma autônoma, mantendo conectividade remota e acessibili-
dade de qualquer lugar na Internet. Seguindo o enorme sucesso dos recentes
jogos pervasivos móveis e a iminente expansão de IoT, nós fornecemos uma
integração para toda a tecnologia envolvida no desenvolvimento de um jogo
pervasivo móvel que incorpora dispositivos IoT. Também propomos um jogo
móvel pervasivo que avalia os benefícios da união de ambos os campos. Este
protótipo de jogo explora maneiras de aumentar a experiência dos jogado-
res através de mecânicas pervasivas, aproveitando a motivação dos jogadores
para realizar tarefas de sensoriamento. O jogo também incorpora aplicações
sérias na jogabilidade, tais como a localização de instalações e serviços.

Palavras-chave
Jogos Pervasivos; Internet das Coisas; Internet das Coisas Móveis;

Jogos Mobile; Sensoriamento Participativo.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Table of contents

1 Introduction 15
1.1 Main Challenges 16
1.2 Motivation and Goals 17
1.3 Contributions 18
1.4 Methodology 19
1.5 Document Structure 19

2 Related Work 20

3 Overview 23
3.1 The Game 23
3.2 Pervasive Mechanics 24

4 Development and Runtime Environment 29
4.1 Android Studio 29
4.2 ContextNet Middleware 29
4.3 LibGDX Framework 30
4.4 2DMapBuilder Map Editor 31
4.5 Gradle Build Tool 32

5 PUCmon Development 33
5.1 Client-Server Architecture 33
5.1.1 Communication Architecture 33
5.1.1.1 Message Classification 33
5.1.1.2 Message Distribution 34
5.1.2 Database Architecture 36
5.1.2.1 Database Model 36
5.1.2.2 Database Integration 37
5.1.3 Account Management 38
5.2 LibGDX Coordinate System 39
5.2.1 Touch Coordinates 40
5.2.2 Screen Coordinates 40
5.3 Screen State Architecture 40
5.3.1 LibGDX Game Loop 41
5.3.2 State Design Pattern 41
5.4 Multiple Language Support 43
5.5 Configuration File 45
5.6 Text System 45
5.7 Sound Effects 46
5.8 Map 47
5.8.1 2DMapBuilder Integration 48
5.8.2 Optimized Map Rendering 49
5.9 Game’s Camera 51
5.10 Animation Architecture 52

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

5.11 Collision Detection 54
5.11.1 Collision Architecture 55
5.11.2 Collision Mapping 57
5.11.3 Optimized Collision Check 58
5.12 Character 58
5.12.1 Character’s Level System 58
5.12.2 Character’s Attributes 60
5.12.3 Character’s Inventory 60
5.13 Items 61
5.14 Enemies 63
5.15 Battle 64
5.16 Ranking 66
5.17 Market 67
5.18 Pervasive Map 68
5.19 Sensor Search 70

6 Evaluation 72
6.1 Experiments with Students 72
6.1.1 Experiment A 72
6.1.2 Experiment B 75
6.2 Performance Tests 78
6.2.1 Latency Tests 80
6.2.2 Rendering Performance 81

7 Conclusions 83
7.1 Future Works 85
7.2 Recommendations 87

Bibliography 89

A Setup Guide 94
A.1 Android Studio Setup 94
A.2 LibGDX Project 94
A.3 ContextNet Setup 95
A.3.1 SDDL Core Setup 96
A.3.2 Mobile Hub Setup 97
A.4 Gradle Setup 99
A.5 Database Setup 100

B Android Manifest File 104

C Gradle Build Files 107
C.1 Root Folder Gradle File 107
C.2 Android Folder Gradle File 109
C.3 Core Folder Gradle File 113

D SQL Schema File 115

E Data Source Factory 119

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

List of figures

Figure 3.1 Experimental game created for the research 23
Figure 3.2 Experimental game missions system screens 25

Figure 4.1 Experimental game client-server and sensor communica-
tions model 30

Figure 4.2 Example map in 2DMapBuilder map editor 31

Figure 5.1 Messages classification architecture illustration 34
Figure 5.2 Message distribution architecture illustration 35
Figure 5.3 Database Model generated in phpMyAdmin 37
Figure 5.4 Database properties file example 38
Figure 5.5 Account creation screens 38
Figure 5.6 Y-down Coordinate System 39
Figure 5.7 State architecture overview 43
Figure 5.8 English and Portuguese property files 44
Figure 5.9 Game’s BGM in FamiTracker software 46
Figure 5.10 2D game camera illustration 51
Figure 5.11 2D sprites example 53
Figure 5.12 Animated entity state machine 54
Figure 5.13 Collision system illustration 56
Figure 5.14 2DMB collision tool usage 57
Figure 5.15 Level progress chart illustration 59
Figure 5.16 Character attributes example 60
Figure 5.17 Fully equipped character inventory 61
Figure 5.18 Golden Skull Legs effects at level 25 63
Figure 5.19 Enemy with random traits generated for battle 64
Figure 5.20 Battle screen showing the fight with a generated enemy 65
Figure 5.21 Steam charts of games with most current players showing

Clicker Heroes 66
Figure 5.22 Ranking with the game’s top players 67
Figure 5.23 Market buy tab containing showing items being sold 68
Figure 5.24 Native code interfacing scheme 71

Figure 6.1 Chart representing number of men and women in the
stand throughout the event 75

Figure 6.2 Temperature time series throughout the event in the stand 76
Figure 6.3 Humidity time series throughout the event in the stand 76
Figure 6.4 Average score of the male bathroom used in the experiment 79
Figure 6.5 Average score of the female bathroom used in the exper-

iment 79

Figure A.1 Android Studio SDK Location configuration 95
Figure A.2 LibGDX Project Generator 95
Figure A.3 Command line that deploys gateway locally 96
Figure A.4 Mobile Hub application 98

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Figure A.5 Android manifest file services declaration 98
Figure A.6 Android Studio studio.vmptions file 99
Figure A.7 Gradle local and remote dependencies 100
Figure A.8 Android libs folder (left) and core libs folder (right) 101
Figure A.9 XAMPP web server with Apache and MySQL services on 101
Figure A.10 The phpMyAdmin page accessed locally 102

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

List of tables

Table 6.1 Client-server latency tests (ms for milliseconds) 80
Table 6.2 Game screens FPS rendering tests 81

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

List of Abreviations

IoT – Internet of Things
IoMT – Internet of Mobile Things
M-Hub – Mobile Hub
M-OBJ – Mobile Object
SDDL – Scalable Data Distribution Layer
BLE – Bluetooth Low Energy
WPAN – Wireless Personal Area Network
WWAN – Wireless Wide Area Network
GPS – Global Positioning System
RPG – Role-Playing Game
MMORPG – Massively Multiplayer Online Role-Playing Game
2DMB – 2DMapBuilder
IDE – Integrated Development Environment
SDK – Software Development Kit
JDK – Java Development Kit
DDS – Data Distribution Service
MR-UDP – Mobile Reliable User Datagram Protocol
IP – Internet Protocol
SQL – Structured Query Language
LAN – Local Area Network
WAN – Wide Area Network
URL – Uniform Resource Locator
JDBC – Java Database Connectivity
API – Application Programming Interface
UI – User Interface
NPC – Non-Player Character
BGM – Background Music
MP3 – Moving Picture Experts Group Layer-3 Audio Format
OGG – Ogg Audio Format
WAV – Waveform Audio Format
XML – Extensible Markup Language
DOM – Document Object Model
FPS – Frames Per Second

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

You should enjoy the little detours to the
fullest. Because that’s where you’ll find the
things more important than what you want.

Yoshihiro Togashi, Hunter x Hunter, Vol. 32.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

1
Introduction

The Internet of Things (IoT) is a network of objects of our day-to-day life
that are capable of communicating with each other, aiding in data collection
as well as helping people perform tasks, learn, or simply amuse themselves. In
this work, we are interested in a new concept proposed and developed by the
authors of [1]: the Internet of Mobile Things (IoMT). IoMT refers to scalable
situations in which connected objects can be moved or move independently and
yet remain remotely accessible and controllable from anywhere on the internet.
In [1], the authors team proposed the concept of Mobile Hub (M-Hub) which
is a mobile service of middleware responsible for discovering and opportunely
connecting to objects that may be stationary or mobile that are accessible only
through short-range WPAN technologies. It uses BLE technology for its low
energy consumption and for having a reasonable range that floats around fifty
meters to one hundred meters. The M-Hub (which runs on smartphones) also
provides context information of objects that are in their neighborhood (such as
approximate location, if they are in movement or not, what is the luminosity
of the environment, ...).

Mobile pervasive games are very different from traditional digital games
because they merge the real and the virtual worlds in a hybrid space. In
these games, players use mobile devices to move around and interact with
elements of the real world, interacting with physical locations and objects, and
incorporating real-world properties into the narrative about the game. In this
context, the technology that provides the link between the real and the virtual
world usually is the GPS (Global Position System), but some works regarding
the use of IoT devices such as sensors and actuators have shown the potential
of expanding the variety of technologies in pervasive games. Besides enhancing
the value of a game, this variety of technologies also increases the possibilities
regarding other applications that can be integrated in the pervasive game, such
as participatory sensing tasks and other serious applications.

Participatory sensing is the process by which individuals and communi-
ties collect and analyze information in a ubiquitous way, using smartphones
and cloud services, to form a body of knowledge capable of bringing them to
discoveries and to a better quality of life and citizenship [5, 6] e.g. identifying

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 1. Introduction 16

full trash cans that need to be emptied. Individuals can help gather sensor data
in the environment that would be problematic to get automatically through
dedicated devices, by simply sharing their internet bandwidth to act as a mean
for retrieving data that is collected by a variety of sensors that are in locations
that are not connected (or connectable) to the Internet, or simply do not have
the required Wireless WAN (3G/4G) connectivity for such operation.

Serious applications refer to the sphere of applications where the main
goal is not entertainment of the user. Instead, serious applications aim at
providing solutions for real activities that the user go through, striving for
automatizing and increasing the efficiency of the realization of such activities.
They can range from bank transaction applications to schedule organizer
applications. In this project, we focus on serious applications that are related
to the activities of students, such as the use of the campus library services.

In the context of pervasive games, where there is an intrinsic motivation
that the entertainment aspect brings, we intend to explore the integration
of both participatory sensing tasks and serious applications in the game
mechanics, analyzing the outcome of the integration in relation to the game
experience. We use our University Campus as an area of experiment, where
students have several services at disposal, such as libraries and laboratories,
and can also contribute by providing reports that better the campus quality of
life e.g. defective lamp posts, full trash cans, bathroom malfunctions, broken
air conditioners.

1.1
Main Challenges

To integrate all development aspects of a project can be a highly de-
manding task. When it comes to developing games, the usual first develop-
ment decision is to choose a game development framework that will help the
development process, which can be already a tricky task. Another problem
that may arise is the integration of the framework with other libraries used in
a project. Pervasive games are a type of game that includes other technologies
due to its nature of integrating the real environment with the virtual world. On
top of that, pervasive games may include online features that involves client-
server communication technologies. Lastly, if we extend the pervasive devices
in use, with devices such as sensors and actuators, we also need the technology
capable of communication with such devices. The integration of all these com-
ponents can be very time consuming, leading to extra development costs, as
the amount of diversity in the technology hardens the task of integration with
no guarantee of the desired result. Thus, to have all the necessary technologies

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 1. Introduction 17

for this project features, we propose the use of the frameworks and libraries
used to achieve our goals, later detailed in this document.

One of the challenges of participatory sensing is engaging people to use
the 3G / LTE / 4G bandwidth of their devices and to collect data from
distributed sensors in a region in order to contribute to the data collection
periodically and with the greatest possible coverage of the region of interest.
To aid in achieving this, the user can be rewarded with real-world or virtual
incentives, such as points, coins, strength or special abilities of his/her game
characters. Many of such incentives are present in games, and if it’s a pervasive
game, the user (player) may be encouraged to move to specific physical places
(such as in games like Pokémon Go) and, thus, contribute to participatory
sensing. In short, with the game, the participatory data collection process
through sensor visits can consider the inherent motivation in the processes of
entertainment, learning and socialization. Regarding this, we speculate that,
for example, geographic areas may be well covered by a smaller number of
participants if these participants are more mobile, which is in turn achieved
by motivating them with game-specific incentives.

1.2
Motivation and Goals

The IoT market has been rapidly growing in the last few years, with
huge investments in the area by both small and big companies. This rapid
growth shows the potential for a future where everything in our surroundings
may become part of the a huge mesh (or network) of IoT smart objects, where
some may be mobile, such as tags attached to dogs, mobile robots, keychains,
etc. The recent boom of pervasive games, with games with huge success such
as Pokémon Go [19], shows that this style of game has great promise that
can be explored, resulting in new pervasive games that are constantly being
announced. In this project, we use the middleware proposed in [2] to support
IoMT applications: ContextNet IoMT, in which we use smartphones as a hub
resulting in a cheap connection with smart things that do not have WWAN
connectivity. More specifically, we intend to explore new paradigms, methods
and techniques of pervasive games combined with the IoMT concept.

In the proposal of this project, we advocate that the combination of
pervasive games with IoMT allows for the emergence of a new dimension
of participatory sensing, which is the dimension related to entertainment,
learning, and socialization. Through the incentives that are present in games,
we intend to explore ways of motivating players to perform participatory
sensing tasks.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 1. Introduction 18

In addition to the main objectives of the game related to entertainment
and the knowledge of the university environment, we also explore some serious
applications related to the activities of students. In this way, we have the
expectation that techniques of presence recording integrated in the the game,
where the the connection with sensors is used to register attendance in
classroom, may shine a light on automatic classroom attendance checking.

In summary, this project aims to explore and discuss the possibilities of
integration of sensors and actuators of IoMT in a context of pervasive games
with the use of mobile devices, exploring the integration of serious applications
and participatory sensing in the game’s mechanics. For this, we present a
RPG (Role-Playing Game) online game that uses ContextNet’s IoMT [2] tools
to enable communication with IoMT sensors and actuators. We also discuss
the whole process of integrating all the pieces (IDE, build tools, frameworks,
etc...) that compose the development environment in order to guide future
efforts. Thus, we make our integration available as a platform that can be
easily adapted to define other games, with other sensors and other examples
of participatory sensing and serious applications, as the integration provided
enables the full use of a game development framework allied with the ability
of communication with IoMT devices through ContextNet middleware.

1.3
Contributions

The main contributions of this dissertation are:

• The field test and evaluation of an experimental pervasive online game
that aligns concepts of IoMT and participatory sensing;

• A guide for the integration of the ContextNet’s IoMT tools with libGDX
framework and other building blocks that composes the development of
a pervasive online game with IoMT devices integration;

• Research with students in the PUC-Rio campus where we evaluate
the degree of user satisfaction with the game, the possibility of the
integration of serious applications (e.g. spatial guide of the campus) and
participatory sensing tasks;

• Recommendations based on the experience of developing pervasive mo-
bile games with the ContextNet middleware aligned with IoT devices,
serious applications and participatory sensing tasks, such as security rec-
ommendations.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 1. Introduction 19

1.4
Methodology

Once the experimental game was ready in a suitable state for tests, we
prepared experiments that were composed of a sequence of tasks in the game
for players to conclude. Each player that was subject of the test completed
the whole pack of tasks in the game while being observed. During the test
of the game, the test subjects (students) were encouraged to take their time
to finish the tasks without any hurry. After completing the tasks, each player
headed to a personal interview that assessed their overall experience with the
game, as well as their perception of the integration of serious applications and
participatory sensing in in-game mechanics. The interview was composed of a
sequence of questions related to the game experience, and the answers were all
logged to be further analyzed.

1.5
Document Structure

From this point on, this document is organized in the following chapters:

• Chapter 2 - Related Work: This chapter provides other works that
are related to pervasive games, including works that associates IoT and
participatory sensing with these type of games.

• Chapter 3 - Overview: In this chapter, an overview of the experimental
game features and gameplay, focusing on the pervasive mechanics, is
introduced.

• Chapter 4 - Development and Runtime Environment: The Devel-
opment and Runtime Environment chapter gives a detailed explanation
of the elements that composes the project.

• Chapter 5 - PUCmon Development: This chapter is responsible
for providing game developing algorithms and architectures used in the
project, as well as detailing some developing aspects of the components
used.

• Chapter 6 - Evaluation: In this chapter we display and discuss the re-
sults obtained on the evaluation of performance and public experiments.

• Chapter 7 - Conclusions: This chapter contains the conclusions about
this work, as well as some suggested future works and recommendations.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

2
Related Work

There are few works relating pervasive games and IoT. A close reference
is the one developed in [27], in which the authors propose the combination
of interaction and gamification tactics for the design of new experiences of
pervasive IoT games.

The use of game design elements in non-game contexts defines the act of
gamification [38], and it is extensively used in several different contexts, usually
striving for encouraging user motivation. This tactic has also been proposed
in the context of participatory sensing, with researches demonstrating how
gamification can be used as an incentive to increase user participation on
participatory sensing tasks [36, 37].

Another reference related to the objectives of pervasive games associated
with IoT and participatory sensing can be found in [7]. The authors of this
paper developed a game on the campus of New Jersey Institute of Technology
to analyze what kind of incentive can be given so that sensoring tasks (i.e.
collecting large amounts of data extracted from the real physical world) are
performed with efficiency. This type of task is known as crowdsensing and
crowdsearch [8].

The relation between pervasive computing and IoT is analyzed in the
special issue of IEEE magazine of 2016, where the author indicates that
both communities are pursuing similar use cases, including smart cities,
environmental monitoring, agriculture, home automation, and health and
wellness monitoring. [9].

Requirements engineering methods for mobile pervasive games are pro-
posed in [3, 4, 10]. According to the proposed work, the designer of a pervasive
game should meet the largest number of quality requirements specified by the
proposed method, which proposes a series of questions (called checklist) re-
lated to different aspects of a pervasive game, such as spatiality, which refers
to aspects related to the physical space usage. Designers can use the set of
questions to evaluate pervasive game qualities (and thus, pervasiveness) in
existing projects [3].

The human sense of territoriality, i.e., the sense of ownership or occu-
pancy of areas and possessions, has been explored in a large number of games,

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 2. Related Work 21

even before the era of digital games e.g. Risk. In [11], the authors analyze
ways in which the sense of human territoriality can be expressed in games that
are based on real-world player locations using devices such as GPS. After the
development of a pervasive game called City Conqueror, in which the players
can conquer physical location in their surroundings, deploy units to defend
their territories and attack other players that are in their physical proximity, a
survey with players of the game has been conducted. As a result of the survey,
the authors concluded that the players prefer to claim real places instead of
virtual territories and prefer to play in the real world with people around them.
This promising result demonstrates the potential in uniting the physical world
around the player with the virtual world of games.

