
Diego Cedrim Gomes Rêgo

Understanding and Improving Batch
Refactoring in Software Systems

Tese de Doutorado

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
September 2018

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Diego Cedrim Gomes Rêgo

Understanding and Improving Batch
Refactoring in Software Systems

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
undersigned Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Profa. Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Prof. Guilherme Horta Travassos
UFRJ

Prof. Rohit Gheyi
UFCG

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, September 28th, 2018

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

All rights reserved.

Diego Cedrim Gomes Rêgo

The author received his Bachelor degree in Computer Sci-
ence from the Instituto de Computação (IC) of Universidade
Federal de Alagoas (UFAL) in 2007. He also received his Mas-
ter degree in Computer Science from Pontifícia Universidade
Católica do Rio de Janeiro (PUC-Rio) in 2009. During his aca-
demic career, he participated in several research projects. His
main research interests are: Code Smells, Refactoring, Soft-
ware Architecture, and Empirical Software Engineering.

Bibliographic data
Rêgo, Diego Cedrim Gomes

Understanding and Improving Batch Refactoring in Soft-
ware Systems / Diego Cedrim Gomes Rêgo ; advisor: Alessan-
dro Fabricio Garcia. – 2018.

168 f. : il. color. ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio
de Janeiro, Departamento de Informática, 2018.

Inclui bibliografia

1. Informática – Teses. 2. Refatoração. 3. Anomalias de
código. 4. Manutenção de software. 5. Evolução de software.
6. Qualidade estrutural. I. Garcia, Alessandro Fabricio. II. Pon-
tifícia Universidade Católica do Rio de Janeiro. Departamento
de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

To my family, for their support
and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Acknowledgments

I have to start by thanking my wonderful family. I’m absolutely sure that,
without them, I would not have accomplished anything minimally significant
in my life. My mom, Betânia Cedrim, is my true hero. She is the strongest
person I know and she is astonishingly amazing! I will be eternally grateful to
her. I love you, mom! I also thank my father, Murilo Rêgo Júnior for, being
always by my side. Without him, I would never be a good student. He was my
main driving force to keep studying hard. Thank you, dad. I love you! Words
cannot express my love to my brother Tiago Cedrim. I’m so lucky for having
him in my life. Thank you for all the support, encouragement, and the long
conversations about our lives. You always were there to give me strength in
the hardest times. You truly inspire me. I also want to thank my sister-in-law,
Bruna Spencer, for making him so happy. Love you all! I would like to also
thank my cousin Bruno Martins. He truly is my second brother. Thank you
for all support, care, and love throughout so many years. I love you!

I also want to thank my beloved grandparents Bernadete Cedrim and Deraldo
Cedrim. They helped my mom to raise me with so much love and care. Thank
you for such amazing conversations and guidance. For sure, you are wonderful
persons. I must thank my uncle Deraldo Cedrim Júnior. He is like my third
dad and always helped and inspired me in so many ways. He was there in the
hardest moment and provided me with a good education. I owe you all my
accomplishments, my beloved uncle.

I thank my beloved wife, Juliana Leal. She is with me for nine wonderful years
filling my life with joy and love. She always supported me during this Ph.D.,
even when this meant a long-distance relationship for quite a while. Thank you
so much for your support and encouragement. Always count on me. I truly love
you!

My deepest gratitude to my advisor Alessandro Garcia. Without his guidance
and hardworking, I would not have done anything valuable during this Ph.D.
Thank you for all the opportunities and for the amazing experiences you
provided me. Thanks to you, I could make several of my dreams to come
true during these 4.5 years. I will be eternally grateful to you. Always count
on me!

During this Ph.D., I was able to meet incredible people who I’m proud to say
that are my friends. Thank you to Leonardo Sousa, who helped me so much in
so many opportunities. You are a true inspiration for the people around you,

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

be aware of that. Thank you for giving me the gift of your friendship, which I
know is for life. I consider you my brother and you can always count on me.
I also want to thank Roberto Oliveira, who is the third member of the “three
musketeers.” Roberto is an amazing person. You and your history inspire me so
much. Thank you for all the amazing moments we shared these years. Last but
not least, I want to thank Anderson Oliveira for his friendship and permanent
willingness to help.

I also thank all the professors from DI. Their contribution to my education is
invaluable. I owe them all my accomplishments so far and the ones to come. I
also want to thank the members of my thesis defense team: Simone Barbosa,
Marcos Kalinowski, Guilherme Travassos, and Rohit Gheyi, which come from
so far to evaluate my work. I also want to thank Rohit for all the incredible
feed-backs and contributions during my Ph.D. Thank you!

This study was financied in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. I also
want to thank CNPq, FAPERJ, and PUC-Rio for the financial support that
made my research possible in the first place. Finally, my sincere thanks to the
administrative sta� of the DI at PUC-Rio.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Abstract

Rêgo, Diego Cedrim Gomes; Garcia, Alessandro (Advisor). Un-
derstanding and Improving Batch Refactoring in Software
Systems. Rio de Janeiro, 2018. 168p. Tese de doutorado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Code smells in a program represent indications of structural quality
problems, which can be addressed by software refactoring. However, de-
velopers may neglect or end up creating new code smells through single
refactoring. Little has been reported about recurring beneficial and harmful
e�ects of refactoring on the program structural quality. As a consequence,
developers still miss guidance along non-trivial smell-removing tasks. In fact,
evidence suggests developers often need to apply a sequence of refactorings,
so-called batch refactoring, to entirely remove a smelly code structure. Thus,
in this thesis, we have conducted a series of studies to understand the impact
of single and batch refactorings on code smells. In our first studies, we ana-
lyze how often commonly-used types of single refactoring a�ect the density
of code smells along the version histories of dozens of projects. Even though
79.4% of the refactorings touched smelly elements, 57% had no impact on
the smell removal. Surprisingly, only 9.7% of refactorings removed smells,
while 33% induced the introduction of new ones. On one hand, we observed
that harmful refactoring-smell patterns could be used to guide developers to
avoid smell-inducing refactoring. On the other hand, we observed that many
smells can be removed only through batch refactoring. Thus, our last studies
investigate the impact of batch refactorings on smells. Even when applied in
batches, refactorings tend to maintain or even increase the density of code
smells. We also identified common batch-smell patterns, which enable us to
create heuristics that can guide developers through smell-removing tasks.
The last study evaluated those heuristics, and we conclude the outcomes
are promising.

Keywords
Refactoring; Code Smells; Software Maintenance; Software Evolu-

tion; Structural Quality.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Resumo

Rêgo, Diego Cedrim Gomes; Garcia, Alessandro. Entendendo
e Melhorando a Prática de Refatorações em Lote em
Sistemas de Software. Rio de Janeiro, 2018. 168p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Em um sistema de software, as anomalias de código indicam problemas
estruturais que podem ser resolvidos através da refatoração. No entanto,
desenvolvedores podem negligenciar ou acabar criando novas anomalias ao
refatorar. Pouco foi relatado sobre os efeitos benéficos e prejudiciais da refa-
toração de anomalias de código. Evidências sugerem que os desenvolvedores
frequentemente precisam aplicar uma sequência de refatorações (refatora-
ção em lote) para remover completamente as estruturas anômalas. Assim,
nesta tese, realizamos uma série de estudos para entender o impacto de re-
fatorações simples e em lote em anomalias de código. Em nossos primeiros
estudos, analisamos com que frequência os tipos de refatoração comumente
usados afetam a densidade de anomalias ao longo das histórias de dezenas
de projetos. Mesmo que 79,4% das refatorações tenham tocado em elemen-
tos anômalos, 57% não reduziram suas ocorrências. Surpreendentemente,
apenas 9,7% das refatorações removeram anomalias de código, enquanto
33% induziram a introdução de novas. Por um lado, observamos padrões
nocivos de introdução de anomalias. Por outro lado, observamos que muitas
anomalias podem ser removidas apenas por refatorações em lote. Assim,
nossos últimos estudos investigam o impacto de refatorações em lote nas
anomalias. Mesmo quando aplicadas em lotes, as refatorações tendem a não
afetar ou mesmo aumentar a densidade de anomalias. Também identifica-
mos padrões entre tipos de lotes e tipos de anomalias, levando-nos à criação
de heurísticas que podem orientar os desenvolvedores durante tarefas de re-
moção de anomalias de código. O último estudo avaliou essas heurísticas e
concluímos que os resultados são promissores.

Palavras-chave
Refatoração; Anomalias de Código; Manutenção de Software; Evo-

lução de Software; Qualidade Estrutural.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Table of contents

1 Introduction 15
1.1 Refactoring Smelly Code Elements: A Motivating Example 16
1.2 Problem Statement and Limitations of Related Work 20
1.3 Goal and Research Questions 22
1.4 Scope of This Thesis 26
1.5 Main Contributions 27
1.6 Thesis Outline 30

2 Background and Related Work 31
2.1 Refactoring 31
2.1.1 Refactoring Characterization and Identification 32
2.1.2 Refactoring History 33
2.1.3 Refactoring Type 33
2.1.4 Refactoring Scope 34
2.1.5 Refactoring Tactic 34
2.2 Code Smells 35
2.2.1 Code Smell Identification 36
2.2.2 Refactoring Applied in Smelly Code 37
2.3 Refactoring Classification 37
2.4 Refactoring-Smell Patterns 37
2.4.1 Creational Patterns 38
2.4.2 Removal and Non-Removal Patterns 38
2.5 Related Work 39
2.5.1 Code Smells as Symptoms of Deeper Problems 39
2.5.2 Studies of Software Refactoring 41
2.5.3 Identification of Refactoring Opportunities 43
2.6 Summary 44

3 Investigating the Impact of Refactorings on Smells 49
3.1 Settings of the Study 50
3.1.1 Goal and Research Questions 50
3.1.2 Study Phases 52
3.1.2.1 Phase 1: Selection of Software Projects 52
3.1.2.2 Phase 2: Smell and Refactoring Detection 53
3.1.2.3 Phase 3: Refactoring Classification 56
3.1.2.4 Phase 4: Manual Validation 57
3.2 Preliminary Study 58
3.3 Refactoring and Smells 61
3.3.1 Smell-Neutral Refactorings are Common 62
3.3.2 Stinky Refactorings 64
3.4 Refactoring-Smell Patterns 65
3.4.1 Removal vs. Non-Removal Patterns 66
3.4.2 Creational Patterns 68
3.4.2.1 Generalization Patterns 68

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

3.4.2.2 Feature-Moving Patterns 69
3.4.2.3 Method Extraction Patterns 70
3.5 Sequence of Refactorings 71
3.6 Threats to Validity 72
3.6.1 Internal Validity 73
3.6.2 External Validity 73
3.7 Related Work 74
3.7.1 Elements Touched by Refactoring 74
3.7.2 Motivations to Refactor 75
3.7.3 Benefits to Refactor 75
3.7.4 Refactoring Recommendation Systems 75
3.7.5 Introduction of Code Smells 76
3.7.6 Relation Among Code Smells, Refactoring and Other Software Aspects 76
3.7.7 Negative refactorings 76
3.8 Summary 77

4 Batch Refactoring: Characterization and Synthesis 79
4.1 Refactorings Flock Together 79
4.1.1 Batch Refactoring 79
4.1.2 Batch Type 81
4.1.3 Batch Timespan 81
4.1.4 Batch Heterogeneity 82
4.1.5 Batch Scope 82
4.2 Batch Synthesis Heuristics 82
4.2.1 Version-Based Heuristic 84
4.2.2 Element-Based Heuristic 84
4.2.3 Range-Based Heuristic 85
4.3 Batch Classification 86
4.3.1 Code Smells in the Batch Scope 87
4.3.2 Positive, Neutral and Negative Batches 87
4.4 Smell-Batch Patterns 88
4.4.1 Batch Creational Patterns 89
4.4.2 Batch Removal Patterns 89
4.5 Towards the Investigation of Batch Refactoring 89

5 Investigating the Impact of Batches on Smells 91
5.1 Study Settings 92
5.1.1 Goal and Research Questions 92
5.1.2 Study Phases 94
5.1.2.1 Phase 1: Dataset Acquisition 94
5.1.2.2 Phase 2: Synthesis and Classification of Batches 95
5.2 Batch Refactoring and Code Smells 96
5.2.1 Single Refactorings 96
5.2.2 Synthesized Batches 98
5.2.2.1 Quantity and Size of Batches 98
5.2.2.2 Heterogeneity and Timespan of Batches 101
5.2.3 Most Batches are Neutral 103
5.2.4 Stinky Batches 105
5.3 Batch-Smell Patterns 106

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

5.3.1 Feature Envy 107
5.3.2 God Class 110
5.3.3 Complex Class 112
5.4 Threats to Validity 114
5.5 Related Work 115
5.6 Summary 115

6 Improving Batch Refactoring: Recommendation Heuristics 117
6.1 Smell Removal Heuristics 118
6.1.1 Removing Feature Envy 118
6.1.2 Removing God Class 120
6.1.3 Removing Complex Class 121
6.2 Heuristics Evaluation 121
6.2.1 Goal and Research Question 122
6.2.2 Experimental Tasks 123
6.2.3 Data Presentation and Analysis 126
6.2.3.1 Characterization Questionnaire Data 126
6.2.3.2 Quasi-experiment Results 127
6.3 Threats to Validity 133
6.4 Summary 133

7 Conclusion 135
7.1 Revisiting the Thesis Contributions 136
7.2 Future Work 139

Bibliography 142

A Remaining Batch-Smell Patterns 152

B Quasi-Experiment Subject Characterization Questionnaire 155

C Presentation 157

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

List of figures

Figure 2.1 Refactoring examples. This figure presents three out
of four versions of the same system (v1, v2, and v3) changed
through refactoring operations 32

Figure 3.1 Results of the data collection phase 63

Figure 4.1 Batch refactoring example 80

Figure 5.1 Batch synthesis procedure 95
Figure 5.2 Batch size distribution 100
Figure 5.3 Feature Envy patterns 107
Figure 5.4 God Class patterns 110
Figure 5.5 Complex Class patterns 113

Figure 6.1 Experiment answers 128

Figure A.1 Class Data Should be Private patterns 152
Figure A.2 Data Class patterns 152
Figure A.3 Lazy Class patterns 153
Figure A.4 Long Parameter List pattern 153
Figure A.5 Message Chain pattern 153
Figure A.6 Refused Bequest patterns 153
Figure A.7 Spaghetti Code patterns 153
Figure A.8 Speculative Generality patterns 154

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

List of tables

Table 2.1 Refactoring types 46
Table 2.2 Refactoring scope 47
Table 2.3 Smell types 48

Table 3.1 Projects used 53
Table 3.2 Rules for code smell detection 54
Table 3.3 Code smell detection rules proposed by Bavota et al. 55
Table 3.4 Results of the manual refactoring validation 58
Table 3.5 Projects used during the preliminary study 59
Table 3.6 Refactoring types and classifications in the preliminary

study 60
Table 3.7 The impact of common refactorings types 61
Table 3.8 Removal and non-removal patterns 66
Table 3.9 Creational patterns 68

Table 5.1 Single refactorings detected by type 97
Table 5.2 Batch size by heuristic 98
Table 5.3 Timespan and heterogeneity characteristics 101
Table 5.4 Batches classification by heuristic 103
Table 5.5 Frequency of neutral batch refactorings a�ecting smells 104

Table 6.1 Possible answers during the quasi-experiment 126
Table 6.2 Participants’ characterization data 127
Table 6.3 Participants’ answers by each class and smell considered 127

Table 7.1 Papers produced in the context of this thesis 139

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

I’ve got to keep running the course,

I’ve got to keep running and win at all costs,

I’ve got to keep going, be strong,

Must be so determined and push myself on.

Iron Maiden, The Loneliness Of The Long Distance Runner.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

1
Introduction

Developers often need to improve the software structural quality in order
to satisfy evolving requirements. For such purpose, developers apply a common
practice along the software maintenance, known as refactoring [1, 2]. Refactor-
ing is a program transformation used for improving the structure of a program
while preserving its observable behavior [3]. Examples of commonly applied
types of refactoring include [1]: (i) restructuring or moving class members,
such as Extract Method, Move Method and Pull Up Method, and (ii) extracting
new elements, such as Extract Superclass and Extract Interface. The refactor-
ing process comprises four steps [4]: (i) identification of program structures
that should be refactored; (ii) appropriate selection of which refactoring types
should be applied; (iii) refactoring implementation, and (iv) understanding if
the applied refactoring actually improved the program structure.

The identification of program structures that should be refactored is
particularly di�cult for large projects. To facilitate the identification of such
structures, Fowler [3] proposed the notion of code smells. A code smell
represents an indication of software structural problems in a program [3], in
which can be used as a hint for refactoring. In this way, each refactoring can
contribute to removing at least one code smell. Examples of common smell
types include God Class, Long Method and Speculative Generality [5, 6, 7].
Recent studies conclude that several types of code smells are recognized as
critical by software developers [6, 7]. Since each smell can be a hint for one
or more refactorings, one might expect that the smell used as hint will be
removed after the refactoring has been applied. However, such expectation
may not hold in practice. In fact, developers may neglect or even introduce
other smells while refactoring. Unfortunately, the accumulate introduction of
code smells can create more severe structural problems, which can lead to the
system architectural degradation [5].

Studies suggest that refactoring is often used to improve the software
structural quality [1, 8]. This improvement can be achieved through two
refactoring tactics, namely root-canal refactoring and floss refactoring. Root-
canal refactoring is used for strictly improving the source code structure and
consists of pure refactoring, i.e., refactoring is not performed in conjunction

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 16

with other non-refactoring changes. Floss refactoring consists of refactoring
the code together with non-structural changes as a means to reach other
goals, such as adding features or removing bugs. Floss refactoring interleaves
structural improvement with other programming activities and it is the most
common tactic applied [1]. Since developers do several code changes during
floss refactoring, they may often end up introducing, rather than reducing,
code smells. Moreover, even when developers perform root-canal refactoring,
they may fail to remove a smell or they may introduce new ones. Independently
of refactoring tactic employed, the increase of code smells in a program is
harmful. The increased density of code smells may not only induce design
degradation [5, 9, 10], but also increase fault proneness [11, 12], and future
maintenance e�ort [13, 14].

Researchers have been trying to understand how and why developers
perform refactoring [1, 15, 16]. For instance, these studies report the most
common refactoring types applied by developers [1], the typical reasons un-
derlying several refactoring types [15], and how developers use tools that help
to refactor [16]. Unfortunately, these studies have not addressed whether and
how often developers successfully remove code smells during refactoring. In this
vein, Bavota et al. [17] performed a study aiming to investigate if refactoring
tends to remove code smells in real projects settings. However, they studied
a small sample of three projects, making the results not necessarily general-
izable. Besides that, they did not investigate cases of refactoring introducing
code smells.

The relation between refactoring and smells is likely to be more complex
than usually assumed by existing research [17]. For instance, to remove a single
smell, a developer may need to apply a sequence of single refactoring, which
is named batch refactoring in the literature [1]. Previous studies have not
investigated if developers introduce or remove smells when applying either
single refactoring operations or batch refactoring.

1.1
Refactoring Smelly Code Elements: A Motivating Example

A code smell is a surface indication that usually corresponds to a deeper
problem in the system [3]. When a code element is a�ected by at least one
code smell, we call it a smelly element. Since code smells can be hints to apply
refactoring, one might expect that smelly elements become free from smells
after refactoring. Conversely, elements may eventually become smelly after
refactoring. Various reasons may lead to this problem, including the wrong
selection of the refactoring type or lack of attention from the developer. To

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 17

illustrate both scenarios, let us consider the following example, which refers
to a customer management system. This system is responsible for storing
and managing customer data of a particular company. Among its classes, the
system contains the Phone and Customer classes, which are presented below:

1 public class Phone {

2 private final String unformattedNumber ;

3 public Phone(String unformattedNumber) {

4 this. unformattedNumber = unformattedNumber ;

5 }

6 public String getAreaCode () {

7 return unformattedNumber . substring (0 ,3);

8 }

9 public String getPrefix () {

10 return unformattedNumber . substring (3 ,6);

11 }

12 public String getNumber () {

13 return unformattedNumber . substring (6 ,10);

14 }

15 }

16

17 public class Customer {

18 private Phone mobilePhone ;

19 public String getMobilePhoneNumber () {

20 return "(" +

21 mobilePhone . getAreaCode () + ") " +

22 mobilePhone . getPrefix () + "-" +

23 mobilePhone . getNumber ();

24 }

25 }

Refactoring and Removing a Code Smell. The method getMobilePho-

neNumber of Customer class is an example of a smelly element. This method
is a�ected by the code smell known as Feature Envy, which refers to a method
that is more interested in other class than the one to which it belongs. In this
example, getMobilePhoneNumber calls more methods belonging to the Phone

class than those declared in its own class. Hence, the method seems to be more
interested in the Phone class than in the class Customer, which leads to the
Feature Envy. Since this method only calls methods from the Phone class, it
should be declared in there. A developer can apply the Move Method refactor-
ing to move the “envious method” from its current class to the class to which it
is interested. Thus, the code smell served as a hint for the refactoring is likely
to be removed from the source code after refactoring, thereby improving the
program structure. The result of applying the Move Method refactoring can

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 18

be seen below.

1 public class Phone {

2 private final String unformattedNumber ;

3 public Phone(String unformattedNumber) {

4 this. unformattedNumber = unformattedNumber ;

5 }

6 public String getAreaCode () {

7 return unformattedNumber . substring (0 ,3);

8 }

9 public String getPrefix () {

10 return unformattedNumber . substring (3 ,6);

11 }

12 public String getNumber () {

13 return unformattedNumber . substring (6 ,10);

14 }

15 public String toFormattedString () {

16 return "(" + this. getAreaCode () + ") " + this.

getPrefix () + "-" + this. getNumber ();

17 }

18 }

19

20 public class Customer {

21 private Phone mobilePhone ;

22 public Phone getPhone () {

23 return this. mobilePhone ;

24 }

25 // additional omitted methods

26 }

In this example, the code smell was used as a hint for refactoring as well
as an indicator of which refactoring type the developer should apply. However,
notice that the Move Method was not the only refactoring applied. The devel-
oper had to perform other changes to complete the Move Method refactoring.
After moving the method, he updated all references to the mobilePhone object
to reference the current object through the keyword this. Then, he applied the
Rename Method refactoring to change the method’s name from getMobilePho-

neNumber to toFormattedString. He had to apply such refactoring because the
old name is not suitable anymore. Additionally, the developer created a new
method on the Customer class to make the private object mobilePhone exter-
nally accessible. After all these changes, the new toFormattedString method
only calls methods from the class to which it belongs. Consequently, the de-
veloper removed the Feature Envy code smell by applying a Move Method

refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 19

Smell-Inducing Refactoring. The above example shows a scenario where
the developer applied a refactoring that had a positive influence in the code
structure since it got rid of an existing code smell. Unfortunately, this is
not always the case. For instance, let us suppose the developer still wants
to improve the system structural quality. For instance, he realized that the
Customer class represents only a specific category of people. The current
program structure prevents to introduce other categories of people, such as
Employee and Contractor, to be added in the future. To address this matter,
he decided to create a new abstraction (superclass) to represent Person. He
also moved some of the members of the Customer class to the new Person class.
Thus, other entities that also contain a phone number can benefit from the
new abstraction. The Person superclass can be used later to add new entities
to the system. In order to execute this generalization process, he applied an
Extract Superclass refactoring. In this refactoring, the developer creates a new
superclass so that its future subclasses can inherit data and behavior from it.
The structure of the resulting classes can be seen below.

1 public class Person {

2 private Phone mobilePhone ;

3 public Phone getPhone () {

4 return this. mobilePhone ;

5 }

6 }

7 public class Customer extends Person {

8 // additional omitted methods

9 }

After applying the Extract Superclass refactoring, the new superclass is
extended by the existing ones. Before applying the refactoring, the developer
speculated about the introduction of new classes in the system, such as
Employee and Contractor. All of them would also extend the new Person

class. However, these classes have never been added to the system, and the
existing classes continued to use the Customer class. Consequently, by applying
the Extract Superclass refactoring, the developer introduced complexity in the
system by creating an unused hierarchy to support anticipated future features
that never have been implemented. This unused hierarchy represents a code
smell named Speculative Generality. Therefore, in this case, the developer
introduced a new code smell while refactoring, and ended up not removing
it afterwards.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 20

1.2
Problem Statement and Limitations of Related Work

In the previous section, we illustrated scenarios in which refactoring are
applied to a program. We also presented an example that illustrates how
developers may degrade the code structure rather than improving it while
refactoring. In the example, the developer ended up introducing a new code
smell after using the root-canal refactoring tactic. Hence, refactoring can be
harmful even when this pure-refactoring tactic is used. Unfortunately, little
has been reported about whether and to what extent developers introduce
or remove code smells through refactoring. This lack of knowledge might let
the developers unaware of the risks of introducing structural problems while
refactoring.

Even though studies have been investigating the e�ects of refactoring
on software systems [11, 13, 17, 18], most of them only address the relation
between smells and refactoring superficially. For instance, Bavota et al. [17]
performed the first study aiming to investigate if refactoring removes code
smells in real project settings. They studied refactoring operations from two
perspectives: (i) how often they are performed on classes exhibiting code
smells, and (ii) whether they were able to remove smells or not. However, their
study was limited in several ways. First, they have not explored scenarios
where refactorings introduced new code smells. Second, they analyzed only
three systems. Third, they only considered systems’ major versions during
refactoring collection. Consequently, the decision to look at major versions can
lead to significant di�erences in the collected refactorings since they can miss
refactoring operations that happened between minor versions, thus, hampering
one’s confidence on their findings.

Despite Bavota et al.’s first attempt to understand the relation between
refactoring and smells, they fell short of revealing to what extent refactorings
decrease, rather than increase, the density of smells in software projects. Thus,
we still do not know if and how often refactoring introduces or removes smells.
Therefore, in order to derive this knowledge, we need to investigate whether
refactorings interfere either positively or negatively on the presence of smells
(Research Problem 1).

Research Problem 1. Whether refactoring interferes on the density of
code smells is unknown.

By addressing the first research problem, we can reveal if and how often
refactorings remove or introduce code smells. However, the outcome of this
analysis does not su�ce to derive insights about the relationship between

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 21

smells and specific refactoring types. As aforementioned, this relation is often
complex. Thus, a follow-up investigation is to check when specific refactoring
types tend to introduce, neglect or remove specific smell types. An existing
catalog of code refactorings [3] establishes some relations between refactoring
and smell types. For instance, an Extract Method refactoring is expected to
remove a Long Method smell. However, there is no empirical knowledge on:
(i) how often such refactoring-smell relations are observed in practice, and (ii)
which other common refactoring-smell relations are not covered by the catalog.
This follow-up investigation is important because we might be able to discover
unknown relationships between types of refactorings and smells. The latter
could be used to better guide developers. For instance, let us assume that
we observe that when a particular refactoring type rt is applied, very often a
specific code smell s is introduced. This knowledge might be useful to increase
the developer’s awareness about a potentially harmful e�ect of applying a
new refactoring of the type rt. This investigation can be used to address the
following research problem.

Research Problem 2. When refactoring introduces, neglects or removes
smells is unknown.

By addressing these two research problems, tool designers can explore
the derived knowledge to create alerts about smell-inducing refactorings that
should be avoided. Such a tool could also suggest additional refactorings. For
instance, suppose that a developer applied a single refactoring, but he failed
to remove the smell completely. The tool could suggest a second refactoring to
assist him to fully remove the smell.

In fact, developers may need to apply a sequence of refactorings to remove
a smell. In practice, 40% of the times developers apply two or more refactorings
in the same code element [1]. We call batch refactoring when developers apply
a sequence of refactorings. Thus, we should not ignore batch refactorings if we
want to understand the relation between refactoring and smells. Whenever a
batch is applied, we should not consider the e�ect of each single refactoring
rather than the e�ect of the batch on code smells. However, before investigating
the e�ects of batches, we need to investigate first how to identify when a batch
refactoring was performed in the source code (Research Problem 3).

Research Problem 3. How to identify batch refactorings is unknown.

As a matter of fact, some studies already shed some light upon the
existence of batch refactorings [15, 16]. For instance, Murphy-Hill et al. [1]
present data about batch refactorings. To determine how often programmers

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 22

perform batch refactoring, they relied on programmer’s action (in the IDE)
to measure the temporal proximity between refactorings supported by the
IDE. They say that refactorings that are performed within 60 seconds of each
another form a batch. However, we do not know if temporal proximity is a
realistic way identify a batch since studies report that (i) each single refactoring
is often performed manually [1], and (ii) some batches are not implemented in
a single programming activity, but instead in multiple change cycles [19]. In
this way, heuristics should be defined to identify batches in a project (Research
Problem 3). Once we are able to identify batch refactorings, we can also revisit
the first two research problems in the context of batch refactorings (Research
Problem 4).

Research Problem 4. Whether and when batches introduce, neglect, or
remove smells is unknown.

Although existing studies reported the existence of batch refactorings
[1, 16], there is no study that investigate the impact of batches on code
smells. By tackling the research problems described in this section, we are
able to better understand the relation between refactorings and smells in the
context either of single or batch refactorings. The investigation of these specific
problems will contribute to better understand how developers introduce or
remove smells through refactoring in practice. This understanding can help
us to improve assistance for smell-removal refactoring activities (General
Problem).

General Problem. Assistance for smell-removal refactorings is limited.

Lack of su�cient knowledge of how developers apply single and batch
refactorings in practice may be preventing us, researchers, from providing
the required support to assist developers during refactoring operations in the
context of code smells. We are not able to conceive e�cient assistant techniques
if we do not know: (i) how developers apply refactoring, (ii) how the code smells
are a�ected by refactorings either positively or negatively, and (iii) how specific
refactoring types a�ect specific types of code smells.

1.3
Goal and Research Questions

As discussed in the previous section, we do not have much information
about the influence of refactoring on the presence of code smells. Thus, the
lack of knowledge and the complexity of refactoring tasks lead us to various

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 23

unaddressed research problems. Without addressing these research problems,
to what extent refactoring influences on the existence of smells in the system
will remain unclear. Consequently, we will not be able to provide the necessary
support for developers conduct the refactoring process. In fact, these research
problems are essential to provide the knowledge required to anyone understand
(i) whether refactoring interferes in the density of smells, (ii) if so, how
code smells are a�ected by either single or batch refactorings, and (iv) how
to provide support for developers during the refactoring process. Given this
context, the goal of this thesis is stated as follows:

Goal. Understand and improve batch refactorings in software systems.

To achieve this goal, we mapped the aforementioned research problems
onto one or more research questions. For instance, Research Problems 1 and
2 were mapped onto two research questions, which address the problem of
understanding how single refactorings are applied and how they impact the
code smells existence. Although existing studies have investigated the positive
impact of refactorings on code smells [17], there is still no knowledge regarding
the adverse e�ects of refactorings on smells. Without this knowledge, it is
not possible to completely understand the drawbacks related to the current
refactoring practice. Therefore, to address the first research problem, our first
research question is stated as follows:

RQ1. Does refactoring reduce the density of code smells?

We address this question by investigating how frequent each refactoring
either removes, introduces, or neglects code smells. For this investigation,
we detect refactorings that happened in the history version of real projects,
then, we analyze the existence of smells in an element before and after
the refactoring. First, instances of refactorings and code smells present in
several software projects were detected. Then, all refactoring instances were
classified according to their impact on code smells. Let p the number of
refactorings that were able to remove code smells; n the number refactorings
that introduced code smells; and k representing the number of refactorings that
neither removed nor introduced code smells. If n > p and n > k, we can state
that the application of refactorings are likely increasing the number of code
smells of projects. Otherwise, if p > n and p > k, the answer to our research
question is yes, refactorings tend to remove code smells. Another possible case
is when k > p and k > n. In this scenario, refactorings would tend to neither
introduce nor remove code smells.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 24

Answer for RQ1 will clarify if refactoring reduces or not the density of
smells. Either way, we still have to further investigate to what extent each
refactoring type interferes in the presence of smells. For instance, we may
find out in the first study that, in general, refactorings reduces the density
of smells. However, the reduction may not happen when we consider only a
specific refactoring type, i.e., it is possible that a specific type of refactoring
introduces smells rather than removing them. Indeed, some types of refactoring
might consistently remove (or fail to do so) or even frequently introduce specific
smell types across software projects. Discovering these relations between code
smells and refactoring types is the focus of our second research question:

RQ2. What are the patterns governing types of refactoring and code
smells?

To answer this second research question, we should take into account
the refactoring type as well as the smell type. Thus, we can understand and
distinguish the impact of specific refactoring types on code smells. In this
context, we define a pattern as a frequent relationship observed between a
specific pair of refactoring type and code smell. For instance, let us assume
that developers often introduce Long Method when applying the Inline Method

refactoring. In this case, we say there is a pattern governing the types Long

Method and Inline Method, more specifically, a pattern that indicates when
the latter is applied, there is a risk of the former be introduced (details
about patterns are presented in Section 2.4). Thus, by answering RQ2, we are
able to reveal harmful actions made by developers on code elements a�ected
by refactorings. We detect patterns by analyzing the impact of refactoring
types on smells located in the refactored elements. The knowledge about these
patterns can make developers aware of the possibilities and risks of missing
and introducing certain smells along either root-canal or floss refactorings.

The first two research questions consider each refactoring individually.
However, in some cases, developers may apply multiple refactorings. For
instance, to remove a smell such as God Class, a developer may need to apply a
sequence of refactorings [3]. In this case, we should consider the impact of this
sequence of refactorings, which we call it a batch, in the existence of smells.
Hence, we will find out if developer successfully removed the God Class or
ended up introducing other smells. The analysis of batch refactoring is indeed
necessary since 40% of the times developers apply two or more refactoring
operations in the same code element [1]. In this way, previous studies that
consider only single refactorings can be limited in their analysis about the
refactoring impact on code smells. Therefore, we need to expand our first

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 25

analysis and consider the impact of batch refactorings on code smells. For this
purpose, we need to find an answer for the following research question.

RQ3. Does batch refactoring impact the density of code smells?

In order to answer RQ3, we conducted a study with two-fold purposes.
First, we investigate what characterizes a batch. Thus, we analyzed the data
collected in previous studies to understand what constitutes a batch. Based
on this analysis, we created a heuristic to automatically detect batches. Later,
we detected batch refactorings in 48 software projects. After this, we observed
how code smells were a�ected by each batch refactoring found. By analyzing
the impact of batch refactorings, we might compare the results from RQ1 to
the ones obtained while answering RQ3. In this way, we can fill the gap present
in the literature about the impact of batch refactorings on code smells.

Our lack of knowledge does not restrict to not knowing the impact
of batch refactorings on code smells. In fact, we do not know if there are
unrevealed relationships between batches and smells. For instance, Fowler [3]
states that a developer might remove a Feature Envy by applying a Extract

Method followed by a Move Method. However, we do not know if developers do
this batch, in practice, to remove Feature Envy instances. Furthermore, there
might be specific batch refactorings that introduces code smells frequently.
Perhaps, after applying a batch refactoring, developers might have to deal
with newly introduced code smells frequently. Unfortunately, we do not know
the patterns that associate batches and smells. Hence, in order to address this
matter, the last research question of this thesis is stated as follow:

RQ4. What are the patterns governing batches and code smells?

In order to answer RQ4, we have to conduct a deeper investigation of the
data used to answer RQ3. The results of RQ3 give us the leverage of knowing the
impact of batch refactorings on code smells. After understanding the impact
of batches in the density of smells, we can drill down the results to find the
patterns. Consequently, we can find out what specific sequence of refactorings
often introduces or removes particular code smells types. In this way, we can
reveal yet unknown relations between refactorings and smells. These relations
allow us to better understand the e�ects of refactoring on code smells when
developers refactor their code in practice.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 26

1.4
Scope of This Thesis

The studies conducted in the context of this thesis have, primarily, the
objective of understanding how developers apply refactoring. In this way,
we must define what we consider as refactoring to delimit the scope of this
thesis. According to Fowler et al. [3], refactoring is “a change made to the
internal structure of software to make it easier to understand and cheaper to
modify without changing its observable behavior.” Along with this definition,
Fowler et al. present a catalog of code transformations defined as refactorings.
As previously mentioned, examples of such code transformations, defined as
refactoring types, are Extract Method, Move Method, Extract Superclass, and
others.