The first successful pervasive game that explored the physical environ-
ment around players through GPS devices as an integral part of gameplay was
the game Ingress [12]. Ingress is a mobile game based on the physical location
of the players and in augmented reality developed by the company Niantic,
released in 2012 [13]. Ingress, through its game mechanics, encourages play-
ers to explore and travel more, looking for new places and experiences both
in the game and in the real world [14]. Games that promotes this behaviour
have the potential to incorporate IoT devices and participatory sensing tasks
in a smooth and logical manner. Ingress was a huge success, being installed
by more than 11 million people in its first two years of existence and having
a number of active users around one million in 2015 [15]. Experts estimate
that players have collectively walked 258 million kilometers due to the game
by 2015 [16]. This kind of impact invites researchers to reflect on how to use
pervasive games for serious applications, such as applications for education,
culture and crowdsensing.

Pokémon Go has recently reached the apex in terms of success of a
pervasive mobile game [17, 18], obtaining the status of most popular game
of all time [19]. One of the reasons for this lies in its mechanics that uses GPS
devices to integrate physical locations to its gameplay, in a very similar manner
compared to the game Ingress. This similarity is not by chance, since Ingress
is treated as a precursor of Pokémon Go [20] and both were developed by the
company Niantic. Launched in 2016 [17, 18, 20], Pokémon Go has surpassed
US$1 billion in revenue [22] and continues with a large number of players until
today, reaching an amount of 65 million players active monthly in 2017 [21].
Naturally much of the success is also due to the popularity that already existed
around the series of games Pokémon [20], but it is clear the influence that the
use of IoT devices as vital functionality of the game had in capturing the
attention and interest of people.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 2. Related Work 22

The game Pokémon Go has also generated benefits that were not fully
expected in its design such as improved health of sedentary people and
positive outcomes with autistic children. Negative results, such as accidents,
also deserve special attention (there are several reports in the media about
such accidents). The company Niantic even developed a wearable device
(Pokémon Go Plus) that allows the player to do some actions (e.g. capture a
Pokémon, with some limitations) without using your smartphone. In addition,
a newer version of Pokémon Go now includes a speed limit. However, these
improvements are still far from solving the main issues with security and social
rightness. This question of unintended consequences in pervasive game design
(with special mention to the Pokémon Go) can be found in an article of the
laboratory ICAD / VisionLab [10].

New pervasive games are being announced every day, taking advantage of
the recent success and attention achieved by games of the genre. The success
of Pokémon Go did not stop the ambitions of the Niantic company, which
announced a new pervasive game, this time based on the universe of the famous
series of books and movies Harry Potter. The game, entitled Harry Potter:
Wizards United, is set to launch in 2018, however details about its gameplay
are scarce [23]. Another famous series that will also serve as universe for a new
pervasive game is the comic book and TV series Walking Dead. The game,
called Walking Game Dead: Our World, will allow players to fully immerse
themselves into the action of the TV series, but there is still no launch forecast
[24]. Finally, Universal announced the game Jurassic World Alive, based on
the famous series of movies Jurassic Park, which will have a similar model to
Pokémon Go, only this time players will be collecting dinosaurs [35].

Having the pervasive game and IoT literature as background, as well as
the recent released pervasive games popularity, we designed an experimental
online pervasive mobile game that expands beyond the use of GPS devices as
an integral part of the gameplay, by integrating short-range WPAN compatible
devices, such as sensors and actuators, in the game as a core feature of
the gameplay, exploring the possibilities and challenges of this approach,
particularly with participatory sensing and serious applications integration.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

3
Overview

This chapter provides an overview of the experimental game’s main
features and gameplay, highlighting its pervasive mechanics. Giving a brief
illustration of the game’s universe, we intend to better elucidate how the game
combined with its pervasive features works, while showing benefits and the
potential for using IoT devices in pervasive games.

3.1
The Game

Figure 3.1: Experimental game created for the research

Figure 3.1 shows the experimental game developed for Android smart-
phones, a 2D tile-based role-playing game (RPG) game inspired in the popular
RPG series Pokémon [28], and the object of our research. To aid in the de-
velopment of the game scenario, the 2D tile-based map editor 2DMB [29] was
used, since it was created with this exact purpose.

As stated before, the game also has online features that strive for increas-
ing players experience and motivation introducing competitive and cooperative

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 3. Overview 24

mechanics between all players, in the molds of MMORPGs (Massive Multi-
player Online Role-Playing Games), a genre known for its ability to encourage
intrinsic motivation and prolonging the interest in the game [30]

With features such as infinite character evolution, infinite variation
of character equipment and enemies, battle system based on idle games
[31], mission system inspired in popular RPG games, a detailed RPG based
attributes system that defines character strengths, allied with the online
mechanics, such as visualization of the top characters and item market place
where players can buy and sell items found in their adventure, we intended
to create a game universe capable of motivating and earning players interest,
where the goal relies on a continuous quest for becoming stronger by battling
enemies and completing missions, pursuing the top spot in the ranking of game
players. In this universe, we introduce the use of IoT devices and the pervasive
aspect of the game through the mission system, providing a natural integration
that is explained in the next section.

3.2
Pervasive Mechanics

We wanted to introduce the pervasive features in the most natural way
accordingly to the game characteristics, with the goal of not getting away from
the game’s RPG roots, in order to be able to integrate pervasive sensing tasks
into the gameplay in a plausible manner.

One of the main online RPG gameplay element is the existence of
missions that players undergo to advance in the game storyline, offering
rewards to players at the end of each mission. This particular artifice was
one of the traits that influenced in our game style choices, as we considered
it a very flexible and straightforward way of integrating pervasive elements,
including participatory sensing and serious applications tasks.

With that in mind, we developed a pervasive mission system that is
illustrated in figure 3.2. A mission is directly related to a real location in the
game’s pervasive map, that is, in our experiment, the campus of our university.
Each mission is associated to an IoT device. The general flow of the mission
system consist in:

1. Finding the IoT device associated to the mission through the mission
description and the map guide, as exemplified in the first image of figure
3.2;

2. Accessing the found IoT device through the sensor interaction screen of
the game, as shown in the second image of figure 3.2;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 3. Overview 25

3. Following in-game instructions (third image of figure 3.2) to get the mis-
sion’s reward, such as experience points, in-game currency and character
equipment.

Figure 3.2: Experimental game missions system screens

In the system, a mission can precede other missions and be repeatable,
which means that the player can repeat it after a certain amount of time. Also,
the mission reward may be locked by a code (as shown in the third image
of figure 3.2) and/or request player inputs if desired. Those characteristics
gives more flexibility to the integration of pervasive duties. To better illustrate
how these behaviours help the integration, some possible pervasive missions
implementation are detailed hereinafter.

For student class attendance registration, a possible implementation is a
mission that rewards players that attend a particular class, where the professor
is the one responsible for carrying the mission IoT device and having it enabled
during class time. Naturally, there are more than one lecture, so we need to be
able to repeat the mission, thus this mission should be repeatable. Moreover,
we can try to cover early departures by adjusting the mission interval of time
to match somewhat the class length, so students can complete the mission
on arrival and on departure. Another approach is to simply measure the time
that each student was in the sensor’s range. To be able to properly register a
student attendance, some kind of student identification is necessary, so there
is a need to tie this mission to an input that is related to the identification.
One more thing we can do with the mission system in this case is to add a

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 3. Overview 26

code to this mission that can help avoiding rewarding students that are not
enrolled in the class, since this code can be only disclosed to students of the
class. Of course, in addition to fulfilling the attendance quota, each time a
student of the class registers presence through this mission, rewards are given
in-game, while the student data is sent to the server. Further automation can
be researched to optimize the process, such as the automatic connection with
sensors without any need of manual operations and the automatic mapping of
each student id for presence registering in the database.

There are two layers of data that players can help collecting: data
obtained through autonomous IoT devices and data that are not easily
obtained through this kind of devices. Either way, the player helps improving
the data collection of his surroundings either by sharing his bandwidth to
retrieve local sensing data or by additionally being the agent responsible for
data collection. Missions in which the attached sensor also collects sensing data
should inform the player that he is being responsible for sending the collected
data to the servers, and properly acknowledge the contribution. The mission
can require extra input from the player if the data is not obtained by the
sensor alone, as the player is asked to contribute even more with the data
collection. In this case, a suitable in-game reward should be given by the end
of the mission. Bear in mind that missions of this kind don’t necessarily need
to be disassociated from the virtual storyline, as it can be integrated with in-
game quests i.e. "to find a suitable place for the plantation, find a place with
convenient climate".

Missions related to the spatial guide of the campus are simple to
implement in the system. Since the system consists of an pervasive map (as
of now, the campus of PUC-Rio) and each mission is tied to a location of the
pervasive map, we can add numerous campus locations that we want to be
part of the spatial guide of the pervasive map, with each location having their
own missions. With that in mind, we are able to create an interactive guide
map that encourages the exploration of the campus by rewarding the players
on visiting missions completion. For each location, a visiting mission can be
added to encourage players to visit the location, helping new students to get
to known important campus facilities. This type of mission is conveniently
easy to implement with simple proximity sensors, that are usually cheap, and
we have a more precise interaction with a location if compared to the use of
GPS only, since we can place the sensor exactly where we want the location
i.e. a laboratory that is located at the seventh floor of a building, in the first
room to the left. More specific missions that aligns with students needs can
also be part of an location i.e. a mission from a laboratory that rewards the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 3. Overview 27

player when a registration is fulfilled. This precision is not possible with only
GPS, as it does not provide vertical positioning of a device. Other problem
that can affect GPS accuracy is known as "GPS drift", where the positional
information obtained from GPS satellites are affected mostly by the changing
GPS satellite constellation patterns used by the guidance device to derive
positional information [34].

The implementations described above only grasps the various existing
possibilities when it comes to the union of the virtual game world with the
real player world, but clarifies the potential present in the assimilation of IoT
devices in a context of pervasive games. More missions implementations are
described in chapter 6, where we describe our public experiments.

Some elements of using IoT devices in games were observed and can be
explored for increasing the experience of games, for boosting the potential of
the integration of participatory sensing tasks and for enabling the addition of
a larger variety of serious applications. These elements are hereby listed.

• The search for IoT devices can be guided by the game, allowing the search
for devices in any desired location, with a capacity of positioning on very
specific locations, such as specific rooms on buildings with several floors;

• The devices can be randomly found at chance, or through exploration
that is not directed to the exact location of the device, but to an area that
the device is within. This can boost player’s experience as it promotes
the exploration aspect of the pervasive game;

• Devices can be attached to moving objects or entities. This can give a
very interesting dynamic to the interactions with the devices, and can
be explored for numerous gameplay mechanics;

• The devices possess a short range communication technology, which
guarantees that the person in contact with it is near the sensor location.
It is also possible to limit the signal strength allowance for limiting even
more the distance of communication. This trait guarantees the presence
of players in a specific location with high precision, and can be used
for participatory sensing tasks and serious applications. For the sensing
tasks, we support that it is more likely that the data will be collected
with precision if the player is already at the location of the collection, as
the effort of reaching the location is already done;

• Similar to the last item, it is also possible to guarantee the presence of
groups of players in a specific location of any type through the short range
communication trait. Certain aspects of a pervasive game be benefited
from this characteristic, such as group missions that needs at more than

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 3. Overview 28

one player to be activated, increasing the variety of experiences that a
game can offer. This can also be used for any application that needs the
grouping of people in one specific place, including serious applications
and sensing tasks.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

4
Development and Runtime Environment

In this chapter we will detail the elements that composes the development
environment of this project. Moreover, a setup guide is provided in the
appendix of this document to aid in the preparation of any related project
that desires to integrate IoMT devices within mobile pervasive games through
ContextNet middleware [25]. Other tools used for the development of the game
will also be explained, such as LibGDX framework [39] and 2DMapBuilder map
editor [29].

4.1
Android Studio

When dealing with large projects, it is definitely recommended to work
with a Integrated Development Environment (IDE). On top of that, when de-
veloping applications for Android platforms, you will need specific development
kits and the ability to compile for that platform. With that in mind, we opted
for using the Android Studio IDE, which is one of the most recommended for
developing android applications [44].

4.2
ContextNet Middleware

Project ContextNet [2] aims at provisioning context services for wide-
and large-scale pervasive collaborative applications such as on-line monitoring
or coordination of mobile entities’ activities, and information sharing through
social networks. These entities may be users of portable devices, such as
smartphones, vehicles, or autonomic mobile robots. In the ContextNet project,
communication and context distribution capabilities are implemented in the
Scalable Data Distribution Layer (SDDL), while other services and extensions
are built as software modules on top of this distribution layer. Together, these
software modules forms the ContextNet middleware [25].

In the experimental game implementation, we took advantage of the
ContextNet middleware not only to enable discovery and communication with
IoMT devices, but also to create the game client-server architecture, through

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 4. Development and Runtime Environment 30

ContextNet Scalable Data Distribution Layer (SDDL). All communications
between the game client and the game server are achieved via the SDDL.

To be able to discover and connect with IoT devices, we used the Mobile
Hub API that extends the ContextNet middleware. More specifically, we
utilized one of M-Hub available services, called S2PA. The S2PA service is
responsible for discovering and monitoring nearby M-OBJs (IoMT devices)
that use the supported WPAN technologies. This service keeps a record of the
current provided sensors/actuators (e.g. temperature, accelerometer, humidity,
etc.) and publish the sensed information to all the components that require it
[26].

Both server-client communications and the use of the S2PA service
are illustrated in figure 4.1, which provides a better view of the game’s
communication functioning.

Figure 4.1: Experimental game client-server and sensor communications model

4.3
LibGDX Framework

LibGDX is a Java-based gaming development framework, with support
for different platforms (Windows, Mac, Linux, Android, iOS, BlackBerry and
HTML5), open source, fast and with various functionalities [39]. LibGDX was
chosen for the development of the pervasive game on the Android platform,
with the goal of facilitating development. It is a highly recommended frame-

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 4. Development and Runtime Environment 31

work for Android game development [43], with almost five thousand games in
its showcase gallery [42].

4.4
2DMapBuilder Map Editor

A tile-based game is a type of game in which the virtual world is
composed of small areas, usually rectangular, called tiles. The creation of the
world occurs by the joining of several tiles available for use, present in a group
of tiles commonly called tileset or tilemap [40].

To facilitate the creation of scenarios for tile-based games, a tile-based
map editor is usually recommended. This type of editor increases the efficiency
of the design of the world. 2DMapBuilder (figure 4.2) is an editor in a very
advanced state of development that turned out to be very helpful for the world
design of this project. 2DMB has the purpose of assisting in the creation of
the proposed game universe as it provides numerous editing tools [29].

Figure 4.2: Example map in 2DMapBuilder map editor

It supports square shaped tile maps, tilesets importing and layers man-
agement. Layers define a level of the map, which can overlap or be overlapped
by other layers. Each layer consists of tile groups that shape the different levels
of the map. This way, layers separate the content of the map giving the ability
to stack virtual objects in a 2D world e.g. a virtual table can be stacked on

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 4. Development and Runtime Environment 32

top of a carpet that is on top of a wooden floor. A tileset can be of any image
type and can contain one or many tiles. A tile has always a layer and tiles of
inferior layers are rendered behind those of higher layers. In 2DMB, layers are
automatically created and tiles are automatically set to their respective layer,
but it is also possible to manage them manually.

To create your map, you’ll have at your disposal several tools designed
to help the efficiency of map creation. The primary tool for painting is the
Brush Tool that allows you to paint a tile or a group of tiles into the map,
accepting well-known modifiers of selection Ctrl-Click and Shift-Click, as well
as drag-and-drop selection. The Eraser Tool will help you deleting single tiles
of your map shifting automatically between layers. Finally, the Select Tool will
give you the skill of cutting, copying, pasting and deleting a tile or a group of
tiles in the selected layer from the map.

In order to give you more control, 2DMB provides a state mechanism
that allows you to go back and forth in your map modifications, the famous
undo and redo operations. A detailed manual on how to use 2DMB can be
found in its documentation page [29].

To facilitate the parsing of the created map file, 2DMB’s own file
extension ".m2d" [41] was projected using XML notation and uses a simple
formatting for the map data.

4.5
Gradle Build Tool

Gradle is an open-source build automation tool focused on flexibility and
performance. It supports many major IDEs, including Android Studio, Eclipse,
IntelliJ IDEA, Visual Studio 2017, and XCode [46].

Gradle is responsible for enabling the integration with all the necessary
technologies, including the ContextNet middleware and the Mobile Hub com-
ponent, as well as the LibGDX game framework. To use a build tool such as
Gradle is not usually a hard task, but using it to integrate the framework
LibGDX with other necessary libraries for the development of an IoT perva-
sive mobile game ended up being an arduous work. This is due to the multiple
Gradle build files that the LibGDX framework generates, where each must be
correctly configured for the correct compilation of the project. To diminish fu-
ture efforts and avoid the headaches of the integration, we provide all working
Gradle build files configured for this project in the appendix of this document,
as well as a guide for using Gradle with the LibGDX framework in the A.4
section of the appendix.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

5
PUCmon Development

This chapter details several parts of this project, in order to guide through
the development process of the experimental game PUCmon and to better
clarify the traits of the game, hopefully paving the road for similar projects.

5.1
Client-Server Architecture

To enable the online features of the game, a major part of the game’s
workload is placed in the game server. The game server is responsible for
managing any data that can be of service for multiple clients, as well as storing
game character’s save data. Storing the save data of in-game characters into
the server allows users to switch devices while still being able to use their
characters. More details about the game server will be discussed ahead in this
section.

5.1.1
Communication Architecture

ContextNet’s SDDL layer provides the infrastructure to start develop-
ing applications capable of communication. There are plenty of tutorials in
ContextNet’s documentation [51] that will guide the initial implementation of
client-server communication.

Once the base client and server implementations are fully working,
meaning that the messages are being correctly sent and received, the desired
communication architecture can be implemented in accordance to what the
application requires, in order to facilitate further client-server operations.

5.1.1.1
Message Classification

To better organize the communication, the handling of messages was
isolated from both client and server implementations. In addition to that, we
used a type for every message sent, a classification that symbolizes the message
content. Those types range from sign up messages to market messages (the
market is an online feature of the game that allows players to buy and sell

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 34

virtual items to each other), and they help to standardize the structure of each
message. Each type of message also carries a information regarding the desired
action requested by the client. This helps to determine the needed operations
to fulfill that message goals, since messages of the same type can have different
intentions i.e. market message may be intended for item registration or item
withdraw in the market.

Figure 5.1: Messages classification architecture illustration

Figure 5.1 illustrates the message classification model. As can be seen in
the model, different types of messages have similar structure, containing a list
of possible actions for the type, as well as the current intended action for the
message and the message data. To be able to send the message via the SDDL
infrastructure, every message regardless of its type must be wrapped in the
Content field of the MessageContent object. Notice that the Content is a field
of the Java Serializable type, making every message also Serializable.

Finally, to be able to correctly unwrap the message content, the message
type should be known. Thus, the MessageContent object also carries the list
of possible message types as well as the type of the current message, enabling
the understanding of each message delivered.