Fowler et al. define the mechanics underlying each refactoring type, i.e.,
a sequence of code transformations that must be followed in order to apply the
refactoring. For instance, to apply a Move Method, the developer must cut the
method’s code from the source class, past it into the target class, and perform
small changes so the code can work in its new home. Given this context, we
can define what we consider as refactoring in this thesis as following.

A refactoring operation is any code transformation that matches with
the mechanics defined by Fowler et al. independently of the developer’s
intention or behavior preservation.

Although the original definition of refactoring clearly states that the
code behavior must be preserved, the state-of-art shows otherwise. Murphy-
Hill et al. [1] show that developers use the floss refactoring tactic very often.
As mentioned before, floss refactoring interleaves structural improvement
with other programming activities, usually changing the code behavior. For
instance, developers can use floss refactoring to help to remove a functional
bug. There is no way of removing a functional bug without altering the
behavior. Therefore, we consider as part of the scope of this thesis refactorings
that can preserve the behavior or not, since the non-preservation might happen
in scenarios of bug fixing or even feature introduction.

Another particularity on what we consider as refactoring is that we
disregard the developer’s intention. Since the technique we use to detect
refactorings is based on matching code changes with the refactoring mechanics,
we can detect and analyze refactoring operations applied involuntarily by the
developers, i.e., they might not have the clear intention of refactoring the code
on that change. One might say this is a major threat of this thesis since we
might be answering our research questions based on code changes that were

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 27

not primarily focused on refactoring. However, we believe that disregarding
the developer’s intention is a decision that is in synergy with the objective of
this thesis.

One of the goals of this thesis is to understand how developers apply
refactorings. In this vein, we are interested in understanding how refactorings
a�ect code smells. Let us assume that we find that refactorings can degrade the
code structural quality by introducing code smells. In this scenario, unintended
refactorings are particularly interesting because the developers degraded the
code quality through refactoring mechanics without even noticing. By studying
such cases, we can learn and warn developers about such structurally-harmful
refactoring operations. If we removed all refactoring operations applied without
the explicit developers’ intention of performing them, we would be preventing
our research of discovering and reporting such interesting cases. In this way,
we decided to use all refactoring operations detected regardless the developer’s
intention. After all, developers may be either improving or degrading the
structural quality of a program if refactoring-like transformations are applied
as a means to achieve other goals. In any case, in this thesis, we tried to
control and distinguish the cases where refactoring-like transformations were
likely applied with refactoring-driven goals in mind.

1.5
Main Contributions

This thesis presents studies aimed at understanding how developers
perform refactoring in practice and how they a�ect the presence of code smells.
For each one of these studies, we defined research questions, in which we found
the following results:

RQ1: In the first research question, we investigated if refactorings, in isola-
tion, reduce the density of code smells. For that, we conducted a longitudinal
study that analyzes both the beneficial and negative impact of refactoring
changes on the density of smells. We analyze not only if refactoring reduces
smells, but also if and to what extent specific types of refactoring are often
related to the introduction of new smells. Instead of being limited to the anal-
ysis of a few major versions in a few projects, we considered 113,306 versions
distributed among 23 open source projects. For each project, we classified each
refactoring instance according to its interference on the existing and new smells
located in the refactored elements. Hence, we classified a given refactoring in-
stance in one of the three cases: (i) positive if the absolute number of smells
in the elements decreases after the program transformation; (ii) negative if

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 28

it increases; or (iii) neutral if it remains the same. This classification is used
to analyze whether certain refactoring types tend to improve or decrease the
smelly structure of a program. This analysis was also performed in samples
of root-canal and floss refactorings. We found that most of refactorings are
applied in code elements containing at least one code smell, which, 57% refac-
torings were neutral ones. Therefore, refactorings do not reduce the density
of smells in the refactored elements. Even when we consider either root-canal
or floss refactorings separately, refactorings do not reduce the density of code
smells. Despite we found that majority of refactorings is neutral, we found that
negative refactorings occur more frequently than positive ones: 33.3% against
9.7%. Also, we found that more than 95% of smells induced by refactorings
were not removed afterwards in successive commits. These findings shed light
on how refactorings may (in)directly or indirectly degrade the structural qual-
ity. They also suggest developers need more guidance to fully remove a code
smell once they start restructuring a smelly element.

RQ2: In the second research question, we investigated if there are yet
unknown relationships between types of refactorings and code smells. We
are interested in discovering scenarios where often when a refactoring type
is applied, a particular code smell is introduced (or removed). For that,
we used the same refactorings detected and analyzed to answer the first
research question. At this point, we observed how each refactoring a�ected
each code smell, whether they introduce or remove, and what was the code
smell introduced or removed. Thus, we characterized and quantified recurring
patterns governing beneficial and harmful e�ects of specific refactoring types.
Again, harmful patterns were more frequent than beneficial ones. For instance,
refactorings intended at moving methods – such as Move Method and Pull

Up Method – to other classes tended to induce occurrences of God Class

in the target classes in addition to the prevalence of smells in the source
classes. The Move Method refactoring induced the emergence of God Classes

in 35% of the cases, while the Pull Up Method tended to be related to
this smell type in 28% of the cases. Moreover, 95% of such smell instances,
induced by such refactorings, remained as God Classes in successive commits.
Several other types of code refactoring were surprisingly often related to
smells emerging after the program transformation. For instance, the Extract

Superclass refactoring creates the code smell Speculative Generality in 68% of
the cases.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 29

RQ3: In the third research question, we investigated if batch refactorings
impact the density of code smells. In order to do such analysis, we needed first
to be able to detect batch refactorings. We can think of batch refactoring as a
group of single refactorings, so we had to find out how to group them in order to
reveal the batches. We used adaptations of di�erent heuristics already reported
in the literature to obtain the batches. After detecting batches by considering
48 software projects, we were able to observe their impact on code smells by
using a similar classification to the one presented before. In our study, we
classify a given batch refactoring instance in one of the three cases: (i) positive

if the absolute number of smells in the a�ected code elements decreases after
the program transformation; (ii) negative if it increases; or (iii) neutral if it
remains the same. Surprisingly, even when the whole batch of refactorings are
considered, developers also tend to neglect or introduce more smell then remove
them. More than 30% of the batches were found to be negative. Moreover,
when we analyzed the commits performed after the negative batches, we also
concluded that more than 95% of smells induced by batches were not removed
afterwards. Only around 14% of batches removed smells.

RQ4: In the fourth and last research question, we analyzed the patterns
emerging from the relationship between batches and smells. We noticed cases
of batches consistently introducing instances of Feature Envy in 31 di�erent
projects. This result highlights that developers consistently introduce Feature

Envy code smells while performing batches composed of Extract Method

refactorings. Interestingly, they also use batches of this refactoring type to
remove instances of Feature Envy. Hence, we concluded that Extract Methods

play a central role in the introduction and removal of Feature Envies. We also
found that refactorings that move methods (Move Method, Pull Up Method,
or Pull Down Method) play a central role in the removal of God Classes.
Regarding the code smell Complex Class, we found that Extract Methods act as
a complexity reducer and help developers to get rid of Complex Classes. Also,
moving-method refactorings that use the floss-refactoring tactic contribute to
the removal of such complex classes. The results obtained from answering
RQ4 can be used to derive common strategies used by developers during code
smell removal tasks. These strategies can be used to generate heuristics for
code smells removal, helping us to pave the way for improving the refactoring
practice. In this sense, we derived possible heuristics for helping developers
to remove Feature Envy, God Class, and Complex Class. Furthermore, we
conducted a preliminary evaluation of such heuristics. We executed a quasi-
experiment with 20 participating developers where they could evaluate if the

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 1. Introduction 30

heuristics assisted in removing code smells successfully. The results show the
potential benefit of these heuristics in helping developers, leading to interesting
and well-evaluated recommendations of refactorings aiming at removing code
smells. By achieving a high rate of code smell removal, the heuristics might be
accepted for use by developers, even though developers tend to be resistant to
new techniques and tools produced by researchers [20].

1.6
Thesis Outline

This introductory chapter portrayed an overview of this thesis. The
remainder of the thesis is structured as follows. Chapter 2 introduces an
overview of basic concepts required to understand the thesis and also presents
the related work. Chapter 3 presents the studies in which we collect refactorings
and code smells to provide answers to RQ1 and RQ2. Chapter 4 presents the
basic concepts regarding batch refactorings and their impact on code smells.
Chapter 5 describes the methodology and presents the data needed to answer
RQ3 and RQ4. Chapter 6 presents our preliminary study conducted to evaluate
the smell-removing heuristics derived from the results of RQ4. Finally, Chapter
7 concludes this thesis by summarizing the achieved research contributions,
making final considerations, and pointing out directions for future research.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

2
Background and Related Work

The popularity of software refactoring has been increasing since the
publication of the book authored by Fowler and colleagues [3]. However, the
concept of software refactoring is not uniformly defined in the literature. Thus,
this chapter outlines the terminology adopted throughout this thesis. It also
presents three categories of studies related to ours. First, it presents studies
that investigate whether smells are indicators of deep software maintenance
problems. Second, presents a series of previous empirical studies conducted
to investigate how and why developers perform refactoring (Section 2.5.2).
Finally, it presents existing solutions proposed for supporting the identification
of program elements that should be refactored (Section 2.5.3).

2.1
Refactoring

Software systems invariably undergo changes over the evolution that
can compromise their structural quality. Thus, developers have to perform
refactoring to repair the system structure. Refactoring is defined as a program
transformation used for improving the structure of a program while preserving
its observable behavior [3]. Code refactoring is often applied by developers
during software maintenance and evolution [1].

Each refactoring can be composed of one or more elementary code
transformations. From here on, each elementary transformation is named as
single refactoring operation. Examples of single refactoring operations are
Move Method, Rename Method, and Inline Method. Developers can apply
refactoring with di�erent purposes [21, 22], such as removing design problems,
reducing maintenance e�ort, facilitating feature additions, improving program
testability, or supporting bug fixes [15, 21, 22]. Each of these purposes can
be achieved through the application of one or more refactoring operations.
Regardless the specific purpose of a refactoring, a common expectation is that
each refactoring operation will contribute for improving the structure of the
resulting source code [23, 24, 25]. This expectation comes from the fact that
refactoring, by definition, aims at improving the system structural quality.
However, if refactoring operations are carried out reckless (and/or with other

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 32

complementary goals), developers may (unconsciously or not) have a negative
impact on the structural quality. Moreover, refactorings are often manually
applied by developers [26], their negative impact may be more frequent than
one could expect.

Figure 2.1: Refactoring examples. This figure presents three out of four versions
of the same system (v1, v2, and v3) changed through refactoring operations

2.1.1
Refactoring Characterization and Identification

Some notation must be defined before introducing the concepts of this
thesis. Thus, let S = {s1, · · · , sn} be a set of software projects. Each software si

has a set of versions V (si) = {v1, · · · , vm}. Each version vi has a set of elements
E(vi) = {e1, · · · } representing all methods, classes and fields belonging to it.
In Figure 2.1, the set S = {s1} represents the software system composed of
the presented classes. This software has four versions V (s1) = {v1, v2, v3, v4}.
It is worth mentioning the v4 version is the one created after performing the
refactorings r4, r5, r6, and r7. Although v4 is not in the figure, we consider it
as part of the system versions.

Finally, each version vi has a set of elements E(vi). For instance, E(v2)
is composed of UserCtrl and MediaCtrl classes, including their methods and
fields. We must analyze transformations between each subsequent pair of
versions to be able to identify refactorings. In this way, we assume R is a
refactoring identification function where R(vi, vi+1) = {r1, · · · , rk} gives us
a set of refactorings. So, the function R returns the set of all refactorings
identified in a pair of versions.

Thus, going back to our example, R(v1, v2) = {r1, r2}. In fact, there are
techniques and tools to compute the R function [27, 28]. In addition to these
functions, we define two more functions: before(ri) and after(ri). The first one
returns the version before a refactoring, and the last one, the version after it. In
the Figure 2.1, these functions provides: before(r1) = v1, and after(r1) = v2.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 33

2.1.2
Refactoring History

The function R can also be used to express all refactorings identified
in the history of a particular system, which is composed of all refactorings
identified between all subsequent pairs of versions. The refactoring history of
each system is important to perform further analyses. For instance, we can use
algorithms to find common patterns that emerge in the history of each software
system (Chapter 3). As the function R identifies all refactorings between two
versions, we use its output to collect all the refactoring history of a particular
system, which is composed of all refactorings identified between all subsequent
pairs of versions. Since we already defined the function R, the refactoring
history of the system s can be represented by the function H(s) as follow.

H(s) =
|V (s)|≠1€

i=1
R(vi, vi+1) (2-1)

To illustrate the output of function H(s), let us visit the system s1

presented in Figure 2.1. This system has four versions, where three of them are
represented in the figure. The fourth one is produced as the result of applying
the refactorings {r4, r5, r6, r7}. Hence, H(s1) = R(v1, v2)fiR(v2, v3)fiR(v3, v4).
In other words, H(s1) contains all refactorings presented in Figure 2.1, which
are {r1, r2, r3, r4, r5, r6, r7}.

2.1.3
Refactoring Type

Refactoring type is the kind of transformation applied in one or more
code element. Thus, a refactoring type indicates if the refactoring operation is
applied to attributes, methods, classes, or interfaces. Examples of refactoring
types include Move Method, Rename Method, and Extract Method. The struc-
tural e�ect of refactoring operations widely varies from a refactoring type to
another. For instance, code refactoring can a�ect: (i) multiple classes, such as
in Extract Class, (ii) restructuring or moving methods, such as Extract Method,
Move Method, and Pull Up Method, and (iii) extracting new code elements as
in the Extract Superclass and Extract Interface [1, 8]. In order to perform our
studies, we must define a list of refactoring types to be considered. Hence,
we consider the most common refactoring types applied by developers [1]. Ta-
ble 2.1 lists all refactoring types along with a brief description of when its is
applied.

In this context, given a refactoring operation r, type(r) is a function
that returns the type of the refactoring r. In our example of Figure 2.1,
type(r1) = Move Method. The identification of each refactoring type allows us

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 34

to identify the e�ect of each specific refactoring type on the system structural
quality.

2.1.4
Refactoring Scope

In this work, we consider as refactoring scope all elements directly af-
fected by the refactoring. For instance, let us consider the Move Method

refactoring type. In this refactoring type, a method m is moved from class
A to B. Hence, the considered refactoring scope, in this case, is {m, A, B}.
All callers of m are indirectly a�ected by this refactoring, but we do not
consider them as refactoring scope. Similar reasoning applies to the other
refactoring types; thus, for each refactoring type, a di�erent scope is used.
In this way, given a refactoring operation r, scope(r) is a function that re-
turns the set of elements belonging to the scope of r. So, in our example,
scope(r1) = {saveMedia, UserCtrl, MediaCtrl}. Table 2.2 presents the ele-
ments considered as part of the scope for each refactoring type considered in
our studies.

We should know what is the refactoring scope for each refactoring
operations. The reason is that the refactoring scope (i.e., the elements a�ected
by the refactoring) is where we will look at to investigate the impact of the
refactoring in the system structural quality. Therefore, we defined the scope
of each refactoring type in order to minimize the e�ect of the code changes
not related to the refactorings, i.e, by analyzing the changes in the refactoring
scope, we have confidence enough to relate the changes to the refactorings.

2.1.5
Refactoring Tactic

As previously discussed, the goals of refactoring widely vary in practice,
going from structural improvement until fixing bugs. Independently of the goal
that developers want to achieve, they follow two main tactics when they refac-
tor the source code [1]: root-canal refactoring and floss refactoring. First, the
so-called root-canal refactoring is used for reversing the deterioration of the
source code and involves a protracted process consisting of exclusive refactor-
ing. Second, the developer employs floss refactoring as a means to improve
structure but with the purpose of facilitating the achievement of particular
objective, such as facilitating the addition of a feature, enhancing program
testability, or removing a bug. Thus, in the floss refactoring, developers refac-
tor with the intention of achieving another objective that is di�erent from
structural improvements. For example, in order to add a new feature, the de-

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 35

veloper needs to move a method to a new class; thus he needs to apply the
Move Method refactoring before adding the new feature. Developers usually
interleave floss refactoring with other types of programming activities

2.2
Code Smells

Previous studies [11, 29, 30, 31] have reported that refactoring apparently
a�ects the software structure system positively. However, developers still need
to know which code elements should be refactored. For this purpose, the
presence of code smells has been used as a hint for refactoring [3]. A code
smell is a surface indication that usually corresponds to a deeper structural
problem [3, 5, 32, 33, 34]. For instance, a class with several responsibilities
is known as God Class. This smell makes the class hard to read, modify and
evolve.

To illustrate how a code smell manifests in the source code and can be
a hint for refactoring, let us consider the Figure 2.1 again, which presents
three versions (v1, v2, and v3) of a particular system. In its version v1, the
class UserCtrl has, among many other members, attributes and methods im-
plementing two loosely-coupled responsibilities: user and media management.
This class accumulates two responsibilities instead of only one [35], thus, this
characteristic emerges in the form of a God Class. To remove this smell, the
developer can extract part of the class structure into another class. Therefore,
the developer created the class MediaCtrl in version v2. Also, he applied two
refactorings: Move Method, and Move Field. After these transformations, the
program no longer has the God Class and still realizes the same functionality.
After these refactorings, the number of code smells was reduced.

Unfortunately, refactoring may not always successfully remove smells.
Even worse, a new code smell can be introduced by refactoring. For instance,
in version v2, the developer thought that would be good to generalize some
aspects of both classes UserCtrl and MediaCtrl. So, he applied an Extract Su-

perclass refactoring in both classes, creating their superclass called AbstractC-

trl. However, this generalization was never fully explored in the system, so the
developer created a smell, called Speculative Generality, via refactoring. Also,
the new version of UserCtrl uses only some of the methods and properties
inherited from its parent, so the hierarchy is o�-kilter. This is a code smell
named Refused Bequest.

In this thesis, we study seventeen code smell types. These code smells
were selected based on the refactoring types we use. In this way, at least one
refactoring type is able to remove the considered code smells from the source

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 36

code. Table 2.3 lists the code smells studied in this work.

2.2.1
Code Smell Identification

Several approaches have been proposed to detect code smells. These
approaches include, for instance, those solely based on metrics [37, 38], based on
the source code evolution information [7], based on machine learning methods
[39, 40] and based on optimization algorithms such as genetic algorithms [41].
Despite the benefits or drawbacks of each approach, we have chosen to use an
approach based on source code metrics [36, 37] for various reasons. Recent
studies show that this approach can be used with accuracy [42, 43]. This
approach has a much lower computation cost if compared to others. Also,
the higher cost is not compensated by only minor accuracy improvement [44].
Moreover, we can compare our results with other studies that also used metric-
based approaches [17, 45].

Metric-based approaches rely on a set of metrics and thresholds, which
are combined via rules [17, 36]. These rules aim to compare the metric values
with against predefined thresholds, which are combined using logical operators.
In this context, we can define a function smells(e, v) that returns all code
smells of the element e in the version v. Assume that exists a refactoring r,
we can use the smells(e, v) to identify the code smells in refactored elements.
For this purpose, we can define the function ScopeSmells(r, v) that returns
all code smells existing in the refactoring scope considering the version v as
follow.

ScopeSmells(r, v) =
|scope(r)|€

i=1
smells(ei, v) (2-2)

The ScopeSmells function defined above gives us a way to obtain
all code smells existing in the refactoring scope for a particular version.
Once we defined a pair of versions, we can use ScopeSmells to observe
whether the number of smells decreased or not between both versions. Let
us consider again the refactoring r1 presented in Figure 2.1. We already know
that before(r1) is the software version where the refactoring r1 begins, and
after(r1) when it ends. Therefore, ScopeSmells(b, before(r1)) = {GodClass}
represents all existing smells in the version when the refactoring started.
Similarly, ScopeSmells(b, after(r1)) = ÿ represents the smells in the version
when the refactoring ended. Given these functions, we are now able to define
the next concept used in our study as follow.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 37

2.2.2
Refactoring Applied in Smelly Code

We are considering each refactoring that was applied on elements that
contain code smells as well as each refactoring applied on elements without code
smells. In this context, a smelly element represents a code element (method,
class, package, and the like) that contains at least one code smell. Thus, e

is a smelly element if and only if smells(e, v) ”= ÿ. Also, assume there is a
refactoring r. We say r was applied in program elements hosting at least one
code smell if any element belonging to e is a smelly element, i.e., r is Applied in

Smelly Code if and only if there is a code smell of any type in the refactoring

scope. Hence, we can define the refactoring classification scheme as follow.

2.3
Refactoring Classification

In this thesis, we need to conduct studies to better understand the
impact of refactorings on code smells. For this purpose, we analyze how
often commonly-used refactoring types a�ect the density of seventeen code
smells. Consequently, we can classify a refactoring according to its influence
on introducing a new code smell, removing an existing smell or having no
e�ect on the number of smells. Thus, using the data returned by the functions
defined before, it is possible to classify a refactoring by looking how it
interferes in existing code smells. Suppose ScopeSmells(r, before(r)) = x,
and ScopeSmells(r, after(r)) = y. Depending on x and y, it is possible to
classify r. If x > y, r reduced the number of smells on scope(r) and, because of
that, r is considered a positive refactoring. Otherwise, if x < y, r increased the
number of smells on scope(r); thus, r is a negative refactoring. When x = y, r

is classified as neutral refactoring.
Figure 2.1 illustrates all sorts of refactoring classifications. The refactor-

ing r1, as presented before, is classified as positive because its scope presented
a reduction of the code smells number. In another way, the refactoring r3 is
negative. We classify it this way because before r3 there was no code smells.
However, after r3 two new code smells were introduced. The v4 is not present
in the figure, but if we assume r7 did not introduce code smells, then we can
classify it as neutral.

2.4
Refactoring-Smell Patterns

We determine the relationship between each refactoring instance on the
removal or addition of a code smell. Moreover, the refactoring classification

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 38

process can also reveal to what extent and which types of refactorings often
increase, rather than decrease, the number of code smells in software projects.
This classification enables us to characterize recurring relationships between
code smells and refactorings. For instance, if the Move Method refactoring
introduces God Class frequently, it is possible to infer that there is a pattern
governing these two types. We use a threshold-based rule to state a relation
between refactoring and smell types as patterns.

Let K = {r1, r2, · · · , rn} be the set of all detected refactorings after
analyzing the set S. Thus, Krt is the subset of K of refactorings of the type
rt. The set K

+
rt,cs is the K subset composed of refactorings of the type rt that

added code smells of type cs in any refactored element, while K
≠
rt,cs is the K

subset that removed code smells of type cs. Finally, K
ú
rt,cs is the K subset

composed of refactorings of the type rt that satisfies the following conditions:
(i) the refactoring was applied in classes or methods containing at least one
code smell instance of the type cs; and (ii) the refactoring did not remove the
instance of the code smell of cs type.

2.4.1
Creational Patterns

The definition of a creational pattern between types of code smell and
refactoring can be established using the above notation. A creational pattern
occurs when a specific refactoring type involves code transformations that often
introduces a specific code smell. We define this concept as a threshold-based
rule. If |K+

rt,cs|/|Krt| Ø “, it is possible to a�rm that there is a creational
pattern between rt and cs. This kind of pattern captures scenarios where
developers apply a refactoring and, somehow, end up creating at least one new
code smell. Thus, creational patterns represent cases of stinky refactorings. We
named these refactorings as stinky ones since they lead to the introduction of
code smells, i.e., they have a negative impact on the presence of smells.

2.4.2
Removal and Non-Removal Patterns

The definition of removal pattern also lies in a threshold-based rule. If
|K≠

rt,cs|/|Krt| Ø “, we can a�rm that there is a removal pattern between rt

and cs. It means that developers consistently removes instances of cs when
performing rt refactorings. We are also interested in studying what types of
code smells are commonly present in classes and methods and, somehow, end
up remaining in the source code after refactoring. This third type of pattern is

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 39

called non-removal pattern and it is defined by another threshold-based rule:
|Kú

rt,cs|/|Krt| Ø “.

2.5
Related Work

This thesis resides in a territory between refactoring and code smells.
Several studies aimed at understanding how and why developers perform
refactoring. Since code smells motivate refactoring operations [3], many studies
were conducted to understand how code smells can reflect deeper problems
in software projects. Also, many studies aimed at identifying pieces of code
that require refactoring as a means to support developers during software
maintenance tasks. In this section, we present several studies distributed
on three main topics. First, in Section 2.5.1, we present studies focused on
understanding how problematic code smells can be. Second, in Section 2.5.2, we
present studies that contribute to the understanding of the refactoring practice.
Last, in Section 2.5.3, we discuss the state-of-art regarding the identification
of refactoring opportunities.

2.5.1
Code Smells as Symptoms of Deeper Problems

Fowler and colleagues [3] were the first to propose the notion of code
smells. According to them, code smells are indicators of deeper problems
in the software systems. Since the publication of their work, many studies
were conducted to investigate the real relevance and impact of code smells in
di�erent levels of structural quality of software systems.

Macia et al. conducted many studies that show how code smells are indi-
cators of architectural design degradation [5, 32, 46, 47]. Research has shown
that the longevity of evolving software systems largely depends on their re-
silience to architectural design degradation [47]. Before these studies, there
was still limited knowledge about the circumstances under which code smells
represent architectural problems. Therefore, without this knowledge, develop-
ers would have a hard time to implement architecturally-relevant strategies for
code refactoring. Macia et al. executed a series of empirical studies about the
influence of code smells on architecture degradation symptoms. One of these
studies [5] aimed at understanding the relationship between code smells and
architecture problems in 6 software systems, which were intended to adhere
di�erent architectural decomposition. The authors reported that 78% of all
architecture problems in the programs were related to code smells. They also
found that the refactoring strategies, even when frequently applied in those

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 40

systems, did not significantly contribute to removing architecturally-relevant
code smells.

In a similar vein, many studies were conducted to investigate the cor-
relation between code smells and design problems [9, 34, 48]. Similarly to
architectural problems, design problems are often villains responsible for the
discontinuation or redesign of software systems [9]. As design documentation
is often informal or nonexistent, design problems need to be located in the
source code. The main di�culty to identify a design problem in the implemen-
tation stems from the fact that such issue is often scattered through several
program elements [9]. While Macia et al. [5] used each code smell alone to
identify architectural degradation, Oizumi et al. hypothesize that code smells
tend to “flock together” to realize design problems. The authors analyze to
what extent groups of inter-related code smells, named agglomerations, su�ce
to locate design problems. After examining more than 2,200 agglomerations
scattered through seven software systems, they conclude that specific forms of
agglomerations are consistent indicators of both congenital and evolutionary
design problems, with accuracy often higher than 80%.

Many studies focused on investigating the impact of code smells on
software maintainability. Khomh et al. [40] have investigated the relation
between 29 code smells and changes occurring in classes from two software
projects. Their results showed that classes with code smells are more likely
to change than classes without a smell. Palomba et al. [25] capture previous
findings on bug-proneness to build a specialized bug prediction model for
smelly classes. Specifically, they evaluate the contribution of a measure of
the severity of code smells by adding it to existing bug prediction models
and comparing the results of the new model against the baseline model. Their
results indicate that the accuracy of a bug prediction model increases by adding
the code smell intensity as a predictor.

Yamashita and Moonen [10, 49, 50] conducted many studies for exploring
the impact of inter-smell relations on software maintainability. While previous
studies mainly focused on the e�ects of individual code smells on maintainabil-
ity, they conjecture that not only the individual code smells but also the inter-
actions between code smells a�ect maintenance. Yamashita and Moonen [49]
empirically investigate the interactions amongst 12 code smells and analyze
how those interactions relate to maintenance problems. They observed that
code smells co-located in the same artifact interacted with each other, and
a�ected maintainability.

Tufano et al. [51] executed a large empirical study using change history
of 200 open source projects from di�erent software ecosystems. This study had

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 41

two objectives: (i) to investigate when developers introduce code smells; (ii)
and what are the circumstances and reasons behind their introduction. The
authors developed a strategy in order to identify commits, which introduced
code smells. Using this strategy, they mined over 0.5M commits and did manual
analysis of 9,164 commits identified as smell introducing. They found smells
are generally introduced during improvement of existing features or during the
implementation of new ones.

As discussed, many studies were successful in showing how code smells
are symptoms of deeper problems in software systems, such as architectural,
design, and maintainability issues. Also, we mentioned a study that a�rms
the abundance of code smells often lead to the increase of change-proneness
of classes. Therefore, the developers should fight against the presence of
code smells. Also, developers must be constantly aware of the possibility of
introducing new ones, since they might lead to more severe problems. In
this context, our first research question investigates whether refactorings are
capable of removing or even introducing smells. Given the problems code smells
suggest, developers must avoid to add them in their source code, mainly when
refactoring – which is an operation intended to improve the code structure.

2.5.2
Studies of Software Refactoring

Some studies were conducted in order to understand how and why
developers apply refactoring [16, 28]. Murphy-Hill et al. [1] draw conclusions
using a large data set about the refactoring practice. First, they report
refactorings are performed frequently. Second, almost 90% of refactorings
are performed manually, without the help of tools. Finally, they say about
40% of refactorings performed using a tool occur in batches. Given the
high frequency of manually-performed refactorings, Ge et al. [52] designed
a tool called BeneFactor. BeneFactor detects a manual refactoring, reminds
the developer that automatic refactoring is available, and can complete her
refactoring automatically. BeneFactor is designed to help solve the refactoring
tool underuse problem.

Regarding what motivates developers to perform refactoring, Silva et

al. [15] investigated the reasons that drive developers to refactor their code.
They identified refactorings on 748 Java projects in the GitHub repository.
Then, they asked developers why they performed the identified refactorings.
Their results indicate that fixing a bug or changing the requirements, such
as feature additions, mainly drives refactorings. Their results show that the
refactored code may contain code smells, although developers did not mention

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 42

it explicitly as the intention to refactor. Wang [53] also contributes to the un-
derstanding of the motivations behind developers. Through interviews with 10
professional software developers, Wang identified the major factors that moti-
vate their refactoring activities. Some of the reported findings are consistent
with the ones reported by Silva et al. [15].

Bavota et al. [17] mined the evolution history of 3 Java open source
projects to investigated if refactorings occur on code components that certain
indicators suggest a need for refactoring. Their considered indicators include
structural quality metrics and the presence of code smells. They also measure
the e e�ectiveness of refactorings regarding their ability to remove code smells.
According to their results, quality metrics do not show a clear relationship
with refactoring and 42% of the refactorings are applied on code elements
with code smell, in which only 7% of them remove smells. Stroggylos and
Spinellis [2] analyzed source code of popular open source software systems
to detect refactorings and examine how the software metrics are a�ected
by this process. They evaluate whether refactoring is e�ectively used as a
means to improve software quality. Although it would be expected that the
increase in quality achieved via refactoring is reflected in the various metrics,
measurements on real-life systems indicate the opposite.

Some studies were conducted to understand the impact of refactorings
on software defects. Fujiwara et al. [13] and Ratzinger et al. [11] investigated
the influence of software changes, such as refactoring, on bug fixes required
in later versions. They studied whether refactoring reduces the probability of
software defects and whether refactoring is more important than bug fixing
for software quality. The authors found that an increase in refactoring has
a significant positive interference on software quality. Results showed that
number of software defects in the target period decreases if more refactorings
are applied. They also observed a defect decrease if these refactorings increase
compared to bug fixes. Di�erently, Soares et al. [54, 55] and Bavota et al. [17]
show the refactoring tools can introduce bugs by changing the behavior of the
refactored code. Results indicate that, while some kinds of refactorings are
unlikely to be harmful, others, such as refactorings involving hierarchies (e.g.,
pull up method), tend to induce faults very frequently [17].

The studies presented in this section show that refactorings are used
very often during software development projects. However, the developers
usually apply refactorings with no tooling support. This practice might increase
the risks involved with refactoring operations. Although some studies show
refactorings help to prevent defects, some studies show that refactorings can
introduce bugs. Hence, refactorings can also have an adverse impact either

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 43

in the code expected behavior or even in the structure of the code. Since
refactorings can also pose a threat to the code structure, code smells can
also be introduced inadvertently. Again, this fact is closely related to our first
research question. In this way, our study can help to increase the awareness of
the researchers and developers about possible risks of introducing code smells
while refactoring.

2.5.3
Identification of Refactoring Opportunities

The identification of program structures that should be refactored is par-
ticularly di�cult for large projects, which lead studies to investigate how to
support developers in the identification of refactoring opportunities. Usually,
these studies focus on specific types of refactorings to identify the opportu-
nities [56]. Also, they use di�erent techniques to determine such refactoring
opportunities, such as quality metrics, machine learning models, and data flow
analysis. In this section, we compile some studies aiming at identifying refac-
toring opportunities by searching for poor structures that urge for refactoring.

Tsantalis et al. [56] propose a methodology for the identification of
Move Method refactoring opportunities that constitute a way for solving many
common Feature Envy code smells. The authors present an algorithm that
employs the notion of distance between system entities (attributes/methods)
and classes. This algorithm extracts a list of behavior-preserving refactorings
based on the examination of a set of preconditions. The authors also published
similar techniques [57, 58, 59] that aim at identifying refactoring opportunities
of Extract Method and Polymorphism Introduction.

Al Dallal [60] explores several quality metrics considered individually and
in combination to predict the classes in need of Extract Subclass refactoring.
For a given class, the author empirically investigates, using univariate logistic
regression analysis, the abilities of 25 existing size, cohesion, and coupling
metrics to predict whether the class is in need of restructuring by extracting
a subclass from it. The results indicate that there was a strong statistical
relation between some of the quality metrics and the decision of whether
Extract Subclass refactoring was required. This work uses only metrics values
in order to identify refactoring opportunities and, in this case, the author was
successful in the identification of Extract Subclass opportunities. The author
did not use his model to identify opportunities for other types of refactoring.

Bavota et al. [61, 62] present a technique to identify Extract Class refac-
toring opportunities. They propose a refactoring method based on graph the-
ory that exploits structural and semantic relationships between methods. The

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 44

empirical evaluation of the proposed approach [61] highlighted the benefits
provided by the combination of semantic and structural measures and the
potential usefulness of the proposed method as a feature for software devel-
opment environments. Bavota et al. [62] also propose a di�erent technique
to recommend Extract Class refactoring opportunities based on game theory.
Pappalardo and Tramontana [63] propose a technique based on the measuring
strength of method interactions to identify Extract Class refactoring opportu-
nities.

In a di�erent vein, Bois et al. [64] analyze how refactorings manipulate
coupling and cohesion characteristics, and how to identify refactoring oppor-
tunities that improve these characteristics. Similarly, Meananeatra [65] focuses
on identifying refactorings for improving software maintainability. Panita Di-
etrich et al. [66] present a technique to detect starting points for refactoring
of large and complex systems based on the analysis and manipulation of the
type dependency graph extracted from programs. Other authors [67, 68] also
use the dependency graph to propose find di�erent refactoring opportunities,
such as the Template Method refactoring type.

Researchers use di�erent techniques and propose several methods to
find refactoring opportunities. However, developers still do not use refactoring
tools to support daily maintenance tasks. Also, those techniques do not help
developers to prevent the creation of problems through refactorings, such as
quality metrics degradation [45], and defect introduction [17]. In this way,
there is a long way to run in what concerns helping developers to identify
refactoring opportunities. Our second research question is one step towards the
better understanding of the refactoring practice. By understanding common
patterns applied by developers, we might be able to help developers to identify
refactoring opportunities and prevent common mistakes. For instance, the
introduction of code smells.

2.6
Summary

The concept of software refactoring is not uniformly defined in the
literature. In this way, this chapter presents a conceptual framework that will
be used throughout this thesis. In this way, we can formalize and motivate the
next chapters without ambiguity. Also in this chapter, we presented studies
that relate to our own. As a consequence, we were able to identify gaps in the
literature that can be filled by this thesis.

As discussed before, Little is known about the impact of refactoring over
code smells. Bavota et al. [17] only investigated, in a few projects, the capability

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 45

of refactorings for removing code smells. However, nothing was reported about
the cases where refactorings introduce code smells. Consequently, little is
known about refactoring types that commonly introduce specific types of code
smells, revealing ordinary harmful patterns applied by developers. In this way,
there is opportunity to research in these two topics. The next chapter presents
our e�orts to fill these gaps.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 46

Table 2.1: Refactoring types
Type Description
Extract Interface This transformation is applied when several clients use the same

subset of a class’s interface, or two classes have part of their

interfaces in common. Then, this transformation aims at extracting

the subset into an interface.