5.1.1.2
Message Distribution

Following the above-mentioned strategy, each message received by both
client and server are sent to external handlers. The server handler is in charge
of identifying each message’s type and action, proceeding then to perform the
required operations, including database manipulations and data retrieving.
One detail not explicitly mentioned yet, is that each message also carries
the information about its sender, a feature that is present in the SDDL
infrastructure. This results in a easy way to reply received messages by the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 35

server, as even with multiple clients requesting data from the server, there is
no confusion to what client the message should be heading to.

The difficulty comes in another aspect of the communication: the distri-
bution of the messages within the client application. More explicitly, there is a
need to distribute the client’s received messages to the respective module that
prompted the server response message. The strategy adopted to distinguish
each recipient was to simply embed the module’s name within each message
sent. That way, the distinction can be easily made, the only requisite is that
the server includes this information on the reply.

With that in mind, we implemented a simple design that allows any
class to easily communicate to the server in both directions, facilitating the
development of the game’s client-server operations. The whole scheme of the
architecture is exemplified in figure 5.2.

Figure 5.2: Message distribution architecture illustration

As represented in figure 5.2, a class can send messages to the server via the
client module, but if the class intends to be able to receive server responses,
it needs to implement the interface named ServerListener. The moment a
class implements this interface, it becomes apt to be included in the list of
server listeners that is present in the client’s message handler, ServerMessages.
To be included in the list of server listeners, the class must subscribe to it
via the subscribeToServer() method. Once those requirements are met, for

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 36

every message received by the client, the class will be considered as a possible
recipient of the message, and if the class name matches the information carried
in the message, the method handleServerMessage(msg) of the class will be
invoked, passing the received message as an argument. That way, each class
object will handle received messages in the desired manner.

The explanations above aims to detail the design we implemented for
facilitating client-server operations. The goal is to facilitate the development
of future projects, but it does not mean that this is the only alternative. Surely
enough, there are better improvements or even better designs to begin with,
but since this architecture fulfilled our demands, we felt that it might be of
use for future projects.

5.1.2
Database Architecture

The game’s data is stored in the server-side, allowing users to play with
their characters on any device, as their account data is retrieved from the
server at login time. This means, that the game requires the user to have some
internet connectivity. As a safeguard measure, if the user happens to loose that
connectivity during the game, all new data regarding the game’s offline mode,
such as character evolution and item acquisition, are stored within the user
device, enabling the player to safely play the game offline, without loosing the
gameplay actions and effects, but restricted of online features. The data in the
mobile device is stored as key-value pairs using the Android SharedPreferences
API. Once the connectivity is regained, the data is then synced with the server
database.

5.1.2.1
Database Model

The game’s database is responsible for storing not only account data, but
also player’s items, market entries, registered real-world (IoT) device sensors,
and more. Figure 5.3 illustrates the game’s database model. Also, the appendix
contains the SQL schema file to act as a guide upon later projects.

The tables shown in figure 5.3 have the following purposes:

• accounts: Responsible for storing game accounts;

• players: Responsible for storing players of the game;

• market: Responsible for storing game market entries;

• player_items: Responsible for storing player’s inventory items;

• player_equipments: Responsible for storing player’s current equipment;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 37

Figure 5.3: Database Model generated in phpMyAdmin

• mission_storage: Responsible for storing player’s completed missions;

• sensors: Responsible for storing game’s registered sensors;

• sensors_input: Responsible for storing input of game’s registered sensors.

5.1.2.2
Database Integration

The Java Database Connectivity (JDBC) API provides universal data
access from the Java programming language. Using the JDBC API, it is
possible to access virtually any data source, from relational databases to
spreadsheets and flat files [52].

The JDBC API was chosen to be the interface between the Java language
and the database, since it is bundled within the Java Platform Standard
Edition (Java SE) 8 release [52] and supports MySQL. It is fairly simple to
use and should be no trouble in the development process.

Having said that, there are some helpful steps to organize the database
interface. First, using a properties file to store connection information as shown
in figure 5.4 is a nice way to manage the connection data. Also, creating a data
source factory that produces the data source object with all needed data to
connect to the database is also helpful, as it reduces duplicated code. Finally,
have a separated helper for database operations.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 38

Figure 5.4: Database properties file example

In case there are some doubts about creating the data source factory, the
appendix section contains the factory implementation used in this project.

5.1.3
Account Management

As discussed in previous section, the users must create accounts in order
to be able to play the game. On account creation, they also create their
characters, as shown in figure 5.5. Once the account and character are created,
the game is fully available to the users.

Figure 5.5: Account creation screens

There is one concern that needs to be addressed regarding the manage-
ment of player’s accounts. It is necessary to control the access to the game
world in regards to players that are already on in the game. This means that
a choice should be made, whether the new access should override the previous

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 39

one and drop the logged player, or the access of any player that is already
logged should not be possible. The later was the path we choose.

In any of the cases, there is a need to have a control of the online players.
One can argue that updating the online status of a player through log in and
log off is enough, but if the players lose connectivity before logging off, the
online status would not be changed. The work-around we did was having each
online player send a tick within a time interval. If at any moment a player tick
interval surpasses the stipulated limit, the online status changes to offline.

5.2
LibGDX Coordinate System

LibGDX framework has an extensive documentation that guides the
development of applications that uses the framework [39, 47]. It is similar
to many other game developing frameworks in several aspects, but there is a
rather peculiar aspect of the framework that should be specifically explained,
as it can cause some confusion - the LibGDX Coordinate System.

The most common usage of coordinates system in 2D games is the one
called y-down (figure 5.6), which utilizes the top-left corner as the origin and
the y grows in the down direction while the x grows in the right direction. It
is also how most of the 2D graphic editors work. Unfortunately, that is not
the case when it comes to libGDX. LibGDX coordinates system is tricky, as
it varies depending on the coordinates space where it is applied. We will focus
on the two main coordinates space used in this project: the touch coordinates
and the screen coordinates.

Figure 5.6: Y-down Coordinate System

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 40

5.2.1
Touch Coordinates

Whenever working with touch coordinates, the system used will be the
y-down, with the dimensions of the physical screen in pixels. Typically, those
coordinates tend to be converted to world coordinates, which represents our
virtual world, because a considerable part of the interactions done with the
screen aims to interact with the virtual world. This conversion process can
be done through simple mathematical operations, usually based on camera’s
position and zoom.

Note that when interacting with fixed UI elements, there is no need
for this conversion, as their position in screen is directly related to the
touch coordinates, but another complication can occur, since the rendering of
elements in the screen follows a different coordinate system by default, which
will be discussed in the next section.

5.2.2
Screen Coordinates

The system used in screen coordinates is called y-up. The difference when
comparing to the y-down is in the y axis, as the origin is now on the bottom-left
corner and the y grows in the up direction. This may cause a mismatch that
leads to future problems that can be avoided by standardizing the coordinates
system. Luckily, this can be easily done through a simple operation with the y
value. For instance, conversion from y-up to y-down would look similar to the
following in the code:

y = Gdx.graphics.getHeight() - y;

5.3
Screen State Architecture

A game is usually composed of several different screens. Most of the
time, the rendering of each screen is exclusive and separated from each other,
meaning that at any given moment, only one game screen is being rendered. An
approach that organizes the screen rendering of each menu with the same logic
just described is effective and should be used on any application with similar
characteristics. In this section, we will display our approach to the rendering
of the game screens in our project, hoping that it might be of use to others
who experience situations alike.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 41

5.3.1
LibGDX Game Loop

Before we describe the design we implemented, there is an important
aspect of this project that influenced in the decision for the pattern. LibGDX,
much like other game frameworks, provides a game loop architecture that
controls the execution of the game. The loop is composed of different callbacks
that have distinct jobs and are executed by the framework at distinct times.
These callbacks are only triggered in the main game module, which is the one
that extends ApplicationAdapter. The most important callbacks that are part
of libGDX framework are:

• create(): Called on application initialization only, should be used to
implement initial configurations and load static resources;

• render(): Called every frame before rendering, should be used to update
and implement what is to be rendered on the screen;

• pause(): Called when application is paused, should be used for operations
related to the pausing of the game;

• resume(): Called when application is resumed from a paused state, should
be used usually for the opposite operations of the pause() callback;

• dispose(): Called when the application is destroyed, should be used to
dispose allocated resources;

There other important callbacks, such as screen touch callbacks that
helps the control of user interactions, but we will focus on the game loop ones
to better explain the implemented state architecture.

A libGDX application should follow the provided architecture in order
to optimize the game development, and there is a way to expand it to create
an ideal architecture for the game screens, which will be discussed in the next
section.

5.3.2
State Design Pattern

The idea of the design is to treat each game screen as a state that is
exclusive, much like a state machine. In order to be able to transition between
each state with little effort, we used what is common to every state, the libGDX
game loop. By creating an interface containing the game loop methods that
act as a standard for each state, we are able to change the current state
with a simple variable attribution, with the only requisite being the interface
implementation.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 42

There is one more detail we must not forget, the game loop callbacks are
only called in the main game module, so we must delegate the execution of the
game, which means that the main game module will act mainly as a switch for
the different states of the game. To embed this idea in the libGDX game loop,
we can create in the main game module a variable that holds the current state,
which can be any object that implements the game state interface created. We
initialize the variable with the initial state of the game, and once an event
triggers the change of state, the main module simply needs to change the
current state variable to the new state. Since the main module only delegates
execution, there is no need to implement the game loop callbacks. Instead, it
should only delegate the execution to the current state. Bear in mind that on
the create() callback the main module should call every game states’ create()
method, to guarantee that every needed resource is initialized. The same goes
for the callback dispose(), to make sure every resource is disposed. For the
others callback, only delegating to the current state is enough, e.g.:

/**

* Called when the Application is resumed from a paused state,

* usually when it regains focus.

*/

@Override

public void resume() {

// pass the resume control for the current state being

rendered

currentState.resume();

}

Figure 5.7 gives an overview of the architecture of states in order to
aid in the comprehension of the implementation for the design in a libGDX
game context. It shows the main module having the currentState variable
that stores the current state of gameState type, the changeState() method
that changes between possible states of the game, and the callbacks that only
delegate execution. In the case of the create() and the dispose() methods, the
implementation is not visible for its extensive nature, as both should call every
game states, instead of only the current state. The interface GameState is also
displayed and several states that implements the interface are exemplified in
the overview.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 43

Figure 5.7: State architecture overview

5.4
Multiple Language Support

It is almost a must for every game in this moment in time to support
multiple languages in order to reach for larger audiences. LibGDX provides
a mechanism to help the organization and the implementation of multiple
languages in a game, through the I18NBundle class.

A I18NBundle provides Locale-specific resources loaded from property
files. A bundle contains a number of named resources, whose names and values
are Strings. A bundle may have a parent bundle, and when a resource is not
found in a bundle, the parent bundle is searched for the resource [53].

The property files should be related to each desired language containing
game strings in the respective idiom. Figure 5.8 shows an excerpt of the English
and the Portuguese property file used in this project.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 44

Figure 5.8: English and Portuguese property files

Once the properties are created, setting a language and using it is very
simple. You can set the language at any time in your code, so it is recommended
to provide the user an option to choose the language in a preferences menu.
The code below exemplifies the usage of the I18NBundle to clarify how it is
done.

// language bundle

I18NBundle langBundle;

FileHandle langFileHandle;

// language bundle initial creation

langFileHandle = Gdx.files.internal("language/language");

// creates locale with example language and country

Locale locale = new Locale("pt", "BR");

// creates language bundle with locale

langBundle = I18NBundle.createBundle(langFileHandle, locale);

// form this point on, any key word retrieved from langBundle

// is within the desired language

// example text 1 - gets the string in the current language

String play = langBundle.get("playStr");

// example text 2 - gets the string in the current language

formatting with

// the level information in the first argument of the string

simbolized by {0}

String levelInfo = langBundle.format("levelInfo", "10");

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 45

5.5
Configuration File

A good idea when dealing with creation of game applications it to exter-
nalize certain configurations to be able to tune it. This can be done in another
Java file or in a external resource file. In the later, no compilation is needed to
apply changes. The code beneath is an extract of this project configuration file,
showing some configurations that are very sensible to changes, as its regulation
is largely due to experimentation.

/*************************

* Reward rate constants *

*************************/

expRate = 1.0; // exp rate global modifier

goldRate = 1.0; // gold rate global modifier

dropRate = 1.0; // drop rate global modifier

The rate of experience, gold and drop are always being tuned to achieve
the proper difficulty desired, and this is not an easy adjust. It is vital that these
values are easy to change. This situation applies to diverse others parameters
of games. For those cases, having a configuration file, or even multiple ones,
can mean an improvement of the game’s development efficiency.

5.6
Text System

It is very common in the RPG genre to have a form of text system that
serves as a way to communicate with the player. These systems allows texts
to be displayed in a paced manner and appears on certain events in a game
such as NPCs conversations and battle information.

With that in mind, we designed a text system that has the ability to take
large portions of texts and automatically break down into smaller sections that
fits into the system background, that is displayed separately until the whole
text is finished. The displayed texts are compatible with the specified language,
as the source for the texts are placed in the property files of each language. For
each section displayed, there is an animation that prints letter by letter at a
fast rate, but if the player wants to speed up the animation, all that is needed
is a simple touch in the screen. When creating texts for the system, there is
a possibility to anchor it in different positions depending on what is best for
each specific tests i.e. top, middle, bottom.

We recommend that any similar text systems in game should have similar
characteristics, including an animation that smooths the text display and the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 46

option to speed it up, as long texts with slow paced animations may hurt the
player experience a bit. It is also important to block all game actions that
are not related to the text system while a text is being displayed, leaving the
player in a calm state of mind to read each text as nothing is interfering it.
Finally, it is also a nice practice to have a visual feedback representing that
there is more text ahead such as an animated arrow, which is the case of this
project’s system.

5.7
Sound Effects

Sound effects are a very important trait in any game, and they can elevate
the player’s experience to a whole new level if done correctly. From BGMs to
battle effects, nowadays the sound design in games is very valuable and is done
by professionals of the field.

Although we understand the valor of the sound design in a game, we
used copyright-free public sound effects to aid in the sound setting of the game,
since it is an experimental game. But, as a token of our appreciation for game’s
compositions, the game’s main themes were created from the scratch using a
free software (figure 5.9) that lets you compose tracks that resembles the 8-bit
era of games, which fits the universe of the experimental game. We intended
to express the importance of sound design in increasing the experience of a
game.

Figure 5.9: Game’s BGM in FamiTracker software

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 47

While we cannot contribute as much as we want when it comes to the
creativeness behind the composing of game sound effects, we can recommend
a way of dealing with the implementation of them in the game.

Implementing the sounds using libGDX is not a hard task, as it has all
the means to load a play audio files in several formats, supporting MP3, OGG
and WAV files [54]. In this project, we used familiar data structures to create
a sound bank that acts as a sound station in which it is possible to choose a
sound or theme to be played at any moment by its defined name tag. The code
beneath serves as an example of this idea implementation.

// enum with all avaiable sound effects

public enum Effect {Hit_Enemy, Critical_Hit_1}

// station containing all sounds to be played

private HashMap<Effect, Sound> stationSFX;

// load sounds

Sound sfxCritHit1 =

Gdx.audio.newSound(Gdx.files.internal("sfx/Critical_Hit_1.wav"));

Sound sfxHitEnemy =

Gdx.audio.newSound(Gdx.files.internal("sfx/Hit_Enemy.ogg"));

// adds sounds to station attached to effects key

stationSFX.put(Effect.Critical_Hit_1, sfxCritHit1);

stationSFX.put(Effect.Hit_Enemy, sfxHitEnemy);

// plays sound effect at volume 1.0f

stationSFX.get(Effect.Hit_Enemy).play(1.0f);

5.8
Map

Prior to this section we defined the experimental game as a 2D RPG style.
In those type of games, tile-based and top-down maps are the most common,
and it is also the direction that we took for the game. Knowing that, 2DMB
was developed to attend those characteristics, resulting in a software capable
of designing, editing and creating an infinity of different 2D tile-based maps.
In this section, we intend to guide through some of the important steps to use
a 2DMB map in an optimized manner.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 48

5.8.1
2DMapBuilder Integration

Integrating the 2DMB produced map file of M2D format is no hard task,
since it is composed of XML notations, which has been extensively used and
is not new by any means. Java supports more than one method for parsing
XML documents out of the box. In particular, the approach that uses DOM
documents was used as it is fairly simple. The code below shows a section of a
M2D file produced in 2DMB, and as it is possible to see, it is indeed composed
by XML notations.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<map>

<mapwidth>32</mapwidth>

<mapheight>32</mapheight>

<tilesize>32</tilesize>

<tileset>

<name>tileset_ex</name>

<source>tileset_ex.png</source>

<firstid>1</firstid>

<tilecount>192</tilecount>

<tilesize>32</tilesize>

</tileset>

<layer>

1,1,1,2...

1,8,7,2...

1,5,5,2...

..........

</layer>

Most of the data stored in the map files are easy to retrieve, but there are
some details that deserves a careful look. There can be multiple tilesets used
in a map. Also, one of the features of 2DMB is to let you compose the map in
up to four different layers, each one acting as a z-index for the positioning of
tiles and objects. In consequence of that, the map file will have repeated XML
tags for those data. Luckily, it is not difficult to deal with this situation using
the above mentioned java parser. The code ahead exemplifies the process of
retrieving the tileset data, which should be the data that has more steps to
obtain.

// the file containing the information to be loaded

InputStream fXmlFile = Gdx.files.internal("maps/"+map+".m2d").read();

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 49

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

//optional, but recommended

// reduction of redundancies

doc.getDocumentElement().normalize();

// list of tileset nodes

NodeList tsList = doc.getElementsByTagName("tileset");

// iterates through list of tilesets nodes to gather information

for (int i = 0; i < tsList.getLength(); i++) {

Node tsNode = tsList.item(i); // the current tileset node

// gets information only if node is of element type

if (tsNode.getNodeType() == Node.ELEMENT_NODE) {

// the current element of tileset list

Element tsElem = (Element) tsNode;

String tsName =

tsElem.getElementsByTagName("name").item(0).getTextContent();

String tsSource =

tsElem.getElementsByTagName("source").item(0).getTextContent();

}

}

Once the data is correctly retrieved, the programmer may organize it in
the desired data structures. Some data have a more obvious data structure
match, such as the tiles of each layer of the map, that should be stored in a
bi-dimensional array forming a 2D grid. Apart from that, the best way one
knows to store the remaining data can be utilized with probably no major
setbacks.

5.8.2
Optimized Map Rendering

Granted that the map tile data is stored in grids, or bi-dimensional arrays,
a very optimized tactic of rendering can be used. It involves the current camera
position, as well as the camera’s viewport width and height, but there is no

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 50

problem to discussing it prior to the game’s camera section, since it is the
algorithm that matters.

The idea is to perform a clipping in the render in order to drawn only
the needed tiles. Let’s assume our world grid is composed of 1024x1024 tiles,
but our camera can only display a grid size of 16x16, it would be a huge
waste of resources to always display the whole world, since the player can
only see a small portion of it. Any kind of clipping is recommended, as it
will certainly improve by miles the size capacity of the world. Our approach
involves performing the clipping before rendering, as we clip the grid prior to
rendering to match exactly what the player is able to see at any given moment.
The following code express the algorithm that is used in this project.

// gets frontiers of displayed tiles of map grid to minimize cost

int first_tile_x = (int) Math.floor(cam.x / tileSize);

int first_tile_y = (int) Math.floor(cam.y / tileSize);

int offset_x = (int) Math.floor(cam.x % tileSize);

int offset_y = (int) Math.floor(cam.y % tileSize);

int n_tile_x = (int) Math.ceil(cam.viewportWidth / tileSize) + 2;

int n_tile_y = (int) Math.ceil(cam.viewportHeight / tileSize) + 2;

// draws each tile

for (int i = 0; i < n_tile_y; i++) {

for (int j = 0; j < n_tile_x; j++) {

// gets tile that will be drawn

Tile tile = mapa[first_tile_y + i][first_tile_x + j]

// do the necessary operations to drawn the tile...

// draws current tile

batch.draw(tile.tex, (j * tileSize) - offset_x, (i *

tileSize) - offset_y);

}

}

From the code above, we can see the clip being made based on the
camera’s position and dimensions. The first tile that is indeed within camera’s
display is determined, as well as the number of tiles that fits the camera display.
Bear in mind that the number of tiles is extended a bit to guarantee a smooth
transition between frames in a way that does not affect the performance. Since
the camera’s movement is based on pixels and not on tiles, it will happen
more than often moments where the camera is not exactly at the beginning of
a tile, so we must also determine the current offset of the camera to be able
to properly render the tiles. Once these calculations are done, we are able to
draw every tile that currently is within camera’s boundaries, as shown in the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 51

code above, guaranteeing an optimized rendering through a clipping operation
that has very low performance costs.

5.9
Game’s Camera

As previously stated, having a camera in the game will help control what
portion of the world is displayed to the player at any given moment, as illus-
trated in figure 5.10. It is most vital for games in which the world surpasses the
screen limits. Each type of game have different camera implementations that
fits better to their gameplay. We will be discussing the camera implementation
for this project’s experimental game, a 2D top-down RPG. With some tweaks,
the camera implemented can also be adapted for other game styles such as 2D
platformers.

Figure 5.10: 2D game camera illustration

Figure 5.10 illustrates the basic information we need regarding the game’s
2D camera, which includes the position of the camera in the world, as well as
the camera dimensions.

The definition of the camera’s dimension, also known as camera viewport,
is a preference configuration, as it dictates the size of the world portion that
will be displayed for the player. Having it set for a value that is too small
or too large may affect negatively in the game’s experience, so it must be
carefully configured. Note that the camera’s dimension may directly impacts
the camera’s zoom, as most cameras do stretch the displayed content to fit the
device screen, leaving no unused pixel.

To define the camera’s position we must first understand how the game
camera should function in the game world. In the proposed game’s style, the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 52

camera is always aiming to follow the player and to be positioned in a way
that makes the player be displayed at the center of the screen, so the definition
of its position is directly related to the player’s current position. One detail
that must be considered is that the camera must not surpass the game world
boundaries, so there needs to be a limitation regarding the camera’s position,
blocking it from displaying anything that is further world limits.

With that in mind, the resulting algorithm that implements the camera
in the described way ends up being fairly simple. The steps to implement
it revolves around calculating the camera’s position based on player’s current
position, centering the player on the screen, and clamping the position in order
to avoid world limits. The code below is a representation of these step.

// calculates max camera x and y based on the world size

// by calculating the world size in pixels (e.g. mapSizeX * tileSize)

// and subtracting the camera viewport size

max_x = (mapSizeX * tileSize) - getViewportSize().x;

max_y = (mapSizeY * tileSize) - getViewportSize().y;

// calculates camera position based on target’s (player)

// position centering the target on the screen

position = new Vector2(target.getPosition().x -

getViewportSize().x/2,

target.getPosition().y -

getViewportSize().y/2);

// clamp values avoiding going out of world boundaries

// using inferior limit zero and the calculated superior limits

position.x = MathUtils.clamp(position.x, 0, max_x);

position.y = MathUtils.clamp(position.y, 0, max_y);

How the map will use the camera’s position to properly render the game
is displayed in the previous section code example. Even though the camera’s
implementation of this style is not hard at all, if preferred libGDX provides its
own implementation that can be used to create the game’s 2D camera, through
the OrtographicCamera class [55].

5.10
Animation Architecture

The technique of animation creates an illusion of movement through
successive drawings that are showed in sequence. This technique is used in
diverse media formats, including games. In this game, each animated object is
a sequence of 2D images, usually named sprites, as exemplified in figure 5.11.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 53

To produce the animation effect of an object in the game, we must define the
sequence of sprites that composes the animation and control the alternation
of sprites.

Figure 5.11: 2D sprites example

Usually the sprites are collectively stored in one image, as shown in
figure 5.11. The image that holds collection of sprites are called spritesheets.
This practice reduces the performance cost greatly by reducing the amount
of needed resource loading. Most game frameworks provides the tools for
cutting regions of loaded images, and we can use it to define the region that
represents the sprite that we want to render. LibGDX does this through the
class TextureRegion, which makes the job of rendering sprite sequences from
spritesheets pretty simple and efficient.

The steps for producing the animation effect are very straightforward,
and can be represented by these operations:

1. Cut the region of the current sprite of the animation;

2. Render the the current sprite;

3. Wait for the animation interval time;

4. Update the current animation sprite with the next one;

5. Repeat steps 1 to 4.

A common practice in games is to loop the animation sequence, meaning
that when the render of the last sprite is finished, the sequence goes back
to the first sprite to repeat the cycle. This is due to the nature of games, in

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 54

which players decides the actions of the animated characters and how long
the action will last. It also reduces greatly the amount of needed sprites in
a sequence of animation, as we only need the minimal quantity to create the
desired animation cycled effect.

If the implementation of the animation effect is no trouble at all, to
organize the enormous amount of different animations from different entities
that exists in the game is the opposite. Usually there are multiple animation
sequences for each game animated entity, having actions that changes between
the available animation sequences e.g. idle animation of a character changes
to the walk animation when the character starts moving.

To aid in the implementation of the animated entities in the experimental
game, we created a structure based on finite state machines that controls
each animated entity animations. The idea is that each state of the machine
represents an entity animation and each transition represents the action that
changes the entity current animation. Figure 5.12 shows a representation of
the state machine of an animated entity that can attack, defend, walk or just
be idle.

Figure 5.12: Animated entity state machine

The architecture implemented did not affect deeply the development
efforts and has enabled an efficient and organized way to deal with the different
animated entities of the game. We recommend that this approach should be
considered specially if there are many animations present in the game.

5.11
Collision Detection

A game without any type of collision is extremely rare, as it is more
than normal in a game to happen overlaps between its entities. Numerous

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 55

techniques exists with the goal of detecting physical collision, some of them are
more precise while others are more efficient. In a 2D world like ours, the most
common technique involves defining a rectangle shaped area for the entities of
the world, representing their physical shape. Those rectangles are usually called
hit boxes, and any time a hit box overlaps another one a collision happens.
This is a very efficient strategy since the algorithm to check if two rectangles
overlaps is very simple, as shown in the code below.

// x1,y1,w1,h1,x2,y2,w2 and h2 represents the origins

// and dimensions of the two rectangles

if x1 < x2+w2 and x2 < x1+w1 and y1 < y2+h2 and y2 < y1+h1

collision = true

else

collision = false

It is very common to already have a method to detect the overlap of two
rectangles in a game framework, and libGDX provides this check through the
method overlap. As we’ve seen, detecting the collision of entities in the game
through the hit box method is very simple and efficient, but the difficult arises
on organizing and structuring the collision system to provide a practical usage
while also maintaining the efficiency. Our approach to deal with this situation
is discussed ahead.

5.11.1
Collision Architecture

Taking inspiration from Unity, one of the most popular game engines as
of today, we implemented an architecture that allows any entity of the game
to have its own collider (hit box) and to deal with collisions with ease. The
steps needed to take advantage of the system are minimal and the benefits are
evidently. Figure 5.13 provides a superficial illustration of the system and its
components.

As shown in figure 5.13, to use the collision system an entity of the game
must implement the Collision interface, which contains the following callback
declarations:

• onColliderEnter : Callback to deal with physical collision;

• onTriggerEnter : Callback called at the first frame a trigger collision
happens;

• onTriggerStay: Callback called on subsequent frames when trigger colli-
sion is still happening;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 56

Figure 5.13: Collision system illustration

• onTriggerExit: Callback called when trigger collision stops happening.

Note that the difference of physical and trigger colliders is that physical
colliders will automatically blocks movement when collision happens, while
trigger colliders will not block the movement as it will only trigger the desired
action when collision happens. This distinction is very useful, as there are
numerous situations where we just want to detect the collision to trigger some
effect e.g. player steps into a field that is on fire and proceeds to lose damage
while on it. For this project, we felt a bigger necessity of having the separation
in the callbacks for trigger collision. If wanted, physical collision callbacks can
also be divided the same way as the trigger collision was.

One thing that happens that can not be ignored is that the entity move
throughout the world. In this case, its collider should also move accordingly.
So to make sure that everything is in sync, the collider update method updates
the collider position appropriately, and should be used always for the case of
moving entities.

The benefits of the system not only rests on the ability to create, scale,
transform and attach colliders into any entity of the game, but also on the
facility to deal with collisions through its different callbacks. For its practicality
and usefulness, we recommend the described system for any type of game.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 57

5.11.2
Collision Mapping

To aid in the mapping of the collision in the map, the newer version of
2DMB comes with a tool that allows to pinpoint fields with trigger or physical
colliders. Figure 5.14 shows the usage of the 2DMB collider tool.

Figure 5.14: 2DMB collision tool usage

It is a very simple collision mapping tool, but can be of service for
numerous types of games. The result of the mapping tool is stored in a collision
mask file of .col format. It is basic mask of the map regarding the collision data
of every field that belongs to the map. The excerpt below serves as an example
of a portion of a collision mask file.

1,1,2,1,1,1,1,0,1,0,0,2

0,0,0,0,0,0,0,0,0,1,0,2

0,0,0,0,0,0,0,0,0,0,0,0

Note that 0 represents fields with no colliders, 1 represent fields with
physical colliders and 2 represent fields with trigger colliders. This data can
easily be used to define the map colliders, facilitating the implementation of
the collision system.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 58

5.11.3
Optimized Collision Check

One thing it is important to keep in mind when dealing with collision in
games is that efficiency is a key word. Games differs from simulations where
the precision is the most important trait. Even though using hit boxes as
physical corpses for the entities is very efficient on its own, we must still be
careful with the efficiency of our collision check. This is because at every frame
in the game there will be an enormous amount of collision checks, specially
if no optimization is applied. This behaviour is due to the fact that moving
entities must ensure that they are not colliding with another physical object
or a trigger object at every movement.

The naive approach to this problem is to check at every movement of
every moving entities all the possible collisions. This will possibly grow into
a costly approach and limit the scalability of the world. Our advice is to
focus only at nearby fields, in areas surrounding moving entities. This is a
very obvious reasoning, as it is clearly not necessary to check collision with a
field that isn’t even within visual reach. By limiting the collision check in this
manner, the costs will greatly reduce resulting in a more flexible world building.
One more thing that can be done that will be of great help depending on the
type of game is to focus only in what is within player visual reach. Basically,
if the player is not visualizing the entity, there is no need to worry about its
collisions.

5.12
Character

A character in the experimental game is assigned to each player that
creates an account to play the game, where they can choose the desired
name for their characters. With their characters, players can explore the
world moving freely in the existent maps, while battling with encountered
foes and getting stronger throughout the journey. In section we will discuss
some important details about the characters in the game.

5.12.1
Character’s Level System

One of the most important traits of any RPG games is the evolution
of characters. As they undergo through numerous challenges, they emerge
stronger as more victories are achieved. To register their evolution, a numeric
value is used. This value, usually called level, represents the current amount of

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 59

evolution a character has achieved. Players feel motivated to get higher levels
as they also represent an increase in the character strength.

The rate of the progression is a choice that designers make based on
their visions of the game. It is not an easy tune as it is adjusted throughout
the whole development process. In this game, we wanted a infinite progression
system that allows players to evolve their characters without any limitation.
To achieve that, we used a mathematical function that gives the amount of
needed experience points for the level entry. Choosing the correct mathematical
function and its constants may be some trouble, and will depend on how
the game progression will work. In our case, instead of a linear progression,
we opted for an exponential progression. We intended to smooth the game
difficulty curve, as the lower levels are easier to achieve, while the higher levels
are harder. The following formula is from the current mathematical function
used. Bear in mind that we are constantly tuning the formula.

e((x−a)/b)−c/d

Figure 5.15 shows an illustration of the progression through the function
chart, where the constants used are -26 for a, 6.2 for b, 78 for c and 5 for d. The
exponential growth is very accentuated, but it is possible to tweak it through
the constants. You may also want to consider other mathematical functions
to achieve the desired progression curve, but we recommend using these types
of functions instead of manually inputting the needed experience points for
every level, as the latter approach would be very limited causing unnecessary
development efforts.

Figure 5.15: Level progress chart illustration

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 60

5.12.2
Character’s Attributes

In the experimental game, there are many factors that affect the character
overall strength. The fundamental one is the level progression. For each new
level a character achieves, the stronger the character gets. Equipment, which
will be discussed further in this document, is also a very important factor.

The character strength involves traits that are shaped in a variety of
forms. Figure 5.16 shows the character attributes, which are the definers of
the overall strength. Most of these attributes are very common in RPG games,
such as attack power and defense rate.

Figure 5.16: Character attributes example

The attributes system was designed to be portable and easily attached to
any entity of the game. This facilitate the definition of other entities that can
engage in battles with the player, such as the enemies, which will be discussed
further ahead.

5.12.3
Character’s Inventory

For a RPG game in which item and equipment collecting is a feature, it is
almost indispensable to have a inventory screen that helps the management of
gathered items. To help players of the game managing their items, we developed
a inventory screen that allows players to store a decent amount of items that
are organized in six different pages. From the inventory screen is possible to
swap items positions through different pages, and equip the equipment into
their respective slots. Figure 5.17 shows the character inventory with many
items stored, of a fully equipped character.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 61

Figure 5.17: Fully equipped character inventory

Observe that the inventory screen should be planned to fit accordingly to
the device that the game is developed for. In the case of mobile device games,
we endorse a design that favours the touch input, having bigger images and
touch buttons, and also to make use of touch gestures such as swapping, as
it will definitely improve the interaction with the game. This observation fits
every game screen that is susceptible of user interactions.

5.13
Items

Items are a very important trait of RPG games, greatly increasing the
variety that a game has to offer. Items can range from wearable items that are
usually called equipment or usable items that grants an instant or a temporary
effect upon its user. They represent an important development effort as they
are carefully designed one by one by dedicated designers. With this in mind,
we created a item factory that allows creation of an infinity variety of items
(with limited visuals) comfortably.

The idea of the factory is to have everything ready beforehand to be
able to easily create the items on the go. To achieve that, we created a data
blueprint for the items and for the equipment containing all necessary data of
each different one. As of now, there are only equipment in the experimental
game, so we will focus on them.

As stated before, an equipment is an item that the character can wear.
While wearing it, the character usually receives bonus that increases their
attack or defense. Since there is a lot of factors that can boost the character

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 62

overall strength, it is very beneficial to explore them all for equipment bonuses,
as it will surely increase the variety of bonuses which makes the hunt for
equipment much more thrilling. An example of an equipment named Golden
Skull Legs data blueprint is expressed in the extract ahead.

Golden_Skull_Legs {

attack: 0

defense: 5

autoAttack: 0

maxHealth: 11

critChance: 0

critMult: 0

autoSpeed: 0

speed: 10

rateDrop: 0

rateExp: 0

rateGold: 0.25

chance: 0.08

quality: 3

slot: LEGS

}

From this extract, it is possible to realize some effects that the equipment
can give to characters. They range from more direct effects that increases
player’s attributes, such as attack, defense and auto attack to more special
effects such as increasing the rate of gold drop in the game. It is also present in
the blueprint a parameter regarding the difficulty of obtaining the equipment,
named chance. The lower this parameter, the harder it gets to obtain the
equipment. Furthermore, the quality of the equipment is expressed from 0
to 3, with 3 being the highest quality possible. Finally, the category of the
equipment, also known as slot, is defined within the slot parameter, and can
range between the available types of equipment.

There are a total of 32 equipment blueprints in the experimental game.
Each one with its own visual, category and effects. To surpass this limited
variety of equipment, we utilized the strategy of assigning levels to the
equipment. These levels affect their bonuses, and the blueprint works as the
equipment in its initial level. The bigger the level is of an equipment, the bigger
is the boost of its bonuses. The levels are randomly decided within a range that
is related to the level of the enemy that dropped the equipment. The higher
the equipment level, the harder it is to drop it. Since there is an infinite level
progression in practice, there is also an infinite variety of equipment bonuses.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 63

Figure 5.18 displays the Golden Skull Legs at level 25. It exposes how the
level affected the effects of the item, specially comparing to the blueprint that
equates to the effects of a level 1 Golden Skull Legs.

Figure 5.18: Golden Skull Legs effects at level 25

With this system of equipment level, we intend to introduce a new
layer of equipment farming, as the player will be always wanting a better
equipment that will always exist, and the difficulty progression will keep the
player interested as the high level items will have a significantly increased
value.

5.14
Enemies

Enemies are a vital part of most RPG games, seeing that they bring the
challenge aspect to the players. They represent trials that the characters most
overcome. Victory means reward, and defeat usually means punishment, this
highlights how important an enemy is to the gameplay.

Similar to the items of a RPG game, enemies are usually a product
of numerous design decisions, resulting in a huge development process. They
possess unique visuals and traits, and the overall enemies quantity can easily
exceed the hundreds. Since this is not an available possibility, we followed the
item strategy in order to expand the variety feeling of the enemy encounters.

This results in enemies that are generated on the go, on the verge of
each battle. Their visuals are randomly obtained from a pool of available
enemy sprites, and their size gets bigger accordingly to their battle strength.
Enemy’s attributes are randomized within a range that is related to their
levels. Each enemy generated has a random level that is based on the player’s
character current level. Their levels can be sometimes way bigger than the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 64

player’s character, or way smaller, improving the dynamic characteristics of
the battle system. Based on their levels, the battle difficulty varies, as do the
rewards. As the player’s character evolves into higher levels, the enemies are
more likely to be stronger, creating the need of obtaining stronger equipment
throughout the journey. This makes the items even more valuable.

The last generated trait that an enemy has are their names. Even their
names are generated, which improves the uniqueness feeling of each one of
them. To generate their names, we used an algorithm based on Markov Chains.
A Markov Chain is a way of generating a result based on the statistical
probabilities in a set of sample data [56]. The name generator produces random
names for the enemies based on a set of sample words used as an input.