Extract Superclass This transformation is applied when two classes have similar

features. The transfomation is used to create a superclass, which

it is moved the classes common features to the superclass

Extract Method This transformation is applied when a code fragment can be

grouped together. Then, this transformation aims at turning the

fragment into a method, then a name is created to explain the

purpose of the method.

Inline Method This transformation is applied when a method body is more

obvious than the method itself. Then, this transformation replaces

calls to the method with the method’s content and deletes the

method itself

Move Method This transformation is applied when a method is used more in

another class than in its own class. Thus, the transformation

creates a new method in the class that uses the method the most,

then it moves code from the old method to there. Finally, it turns

the code of the original method into a reference to the new method

in the other class or else remove it entirely

Pull Up Method This transformation is applied when methods have identical results

on subclasses. Then, it movse them to the superclass.

Push Down Method This transformation is applied when behavior on a superclass is

relevant only for some of its subclasses. Then, it moves it to those

subclasses.

Rename Method This transformation is applied when the name of a method does

not reveal its purpose. Then, it changes the name of the method.

Move Field This transformation is applied when a field is, or will be, used by

another class more than the class on which it is defined. Then, it

creates a new field in the target class, and it changes all its users.

Pull Up Field This transformation is applied when two subclasses have the same

field. Then, it moves the field to the superclass.

Push Down Field This transformation is applied when a field is used only by some

subclasses. Then, it moves the field to those subclasses.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 47

Table 2.2: Refactoring scope
Type Refactoring Scope
Extract Interface Classes implementing the new interface. The new interface is not

part of the scope because it has no source code other than the

method signatures.

Extract Superclass Classes extending the new class; and new class created.

Extract Method The method created; the method from where the new method was

extracted; and class containing both methods.

Inline Method The method which received the new code; and class containing the

method.

Move Method The two classes a�ected by the change: the class which the method

used to reside and the class which received the method.

Pull Up Method The two classes a�ected by the change: the class which the method

used to reside and the class which received the method.

Push Down Method The two classes a�ected by the change: the class which the method

used to reside and the class which received the method.

Rename Method The renamed method and the class that contains it.

Move Field The two classes a�ected by the change: the class which the field

used to reside and the class which received the field.

Pull Up Field The two classes a�ected by the change: the class which the field

used to reside and the class which received the field.

Push Down Field The two classes a�ected by the change: the class which the field

used to reside and the class which received the field.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 2. Background and Related Work 48

Table 2.3: Smell types
Smell Type Description
Brain Class This design disharmony is about complex classes that

tend to accumulate an excessive amount of intelligence,

usually in form of several methods a�ected by Brain

Method [36].

Brain Method Long and complex method that centralizes the function-

ality of a class.

Class Data Should be Private Class that exposes its fields, violating the principle of

data hiding.

Complex Class A class having at least one method having a high cyclo-

matic complexity.

Data Class A data class refers to a class that contains only fields and

crude methods for accessing them (getters and setters).

These are simply containers for data used by other

classes. These classes do not contain any additional

functionality and cannot independently operate on the

data that they own [36].

Dispersed Coupling A method that accesses many code elements, and the ac-

cessed code elements are dispersed among many classes.

Feature Envy A method that is more interested in a class other than

the one it actually is in.

God Class When a class accumulates several responsibilities.

Intensive Coupling A method that has tight coupling with other methods,

and these coupled methods are defined in the context of

few classes.

Lazy Class A class having few lines of code, few methods, and with

low complexity.

Long Method A method that is unduly long in terms of lines of code.

Long Parameter List A method having a long list of parameters, some of which

avoidable.

Message Chain A long chain of method invocations is performed to

implement a method functionality.

Refused Bequest A class redefining most of the inherited methods, thus

signaling a wrong hierarchy

Shotgun Surgery Resembles Divergent Change, but is actually the opposite

smell. Divergent Change is when many changes are made

to a single class. Shotgun Surgery refers to when a single

change is made to multiple classes simultaneously.

Spaghetti Code A class implementing complex methods interacting be-

tween them, with no parameters, using only attributes

to exchange data.

Speculative Generality An abstract class having very few children classes using

its methods.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

3
Investigating the Impact of Refactorings on Smells

Refactoring, a common practice employed by developers along software
maintenance [1, 2], is a program transformation used for improving the
structure of a program while preserving its observable behavior [3]. In order to
achieve the structural improvement, developers need know when and where
to apply refactoring. In this context, code smells, which are indicators of
software structural problems (Section 2.2), appear as an indicator of refactoring
opportunities. In other words, if a code element contains smells, then it is a
candidate for refactoring. Hence, a reasonable assumption is to expect that
when developers refactor smelly elements (i.e., elements with code smells),
they reduce the density of code smells. Unfortunately, to what extent such
assumption holds in practice is unknown. The reason for that is our little
knowledge about the impact of refactoring on the existence of smells.

Unfortunately, the impact of refactoring on smells is rarely investigated
in depth. To the best of our knowledge, there is no study that thoroughly
characterizes both positive and negative e�ects of refactoring on code smells.
Bavota et al. [17] performed a study aiming to investigate if refactoring tends
to remove code smells in the context of some major versions of only three
software projects. However, they could not reveal to what extent and which
types of refactorings often increase, rather than decrease, code smells in a
program. Moreover, they did not make a distinction between root-canal and
floss refactoring in their analyses (Section 2.1.5). Finally, given the nature and
size of their sample, they could not characterize recurring relationships between
refactoring and smell types.

Thus, we conduct a longitudinal study that analyzes both the beneficial
and negative impact of refactoring on the density of smells. We analyze not
only if refactoring reduces smells, but also if and to what extent specific types
of refactoring are often related to the introduction of new smells. Instead of
being limited to the analysis of a few major versions in a few projects, we
consider 113,306 versions (commits) distributed among 23 open source projects
to conduct the study. Since we aimed at conducting a large-scale study with
several projects, we had to conduct a preliminary study with only smaller
projects to set up a suitable methodology. Consequently, this preliminary study

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 50

was extremely important for testing and improving our methodology and tools
we develop to collect and process the outcomes. Hereupon, we classify each
refactoring instance according to its interference on the existing and new smells
located in the refactored elements. In our study, we classify a given refactoring
instance in one of the three cases: (i) positive if the absolute number of smells
in the elements decreases after the program transformation; (ii) negative if it
increases; or (iii) neutral if it remains the same (Section 2.3). This classification
is used to analyze whether certain refactoring types tend to improve or decrease
the smelly structure of a program. This analysis was also performed in samples
of root-canal and floss refactorings.

We identified and analyzed 51,461 refactorings classified in 10 commonly
used [1] refactoring types. Thirteen code smell types are used to classify the
collected refactorings (Section 3.1.2.2). These code smell types were selected
because they are conceptually associated with the definition of the refactoring
types [3], i.e., the definition of each refactoring type is explicitly associated
with one or more code smells addressed in our study. Surprisingly, our study
revealed that either neutral or negative e�ects of software refactoring are much
more frequent than positive e�ects.

This chapter is organized as follows. Section 3.1.1 provides the research
questions that guide this study. Section 3.1.2 presents the study planning.
Section 3.2 presents the results of the preliminary study. Sections 3.3 and 3.4
present the results of the main study. Section 3.6 describes the threats to
validity. Section 3.7 relates our study with previous work. Finally, this chapter
is summarized in Section 3.8.

3.1
Settings of the Study

This section describes the settings of the study conducted to investigate
the impact of refactorings on code smells . In particular, Section 3.1.1 presents
the goal of the study and the questions addressed, and Section 3.1.2 details
the design of the study.

3.1.1
Goal and Research Questions

Although existing studies have investigated the positive impact of refac-
torings on code smells [17], there is still no knowledge regarding the adverse
e�ects of refactorings on code smells. Without this knowledge, it is not possi-
ble to completely understand the drawbacks related to the current refactoring
practice. In this context, the goal of this study is stated as follows:

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 51

Goal: Analyze refactoring operations for understanding whether and how
code smells are introduced through refactoring.

We have to achieve this goal in order to better understand the relation
between code smells and refactoring. As previously mentioned, developers
can use the presence of code smells as a hint to apply refactoring. Thus,
this relation exists since the former is used to indicate the latter. In fact,
code smells are symptoms of structural problems [5, 32, 46, 47, 48]. Since
the goal of refactoring is to improve the system structural quality, one may
expect that when developers refactor smelly elements, they remove smells; thus,
improving the structural quality. Indeed, software refactoring might interfere
in the presence of code smells. As illustrated in Section 2.1, the number of
code smells located in refactored elements should be ideally reduced. However,
we do not know if in practice that happens. Refactoring is a complex task,
which requires the developer to be aware of its impact. Thus, if refactorings
are carried out reckless, developers may introduce smells instead of removing
them. Therefore, the following question was refined from the previous goal:

RQ1. Does refactoring reduce the density of code smells?

We address this question by relying on the classification of each refac-
toring detected in real projects. This procedure enables us to compute how
frequent each refactoring classification occurs across the projects. First, all
instances of refactorings and code smells present in a set S of software were
detected. Then, all refactoring instances were classified according to the scheme
presented in Section 2.3. Also, we divided the refactorings into root-canal and
floss refactoring (Section 2.5.2). Thus, we were able to compute if refactoring
reduces or not the density of smells. For this computation, consider p to be the
number of refactorings classified as positive; n the number of negative refac-
torings; and k representing the number of neutral refactorings. If n > p and
n > k, we can state that the application of refactorings are likely increasing
the number of code smells of projects. Otherwise, if p > n and p > k, the an-
swer to our research question is yes, refactorings tend to remove code smells.
Another possible case is when k > p and k > n. In this scenario, refactorings
would tend to neither introduce nor remove code smells.

Answering for RQ1 will allow us to understand, in general, the impact of
refactoring on the existence of smells. However, to understand and distinguish
the impact of specific refactoring types on code smells is also important. Some
types of refactoring might consistently remove (or fail to do so) or even fre-
quently introduce specific smell types across software projects. Knowing these

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 52

removal and creational patterns can help researchers to propose techniques
that can help developers to avoid creational patterns while removing code
smells. Regarding this matter, Section 2.4 defined three categories of possi-
ble patterns between types of refactoring and smells: creational, removal and
non-removal patterns. Discovering these patterns is the focus of our second
research question:

RQ2. What are the patterns governing types of refactoring and code
smells?

By answering RQ2, we are able to reveal harmful actions made by devel-
opers on refactored elements. We detect removal, non-removal and creational
patterns by analyzing the impact of refactoring types on smells located in the
refactored elements. The knowledge about non-removal and creational pat-
terns make developers informed about the possibilities and risks of missing
and introducing certain smells along either root-canal or floss refactorings.

3.1.2
Study Phases

To achieve the goal, and answer the questions defined in Section 3.1.1, this
study analyzed refactorings in open source projects. In this section, we present
all the phases of this study. As mentioned at the beginning this very same
chapter, we first conducted a preliminary investigation to test and improve
our experimental design. This section presents the resulting study design after
all improvements performed as the outcome of the preliminary study. We
additionally show the results and lessons learned from the initial preliminary
study in Section 3.2.

3.1.2.1
Phase 1: Selection of Software Projects

The first step of this study is to choose a set S of software projects to
compose the study sample. First, we established GitHub, the world’s largest
open source community, as the source of software projects. We focused our
analysis on open source projects so that our study could be easily replicated
and extended. This study uses 23 GitHub projects that met the following
quality criteria:

– Projects with di�erent levels of popularity. To meet this criterion, we
used the number of Github stars in each project to measure its popularity
level. GitHub star is a metric to keep track of how popular an open source
project is among users;

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 53

– An active issue tracking system, i.e., users actively use the GitHub issue
management system for bug reporting and improvement suggestions

– Projects with at least 90% of the code repository e�ectively written in
Java.

We selected software projects based on these criteria because they allow
us to select projects with di�erent structure, size and popularity. Addition-
ally, we selected Java projects due the popularity of the Java programming
language1. This table presents the project (i) domain, (ii) name, (iii) lines of
code, (iv) number of classes, (v) number of commits and (vi) starts for each
project.

Table 3.1: Projects used
Domain Project LOC Number of classes Commits Stars

Android

Facebook Fresco 50,779 860 744 14,679
OkHttp 49,739 642 2,645 27,421
Google I/O Sched App 40,015 754 129 15,686
PhilJay MPAndroidChart 23,060 268 1,737 23,036
Dagger 8,889 441 696 11,097
Android Bootstrap 4,180 123 230 4,298
LeakCanary 3,738 127 265 19,847
Orhanobut Logger 887 11 68 9,423

Application
Google J2ObjC 385,012 4,866 2,823 5,172
ArgoUML 177,467 2,597 17,654 5
Apache Ant 137,314 1,784 13,331 205

Database Presto DB 350,976 4,146 8,056 7,740
Realm Java 50,521 1,018 5,916 9,682

Framework
Spring Framework 555,727 12,715 12,974 22,052
Apache Dubbo 104,267 1,690 1,836 19,934
JUnit4 26,898 1,251 2,113 6,935

Library

Elasticsearch 578,561 8,845 23,597 32,200
Spring Boot 178,752 5,178 8,529 26,294
JBoss Xerces 140,908 1,136 5,456 4
Facebook SDK for Android 42,801 836 601 4,534
Netflix Hystrix 42,399 1,569 1,847 14,172
Retrofit 12,723 554 1,349 26,557

Web Application Netflix SimianArmy 16,577 244 710 6,618
Total 2,982,190 51,655 113,306 307,591

3.1.2.2
Phase 2: Smell and Refactoring Detection

This phase is in charge of detecting refactorings in all subsequent pairs
of versions vi and vi+1. It also encompasses the detection of all smells in each
version vi œ V (s). These activities are described in the following.

Refactoring Detection. We need a tool to detect refactorings between
a pair of subsequent versions (Section 2.1.1). For this purpose, we choose Refac-
toring Miner [28, 69] to support the detection of refactoring instances. This

1
https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 54

tool implements a lightweight version of UMLDi� [70] algorithm for di�erenc-
ing object-oriented models. The precision of 96.4% reported by Tsantalis et al.

[28] led to a very low rate of false positives, as confirmed in our validation phase
(Section 3.1.2.4). This tool supports the detection of all refactoring types de-
scribed in Section 2.1.3, which are amongst the ones reported by Murphy-Hill et

al. [1] as the most common refactoring types. All refactoring types detected by
Refactoring Miner were considered in this study, except the Rename Method

refactoring. We discarded this refactoring type as it was not directly related
to one of the code smells addressed in our study. Refactoring Miner gives us as
output a list of refactorings R(vi, vi+1) = {r1, · · · , rk} as defined before, where
k is the total number of refactorings identified.

Code Smell Detection. Code smells are often detected with metric-
based strategies [46]. Each strategy is defined based on a set of metrics
and thresholds. Thus, the application of metric-based strategies requires the
collection of metrics for all source files in a project. After the collection of
metrics, we apply a set of previously defined rules [5, 36] to detect code
smells. This procedure is the implementation of smells function defined in
Section 2.2.1. The specific metrics and thresholds for code smell detection were
defined in [5, 47]. These rules were used because: (i) they represent refinements
of well-known rules proposed by Lanza et al. [36], which are well documented
and used in previous studies (e.g., [50, 71]); and (ii) they have, on average,
precision of 0.72 and recall of 0.81 [72].

These rules detect five code smells: God Class, Long Method, Feature

Envy, Shotgun Surgery and Divergent Change. Table 3.2 shows examples of
rules used to identify code smells. The rules use the following metrics: (i)
Lines of Code — LOC; (ii) Coupling Between Objects — CBO; (iii) Number
of Methods — NOM; (iv) Cyclomatic Complexity — CC; (v) Lack of Cohesion
of Methods — LCOM; (vi) Fan-out — FO; and (vii) Fan-in — FI. We also
considered eight additional smell types: Complex Class, Lazy Class, Long

Parameter List, Message Chain, Refused Bequest, Spaghetti Code, Speculative

Generality, and Class Data should be Private.

Table 3.2: Rules for code smell detection
Code Smell Detection Rule
God Class [(LOC >–) and (CBO >—)] or

[(NOM >”) and (CBO >—)]
Long Method (LOC >‘) and (CC >÷)
Shotgun Surgery (CC >◊) and (FO >Ê)
Divergent Change (FI >ÿ) and (LCOM <‚) and (CC >Î)
Feature Envy (FO >’) and (LCOM <Í) and (CC >È)

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 55

We selected these smell types because they are very common and tend
to be related to design degradation symptoms [5]. Another reason to select
these smell types was their direct relation with the most frequent refactoring
types [3]. Indeed, Murphy-Hill et al. [1] reported which are the refactorings
often performed by developers, and we analyzed which code smell types these
refactorings may intend to remove [3]. Refactoring Miner is capable of detecting
the refactoring types that remove these smells. Unfortunately, we could not find
any publicly available tool to detect all 13 smell types. Thus, we implemented
a tool to detect these mentioned types of code smells [73].

Table 3.3: Code smell detection rules proposed by Bavota et al.

Code Smell Rule
Class data should be private A class having at least one public field.

Complex class A class having at least one method for which McCabe

cyclomatic complexity is higher than 10.

Feature envy All methods having more calls with another class than the

one they are implemented.

God class All classes having (i) cohesion lower than the average of

the system AND (ii) LOCs >500.

Lazy class All classes having LOCs lower than the first quartile of

the distribution of LOCs for all system’s classes.

Long method All methods having LOCs higher than the average of the

system.

Long parameter list All methods having a number of parameters higher than

the average of the system.

Message chain All chains of methods’ calls longer than three.

Refused bequest All classes overriding more than half of the methods

inherited by a superclass.

Spaghetti code A class implementing at least two long methods (see

previous rule) interacting between them through method

calls or shared fields.

Speculative generality A class declared as abstract having less than three children

classes using its methods.

In addition to the rules presented in Table 3.2, we also implemented
all rules proposed in a recent study [17] to detect the smells, as presented in
Table 3.3. These rules detect eight additional types of code smells. Rules for
detecting smells play a central role in our study. Thus, we must guarantee that
our results are not biased by a single set of detection rules. Di�erent thresholds
can lead to di�erent results [44, 74]. Therefore, choices of thresholds can pose
a threat to this study. Thus, two sets of thresholds were used to mitigate this
menace. The first set, known as tight set, represents the thresholds previously
validated in the study by Macia et al. [5]. We named this strategy as tight

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 56

because it relies on the use of high threshold values aiming to detect only
critical code smells across the projects. The second strategy, named as relaxed,
uses relaxed thresholds designed to detect as many smells as possible. In
addition to the two previously mentioned (tight and relaxed) set of thresholds,
we also used the detection rules proposed by Bavota et al. [17].

3.1.2.3
Phase 3: Refactoring Classification

The objective of the third phase is to classify all refactorings detected
in the prior phase. We classified each detected refactoring by observing its
interference in the number of code smells. After this classification, it is possible
to quantify how frequent refactorings are labeled according to each possible
category in our software set S. As mentioned in Section 3.1.2.1, all projects are
Git repositories stored on GitHub servers. The data collection process starts
by cloning a Git repository. This study considers as a version every commit
in the repository. We skipped merge commits during the analysis since this
kind of commit could lead us to compute twice the same refactoring [28].
The algorithm always compares subsequent versions of the projects. Let us
suppose a project that has only three commits: 1, 2, and 3. In this project,
the R function would be computed for the following pairs: R(1, 2) and R(2, 3).
The set V (s) of a Git repository s is the list of all non-merge commits in the
master branch ordered chronologically.

As described in Section 2.1.5, there are two refactoring tactics: (i) root-
canal refactoring; and (ii) floss refactoring. In this way, this study comprises a
manual inspection of a randomly selected sample of refactorings. In this manual
inspection, we evaluate if a refactoring is root-canal or floss. We analyzed
manually whether the changes performed during the refactoring do not modify
the behavior. We classify a transformation as floss when we identify behavioral
changes, such as an addition of methods or changes in a method body
not related to refactoring transformations. When no behavioral changes are
detected, we classify the refactoring as root-canal. This manual inspection will
enable us in revealing the percentage of positive, negative and neutral e�ects
in the context of both root-canal and floss refactorings. This inspection was
performed by three researchers. Two of them are very experienced refactoring
researchers. The most experienced one solved the conflicts. We found that
developers apply root-canal refactoring in 31.5% of the cases. The confidence
level for this number is 95% with a confidence interval of 5%.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 57

3.1.2.4
Phase 4: Manual Validation

The last phase is responsible for the data validation. As the first three
phases rely on a tool to detect refactorings, there is a threat to validity related
to false positives and negatives yielded by it. To mitigate this threat, this
fourth phase is required. In this phase, a manual procedure was executed in a
smaller dataset. A manual validation of each refactoring type and tactic was
made in this phase to ensure the reliability of our data. In this vein, we conduct
di�erent data validation activities.

The first validation was regarding the refactoring type. So, we randomly
sampled refactorings from each type to support the analysis. We decided to
sample by the 10 refactoring types since the precision of the Refactoring
Miner could vary due to the rules implemented in the tool to detect each
refactoring type. Consequently, the tool could have a high precision for an
specific type while achieving a low precision for another one; thus, the need
for such validation. To ensure an acceptable confidence level in the results, we
calculated the sample size of each refactoring type based on a confidence level
of 95% and a confidence interval of 5 points. We used such confidence to all
sampling activities performed in this study. We recruited ten undergraduate
students from another research group to also analyze the samples. The samples
were divided into ten disjointed sets, and each student validated a di�erent
one. In general, it was observed a high accuracy for each refactoring type,
with a mean of 88.36 %. We highlight that we relied on students who were
familiar with refactoring; thus, they had the necessary expertise to state when
a refactoring type happened or not. In fact, we also provided a training about
all refactoring types in order to help them to recognize them.

Table 3.4 presents the sample sizes of the refactorings manually analyzed
by type and the precision obtained to each one. In general, it was observed a
high precision for each refactoring type, with a median of 88.36% (excluding
rename method). The precision found in all refactoring types are close/inside
the standard deviation (7.73). Applying the Grubb outlier test (alpha =
0.05) we could not find any outlier, indicating that no refactoring type is
strongly influencing the median precision found. Thus, the results found to
the representative sample analyzed represent a key factor to provide reliability
to the other results reported in this study.

We also validated the refactoring tactics. For this validation, we con-
ducted three steps. First, we used Eclipse and the eGit plugin2 to classify a
refactoring as root-canal refactoring or floss refactoring. Second, we used a di�

2
http://www.eclipse.org/egit/

http://www.eclipse.org/egit/
DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 58

Table 3.4: Results of the manual refactoring validation
Refactoring Type Population Size Sample Size Precision
Extract interface 133 99 87.88%
Extract method 7,517 366 80.60%
Extract superclass 342 181 93.92%
Inline method 1,528 307 75.57%
Move field 4,356 353 96.88%
Move method 1,404 302 88.08%
Pull up field 465 211 98.58%
Pull up method 629 239 78.66%
Push down field 78 65 96.92%
Push down method 114 88 88.64%
Rename method 12,752 373 95.17%

tool to analyze all the changes in the classes modified by the refactoring oper-
ations. Third, we analyzed the tool output, searching for a behavioral change.
When finding one, we filled a form explaining it, and we classified the change
as floss refactoring. When we did not find a behavioral change, we classified
it as root canal refactoring. This second validation were conducted by three
researchers from our group given their expertise in refactoring.

3.2
Preliminary Study

As discussed in the beginning of this very same chapter, we conduced a
preliminary study. The reasons behind it is manifold. First, we had to check if,
even in smaller projects, refactorings introduce code smells in a non-ignorable
frequency. Once this is confirmed, we could execute a thorough investigation
to understand the underlying conditions. Second, we had to develop a software
pipeline to collect and process code smells and refactorings. A smaller dataset
is ideal to tweak and evolve our software pipeline. Third, we had to identify
major threats and mitigate them in order to conduct a large-scale study.

This preliminary study [75] comprises of only one research question simi-
lar to the RQ1 presented in Section 3.1.1. The refactoring classification scheme
presented in Section 2.3 was used to identify scenarios where refactorings in-
troduce or remove code smells. However, only smaller projects were used for
this analysis. The complete list of projects used in this preliminary study is
presented in Table 3.5. This table present the name, lines of code and number
of commits for each project.

After analyzing all versions of these projects, we were able to detect 2,635
refactorings distributed in 7 di�erent refactoring types. In this study, we only

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 59

Table 3.5: Projects used during the preliminary study
Name LOC Commits
altran/Whydah-UserAdminService 5,588 248
alvyxaz/mayhem-and-hell 23,109 144
bublag/confetti 12,810 198
c2nes/ircbot 7,681 101
doanduyhai/Achilles 86,222 935
elasticsearch/elasticsearch-transport-thrift 3,709 111
furio/alfred-mpi 4,414 130
gertvv/drugis-common 11,180 194
hal/ballroom 11,752 548
ikasanEIP/ikasan 21,2834 1,739
iweinzierl/passsafe 9,678 150
jhalterman/lyra 5,724 147
jnape/Dynamic-Collections 5,686 177
localstorm/market-monitor 2,318 124
MarvinBellmann/WhatsUp 4,014 108
mdelapenya/ghprb-plugin 6,887 447
moobid/JARA 3,348 103
OpenConext/OpenConext-cruncher 2,578 106
PhiCode/philib 16,448 880
pusher/pusher-java-client 5,333 249
robertdj20/Containing 13,323 737
rwe17/MediaMagpie 35,703 331
Sen-Word-Builder/Word-Builder 4,955 89
TUBAME/migration-tool 76,406 193
tupilabs/tap4j 13,823 85

used the five code smells presented in Table 3.2 instead of using all seventeen
types presented in Section 2.2. All refactorings were labeled according to our
refactoring classification scheme presented in Section 2.3. In this study, the
most common classification detected in our data set was the neutral one. The
vast majority of refactorings did not change the number of code smells (95.1%
of the times). Negative refactorings represent 2.66% of the cases. Finally,
positive refactorings represent 2.24% of the cases. Therefore, observing the
dataset, refactorings tend to maintain unaltered the density of code smells. On
the other hand, when refactorings a�ect smelly elements of a program, they
slightly introduce more smells rather than reduce them. When we analyze each
individual project, the same classification distribution is observed, i.e., neutral
refactorings represent the vast majority in all the projects.

Di�erently from the main study, in the preliminary study we were not
sure if we should consider or not the Rename Method refactoring. The reasons
that motivated us to keep the Rename Method in the analysis were manifold.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 60

Table 3.6: Refactoring types and classifications in the preliminary study
Refactoring Type Occurrences Applied in Smelly Code Neutral Negative Positive
Rename method 1,491 22 (1%) 1,486 4 1
Move field 879 726 (82%) 817 32 30
Move method 209 168 (80%) 151 33 25
Pull up field 29 21 (72%) 28 0 1
Pull up method 21 14 (66%) 20 1 0
Push down method 5 2 (40%) 3 0 2
Push down field 1 1 (100%) 1 0 0

First, according to Antoniol et al. [76], program elements with unstable
structural quality tend to also su�er changes in their identifiers. Second,
structural change tends to occur in conjunction with Rename refactorings
[76]. Changes of method and class identifiers seem to be often motivated by
structural problems in their implementation [76]. In addition, we considered
Rename Method because, according to Murphy-Hill et al. [1], more than 40%
of renames appear as part of a batch within the same commit, i.e., developers
often perform rename along with structural refactorings (possibly a�ecting our
list of smells). Thus, we could capture e�ects of other refactorings by analyzing
renames too. On the other hand, we decided to remove the Rename Method

refactoring from the main study because we considered it as risky. Since this
type of refactoring does not involve structural changes, any smell introduction
or removal might not be related directly to the refactoring, but to di�erent
code changes.

To investigate the impact of refactoring on the existence of smells, We
compute the occurrences of positive, negative and neutral refactorings for each
type of refactoring (Table 3.6). The goal is to understand the variation of
the frequency of positive, negative and neutral refactorings across refactoring
types. We computed how many times each type of refactoring was applied
in program elements hosting at least one code smell. For each refactoring,
we verified whether the refactored elements have smells or not. This factor is
captured in the third column (Applied in Smelly Code), which shows how many
refactorings are related to smelly elements. The following columns present the
refactoring classification according to the criteria defined in Section 2.3.

If we compare the data of the second and third columns, we can observe
that developers tend to often apply refactorings in smelly elements of a
program. Except for the Rename Method, from 40% to 82% of the refactorings
were applied to smelly elements of a program. The neutral classification was
by far the most frequent one for all refactoring types. This result indicates that
refactorings are not removing smells even though refactoring was meant to it.
In fact, when we consider only the positive and negative refactorings, most

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 61

refactorings do not remove smells. In other words, even though refactorings
often target smelly elements, they often do not reduce the smells present in
those elements after refactoring operations. Moreover, negative refactorings
occurred as often as positive refactorings.

We can not make any further claims since this study was limited regard-
ing the sample. However, This preliminary study suggests that refactorings
tend to neglect the existence of smells, i.e., they often do not remove or in-
troduce smells. Additionally, this study was essential to improve our tooling
support and also our study design. For instance, we reasoned if we should
maintain the Rename Method results in the dataset or not. Also, this study
was instrumental for us to came up with new insights and hypothesis. For
instance, in this preliminary study we did not consider refactoring-smell pat-
terns, but through the analysis of the initial results, we were able to find new
research opportunities. Hence, the main study could benefit from the improved
design, which is result of the preliminary study. Furthermore, this was the first
study that presented refactorings as capable of introducing new code smells.
Definitely, this was the primary motivating factor for the main study, which
is thoroughly reported in this chapter. The results for the main study are
presented next.

3.3
Refactoring and Smells

This section presents and discusses the data used to answer the first re-
search question: Does refactoring reduce the density of code smells? The refac-
toring detection procedure identified 51,461 refactorings. Table 3.7 presents
the refactoring types ordered by the number of their occurrences across the
projects analyzed. The first column shows each refactoring type followed by
the corresponding number of its occurrences (second column) in all projects
analyzed.

Table 3.7: The impact of common refactorings types
Refactoring Type Occurences Applied in Smelly Code Neutral Negative Positive
Extract Method 7,517 6,411 (85.2%) 2,917 (38.8%) 3,914 (52.1%) 686 (9.1%)
Move Field 4,356 3,362 (77.1%) 3,784 (86.9%) 438 (10.1%) 134 (3.1%)
Inline Method 1,528 1,134 (74.2%) 732 (47.9%) 214 (14.0%) 582 (38.1%)
Move Method 1,404 1,049 (74.7%) 1,008 (71.8%) 297 (21.2%) 99 (7.1%)
Pull Up Method 629 511 (81.2%) 430 (68.4%) 155 (24.6%) 44 (7.0%)
Pull Up Field 465 333 (71.6%) 338 (72.7%) 103 (22.2%) 24 (5.2%)
Extract Superclass 342 131 (38.3%) 89 (26%) 246 (71.9%) 7 (2.0%)
Extract Interface 133 65 (48.8%) 11 (8.3%) 122 (91.7%) 0 (0%)
Push Down Method 114 98 (85.9%) 76 (66.7%) 11 (9.6%) 27 (23.7%)
Push Down Field 78 58 (74.3%) 62 (79.5%) 13 (16.7%) 3 (3.8%)
Totals 16,566 13,152 (79.4%) 9,447 (57%) 5,513 (33.3%) 1,606 (9.7%)

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 62

At first glance, the table already shows that the most common refactoring
type is Extract Method. This result is particularly interesting since it is
similar to what was reported by a previous study, which analyzed refactoring
frequencies in other systems [1]. In that study, they reported about Extract

Method is the most common refactroring type. We can face this similar result
as an indicator that our procedure to identify refactoring is appropriated, at
least to what concerns the aforementioned related study [1]. Table 3.7 confirms
most of the other refactoring types also occur frequently in our sample.

Before addressing RQ1, we first analyze the frequency of refactoring types
that touch smelly elements. Thus, we also compute how many times each type
of refactoring was applied in smelly code (Section 2.2.2). The results are shown
in the third column in terms of both absolute number of occurrences and
percentages (in brackets). We can observe that developers tend to often apply
refactorings in smelly elements of a program. Seven refactoring types have
been applied in smelly code elements in more than 70% of the occurrences
(Table 3.7). Such result indicates that developers concentrate their e�orts to
refactor elements with a certain structural degradation. In other words, this
result suggests that developers indeed focus on code smells, intentionally or
not, to refactor the code. Thus, using the presence of code smells as an indicator
of refactoring is not only reasonable but also aligned to how developers apply
refactoring in practice.

One could wonder if many elements are tagged as smelly in the analyzed
programs, thereby increasing the probability of refactorings often touching
smelly elements. Then, we computed the probability of randomly choosing
a smelly element in our dataset (|smelly elements|/|all elements|), which is
0.3%. This low probability shows that, in our dataset, refactorings did not
target smelly elements by coincidence. Refactorings indeed tend to concentrate
on smelly elements, which were confined to a vast minority of the program
elements. This behavior was consistently observed for both root-canal and
floss refactorings.

3.3.1
Smell-Neutral Refactorings are Common

The three last columns of Table 3.7 present respectively the incidence
rate of neutral, negative and positive refactorings. Surprisingly, the neutral
classification was the most frequent one for 7 refactoring types, namely Move

Field, Inline Method, Move Method, Pull Up Method, Pull Up Field, Push Down

Method, and Push Down Field. Even though refactorings are frequently applied
in smelly elements, they often do not reduce the smells.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 63

As discussed in Section 3.1.2.2, we used a metric-based technique, which
also relies on thresholds, to identify code smells. Consequently, di�erent
thresholds can lead to di�erent results [44, 74]. Thus, we used two sets of
thresholds to avoid bias. The data presented in Table 3.7 was produced with
smell detection strategies based on a set of tight thresholds. To make sure
our findings were not biased by this particular set of thresholds, we have
also classified the refactorings using relaxed thresholds. Finally, we have also
used another set of detection strategies, the same used by Bavota et al. [21].
Figure 3.1 shows the general proportion of neutral, positive and negative
refactorings using all these three classification methods, labeled as Tight,
Relaxed and Bavota.

Figure 3.1: Results of the data collection phase

An analysis of Figure 3.1 confirms there is indeed a general trend:
independently of the smell detection strategy, neutral refactorings are much
more frequent than positive and negative refactorings. When we analyze each
individual project, the same classification distribution is observed, i.e., neutral
refactorings represent the vast majority in all the projects. In our manual
validation (Section 3.1.2.4), we found that 31.5% of the refactorings are root-
canal. Even when this tactic is applied, refactorings often do not reduce
the density of code smells in the refactored elements. These findings suggest
developers need more guidance to remove a code smell once they start to
refactor a smelly element, specially when they perform root-canal refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 64

3.3.2
Stinky Refactorings

Surprisingly, 33.3% of the refactorings were found to be stinky (Ta-
ble 3.7); they are related to an increase of smells in the refactored elements.
Moreover, when we analyzed the commits performed after the negative refac-
torings, we also concluded that more than 95% of refactoring-induced smells
were not removed afterwards. Only 9.7% of refactorings removed smells, ac-
cording to Table 3.7. Negative refactorings were more frequent than positive
refactorings according to our three classification methods presented in Fig-
ure 3.1. Stinky e�ects are more frequent than positive ones in the context of
both root-canal and floss refactorings as well.

Negative refactorings were more frequent than neutral ones in the context
of three refactoring types: Extract Method, Extract Superclass and Extract

Interface. Interestingly, Extract Method is the most frequent type of refactoring
(Table 3.7). Section 3.4 discusses di�erent patterns involving this refactoring
type. Moreover, the refactorings that involve multiple changes in a class
hierarchy, such as Extract Superclass and Extract Interface, tend to be negative.
This fact might indicate developers need more guidance on refactoring class
hierarchies even in the context of root-canal refactoring.