Figure 5.19 shows an enemy that is result of the generation with all of its
traits randomized, including name, attributes, and visuals. This tactic was very
useful to increase the variety in the game and improve the player’s experience
without producing much development efforts, and with minor tweaks - such as
avoiding certain generated names - can be used in major commercial games.

Figure 5.19: Enemy with random traits generated for battle

5.15
Battle

The battle system is responsible for matching the player’s character with
the generated enemies in a battle that will reward players if they emerge
victorious. The battle happens in a separated screen in which the player will
battle with the enemy encountered until one emerge as the winner.

The battle screen, shown in figure 5.20, is based on turn-based RPG titles
such as Pokémon [28] while the gameplay of the battle is based on idle games
[31] tap mechanics, in which players tap the screen to deal damage to their
opponents. The faster they tap, the more damage per second they deal. Allied
with that, both character’s and enemy’s attributes play a big role in the battle,
as all the damage dealt are calculated through a formula that takes them into
account. There is also an automated attack that deals damage without the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 65

Figure 5.20: Battle screen showing the fight with a generated enemy

need of tapping the screen. This automated attack deals much less damage,
but it is a plus to the overall damage the player can inflict. In addition, there
is a chance to deal critical hits, which are hits that inflict more damage than
normal. Both automated damage and critical hits are affected by the player’s
attributes. The battle ends when the health points of one of the contestants is
depleted.

The described mechanic is very addictive as players strive to become
stronger, increase the damage they deal by evolving or finding better gear, and
to be able to defeat stronger foes. Games that follow that mechanic usually
gather lots of players, such as Clicker Heroes, that in its PC version was able
to top the Steam charts of active players at the same time in 2015 (figure 5.21).

If the player is the winner of the battle, rewards will be given to the
player, including experience points, which are the means to get higher levels,
and gold coins, which represents the in-game currency. There is also a chance
that equipment are dropped as a reward. That chance relies on the chance
modifier already discussed in the item section. This chance is affected also by
the enemy’s level, since the stronger the enemy is, the stronger the equipment
reward is. This means that the level of the equipment dropped will fluctuate
between a range that is around the enemy’s level. The higher the item level,
the harder it should be to get it, following a natural difficulty curve common
in games.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 66

Figure 5.21: Steam charts of games with most current players showing Clicker
Heroes

5.16
Ranking

In order to increase the player’s motivation, it is important to encourage
competition in games, specially in games with online features. Players tend to
feel a higher sense of achievement when they compare their results with others.
Nowadays, games that are mainly based on competitive characteristics are on
the rise, with players becoming professionals and getting highly payed for their
expertise on certain competitive games. This goes to show how competitiveness
have a say in the player’s motivation.

The main measurement of achievement in the experimental game are the
character levels, as they represent the result of the whole adventure and all the
conquests obtained throughout the world. Hence, the easiest way to introduce
the competitive aspect to the game is to provide a ranking with the characters
with highest levels, and to show the player’s character position among the
others. The ranking implemented for the game (figure 5.22) does exactly that,
as it shows the top players in the game, allowing players to scroll through the
highest level characters, while pointing out the current player position in the
ranking.

Many other features can bring competitiveness to a RPG game. Duels
between players, battle between guilds, events that rewards winning players,
and many others. These elements should be considered with care, as they sure
improves the player’s overall experience if correctly done.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 67

Figure 5.22: Ranking with the game’s top players

5.17
Market

Competitiveness is not the only aspect that enhances player’s motivation.
There is another aspect that for some players can work even better - cooper-
ativeness. Players want to interact with other players not only in competitive
manners, in fact, some of them might prefer to cooperate with others. Coop-
erativeness has the ability to transform a regular game into an amazing one,
as the joy of playing with friends throughout the game’s story in a cooperative
mode overcomes minor existing flaws in the game.

In an online RPG, there are many elements that bring cooperative traits
to the game. The most common are the formation of groups and guilds. They
form a bond between players and enhance the social aspect of the game.
Yet another way of increasing player’s motivation, but each path chosen may
attract players that would not be interested otherwise, so it is indeed important
to analyze and decide what is worth from the perspective of the game design.

Allied with the goal of bring a cooperative aspect to the game, we
also intended to add an economy that is fueled by the infinite variations
of equipment existent in the game. This strategy makes, once again, the
equipment system much more valued, as it attaches monetary value to each
equipment. In fact, one might say that an item system without some kind of
economy system may fall short of its potential.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 68

To create the economy of the game, we opted to implement a market
system that allows players to buy and sell items with each other (figure 5.23).
With the system, players can navigate through the items being sold at the Buy
tab, as well as sell items at the prices they desire at the Sell tab. They can
also retrieve any items that they are selling if wanted, through the Listings
tab. This creates a dynamic economy that is based on the rarity of items. The
market becomes another way of obtaining strong items, with the monetary
value related to their usefulness. Note that some features such as filters and
item search are strongly recommended to be implemented in a more robust
market system, but the basic buying and selling operations is more than enough
to start the economy, bringing life to the game’s world.

Figure 5.23: Market buy tab containing showing items being sold

5.18
Pervasive Map

To introduce the pervasive mechanics of the game, which revolves around
the campus of PUC-Rio, a map visualization is presented as a representation
of the pervasive world of the game, containing the current available pervasive
locations guiding through the important pervasive tasks of the game.

In a RPG game, the map usually represents the game’s world as it guides
the player through the adventure. The same idea is applied to the pervasive
map that is present in the game. The pervasive map of the game is the guide

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 69

for the game pervasive world, where players are encouraged to explore it by
receiving rewards on world investigation.

The pervasive map can be moved, zoomed in and out as it allows players
to interact with certain pervasive locations predefined. These locations are real
world locations that are integrated in the game to serve as special spots that
players can interact with. For each location, a brief informative description
is provided serving as an educational guide of the campus. An example of a
location is shown in the first image in figure 3.2.

For each pervasive location created in the pervasive map, numerous
pervasive missions can be attached. These missions are equivalent to the
usual RPG missions that players undergo to advance in the game’s story
and to become stronger. The difference is that the missions are completed
through pervasive means, such as visiting certain locations or encountering
secret hidden objects in the real world.

The mission system developed allows an easy creation of location based
missions through direct parameters that provides a customization that makes
the system very flexible, with features that are directly inspired by MMORPGs.
The code ahead is an excerpt of a particular mission displaying some configu-
ration parameters, serving as a guideline for defining similar systems.

-- is this mission repeatable?

missionRep: false

-- if it is repeatable, what is the interval (in mins) to repeat it

missionInterval: 0

-- mission normal rewards

missionExpReward: 450

missionGoldReward: 1800

-- mission drop rewards (ids separated by commas, see examples)

missionDropReward: {15002, 17002}

-- mission equipment level

missionEquipLevel: 12

-- mission prerequisites (missions that must be done before this one)

missionPreReq: {5}

The code shows some interesting characteristics of the system. A mission
that is created within the system can be repeatable within a time interval,
which means that players can redo the same mission receiving its rewards
as long as the defined time interval is surpassed between each completion.
This is very useful for pervasive tasks that need constant fulfillment, such as
participatory sensing tasks or class attendance registration tasks. The use of
the mission system for pervasive related mechanics as those just quoted is

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 70

better explained in section 3.2.
It is also possible to see some other parameters that are very important

for the system to be properly able to create flexible missions that are interesting
to players. To be able to adjust the mission reward is vital, and in the proposed
system the rewards range from experience points and gold coins to equipment.
Any combination of these may be a reward of any mission. In case of rewarding
players with equipment, it is also important to be able to control what is the
equipment level, a very important factor that will strongly affect the quality
of the equipment, as stated before.

Finally, to be able to create chains of missions that are interconnected
and form a more complex large mission, a trait that is usually present in
MMORPGs, it is interesting to have a way of defining prerequisites of a
mission, which consists of other missions that must be finished before enabling
the current mission. These features are recommended for all systems alike, not
only involving pervasive missions, but also normal missions as well.

5.19
Sensor Search

Sensors are the main vehicle of the game’s integration with the real world
environment. In this project, we used Beacon and SensorTag sensors. The
SensorTag sensors provide temperature, humidity, accelerometer, gyroscope
and other types of data, while the Beacon sensors only transmit a single signal
that other Bluetooth-equipped devices that are in range can "see".

The sensors are responsible for the infrastructure behind the completion
of every mission in the mission system described above. This is because it is
necessary to connect with the mission attached sensor to finish it. For that,
the player can scan the area for nearby sensors at any given moment, as shown
in the second image of figure 3.2. The general flow of the mission system and
the interaction with the sensors are detailed in section 3.2.

To be able to discover and connect with the IoT devices, the S2PA service
is used, as explained in section A.3.2. The service is enabled and disabled
accordingly to the players use of the sensor scan in-game feature. Once the
service is on, it will discover and connect to nearby sensors, retrieving data
that are collected by the IoT devices.

These data range from identifiers of the device to the data collected that
varies depending on the device in question. The identifiers are very important
as they serve as an unique representation of the device, helping the attachment
of sensors to missions. The data is stored in an appropriated data structure,
to be later sent to the game server and stored in the database.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 5. PUCmon Development 71

The S2PA service, that is contained within the M-Hub API, is instan-
tiated through native android specific code, which is apart of the libGDX
framework game sub-project, as explained in section A.4. Native android code
is within the android sub-project. Thus, an interface will be needed to access
the sensor retrieved data. Fortunately enough, this can be done with few steps,
with the whole interfacing scheme represented in figure 5.24.

Figure 5.24: Native code interfacing scheme

Figure 5.24 shows the scheme that allows the integration of the S2PA
service within the game libGDX sub-project. The strategy is detailed ahead
for clarification.

1. Create an interface to act as a bridge for the necessary native code
methods in the core libGDX sub-project;

2. Create a class in the android sub-project that implements the necessary
native code methods as it implements the created interface;

3. When initializing the game class in the AndroidLauncher, make sure to
pass the interface implementation class;

4. Use the available methods that are declared in the interface in the
libGDX sub-project freely through the received implementation.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

6
Evaluation

This chapter details our tests and results in public experiments where
we deployed our experimental game for the public to test and assess their
receptivity through an interview. We also analyze the game’s latency and
rendering performance and the effects of it on the overall player experience.

6.1
Experiments with Students

In this section, we describe the experiments we did with the public
in the campus of our university, presenting the results of our survey for
each experiment. The experiments aimed to evaluate the receptivity of the
experimental game pervasive mechanics, focusing on the participatory sensing
and the serious applications integration within the game mechanics.

A total of thirty subjects have participated in the experiments. Each
subject was individually interviewed after the completion of the tasks, but some
subjects did the tasks in groups of two or three. The majority of the subjects
did not have previous knowledge about the sensors used in the experiment, so
they were interacting with such devices for the first time.

Although the subjects were not using their own smartphone devices
during the experiments, each subject was explained that for each sensing task
performed, the 3G / LTE / 4G bandwidth of the device would be consumed.
This way, we intended to elucidate the cost of such tasks before they were
interviewed with questions related to their experience regarding the use of
participatory sensing tasks in the game.

6.1.1
Experiment A

We provided a demo of the experimental game with a customized group
of missions made specially for a public event where several high school stu-
dents visited the university campus where they were exposed to departments,
libraries, laboratories and other academic bodies of PUC-Rio. Our test sub-
jects were undergraduate students from the university as well as local school
students that were participating in the event.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 73

The customized group of missions consisted of a circuit of missions
composed of three parts and a special secret mission. The subjects were
encouraged to play the game but also complete the pervasive missions available.
Unfortunately, we did not have the structure to expand our area of tests further
than the area that our stand was in, so the sensors used were placed somewhat
near our stand. This limitation restricted the spatial guide tests, but we made
sure to explain every aspects of our research that were not being directly tested
to each subject of the survey.

The first part of the circuit would give players a tip to find the attached
sensor that was in a special trash can adapted with a sensor that would detect
when trash was thrown in the can. Once the sensor was found, players had
to find out the mission code from a text that highlighted the importance of
recycling was shown in-game when the mission sensor was accessed. The code
was the combination of the first letters of the colors in a led panel in the
adapted trash can that would ignite when a trash was thrown. In this mission,
we explored the mission system in a educational way, by linking the mission
with the notion of recycling.

The mission for the second part of the circuit would guide the player to
an array of three physical boxes that were hidden at the stand. The code to
complete the mission was written in the mission sensor that was hidden in one
of the boxes. Players had to first solve a logical puzzle to find out in which
box the sensor was hidden. Once they figured out, they were given the chance
to open the box they thought the sensor was in. If they were correct, they
would see the hidden code written in the sensor and use it to complete the
mission, obtain the rewards and the access to the next mission of the circuit.
In this mission, we tried to motivate the logical reasoning of players through a
puzzle in the molds of logic subject, following the educational path of the first
mission.

Finally, at the third mission of the circuit, participatory sensing was
introduced, as the mission description detailed the notion behind it, and asked
the players to share their bandwidth in order to retrieve the mission sensor
collected data. Additionally, the mission required players to collect data that
the sensor alone was not capable of obtaining. In the mission, they were told
that it was necessary to retrieve the amount of men and the amount of women
in the present moment in the stand, as an example of a data that was hard to
obtain only by autonomous sensors, so they were tasked to count them and to
provide their findings as an input of the mission, before they were able to finish
it and receive the rewards. We made sure to acknowledge their contribution,
and to give them a proper in-game reward.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 74

The secret mission was an additional mission that could be completed
without any prerequisites. We added this mission to intrigue players and to
increase their interest in the game demonstration, since this mission not only
provided the best in-game rewards, but also a secret real reward. On purpose,
this mission difficulty was way higher than the others, with a two-part enigma
involving logic and creativity.

For each subject, after they completed the main circuit of missions and
had a minimum amount of experience with the game in general, we asked a
few questions related to their reception of it. Those questions were particularly
about their thoughts on the pervasive aspect of the game, as well as the
combination with participatory sensing and serious applications. We obtained
very interesting results that are described hereinafter.

When asked if the pervasive aspect of the game with the use of IoT
devices had increased, decreased or did nothing to their experience in the
experimental game, every subject of the survey responded that it positively
increased their experience, showing the current receptiveness for the pervasive
in the universe of games, and the potential of using IoT devices to expand
pervasive practicability.

Over half of the subjects agreed that they felt more motivated to help
in data collection when rewarded with in-game virtual recompenses, while
87.5% would feel the most motivated for such tasks when receiving rewards
both virtually and physically (i.e. monetary reward). Only 12.5% said that
they would feel motivated to comply in sensing tasks without receiving
any kind of incentive. These results suggests that our collective sense of
responsibility towards our society’s improvement in the current state of mind
of our population is lackluster, thus for participatory sensing effectiveness,
external incentive still is very important. It also shows that there is a potential
regarding virtual rewards as a valid incentive for participatory sensing tasks,
and we could explore it along with other type of incentives.

In relation to the integration of serious applications with pervasive
games, subjects were exposed to some applications such as lecture attendance
registration and spatial guide of the campus. The reception was highly positive,
as all of the subjects of the survey have concluded that it is interesting to ally
real tasks that can be important or even necessary with in-game missions that
rewards on realization of such tasks. Some of the subjects were so engaged
in that matter that they would suggest various other applications that they
thought would benefit of this integration, displaying the prospective that this
approach has.

Lastly, as a result of collecting data through the mission system of the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 75

game, as explained before, we were able to map varied data throughout the
time period of the event. The data collected is just a small sample obtained by
the experiment, but the technique can be used for large and more important
data collection as well. The chart shown in figure 6.1 illustrates some data
obtained by asking players to do the sensing task of counting the number of
men and women at the stand by the time they reach the end of the last mission
of the circuit.

Figure 6.1: Chart representing number of men and women in the stand
throughout the event

From the chart, we can see that the number of men in the stand is bigger
than the number of women most of the time, although in some instants of the
event the opposite happened. Additionally, there were data collected by the
sensors that were also sent by the players, such as temperature and humidity.
For a sample visualization, temperature time series can be seen in figure 6.2,
while humidity time series can be seen in figure 6.3.

6.1.2
Experiment B

The second experiment we did also involved an array of missions in the
game that the subjects did before answering a set of questions in a interview.
Once more, it was done in the campus of PUC-Rio. The subjects were
composed of students from engineering, design and computing courses. There
were students from various semesters of their courses, ranging from students
at first semesters of their courses to students that had already graduated. Of
the subjects interviewed, 71.4% had an age between 18 and 24 years old, while

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 76

Figure 6.2: Temperature time series throughout the event in the stand

Figure 6.3: Humidity time series throughout the event in the stand

23.8% were between 25 and 35 years old. The 4.8% remaining were between
the interval of 36 and 50 years old.

For this experiment, there were three missions that the subjects com-
pleted in sequence, as each part was prerequisite to the next one. The first
mission from the first experiment, where the sensor was attached to a mod-
ified garbage bin that had a led panel that would light up when trash was
thrown in the bin, was recycled for this experiment, but this time the trash

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 77

bin was placed in another location for subjects to find, in one of the labora-
tories of the campus. In this mission, the code needed to obtain the in-game
reward and unlock the next mission was the combination of the first letters of
each color of the led panel. By describing the importance of recycling in the
mission, we intended to show an educational usage of the system, while pro-
viding an interesting interaction with physical world objects that can increase
the experience of a game.

The second mission consisted of finding a secret code that was a word
inside a specific book. The goal of the mission was to display a serious
application integration, where the central library of the campus was the
targeted facility. Each subject had to discover what was the specific book
through a riddle before proceeding to the central library for retrieving a copy
that was borrowed for the experiment. They were given a code that served
as a tip to find the secret word in the book. With the secret word obtained,
the mission could be finished and the rewards would be given. This mission
presented the central library for students that were not aware of the library
services that were available to them. By guiding the subjects to the library
location through the mission, the spatial guide application was also tested.
While in the library, students that did not have registration in the library
system seized the opportunity to create their registrations, as they were guided
through the library services.

The final mission involved the integration of participatory sensing into
the mission system. This time, we aimed to find a sensing task that the subjects
would relate and see the benefits of its completion. One of the problems that
is common in the campus is to find an available bathroom that is in good
condition, with students often walking more than the necessary and wasting
time to find a suitable one. Therefore, the notion of having a quality control
of bathrooms in the campus by providing a map that displays the working
bathrooms and their conditions, would be something the subjects would relate
to, and also be an application that would benefit of participatory sensing.
To express this application in the last mission, we placed sensors in two
bathrooms for the experiment (one masculine and one feminine bathroom), and
the mission completion would solely depend on an inspection of the targeted
bathrooms. Each subject were tasked to rate the bathroom at the time of the
experiment in four different aspects that were related to the cleanliness, the
scent, the supplies and the availability of toilets. They were told the meaning
behind the task and how they would be contributing in the campus after they
were given in-game rewards, finishing the last mission of the second experiment.