These results enable us to answer RQ1: refactorings made by developers
in real projects often do not remove code smells. On the contrary, most
of the refactorings are neutral or stinky. This observation also prevails if
we only consider refactoring types that, according to their description in
Fowler’s catalog [3], are explicitly associated with specific code smell types
addressed in our study. For instance, the mechanics for applying Move Method,
Pull Up Method and Move Field refactorings are associated with smells
that represented methods or fields that are misplaced. The misplacement of
these members are captured by occurrences of either Feature Envy, Divergent

Change, Shotgun Surgery or God Class.
Our data suggest that most refactorings do not remove smells even in

the context of root-canal refactorings. There are possible interpretations of this
finding. First, critical design problems in a program may not be related to code
smells. If so, this fact may explain why developers either neglect or introduce
code smells through refactoring. However, previous studies [5, 9, 34, 50]
indicate that design problems are often located in modules containing two
or more code smells. Second, similarly to previous studies, we use metrics and
thresholds to detect all smells. The proper choice of metrics and thresholds may
be sensitive to particular developers [44] and other project-specific factors [74].
As a consequence, our detection of code smells may not reflect what developers

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 65

truly consider as smells. However, our previous studies involving developers [44,
74] suggest that heuristics used by developers are often not essentially di�erent
from smell detection strategies adopted in our study. Our understanding is
that refactoring indeed ignores or introduces technical debt in the source code.
Finally, it may be the case that our set of studied refactoring types are not
among those used by developers to actually remove design problems. Still, it
is troublesome that developers introduce smells through refactoring regardless
its type and tactic. Therefore, these results lead us to our first finding as follow.

Finding 1: Refactoring operations usually do not remove code smells. On
the contrary, it is more likely to introduce new ones. Even when developers
use the root-canal refactoring tactic, they often degrade the structural
quality rather than improve it.

3.4
Refactoring-Smell Patterns

In order to address our second research question, we analyzed what are
the patterns emerging from the relationship between refactorings and smells.
Section 2.4 defines three categories of such patterns, i.e., removal, non-removal
and creational patterns. Section 3.4.1 focuses on discussing the removal and
non-removal patterns, while Section 3.4.2 discusses the creational (i.e., stinky)
patterns.

We will focus on discussing patterns in which more than 15% of the
instances of a refactoring type was related to instances of a specific smell
type. For these patterns, we inspected all the pattern instances in order to
understand what happened in each case. In particular, we also confirmed
whether the refactoring was directly related to the removal or introduction of
the smell. This was an important step as we had pattern instances occurring
in the context of either root-canal refactoring or floss refactoring.

For the non-removal and creational patterns, we also analyzed the
lifetime of the prevailing and introduced smells related to the non-removal
and creational patterns. We checked if such smells – prevailing or emerging
in commits involving one or more refactorings – were either removed or not
in subsequent commits. We considered subsequent commits all those ones
performed until the last commit of each project. Therefore, we were able to
identify precisely when a particular code smell was removed. Our goal was
to understand whether the refactoring-related smell was (or not) temporarily
prevailing in the code because the developer was planning to remove the smell
in the next commits.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 66

3.4.1
Removal vs. Non-Removal Patterns

Table 3.8 presents the cases of removal and non-removal patterns ob-
served. They are alphabetically ordered by the refactoring type. Each row
represents a removal and/or non-removal pattern involving a pair of refactor-
ing type and smell type. The first column shows the refactoring type, followed
by the smell type in the second column. The next two columns present for each
refactoring type the percentage of its instances related to the removal (fourth
column) or prevalence (third column) of the corresponding code smell. Pat-
terns with an incidence strength higher than 15% are shown in bold. The last
column presents the percentage of root-canal refactoring for each pattern. For
instance, the first row informs that 37.5% of the Extract Interface refactorings
related to God Class, either by non-removal or removal pattern, are root-canal
refactoring.

Table 3.8: Removal and non-removal patterns
Refactoring Code Smell Non-Removal Removal Root-Canal
Extract Interface God Class 20.3% 2% 37.5%
Extract Method Divergent Change 34.6% 7% 25%
Extract Method Feature Envy 42.6% 11% 28.3%
Extract Method God Class 48.6% 0% 26.2%
Move Field God Class 29.4% 27% 48%
Move Method God Class 51.3% 23% 8.0%
Pull Up Field God Class 44.7% 8% 76.1%
Pull Up Method God Class 61.3% 10% 2.3%
Push Down Field God Class 55.7% 12% 57.1%
Push Down Method God Class 54.3% 15% 22.2%
Push Down Method Lazy Class 2.6% 52% 11.1%
Push Down Method Refused Bequest 9.2% 23% 50%

At a first glance, it is already possible to observe there was a much
higher incidence of non-removal patterns than removal ones. The percentages
of non-removal patterns (third column) are often higher than their removal
counterparts. Thus, we can also conclude there are specific types of refactor-
ings tending to consistently a�ect a particular type of smell. However, those
refactorings more frequently are unsuccessful (non-removal) rather than suc-
cessful (removal) with respect to that particular smell type. For instance, Ex-

tract Method refactoring was often targeted at methods hosting a Feature Envy

smell. However, as expected, most of those Extract Method refactorings could
not remove this smell. Table 3.8 shows 42.6% (against 11%) of such refactorings
touched this smell, but they were not able to eliminate it.

After analyzing these pattern instances, we confirmed that proper action
of developers should also include moving (not only extracting) those Feature

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 67

Envy smells as methods to other classes. However, the vast majority of those
extracted methods (higher than 95% of its instances) were neither moved to
neighbor classes in subsequent commits. In fact, those (11%) of successful
Extract Method refactorings were performed in conjunction with other method-
moving refactorings in the same commit, such as Move Method, Pull Up Method

or Push Down Method refactorings.
Another interesting observation is that the God Class smell was the

most frequent target of removal or non-removal refactorings. In fact, this smell
dominates the rows of Table 3.8. Several refactoring types were often related
to changes moving out members from God Class smells. Two of the refactoring
types – namely, Move Method (23%) and Move Field (27%) refactorings –
were significantly successful in contributing to the removal of a God Class

smell within a commit. However, even for these refactoring types, there was
higher incidence of non-removal patterns. Table 3.8 shows 51.3% and 29.4% of
Move Method and Move Field refactorings touched God Class smell but were
not su�cient to eliminate it, independently if they were part of root-canal or
floss refactorings. Those refactorings were often performed in conjunction with
other member-moving refactorings in the same commit, but were not su�cient
to remove God Classes. In 99% of the cases, the prevailing God Class smell were
not removed in the successive commits either. There were only two refactoring-
smell patterns that more predominantly removed (rather than not) the code
smell. They were patterns involving the Push Down Method refactoring and
Lazy Class smell (52%) and Refused Bequest smell (23%).

We can observe a non-ignorable frequency of root-canal refactorings
spread across the patterns in Table 3.8. Even when the root-canal frequency is
as high as 50%, the developers are not able to remove the code smell. Since the
refactorings belonging to the patterns could be just the first step towards the
code smell removal, we computed the code smells’ lifetime after the refactoring.
In 95% of the cases, the code smells were not removed. This shows that, even
when developers refactor purely to improve the code structure (root-canal),
they do not succeed on removing the code smells. Hence, these results lead us
to our next finding.

Finding 2: There are both non-removal and removal patterns. However,
the first is way more common than the later. Developers apply specific
refactoring types on code a�ected by specific smells consistently. Still, they
are not able to remove them frequently.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 68

3.4.2
Creational Patterns

Interesting data also emerged from creational patterns detected in our
dataset. We divided these patterns into three groups [3] considering the purpose
of the refactoring type: (i) refactorings targeted at improving generalization;
(ii) refactorings responsible for moving features between objects; and (iii)
refactorings targeted at restructuring members of a class. The following
subsections respectively present and discuss creational patterns involving
refactorings in these groups. Table 3.9 presents all creational patterns found
with the same structure presented in Table 3.8.

Table 3.9: Creational patterns
Refactoring Code Smell Creational Root-Canal
Extract Method Divergent Change 40.5% 24.7%
Extract Method Feature Envy 63.8% 32.1%
Extract Superclass Lazy Class 33.2% 17.8%
Extract Superclass Refused Bequest 20.3% 0%
Extract Superclass Spec. Generality 68.3% 0%
Move Method Complex Class 15% 0%
Move Method God Class 35% 17.6%
Move Method Lazy Class 16% 16%
Pull Up Field God Class 61.2% 2%
Pull Up Field Spec. Generality 34.1% 90.2%
Pull Up Method God Class 28.3% 2.9%
Pull Up Method Spaghetti Code 23.2% 0%

3.4.2.1
Generalization Patterns

Refactorings dealing with generalization were often related to the cre-
ation of God Class and Speculative Generality smells. We can observe in Ta-
ble 3.9 that Pull Up Method, and Pull Up Field refactorings are related to the
creation of God Class smells in 28%, and 61% of the cases, respectively. Ex-

tract Superclass refactoring creates the Speculative Generality smell in 68% of
the cases, while 34% of the Pull Up Field refactoring instances introduce this
same smell in the target superclass. What is more troublesome was the fact
that more than 95% of such introduced smells were not removed in successive
refactorings.

A typical example of generalization-related creational pattern can be
illustrated by the case involving the DefaultProjectListener class from the

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 69

Xerces project (commit 002901b). The DefaultProjectListener class is the de-
fault implementation of a listener that emulates the old ant listener notifi-
cations. Extract Superclass refactoring was applied on DefaultProjectListener

class, thereby creating the AbstractProjectListener class from it. However, the
new abstract class did not seem to justify the refactoring. There was only one
class that extended AbstractProjectListener class, i.e. the DefaultProjectLis-

tener class itself. Thus, the refactoring created the AbstractProjectListener

class with a Speculative Generality smell. Moreover, this refactoring had an-
other negative consequence on the a�ected classes as it introduced another
code smell. The DefaultProjectListener class overrides all the methods defined
on the AbstractProjectListener class. Consequently, the DefaultProjectListener

class became a�ected by a Refused Bequest smell. One of the reasons for this
problem is that all the bodies of the methods defined on the AbstractPro-

jectListener class are empty; they do not have any implementation. Ideally,
the AbstractProjectListener abstract class should have been instead defined as
an interface. Moreover, all these smells were not removed in successive com-
mits, thereby a�ecting other listener subclasses created latter. Therefore, in
this example, the Extract Superclass refactoring is responsible for creating an
instance of a generalization-related creational pattern and propagating a smelly
structure to other classes.

3.4.2.2
Feature-Moving Patterns

Refactorings aiming at moving features between objects were also part
of our catalog of detected creational patterns. Move Method refactorings were
related to the creation of three types of smells. This refactoring created God

Class, Complex Class, and Lazy Class smells in 35%, 15%, and 16% of the
cases, respectively. Interestingly, this type of refactoring was amongst the
most common ones in a previous study [1]. When analyzing all these pattern
instances, we confirmed that developers were consistently creating smells
through Move Method refactorings in the target classes (i.e., those receiving the
moved methods) without removing those smells in the source classes. Again,
the vast majority of these introduced smells (more than 98%) prevailed in the
successive commits. This observation shows that tooling support should warn
developers about the risks related to such recurring creational patterns.

A typical case of creational feature-moving pattern can be illustrated
by refactoring changes a�ecting two classes from the ArgoUML project. The
generateMessageNumber method was moved from the GeneratorDisplay class
to the MessageNotationUml class. Before the refactoring, the GeneratorDisplay

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 70

class had three types of code smells, namely God Class, Complex Class

and Refused Bequest smells. On the other hand, the MessageNotationUml

class had only one code smell: Refused Bequest. After the refactoring, the
MessageNotationUml class received the other three types of code smells that
were a�ecting the GeneratorDisplay class. However, the GeneratorDisplay

class continued having the three types of code smells. That is, in addition
to introducing code smells in the target class, Move Method refactoring did
not remove the code smells from the source class. To make matters worse,
Move Method refactoring also introduced a fifth type of code smell that was
not a�ecting any one of the both classes before. It introduced a Spaghetti

Code smell since the moved method interacts, through a method call, with
an existing method of the MessageNotationUml class that was long (in terms
of LOC). This Move Method refactoring instance is a critical one since it is
responsible for creating two out of three relevant code smells (God Class and
Complex Class smells), and it is also responsible to introduce the Spaghetti

Code smell.

3.4.2.3
Method Extraction Patterns

In the last category, we only found creational patterns involving the
Extract Method refactoring. This refactoring type was often related to the
creation of two types of smells: Divergent Change smell in 41% of the cases,
and Feature Envy smell in 64% of the cases. However, when we analyzed these
pattern instances, we observed that most of them occurred in the context of: (i)
floss refactorings, or (ii) composite root-canal refactorings. Therefore, Extract

Method refactoring was often not the only factor potentially contributing to
the emergence of those code smells. Still, the high incidence of such creational
patterns may warn developers that Extract Method refactorings should be often
followed by Move Method refactorings in order to eliminate possibly prevailing
Feature Envy or Divergent Change smells.

The FixCRLF class from the Apache Ant project had the Complex Class

smell. Also, the execute method from this class had two code smells, namely
Feature Envy and Long Method smells. This method had two functionalities:
executing a scanning task on a source code folder and processing files found
in the folder. Through the Extracted Method refactoring, the execute method
was split into a second method called processFile. After the refactoring,
the execute method had only the Feature Envy smell while the processFile

method kept both smells: Feature Envy and Long Method smells. However,
it was also introduced a Divergent Change smell in the processFile method.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 71

Furthermore, it was introduced another code smell in the FixCRLF class.
After the refactoring, it also had a Spaghetti Code smell. In this example,
the Extracted Method refactoring was responsible for creating an instance of
a method extraction pattern. Also, this refactoring contributed to introduce a
code smell at class level, Spaghetti Code, which did not exist in the class before
the refactoring, and together with the Complex Class smell, they can decrease
the reusability of the system.

Table 3.9 presents the percentage of root-canal refactorings for each
creational pattern. Considering all instances involved in those patterns, 26.5%
are root-canal refactorings. This is an alarming rate. Developers introduce
smells when refactoring even when they are performing solely structural-
improvement activities. To make the matter worse, this behavior occurs
consistently between specific refactoring-smell pairs. This non-tolerable rate
presented indicates developers might need proper support during refactoring
to avoid structural degradation even when they, clearly, want to improve the
structure via root-canal refactoring. Hence, the results reported in this section
lead us to our next finding as follow.

Finding 3: Creational patterns are surprisingly frequent. Some refactoring
types tend to create new code smells of particular types consistently.

3.5
Sequence of Refactorings

We found that refactorings usually do not remove code smells (Finding 1).
This result is intriguing since most refactorings are applied to smelly elements;
thus, one might expect that these refactorings should have a positive impact.
However, they are not removing smells even though it is meant to it. This result
lead us to at leas two further discussions, both related to the need of applying
multiple refactoring operations. First one, developers need to apply a sequence
of refactorings because one could not remove the code smell completely. The
second one, developers are not applying refactoring properly; thus, they need
to apply a sequence of refactorings to achieve their purpose.

Unfortunately, we cannot delve into these discussions because we do not
know the developers’ motivation to refactoring. Either way, we expect that in
some cases developers have to apply a sequence of refactorings. For instance,
to remove a God Class smell, a developer could need to apply multiple Extract

Class refactorings, which each operation would extract a responsibility. Even
code smells considered simpler would need to apply multiple refactorings to
remove it completely. For instance, sometimes only part of a method su�ers

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 72

from Feature Envy; in this case, a developer can use Extract Method to get
the “envious” code, and Move Method to move it to the appropriate class.
Indeed, a study showed that 40% of the times developers apply two or more
refactoring operations in the same code element [1]. In these cases, we should
not consider the e�ect of each single refactoring in the presence of smells but
the e�ect of the batch. If we consider the e�ect of each single refactoring, we are
neglecting how refactoring is applied in the practice. For instance, if we have
a batch in which the developer had to apply two refactorings to remove the
smell completely. In this case, we have an example of a (batch) refactoring with
a positive impact in the system, since it removed the code smell. Therefore,
we also should consider the impact of batch refactoring in the existence of
smells. Hence, we will find out if developer successfully removed the God Class

or ended up introducing other smells. In summary we have to investigate the
impact of batch refactorings on the existence of smells.

Actually, to investigate if batch refactoring introduces or removes smells
is even more needed since a recent study showed that a single refactoring
may not su�ce to fully remove certain types of smells [45]. In this study, the
authors looked at the internal quality attributes such as cohesion, coupling,
complexity and size, which are capture by metrics used to detect smells. In
fact, these quality attributes represent symptoms of code smells. For instance,
a God Class is likely to have a high coupling and a low cohesion. Consequently,
metrics for coupling and cohesion are used to detect God Class. According to
the authors, 65% of the refactoring operations improve their related internal
quality attributes and the remaining 35% operations keep the quality attributes
una�ected. This result indicates that developers need to apply a sequence of
refactoring to completely remove the smell. A single refactoring may improve a
particular metric that captures one of these quality attributes, but it does not
improve all the metrics (or symptoms) associated with the smell. Consequently,
developers would need to apply another refactoring operation. In summary we
have to investigate the impact of batch refactorings on the existence of smells,
which is conducted in Chapter 5.

3.6
Threats to Validity

This section discusses the study limitations based on the threats to the
study validity, presenting the measures took to mitigate these threats.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 73

3.6.1
Internal Validity

The data collection using the Refactoring Miner represents a threat to
internal validity because it may find false positives. To minimize this threat and
check the tool’s precision, we randomly select a sample of 2,584 refactorings
and manually validate them. Section 3.1.2.4 presents the procedure used to
estimate the precision of this tool in our dataset. We observed a high precision
for each refactoring type, with a median of 88.36%. The precision found in all
refactoring types are close to the standard deviation (7.73). By applying the
Grubb outlier test (alpha=0.05), we could not find any outlier, indicating that
no refactoring type is strongly influencing the median precision found. Thus,
the results found in the sample analyzed represent a key factor to provide
confidence in the results reported in this work.

We could not reach the developers to ask their intentions (root-canal or
floss) in all refactorings detected. Therefore, we performed a manual validation
analysis to check whether each refactoring instance was part of a root-canal
or floss refactoring. This manual validation also represents a threat to internal
validity. To mitigate this threat, part of the sample was validated by two
researches. The third researcher solved cases of conflict.

The answers to both research questions rely on the code smells. Thus,
di�erent thresholds can lead to completely distinct results. Therefore, choices
of thresholds can pose a threat to this study. Thus, three sets of thresholds and
rules are used to mitigate this menace: tight [5], relaxed, and Bavota [17]. These
three smell detection strategies allow us to derive refactoring classifications
based on three di�erent sets of code smell instances, mitigating the threat of
the thresholds choice. Following such approach, we could not find any project
from the analyzed sample influencing the results in a significant way. The set
of code smells types can be also considered a threat to validity. However, we
consider very common smell types, not to mention we also used Bavota et

al. [17] technique, allowing us to improve the coverage of di�erent code smell
types.

3.6.2
External Validity

As several empirical studies involving software systems, the lack of
representative results is also a possible threat to the external validity. For
example, the number and domains of programs used in the study may not be
enough to generalize the results. In order to further reducing the impact of
this threat, we considered a large dataset with programs from a wide range

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 74

of domains. Nevertheless, all the programs used in the study constitute both
programs widely used in other empirical studies and popular Java projects
on GitHub. We did not observe diverging results across di�erent program
domains. Moreover, we also included in the sample the three projects used by
Bavota et al. [17], so that we could contrast our findings with theirs (Section
2.5).

3.7
Related Work

Section 2.5 presents many studies somehow related to this thesis. In this
section, we o�er a comparison between the study presented in this chapter
to some studies shown in Section 2.5. To do so, we divided this section into
groups of studies with the same thematic.

3.7.1
Elements Touched by Refactoring

Bavota et al. [17] mined the evolution history of 3 Java open source
projects to investigate if refactorings occur on code elements that certain
indicators suggest a need for refactoring. Their considered indicators include
structural quality metrics and the presence of smells. They also measure the
e�ectiveness of refactorings regarding their ability to remove smells. According
to their results, quality metrics do not show a clear relationship with refactoring
and 42% of the refactorings are applied on smelly elements, in which only 7%
of them remove smells. Di�erent from Bavota et al., our results indicate that
most of the refactorings (80%) are performed in elements with code smells, in
which 9.7% of them remove smells and 33.3% induce new smells.

The procedure that we followed may explain why our results are dif-
ferent from the one presented by Bavota et al.. We collected refactorings be-
tween commits while they collected refactorings using only the projects’ major
versions. Usually, between two major versions, developers perform significant
changes in the source code structure. Therefore, they probably missed refac-
torings when they followed this procedure since refactorings might be hidden
or unidentifiable. In our study, we mitigate this threat by collecting the refac-
torings between consecutive commits. In summary, our study improves several
aspects of the study reported by Bavota et al.. First, we analyzed 23 projects
while they analyzed only three. Second, we collected refactorings in consecutive
commits. Third, we used the Refactoring Miner refactoring detection tool [28]
which have a good precision rather than the well-known Ref-Finder’s low pre-
cision [55]. In addition, we evaluated if and when refactorings are stinky by

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 75

introducing new smells in the context of both root-canal and floss refactoring.
We have also characterized refactoring-smell patterns.

3.7.2
Motivations to Refactor

Our data showed that most of refactorings (80%) touch smelly elements.
Even though the specific motivation of the developers is unknown, we actually
observed a similar behavior when developers apply both root-canal and floss
refactoring. Mainly in the former case, one would expect developers explicitly
intend to improve code structure. Regarding developers’ motivation, Silva et

al. [15] investigated the reasons that drive developers to refactor their code.
Their results indicate that fixing a bug or changing the requirements, such
as feature additions, mainly drives refactorings. Their results show that the
refactored code may contain code smells, although developers did not mention
it explicitly as the intention to refactor. On the other hand, the study of
Yamashita and Moonen [10] reports that developers often consider smells as
critical.

3.7.3
Benefits to Refactor

Kim et al. [29] conducted a three-folded investigation at Microsoft about
refactoring through a survey, interviews, and data analysis of the Windows
version history. Their results indicate that the refactoring in practice seems
to di�er from the rigorous definition of behavior-preservation transformation
found in the literature [3]. This result provides us an additional support
to investigate floss refactorings since developers also perform non-behavior-
preservation transformations while refactoring. The survey participants also
reported the benefits they have observed from refactoring. The two most
cited benefits were improved readability and maintainability. Although the
participants did not mention code smells, the presence of code smells a�ects
negatively the two benefits they claim they want to achieve [10, 50, 77].

3.7.4
Refactoring Recommendation Systems

Silva et al. [15] mentioned that future studies on refactoring recommenda-
tion systems should refocus from code-smell-oriented to the maintenance-task-
oriented solutions. Nevertheless, we think that such refocus needs more reflec-
tion. Instead, a refactoring recommendation system should employ a hybrid
solution, in which both code-smell-oriented and maintenance-task-oriented so-

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 76

lutions are combined. Thus, a envisaged recommendation system can support
developers to conclude their maintenance tasks in a way that smells are also re-
moved or not introduced. Our set of non-removal and stinky patterns (Section
3.4.2) can be used to help constructing such a recommendation system.

3.7.5
Introduction of Code Smells

Tufano et al. [51] investigated the circumstances that led to the intro-
duction of smells, not specifically in the context of software refactoring. The
authors analyzed issues and tags associated with commits that introduced
smells on open source projects. Their results indicate that most of code smells
are introduced during enhancement activities (between 60% and 66%). They
also found that between 4% and 11% of the smell-introducing commits were
tagged as refactoring. However, our study goes beyond: our findings indicate
that stinky refactorings are frequent: refactorings are related to the introduc-
tion of code smells in 33.3% of the cases. We also characterized and quantified
typical refactoring-smell patterns, and observed that certain stinky patterns
are very frequent.

3.7.6
Relation Among Code Smells, Refactoring and Other Software Aspects

Khomh et al. [40] investigated the relation between 29 smells and changes
occurring in classes from two software projects. Their results showed that
classes with code smells are more likely to change than classes without a smell.
This result may help us to understand why most of the refactoring instances
touch smelly elements. Fujiwara et al. [13] and Ratzinger et al. [11] studied
whether refactoring reduces the probability of software defects. The authors
find that an increase in refactoring has a positive interference on software
quality. Results show that number of defects in the target period decreases if
more refactorings are applied. While the authors correlate refactorings with
bug fixes and the interference of such changes on software defects, we are
correlating smells with refactorings.

3.7.7
Negative refactorings

We conducted a preliminary study [75] that analyzes how often the
commonly-used refactoring types a�ect the density of 5 types of smells along
the version histories of 25 projects. Our findings are based on the analysis
of 2,635 refactorings distributed in 11 di�erent types. Surprisingly, 95.1% of

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 77

refactorings are neutrals. Only 2.24% of refactoring were positive, and 2.66%
negatives. Our new results show that negative refactorings are much more
frequent. This discrepancy between the studies can be explained by the nature
of the projects. In the preliminary study, we considered only small projects
with fewer developers.

3.8
Summary

We conducted a study aiming to understand the relationship between
refactorings and code smells in 23 projects. First, we have observed that
although refactorings touch smelly elements, they are often smell-neutral.
Second, stinky refactorings occur more often than positive refactorings. Stinky
refactorings were also surprisingly frequent in root-canal refactorings, i.e.,
when developers are solely focused on improving the program structure. These
findings suggest developers need more guidance to fully remove a code smell
once they restructure a smelly element.

In order to better guide developers, we have investigated which recurring
refactoring-smell pairs tend to produce stinky, neutral or positive e�ects. We
achieved this goal by revealing and characterizing removal, non-removal and
creational patterns. We found a wide range of creational and non-removal pat-
terns, which were much more frequent than positive patterns. Extract Method

is a refactoring type frequently involved in both stinky and non-removal pat-
terns. Moreover, we decomposed creational patterns in three groups. The first
group included refactorings dealing with generalization: they were often re-
lated to the creation of God Class and Speculative Generality smells. The sec-
ond group represents feature-moving refactorings, which induced the creation
of God Class, Complex Class, and Lazy Class smells. Finally, the last group
comprises the Extract Method refactorings, which were related to the creation
of Divergent Change and Feature Envy smells.

The aforementioned findings can help practitioners and tool engineers.
Practitioners using refactoring are now better informed of when they may typ-
ically introduce neutral or stinky refactorings in their programs. Moreover, a
refactoring assistance tool can be built in order to: (i) detect when developers
performed refactoring in a commit, and (ii) depending on the refactoring char-
acteristics (e.g., occurrence of a root-canal refactoring), immediately produce
warnings or recommendations for the developer. For example, a refactoring
assistant could warn developers of an emerging God Class (related to a stinky
refactoring) and suggest her to move the class member to a more appropriate
class.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 3. Investigating the Impact of Refactorings on Smells 78

Some studies already reported refactoring operations are frequently
performed in batches [1, 16]. However, in both studies presented in this chapter,
we only considered refactorings in isolation, i.e., single refactorings. Hence, we
might had been evaluating only parts of a whole work being performed by
the developers. For instance, a negative refactoring could be transformed in
a positive one if the developer applied more refactorings in a batch manner.
This batch refactoring phenomenon motivated further studies, which we need
to perform to better understand the impact of refactoring on the existence
of code smells. Before conducting theses studies, the next chapter introduces
concepts related to batch refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

4
Batch Refactoring: Characterization and Synthesis

Chapter 2 presents the conceptual framework used for referring to single
refactoring, code smells, and single refactoring classification. At the end of the
Chapter 3, we introduced the need for studying batch refactoring operations.
Like Chapter 2, this chapter also outlines the terminology adopted throughout
this thesis. However, in this chapter we extend the conceptual framework
presented before. Here, we focus on formally defining aspects related purely to
batch refactoring.

4.1
Refactorings Flock Together

Due to the diversity of the purposes behind refactoring, researchers have
been trying to understand how and why developers perform refactoring [1,
15, 16]. These studies report the most common refactoring types applied by
developers [1], the typical reasons underlying several refactoring types [15],
and how developers use tools that help to refactor [16].

Among other findings, these studies briefly shed light upon the existence
of batch refactoring, i.e., when developers apply a sequence of single refactoring
operations. For instance, [1] reported that 40% of the times developers apply
two or more refactoring operations in the same code element. Indeed, even to
remove some code smells, developers may need to apply multiple refactorings.
For instance, a developer may need to apply multiple Extract Class refactorings
to remove a God Class. Sometimes, only a single refactoring is not enough
to remove a smell completely, as presented in [45]. Thus, we also need to
investigate if batch refactoring introduces or removes smells. In this work, we
formally define batch refactoring as follow.

4.1.1
Batch Refactoring

In our context, a batch refactoring comprises two or more refactorings
performed in a sequence that have been applied by the same developer [1]. In
a formal way, a sequence of single refactoring operations is considered a batch
refactoring (or, simply, a batch) if some constraints are satisfied. First, a batch

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 80

must have more than one single refactoring. Second, all refactorings in a batch
must have been performed by a single developer. Third, if b = [r1, r2, · · · , rn] is
a batch of size n, then [r1, r2, · · · , rn] is a list of refactoring operations ordered
chronologically.

We have restricted the batch to those sequences of refactorings applied
by the same developer since it is likely that the same developer starts and
finishes the batch by himself. We defined this criterion because we consider
that a batch comprises a sequence of operations towards a goal defined by
a single developer. Thus, if a developer starts a batch, he probably has a
goal set. Another developer hardly would share the same goal in order to
interleave refactorings with the sequence of refactorings performed by another
developer (e.g. in the same commit). Consequently, a second developer may
rarely interfere during the batch being performed by the first one. In fact, our
recent analysis shows that a sequence of refactorings in a module by a developer
is rarely intertwined with a sequence of refactorings performed by another
developer [78]. Moreover, when two batch sequences of di�erent developers
a�ect the same module, the “distance” is usually higher than one month or
dozens of commits.

Figure 4.1: Batch refactoring example

For instance, let us revisit the example presented in Chapter 2, which is
presented again1 in Figure 4.1. The developer performed two refactorings in
the UserCtrl class in the first version. In this way, the batch b1 = [r1, r2]. The
second possible batch occurs in the class MediaCtrl in version v3. The developer
applied two Extract Method refactorings. In this way, b2 = [r6, r7]. Both batches
di�er in some characteristics. For instance, b1 has two di�erent refactoring
types, while b2 has only one. A batch may have additional characteristics, such
as its timespan, heterogeneity, and scope, as defined in the next sections.

1
Since this example is several pages back in the text, we show the same picture again in

Figure 4.1 for the reader’s convenience

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 81

4.1.2
Batch Type

A batch refactoring can have a type in the same way that a single
refactoring has one. The type of a given batch b is defined as the ordered
list of refactoring types that it contains. Formally, type(b) = fin

i=1type(ri). So,
the outcome of the function type is (i): if it is applied in a single refactoring,
it merely returns the refactoring type, and (ii) if it is applied in a batch, it
returns the ordered list of refactoring types that the batch contains. Hence,
type(b1) = [Move Method, Move Field]. To know the batch type, i.e., all the
refactoring types that compose the batch are important. For example, with
this information, we can identify which are the refactoring types that happen
in a batch that often introduces or removes smells. This information can be
used for awaring developers to either avoid or pursuit these batch types in a
given context.

4.1.3
Batch Timespan

As discussed in Section 2.1.1, we need to compare two subsequent versions
of a system to identify a refactoring. In this context, all the refactorings in
a batch can happen in the same version, or they can happen in di�erent
subsequent versions. For instance, r1, r2 and r3 refactorings happened in v1,
v2 and v3 versions, respectively. The batch timespan indicates if the batch is
either cross-version or single-version.

This batch characteristic is useful to understand if the developers usually
apply batches in a single version of the software or if the batches are spread
into several subsequent versions. In this way, the timespan characteristic is
useful to understand the behavior of the developers during batch refactorings.
We can infer if they usually work focused in a batch and finish it in a single
version or if they usually interleave batch refactorings with di�erent changes
in a code during several versions of the software.

To identify the batch timespan, let us define the function version(r) as
the version where the refactoring r was performed. In this way, we can say
that a batch b = [r1, r2, · · · , rn] is cross-version if and only if |version(r1) fi
· · · fi version(rn)| > 1. Hence, if a batch is cross-version, then the refactorings
belonging to it occur in more than one version. Similarly, if |version(r1)fi · · ·fi
version(rn)| = 1, then b is single-version. In our example, both batches b1 and
b2 are single-version.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 82

4.1.4
Batch Heterogeneity

As a batch is a sequence of refactorings, all the refactorings in the batch
can have the same type or not, which we define as batch heterogeneity. The
batch b = [r1, r2, · · · , rn] is heterogeneous if and only if |type(r1)fitype(r2) · · ·fi
type(rn)| > 1. In this way, if a batch is heterogeneous, then we can find
more than one type of refactoring on it. Similarly, if |type(r1) fi type(r2) · · · fi
type(rn)| = 1, then we can say the batch is homogeneous. For instance, in our
example, we can observe the two types of batches regarding heterogeneity. The
b1 batch is heterogeneous, while b2 is homogeneous.

The heterogeneity is also useful to understand how developers behave
themselves during the application of multiple single refactorings. By observing
this characteristic, we can understand if they tend to apply multiple refactoring
types in a batch or if they tend to apply only refactorings of the same type.
Since several batch refactorings presented by Fowler [3] are heterogeneous,
it is reasonable to think developers apply heterogeneous batch refactorings
in practice. However, little is known about this batch characteristic in real
scenarios.

4.1.5
Batch Scope

Similar to refactorings, batches also have a scope. The batch scope is the
set of code elements related to the batch. An intuitive way of defining batch
scope can use the notion of refactoring scope. One might naturally say the
union of all refactoring scopes involved in a batch determines the batch scope,
but this is not necessarily true in all scenarios. In fact, the way the batch is
created determines its scope. The refactoring scopes do not necessarily define
the batch scope. The Section 4.2 presents di�erent ways of identifying batches,
and, for each one, we present how the batch scope is determined.

The batch scope is a crucial characteristic for our study. It determines
the blast radius of the batches, i.e., the portion of the code changed by them.
By observing how the scope structurally changed after a given batch, we are
able to classify the batch and work towards answering our research questions
3 and 4.

4.2
Batch Synthesis Heuristics

According to the previous definition, a batch is a sequence of single
refactorings. In other words, a batch is a group composed of single refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 83

The process of grouping refactorings to create batches is defined as Batch

Synthesis. Also, the way the batches are synthesized is open-ended, i.e.,
di�erent developers can have di�erent views of how to create a batch. For
instance, one might say a batch is composed only of refactorings performed in
a single version, while others might say the version is not so relevant, but just
the scope of the refactorings is. Since this study aims at understanding the
impact of batches on the structural quality of the systems, we hypothesize
the way the Batch Synthesis occurs can impact the results of this study.
Therefore, we define three batch synthesis heuristics in the following sections.
These heuristics empower us with the capability of analyzing the batches from
three di�erent perspectives.

Studies that report the existence of batches [1, 16] had access to real-
time data of refactoring activities, i.e., they observed developers performing
refactorings in loco. In this way, they could visually check whether a developer
is consciously applying a batch or not. For instance, Murphy-Hill et al. [1]
considered that a sequence of refactorings form a batch if the developer did
not spend more than 60 seconds between each single refactoring. Still, they only
considered refactorings performed through the IDE options. In our study, we
focus on the analysis of the source code repositories. Our data is less granular,
but our data sample is way larger. Moreover, we believe that the criterion of
“60 seconds” is way to restrictive. Thus, we have defined and applied three
heuristics that follow three di�erent criteria.

To detect batches, we used three di�erent heuristics created based on
observations reported by other authors. For instance, Fowler [3] presents
examples of batch refactorings used to remove code smells in some di�erent
ways. Multiple Extract Methods can be performed in a single method in order
to remove a Long Method. In this case, all refactorings were performed in
a single code element. This behavior led us to propose the element-based

synthesis heuristic. Still, according to Fowler, the developer might want to
move some of the extracted methods to a di�erent class, involving more than
one code element. Although the elements are di�erent, they are structurally
related (same scope). This kind of scenario led us to the range-based heuristic.

Finally, Murphy-Hill et al. [1] considered that a sequence of refactorings
form a batch if the developer did not spend more than 60 seconds between
every single refactoring, independent on the structural relation of the refactored
code elements. Since it is reasonable to think that all refactorings performed
in a time-window of 60 seconds would be in the same software version, we
then proposed the version-based heuristic. The next sections present all the
heuristics.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 84

4.2.1
Version-Based Heuristic

The version-based batch synthesis heuristic considers only the versions
as a criterion to group refactorings. It means that all refactorings performed
in a single version are grouped together to synthesize a batch. In this way,
at most one batch might be synthesized by version. Formally, a given batch
b = [r1, r2, · · · , rn] is synthesized by the version-based heuristic if and only if
|version(r1) fi version(r2) · · · fi version(rn)| = 1. For instance, consider again
the Figure 2.1. Hence, H(s1) = [r1, · · · , r7]. Now, let Bv(h) be the function that
implements the version-based synthesis heuristic over a particular refactoring
history h. Thus, Bv(H(s1)) = {ba[r1, r2], bb[r4, r5, r6, r7]}. Therefore, in this
example, the version-based synthesis heuristic produce two batches: ba and bb,
since in each batch all refactorings were performed in the same version.

Scope In this heuristic, the batch scope is determined by the set of elements
a�ected by the refactorings belonging to the batch. In this way, scope(ba) =
{UserCtrl}, and scope(bb) = {UserCtrl, MediaCtrl}.

4.2.2
Element-Based Heuristic

The element-based batch synthesis heuristic considers only a single
element as heuristic to group refactorings, even if the refactorings were
applied in di�erent versions. It worth mentioning that, as presented before,
all refactorings in a batch must have been performed by a single developer.
Formally, a given batch b = [r1, r2, · · · , rn] is synthesized by the element-based

heuristic if and only if there is an element e such as e œ scope(ri) ’ri œ b.
For instance, let Be(h) be the function that implements the element-based

synthesis heuristic over a particular refactoring history h. So, Be(H(s1)) =
{bc[r1, r2, r3, r4, r5], bd[r3, r6, r7]}. Thus, this heuristic synthesize two batches
by analyzing H(s1). The first one, bc, is a batch according to this heuristic
because [r1, r2, r3, r4, r5] a�ected the same element UserCtrl. The second batch,
bd, is synthesized because all refactorings belonging to it were applied in the
MediaCtrl class.

Scope In this heuristic, the batch scope is determined by the element
used to synthesize the batches. In this way, scope(bc) = {UserCtrl}, and
scope(bd) = {MediaCtrl}.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 85

4.2.3
Range-Based Heuristic

Both version and element-based heuristics consider a single factor to
synthesize batches. In the first case, only the version is considered, while in
the second, a single element is considered. The range-based synthesis heuristic
considers the notion of refactoring scope to synthesize the batches. In this
heuristic, the batch starts with an arbitrary refactoring ra. A second refactoring
rb is part of the same batch if and only if it was performed by the same
developer of ra and ÷e œ scope(rb) such as e œ scope(ra). A possible third
refactoring rc will be added to the batch if the same developer performed it and
÷e œ scope(rc) such as e œ scope(ra) or e œ scope(rb). This process continues
until all refactorings in a particular history are explored. The Algorithm 1
describes how the range-based heuristic synthesizes batches for a given system
s, i.e., this algorithm defines Bs.

Algorithm 1 Range-based synthesis algorithm
Input: a system s

Output: a set of batches
1: B Ω ÿ
2: for all r œ H(s) do
3: matches Ω ÿ
4: for all b œ B do
5: if ÷e œ scope(r) such as e œ scope(b) then
6: matches Ω matches fi b

7: end if
8: end for
9: B Ω B ≠ matches

10: batch Ω {r}
11: if |matches| > 1 then
12: batch Ω merge(matches) fi {r}
13: else if |matches| = 1 then
14: batch Ω matches1 fi {r}
15: end if
16: B Ω B fi batch

17: end for
18: cleanup(B)
19: return B

The algorithm starts by iterating over all refactorings of the history of the
system s (line 2). For each refactoring r, the algorithm identifies all already-
synthesized batches where at least one element of scope(r) belongs to the
batch scope (lines 4–8). The batch where the refactoring r will reside depends
on how many matches we found. If multiple matches were found, then we
merge all of then into one (line 12). If only one match is found, then r will be

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 86

added to this batch (line 14). If no matches were found, then a new batch is
created containing only r (line 10). The brand new batch is added to the set of
already-synthesized batches (line 16). At the end, this might lead to batches
containing only one refactoring. Therefore, before finishing the algorithm, we
call the cleanup function to delete such batches (line 18).

The r1 and r2 refactorings in Figure 2.1 moved elements from UserCtrl

to MediaCtrl classes. Hence, scope(r1) = scope(r2) = {UserCtrl, MediaCtrl}.
The batch synthesis in this example starts with r1. Since r2 was applied in one
element of scope(r1), then the batch grows bigger and turns into [r1, r2]. The
r3 refactoring a�ects elements of scope(r1), then the batch is now [r1, r2, r3].
The same reasoning can be used for the remaining refactorings, so the batch
synthesis produce the batch [r1, r2, r3, r4, r5, r6, r7].

Scope In this heuristic, the batch scope is determined by union of the scopes
of all refactorings belonging to it. In this way, the scope of a batch synthesized
by the range-based heuristic is defined as fin

i=1scope(ri).

4.3
Batch Classification

In addition to studies that try to understand how and why refactoring
happens, there are studies that investigate the impact of the refactorings in
the source code. Bavota et al. [17] investigate the capability of refactoring
on removing code smells, while Cedrim et al. [79] studied also the capability
of smell introduction. A common limitation of such studies is that they only
consider single refactorings, disregarding whether they are part of a batch
or not. Therefore, the conclusion of these studies might be inaccurate as
developers often apply refactoring operations together rather than in isolation
[1]. Our study aims at filling this gap in the literature, since each batch may
exert certain impact on the program structural quality.

To observe how batch a�ects the presence of smells, this chapter extends
the refactoring classification scheme presented in Section 2.3. In the previous
scheme, the refactorings are classified according to their impact on the presence
of code smells. Each refactoring is divided into positive, negative, and neutral.
A given refactoring is said to be positive if the number of code smells before
the refactoring is greater than after. On the contrary, a refactoring is negative
if the number of code smells after is greater than before. If there is no change
in the number of code smells, then we classify the refactoring as neutral. The
batch classification proposed in this chapter uses the same notion of positive,
negative, and neutral categories. However, the notion to compute the number

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 87

of smells before and after is di�erent from the previous classification scheme,
which is explained as follow.

4.3.1
Code Smells in the Batch Scope

In order to investigate the impact of batch refactoring on the existence
of code smells, we need to look at the refactored elements. In other words,
we need to verify if there is code smells in the batch scope. For this purpose,
we can adapt the already defined function ScopeSmells (Section 2.2.1) to
the context of batch refactoring. To understand how this adaptation works,
assume that exists a batch b = [r1, r2, · · · , rn]. To identify the smells in its
scope, we changed the ScopeSmells to interact over each refactoring within a
batch, returning the smells in the scope of each refactoring. Thus, the function
instead of receiving a single refactoring as defined in Section 2.2.1, it receives a
list of refactorings, which composes the batch. In this way, ScopeSmells(b, v)
returns all code smells existing in the scope of the batch b considering the
version v as follow.

ScopeSmells(b, v) =
|scope(b)|€

i=1
smells(ei, v) (4-1)

The ScopeSmells function defined above gives us a way to obtain all code
smells existing in the batch scope for a particular version. Once we defined
a pair of versions, we can use ScopeSmells to observe whether the number
of smells decreased or not between both versions. Since b = [r1, r2, · · · , rn]
is a list of refactoring operations ordered chronologically, then version(r1) is
the version when the batch begins, and version(rn) when it ends. Therefore,
ScopeSmells(b, version(r1)) represents all existing smells in the version when
the batch started. Similarly, ScopeSmells(b, version(rn)) represents the smells
in the version when the batch ended. Hence, we can now define the batch
classification scheme.

4.3.2
Positive, Neutral and Negative Batches

Using the data returned by the functions defined before, it is possible to
classify a batch by looking how it interferes in existing code smells. We rely
on the same classification defined in Section 2.3. Thus, a batch is classified
as a positive one if it reduces the number of code smells. Conversely, it is
classified as a negative one if it increases the number of smells. Otherwise, it is
classified as neutral if it neither increases nor decreases the number of smells. To
perform such classification, we rely on the ScopeSmells function. For instance,

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 88

suppose ScopeSmells(b, version(r1)) = x, and ScopeSmells(b, version(rn)) =
y. Depending on x and y, it is possible to classify b. If x > y, b reduced the
number of smells on scope(b) and, because of that, b is considered a positive

batch. Otherwise, if x < y, b increased the number of smells on scope(b); thus,
b is a negative batch. When x = y, b is a neutral batch.

To better illustrate this classification, consider the batch ba = [r1, r2]
synthesized by using the version-based heuristic. Before ba, there was one God

Class code smell. After applying ba, the code smell was removed and no other
code smell emerged. Hence, ba is a positive batch. Now, let us consider only
the versions v1 and v2 and the range-based heuristic. In such scenario, this
heuristic would synthesize the batch be = [r1, r2, r3]. Before this batch, only
one smell exists: God Class. After, we can observe two: Speculative Generality

and Refused Bequest. Therefore, be is an example of negative batch.

4.4
Smell-Batch Patterns

Section 2.4 presents three types of patterns between single refactorings
and code smells. After concluding the study reported in Chapter 3, we were
able to detect and report several refactoring-smell patterns (Section 3.4). Those
results led us to conjecture about the existence of patterns between batches
and smells. This conjecture is intuitive because, even for simple code smells,
Fowler et al. [3] defined a sequence of single refactorings that would be able to
remove them. Indeed, developers may often need to apply several refactorings
to fully remove certain types of smells [45] Therefore, not only it is realistic
to reason about specific batch types that often remove particular code smells
but it is also necessary. Such necessity arises since we need to understand how
developers apply (multiple) refactorings before providing them support.

Unfortunately, there is no study in the literature that reports batch types
that often introduce code smells. Before studying those scenarios, we extend
the refactoring-smell patterns definition in the next sections. For this definition,
let us consider Bh = {b1, b2, · · · , bn} be the set of all detected batches by the
heuristic h after analyzing the set S. Thus, Bbt is the subset of B of batches
of the type bt. The set B

+
bt,cs is the B subset composed of batches of the type

bt that added code smells of type cs in any element belonging to the batch
scope, while B

≠
bt,cs is the B subset that removed code smells of type cs. Given

this initial notation, we now can define the two kinds of smell-batch patterns.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 89

4.4.1
Batch Creational Patterns

The first smell-batch pattern, namely batch creational pattern, represent
cases where the batch refactoring introduced code smells. In other words,
a batch creational pattern occurs when a specific batch type involves code
transformations that often introduces a specific code smell. Similarly to the
definition of creational batches to single refactorings, we also define the batch
creational pattern concept as a threshold-based rule. If |B+

bt,cs|/|Bbt| Ø ‡, it
is possible to a�rm that there is a batch creational pattern between bt and
cs. This kind of pattern captures scenarios where developers apply a batch
refactoring and, somehow, end up creating at least one new code smell. Thus,
batch creational patterns represent cases of stinky batch refactorings. These
patterns are those that developers should be aware during refactoring since
they have a negative impact in the software system.

4.4.2
Batch Removal Patterns

The second smell-batch pattern is the one that remove code smells after
the refactorings: batch removal pattern. The definition of for this batch also
lies in a threshold-based rule. If |B≠

bt,cs|/|Bbt| Ø ‡, we can a�rm that there
is a removal pattern between bt and cs. It means that developers consistently
removes instances of cs when performing batch refactorings of the type bt. This
kind of batch-smell pattern is the one that has a positive impact in the software
system. Even though any study has investigated the batch removal patterns,
we expect that these patterns comprise the ones reported by Fowler et al. [3].
By formalizing this kind of pattern in practice, we are able to observe if the
refactoring mechanics proposed by Fowler et al. [3] occurs in real scenarios
during code smells removal.

4.5
Towards the Investigation of Batch Refactoring

In this chapter, we presented and discussed concepts related to batch
refactoring. These concepts are an extension of the conceptual framework pre-
sented in Chapter 2. Our first discussion was regarding the fact that refactor-
ings flock together. Indeed, we noticed in Chapter 3 that single refactorings
usually do not remove code smells. Such results led us to wonder why these
code transformations are not reducing the density of code smells. During this
discussion and relying on the literature [1, 3, 45], we concluded that often a
single refactoring may not su�ce in removing a code smell completely. Thus,

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 4. Batch Refactoring: Characterization and Synthesis 90

we should also investigate if, after other refactorings operations, these code
smells were successfully removed. To conduct such an investigation, we need
to investigate the sequences of refactorings applied to the smelly element. This
sequence of refactorings is what we named batch refactoring. Since batch refac-
toring is commonly applied by developers [1], we noticed the need to investigate
their impact on the existence of smells.

However, before conducting such an investigation, which is described
in the next chapter, we had to define heuristics to identify batches. We
defined three heuristics: version-based, element-based and range-based. After
defining these heuristics, we are capable of identifying the batches that occur
in the software projects. Consequently, we can investigate their impact on the
software systems. In order to investigate the impact of batch refactoring on the
existence of code smells, we adapted the classification scheme from Section 2.3
for the context of batch refactoring. Thus, a batch can be either positive,
negative or neutral if it decreases, increases or not a�ects the number of code
smells, respectively. Based on this classification, we can further investigate the
impact of batch refactoring on the existence of code smells. We can also find
the patterns that lead to the removal or introduction of code smells. This
investigation is discussed in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

5
Investigating the Impact of Batches on Smells

In our journey towards the understanding of the refactoring practice, we
first studied how single refactorings change the density of code smells (Chapter
3). In this study, we collected 51,461 refactorings spread into 113,306 commits.
Each refactoring collected went through a classification process (Section 2.3)
according to its impact on the code smells. Thus, this study led us to the first
evidence that refactoring operations usually do not remove code smells. On
the contrary, it is more likely to introduce new ones. Even when developers
use the root-canal refactoring tactic, they often degrade the structural quality
rather than improve it. Since, by definition, refactoring is a way of improving
the code structural quality, the findings of this study are, somehow, surprising.
However, the findings were revealed by considering only single refactorings.

Although important, studies that consider solely single refactorings are
capable of only scratching the knowledge surface of the refactoring practice.
In order to better understand how refactorings a�ect the existence of code
smells, we have to dig deeper and consider batch refactorings. In practice, 40%
of the times developers apply two or more refactoring operations in the same
code element [1]. Moreover, according to Fowler [3], it might be necessary to
perform multiple refactorings to remove a code smell instance. Considering
these observations, it is likely that previous studies provide a limited view
about the impact of refactorings on smells.

In order to address such limitation, we conducted a study with two
purposes. First, we investigate what characterizes a batch. Thus, we analyzed
the data collected in our previous studies to understand what constitutes a
batch. Based on this analysis, we created a heuristic to automatically detect
them. Later, we detected batch refactorings in 48 software projects. After this,
we observed how code smells were a�ected by each batch refactoring found. By
analyzing the impact of batch refactorings, we check if batch refactorings a�ect
code smells di�erently from single refactorings. Therefore, we can contribute to
filling the gap present in the literature about the impact of batch refactorings
on code smells. In this vein, we found the first evidence that batch refactorings
often do not reduce the density of code smells. In fact, most of the batches are
also neutral or negative.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 92

In the context of single refactorings (Chapter 3), we present several
refactoring-smell patterns. Similar patterns might also emerge when batch
refactorings are taken into consideration. In this context, we call them batch-
smell patterns (Section 4.4). The study presented in this chapter also comprises
the identification of such patterns. Their existence might reveal what are
the common refactorings used by developers when they are removing – or
even introducing – code smells. We were able to identify several batch-smell
patterns, and some of them are presented in this chapter.

This chapter is organized as follows: Section 5.1 provides the goal and
research questions that guide this study. Section 5.1.2 presents the study
planning. In Section 5.2 we present the results regarding the impact of batch
refactorings on code smells, while in Section 5.3 we present some of the batch-
smell patterns found. We present the threats to validity in Section 5.4, while
the related work is in Section 5.5. We present a summary and concluding
remarks of this chapter is in Section 5.6.

5.1
Study Settings

This section presents the settings of our study. In Section 5.1.1, we present
the research questions that we intend to answer. In Section 5.1.2, we present
the study design followed to answer our questions.

5.1.1
Goal and Research Questions

Chapter 3 presents our first study towards the understanding of how
refactorings a�ect code smells. However, we only considered single refactorings
during its execution. As discussed before, developers might need more than
one refactoring in a single code element to remove a code smell [3], i.e., they
might need a batch refactoring. As mentioned earlier, studies suggest that
batch refactorings are common [1]. Nonetheless, batch refactorings are still
poorly understood, mainly when their impact on code smells are taken into
consideration. In this context, the goal of this study is stated as follows:

Goal: Understand how batch refactorings a�ect code smells.

In order to classify a single refactoring as negative, neutral or positive,
we consider the number of smells before and immediately after the refactoring
operation (Section 2.3). Therefore, what happens with the code smell later does
not interfere in the refactoring classification. Let us assume that a particular
developer applies a negative single refactoring. A few commits later, the

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 93

developer applies a new refactoring in the same code element and removed
the code smell. In this way, if we consider both refactorings as a batch, we
can say this batch is neutral, since the first refactoring introduced a smell
and the second one, removed it. Clearly, if we consider batch refactorings,
the classification results might di�er from what was reported in Chapter 3.
Therefore, our study aims at addressing the following research question:

RQ3. Does batch refactoring impact the density of code smells?

A similar research question was answered in Chapter 3. We investigated
whether single refactorings reduce the density of code smells or not. Surpris-
ingly, we found that single refactorings are way more prone to introduce than
remove code smells. On the dataset we used, single refactorings introduced
code smells in 33% of the cases, while they remove smells only in 9.7% of the
times. However, developers apply batch refactorings often [1]. Since we first
studied only single refactorings, we might have analyzed only fragments of the
developer work. For instance, let us revisit the example presented in Figure
4.1 (Chapter 4). Analyzing r1 in isolation, we can say it is a positive refactor-
ing because it removed the God Class code smell. However, when analyzing
the batch [r1, r2, r3], we observe the developer work led to a negative batch.
Despite being essential to analyze single refactorings, analyzing its impact in-
dividually can be a minimalist analysis of how refactorings impact code smells.
However, there is a necessity of analyzing the impact of batches on code smells,
as expressed by RQ3.

We address this question by relying on the classification of each batch
detected in real projects. This procedure enables us to compute how frequent
each batch classification occurs across the projects. First, we detected instances
of refactorings and code smells. Then, all batches were classified according to
Section 4.3. Let p the number of batches classified as positive; n the number of
negative batches; and k representing the number of neutral batches. If n > p

and n > k, we can state that the application of batches are likely increasing
the number of code smells. Otherwise, if p > n and p > k, the answer to our
research question is yes, batches tend to remove code smells. Another possible
case is when k > p and k > n. In this scenario, batches would tend to neither
introduce nor remove code smells.

It is also important to understand and distinguish the impact of specific
batch types on code smells. Fowler et al [3] presented a catalog of batch
refactorings that can be used to remove code smells. For example, suppose
that there is a method a�ected by the Feature Envy code smell. In this case,
Fowler recommends to apply a batch refactoring composed of Extract Method

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 94

and Move Method, in this order. Thus, some types of batches might consistently
remove specific smell types (or fail to do so). In this particular case, one would
expect each instance of the batch Extract Method and Move Method would
remove a Feature Envy if the latest was present in the refactored code.

On the other hand, we presented some unexpected relations between
some types of refactorings and types of smell (Section 3.4). For example, our
data suggest that Move Method refactorings can, often, create God Class in-
stances. We observed that a common reason was due to the fact that the
developer moves the method to an inadequate target class. In other words,
another class should receive the method being moved from its source class.
There were also cases where the destination class received new methods from
multiple Move Method refactorings, even from di�erent source classes. In this
case, the creation of such code smell might be related to the multiple appli-
cation of Move Method refactorings. Hence, we hypothesize that unexpected
relations like that might happen between batch and smell types. It might be
the case that some specific batch types can, frequently, introduce specific smell
types across software projects. Section 4.4 defined categories of patterns be-
tween types of batches and smells. These patterns are the focus of our next
research question.

RQ4. What are the patterns governing batches and code smells?

By answering RQ4, we might be able to reveal batch refactorings used
by developers not only to remove, but also to inadvertently introduce code
smells. We detect removal and creational patterns by analyzing the impact
of batch types on smells located in the batch scope. The knowledge about
creational patterns make developers informed about the risks of introducing
certain smells along batch refactoring.

5.1.2
Study Phases

This section presents the phases of the study design. Section 5.1.2.1
describes the dataset we used for batch refactoring synthesis and classification.
After this, Section 5.1.2.2 describes the last two data collection procedures:
batch synthesis and classification.

5.1.2.1
Phase 1: Dataset Acquisition

Section 3.1.2 presented the phases of the first study we conducted to
answer RQ1 and RQ2. The first two phases are Selection of Software Projects,

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 95

and Smell and Refactoring Detection. Since the study presented in this current
chapter aims at analyzing the impact of batch refactorings on smells, the same
dataset used in the first study (Section 3.1.2) was used here. One of the goals
is to allow a comparison of the findings originated from the single refactorings
study to the ones reported in this current chapter. It is worth mentioning we
described two di�erent sets of software projects in Chapter 3. The first dataset
was used in the preliminary study (Section 3.2), and the second one in the
main study (Section 3.1.2). For the batch refactoring study we merged both
datasets into a single dataset. Therefore, in order to answer RQ3 and RQ4 we
rely on refactorings and code smells collected from 48 di�erent projects (Tables
3.1, and 3.5). Therefore, all refactorings and code smells previously collected
are used in this study of batch refactoring.

5.1.2.2
Phase 2: Synthesis and Classification of Batches

As described in Section 5.1.2.1, we used a single dataset composed by the
projects presented in Tables 3.1 and 3.5 to study batch refactorings. In this way,
we already have the refactoring history (Section 2.1.2) of each project presented
in these tables. Moreover, as presented in Section 4.2, all three heuristics for
synthesizing batch refactorings requires a refactoring history as input. Figure
5.1 illustrates how the batch synthesis occurs in this study. First, all refactoring
histories are collected (single refactorings study). After this, each refactoring
history is submitted to the synthesis algorithms described in section 4.2. In this
way, for each project considered, three sets of batches are collected: (i) element-
based batches, (ii) range-based batches, and (iii) version-based batches.

Project 1

Project 2

...
Project 48

Refactoring

History 1

Refactoring

History 2

Refactoring

History 48

Batch Synthesis

Heuristics

Single
Refactorings

Study
Version-

Based

Batches

Scope-

Based

Batches

Element-

Based

Batches

Figure 5.1: Batch synthesis procedure

Once all batches are synthesized, we can start analyzing them. The first
step towards answering RQ3 is the classification procedure. As described in
Section 4.3, we can classify each batch according to its impact on the code
smells. In this way, each synthesized batch is then submitted to the batch

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 96

classification scheme. After this classification, it is possible to quantify how
frequent batches are classified as positive, negative, and neutral.

The study presented in Chapter 3 also presents the single refactorings
classified as positive, negative, and neutral. Since we follow a similar classifi-
cation scheme for batches, we are able to contrast both results. This will give
us evidence about how batch refactorings can a�ect code smells and how they
di�er from single refactorings in this matter.

5.2
Batch Refactoring and Code Smells

This section presents and discusses the data used to answer RQ3. First,
we present the single refactoring data (Section 5.2.1). We follow the discussion
presenting the synthesized batches and also the batches classification (Sections
5.2.2 and 5.2.3, respectively).

5.2.1
Single Refactorings

The refactoring detection procedure identified 51,461 single refactorings.
Table 5.1 presents the refactoring types ordered by the number of their occur-
rences across the projects analyzed. The first column shows each refactoring
type followed by the corresponding number of its occurrences (second column)
in all projects analyzed. The third column presents the number of projects
where the refactoring type was observed. For instance, the Rename Method

refactoring was observed in all projects, while Move Field, appeared in 38
projects. The most common refactoring type is Move Field, similarly to previ-
ous studies that analyzed refactoring frequencies in other systems [1, 79]. As
we can see, all refactoring types were observed in multiple projects, varying
from 16 (Push Down Field) to 48 (Rename Method). This high diversity of
projects give us confidence that there is not one or two projects biasing our
results. Several projects contributed to the data we present here onward.

Table 5.1 includes rename refactorings in two rows. However, one might
wonder why we removed the Rename Method and Rename Class refactoring
types from the single refactoring study, but we kept them in the batch
refactoring one. Such refactoring types have no close relationship with any code
smell addressed in our study, i.e., the code change needed to perform them is
not capable of a�ecting these code smells. Hence, it was not interesting to
study their impact on code smells when analyzing them as single refactorings.
However, renames are very popular refactorings [1, 16] and can, often, be

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 97

Table 5.1: Single refactorings detected by type
Refactoring Type Quantity Projects Applied in Smelly Code
Move Field 15,306 38 13,743 (89.7%)

Rename Method 15,215 48 7,178 (47.1%)

Extract Method 9,569 47 7,551 (78.9%)

Inline Method 3,428 39 1,307 (38.1%)

Move Class 2,339 24 978 (41.8%)

Move Method 1,909 34 1,267 (66.3%)

Pull Up Method 1,171 24 940 (80.2%)

Rename Class 927 24 326 (35.1%)

Pull Up Field 757 21 516 (68.1%)

Extract Superclass 410 25 136 (33.1%)

Extract Interface 185 25 82 (44.3%)

Push Down Method 149 17 120 (80.5%)

Push Down Field 96 16 64 (66.6%)

Push Down Field 51,461 34,208 (66.5%)

interleaved with other structurally-relevant refactorings in a batch. In this
sense, we keep renames in the batch refactoring study.

The last column of Table 5.1 reports how often instances of a certain
refactoring type “touch” at least one smelly element, i.e., we present how
many times each refactoring type was applied in smelly code (Section 2.2.2).
The results are shown in terms of both absolute number of occurrences and
percentages (in brackets). For example, 89.7% of the Move Field refactorings
are applied to program elements containing one or more code smells. We can
observe that developers tend to often apply refactorings in smelly elements of
a program, as presented in Section 3.3.

The last row of Table 5.1 presents the total number of refactorings. As
we can see, 66.7% of the collected refactorings are applied in smelly code.
This number, per se, shows that refactorings often target smelly elements.
As aforementioned, the table also contains two refactoring types not directly
related to the code smells considered in our study, which is Rename Method

and Rename Class. If we disregard both refactoring types, the percentage
of refactorings applied in smelly elements becomes 75.6%. This new value is
similar to the one reported in Section 3.3 (79.4%). The percentage we found is
again higher than the 42% reported in a previous study [17], indicating that
developers usually apply refactoring in code elements su�ering from structural
problems.

This high percentage of refactorings a�ecting smelly code is particularly
relevant to our study. First, it indicates that developers (consciously or not) can
be attracted by code smells when they decide to start either a root-canal or floss

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 98

refactoring. Second, it shows that there is room for structural improvement in
the refactored code, i.e., there is possibility of having positive refactorings if the
proper transformations are performed by a developer. If most refactorings were
performed in smell-free code, the possibility of existing positive refactorings
would be tiny as such transformations were most likely only serving to achieve
non-structural improvements. In this hypothetical scenario, there was no smell
to remove; then, the refactorings could only be neutral or negative. In this
way, the values presented in Table 5.1 shows we have a diverse dataset to
study the impact of refactorings on smells, empowering us with the capability
of answering RQ3.

5.2.2
Synthesized Batches

This section presents descriptive data about the synthesized batches.
First, we show how many and how long are the batches (Section 5.2.2.1). After
this, we present and discuss the other batch characteristics: homogeneity and
timespan (Section 5.2.2.2).

5.2.2.1
Quantity and Size of Batches

All single refactorings must be processed to synthesize batches (Sec-
tion 5.1.2.2). In this study, we used the refactoring histories (Section 2.1.2)
from 48 projects to synthesize batches considering three di�erent heuristics:
version-based, element-based, and range-based. Table 5.2 presents data regard-
ing the number of refactorings belonging to batches. For each heuristic, we first
present how many batches were synthesized (second column).

Table 5.2: Batch size by heuristic
Single Ref. Size

Heuristic Quantity in Batches Average Std. Dev. Max Min Median
Element-based 12,636 28,394 (54%) 3.9 6.6 333 2 2
Range-based 3,730 28,883 (55%) 7.7 62.2 2,556 2 2
Version-based 11,545 47,218 (91%) 8.0 44.4 2,562 2 3

A batch refactoring consists of a list of two or more refactorings. There-
fore, after applying the batch synthesis heuristics, a given single refactoring
will be either isolate or part of a batch refactoring. Hence, an alternative way
of thinking about our dataset is to split it into two separate sets of refactorings:
(i) interlinked refactorings – refactorings that are part of at least one batch;
(ii) isolated refactorings – do not belong to any batch. In this vein, the third
column of Table 5.2 presents the count of the interlinked refactorings for each

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 99

heuristic. For instance, we synthesized 12,636 batches via the element-based
heuristic, totaling 28,394 interlinked refactorings, which represents 54% of the
total of single refactorings belonging to our dataset.

When considering the element-based and the range-based heuristics, 54%
and 55% of the refactorings are interlinked through a batch, respectively. These
numbers are not far to the ones reported by previous studies [1, 16], which
state that 40% of the refactorings are performed in batches. This similarity
might indicate that these heuristics capture the way the developers applied
batch refactorings during these studies. However, 91% of the refactorings
belong to batches in the version-based heuristic. It means that developers,
when refactoring, apply at least two refactorings in the same commit, even
if the refactorings are applied to structurally-unrelated code elements. This
might occur, for instance, in cases where developers are refactoring code clones
scattered over di�erent parts of the system. In any case, these numbers show
that researchers should not study only single refactorings, but they should also
consider the batches, which may comprise several interlinked transformations.
Therefore, these data lead us to our first finding in this chapter:

Finding 4: Developers perform batch refactoring more often than they
perform single refactoring.

Our first finding in this chapter is fundamental for the next steps of the
batch refactoring study. Since developers perform batch refactoring more often
than they perform single refactoring, there is a possibility of getting di�erent
results for RQ3 and RQ4 if compared to the results reported in Chapter 3. If
batch refactorings were extremely rare in our dataset, answering RQ3 and RQ4

would not be so relevant. Since we found the opposite, we can carry on our
investigation.

Still in Table 5.2, we present data regarding the size of the synthesized
batches. We present di�erent characteristics of this variable: (i) the aver-
age (third column); (ii) the standard deviation; (iii) the maximum and the
minimum value observed (fifth and sixth columns); and (iv) the median (last
column). As we can see, the values di�er a lot among the heuristics. The av-
erage size of batches synthesized by the element-based heuristics is 3.9, while
8 is the one for version-based synthesized batches. This variation is expected
due to the nature of the synthesis algorithms. For instance, in the element-
based heuristic, we only group together the refactorings applied to the same
element. On the other hand, the version-based heuristic attaches refactorings
to a batch independently from the code element where they were applied; we
just consider the commit where they were applied. In this way, we can say the

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 100

condition to form version-based batches is looser if compared to the one used
by the element-based heuristic. Hence, it is expected to observe version-based
batches bigger than element-based batches.

By definition, the range-based heuristic is a generalization of the element-
based one (Section 4.2.3). In order to visualize that, let us assume a hypothet-
ical scenario where a developer is refactoring the class A. She first moves the
methods m1 and m2 from class A to class B. After this, she extracts part of
m1 to a new method in class B. If we consider the element-based heuristic,
the first two Move Methods would form a batch. On the other hand, all three
refactorings would be part of a batch if the range-based heuristic is used. The
batch scope of the element-based heuristic is fixed (always a single class or
method), while the scope of the range-based heuristic is organic – it grows
for each new refactoring performed. Therefore, we expected to observe bigger
batches in the range-based heuristic if compared to the version-based ones.

0

5000

10000

15000

2.5 5.0 7.5 10.0 12.5
Size

Ba
tc

he
s

C
ou

nt

type
element-based
scope-based
version-based

Figure 5.2: Batch size distribution

Figure 5.2 presents how the batch sizes are distributed by each heuristic.
As we can see, most batches (independent on the heuristics) is composed of
5 or fewer refactorings. The frequency of batches bigger than that starts to

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 101

decrease, mainly when we reach the size 10. Actually, in our dataset, we found
extremely big batches, as depicted in Table 5.2 (max column). However, these
batches are rare, and one might say they are outliers in our dataset. Since
most of the batches are small, as shown by Figure 5.2, then most of the results
here presented will be directly derived from them, i.e., small batches are the
main responsible for our findings. This is an expected result since for removing
several code smell types, only a few refactorings are enough [3].

5.2.2.2
Heterogeneity and Timespan of Batches

Table 5.3 presents the results concerning the timespan and heterogeneity

characteristics of batches. The table provides the interrelation between these
two characteristics and allows us to see at a glance the proportion of batch
refactorings that are either heterogeneous or homogeneous and cross-version or
single-version. For each heuristic, the table presents the distribution of batches
among such characteristics.

Table 5.3: Timespan and heterogeneity characteristics
Timespan Heterogeneity

Heuristic Single-Version Cross-Version Homogeneous Heterogeneous
Element-based 9,094 3,542 11,107 1,529
Range-based 3,486 244 2,875 855
Version-based 11,545 0 6,484 5,061

As we can observe, developers tend to limit the batches in a single
commit. This can be an indication that they perform all refactorings they
intend to perform at once, i.e., without splitting the task into multiple commits.
This is an important result if we think about recommendations. Let us assume
we want to develop a recommendation system to suggest batch refactorings
aiming at removing code smells. This system can use the leverage of the
data presented in Table 5.3 to recommend refactoring that can be done in
a single commit, in this way it would mimic the most common behavior of the
developers.

Although most of the batches are single-version, a non-ignorable amount
of batches are cross-version when we consider the element-based heuristic. If
we combine this fact with the one that most of the element-based batches
have less than 5 refactorings, we can say that developers apply small batches
in di�erent commits in the same elements. Even though they do several cross-
commit batches according to the element-based heuristic, most of them are
single commit.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 102

Regarding heterogeneity, we can say most of the batches are homoge-
neous. Both element-based and version-based heuristics produce more than
70% of the batches homogeneously. It means that developers apply the same
type of refactoring when restructuring related code elements most of the times.
The highest incidence of heterogeneous batches occur in the version-based
batches, but this can be explained due to the nature of the version-based
batches. According to this heuristic, any refactoring performed in a given com-
mit is part of a batch, even if these refactorings are applied in structurally
unrelated elements. As we presented, if we consider related code elements, the
batches performed on them tend to be homogeneous if we look to each batch
separately. Let us assume the developer applied two Move Methods in the class
A, and two Move Fields in the class B in the same commit. According to the
element-based heuristic, we would have two homogeneous batches. However,
since all refactorings were performed in the same commit, the version-based
heuristic would produce a four-sized heterogeneous batch.

In summary, we can say that most of the batch refactorings occur
in a single version rather than crosscutting multiple versions. Furthermore,
independently from the heuristic, most of the batches are homogeneous rather
than heterogeneous. Still, even though most of the batches are single-version
and homogeneous, we found a non-ignorable frequency of heterogeneous or
cross-version batches. Previous work [1, 22] ignores the fact that developers
indeed apply a sequence of types of refactoring along multiple commits
in the software history. Hence, after analyzing di�erent batch refactoring
characteristics, our results lead us to our next finding:

Finding 5: Even though homogeneous and single-version batches are more
frequent than its counterparts, heterogeneous and cross-version batches
occur with a non-ignorable frequency, which is overlooked by previous
research.

This finding shed a light upon the so far unrevealed characteristics of
batches, and its impact on our study is significant. In our single refactoring
study (Chapter 3), the impact of refactorings on smells were all collected in a
single-version fashion, since we only observed the impact of single refactorings.
Although cross-version batches are not the majority, they might have a
significant impact on the batch classification (Section 4.3). For instance, let us
assume there is a tendency of cross-version batches to be positive. The amount
of cross-version batches is enough to impact the classification distribution
towards a higher percentage of positive refactorings. In this way, this finding

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 103

is one more evidence that the classification results of batches might di�er from
the ones reported on Chapter 3.

5.2.3
Most Batches are Neutral

Section 4.3 presents a batch classification scheme according to the impact
of batches on code smells, so all synthesized batches are classified according
to it. Therefore, the three last columns of Table 5.4 present respectively the
incidence rate of positive, neutral and negative refactorings. Similarly to what
was reported in Chapter 3, the neutral classification was again the most
frequent one for all heuristics. Even though refactorings are frequently applied
in smelly elements, they often do not impact the amount of prevailing smells.