After the completion of the missions and the familiarization of the game

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 78

and the concepts that were presented to them, the subjects were prompted to
answer few questions related to their reception of the experiment, regarding
the pervasive aspect of it and the integration of the participatory sensing
and also the serious applications into the gameplay. The results are described
hereinafter.

90.5% of the subjects stated that they had a good overall experience
with the experimental game, while 9.5% felt that the experience was average
or just above average. Furthermore, something similar to the first experiment
happened, as all the subjects answered that the addition of the pervasive
mechanics had positively increased their experience with the game. With few
months apart between the two experiments, this shows that the receptiveness
of pervasive mechanics did not fade out just yet, and that the spot for pervasive
games has been cemented in a way that it will possibly last a while.

Almost every subject (95.2%) stated that a virtual or a real incentive
would make them more motivated to realize participatory sensing tasks such
as the one that they did in the experiment. When asked if only virtual rewards
would be enough to motivate them to comply with the tasks, 61.9% of the
subjects said yes. Once again, this displays the potential of exploring the high
motivation of pervasive game players to cover a large amount of sensing tasks.
The increase in the positive outcome of the second experience in regards of
the integration of participatory sensing tasks into the pervasive mechanics is
another indicator of the ongoing receptiveness of pervasive mechanics in games.

In regards to the integration of serious applications, the same positive
response was observed. 100% of the subjects have shown interest in the union of
real and necessary tasks into the game mechanics. This highlights the potential
of such approach that can be explored for numerous applications and for
numerous other facilities e.g. museums, thematic parks and public libraries.

The data collected throughout the experiment related to the bathrooms
used in the last mission is exposed in the charts displayed in figures 6.4 and
6.5. The bathrooms chosen for the experiment are usually in good condition,
which is reflected in the average score shown in the charts. We can also see that
the female bathroom was in a better condition throughout the experiment.

6.2
Performance Tests

The tests described in this section are related to the performance of the
game, and will include tests for the latency of the communication and the
game rendering performance as well.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 79

Figure 6.4: Average score of the male bathroom used in the experiment

Figure 6.5: Average score of the female bathroom used in the experiment

Tests were done using Motorola Moto G first generation smartphone,
with the following specifications:

• Model - Motorola XT1032;

• OS - Android 4.4.4;

• CPU - Quad-core 1.2 GHz Cortex-A7;

• GPU - Adreno 305 450MHz;

• RAM - 1 GB;

• Resolution - 1280x720;

• Flash Size - 8 GB.

The game server was hosted in a machine with the following specifica-
tions:

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 80

• OS - Microsoft Windows 8 (build 9200), 64-bit;

• CPU - Intel(R) Core(TM) i7-3840QM CPU @ 2.80GHz;

• GPU - NVIDIA GeForce GTX 680M;

• RAM - 8 GB;

• HDD - 931.2 GB;

6.2.1
Latency Tests

Although it is an online game, the experimental game is not in real-time.
The online features present in the game are synchronous and do not interfere
directly in the core gameplay as players use them in calm and non-critical
situations. This means that client-server communications latency would affect
less the player experience, but we still aimed to reduce latency time to enable
a smoother experience, including sensor discovering and connecting latency
through the S2PA service, in which we defined a scan interval that allowed a
fast and smooth interaction with nearby sensors.

The table 6.1 shows latency test results for different client-server opera-
tions in the experimental game. Numerous latency tests were made to obtain
an average value to each operation. Tests were made with different characters
with distinct progress in the game, resulting in a varied amount of data for each
operation, in order to better represent the latency players experience through-
out the game. These operations and their average latency time are exposed in
the client-server latency test table hereinafter.

Operation Average Time
Server Registered Sensors Retrieving 206ms
Player Completed Missions Retrieving 146ms
Complete Mission Operation 258ms
Ranking Retrieving 186ms
Login Operation 240ms
Market Retrieving 190ms

Table 6.1: Client-server latency tests (ms for milliseconds)

Results shown in table 6.1 takes into account all operations that are made
in server side for each request, with the goal to better elucidate the latency
time for client-server functionality of the game. This means that any needed
working time for algorithms in server side are also included in the presented
latency times. It is also important to highlight tests connectivity circumstances,
where the client device used 3G connectivity, and the server connection floats

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 81

around 20 megabits per second of download speed and 5 megabits per second
of upload speed.

As we can see in the values shown in table 6.1, all average times for the
exposed operations were lower than 300 milliseconds, which is pretty acceptable
for operations that are not in real-time, which is the case for all client-server
communication for the experimental game.

6.2.2
Rendering Performance

Usually, game rendering is active and in real-time, resulting in a constant
refresh of the rendered screen. This refresh rate is normally called FPS (Frame
Per Second), representing the amount of frames that are being rendered per
second, and is the most common used measurement of a game’s rendering
performance. Developers nowadays strives for reaching the mark of 60 FPS in
their games, as players are getting used to this threshold.

The game’s experience can be severely hurt by low FPS rendering and
FPS drops that occur in certain situations of the game, so we aimed to achieve
a near constant FPS throughout all game screens, revolving around the 60
FPS mark. To be able to do so, the FPS was constantly monitored throughout
the game development as a way to avoid the introduction of any anomalies
that would affect the game’s rendering performance. Table 6.2 shows the test
results of the FPS for different game situations.

Screen Average FPS
Initial Menu 61 FPS
World Navigation 61 FPS
Battle 60 FPS
Inventory 61 FPS
Ranking 58 FPS
Market 60 FPS
Pervasive Map 61 FPS
Sensor Search 61 FPS

Table 6.2: Game screens FPS rendering tests

As seen in the table 6.2, all average FPS results are very close to the 60
FPS mark. This is partially due to the fixed time between frames that sets the
rendering to 60 FPS. This means that even when the rendering can be done at
higher rates, the rate will still be close to 60 FPS. Naturally, if the rendering
cannot be done at the desired rate, the FPS sure will drop.

After several optimization such as clipping unnecessary entities from
rendering, as well as the carefully management of resource initialization, the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 6. Evaluation 82

goal of achieving the 60 FPS mark with very low variation was achieved.
As a consequence, the game runs smoothly without any bumps in rendering
performance and without affecting the experience for the player. We conclude
that libGDX is a nice solution for developing Android games, with a good
variety of development resources and results that are proven to be efficient.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

7
Conclusions

Throughout this work we developed a pervasive IoT game that demon-
strated the integration of several useful technologies, tools and a distributed
middleware to develop a pervasive game using some types of IoT devices with
sensors, beacons and wireless WPAN connectivity. We also explored and dis-
cussed the possibilities of incorporating participatory sensing tasks and serious
applications in pervasive games, as we carried out surveys that assessed the
public response of the proposed pervasive game.

The public receptivity showed us the prospects of uniting serious appli-
cation and participatory sensing tasks with pervasive games, as the results
exposed in chapter 6 indicates that player’s motivation can be explored both
for participatory sensing and for serious applications. But care should be in
mind in the case of sensing tasks that requires players to use their reasoning
to be the agent for the data collection, where the data precision is of high
importance, as we advocate that the simpler the task, the more precise the
data collection is, and the less inaccurate data is obtained. In summary, an
equilibrium must be found where the labor of sensing tasks does not surpass
the motivation that the game provides.

The latency test results showed that using the ContextNet middleware
to aid in client-server communication for games with similar online features is
viable, and was very positive as it provided a robust architecture that helped
the development of the online elements of the game, e.g. market system, and
decreased the game development effort. With that in mind, we recommend the
use of the ContextNet middleware for the development of games with online
capabilities such as the game proposed in this project.

In our controlled environment, the proposed game has shown a lot of
promise, but this potential is not restrained to only our university campus,
as the game universe can be applied to any environment that would benefit
of such applications. We also concluded that the spatial guide in combination
with the missions that connects real locations within the game has shown a
valid way of providing educational content to players, since the mission system
is able to describe each location in it. Moreover, this approach provided a
very functional spatial guide that can be extended to any environment that

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 7. Conclusions 84

demands for such application.
In the participatory sensing tasks of the experiments, the human senses

of vision and smell had a huge importance. For instance, the sensors in the
bathrooms could only guarantee the proximity of the subjects, but were not
capable of evaluating the current state of each bathroom. More capable sensors
can be used as an alternative, such as an odor sensor, but the costs of those
devices may be out of budget. Also, the human senses vary from person to
person, e.g. smell and palate senses, thus, using human senses should give a
more representative sensing data in those cases.

Other than the survey results we obtained, we gained unexpected but
important knowledge regarding the structure of a pervasive IoT application.
As stated before, the demo special pervasive missions were limited within an
area from our stand. A big part of this limitation was due to the fact that
we needed to make sure that our research sensors were safe from impacts and
theft, so we defined a limited area for the tests in order to guarantee greater
control of the environment during the observations. This goes to show that
unexpected side effects of pervasive applications can always surprise us, and
we must try to anticipate them the best way we can. In a long term, there are
other factors that are important to consider before preparing a location with
IoT devices, such as avoiding places that should not be disturbed by player
visits, avert damaging fauna and flora of locations, and prepare it for climate
variations.

Although the need of moving while playing the experimental pervasive
game proposed is shortened by the fact that the interactions with the real
world through the IoT devices does not requires players to pay attention
to the smartphone constantly, as they can calmly read missions and guide
themselves through the map without the need to be agile nor opportunist, we
still defend that is very important to be careful with player safety when it comes
to pervasive games, as we learned how devastating the consequences can be
when pervasive games are played indiscriminately, with studies showing how
the pervasive game Pokémon GO has caused numerous accidents, including
fatal ones [32, 33]. Other fact that reduces the risk of accidents is that the
game’s pervasive map is within a controlled environment, but bear in mind
that even in a controlled environment any type of pervasive interaction with
it must be implemented carefully, avoiding unnecessary risks. With that in
mind, we support that the use of a very strict speed limit should always be
considered as an option to increase the safety of pervasive games.

In conclusion, the integration proposed with the technology used fulfilled
our expectations, and the effort into using IoT devices as an extent of the

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 7. Conclusions 85

pervasive interactions of our experimental game has produced promising
results, as it not only improved the precision of real locations mapping within
the game, but it also expanded the possibilities of integration with other
applications such as participatory sensing and serious applications, in which
we observed a lot of potential that is shown by our surveys.

7.1
Future Works

This section presents some future works that can act as a follow-up and
enrich this research, as several questions emerged from this work.

Firstly, as mentioned before, there were several unexpected side-effects
of using IoT devices alongside with pervasive mechanics in the game, such as
the possibility of external damages to the devices placed in the campus, as
well as the chance of theft cases. There are many other factors that should
be well thought before extending the game’s world to a real location, which
includes also the impact of the locations chosen in the real world, as they can
negatively affect an area that may be of huge importance, such as hospital
areas. For future works, it is very interesting to study ways of dealing with
these factors, as well as research for others that can affect the devices and
their surroundings.

Following the same logic, but now focusing on the player’s safety, an
investigation of forms to increase the safety in pervasive games is of extreme
importance, as when pervasive games are played indiscriminately accidents are
bound to happen. A careful examination should be made in order to reduce
those chances. The more risking factors identified the less likely to have serious
accidents involving players of pervasive games.

Those studies should follow the excellent research presented by the
authors of [3, 4, 10].

The access to each sensor used in the experiment happened once at a
time, as only one smartphone device was used for each experiment. Thus,
there were no concurrent access with the sensors. For future experiments, it
is interesting to create an environment that allows the concurrent access test
and evaluation. In addition, it is interesting to perform an experiment that
evaluates the mobility aspect of the system, as well as the scalability, which is
a feature of the ContextNet middleware.

More experiments can also be done regarding the pervasive mechanics
that includes participatory sensing tasks and serious applications, focusing on
player experience analysis. For those experiments, others real world scenery
should be tested, extending the university campus world, in order to find more

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 7. Conclusions 86

applicable scenery, aiming to extend the reach of such applications to cover a
larger amount of player’s surroundings. Another topic that can be explored is
the use of augmented reality which is very common in pervasive games. The
augmented reality feature was not part of this research as it is very prevalent
already in pervasive games, but new ways of using this feature as a tool for
helping sensing tasks data collection in a way that also adds to the game
experience can also be investigated.

As of now, the project only communicates with sensor devices, through
Bluetooth technology. Everything necessary to enable this communication
is achieved through ContextNet middleware and its MobileHub extension.
There is another very promising extension for the middleware that is soon
to be available called M-ACT, which aims to enable communication with
actuators in a very efficient manner, by providing a language pattern that
helps the communication. The integration of the M-ACT extension with the
other components in this project is very beneficial, and can be done the same
way MobileHub was integrated (through the native code interface, explained
in section 5.19). Further studies on ways of using actuators to increase player
experience can also be done, as it opens a whole new world of gameplay
possibilities.

For the game in question, there are numerous upgrades that can be
done to better the game experience, following the manners of the RPG and
MMORPG genre. Some of them are hereby listed for similar future works:

• Implementation of an architecture that allows real-time online physical
interaction between the characters in the game;

• Design a more detailed character creation, which allows players to choose
the look of the character;

• Provide different types of battle classes that a character can choose, so
that the player can follow the path of their preference;

• Implement special battle abilities that characters can have and use on
battle;

• Dynamically change the look of the character according to your equip-
ment;

• Allow battles between players;

• Provide systems that increases the cooperation between characters, such
as groups and clans.

A study on other types of games that can also be integrated with IoT
devices and pervasive tasks that enables the interaction with the real world

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 7. Conclusions 87

should also be headed. There are probably other genres that fit very well within
this universe. We suggest that genres that have the interaction with the scenery
as a major gameplay factor, such as investigation games, may have a natural
and smooth integration with the real world as it becomes the scenery of the
game, where all the in-game investigation can be related to the real world
scenery. Games that are heavily based in its story and dialogs may also be
included in this pack, since those games are strongly connected to the universe
in which the game world is present, which leads to an interactive experience
with the game’s world that can be transported to a real world scenery.

7.2
Recommendations

Here we present some recommendations based on the experience of
developing the experimental game, as well as the experience with the tests
that were done with the public. They relate to the use of IoT devices as well
as the integration of participatory sensing tasks and serious applications. The
recommendations are the following:

• Align development goals with entities involved in pervasive interactions
before beginning development;

• Avoid populating with sensors dangerous areas that may offer risks to
the player;

• Avoid populating with sensors areas that the movement of players can
disrupt vital services such as health;

• Protect the physical integrity of the IoT devices avoiding damages caused
by climatic actions, shocks, among others;

• Protect the IoT devices against theft;

• Maintain a systematic check for exchange of defective batteries or de-
vices;

• Focus on tolerance of server connectivity issues, that is, if there is no
connection at the time of data collection, store it until the connection is
reestablished, avoiding the loss of data specially on isolated areas;

• Inform the player about the data collection process in which he will be
part of by lending his bandwidth or by being the main agent of the
collection, before sending any data collected to the server;

• Avoid asking complex and time-consuming sensory tasks to players in
order to decrease the amount of unreliable data obtained;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Chapter 7. Conclusions 88

• Reward the player fairly according to the sensory tasks performed, in
order to not affect his experience with the game, and motivate him to
perform other tasks of the same type;

• Check the integrity of the data collected in sensing tasks by cross
referencing data obtained in similar moments in time, possibly rewarding
the ones that are closer to the average and punishing the ones that are
farther;

• Check the feasibility of integrating serious applications with the game
(e.g. communication with third party database) before proposing it;

• Study the benefits of the integration of a serious application to make
sure that it is worth, taking a special look at side effects that may occur;

• Ensure the security of the most sensitive applications, avoiding the
possibility of abuse of system failures. The security of the system may
have a much greater weight in the context of serious applications.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Bibliography

[1] TALAVERA, L. E.; ENDLER, M.; VASCONCELOS, I.; VASCONCELOS, R.;
CUNHA, M. ; E SILVA, F. J. D. S. The mobile hub concept: En-
abling applications for the internet of mobile things. In: PER-
VASIVE COMPUTING AND COMMUNICATION WORKSHOPS (PERCOM
WORKSHOPS), 2015 IEEE INTERNATIONAL CONFERENCE ON, p. 123–
128. IEEE, 2015.

[2] ENDLER, M.; BAPTISTA, G.; SILVA, L.; VASCONCELOS, R.; MALCHER,
M.; PANTOJA, V.; PINHEIRO, V. ; VITERBO, J. Contextnet: con-
text reasoning and sharing middleware for large-scale pervasive
collaboration and social networking. In: PROCEEDINGS OF THE
WORKSHOP ON POSTERS AND DEMOS TRACK, p. 2. ACM, 2011.

[3] VALENTE, L.; FEIJÓ, B. ; DO PRADO LEITE, J. C. S. Mapping quality
requirements for pervasive mobile games. Requirements Engineering,
22(1):137–165, 2017.

[4] VALENTE, L.; FEIJÓ, B.; DO PRADO LEITE, J. C. S. ; CLUA, E. A
method to assess pervasive qualities in mobile games. Personal
and Ubiquitous Computing, p. 1–24, 2017.

[5] ESTRIN, D.; CHANDY, K. M.; YOUNG, R. M.; SMARR, L.; ODLYZKO,
A.; CLARK, D.; REDING, V.; ISHIDA, T.; SHARMA, S.; CERF, V. G. ;
OTHERS. Participatory sensing: applications and architecture
[internet predictions]. IEEE Internet Computing, 14(1):12–42, 2010.

[6] DE CRISTOFARO, E.; SORIENTE, C. Participatory privacy: Enabling
privacy in participatory sensing. IEEE network, 27(1):32–36, 2013.

[7] TALASILA, M.; CURTMOLA, R. ; BORCEA, C. Crowdsensing in the
wild with aliens and micro-payments. IEEE Pervasive Computing,
15(1):68–77, 2016.

[8] XIAO, Y.; SIMOENS, P.; PILLAI, P.; HA, K. ; SATYANARAYANAN, M.
Lowering the barriers to large-scale mobile crowdsensing. In:
PROCEEDINGS OF THE 14TH WORKSHOP ON MOBILE COMPUTING
SYSTEMS AND APPLICATIONS, p. 9. ACM, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Bibliography 90

[9] EBLING, M. R. Pervasive computing and the internet of things.
IEEE Pervasive Computing, 15(1):2–4, 2016.

[10] VALENTE, L.; CLUA, E.; FEIJÓ, B. ; DO PRADO LEITE, J. C. S. The
law of unanticipated consequences in pervasive games. 2016.

[11] PAPANGELIS, K.; METZGER, M.; SHENG, Y.; LIANG, H.-N.; CHAMBER-
LAIN, A. ; KHAN, V.-J. "get off my lawn!": Starting to understand
territoriality in location based mobile games. 2017.

[12] GREGORY, M. Ingress: A game, lifestyle and social network in
one. When In Manila. 2014-07-22.

[13] NIANTIC. Ingress (digital game). Google, 2012.

[14] WINEGARNER, B. Forget pokémon go, there’s another augmented
reality game that’s way better. Quartz. 2016-07-15.

[15] SMITH, J. A million people around you are playing an alternate
reality game you can’t see. Mic. 2015-05-28.

[16] WEBER, R. Niantic’s ingress has over 14m downloads. gamesin-
dustry.biz. 2016-01-28.

[17] TAKAHASHI, D. Pokémon go is ‘the most successful mobile launch
in history,’ superdata says. VentureBeat . 2016-08-24.

[18] LANDI, M. Pokemon go app named as the most popular game of
2016 on google play. Mirror. 2016-12-01.

[19] WINDELS, J. Pokémon go figure – a data analysis of the most
popular game of all time. Wandera. 2017-02-28.

[20] WEINBERGER, M. 14 things you didn’t know about pokémon go
and how it was made. Business Insider. 2016-07-15.

[21] WEINBERGER, M. The fad may be over, but pokémon go still has
65 million monthly active players. Business Insider. 2017-04-04.

[22] RUSSEL, J. Pokémon go has now crossed $1 billion in revenue.
TechCrunch. 2017-02-02.

[23] ETHERINGTON, D. Niantic’s follow-up to pokémon go will be a
harry potter ar game launching in 2018. TechCrunch. 2017-11-08.

http://www.wheninmanila.com/ingress-game-lifestyle-social-network/
https://qz.com/732809/forget-pokemon-go-theres-another-augmented-reality-game-thats-way-better/
https://mic.com/Articles/119366/one-million-people-around-you-are-playing-an-alternate-reality-game-you-can-t-see#.DLEYeAhtE
https://www.gamesindustry.biz/articles/2016-01-28-niantics-ingress-has-over-14m-downloads
https://www.gamesindustry.biz/articles/2016-01-28-niantics-ingress-has-over-14m-downloads
https://venturebeat.com/2016/08/24/pokemon-go-is-the-most-successful-mobile-launch-in-history-superdata-says/
http://www.mirror.co.uk/tech/pokemon-go-app-named-most-9375173
https://www.wandera.com/blog/pokemon-go-data-analysis-popular-game/
http://www.businessinsider.com/history-of-pokmon-go-2016-7/#ingress-may-not-have-had-the-mainstream-success-of-pokmon-go--but-it-still-had-millions-of-players-at-its-peak-in-fact-pokmon-company-ceo-tsunekazu-ishihara-is-a-high-level-ingress-player-in-japan-which-also-smoothed-the-road-for-pokmon-go-12
http://www.businessinsider.com/pokemon-go-65-million-monthly-active-players-2017-4
https://techcrunch.com/2017/02/01/report-pokemon-go-has-now-crossed-1-billion-in-revenue/
https://techcrunch.com/2017/11/08/niantics-follow-up-to-pokemon-go-will-be-a-harry-potter-ar-game-launching-in-2018/
DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Bibliography 91

[24] WEBSTER, A. The walking dead is getting a pokémon go-style
ar game. The Verge. 2017-08-29.

[25] LAC. Contextnet middleware wiki. Laboratory for Advanced Collabo-
ration. 2017-11-28.

[26] LAC. Contextnet middleware wiki: Mobile hub. Laboratory for
Advanced Collaboration. 2018-04-12.

[27] MACDOWELL, A.; ENDLER, M.. Internet of things based multiplayer
pervasive games: An architectural analysis. In: INTERNET OF
THINGS. USER-CENTRIC IOT, p. 125–138. Springer, 2015.

[28] FREAK, G. Pokémon. Japan: Nintendo, 1996.

[29] SAMPAIO, P. 2dmapbuilder documentation. 2DMapBuilder Wiki.
2017-06-17.

[30] DICKEY, M. D. Game design and learning: A conjectural analysis
of how massively multiple online role-playing games (mmorpgs)
foster intrinsic motivation. Educational Technology Research and
Development, 55(3):253–273, 2007.

[31] NESTERIUK, F. T. M. S. Action rpg e idle games: possíveis
combinações assimétricas de mecânicas de jogo divergentes.

[32] FACCIO, M.; MCCONNELL, J. Death by pokémon go. 2017.

[33] AYERS, J. W.; LEAS, E. C.; DREDZE, M.; ALLEM, J.-P.; GRABOWSKI,
J. G. ; HILL, L. Pokémon go—a new distraction for drivers and
pedestrians. JAMA internal medicine, 176(12):1865–1866, 2016.

[34] MULLENIX, D.; FULTON, J.; BROOKE, A. ; WINSTEAD, A. Explanation
of gps/gnss drift. 2010.

[35] REILLY, L. Universal anuncia game mobile de jurassic world
parecido com pokémon go. IGN. 2018-03-09.

[36] UEYAMA, Y.; TAMAI, M.; ARAKAWA, Y. ; YASUMOTO, K.
Gamification-based incentive mechanism for participatory sens-
ing. In: PERVASIVE COMPUTING AND COMMUNICATIONS WORK-
SHOPS (PERCOM WORKSHOPS), 2014 IEEE INTERNATIONAL CON-
FERENCE ON, p. 98–103. IEEE, 2014.

https://www.theverge.com/2017/8/29/16184500/the-walking-dead-our-world-augmented-reality-game-iphone-android
http://www.lac.inf.puc-rio.br/dokuwiki/doku.php
http://www.lac.inf.puc-rio.br/dokuwiki/doku.php
http://www.lac.inf.puc-rio.br/dokuwiki/doku.php?id=m_hub
http://www.lac.inf.puc-rio.br/dokuwiki/doku.php?id=m_hub
https://bitbucket.org/KikoSampaio/2dmapbuilder/wiki/Home
http://br.ign.com/ign-pop/59527/news/universal-anuncia-game-mobile-de-jurassic-world-parecido-com
DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Bibliography 92

[37] ARAKAWA, Y.; MATSUDA, Y. Gamification mechanism for enhanc-
ing a participatory urban sensing: Survey and practical results.
Journal of Information Processing, 24(1):31–38, 2016.

[38] GROH, F. Gamification: State of the art definition and utilization.
Institute of Media Informatics Ulm University, 39:31, 2012.

[39] ZECHNER, M. Introduction to libgdx. LibGDX Documentation. Acesso
em 2018.

[40] MDN. Noções de tile e tilemaps. MDN web docs. 2015.

[41] SAMPAIO, P. M2d format. 2DMapBuilder Wiki. 2017-06-22.

[42] ZECHNER, M. Gallery. LibGDX Gallery. Acesso em 2018.

[43] SLANT COMMUNITY. What are the best 2d game engines for
android? Slant 2D Android Engine Recommendations. 2018.

[44] SLANT COMMUNITY. What are the best ides for android devel-
opment? Slant Android IDE Recommendations. 2018.

[45] LAC. Contextnet middleware download. Laboratory for Advanced
Collaboration. 2018-06-04.

[46] GRADLE INC. Gradle user manual. Gradle Docs. Acesso em 2018.

[47] ZECHNER, M. Dependency management with gradle. LibGDX Wiki.
Acesso em 2018.

[48] PHPMYADMIN CONTRIBUTORS. Bringing mysql to the web. php-
MyAdmin Website. 2018.

[49] COBURN, M. Top 5 open source tools for mysql administrators.
InfoWorld. 2017.

[50] OPITZ, D. Xampp - replacing mariadb with mysql. GitHub. Acesso
em 2018.

[51] LAC. Contextnet middleware tutorial. Laboratory for Advanced
Collaboration. 2017-07-21.

[52] ORACLE. Java jdbc api. Java Documentation. Acesso em 2018.

[53] ZECHNER, M. Class i18nbundle. LibGDX API. Acesso em 2018.

[54] ZECHNER, M. Sound effects. LibGDX Wiki. Acesso em 2018.

https://libgdx.badlogicgames.com/documentation/
https://developer.mozilla.org/pt-BR/docs/Games/Techniques/Tilemaps
https://bitbucket.org/KikoSampaio/2dmapbuilder/wiki/M2DFormat
https://libgdx.badlogicgames.com/gallery.html?page=0#gallery
https://www.slant.co/topics/1476/~2d-game-engines-for-android
https://www.slant.co/topics/1321/~ides-for-android-development
http://wiki.lac.inf.puc-rio.br/doku.php?id=download
http://wiki.lac.inf.puc-rio.br/doku.php?id=download
https://docs.gradle.org/current/userguide/userguide.html
https://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle
https://www.phpmyadmin.net/
https://www.phpmyadmin.net/
https://www.infoworld.com/article/3241730/database/top-5-open-source-tools-for-mysql-administrators.html
https://gist.github.com/odan/c799417460470c3776ffa8adce57eece
http://wiki.lac.inf.puc-rio.br/doku.php?id=tutorial
http://wiki.lac.inf.puc-rio.br/doku.php?id=tutorial
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://libgdx.badlogicgames.com/ci/nightlies/docs/api/com/badlogic/gdx/utils/I18NBundle.html
https://github.com/libgdx/libgdx/wiki/Sound-effects
DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Bibliography 93

[55] ZECHNER, M. Ortographic camera. LibGDX Wiki. Acesso em 2018.

[56] GAMES, S.Markov name generator. Sillicon Commander Games. Acesso
em 2018.

https://github.com/libgdx/libgdx/wiki/Orthographic-camera
http://www.siliconcommandergames.com/MarkovNameGenerator.htm
DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

A
Setup Guide

This chapter aims to guide through the integration of all components
used to develop the proposed IoMT pervasive game, therefore it guides for the
preparation of the development environment.

A.1
Android Studio Setup

Android Studio IDE was chosen for the development of the IoMT
pervasive game, so all integration that is described in this chapter will consider
that. Thus, it is recommended that the same IDE is used for any project that
wishes to follow the integration described ahead.

When it comes to setting Android Studio up, the only concern is to make
sure to include the Android SDK on the installation, as it is necessary to the
development of the application. In case you already have the SDK, you do
not need to install it again, but you will have to link the SDK location in
your computer on Android Studio configuration, as shown in figure A.1. You
may use any Java Development Kit version 8 or newer, but you can use the
embedded JDK version 8.

We will not be creating our Android Studio project through the IDE,
instead we will prepare the project beforehand in order to integrate the
framework LibGDX. This is due to the existence of a project generator for
the framework that reduces the effort into creating a LibGDX project.

A.2
LibGDX Project

To aid the development of projects that use LibGDX framework, LibGDX
project generator (figure A.2) creates a template project with all the necessary
components to enable the use of the framework. In the generator, it is possible
to pick the name of the project, package, main class, as well as choose the
project destination path, but you must ensure that the Android SDK location
is correct.

Once the project is generated, the next step is to import it into Android
Studio.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 95

Figure A.1: Android Studio SDK Location configuration

Figure A.2: LibGDX Project Generator

A.3
ContextNet Setup

To better structure ContextNet’s Setup guide, we divided into two
different sub-guides: the first one details the setup for the SDDL Core (that
runs the server side), and the second one details the setup for the Mobile Hub
extension of the ContextNet middleware.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 96

A.3.1
SDDL Core Setup

The ContextNet middleware is distributed as a set of software modules
in the form of JAR files. In order to develop applications based on ContextNet
services, you will need to include these libraries in your application build path
[45]. In the case of our application, which is a LibGDX project, we must use
Gradle to include these libraries, which will be explained further in the Gradle
Setup section.

To provide real-time communication services, the ContextNet’s middle-
ware communication layer, Scalable Data Distribution Layer (SDDL), uses the
Data Distribution Service (DDS) protocol in its core network and the MR-UDP
protocol in the edges [45]. It is necessary to utilize some DDS product. For the
latest ContextNet, version 2.7, OpenSplice 6.7 is the recommended option for
an open source implementation of DDS. A detailed tutorial on how to install
OpenSplice can be found at the ContextNet’s tutorial page [45]. Additionally,
it also requires Sun/Oracle Java 1.6 runtime or newer.

To execute a ContextNet application, one needs to first create the
gateway, which will instantiate the core infrastructure if none exists. You can
create a gateway by running the ContextNet middleware jar file. The gateway
receives three parameters: a public IP address, a given port number, and a
DDS vendor implementation to be used [45]. Figure A.3 serves an example
of a command line that locally deploys the gateway through loopback IP
"127.0.0.1". A helpful tip is to create a batch file with the command line to
save time when deploying the gateway.

Once the gateway is running, ContextNet’s SDDL will be fully usable,
and will provide the means to distribute messages between the game’s client
and the game’s server in a very reliable manner.

Figure A.3: Command line that deploys gateway locally

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 97

A.3.2
Mobile Hub Setup

The Mobile Hub (M-Hub) is a general-purpose middleware that enables
mobile personal devices (Android smartphones and tablets) to become the
propagator nodes (i.e. gateways to the Internet) for the simpler IoT objects
or Mobile Objects (M-OBJ) (sensors/actuators) with only short-range WPAN
interfaces. It provides context information such as current local time and/or
the (approximate) location to the data obtained from the M-OBJs to which
it is connected. The M-Hub extends the ContextNet with IoT access to smart
devices (with WPAN interfaces) [26].

It is possible to use M-Hub Android application package (figure A.4) that
is provided by the developers of the middleware in the Mobile Hub project page
[26], which allows the user to easily start using it and enable your device to
collect M-OBJ data. With minimal and simple parameter configuration, such
as the IP address and the port of a Gateway that should be connected (as seen
in the first image of figure A.4), any data from all nearby sensors of IoT devices
can be sent to the server through ContextNet’s SDDL. The user can also
configure other parameters, for instance: a Bluetooth LE strength threshold,
time intervals between BLE scans, and enabling or disabling of specific services
(as shown in the top images of figure A.4). Data collected can be visualized in
the Mobile-Hub app’s (as displayed in the bottom images of figure A.4). It is
important to note that the M-Hub application requires Android 4.3 version or
newer to work [26].

In this project, where the functionality of scanning surroundings of the
mobile device in order to find sensors and actuators is a part of the gameplay,
we wanted to let the player decide when to start and stop searching for M-
OBJs, as opposed to enable the scanning throughout the whole execution of the
game. This user-driven device search we took not only fits within the context
of games, but also saves battery of the user device, as it not only prevents the
device to be scanning for M-OBJs all the time, but it also removes the necessity
of having the BLE interface turned on while playing the game, even when is
not needed. The result is that when the player wants to scan, the Bluetooth
will automatically be enabled, and when the user wants to stop, the Bluetooth
will be disabled.

Thus, we deviated from using the original Mobile Hub application, as it
it controls the scanning with its own on and off button. Instead, we wanted
to control the scanning from inside the game, facilitating the scanning for
the player and not having to switch between mobile applications. To achieve
that we used The Mobile Hub API, that provides all the existing services that

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 98

Figure A.4: Mobile Hub application

compose M-Hub. We used the service called S2PA, which is responsible for
monitoring and discovering M-OBJs.

Once you have the Mobile Hub API [26] in your project, you will need
to be able to use the S2PA service of M-Hub. Thus, you must declare it in
the Android manifest file as shown in figure A.5. For guidance, the complete
Android manifest file used in this project is available in the appendix section.

Figure A.5: Android manifest file services declaration

Each declaration in figure A.5 refers to a service present in the Mobile

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 99

Hub API. The name that references each service is nothing more than the
package path concatenated with the service class name.

The S2PA service will be in charge for discovering and for monitoring data
from the M-OBJs, and will start to do so at the moment it is instantiated, but
the data retrieved will not be automatically sent to the server, since this is not
part of the S2PA service job. In this project, we used our already implemented
client-server communication that was created through SDDL to send any data
retrieved via the S2PA service data. For that to work, an interface between
the Android native code and the LibGDX framework had to be developed.
The details of this interface as well as the implementation of this process is
discussed in chapter 5.

Finally, the Mobile Hub will, in some cases, require some configurations
for the IDE used. In our case, the Android Studio studio.vmptions file should
mirror the parameters shown in figure A.6.

Figure A.6: Android Studio studio.vmptions file

A.4
Gradle Setup

LibGDX framework generated project creates a Gradle-ready project,
so gradle can be used to build the project in different IDEs. Following the
same protocol, we included any external libraries needed to run the project in

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 100

the Gradle build, including ContextNet’s JAR file. It is also possible to use
dependencies that are stored in remote repositories, as illustrated in figure A.7.

Figure A.7: Gradle local and remote dependencies

Figure A.7 shows the including of three different remote dependencies,
but also shows how to compile local dependencies through the parameter
"fileTree" which in this case includes the compilation of any JAR file stored
in the local libs directory. The problem is that the generated LibGDX project
consists of two separated sub-projects, one that works as a normal Android
project that is named "android", and another one where the framework will
work, named "core". To build these sub-projects as one bigger project, the
Gradle setup ends up getting a little bit more complicated, resulting in a
project with multiple Gradle build files and libs folders.

To guide on where each local dependency should be stored, as well
as in which Gradle build file should the dependencies be declared, LibGDX
provides an extensive document detailing dependency management [47]. Even
with the provided guide, it is not trivial to make the LibGDX framework
and ContextNet middleware to work all together, so in order to assist future
projects we provide in the appendix section the fully working three gradle files,
as well as displaying in the figure (A.8) the disposition of the libs folder and
the necessary libraries.

One last remark that should be made about Gradle is that the whole
project was based on an older version of Gradle, in consequence of the LibGDX
generated project Gradle version. If the newer version is used, some keywords
and structures may vary, so a compatibility work may be needed.

A.5
Database Setup

To manage the server database, we chose to use phpMyAdmin. It is a free
software tool written in PHP, intended to handle the management of MySQL
databases over the Web. phpMyAdmin supports a wide range of operations on
MySQL. Frequently used operations (managing databases, tables, columns,
relations, indexes, users, permissions, etc) can be performed via the user

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 101

Figure A.8: Android libs folder (left) and core libs folder (right)

interface, while one still has the ability to directly execute any SQL statement
[48].

It is usually ranked as one of the best among MySQL administration tool
[49], and is our go-to option for database administration. We used XAMPP
as web server (figure A.9), which comes with phpMyAdmin bundled in the
installation for database administration.

Figure A.9: XAMPP web server with Apache and MySQL services on

Newer versions of XAMPP comes with MariaDB instead of MySQL, but
is possible to replace it with MySQL [50], although we used an older version

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 102

that comes with MySQL. Once XAMPP is installed, you will only need to
start Apach and MySQL services to be able to use and administrate your
server database, as shown in figure A.9. You may need to make sure your
ports are open for WAN access, but for local and LAN uses you are set up.

Depending if the access is within the server machine, a LAN or a
WAN, the phpMyAdmin administration page (figure A.10) must be accessed
distinctly, since the IP to access the machine varies. The page URL should be
the IP to access the machine concatenated with "/phpmyadmin", so for local
access within the machine, the URL would be "http://localhost/phpmyadmin"
or "http://127.0.0.1/phpmyadmin". It is also strongly advisable to create a
password for phpMyAdmin, ensuring the security of the data.

Figure A.10: The phpMyAdmin page accessed locally

Naturally, phpMyAdmin allows the creation of multiple databases. Once
a database is created, you may create multiple users with different access
privileges for it, but we recommend that users with all privileges should be
avoided for safety reasons.