Table 5.4: Batches classification by heuristic
Heuristic Positive Neutral Negative
Element-based 751 (5,9%) 11,264 (89,1%) 621 (4,9%)
Range-based 542 (14,5%) 2,020 (54,2%) 1,168 (31,3%)
Version-based 1,653 (14,3%) 6,019 (52,1%) 3,873 (33,5%)

Section 3.3 presents a similar classification scheme considering only single
refactorings. In the dataset we used before, 57% of the refactorings were
classified as neutral. Also, we report that 9.7% were positive, and 33.3%
negative. In this previous work, we considered single refactorings and, also,
found a high incidence of neutral refactorings. However, since most of the
refactorings belong to batches (Section 5.2.2), most of these single refactorings
used to report the percentages are interlinked through a batch. Some might
say this fact might introduce bias in the classification percentage we reported,
since we are evaluating the impact of the same refactoring twice – one time
in the single refactoring study, and again in the batch study. In this way, we
computed the classification frequencies for all isolated refactorings, i.e., the
ones that are not part of a batch. Considering only the isolated refactorings
subset, we obtained the following percentages: 35.7% of negatives, 55.8% of
neutrals, and 8.5% of positives. Again, even in this subset, the percentages are
almost the same, giving us confidence about the findings.

When analyzing the refactorings in batches (Table 5.4), a similar behavior
is observed. Independently from the heuristic, most of the batches are neutral.
This can be happened due to our classification scheme that only considers the
number of smells to classify the batches. In order to illustrate the concern we
had with this, consider a scenario where before the batch b the scope contained
two code smells, being one Feature Envy and one Message Chain. After b being

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 104

performed, the developer ended up with also two smells: one Feature Envy, and
one God Class. In this case, our classification scheme would say b is neutral.
However, a God Class would be often considered worse than a Message Chain.
Hence, in this hypothetical case, it would not be fair to label b as neutral.
Considering the “criticality” of the smell, the transformations are more likely
to be considered negative because the smelly structure is worse than before.
Therefore, it is very important to know if neutral batch refactorings changed
the types of the code smells in question, and if they changed, we have to know
if it is for worse or for better structure.

Table 5.5: Frequency of neutral batch refactorings a�ecting smells
Heuristic Same Code Smells Di�erent Code Smells
Element-based 11,264 (99.7%) 30 (0.3%)
Range-based 2020 (100.0%) 0 (0.0%)
Version-based 6019 (100.0%) 0 (0.0%)

In order to mitigate the risk of misclassifying neutral refactorings as
illustrated above, we went through our entire dataset to verify the smells
present before and the smells present after each neutral batch refactoring.
Table 5.5 presents, for each refactoring, how many neutral batches changed
the code smells on their scope. As we can see, we observed only 30 changes of
code smells in a set containing almost 20,000 batches. These cases are negligible
when we are analyzing thousands of batches because they have no power to
change our findings regarding neutral batch refactorings. In this way, after
this verification, we are confident that neutral batch refactorings are, actually,
neutral. These results mean the findings reported in Section 3.3 are also valid
in the context of batches. Hence, this leads us to our next finding:

Finding 6: Developers tend to produce smell-neutral refactorings when
performing either single or batch refactoring.

An analysis of Table 5.4 confirms there is indeed a general trend:
independently of the batch synthesis heuristic, neutral refactorings are much
more frequent than positive and negative refactorings. When we analyze each
individual project, the same classification distribution is observed, i.e., neutral
refactorings represent the vast majority in all the projects. These findings
suggest developers need more guidance to remove a code smell once they start
restructuring a smelly element.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 105

5.2.4
Stinky Batches

More than 30% of the batches were found to be negative (or stinky) in
two synthesis heuristics. These batches induced an increase of smells in their
scope. This results is surprising since one might expect that after a sequence
of refactorings, a developer would reduce the density of smells. As discussed in
Section 3.5, sometimes developers have to apply several refactorings to remove
a code smell completely. Thus, this results indicates that even when developers
apply multiple refactorings, they still do not remove smells. In this sense, we
were wondering if in the future commits, developers succeed in removing these
smells. When we analyzed the commits performed after the negative batches,
we also concluded that more than 95% of batch-induced smells were not
removed afterwards. Only around 14% of batches removed smells, according
to two of the heuristics in Table 5.4.

Negative batches were more frequent than positive ones according to
two synthesis heuristics. On the other hand, stinky e�ects are more frequent
than positive ones in the context of both scope and version-based synthesis
heuristic. These results enable us to answer RQ1: batches made by developers
in real projects are not often removing code smells. On the contrary, most
of the batches are neutral or negative. This observation also prevails if
we only consider refactoring types that, according to their description in
Fowler’s catalog [3], are explicitly associated with specific code smell types
addressed in our study. For instance, the mechanics for applying Move Method,
Pull Up Method and Move Field refactorings are associated with smells
that represented methods or fields that are misplaced. The misplacement of
these members are captured by occurrences of either Feature Envy, Divergent

Change, Shotgun Surgery or God Class. Hence, the answer to our RQ3 can be
summarized by the next finding.

Finding 7: Batch refactorings are not often reducing the density of code
smells. In fact, most of the batches are neutral or negative.

Our data suggest that most batches are not removing smells. There
are possible interpretations of this finding. First, critical design problems in
a program may not be related to code smells. If so, this fact may explain
why developers either neglect or introduce code smells through refactoring.
However, previous studies [5, 9, 34, 50] indicate that design problems are often
located in modules containing two or more code smells. Second, similarly to
previous studies, we use metrics and thresholds to detect all smells. The proper
choice of metrics and thresholds may be sensitive to particular developers [44]

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 106

and other project-specific factors [74]. As a consequence, our detection of code
smells may not reflect what developers truly consider as smells. However, our
previous studies involving developers [44, 74] suggest that heuristics used by
developers are often not essentially di�erent from smell detection strategies
adopted in our study. Our understanding is that refactoring indeed ignores or
introduces technical debt in the source code. Finally, it may be the case that
our set of studied refactoring types are not among those used by developers
to actually remove design problems. Still, it is troublesome that developers
introduce smells through batches regardless its synthesis heuristic.

Unfortunately, we do not know why batch refactoring are not removing
code smells. Maybe an explanation for this incapability of removing smells
is that these batches are somehow incomplete, i.e., developers are not com-
pleting the batches with other refactorings to remove the smells completely.
As we discussed in Section 3.5, there are some cases that developers need to
apply several refactorings to remove a smell. Thus, they are not succeeding
in applying these several refactorings to fully remove a smell, even when they
apply batch refactoring; or even worse, developers are somehow introducing
smells during these batches. Therefore, we need to conduct a further inves-
tigation about these cases where batch refactoring introduced and removed
smells. This investigation can help us to understand when and why developers
do not succeed in removing smells when applying batch refactoring. We can
use this knowledge to provide better support when developers apply multiple
refactorings. We explain the results of this further investigation in the next
section.

5.3
Batch-Smell Patterns

To address our next research question, we analyzed the patterns emerging
from the relationship between batches and smells. For this purpose, we
defined in Section 4.4 two categories of patterns: removal and creational
patterns. We consider two patterns instead of three pattern as we did when
we considered single refactoring. We focus on removal and creational patterns
since they are the ones that can provide recommendations for when developers
apply batches. For instance, the knowledge about creational patterns make
developers informed about the risks of introducing certain smells along batch
refactoring.

In this section, we present the batch-smell patterns according to the smell
types. In this way, we can discuss the particularities of each smell related to
both creational and removal patterns. We focus on discussing patterns in which

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 107

more than 50% of the instances of a batch type was related to instances of a
specific smell type. For these patterns, we inspected several pattern instances
to understand what happened in each case. In particular, we also confirmed
whether the batches were directly related to the removal or introduction of
the smell. In the following sections we present the patterns related to the code
smells Feature Envy, God Class, and Complex Class only. The Appendix A
presents the patterns found in the context of other code smells.

5.3.1
Feature Envy

Feature Envy is a code smell that happens when a method seems more
interested in a class other than the one it actually is declared [3]. It is not
rare to come across with a method that invokes several getting methods on
another object to calculate some value, representing a Feature Envy. Actually,
the Feature Envy smell was the one observed more frequently in our dataset.
Therefore, this smell is involved in several patterns.

Feature Envy

Inline Method{n}, Extract Method{n}

0.77
Extract Method, Move Attribute{n}

0.96
Inline Method{n}, Extract Method

0.69
Extract Method, Inline Method

0.65

Inline Method, Extract Method0.61

Extract Method{n}, Inline Method

0.67

Extract Method, Move Attribute

0.82

Extract Method, Move Method

0.73

Inline Method, Extract Method{n}

0.63

Move Attribute{n}, Extract Method

0.60

Move Attribute, Extract Method{n}
0.69

Move Attribute, Extract Method
0.70

Rename Method{n}, Extract Method{n}

0.63

Figure 5.3: Feature Envy patterns

Figure 5.3 presents all batch types involved in some pattern related to the
Feature Envy code smell. The red boxes (those to the left side of the Feature

Envy box) represent the creational patterns, while the green ones (those to
the right side of the Feature Envy box) represent the removal patterns. The
boxes’ content represents the batch type involved in the pattern, but there

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 108

is a caveat regarding the repetition structure. The {n} symbol indicates that
the refactoring type it succeeds was observed more than one time. The edge
weights indicate the frequency that we observed the patterns. For instance, let
us consider the top-left red box. The relation of this pattern with the Feature

Envy code smell can be interpreted as follows: in 60% of the times we observed
a batch composed by more than one Move Attribute followed by an Extract

Method, a new Feature Envy was created. The same rationale can be used to
interpret the removal patterns. The top-right green box indicates that in 77%
of the times we observed a batch composed by more than one Inline Method

followed by more than one Extract Method, one instance of Feature Envy was
removed.

We noticed cases of batches consistently introducing instances of Feature

Envy in 31 di�erent projects. Figure 5.3 shows that types of batches comprising
Move Attribute, Extract Method introduce Feature Envy smells in more than
60% of the cases. These creational patterns indicate that the batches are
somehow incomplete, which contributed to the introduction of the Feature

Envy. For instance, in the three first creational patterns, the developers moved
attributes; however they did not moved the corresponding extracted methods.
Consequently the “unmoved methods” become more interested in the classes
to which the attributes were moved, leading to the introduction of a Feature

Envy. In other words, these batches led to the introduction of the Feature

Envy because they are incomplete; a Move Method should also be part of
these batches.

Even when considering batches, Extract Methods play a central role in
the introduction of the referred type of code smell. The behavior should be
highlighted is that developers consistently introduce Feature Envy code smells
while performing Extract Method refactorings if they do not complete the batch
with a Move Method. This is consistent with the single-refactoring patterns pre-
sented in Section 3.4.2, where we reported developers introducing Feature Envy

code smells in 63% of the times while applying Extract Method. Our hypoth-
esis in this single-refactoring scenario was that developers introduced Feature

Envy, but it could be the case those refactorings were only the beginning of
the work, and future changes could remove those freshly-introduced Feature

Envy. After analyzing the restructuring work as a whole (batch refactoring),
we still found cases where Extract Methods were involved in the introduction
of Feature Envy.

This result about Extract Methods shows that we need to analyze batches
in order to understand the impact of refactoring on smells. For instance,
through this analysis, we know that Feature Envy was introduced because

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 109

data concerning a method were moved to other classes, but the corresponding
method was not moved, as mentioned. Consequently, we can theorize that
these negative batches are frequently associated to mistakes or negligence of
developers

While analyzing only single refactorings, we found just a few cases of
patterns removing Feature Envies (Section 3.4.1). According to Fowler [3],
Extract Methods also play a central role in the removal of Feature Envies.
While studying single refactorings, we found an alarming low rate of Feature

Envy removal after performing Extract Methods (11%). However, the results
presented in Figure 5.3 show nine batch-smell patterns inducing the Feature

Envy removal. These patterns show us how developers apply smell-removing
refactorings in real scenarios, giving us the opportunity to learn how Feature

Envies are removed during software development.
The results lead to two interesting observations. First, Extract Method

refactorings play a central role either in the introduction and removal of Feature

Envy. In fact, when developers apply Move Method and Extract Method, they
tend to neglect Move Method, which leads to the introduction of Feature

Envy. Second, while considering batches, many removal-patterns emerge as
opposed to considering only single refactorings. Many could expect that a
single refacoting (e.g., Move Method) would often symply used to remove a
Feature Envy.

The outstanding characteristic of these patterns is that the Extract

Method refactoring is present in all batches. In this way, we can summarize
these findings as follow.

Finding 8: Extract Methods play a central role in the introduction and
removal of Feature Envies. Several removal patterns of Feature Envies
could be only be observed through the analysis of batch refactorings.

As mentioned before, the new patterns we found led us to learn about
how refactorings are applied in order to remove specific types of code smells. In
fact, we can extract heuristics from these patterns that can guide developers
during the removal of code smells. For instance, we can use a combination
of Extract Method and Move Method to remove a Feature Envy. Also, we
can apply several Move Attributes and several Move Methods to accomplish
the same task, if needed. These data can be used to help developers during
smell-removing tasks. In fact, we present a sketch of such heuristics and some
preliminary results in Chapter 6.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 110

5.3.2
God Class

Our second scenario of batch-smell patterns concerns the God Class code
smell. As presented in Section 2.2, a God Class exists when a class accumulates
several responsibilities [3]. We found out that this smell is more frequent than
one might expect. We found in our dataset, 425 distinct instances of God Class

distributed into 26 out of 48 projects. By analyzing these instances, we were
able to identify some patterns related to the God Class code smell even when
analyzing only single-refactorings (Section 3.4.1). In this Section, we present
all patterns found during the batch refactoring study, as presented in Figure
5.4.

God Class

Inline Method{n}, Extract Method{n}

0.59
Pull Up Method{n}, Move Method, Pull Up Method

0.71
Pull Up Method{n}, Move Method, Pull Up Method{n}

0.78
Move Method{n}

0.61

Extract Method{n}, Inline Method

0.50

Pull Up Attribute{n}, Pull Up Method{n}0.61

Inline Method{n}

0.51

Extract Method{n}

0.59

Pull Up Method{n}

0.66

Pull Up Attribute{n}, Pull Up Method{n}, Move Method, Pull Up Method

0.71

Pull Up Attribute, Pull Up Method{n}

0.57

Rename Method{n}, Extract Method{n} 0.81

Figure 5.4: God Class patterns

As surprisingly observed in Figure 5.4, batches containing Rename Meth-

ods and Extract Methods were responsible for creating God Classes frequently.
At the first sight, the relation between these refactoring types and the creation
of this kind of code smell is not intuitive, since developers are not expected
to increase the size of classes while performing Rename Method and Extract

Methods. In order to understand why this batch led to the introduction of God

Class, we analyze these batch instances. This creational pattern exists because
it often happened in the context of floss refactoring; thus, developers inter-

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 111

leaved additional changes while refactoring. During these additional changes,
they introduced the God Class.

This result indicates that when developers apply several Extract Methods,
the risk of creating God Classes exists as they might be too focused on their
non-structural additional objectives. What is happening in these cases is the
increased number of methods are making explicit that may many methods
were grouping unrelated functionalities. As a consequence, the number of
responsibilities increases through the growth of new methods, and the class
cohesion decreases. Consequently, it leads to the appearance of God Class.
Indeed, this smell exists because a class implements too many functionalities,
and it is interesting to notice how this characteristic is reflected in the
creational patterns. For instance, in our single refactoring study, we found three
creational patterns related to this smell: Move Method, Pull Up Field and Pull

Up Method (Section 3.4.2). On the other hand, in the batch refactoring, we
found one pattern: Rename Method with Extract Method. Notice that there
is not intersection of refactoring types between single and batch refactoring
patterns; however, all these refactorings are related to moving data between
di�erent entities. This indicates that a God Class can be introduced when
developers perform these transformations where attributes and methods are
moved between elements, specially when it happens in the context of floss
refactoring.

We can notice that this behavior of moving data is also reflected in the
removal patterns. We identified 11 removal patterns related to God Class, and
all them use refactorings that move data between code elements. With the
exception of Inline Method and Extract Method, all the other refactorings are
related to moving data between di�erent entities. This results confirms what
we discussed above about the creation of God Class. This smell can be created
in the context of floss refactoring as mentioned; thus, any additional changes
can lead to its introduction. Conversely, to remove this smell, developers will
need to apply di�erent refactoring types to move the data to the elements
that suit them better. Consequently, we will have several removal patterns, as
confirmed by our results.

In addition to identify both patterns that remove and introduce code
smells in practice, we highlight that these patterns have not been reported
elsewhere. Even Fowler’s catalog [3], which list common refactorings to remove
God Class, does not report these patterns. Fowlers’ catalog indicates that
developers should apply Extract Class or Extract Subclass. However, we noticed
that in practice, developers much more often follow other strategies by applying
other refactoring types: Inline Method, Extract Method, Pull Up Method and

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 112

Attribute, and Move Method. This results is interesting since it shows what
refactoring catalogs [3] say may not be what happens in practice. The data
reported in Figure 5.4 lead us to our next finding as follows.

Finding 9: Refactorings that move data play a central role in the
addition and removal of God Classes. This is even more evident in the
context of floss refactoring, where developers interleave the refactorings
with additional changes. These changes may deviate the attention of the
developer from noticing they are inducing the emergence of a God Class.
This behavior forces developers to apply di�erent types of refactorings
to move the data to appropriate elements, consequently creating several
removal patterns performed later.

5.3.3
Complex Class

A Complex Class is a code smell that indicates when a class starts
to become harder to understand and maintain. In this work, we consider
a Complex Class all of the ones that have at least one method with high
cyclomatic complexity [36]. Interestingly, this was one of the most common
code smells present in our dataset. In fact, this was the most common one
if we consider only smells related to the class-level, not method-level smells,
such as Long Method and Feature Envy. This code smell a�ected 43 out of
our considered 48 projects. Since this smell is so common, and a�ect so many
projects, we could also observe several batch-smells patterns.

Figure 5.5 presents all batch-smells patterns found that are related to
Complex Classes. As we can observe, the study revealed fifteen removal,
and only one creational patterns. As one could expect, the method-moving
refactorings play a central role when we consider creation and removal of
Complex Class. Interesting enough, a reason for the class to have a high
cyclomatic complexity is the implementation of several functionalities. Thus,
it is reasonable that the creational pattern that introduces Complex Class is
the same that introduce God Class. Consequently, the same discussion about
moving data between code elements in the context of God Class also applies
in the context of Complex Class. Indeed, all Complex Class patterns contain
either method-moving refactorings or Extract Methods, independently on being
removal or creational.

As described before, a class is considered to be complex when at least
one method has high cyclomatic complexity. So, in our study, if the developer
reduces the cyclomatic complexity (CC) of the methods in a particular class,

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 113

Complex Class

Inline Method{n}, Extract Method{n}

0.68
Pull Up Method, Move Method, Pull Up Method{n}

0.59
Push Down Method{n}

0.53
Inline Method{n}, Extract Method

0.56
Move Method, Pull Up Method, Move Method, Pull Up Method{n}

0.65
Pull Up Method{n}, Move Method{n}

0.71

Move Attribute{n}, Extract Method{n}

0.77

Pull Up Attribute{n}, Move Method0.83

Pull Up Method{n}, Move Method, Pull Up Method{n}

0.78

Pull Up Attribute{n}, Move Method{n}, Pull Up Method{n}

0.90

Move Method{n}

0.72

Extract Method{n}, Inline Method

0.67

Inline Method, Extract Method{n}

0.64

Extract Method{n}

0.65

Move Attribute{n}, Extract Superclass

0.59

Rename Method{n}, Extract Method{n} 0.81

Figure 5.5: Complex Class patterns

the code smell would be eventually removed. For instance, let us assume a
particular class containing a method with CC = 20 in a case where CC >=
10 indicates a complex class. In this scenario, the developer would need to
break this method into three or more methods where CC < 10 to get rid of
the complex class. The refactoring type that suits better, in this case, is the
Extract Method, so this explains most of the removal patterns containing this
refactoring type. When the developers face a highly complex method, they
simply break it into smaller and less complex ones.

A curious fact in these patterns is the massive presence of method-moving
refactorings, such as Move Method, and Pull Up Method. Those refactorings per
se do not reduce the complexity of classes since they only move methods from
one class to another. However, it is worth mentioning most of the refactorings
we observed use the floss refactoring tactic (Section 2.1.5). So, in addition to
moving the methods to di�erent classes, the developers also apply di�erent
changes to reduce the complexity. If they apply method-moving refactorings
by using the root-canal tactic, they would only transfer the code smell from
one class to another. Therefore, the data reported in Figure 5.5 lead us to our

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 114

next finding as follow.

Finding 10: Extract Methods act as a complexity reducer and help
developers to get rid of Complex Classes. Also, moving-method refactorings
that use the floss-refactoring tactic contribute to the removal of such
complex classes.

5.4
Threats to Validity

The batch synthesis heuristics represent a threat to the internal validity
because they might lead us to false positives, i.e., batches that, in fact, are not
batches. If we chose to use one heuristic that generates several false positives,
then our results would not be trustworthy. In order to mitigate such a threat,
we used three di�erent heuristics derived from previous studies (Section 4.2).
In this way, we can compare the results obtained by the three heuristics.
Fortunately, all of them points to the same direction, indicating that our results
are reliable. Another way of validating such heuristics is to explore the data
they provided to solve a di�erent problem. If a real refactoring problem can be
solved by them, then we can interpret this as an additional evidence that the
synthesized batches are valid. In fact, we conduct an additional study reported
in the next chapter.

Some findings of this study are centered around the high frequency of
neutral batch refactorings. However, if our classification scheme is somewhat
inaccurate in identifying neutral refactorings, then we have a major threat to
the validity of our data. In order to mitigate that, we studied all the cases
where the classification scheme could be inaccurate (Section 5.2.3). We found
a risk of the classification scheme being wrong on 0.01% of the cases. In this
way, this risk was mitigated by the data disposition, i.e., the way developers
performed the neutral batches. In this way, in any case of replication of this
study, the researcher must execute the same verification and check the validity
of the classification.

In this chapter, we also presented several patterns where batches removed
or introduced code smells. Precisely, we presented removal and creational
patterns related to Feature Envy, God Class, and Complex Class. We computed
them by verifying how often they happen in the analyzed projects, so they
might su�er from lack of generality. If the patterns are not generic enough,
then they cannot be used in di�erent systems. In order to mitigate such threat,
we conducted a di�erent study where the patterns are used in a completely
di�erent set of projects, giving us confidence about their validity (Chapter 6).

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 115

5.5
Related Work

Bavota et al. [17] mined the evolution history of 3 Java open source
projects to investigate if refactorings occur on code elements that certain
indicators suggest a need for refactoring. According to their results, quality
metrics do not show a clear relationship with refactoring and 42% of the
refactorings are applied on smelly elements, in which only 7% of them remove
smells. In both studies we executed (single and batch refactorings), the results
di�er. First, the percentage of refactorings applied to smelly elements are
higher in our dataset. Second, batch refactorings and single refactorings remove
code smells in more than 7% of the cases independent on the synthesis
heuristics. Our results show that developers tend to not remove code smells
even when applying a sequence of refactorings (batch).

As mentioned in Chapter 3, Silva et al. [15] mentioned that future stud-
ies on refactoring recommendation systems should refocus from code-smell-
oriented to the maintenance-task-oriented solutions. We still think that such
refocus needs more reflection. Instead, a refactoring recommendation sys-
tem should employ a hybrid solution, in which both code-smell-oriented and
maintenance-task-oriented solutions are combined. Thus, an envisaged recom-
mendation system can support developers to conclude their maintenance tasks
in a way that smells are also removed or not introduced. This chapter pre-
sented several removal patterns, di�erent from what we reported in Chapter 3.
This is an advance regarding the knowledge needed to remove code smells from
software systems. In fact, we explore such patterns in the next chapter, giving
evidence that code smells can be used as an important factor for influencing
recommender systems.

5.6
Summary

In this chapter, we present a work where we studied the batch refactoring
phenomenon. Di�erently from what was presented in Chapter 3, we here
consider groups of refactorings to evaluate their impact on the existence of
code smells. Interestingly, the occurrence of a negative impact on code smells
is reduced when we study refactorings as groups (batches). However, we still
find a high number of negative and neutral refactorings, even considering them
as a group. These results were consistent across several projects, and also across
all synthesis heuristics we used.

We also present a study regarding batch-smell patterns. We were able
to identify several patterns, as presented in Section 5.3. We revealed several

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 5. Investigating the Impact of Batches on Smells 116

removal patterns, that can be used as a knowledge base about how developers
remove code smells by using batch refactoring. In fact, the next chapter
explores the removal patterns to give one step closer to possible automatic
heuristics for smell-removal refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

6
Improving Batch Refactoring: Recommendation Heuristics

Developers may introduce all sorts of mistakes when refactoring. They
can even unnotice that the structural changes are not su�cient to fully remove
smelly structures. Indeed, as discussed in the previous chapter, often batch
refactorings are not reducing the number of smells. That happens because
batch refactoring is far from being a trivial process. Since developers are not
removing code smells when applying batch refactoring, they need support in
this process.

We conducted in the previous chapters the first step towards providing
such support for developers during refactorings. In these chapters, we presented
studies that extracted plenty of data regarding the refactoring practice. The
previously reported results help us to understand how developers usually make
mistakes and degrade the structural quality of the system via refactoring.
Consequently, we can use this knowledge to support developers in at least two
ways. First, we can help developers by providing warnings when developers
perform refactoring operations. For instance, we can make them aware about
refactorings that frequently introduce smells. For this purpose, we can use the
patterns presented in Sections 3.4 and 5.3.

A second way to provide support for developers is by helping them to
apply a batch refactoring that remove code smells completely. This second
way is the focus of this chapter, which we present and evaluate a suite of
new recommendation heuristics to help developers to apply batch refactoring.
These heuristics are based on the knowledge extracted from the three code
smells (Feature Envy, God Class, and Complex Class) related to creational
and removal patterns discussed in Section 5.3. Based on these patterns, we
proposed three heuristics, each one for of the three aforementioned code smells.
After presenting the heuristics, we need to assess their potential usefulness in
real scenarios. Therefore, we also performed a first evaluation of the proposed
heuristics.

We structured this chapter as follow. First, we present the derived
heuristics in Section 6.1. We first present the heuristic used to remove Feature

Envy, followed by the ones responsible for removing God Class, and Complex

Class, respectively. After this, we present the experiment setup and results

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 118

in Section 6.2. We present the threats to validity in Section 6.3, while the
summary and concluding remarks of this chapter is in Section 6.4.

6.1
Smell Removal Heuristics

In this section we present three heuristics for removing code smells. Each
heuristic is focused in removing a particular type of code smell. As mentioned
before, those heuristics were derived from the batch-smell patterns presented in
Section 5.3. As we can observe in the figures presented in that section, we have
plenty of possible ways of proposing heuristics. For instance, we can remove
a Complex Class by applying several Push Down Methods or by applying a
sequence of Extract Methods. Since our objective in this study is to check
the viability of deriving useful heuristics, we selected and evaluated only one
pattern for each code smell.

6.1.1
Removing Feature Envy

One of the most common patterns found for removing Feature Envy is
composed of Extract Method and Move Method. Therefore, many times when
developers were successful in removing Feature Envies, they first extracted the
foreign part of the method into a new one and then moved the newly created
method to a di�erent class. This procedure roughly describes the heuristic
we present for removing Feature Envies. Formally, the Feature Envy removal
heuristic is composed of four parts: (i) identification of method lines that are
more interested in di�erent class; (ii) extraction of these lines into a new
method; (iii) identification of the class that suits better the newly-created
method; and (iv) application of a Move Method refactoring to move the new
method to the identified class.

Each step of this heuristic poses a di�erent challenge. The first one is that
we need to identify lines of the Feature Envy method that are more interested in
a di�erent class other than the one they are. For several reasons, it is not trivial
to recommend lines of code to be extracted from a method. The piece to be
removed must execute a particular functionality in a way that must make sense
to remove the lines together. Several studies propose di�erent techniques to
accomplish the objective of discovering extract method opportunities [57, 59].
The technique proposed by Charalampidou [80] is based on the functional
relevance of the combined lines. Their paper introduces an approach that
aims at identifying source code chunks that collaborate to provide specific
functionality and propose their extraction as separate methods. Since their

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 119

approach fits very well with our first part for recommending Feature Envy

removal, we adopt it.
Therefore, to accomplish the first part of this heuristic, we implemented

the approach proposed by Charalampidou [80]. As described in their paper,
they propose an approach called SRP-based Extract Method Identification
(SEMI). In particular, their approach recognizes fragments of code that
collaborate for providing functionality by calculating the cohesion between
pairs of statements. The extraction of such code fragments can reduce the
size of the initial method, and subsequently increase the cohesion of the
resulting methods. In our scope, we implemented their technique and treated
this component as a black box, where the input is a method and the output
is a set of line intervals that can be extracted. For instance, let us consider a
method with 5 lines. The algorithm would return possible line intervals that
could be extracted, for instance [1,2], [2,4], or [2,5].

By having these possible intervals, we have several possibilities to rec-
ommend extraction. However, only having these intervals are not enough to
remove the Feature Envy since we do not want to recommend an extraction
that would still maintain the smell that we already had. In this way, we run
a verification step for each interval. We simulate the removal of such lines by
disregarding their influence on the Feature Envy detection. In this way, we test,
for each interval, if its removal would lead to a Feature Envy. If the removal of
a single interval is not enough to remove the Feature Envy, then we look for
a combination of two intervals. We keep increasing the number of intervals on
the tests until we have a Feature Envy removal possibility. After completing
this step, we can move on for the second part of the heuristic: Extract Method

refactoring.
After recommending the extraction, the developer can apply the Extract

Method refactoring. After this step, we can test if there is still a Feature Envy.
Unfortunately, there is a risk on only performing this extraction. The newly-
created method could have the Feature Envy. However, we have to leverage in
the fact that we know its lines are cohesive and can be moved together to a
di�erent class. In this way, we check what is the class this new method relates
the most, either by method calls or attributes use. After discovering this class,
we can recommend a Move Method refactoring of the newly-created method
to this discovered class.

Therefore, our first heuristic is completed by executing the four described
steps. We first recommend an Extract Method by combining our code smell
detection tools with the SEMI approach. After extracting the method, we can
recommend a Move Method by examining the method calls and attributes use

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 120

of the newly-created class. In this way, we reproduce programmatically the
batch-smell pattern Extract Method, Move Method presented in Figure 5.3.
Notice that we not only reproduced the removal pattern, instead we made
some tests to make sure that the batch would be able of removing the smells.
The combination of these tests with the knowledge about the removal patterns
is what increases the chance of our heuristic to help a developer to get rid of
a Feature Envy.

6.1.2
Removing God Class

As presented in Section 5.3.2, moving-method refactorings play a central
role on God Class removals. Therefore, we based on this fact to propose
a heuristic to remove this smell. God Class is a class that assumes several
responsibilities in a system. In Section 5.3.2, we discussed that if we distribute
these responsibilities (i.e., methods) over several classes in the system, the
developer can remove the smell. Indeed, to perform this distribution, we found
that developers can apply di�erent types of refactorings (Section 5.3.2); for
instance, he can apply a batch composed of Move Method{n}. Hence, the
heuristic we implemented to remove God Class is based simply on method-
moving refactorings.

According to the rules of God Class detection [17], a class is considered
a�ected by this smell if it has cohesion lower than the average of the system
and more than 500 lines of code. This threshold can be tailored to particular
projects or modules by using machine learning techniques, as we did in a recent
work [44]. In this way, for each method in the class, we identify a suitable class
to which we move it. We used the same strategy presented in Section 6.1.1 to
identify the class of destination of the method. We keep recommending Move

Methods until the God Class is removed. However, such operations pose a risk
of creating new God Classes in the system, as presented in Table 3.9. Therefore,
before recommending a Move Method, we check if the destination class would
become a God Class. If this is true, we simply change the recommendation to
the second most suitable class found.

It is worth mentioning that we find the suitable class by counting the
number of calls and accesses to attributes. For instance, let us assume that
a particular method m calls 3 methods and accesses 2 attributes from class
A. In this case, the “bonding factor” of m to A is 5. Let us assume the same
method m calls 4 methods from the class B, leading to a bonding factor of
4. Now, assume our heuristic recommended to move m to A, but A would be
transformed into a God Class if this occurs. In this case, the heuristic would

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 121

recommend the method-moving change to class B, since in this case, B would
be still smell-free.

In summary, the second heuristic is a sequence of Move Methods. How-
ever, it also uses the smell-detection tool to understand when the target class
would not be a God Class anymore. Additionally, the smell detection tool is
used to prevent the creation of new code smells after the recommended refac-
toring.

6.1.3
Removing Complex Class

In our studies, we consider a class as Complex Class if it has at least
one method having a high cyclomatic complexity (CC) [36]. So, the strategy
to remove such smell is related to the reduction of the complexity of methods
with high CC. As presented in Section 5.3.3, developers often apply Extract

Methods to remove such complex structures. Hence, the heuristic to remove
Complex Class is composed of four parts: (i) identify all methods with high
CC; (ii) identify Extract Method opportunities to reduce the complexity; (iii)
evaluate the identified opportunities; and (iv) recommend Extract Methods.

The first part is implemented by our code smell detection tool. We made a
simple modification in order to find Complex Methods in a particular Complex

Class. After finding them, we use the SEMI approach presented in Section
6.1.1 to generate possible line intervals to be extracted. After identifying such
intervals, we need to evaluate the identified opportunities. For each interval
found, we simulate its removal and compute what would be the new complexity
of the method. When we find a interval (or a set of interevals) that reduces
the complexity, we start recommending the Extract Methods.

Therefore, after running the steps of this heuristic, our tool can identify
pieces of code that can be extracted to reduce the complexity of the methods
found. After recommending a batch of Extract Methods, we can distribute the
complexity of the class into several smaller methods, getting rid of the original
Complex Class. It is worth mentioning the recommended extractions can pose
a risk and create new code smells, such as a new Feature Envy (Section 5.3.1).
If this occurs, we can trigger the Feature Envy removal heuristic to improve
the batch by removing the introduced smell.

6.2
Heuristics Evaluation

Section 6.1 introduces three heuristics we derived from the patterns
presented in Section 5.3. As a way of checking if these heuristics have the

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 122

potential to be used in practice, we designed and executed a quasi-experiment
[81]. This section presents the experimental tasks along with the key results.

6.2.1
Goal and Research Question

The heuristics presented in Section 6.1 aim at removing three di�erent
types of code smell: Feature Envy, God Class, and Complex Class. We hypoth-
esize these heuristics can be useful in real scenarios, but we have no evidence
so far to neither confirm nor refute this hypothesis. Therefore, we designed a
quasi-experiment to evaluate the usefulness of these preliminary heuristics. In
this context, the goal of this last study is:

Goal: Evaluate the smell-removing heuristics derived from the batch-smell
patterns.

In order to evaluate the usefulness of the heuristics, we have to observe
how they perform in real scenarios. In addition to this, we must apply them to
new projects, i.e., projects not analyzed by our previous studies. Since these
heuristics were derived from the projects presented in Tables 3.1 and 3.5, if we
applied them back to the same projects, we would have a reasonable chance of
getting good results. Hence, to mitigate such risk, we evaluate the usefulness of
the smell-removing heuristics in di�erent projects. In this context, this study
aims at addressing the following research question:

Are the smell-removing heuristics able to improve the code structural
quality?

To address this research question, we executed a quasi-experiment. We
first apply the heuristics steps on di�erent smelly code elements. As presented
in Section 6.1, each heuristic comprises some steps, and the application of each
step in a code element delivers a new code state. In this way, we documented
each code state obtained as a result of the application of the heuristics steps.
After this, we compiled all the results and asked for the opinion of 20 software
developers. They had to evaluate the code states and inform us of their opinion
about the impact of the code changes on the code structural quality. After this,
we analyzed the results in order to answer this research question.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 123

6.2.2
Experimental Tasks

To evaluate the heuristics, we defined four activities, as described next.

Activity 1: Sample Selection. The first part of the experiment was the
sample selection. Since the objective is to evaluate the heuristics, we had to
execute them in di�erent classes a�ected by the studied code smells, then
we selected 3 di�erent classes for each smell. In this way, we executed each
of the proposed heuristics in the contexts of three classes containing the
corresponding smells. We selected three classes for each smell because the
experiment’s participants could have proper time to inspect each of the 9
recommended batches. Also, we selected, for each smell, classes from three
distinct projects in order to ensure some heterogeneity to the sample. Besides
that, we chose classes implemented for di�erent purposes, from log-in services
to classes that manage students data from an educational institution.