To access and use the database created in the project, the following data
will be necessary:

• The name of the database created for the project;

• The IP to access the database machine from the game server machine.
As it probably is the same machine, 127.0.0.1 or LAN IP should be used;

• The port to access MySQL. Default is 3306, there is no need to change
unless the port is being used for other applications;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix A. Setup Guide 103

• The username and the password of a user that has access to the database
created for the project.

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

B
Android Manifest File

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.mygdx.game" >

<uses-sdk android:minSdkVersion="16"

android:targetSdkVersion="25" />

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.WAKE_LOCK" />

<uses-permission

android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission

android:name="android.permission.BLUETOOTH_ADMIN" />

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<uses-permission

android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/GdxTheme"

>

<activity

android:name="com.mygdx.game.AndroidLauncher"

android:label="@string/app_name"

android:screenOrientation="portrait"

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix B. Android Manifest File 105

android:configChanges="keyboard|keyboardHidden|orientation|screenSize">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category

android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Begin Services -->

<service

android:name="br.pucrio.inf.lac.mhub.services.S2PAService"

/>

<service

android:name="br.pucrio.inf.lac.mhub.services.ConnectionService"

/>

<service

android:name="br.pucrio.inf.lac.mhub.services.LocationService"

/>

<service

android:name="br.pucrio.inf.lac.mhub.services.AdaptationService"

/>

<service

android:name="br.pucrio.inf.lac.mhub.services.MEPAService"

/>

<!-- End Services -->

<!-- Begin Broadcast Receivers -->

<receiver

android:name="br.pucrio.inf.lac.mhub.broadcastreceivers.OnBootReceiver"

>

<intent-filter>

<action

android:name="android.intent.action.BOOT_COMPLETED"

/>

</intent-filter>

</receiver>

<receiver

android:name="br.pucrio.inf.lac.mhub.broadcastreceivers.PowerReceiver"

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix B. Android Manifest File 106

>

<intent-filter>

<action

android:name="android.intent.action.ACTION_POWER_CONNECTED"

/>

<action

android:name="android.intent.action.ACTION_POWER_DISCONNECTED"

/>

</intent-filter>

</receiver>

<receiver

android:name="br.pucrio.inf.lac.mhub.broadcastreceivers.ConnectivityReceiver"

>

<intent-filter>

<action

android:name="android.net.conn.CONNECTIVITY_CHANGE"

/>

</intent-filter>

</receiver>

<receiver

android:name="br.pucrio.inf.lac.mhub.broadcastreceivers.BatteryReceiver"

/>

<!-- End Broadcast Receivers -->

</application>

</manifest>

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

C
Gradle Build Files

C.1
Root Folder Gradle File

/************************

*** root/build.gradle ***

*************************/

buildscript {

repositories {

mavenLocal()

mavenCentral()

maven { url

"https://oss.sonatype.org/content/repositories/snapshots/"

}

jcenter()

}

dependencies {

classpath ’com.android.tools.build:gradle:2.3.3’

}

}

allprojects {

apply plugin: "eclipse"

apply plugin: "idea"

version = ’1.0’

ext {

appName = "pucmon"

gdxVersion = ’1.9.6’

roboVMVersion = ’2.3.1’

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 108

box2DLightsVersion = ’1.4’

ashleyVersion = ’1.7.0’

aiVersion = ’1.8.0’

}

repositories {

mavenLocal()

mavenCentral()

maven { url

"https://oss.sonatype.org/content/repositories/snapshots/"

}

maven { url

"https://oss.sonatype.org/content/repositories/releases/"

}

}

}

project(":android") {

apply plugin: "android"

configurations { natives }

dependencies {

compile project(":core")

compile

"com.badlogicgames.gdx:gdx-backend-android:$gdxVersion"

natives

"com.badlogicgames.gdx:gdx-platform:$gdxVersion:natives-armeabi"

natives

"com.badlogicgames.gdx:gdx-platform:$gdxVersion:natives-armeabi-v7a"

natives

"com.badlogicgames.gdx:gdx-platform:$gdxVersion:natives-arm64-v8a"

natives

"com.badlogicgames.gdx:gdx-platform:$gdxVersion:natives-x86"

natives

"com.badlogicgames.gdx:gdx-platform:$gdxVersion:natives-x86_64"

compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"

natives

"com.badlogicgames.gdx:gdx-box2d-platform:$gdxVersion:natives-armeabi"

natives

"com.badlogicgames.gdx:gdx-box2d-platform:$gdxVersion:natives-armeabi-v7a"

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 109

natives

"com.badlogicgames.gdx:gdx-box2d-platform:$gdxVersion:natives-arm64-v8a"

natives

"com.badlogicgames.gdx:gdx-box2d-platform:$gdxVersion:natives-x86"

natives

"com.badlogicgames.gdx:gdx-box2d-platform:$gdxVersion:natives-x86_64"

}

}

project(":core") {

apply plugin: "java"

dependencies {

compile "com.badlogicgames.gdx:gdx:$gdxVersion"

compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"

compile fileTree(dir: ’libs’, include: ’*.jar’)

}

}

tasks.eclipse.doLast {

delete ".project"

}

C.2
Android Folder Gradle File

/********************************

*** root/android/build.gradle ***

*********************************/

android {

buildToolsVersion "26.0.1"

compileSdkVersion 25

sourceSets {

main {

manifest.srcFile ’AndroidManifest.xml’

java.srcDirs = [’src’]

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 110

aidl.srcDirs = [’src’]

renderscript.srcDirs = [’src’]

res.srcDirs = [’res’]

assets.srcDirs = [’assets’]

jniLibs.srcDirs = [’libs’]

}

instrumentTest.setRoot(’tests’)

}

packagingOptions {

exclude ’META-INF/robovm/ios/robovm.xml’

}

defaultConfig {

applicationId "com.mygdx.game"

minSdkVersion 16

targetSdkVersion 25

versionCode 1

versionName "1.0"

// Enabling multidex support.

multiDexEnabled true

}

dexOptions {

jumboMode true

javaMaxHeapSize "4g"

}

buildTypes {

release {

minifyEnabled true

proguardFiles

getDefaultProguardFile(’proguard-android.txt’),

’proguard-rules.pro’

}

}

}

// called every time gradle gets executed, takes the native

dependencies of

// the natives configuration, and extracts them to the proper libs/

folders

// so they get packed with the APK.

task copyAndroidNatives() {

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 111

file("libs/armeabi/").mkdirs();

file("libs/armeabi-v7a/").mkdirs();

file("libs/arm64-v8a/").mkdirs();

file("libs/x86_64/").mkdirs();

file("libs/x86/").mkdirs();

configurations.natives.files.each { jar ->

def outputDir = null

if (jar.name.endsWith("natives-arm64-v8a.jar")) outputDir =

file("libs/arm64-v8a")

if (jar.name.endsWith("natives-armeabi-v7a.jar")) outputDir =

file("libs/armeabi-v7a")

if (jar.name.endsWith("natives-armeabi.jar")) outputDir =

file("libs/armeabi")

if (jar.name.endsWith("natives-x86_64.jar")) outputDir =

file("libs/x86_64")

if (jar.name.endsWith("natives-x86.jar")) outputDir =

file("libs/x86")

if (outputDir != null) {

copy {

from zipTree(jar)

into outputDir

include "*.so"

}

}

}

}

task run(type: Exec) {

def path

def localProperties = project.file("../local.properties")

if (localProperties.exists()) {

Properties properties = new Properties()

localProperties.withInputStream { instr ->

properties.load(instr)

}

def sdkDir = properties.getProperty(’sdk.dir’)

if (sdkDir) {

path = sdkDir

} else {

path = "$System.env.ANDROID_HOME"

}

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 112

} else {

path = "$System.env.ANDROID_HOME"

}

def adb = path + "/platform-tools/adb"

commandLine "$adb", ’shell’, ’am’, ’start’, ’-n’,

’com.mygdx.game/com.mygdx.game.AndroidLauncher’

}

// sets up the Android Eclipse project, using the old Ant based

build.

eclipse {

// need to specify Java source sets explicitly, SpringSource

Gradle Eclipse plugin

// ignores any nodes added in classpath.file.withXml

sourceSets {

main {

java.srcDirs "src", ’gen’

}

}

jdt {

sourceCompatibility = 1.6

targetCompatibility = 1.6

}

classpath {

plusConfigurations += [project.configurations.compile]

containers ’com.android.ide.eclipse.adt.ANDROID_FRAMEWORK’,

’com.android.ide.eclipse.adt.LIBRARIES’

}

project {

name = appName + "-android"

natures ’com.android.ide.eclipse.adt.AndroidNature’

buildCommands.clear();

buildCommand

"com.android.ide.eclipse.adt.ResourceManagerBuilder"

buildCommand "com.android.ide.eclipse.adt.PreCompilerBuilder"

buildCommand "org.eclipse.jdt.core.javabuilder"

buildCommand "com.android.ide.eclipse.adt.ApkBuilder"

}

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 113

}

// sets up the Android Idea project, using the old Ant based build.

idea {

module {

sourceDirs += file("src");

scopes = [COMPILE: [plus: [project.configurations.compile]]]

iml {

withXml {

def node = it.asNode()

def builder = NodeBuilder.newInstance();

builder.current = node;

builder.component(name: "FacetManager") {

facet(type: "android", name: "Android") {

configuration {

option(name: "UPDATE_PROPERTY_FILES",

value: "true")

}

}

}

}

}

}

}

dependencies {

compile ’com.google.dagger:dagger:2.0’

compile fileTree(include: ’*.jar’, dir: ’libs’)

compile ’com.android.support:support-v4:25.1.0’

compile ’com.android.support:multidex:1.0.1’

}

C.3
Core Folder Gradle File

/*****************************

*** root/core/build.gradle ***

******************************/

apply plugin: "java"

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix C. Gradle Build Files 114

sourceCompatibility = 1.6

[compileJava, compileTestJava]*.options*.encoding = ’UTF-8’

sourceSets.main.java.srcDirs = ["src/"]

eclipse.project {

name = appName + "-core"

}

dependencies {

}

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

D
SQL Schema File

DROP TABLE IF EXISTS ‘player_equipments‘;

DROP TABLE IF EXISTS ‘player_items‘;

DROP TABLE IF EXISTS ‘players‘;

DROP TABLE IF EXISTS ‘accounts‘;

DROP TABLE IF EXISTS ‘market‘;

DROP TABLE IF EXISTS ‘mission_storage‘;

DROP TABLE IF EXISTS ‘sensors‘;

DROP TABLE IF EXISTS ‘sensors_input‘;

CREATE TABLE ‘accounts‘

(

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘name‘ VARCHAR(32) NOT NULL DEFAULT ’’,

‘password‘ VARCHAR(255) NOT NULL/* VARCHAR(32) NOT NULL COMMENT

’MD5’*//* VARCHAR(40) NOT NULL COMMENT ’SHA1’*/,

PRIMARY KEY (‘id‘), UNIQUE (‘name‘)

) ENGINE = InnoDB;

INSERT INTO ‘accounts‘ VALUES (1, ’1’, ’1’);

CREATE TABLE ‘players‘

(

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘name‘ VARCHAR(255) NOT NULL,

‘world_map‘ INT NOT NULL DEFAULT 0,

‘account_id‘ INT NOT NULL DEFAULT 0,

‘level‘ INT NOT NULL DEFAULT 1,

‘experience‘ BIGINT NOT NULL DEFAULT 0,

‘posx‘ INT NOT NULL DEFAULT 0,

‘posy‘ INT NOT NULL DEFAULT 0,

‘gold‘ BIGINT NOT NULL DEFAULT 0,

‘first_login‘ BOOLEAN NOT NULL DEFAULT TRUE,

‘online‘ BOOLEAN NOT NULL DEFAULT FALSE,

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix D. SQL Schema File 116

PRIMARY KEY (‘id‘), UNIQUE (‘name‘),

KEY (‘account_id‘),

FOREIGN KEY (‘account_id‘) REFERENCES ‘accounts‘(‘id‘) ON DELETE

CASCADE

) ENGINE = InnoDB;

INSERT INTO ‘players‘ VALUES (1, ’Jotun’, 0, 1, 1, 0, 0, 0, 0, true,

false);

CREATE TABLE ‘player_items‘

(

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘uid‘ INT NOT NULL,

‘player_id‘ INT NOT NULL DEFAULT 0,

‘level‘ INT NOT NULL DEFAULT 0,

‘page‘ INT NOT NULL DEFAULT 0,

‘idxi‘ INT NOT NULL DEFAULT 0,

‘idxj‘ INT NOT NULL DEFAULT 0,

PRIMARY KEY (‘id‘),

KEY (‘player_id‘),

FOREIGN KEY (‘player_id‘) REFERENCES ‘players‘(‘id‘) ON DELETE

CASCADE

) ENGINE = InnoDB;

INSERT INTO ‘player_items‘ VALUES (1, 3000, 1, 1, 1, 0, 0);

CREATE TABLE ‘player_equipments‘

(

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘uid‘ INT NOT NULL,

‘player_id‘ INT NOT NULL DEFAULT 0,

‘level‘ INT NOT NULL DEFAULT 0,

‘slot‘ INT NOT NULL DEFAULT 0,

PRIMARY KEY (‘id‘),

KEY (‘player_id‘),

FOREIGN KEY (‘player_id‘) REFERENCES ‘players‘(‘id‘) ON DELETE

CASCADE

) ENGINE = InnoDB;

INSERT INTO ‘player_equipments‘ VALUES (1, 3000, 1, 1, 1);

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix D. SQL Schema File 117

CREATE TABLE ‘market‘

(

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘uid‘ INT NOT NULL,

‘player_id‘ INT NOT NULL DEFAULT 0,

‘level‘ INT NOT NULL DEFAULT 0,

‘price‘ BIGINT NOT NULL DEFAULT 0,

‘quality‘ INT NOT NULL DEFAULT 0,

‘sold‘ BOOLEAN NOT NULL DEFAULT FALSE,

PRIMARY KEY (‘id‘),

KEY (‘player_id‘),

FOREIGN KEY (‘player_id‘) REFERENCES ‘players‘(‘id‘) ON DELETE

CASCADE

) ENGINE = InnoDB;

INSERT INTO ‘market‘ VALUES (1, 7000, 1, 10, 520, 3, false);

CREATE TABLE ‘mission_storage‘

(

‘mission_id‘ INT NOT NULL DEFAULT 0,

‘player_id‘ INT NOT NULL DEFAULT 0,

‘timestamp‘ timestamp NOT NULL DEFAULT now(),

PRIMARY KEY (‘mission_id‘, ‘player_id‘),

KEY (‘player_id‘),

FOREIGN KEY (‘player_id‘) REFERENCES ‘players‘(‘id‘) ON DELETE

CASCADE

) ENGINE = InnoDB;

INSERT INTO ‘mission_storage‘ VALUES (0, 1, NULL);

CREATE TABLE ‘sensors‘

(

‘sensor_id‘ VARCHAR(255) NOT NULL,

‘sensor_type‘ VARCHAR(255) NOT NULL DEFAULT ’mission’,

‘mission_id‘ INT,

‘thumbnail_id‘ INT,

‘code‘ VARCHAR(255),

‘n_inputs‘ INT NOT NULL DEFAULT 0,

‘input_type‘ VARCHAR(255),

PRIMARY KEY (‘sensor_id‘)

) ENGINE = InnoDB;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

Appendix D. SQL Schema File 118

INSERT INTO ‘sensors‘ VALUES (’1-F45EAB2755CC’, ’mission’, 0, 0,

’RGBR’, 0, NULL);

INSERT INTO ‘sensors‘ VALUES (’1-34B1F7D508B2’, ’mission’, 1, 1,

NULL, 2, ’integer’) ;

CREATE TABLE ‘sensors_input‘

(

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘sensor_id‘ VARCHAR(255) NOT NULL,

‘input_type‘ VARCHAR(255) NOT NULL,

‘input_name‘ VARCHAR(255) NOT NULL,

‘input_data‘ VARCHAR(255) NOT NULL,

‘timestamp‘ timestamp NOT NULL DEFAULT now(),

PRIMARY KEY (‘id‘),

KEY (‘sensor_id‘),

FOREIGN KEY (‘sensor_id‘) REFERENCES ‘sensors‘(‘sensor_id‘) ON

DELETE CASCADE

) ENGINE = InnoDB;

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

E
Data Source Factory

/**

* Factory of MySqlDataSource object

* that communicates with server database

*

* @author Pedro Sampaio

* @since 1.4

*/

public class DataSourceFactory {

public static DataSource getMySQLDataSource() {

Properties props = new Properties();

FileInputStream fis = null;

MysqlDataSource mysqlDS = null;

String path = "sql/db.properties";

try {

fis = new FileInputStream(path);

props.load(fis);

mysqlDS = new MysqlDataSource();

mysqlDS.setURL(props.getProperty("MYSQL_DB_URL"));

mysqlDS.setUser(props.getProperty("MYSQL_DB_USERNAME"));

mysqlDS.setPassword(props.getProperty("MYSQL_DB_PASSWORD"));

} catch (IOException e) {

System.err.println("Could not find db properties file:

"+path);

e.printStackTrace();

}

return mysqlDS;

}

}

DBD
PUC-Rio - Certificação Digital Nº 1612860/CA

	A Study on Pervasive Games Based on the Internet of Mobile Things
	Resumo
	Table of contents
	Introduction
	Main Challenges
	Motivation and Goals
	Contributions
	Methodology
	Document Structure

	Related Work
	Overview
	The Game
	Pervasive Mechanics

	Development and Runtime Environment
	Android Studio
	ContextNet Middleware
	LibGDX Framework
	2DMapBuilder Map Editor
	Gradle Build Tool

	PUCmon Development
	Client-Server Architecture
	Communication Architecture
	Message Classification
	Message Distribution

	Database Architecture
	Database Model
	Database Integration

	Account Management

	LibGDX Coordinate System
	Touch Coordinates
	Screen Coordinates

	Screen State Architecture
	LibGDX Game Loop
	State Design Pattern

	Multiple Language Support
	Configuration File
	Text System
	Sound Effects
	Map
	2DMapBuilder Integration
	Optimized Map Rendering

	Game's Camera
	Animation Architecture
	Collision Detection
	Collision Architecture
	Collision Mapping
	Optimized Collision Check

	Character
	Character's Level System
	Character's Attributes
	Character's Inventory

	Items
	Enemies
	Battle
	Ranking
	Market
	Pervasive Map
	Sensor Search

	Evaluation
	Experiments with Students
	Experiment A
	Experiment B

	Performance Tests
	Latency Tests
	Rendering Performance

	Conclusions
	Future Works
	Recommendations

	Bibliography
	Setup Guide
	Android Studio Setup
	LibGDX Project
	ContextNet Setup
	SDDL Core Setup
	Mobile Hub Setup

	Gradle Setup
	Database Setup

	Android Manifest File
	Gradle Build Files
	Root Folder Gradle File
	Android Folder Gradle File
	Core Folder Gradle File

	SQL Schema File
	Data Source Factory