Activity 2: Heuristics Execution. We then executed the heuristic steps
described in Section 6.1 for each sample. As presented in that section, each
heuristic produces as output a list of recommended refactorings. For instance,
let us go through all steps of one of the batches generated for this experiment.
The code smell detection tool flagged the replaceImages method presented
below as FeatureEnvy, as it seems to be more interested in the class of the
object images rather than the class it was declared. In this way, we executed
the heuristic steps on it. As described in Section 5.3.1, the first step is to
recommend an Extract Method. One of the recommendations of the heuristic
was to extract from the method body of replacedImages. The extracted code
is marked in light gray in the code below:

1 public class Media {

2 ...

3 public void replaceImages (PicturePool oldPool) {

4 if (this. images == null) {

5 return ;

6 }

7 images.setId(oldPool.getId());

8 images.getLowRes().setId(oldPool.getLowRes().getId());

9 images.getStdRes().setId(oldPool.getStdRes().getId());

10 images.getThumb().setId(oldPool.getThumb().getId());

11 }

12 ...

13 }

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 124

The output of the first refactoring can be seen in the code snipped below.
According to the heuristic, the method updatePool is still a Feature Envy. The
first refactoring was not considered to be enough to solve the problem. In this
way, the heuristic recommends a new Move Method refactoring to host the
newly-created method in a suitable class.

1 public class Media {

2 ...

3 public void replaceImages (PicturePool oldPool) {

4 if (this. images == null) {

5 return ;

6 }

7 updatePool (oldPool);

8 }

9

10 private void updatePool (PicturePool oldPool) {

11 images .setId(oldPool .getId ());

12 images . getLowRes ().setId(oldPool . getLowRes ().getId ());

13 images . getStdRes ().setId(oldPool . getStdRes ().getId ());

14 images . getThumb ().setId(oldPool . getThumb ().getId ());

15 }

16 ...

17 }

The heuristic identified that the updatePool method is more interested in
the class of the object images rather then the Media class. It turns out this class
is named PicturePool. So, updatePool method is moved to the PicturePool, as
presented below.

1 public class Media {

2 ...

3 public void replaceImages (PicturePool oldPool) {

4 if (this. images == null) {

5 return ;

6 }

7 images . updatePool (oldPool);

8 }

9 ...

10 }

11

12 public class PicturePool {

13 ...

14 public void updatePool (PicturePool oldPool) {

15 this.setId(oldPool .getId ());

16 this. getLowRes (). setId(oldPool . getLowRes ().getId ());

17 this. getStdRes (). setId(oldPool . getStdRes ().getId ());

18 this. getThumb ().setId(oldPool . getThumb ().getId ());

19 }

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 125

20 ...

21 }

After these transformations, the heuristic certifies that the Feature Envy

was removed by running our code smell detector again. Since neither the
original Feature Envy is present nor new code smells were introduced, then the
heuristic stops executing. The example presented in this section is an execution
of the Feature Envy removal heuristic. However, we have three di�erent
heuristics, and each one was executed in three di�erent smelly code elements.
All executions produce a sequence of refactorings that, according to our code
smell detector, remove the smelly structure. In order to present the execution
of the heuristics to the developers, we compiled all code transformations, all
code smells, all refactorings applied and presented them in a web page.

Activity 3: Subjects Characterization. We asked the developers to fill
out a questionnaire to gather their information, including educational level,
professional experience with software development in terms of years, experience
with Java programming (in years), and whether they are familiar with code
smells and refactoring or not. The data collected during this activity was used
to understand if the participants meet the minimum requirements needed
to participate in the experiment. Since all code examples are in Java, the
participants have to be able to read and understand the code. Also, they have
to know how to refactor a piece of code. Otherwise, it would be very hard
for them to understand the heuristics steps, invalidating their answers. Screen
shots of the questionnaire are available in Appendix C.

Activity 4: Experiment Execution. As mentioned before, we executed the
heuristics steps on 9 di�erent smelly elements. Each execution led us to a
sequence of refactorings, implicating in several code changes. Each participant
had to evaluate each sequence of refactorings generated for each one of the
9 classes. In this way, each participant had to visualize and evaluate 9 batch
refactorings. After visualizing each batch, the participants had to answer the
following question:

What is your opinion about the impact of the sequence of refactorings on
the code structure quality?

As we can see, the question we made to the participants does not
involve the term code smells. Although the heuristics had been derived from
relationships between batches and code smells, we are ultimately interested
in improving the code structural quality. Since from the first study, we used

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 126

code smells as an indicator of structural problems. If developers feel that the
code had its structural quality improved by our heuristics, this is one more
evidence that code smells are, in fact, good estimators to measure the code
structural quality. In other words, we can keep developing heuristics focusing
in code smells because, in the end, the code structural quality can be improved
if we remove them.

Table 6.1: Possible answers during the quasi-experiment
Answer Description
Positive The code structural quality has improved
Intermediate There are benefits, but I think there is room for improvement
Negative The code structural quality has decreased

The participants had to choose between Positive, Intermediate, and
Negative as an answer to the provided question. In each case, they had to
justify the answer. Table 6.1 presents the three possible answers that each
participant had to give for each one of the nine presented batches. In any
case, they had always to provide a justification for the answer in an open text
field, so we can use it to better understand their answers. We developed a web
application in order to present batches and to collect the developers’ answers.

6.2.3
Data Presentation and Analysis

In this section, we first present the summary of the answers to the
characterization questionnaire (Section 6.2.3.1). Later, in Section 6.2.3.2, we
present the results of our quasi-experiment.

6.2.3.1
Characterization Questionnaire Data

We invited 20 software developers to answer our quasi-experiment.
Section 6.2.3.1 presents the data regarding the participants’ years of experience
with software development, years of experience with Java, and number of Java
developed projects. As we can see, most of the participants have experience in
industry both with software development, and with the Java language. Only
one participant have no experience in industry. However this participant have
experience with code smells and refactoring research. In this way, the lack of
experience do not pose a threat to the answers provided by this participant.

As mentioned in Section 6.2.2, we asked for the participants to answer the
characterization questionnaire in order to verify if they attend the minimum
requirements to participate in our experiment. If a participant has experience

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 127

Table 6.2: Participants’ characterization data
Answer Median Average Std. Dev. Max Min
Years of experience with software development 4 5.5 4.6 15 0
Years of experience with Java 1 2.8 3.9 14 0
Number of Java developed projects 1 5.4 13.4 50 0

with software development, have, at least, little knowledge of Java, and is
familiar with refactoring, then we consider the participant apt. Therefore,
all participants in our experiment are capable of answering the questions
reasonably well. In addition to that, all participants said to be knowledgeable
about refactoring, and also all of them apply refactorings often. We also
observed that 85% of them often removes code smells from their source code,
even though 100% of then knows about code smells.

6.2.3.2
Quasi-experiment Results

As mentioned before, the developers had to evaluate each one of the 9
batches produced by the smell-removing heuristics. In each evaluation, they
had to inform their opinion about the impact of the batch on the code
structure quality. Figure 6.1 presents the data regarding the answers given
by the developers. This figure is divided into three sets of bars. The first one
presents the data regarding Complex Class, while the second one presents the
answers about Feature Envy. Finally, the God Class data is presented in the last
set. As we can observe, the developers were very positive about the outcomes
of the heuristics. Considering the entire dataset, 73% of the answers were
positive. In this way, we conclude that more than 93.9% of the answers state the
recommended refactorings improve the code quality at least partially (positives

plus intermediate). Out of 180 answers, only 11 were negative.

Table 6.3: Participants’ answers by each class and smell considered
Class Code Smell Negative Intermediate Positive
Clause Complex Class 15.0% 35.0% 50.0%
DiarioClasseService Complex Class 0.0% 15.0% 80.0%
GenericTranspalBean Complex Class 10.0% 5.0% 80.0%
IngressoUniversidadeService Feature Envy 5.0% 30.0% 65.0%
Media Feature Envy 0.0% 10.0% 90.0%
UserFactory Feature Envy 5.0% 20.0% 75.0%
EmployeeUtils God Class 10.0% 20.0% 70.0%
LibraryMainControl God Class 5.0% 20.0% 75.0%
MatriculaAcademicaService God Class 5.0% 20.0% 75.0%

This positive outcome is also consistent if we observe the data for
each batch evaluated. Table 6.3 presents the answers of the participants by

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 128

considering each class individually. In this table, the first column presents
the name of the class used to apply the heuristic step. The second column
presents the code smell type that a�ected the corresponding class. The last
three columns present the percentage of negative, intermediate, and positive
answers, respectively. As we can observe, all batches had very few negative
answers. These results give us confidence that we can derive useful heuristics
from the patterns presented in Section 5.3. It is worth mentioning the Clause

class was the one with the most negative and intermediate answers, so we
discuss this particular case later in this chapter. From now on, we will discuss
the results for each one of the heuristics.

Figure 6.1: Experiment answers

Complex Class Results. The heuristic for recommending refactorings of
Complex Class can be considered the least successful one if we consider its 8.3%
against the 6.7% for the God Class heuristic. Most of these negative answers
were concerning a particularly di�cult case. In this example, the developers
evaluated the recommended refactorings in the Clause class presented below.
This class contains several methods and attributes, but we present below only
the problematic one, i.e., the toCriterion() method.

1 public class Clause {

2 ...

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 129

3 public Criterion toCriterion () {

4 if (operator . equals (Operator . IS_NULL)) {

5 return Restrictions . isNull (queryingField);

6 } else if (operator . equals (Operator . EQUALS)) {

7 return Restrictions .eq(queryingField , this.value);

8 } else if (operator . equals (Operator . IS_NOT_NULL)) {

9 return Restrictions . isNotNull (queryingField);

10 } else if (operator . equals (Operator . NOT_EQUALS)) {

11 return Restrictions .ne(queryingField , this.value);

12 } else if (operator . equals (Operator . GREATER)) {

13 return Restrictions .gt(queryingField , this.value);

14 } else if (operator . equals (Operator . GREATER_EQUAL)) {

15 return Restrictions .ge(queryingField , this.value);

16 } else if (operator . equals (Operator . LESSER)) {

17 return Restrictions .lt(queryingField , this.value);

18 } else if (operator . equals (Operator . LESSER_EQUAL)) {

19 return Restrictions .le(queryingField , this.value);

20 }

21 throw new FilteringException ();

22 }

23 ...

24 }

The Clause class was flagged as Complex Class because of the method
toCriterion, which has a high cyclomatic complexity. As we can see, this
method is composed of a chain of ifs, leading to a low code readability. As
presented in Section 6.1.3, the heuristic recommends a list of extract methods
to distribute the complexity. In this particular case, the heuristic recommended
two extract methods, and the final result can be seen below.

1 public class Clause {

2 ...

3 private Criterion getEqualityCriterion () {

4 if (operator . equals (Operator . IS_NULL)) {

5 return Restrictions . isNull (queryingField);

6 } else if (operator . equals (Operator . EQUALS)) {

7 return Restrictions .eq(queryingField , this.value);

8 } else if (operator . equals (Operator . IS_NOT_NULL)) {

9 return Restrictions . isNotNull (queryingField);

10 } else if (operator . equals (Operator . NOT_EQUALS)) {

11 return Restrictions .ne(queryingField , this.value);

12 }

13 return null;

14 }

15

16 private Criterion getComparisonCriterion () {

17 if (operator . equals (Operator . GREATER)) {

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 130

18 return Restrictions .gt(queryingField , this.value);

19 } else if (operator . equals (Operator . GREATER_EQUAL)) {

20 return Restrictions .ge(queryingField , this.value);

21 } else if (operator . equals (Operator . LESSER)) {

22 return Restrictions .lt(queryingField , this.value);

23 } else if (operator . equals (Operator . LESSER_EQUAL)) {

24 return Restrictions .le(queryingField , this.value);

25 }

26 return null;

27 }

28

29 public Criterion toCriterion () {

30 Criterion equality = getEqualityCriterion ();

31 if (equality != null) {

32 return equality ;

33 }

34

35 Criterion comparison = getComparisonCriterion ();

36 if (comparison != null) {

37 return comparison ;

38 }

39 throw new FilteringException ();

40 }

41 ...

42 }

The toCriterion method was target of two extract methods, leading
to the creation of getComparisonCriterion and getEqualityCriterion. The
Complex Class was removed because the class no longer has methods with
high cyclomatic complexity. However, the legibility of the created methods is
still not good, as considered by some developers. They suggested a complete
rewrite of this method by using di�erent data structures and even a di�erent
object model design to implement the same functionality. Unfortunately, the
heuristics are not able to recommend that, since the suggested changes are not
a combination of the refactorings presented in Section 2.1.3. Interestingly, the
developers who gave negative answers to this case were the less experienced
ones. The most experienced developers answered as intermediate, indicating
they are less rigid when looking for structural improvement. Clearly, a total
reshape is the best solution for the case, as suggested by the less experienced
developers. In the perspective of the most experienced ones, the heuristic
could achieve some improvement, but there is still room for making the
class structurally better. Now, we quote the most negative answer about this
outcome:

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 131

“Honestly, these refactoring operations did not help at all. I do agree the
method is less complex, but the complexity was merely spread into the
other two methods, i.e., the other methods still have several conditional
expressions.” – Developer with 1 year of experience.

However, even in this hard case, we achieved 10 positive, and 7 inter-

mediate answers. Some developers agree the complexity was removed and the
smell obliterated. Also, several developers said they agree the Complex Class

was removed, but more refactorings could be applied to improve the method
even further. For instance, one of the developers said:

“Yes, both extract methods helped the method to be more readable and
maintainable.” – Developer with 2 years of experience.

In summary, the vast majority of the answers were positive. One of the
batches achieved a rate of 90% of positive answers. Even when the smell is
hard to be removed through a sequence of refactorings, the heuristic obtained
positive feedbacks, as the Clause class presented.

Feature Envy Results. The heuristic for Feature Envy removal was the most
successful one in the experiment we executed. Only two developers gave a
negative answer, while 12 answers were intermediate, and 46 were positive.
These results gave us confidence about the removal patterns we found. We
were able to derive a heuristic that was able to remove the smell very often,
according to the developers. The developer we quote below is one of the
intermediate answer.

“I believe the refactorings improved the code, but its readability is still not
perfect. I believe the constructor is still large.” – Developer with 4 years of

experience

In this case, the developer agrees the heuristic was positive, but there
is a suggestion to keep improving the source code. Most of the intermediate

answers mention some other possible improvements, i.e., the developers think
more refactorings are needed to reach an ideal state. However, most of those
improvements were not closely related to the purpose of the heuristic being
evaluated. Nevertheless, the most experienced developer that participated in
the experiment said:

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 132

“I agree with the proposed refactorings. They were enough to remove the
code smell.” – Developer with 14 years of experience.

In summary, the vast majority of the answers were positive for all
evaluated samples. We achieved a rate of 96.7% of success on the code structure
improvement, as pointed out by the developers. We only got two negative

answers.

God Class Results. The derived heuristic we presented in Section 5.3.2
suggests we can remove a God Class by recommending several method-
moving refactorings. In the three batches we presented to the developers,
we recommended several Move Methods to remove the God Class. All three
classes are very large and contains thousands of lines and dozens of methods.
Even in these highly complicated scenarios, the heuristics achieved 12 (20%)
of intermediate answers, and 44 (73.3%) of positive answers. Interestingly, not
even a single one developer criticized a proposed Move Method. There was no
complain regarding the suggested refactorings. All complains were related to
the continuity of the improvements, i.e., the developers were expecting more
Move Methods to solve the problem, as the one we quote below.

“This class still needs more refactorings, because I think it still contains
several responsibilities.” – Developer with 1 year of experience.

These results are exciting because it shows a di�erence between what
we consider God Class, and what some developers think. According to our
God Class detection rules, the target classes were not a�ected by the smell
anymore after the refactorings, while the developers still think it is. In this
case, we could change the rule to be more severe on the God Class detection.
For instance, we can reduce the threshold of the number of lines a class must
have to be classified as God Class. If we change the threshold, the heuristic
would continue to suggest Move Methods, and the unsatisfied developers might
be satisfied if we use the new rule. However, even when recommending several
refactorings, most of developers agree the outcome is positive, as the one we
quote below:

“I believe the class was very confusing before the refactorings. Now, after
the refactorings, the class is way easier to understand and maintain.” –
Developer with 2 years of experience.

Section 6.2.1 presents the goal and research question of the study of
this chapter. Our objective was to answer the research question: “Are the

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 133

smell-removing heuristics able to improve the code structural quality?”. After
analyzing the results of our quasi-experiment, we can say the answer to this
research question is yes. Even with some preliminary heuristics, we were able
to achieve a high acceptance of the developers. In this way, it seems worthwhile
to follow the path of improving and creating more heuristics.

6.3
Threats to Validity

This section presents some threats that could limit the validity of our
main findings. For each threat, we present the actions taken to mitigate
their impact on the research results. The first threat to validity is related
to the number of participants in the study. We have selected a sample of
20 participants, which may not be enough to achieve conclusive results.
Additionally, the di�erence between the developers’ background knowledge
can also be a threat. However, as a preliminary study this setting seems to be
reliable. We were able to achieve unexpected good results during this study.

The second threat is related to possible misunderstandings during the
study. As we asked developers to evaluate code transformations and to answer
a questionnaire, they could have conducted the study di�erent from what we
asked. To mitigate this threat, we wrote a thorough instructions web page and
encouraged them to reach us in case of any doubt. We highlighted that our
help would be limited to only clarify the study in order to avoid some bias in
our results.

Finally, there is a threat concerning the selected classes and batches. The
first one is about the di�culty of the participants in understanding the source
code used in the experimental tasks. To mitigate such threat, we described
each class thoroughly, and we were very careful to explain what was going on
on each step of the generated batches.

6.4
Summary

In this chapter, we present a study that aimed at evaluating the heuristics
described in Section 6.1. Towards their evaluation, we executed and reported a
quasi-experiment in this very chapter. The presented results show the heuristics
are promising, leading to interesting and well-evaluated recommendations.
However, we only proposed and evaluated three heuristics, so this is only the
first step towards a possible recommendation system.

Although we got a high number positive answers, we still got a reasonable
number of intermediate ones (20% of all the answers). It is worthwhile to work

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 6. Improving Batch Refactoring: Recommendation Heuristics 134

towards the reduction of this number since we could increase the satisfaction
of the developers. In order to do this, we can explore more of the removal
batch-smell patterns presented in Section 5.3. We can derive more heuristics
to remove the same code smells presented in this chapter, and run them in
the smelly elements used during this quasi-experiment. In this way, the quasi-
experiment results can serve as an oracle to test the newly derived heuristics,
i.e., we would have an easy way to check if the new heuristics solved the
problems pointed out by the developers in our oracle.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

7
Conclusion

Developers constantly have to improve the internal structure of software
systems to satisfy evolving requirements. For this purpose, refactoring has
been one of the most common activities applied by developers during soft-
ware maintenance and evolution [1]. Examples of common refactoring types
include [1]: (i) restructuring or moving class members, such as Extract Method,
Move Method and Pull Up Method, and (ii) extracting new elements, such as
Extract Superclass and Extract Interface. Regardless the refactoring type, de-
velopers need to know when they should refactor the source code; more specifi-
cally, what code elements (packages, classes, methods, and the like) need to be
refactored. To this end, developers can monitor indicators of poor structural
quality in source code to identify opportunities to refactor, such as code smells.

Although refactoring and code smells are strongly related to each
other [3], we have little understanding about characteristics concerning this
relationship. For instance, we do not know if refactorings applied by develop-
ers a�ect the density of smells in practice (Research Problem 1). One might
expect that refactorings reduce the number of code smells. However, such ex-
pectation may not happen in practice, specially considering that refactoring is
an error-prone activity. Thus, a refactoring may introduce smells rather than
remove them. Indeed, it is reasonable to assume that refactorings have strong
potential for removing but also for introducing code smells. Unfortunately, we
still do not know when refactoring introduces, neglects or removes code smells
in practice (Research Problem 2).

Indeed, empirical knowledge about the smell and refactoring is limited.
Although they both have been the focus of several studies [11, 13, 17, 18],
we do not know to what extent each refactoring interferes in the presence of
smells. As a matter of fact, our lack of knowledge is even more evident when
we take into account batch refactoring, which is a sequence of refactorings
applied to the same element. Sometimes a single refactoring is not enough for
developers accomplish their goal; thus, they have to apply other refactorings.
Even to remove a single smell, a developer may need to apply multiple
refactorings to remove it completely. Despite batch refactorings are constantly
applied by developers in practice [1], these mentioned studies tend to ignore

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 7. Conclusion 136

them. Actually, we do not know how to identify when a batch refactoring
happened (Research Problem 3). Assuming that we are able to identify batch
refactoring, we do not know if results for single refactoring (Research Problems
1 and 2) maintain in the context of batch refactoring. Consequently, we
also need to investigate whether and when batches introduce, neglect, or
remove smells (Research Problem 4). In summary, investigations towards the
understanding of how refactorings applied by developers a�ect the existence
of smells is crucial to improve the refactoring practice in the context of smell
creation and removal (General Problem). To achieve such a goal, we conducted
several studies and proposed some techniques, which are summarized as
follows.

7.1
Revisiting the Thesis Contributions

In our quest to understand how developers refactor in practice, our first
step was to investigate how refactorings a�ect the density of smells in software
projects. Thus, we conducted a longitudinal retrospective study (Chapter 3)
to answer the following research question: Does refactoring reduce the density

of code smells? To answer this research question, we analyzed the source code
of 23 software projects. In this procedure, we collected refactorings and code
smells in each system. Then, we analyzed the impact of each refactoring on code
smells considering only their scope (Section 2.1.4). In our study, we classify a
given refactoring instance in one of the three cases: (i) positive if the absolute
number of smells in the elements decreases after the refactoring; (ii) negative

if it increases; or (iii) neutral if it remains the same. This classification is used
to analyze whether certain refactoring types tend to improve or decrease the
smelly structure of a program. As a result of this analysis, we found that most
refactorings tend to not a�ect the presence of smells. In this context, the first
contribution of this thesis was:

1st Contribution. A first evidence that refactoring operations usually do
not remove code smells. On the contrary, they often introduce new ones.
Even when developers use the root-canal refactoring tactic, they often
degrade the structural quality rather than improve it.

Even though our results indicate that in most cases refactorings do not
change the density of code smells, we found several scenarios at which specific
types of refactorings a�ected particular code smell types. For instance, we
found several cases of Extract Superclass refactoring introducing the Speculative

Generality code smell. Unexpected relations like that led us to perform a

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 7. Conclusion 137

deeper investigation into this kind of relation between refactoring and code
smell types.

In this follow-up investigation, we aimed at answering the following
research question: What are the patterns governing types of refactoring and

code smells? To answer this research question, we investigated how each
refactoring type interfered on each code smell type. In order to study such
interference, we considered three di�erent refactoring-smell patterns: non-
removal, removal, and creational (Section 2.4). We were able to identify some
examples of these refactoring-smell patterns. For instance, we observed that
harmful patterns are frequent, including: (i) approximately 30% of the Move

Method and Pull Up Method refactorings induced the emergence of God Class,
and (ii) the Extract Superclass refactoring creates the smell in 68% of the cases.
In this context, the second contribution was:

2nd Contribution. There are non-removal, removal, and creational
patterns. Developers apply specific refactoring types on code a�ected
by specific smells consistently. Still, they are not able to remove them
frequently. In fact, they consistently introduce smells after refactoring.

These first two contributions provide knowledge about the relation
between smells and refactoring. This knowledge can be used to improve the
techniques to support developers during refactoring. For instance, a tool
can benefit from these patterns to aware developers when they perform
refactorings.

As discussed before, the first two research questions considered only single
refactorings. However, developers often apply refactorings in a sequence [1]. In
this way, the findings reported after answering the first two research questions
could be just a narrow view of the refactoring practice. For instance, we
reported that 33.3% of the single refactorings are negative, but we ignored
the fact those refactorings could be part of a batch, and if we considered the
entire sequence of refactorings, a given negative single refactoring could be
part of a positive batch. If this were the case most of the times, the impact of
negative single refactorings could be just ignored.

In order to check the validity of the first findings when considering
batch refactorings, we conducted a di�erent study. In this study, we aimed
at answering the following research question: Does batch refactoring impact

the density of code smells? To answer this research question, we first had
to learn how to detect a batch of refactorings when looking at a sea of single
refactorings (Section 4.2). Once we synthesized the batch refactorings, we were
able to classify each one according to their impact on the existence of code

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 7. Conclusion 138

smells (Section 4.3). In this vein, we were able to check if the code smells are
a�ected di�erently if we consider the batch and not only the single refactorings.
Surprisingly, batch refactorings tend to follow the same trends that we revealed
when studying single refactorings. After comparing the classification results of
batch and single refactorings, we were able to report our third contribution:

3rd Contribution. A first evidence that either single or batch refactorings
often do not reduce the density of code smells. In fact, most of the batches
are also neutral or negative.

After concluding that batch refactorings often do not reduce the density
of smells – which is similar to the behavior of single refactorings – we can
advance our research by investigating the existence of batch-smell patterns. In
this step, we aim at answering the following research question: What are the

patterns governing batches and code smells? To answer this research question,
we followed a similar methodology to the one used to answer RQ2 (Section
3.1.1). In order to detect batch-smell patterns, we observed how each instance
of batch types a�ected each code smell type. We were able to detect several
batch-smell patterns that can be used to derive heuristics of how developers
can remove code smells. Therefore, the fourth contribution of this thesis was:

4th Contribution. There are various removal and creational batch-smell
patterns. By analyzing multiple patterns, we were able to derive a first
suite of heuristics that developers can use to remove code smells through
batch refactorings.

The batch-smell patterns explain how developers apply batches in prac-
tice and how they a�ect di�erent types of code smells. These patterns give
us an unreported facet of the refactoring practice. From them, we can better
understand how developers behave in the presence of code smells in the con-
text of refactoring. By better understanding these behaviors, we can learn and
report guidelines of how developers can refactor di�erent types of code smells,
as reported in Section 6.1. Based on this knowledge, we describe three prelim-
inary heuristics to remove Feature Envy, God Class, and Complex Class. We
evaluated these heuristics with 20 developers and the results were promising.
More than 90% of the developers’ answers indicate that the heuristics were
able to, somehow, improve the code structure (Section 6.2).

We highlight that before proposing solutions that will help developers to
better refactor, first, we need to understand how they conduct refactoring in
practice. Therefore, the contributions listed here can advance both state-of-the-
art and state-of-the-practice. Researchers and industry practitioners can use

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 7. Conclusion 139

the discussions in this thesis to define mechanisms that drive news solutions for
supporting developers during refactoring operations. The knowledge provided
here can help researchers in building the most suitable mechanisms that are
aligned with how developers perform refactoring in practice.

Finally, to facilitate future references to works that resulted from this
thesis, Table 7.1 presents the papers produced in the context of this thesis and
the respective chapters to which they are related.

Table 7.1: Papers produced in the context of this thesis
Chapters Paper
2–3 Diego Cedrim, Leonardo Sousa, Alessandro Garcia, and Rohit Gheyi.

2016. Does refactoring improve software structural quality? A longitudinal

study of 25 projects. In Proceedings of the 30th Brazilian Symposium on

Software Engineering (SBES ’16)

2–3 Diego Cedrim. 2016. Context-sensitive identification of refactoring oppor-

tunities. In Proceedings of the 38th International Conference on Software

Engineering Companion – Doctoral Symposium (ICSE ’16). ACM, New

York, NY, USA, 827-830.

2–3 Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim,

and Alessandro Garcia. 2017. How does refactoring a�ect internal quality

attributes?: A multi-project study. In Proceedings of the 31st Brazilian

Symposium on Software Engineering (SBES’17). ACM, New York, NY,

USA, 74-83.

2–3 Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi,

Leonardo Sousa, Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and

Alexander Chávez. 2017. Understanding the impact of refactoring on smells:

a longitudinal study of 23 software projects. In Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017).

ACM, New York, NY, USA, 465-475.

2–3 Leonardo Sousa, Isabella Ferreira, Diego Cedrim, Alexander Chávez,

Alessandro Garcia, and Carlos Lucena. 2018. The Structural Quality of

Refactored Code: A Study of 50 Software Projects. Journal. Under submis-

sion process.

4–6 Diego Cedrim, Alessandro Garcia, Leonardo Sousa, Anderson Oliveira,

Ana Bibiano, Isabela Vieira. 2018. Batch Refactorings at a Glance. IEEE

Transactions on Software Engineering. Under submission process.

5 Ana Bibiano, Diego Cedrim, Eduardo Fernandes, Daniel Tenório, Isabella

Ferreira, Anderson Oliveira, Roberto Oliveira, Alessandro Garcia, Baldoino

Fonseca, Marcos Kalinowski. 2018. Batch Refactorings at a Glance. Ex-

ploring the E�ects of Batch Refactoring on Program Maintainability: A

Heuristic-based Study. ICSE-SEIP’19. Under submission process.

7.2
Future Work

New challenges and opportunities for improvement have emerged along
the studies conducted in the context of this thesis. Based on them, further
directions for future works are presented next.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 7. Conclusion 140

Recommender System. We presented in Section 6.1 three possible heuristics
to remove God Class, Feature Envy, and Complex Class instances. Although we
executed a preliminary validation of them, we did not develop a fully-fledged
recommender system. An ideal solution would be a system that is capable
of evaluating code smells in real time as a plug-in of any major Integrated
Development Environment (IDE). In this way, developers would benefit from
such heuristics and could remove code smells in a guided interactive way.
Our preliminary solution is already capable of detecting code smells in real
time, and it is available publicly under MIT License at https://github.com/
opus-research/refresh. Anyone can fork and proceed with the remaining
development of this tool.

New Heuristics. Although we presented three heuristics, there are a plethora
of unreported ones to derive. Even for God Class, Feature Envy, and Com-

plex Class, we can propose several di�erent heuristics to remove them. A new
one can be more suitable in a di�erent development contexts or programming
languages. Besides that, one might also use our data to propose heuristics to
di�erent code smells, such as Long Method, Brain Class, and Lazy Class. Those
new potential heuristics can be gradually integrated into the recommender sys-
tem mentioned before. In this way, developers can have a better support when
refactoring code smells, and, hopefully, the frequency of negative refactorings
can ease over time.

Investigating Heuristics to Prioritize Smells. A software system can have
thousands of code smells [43], which can lead to thousands of recommendations
of refactorings. However, not all code smells are related to relevant maintain-
ability problems, so not all smells urge for refactoring. Thus, in order to support
developers during the refactoring process, we need to investigate heuristics to
prioritize smells that are most likely to indicate a problem that is severe for
the system maintainability. Only after this, we should generate refactoring
recommendations. The current version of our tool implements a rudimentary
prioritization algorithm. We used this prioritization in order to extract the
examples we used to validate our heuristics (Section 6.2).

Continuous Integration. Continuous Integration (CI) is a development prac-
tice that requires developers to integrate code into a shared repository several
times a day. Each check-in is then verified by an automated build, allowing
teams to detect problems early [82]. In this context, an interesting improve-
ment would be integrating our tool to the Continuous Integration cycle. In this

https://github.com/opus-research/refresh
https://github.com/opus-research/refresh
DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Chapter 7. Conclusion 141

way, we would be able to detect negative refactorings at commit time, imme-
diately after the code being pushed to the shared repository. This mechanism
could help development teams to spot erroneous refactorings early and work
to solve the problem as soon as possible.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography

[1] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A. P.. How We Refactor,
and How We Know It. IEEE Transactions on Software Engineering,
38(1):5–18, 2012.

[2] STROGGYLOS, K.; SPINELLIS, D.. Refactoring - Does it Improve
Software Quality? In: PROCEEDINGS OF THE 5TH INTERNATIONAL
WORKSHOP ON SOFTWARE QUALITY, 2007.

[3] FOWLER, M.; BECK, K.; BRANT, J.; OPDYKE, W. ; ROBERTS, D..
Refactoring: Improving The Design Of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1999.

[4] TOURWÉ, T.; MENS, T.. Identifying Refactoring Opportunities Us-
ing Logic Meta Programming. In: PROCEEDINGS OF THE 7TH EU-
ROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING, CSMR ’03, p. 91–100, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[5] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A..
On the Relevance of Code Anomalies for Identifying Architec-
ture Degradation Symptoms. Proceedings of the 16th European Con-
ference on Software Maintenance and Reengineering, p. 277–286, 2012.

[6] YAMASHITA, A.; MOONEN, L.. Do Developers Care About Code
Smells? An Exploratory Survey. In: Lommel, R.; Oliveto, R. ; Robbes,
R., editors, PROCEEDINGS OF THE 20TH WORKING CONFERENCE ON
REVERSE ENGINEERING, p. 242–251. IEEE Computer Society, 2013.

[7] PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R. ; LUCIA,
A. D.. Do They Really Smell Bad? A Study On Developers’
Perception of Bad Code Smells. In: PROCEEDINGS OF THE 30TH
IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE
AND EVOLUTION, p. 101–110, 2014.

[8] BOURQUIN, F.; KELLER, R. K.. High-Impact Refactoring Based
on Architecture Violations. In: PROCEEDINGS OF THE 11TH EU-

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 143

ROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING, p. 149–158, 2007.

[9] OIZUMI, W.; GARCIA, A.; DA SILVA SOUSA, L.; CAFEO, B. ; ZHAO, Y..
Code Anomalies Flock Together: Exploring Code Anomaly Ag-
glomerations for Locating Design Problems. In: PROCEEDINGS
OF THE 38TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-
NEERING, ICSE ’16, p. 440–451, New York, NY, USA, 2016. ACM.

[10] YAMASHITA, A.. Assessing the Capability of Code Smells to
Explain Maintenance Problems: An Empirical Study Combining
Quantitative And Qualitative Data. Empirical Software Engineering,
19(4):1111–1143, 2013.

[11] RATZINGER, J.; SIGMUND, T. ; GALL, H. C.. On The Relation
of Refactorings and Software Defect Prediction. In: PROCEED-
INGS OF THE INTERNATIONAL WORKSHOP ON MINING SOFTWARE
REPOSITORIES, p. 35–38, New York, New York, USA, 2008. ACM Press.

[12] KHOMH, F.; PENTA, M. D.; GUÉHÉNEUC, Y.-G. ; ANTONIOL, G..
An Exploratory Study of the Impact of Antipatterns on
Class Change- and Fault-Proneness. Empirical Software Engineering,
17(3):243–275, 2012.

[13] FUJIWARA, K.; FUSHIDA, K.; YOSHIDA, N. ; IIDA, H.. Assessing
Refactoring Instances and the Maintainability Benefits of Them
from Version Archives, p. 313–323. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[14] YAMASHITA, A.; COUNSELL, S.. Code Smells as System-Level
Indicators of Maintainability: An Empirical Study. Journal of
Systems and Software, 86(10):2639–2653, 2013.

[15] SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why We Refactor?
Confessions of GitHub Contributors. In: PROCEEDINGS OF THE
24TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS
OF SOFTWARE ENGINEERING, FSE 2016, p. 858–870, New York, NY,
USA, 2016. ACM.

[16] MURPHY, G.; KERSTEN, M. ; FINDLATER, L.. How Are Java Software
Developers Using The Elipse IDE? IEEE Software, 23(4):76–83, 2006.

[17] BAVOTA, G.; DE LUCIA, A.; DI PENTA, M.; OLIVETO, R. ; PALOMBA,
F.. An Experimental Investigation On The Innate Relationship

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 144

Between Quality And Refactoring. Journal of Systems and Software,
107:1–14, 2015.

[18] SJOBERG, D. I. K.; YAMASHITA, A.; ANDA, B. C. D.; MOCKUS, A. ;
DYBA, T.. Quantifying The E�ect Of Code Smells On Mainte-
nance E�ort. IEEE Transactions on Software Engineering, 39(8):1144–
1156, 2013.

[19] PAIXÃO, M.. Software Restructuring: Understanding Longitudi-
nal Architectural Changes and Refactoring. PhD thesis, University
College London, 2018.

[20] SANTOS, P.; TRAVASSOS, G.. Chapter 5 - Action Research Can
Swing The Balance In Experimental Software Engineering. vol-
umen 83 de Advances in Computers, p. 205–276. Elsevier, 2011.

[21] BAVOTA, G.; DE CARLUCCIO, B.; DE LUCIA, A.; DI PENTA, M.;
OLIVETO, R. ; STROLLO, O.. When Does a Refactoring Induce
Bugs? An Empirical Study. Proceedings of the IEEE 12th International
Working Conference on Source Code Analysis and Manipulation, p. 104–113,
2012.

[22] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An Empirical Study
of Refactoring Challenges and Benefits at Microsoft. IEEE Trans-
actions on Software Engineering, 40(7):633–649, 2014.

[23] åLIWERSKI, J.; ZIMMERMANN, T. ; ZELLER, A.. When do Changes
Induce Fixes? ACM SIGSOFT Software Engineering Notes, 30(4):1–5,
2005.

[24] TABA, S. E. S.; KHOMH, F.; ZOU, Y.; HASSAN, A. E. ; NAGAPPAN, M..
Predicting Bugs Using Antipatterns. In: PROCEEDINGS OF THE
IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE,
p. 270–279, 2013.

[25] PALOMBA, F.; ZANONI, M.; FONTANA, F. A.; LUCIA, A. D. ; OLIVETO,
R.. Smells Like Teen Spirit: Improving Bug Prediction Perfor-
mance Using the Intensity of Code Smells. In: PROCEEDINGS OF
THE IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTE-
NANCE AND EVOLUTION, p. 244–255, 2016.

[26] KIM, S.; ZIMMERMANN, T.; PAN, K. ; WHITEHEAD, E. J. J.. Auto-
matic Identification of Bug-Introducing Changes. In: PROCEED-

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 145

INGS OF THE 21ST IEEE/ACM INTERNATIONAL CONFERENCE ON AU-
TOMATED SOFTWARE ENGINEERING, p. 81–90, 2006.

[27] PRETE, K.; RACHATASUMRIT, N.; SUDAN, N. ; KIM, M.. Template-
Based Reconstruction of Complex Refactorings. In: PROCEED-
INGS OF IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAIN-
TENANCE, p. 1–10, 2010.

[28] TSANTALIS, N.; GUANA, V.; STROULIA, E. ; HINDLE, A.. A Multi-
dimensional Empirical Study on Refactoring Activity. In: PRO-
CEEDINGS OF THE CONFERENCE OF THE CENTER FOR ADVANCED
STUDIES ON COLLABORATIVE RESEARCH, CASCON ’13, p. 132–146,
Riverton, NJ, USA, 2013. IBM Corp.

[29] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. A Field Study of Refac-
toring Challenges and Benefits. In: PROCEEDINGS OF THE ACM SIG-
SOFT 20TH INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS OF
SOFTWARE ENGINEERING, FSE ’12, p. 1–11, New York, NY, USA, 2012.
ACM.

[30] KOLB, R.; MUTHIG, D.; PATZKE, T. ; YAMAUCHI, K.. A Case Study in
Refactoring a Legacy Component for Reuse in a Product Line.
In: PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE, p. 369–378, 2005.

[31] MOSER, R.; SILLITTI, A.; ABRAHAMSSON, P. ; SUCCI, G.. Does
Refactoring Improve Reusability? In: PROCEEDINGS OF THE
9TH INTERNATIONAL CONFERENCE ON REUSE OF OFF-THE-SHELF
COMPONENTS, ICSR’06, p. 287–297, Berlin, Heidelberg, 2006. Springer-
Verlag.

[32] MACIA, I.; GARCIA, A. ; VON STAA, A.. An Exploratory Study of
Code Smells in Evolving Aspect-Oriented Systems. In: PRO-
CEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ASPECT-
ORIENTED SOFTWARE DEVELOPMENT, AOSD ’11, p. 203–214, New
York, NY, USA, 2011. ACM.

[33] GURGEL, A.; MACIA, I.; GARCIA, A.; VON STAA, A.; MEZINI, M.; EICH-
BERG, M. ; MITSCHKE, R.. Blending and Reusing Rules for Archi-
tectural Degradation Prevention. In: PROCEEDINGS OF THE 13TH
INTERNATIONAL CONFERENCE ON MODULARITY, MODULARITY ’14,
p. 61–72, New York, NY, USA, 2014. ACM.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 146

[34] OIZUMI, W. N.; GARCIA, A. F.; COLANZI, T. E.; FERREIRA, M. ; VON
STAA, A.. On the Relationship of Code-Anomaly Agglomerations
and Architectural Problems. Journal of Software Engineering Research
and Development, 3(1):11, 2015.

[35] MARTIN, R. C.; MARTIN, M.. Agile Principles, Patterns, and
Practices in C#. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[36] LANZA, M.; MARINESCU, R.. Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems. Springer Publishing Com-
pany, Incorporated, 1st edition, 2010.

[37] MARINESCU. Detection Strategies: Metrics-Based Rules for De-
tecting Design Flaws. In: PROCEEDINGS OF 20TH IEEE INTERNA-
TIONAL CONFERENCE ON SOFTWARE MAINTENANCE, p. 350–359,
2004.

[38] MOHA, N.; GUEHENEUC, Y.; DUCHIEN, L. ; MEUR, A. L.. Decor: A
Method for the Specification and Detection of Code and Design
Smells. IEEE Transaction on Software Engineering, 36:20–36, 2010.

[39] MAIGA, A.; ALI, N.; BHATTACHARYA, N.; SABANÉ, A.; GUÉHÉNEUC,
Y.-G.; ANTONIOL, G. ; AÏMEUR, E.. Support Vector Machines for
Anti-Pattern Detection. In: PROCEEDINGS OF THE 27TH IEEE/ACM
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGI-
NEERING, ASE 2012, p. 278–281, New York, NY, USA, 2012. ACM.

[40] KHOMH, F.; DI PENTA, M. ; GUEHENEUC, Y.-G.. An Exploratory
Study of the Impact of Code Smells on Software Change-
Proneness. Proceedings of the 16th Working Conference on Reverse
Engineering, p. 75–84, 2009.

[41] OUNI, A.; GAIKOVINA KULA, R.; KESSENTINI, M. ; INOUE, K.. Web
Service Antipatterns Detection Using Genetic Programming.
In: PROCEEDINGS OF THE 2015 ANNUAL CONFERENCE ON GENETIC
AND EVOLUTIONARY COMPUTATION, GECCO ’15, p. 1351–1358, New
York, NY, USA, 2015. ACM.

[42] MACIA, I.; ARCOVERDE, R.; CIRILO, E.; GARCIA, A. ; VON STAA, A..
Supporting the Identification of Architecturally-Relevant Code
Anomalies. In: PROCEEDINGS OF THE 28TH IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE, p. 662–665, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 147

[43] MACIA, I.; GARCIA, J.; POPESCU, D.; GARCIA, A.; MEDVIDOVIC, N.
; VON STAA, A.. Are Automatically-Detected Code Anomalies
Relevant to Architectural Modularity? An Exploratory Analysis
of Evolving Systems. In: PROCEEDINGS OF THE 11TH ANNUAL
INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE
DEVELOPMENT, AOSD ’12, p. 167–178, New York, NY, USA, 2012. ACM.

[44] HOZANO, M.; GARCIA, A.; ANTUNES, N.; FONSECA, B. ; COSTA,
E.. Smells are Sensitive to Developers! On the E�ciency �
(Un)Guided Customized Detection. In: PROCEEDINGS OF THE
25TH INTERNATIONAL CONFERENCE ON PROGRAM COMPREHEN-
SION, ICPC ’17, p. 110–120, Piscataway, NJ, USA, 2017. IEEE Press.

[45] CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D. ; GARCIA, A..
How Does Refactoring A�ect Internal Quality Attributes? A
Multi-Project Study. In: PROCEEDINGS OF THE 31ST BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING, SBES’17, p. 74–83, New
York, NY, USA, 2017. ACM.

[46] ARCOVERDE, R.; MACIA, I.; GARCIA, A. ; VON STAA, A.. Automati-
cally Detecting Architecturally-Relevant Code Anomalies. Pro-
ceedings of the International Workshop on Recommendation Systems for Soft-
ware Engineering, p. 90–91, 2012.

[47] MACIA, I.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A.. Enhancing
the Detection of Code Anomalies with Architecture-Sensitive
Strategies. In: PROCEEDINGS OF THE 17TH EUROPEAN CONFER-
ENCE ON SOFTWARE MAINTENANCE AND REENGINEERING, p. 177–
186. IEEE, 2013.

[48] SOUSA, L.; OLIVEIRA, R.; GARCIA, A.; LEE, J.; CONTE, T.; OIZUMI,
W.; DE MELLO, R.; LOPES, A.; VALENTIM, N.; OLIVEIRA, E. ; LUCENA,
C.. How do Software Developers Identify Design Problems? A
Qualitative Analysis. In: PROCEEDINGS OF THE 31ST BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING, SBES’17, p. 54–63, New
York, NY, USA, 2017. ACM.

[49] YAMASHITA, A.; MOONEN, L.. Exploring the Impact of Inter-Smell
Relations on Software Maintainability: An Empirical Study.
Proceedings of the International Conference on Software Engineering, p. 682–
691, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 148

[50] YAMASHITA, A.; MOONEN, L.. To What Extent can Maintenance
Problems be Predicted by Code Smell Detection? An Empirical
Study. Information and Software Technology, 55(12):2223–2242, 2013.

[51] TUFANO, M.; PALOMBA, F.; BAVOTA, G.; OLIVETO, R.; DI PENTA, M.;
DE LUCIA, A. ; POSHYVANYK, D.. When and Why Your Code Starts
to Smell Bad. In: PROCEEDINGS OF THE 37TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, ICSE ’15, p. 403–414,
Piscataway, NJ, USA, 2015. IEEE Press.

[52] GE, X.; DUBOSE, Q. L. ; MURPHY-HILL, E.. Reconciling Manual
And Automatic Refactoring. In: PROCEEDINGS OF THE 34TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, p. 211–
221, 2012.

[53] WANG, Y.. What Motivate Software Engineers to Refactor Source
Code? Evidences From Professional Developers. Proceedings of the
IEEE International Conference on Software Maintenance, p. 413–416, 2009.

[54] SOARES, G.; GHEYI, R. ; MASSONI, T.. Automated Behavioral Test-
ing of Refactoring Engines. IEEE Transactions on Software Engineering,
39(2):147–162, 2013.

[55] SOARES, G.; GHEYI, R.; MURPHY-HILL, E. ; JOHNSON, B.. Comparing
Approaches to Analyze Refactoring Activity on Software Repos-
itories. Journal of Systems and Software, 86(4):1006–1022, 2013.

[56] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of Move
Method Refactoring Opportunities. IEEE Transactions on Software
Engineering, 35(3):347–367, 2009.

[57] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of Extract
Method Refactoring Opportunities. In: PROCEEDINGS OF THE
13TH EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND
REENGINEERING, volumen 35, p. 119–128. IEEE, 2009.

[58] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of Refactoring
Opportunities Introducing Polymorphism. Journal of Systems and
Software, 83(3):391–404, 2010.

[59] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of Extract
Method Refactoring Opportunities for the Decomposition of
Methods. Journal of Systems and Software, 84(10):1757–1782, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 149

[60] AL DALLAL, J.. Constructing Models for Predicting Extract Sub-
class Refactoring Opportunities Using Object-Oriented Quality
Metrics. Information and Software Technology, 54(10):1125–1141, 2012.

[61] BAVOTA, G.; OLIVETO, R.; DE LUCIA, A.; ANTONIOL, G. ; GUEHENEUC,
Y.-G.. Playing With Refactoring: Identifying Extract Class Op-
portunities Through Game Theory. Proceedings of the IEEE Interna-
tional Conference on Software Maintenance, p. 1–5, 2010.

[62] BAVOTA, G.; DE LUCIA, A. ; OLIVETO, R.. Identifying Extract
Class Refactoring Opportunities Using Structural and Semantic
Cohesion Measures. Journal of Systems and Software, 84(3):397–414,
2011.

[63] PAPPALARDO, G.; TRAMONTANA, E.. Suggesting Extract Class
Refactoring Opportunities by Measuring Strength of Method
Interactions. Proceedings of the Asia-Pacific Software Engineering Confer-
ence, 2:105–110, 2013.

[64] BOIS, B. D.; DEMEYER, S. ; VERELST, J.. Refactoring - Improving
Coupling And Cohesion Of Existing Code. Proceedings of the
Working Conference on Reverse Engineering, p. 144–151, 2004.

[65] MEANANEATRA, P.. Identifying Refactoring Sequences For Im-
proving Software Maintainability. In: PROCEEDINGS OF THE 27TH
IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFT-
WARE ENGINEERING, p. 406–409, New York, New York, USA, 2012. ACM
Press.

[66] DIETRICH, J.; MCCARTIN, C.; TEMPERO, E. ; SHAH, S. M. A.. On
the Existence of High-impact Refactoring Opportunities in Pro-
grams. In: PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCI-
ENCE CONFERENCE, ACSC ’12, p. 37–48, Darlinghurst, Australia, Aus-
tralia, 2012. Australian Computer Society, Inc.

[67] HOTTA, K.; HIGO, Y. ; KUSUMOTO, S.. Identifying, Tailoring, and
Suggesting Form Template Method Refactoring Opportunities
with Program Dependence Graph. Proceedings of the 16th European
Conference on Software Maintenance and Reengineering, p. 53–62, 2012.

[68] MELTON, H.; TEMPERO, E.. Identifying Refactoring Opportunities
by Identifying Dependency Cycles. p. 35–41, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 150

[69] TSANTALIS, N.. Refactoring Miner GitHub Page. https://github.
com/tsantalis/RefactoringMiner, 2017. [Online; accessed 6-july-2017;
version 0.2.0].

[70] XING, Z.; STROULIA, E.. Umldi�: An Algorithm for Object-
Oriented Design Di�erencing. In: PROCEEDINGS OF THE 20TH
IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFT-
WARE ENGINEERING, ASE ’05, p. 54–65, New York, NY, USA, 2005. ACM.

[71] MARA, L.; HONORATO, G.; MEDEIROS, F. D.; GARCIA, A. ; LUCENA,
C.. Hist-Inspect: A Tool for History-Sensitive Detection of
Code Smells. In: PROCEEDINGS OF THE 10TH INTERNATIONAL
CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT
COMPANION, AOSD ’11, p. 65–66, New York, NY, USA, 2011. ACM.

[72] MACIA, I.. On The Detection Of Architecturally Relevant Code
Anomalies In Software Systems. PhD thesis, Pontifical Catholic
University of Rio de Janeiro, 2013.

[73] CEDRIM, D.; SOUSA, L.. Organic. https://github.com/diegocedrim/
organic, 2018. [Online; accessed 20-september-2018].

[74] FERREIRA, M.; BARBOSA, E.; MACIA, I.; ARCOVERDE, R. ; GARCIA,
A.. Detecting Architecturally-Relevant Code Anomalies: A Case
Study of E�ectiveness and E�ort. In: PROCEEDINGS OF THE 29TH
ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC ’14, p.
1158–1163, New York, NY, USA, 2014. ACM.

[75] CEDRIM, D.; DA SILVA SOUSA, L.; GARCIA, A. F. ; GHEYI, R.. Does
Refactoring Improve Software Structural Quality? A Longitudi-
nal Study of 25 Projects. In: PROCEEDINGS OF THE 30TH BRAZIL-
IAN SYMPOSIUM ON SOFTWARE ENGINEERING, p. 73–82, New York,
NY, USA, 2016. ACM.

[76] ANTONIOL, G.; GUEHENEUC, Y.; MERLO, E. ; TONELLA, P.. Mining
the Lexicon Used by Programmers During Sofware Evolution.
Proceedings of IEEE International Conference on Software Maintenance, p.
14–23, 2007.

[77] KAPSER, C. J.; GODFREY, M. W.. "Cloning Considered Harmful"
Considered Harmful: Patterns of Cloning in Software. Empirical
Software Engineering, 13(6):645–692, 2008.

https://github.com/tsantalis/RefactoringMiner
https://github.com/tsantalis/RefactoringMiner
https://github.com/diegocedrim/organic
https://github.com/diegocedrim/organic
DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Bibliography 151

[78] BIBIANO, A.. Exploring the E�ects of Batch Refactoring on
Program Maintainability: A Heuristic-Based Study. Technical
report, Pontifical Catholic University of Rio de Janeiro, 2018.

[79] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.;
DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Under-
standing the Impact of Refactoring on Smells: A Longitudinal
Study of 23 Software Projects. In: PROCEEDINGS OF THE 11TH
JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING,
ESEC/FSE 2017, p. 465–475, New York, NY, USA, 2017. ACM.

[80] CHATZIGEORGIOU, A.; CHARALAMPIDOU, S.; AMPATZOGLOU, A. ;
CHATZIGEORGIOU, A.. Identifying Extract Method Refactoring
Opportunities Based on Functional Relevance. IEEE Transactions
on Software Engineering, 43(July):1–22, 2017.

[81] EASTERBROOK, S.; SINGER, J.; STOREY, M.-A. ; DAMIAN, D.. Se-
lecting Empirical Methods for Software Engineering Research,
p. 285–311. Springer London, London, 2008.

[82] FOWLER, M.; FOEMMEL, M.. Continuous Integration. Thought-
Works) http://www.thoughtworks.com/Continuous Integration.pdf, 122:14,
2006.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

A
Remaining Batch-Smell Patterns

Section 5.3 presents batch-smell patterns related to the smells Feature

Envy, God Class, and Complex Class. However, we found additional patterns
related to several others code smells, as presented in this appendix.

Class Data Should Be Private

Move Method, Move Attribute{n}

0.50
Pull Up Method{n}, Move Method, Pull Up Method

0.71

Pull Up Method{n}, Move Method, Pull Up Method{n}

0.78

Pull Up Attribute{n}, Pull Up Method{n}
0.80

Move Attribute{n}, Move Method{n}, Move Attribute{n}
0.50

Pull Up Method{n}

0.67

Pull Up Attribute{n}, Pull Up Method{n}, Move Method, Pull Up Method

0.71

Pull Up Attribute, Pull Up Method{n}

0.51

Extract Superclass, Move Method 0.56

Figure A.1: Class Data Should be Private patterns

Data Class

Pull Up Method, Move Method, Pull Up Method{n}

0.59

Move Attribute{n}, Rename Method0.88

Move Attribute{n}, Rename Method{n}

0.87
Move Method, Pull Up Method, Move Method, Pull Up Method{n} 0.65

Figure A.2: Data Class patterns

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Appendix A. Remaining Batch-Smell Patterns 153

Lazy Class

Push Down Method{n}

0.61
Move Method{n}, Move Attribute{n}, Move Method{n}

0.81
Move Method, Pull Up Method, Move Method, Pull Up Method{n}

0.65
Move Method{n}, Move Attribute

0.59

Move Method{n}, Move Attribute{n}, Move Method
0.61

Move Method, Move Attribute{n}, Move Method{n}
0.53

Pull Up Attribute{n}, Pull Up Method{n}

0.71

Move Attribute{n}, Move Method{n}, Move Attribute{n}, Move Method{n}

0.67

Move Method{n}, Move Attribute{n}

0.67

Move Attribute, Move Method{n}, Move Attribute{n}, Move Method{n}

0.57

Move Attribute, Extract Superclass
0.50

Extract Superclass, Move Method
0.60

Figure A.3: Lazy Class patterns

Long Parameter ListMove Attribute{n}, Extract Method{n} 0.77

Figure A.4: Long Parameter List pattern

Message ChainMove Attribute, Rename Method{n} 0.68

Figure A.5: Message Chain pattern

Refused Bequest

Pull Up Method{n}, Move Method{n}
0.71

Pull Up Attribute{n}, Pull Up Method{n}

0.71

Move Attribute, Extract Superclass
0.50

Push Down Attribute{n}, Push Down Method{n}
0.56

Figure A.6: Refused Bequest patterns

Spaghetti Code

Pull Up Method, Move Method, Pull Up Method{n}

0.59
Move Attribute, Extract Method{n}

0.54
Move Method, Pull Up Method, Move Method, Pull Up Method{n}

0.65

Pull Up Attribute{n}, Move Method
0.83

Pull Up Method{n}, Move Method, Pull Up Method{n}
0.78

Pull Up Attribute{n}, Move Method{n}, Pull Up Method{n}

0.90

Extract Method{n}, Inline Method

0.57

Inline Method, Extract Method{n}

0.52

Rename Method{n}, Extract Method{n} 0.81

Figure A.7: Spaghetti Code patterns

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Appendix A. Remaining Batch-Smell Patterns 154

Speculative Generality

Push Down Attribute{n}

0.55
Pull Up Method, Move Method, Pull Up Method{n}

0.77
Push Down Method{n}

0.88
Pull Up Method{n}, Move Method

0.56
Move Method, Pull Up Method, Move Method, Pull Up Method{n}

0.65
Pull Up Method, Move Method

0.57
Pull Up Method{n}, Move Method, Pull Up Method

0.57
Pull Up Attribute{n}, Move Method

0.83

Move Method, Pull Up Method
0.57

Pull Up Method{n}, Move Method, Pull Up Method{n}
0.91

Pull Up Attribute{n}, Move Method{n}, Pull Up Method{n}

0.90

Push Down Attribute{n}, Push Down Method{n}

0.84

Pull Up Attribute, Move Attribute{n}, Pull Up Attribute, Move Attribute{n}

0.66

Push Down Attribute, Push Down Method{n}

0.62

Move Method, Pull Up Method{n}

0.80

Pull Up Method{n}

0.52

Pull Up Attribute{n}, Pull Up Method{n}, Move Method, Pull Up Method

0.57

Pull Up Attribute, Pull Up Method{n}

0.56

Pull Up Attribute, Move Attribute, Pull Up Attribute{n}

0.65
Move Attribute, Pull Up Attribute{n}

0.67
Move Method{n}, Move Attribute{n}, Move Method{n}

0.81
Move Method{n}, Move Attribute

0.59

Move Method{n}, Move Attribute{n}, Move Method

0.61

Move Attribute{n}, Pull Up Attribute{n} 0.73

Move Method, Move Attribute{n}, Move Method{n}

0.53

Move Attribute{n}, Move Method{n}, Move Attribute{n}, Move Method{n}

0.67

Move Method{n}, Move Attribute{n}

0.67

Move Attribute, Move Method{n}, Move Attribute{n}, Move Method{n}

0.57

Move Attribute{n}, Extract Superclass

0.67

Figure A.8: Speculative Generality patterns

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

B
Quasi-Experiment Subject Characterization Questionnaire

This appendix presents the subject characterization questionnaire. This
questionnaire was used in the study reported in Chapter 6.

Survey: Caraterização dos Participantes
* Required

Objetivo

O objetivo geral deste formulário é caracterizar a sua experiência de trabalho. As respostas que serão

obtidas através deste formulário nos permitirá identificar algumas característicaschave sobre três

áreas de conhecimento: Anomalias de Código, Refatorações e Linguagem de Programação Java.

Além disso, esse formulário também irá determinar a sua experiência de trabalho. Todas as

informações coletadas neste formulário serão tratadas confidencialmente.

Informações Gerais

1. Nome *

2. Email *

3. Nome da empresa na qual trabalha *

4. Selecione sua maior titulação na área de computação *

Mark only one oval.

 Doutor

 Mestre

 Especialista

 Graduado

 Não possuo educação formal em computação

5. Experiência em desenvolvimento de software

(em anos) na indústria: *

6. Experiência com linguagem de programação

Java (em anos) na indústria: *

7. Aproximadamente, em quantos projetos

escritos em Java você trabalhou na

indústria? *

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Appendix B. Quasi-Experiment Subject Characterization Questionnaire 156

Powered by

8. Qual é o seu(s) cargo(s) na empresa atualmente? *

Check all that apply.

 Analista de TI

 Consultor

 Desenvolvedor de Software

 Gerente de Projetos

 Other:

Anomalias de Código (Code Smells)
Anomalia de código é uma estrutura no programa que muitas vezes indica problemas de

manutenabilidade de software. Quanto à sua experiência com anomalias de código, responda as

seguintes perguntas:

9. Você tem conhecimento sobre anomalias de código? *

Mark only one oval.

 Sim

 Não

10. Você costuma remover anomalias de código dos projetos que você participa?

Mark only one oval.

 Sim

 Não

 Não se aplica

Refatorações

11. Você tem conhecimento sobre refatorações? *

Mark only one oval.

 Sim

 Não

12. Você costuma refatorar os projetos que você participa?

Mark only one oval.

 Sim

 Não

 Não se aplica

Agradecemos sua colaboração!

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

C
Presentation

Following we present the slides that we used during the thesis presenta-
tion session.

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

LES | DI | PUC-Rio - Brasil OPUS Research Group

Understanding and Improving
Batch Refactoring in Software

Systems

Diego Cedrim Gomes Rêgo

Advisor: Alessandro Garcia

Code Changes and Structural Quality

 2

Code undergoes changes that invariably can
compromise the system structural quality1

Code refactoring can be used to soften the
degradation

Refactoring is expected to improve the structural
quality2

1. MacCormack, Rusnak and Baldwin 2006
2.Fowler et al., 1999

Refactoring is a Complex Task

 3

Refactoring may degrade the structural quality,
instead of improving it

Developers often apply batch refactoring1

Batch refactoring can worsen the structural quality

1. Murphy-Hill et al, 2009

Refactoring Impact on Structural Quality

 4

Refactoring is common and complex

It increases the maintenance cost if performed recklessly

Developers need support during refactoring

First, we need to understand the impact of refactoring on the
structural quality

Code Smells

 5

1. Yamashita et al., JSS 2009
2. Khomh et al., Empirical Software Engineering 2018
3. Macia et al., CSMR 2012

Design degradation3

Fault proneness2

A code smell is a surface indication that usually
corresponds to a deeper problem in the system

Higher maintenance effort1

Motivating Example

 6

Extract Superclass

Before After

AbstractProjectListener
+ projectStarted()
+ projectFinished()

DefaultProjectListener
+ projectStarted()
+ projectFinished()
+ ...

Appendix C. Presentation 158

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Motivating Example

 7

AbstractProjectListener
+ projectStarted()
+ projectFinished()

DefaultProjectListener
+ projectStarted()
+ projectFinished()
+ ...

Speculative Generality

Refused Bequest

̖
̖

Refactorings might also introduce
code smells!

Researchers have been trying to understand how and why
developers perform refactoring

Limitations of Related Work

 8

1. e.g., Silva et al., 2016
2. e.g., Murphy-Hill et al, 2006
3. e.g., Murphy-Hill et al, 2009

Typical reasons1

Most common types2

How developers use tools to refactor3

Root-canal

Floss

The impact of refactoring on smells is rarely
investigated in depth, e.g., Bavota et al, 2015

Limitations of Related Work

 9

Limitations of Related Work

 10

Refactorings are usually associated with positive
structural outcomes

Assumption 1: Refactoring targets elements with
poor structural quality

Assumption 2: Refactoring is likely to improve the
code structure

No Study…

 11

… has quantified positive, neutral,

and negative effects on smells

Thesis Objective

 12

Understand and improve
batch refactorings in software systems

Investigation 1:
To what extent refactoring interferes

on the density of code smells

Appendix C. Presentation 159

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

RQ1: Does refactoring reduce the density of code smells?

First Research Question

 13

—
+

Classifying Refactorings

 14

B BNeutral

ANegative

C Positive

v v + 1

+

—

Study Methodology

 15

Study Methodology

 16

0

2500

5000

7500

10000

Negative Neutral Positive

1.606

9.447

5.513

Classification Results

 17

— +

80%
of refactorings touch smelly elements, but

57%
of the refactorings are neutral

 18

Appendix C. Presentation 160

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

 19

32%
of refactorings are root canal, but

62%
of them are negative!

—

What are the Implications of These Results?

 20

Previous studies have relied on assumptions that
have not being investigated in practice

Assumption 1: Refactoring targets elements with
poor structural quality indeed

Assumption 2: Refactoring can degrade the
structural quality by introducing code smells

No Study…

 21

… quantifies positive, neutral, and negative effects on smells

… investigates refactoring-smell patterns

Thesis Objective

 22

Understand and improve
batch refactorings in software systems

Investigation 1:
To what extent refactoring
interferes on the density of

code smells

Investigation 2:
When refactoring introduces,
neglects or removes smells is

unknown

RQ2: What are the refactoring-smell patterns
affecting the software systems?

Second Research Question

 23 24

Appendix C. Presentation 161

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

 25

Extract Superclass Introducing Spec. Generality

 26

AbstractProjectListener
+ projectStarted()
+ projectFinished()

DefaultProjectListener
+ projectStarted()
+ projectFinished()
+ ...

̖
̖

Speculative Generality

 27

Extract Method Creating Feature Envy

 28

Extract Method

Before After

FixCRLF
+ execute() { 
 
 
 
}

+ …

FixCRLF
+ execute() { 
 
}

+ procFile() { 
 
}

+ …

Feature Envy
Feature Envy

Feature Envy

 29 30

There are creational patterns!

They can be used to prevent negative
refactorings —

Appendix C. Presentation 162

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Results of the Investigations (so far…)

 31

Refactorings usually either introduce or neglect
code smells, even though they often touch smells —
Even when the root canal tactic is used, developers
introduce or neglect code smells

Developers often introduce specific types of smells
when applying specific types of refactorings

The Necessity of Multiple Refactorings

1. Murphy-Hill et al, 2009
2. Fowler et al., 1999 32

Studies suggest developers often apply a
batch refactorings1

Previous studies consider each refactoring
individually (single refactorings)

Multiple refactorings might be needed to
remove some smells2

Extract Method Creating Feature Envy

 33

Extract Method

Before After

FixCRLF
+ execute() { 
 
 
 
}

+ …

FixCRLF
+ execute() { 
 
}

+ procFile() { 
 
}

+ …

Feature Envy
Feature Envy

Feature Envy

Thesis Objective

 34

Understand and improve
batch refactorings in software systems

Investigation 3:
Whether batches introduce,

neglect, or remove smells are unknown

RQ3: Does batch refactoring impact the density of code smells?

Third Research Question

 35

—
+

Study Methodology

 36

Appendix C. Presentation 163

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Batch Synthesis Heuristics

 37

Version-Based Heuristic1

1. Murphy-Hill et al, 2009

Batch Synthesis Heuristics

 38

Element-Based Heuristic1

1. Fowler et al., 1999

Batch Synthesis Heuristics

 39

Range-Based Heuristic1

1. Fowler et al., 1999

Study Methodology

 40

0

3000

6000

9000

12000

Negative Neutral Positive

1.653

6.019

3.873

542

2.020
1.168 751

11.264

612

Element-Based Heuristic Range-Based Heuristic
Version-Based Heuristic

Classification Results

 41
— +

Developers tend to produce smell-
neutral refactorings when performing

either single or batch refactoring

14%
of the batches are positive, while

9.7%
of the single refactorings were

 42

Appendix C. Presentation 164

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

 43

30%
of batches are negative

in two heuristics

— Batch refactorings are not often reducing the
density of code smells. In fact, most of the

batches are
neutral or negative

�44

What are the Implications of These Results?

 45

Previous studies have relied on assumptions that
have not being investigated in practice

Assumption 1: Refactoring targets elements with
poor structural quality indeed

Assumption 2: Refactoring can degrade the
structural quality by introducing code smells

Thesis Objective

 46

Understand and improve
batch refactorings in software systems

Investigation 3:
Whether batches introduce,

neglect, or remove smells are
unknown

Investigation 4:
When batches introduce,

neglect, or remove smells are
unknown

Detecting Batch-Smell Patterns

 47

Are these behaviors frequent?

RQ4: What are the patterns governing batches
and code smells?

Fourth Research Question

 48

Appendix C. Presentation 165

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Feature Envy Batch-Smell Patterns

 49

Extract Methods play a central role in the
introduction and removal of Feature Envies

The patterns found can be used to help
developers to remove code smells

�50

We can derive heuristics to propose
batches to remove code smells.

Smell Removal Heuristics

 51

Extract Method,
Move Method Feature Envy

Move Method {n} God Class

Extract Method {n} Complex Class

Thesis Objective

 52

Understand and improve
batch refactorings in software systems

Investigation 5:
Evaluate the smell-removing heuristics
derived from the batch-smell patterns

Experimental Tasks

 53

2. Heuristics Execution

3. Subjects Characterization

4. Experiment Execution

1. Sample Selection

 What is your opinion about the impact
of the sequence of refactorings
on the code structure quality?

�54

Positive The code structural quality has improved

Intermediate There are benefits, but I think there is room for
improvement

Negative The code structural quality has decreased

Appendix C. Presentation 166

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

 55

The first set of heuristics
is promising 56

Class Smell Negative Intermediate Positive

Clause Complex Class 15% 35% 50%

DiarioClasseService Complex Class 0% 15% 80%

GenericTranspalBean Complex Class 10% 5% 80%

IngressoUniversidadeService Feature Envy 5% 30% 65%

Media Feature Envy 0% 10% 90%

UserFactory Feature Envy 5% 20% 75%

EmployeeUtils God Class 10% 20% 70%

LibraryMainControl God Class 5% 20% 75%

MatriculaAcademicaService God Class 5% 20% 75%

 57

Clause / Complex Class

Developer with 1 year of experience

Honestly, these refactoring operations did not
help at all. I do agree the method is less

complex, but the complexity was merely spread
into the other two methods, i.e., the other

methods still have several conditional
expressions

 58

Clause / Complex Class

Yes, both extract methods helped the method to
be more readable and maintainable

Developer with 2 years of experience

I believe the class was very confusing before
the refactorings. Now, after the refactorings, the

class is way easier to understand and
maintain

Developer with 2 years of experience

This class still needs more refactorings,
because I think it still contains several

responsibilities
Developer with 2 years of experience

Appendix C. Presentation 167

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

Contributions - Single Refactorings

 61

Evidence that refactoring operations usually do not
remove code smells. On the contrary, they often
introduce new ones.

—

There are non-removal, removal, and creational
patterns.

Contributions - Batch Refactorings

 62

First evidence that either single or batch
refactorings often do not reduce the density of
code smells

—

There are various removal and creational batch-
smell patterns

First suite of heuristics that developers can use to
remove code smells through batch refactorings

Diego Cedrim et al.. 2017. Understanding the impact of refactoring on smells: a longitudinal study of 23
software projects. ESEC/FSE 2017

Diego Cedrim. 2016. Context-sensitive identification of refactoring opportunities. In Proceedings of the 38th
International Conference on Software Engineering Companion – Doctoral Symposium (ICSE ’16).

Diego Cedrim et al.. 2016. Does refactoring improve software structural quality? A longitudinal study of 25
projects. SBES ’16

Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and Alessandro Garcia. 2017. How
does refactoring affect internal quality attributes?: A multi-project study. SBES’17

Diego Cedrim et al. 2018. Batch Refactorings at a Glance. IEEE Transactions on Software Engineering. Under
submission process.

Ana Bibiano, Diego Cedrim, Eduardo Fernandes, Daniel Tenório, Isabella Ferreira, Anderson Oliveira, Roberto
Oliveira, Alessandro Garcia, Baldoino Fonseca, Marcos Kalinowski. 2018. Batch Refactorings at a Glance.
Exploring the Effects of Batch Refactoring on Program Maintainability: A Heuristic-based Study. ICSE-SEIP’19.
Under submission process.

Leonardo Sousa, Isabella Ferreira, Diego Cedrim, Alexander Chávez, Alessandro Garcia, and Carlos Lucena.
2018. The Structural Quality of Refactored Code: A Study of 50 Software Projects. Journal. Under submission
process.

Matheus Paixão et al. Are Developers Refactoring When Refactoring? IEEE Transactions on Software
Engineering. Under submission process.

Papers Produced

 63

Appendix C. Presentation 168

DBD
PUC-Rio - Certificação Digital Nº 1412724/CA

	Understanding and Improving Batch Refactoring in Software Systems
	Resumo
	Table of contents
	Introduction
	Refactoring Smelly Code Elements: A Motivating Example
	Problem Statement and Limitations of Related Work
	Goal and Research Questions
	Scope of This Thesis
	Main Contributions
	Thesis Outline

	Background and Related Work
	Refactoring
	Refactoring Characterization and Identification
	Refactoring History
	Refactoring Type
	Refactoring Scope
	Refactoring Tactic

	Code Smells
	Code Smell Identification
	Refactoring Applied in Smelly Code

	Refactoring Classification
	Refactoring-Smell Patterns
	Creational Patterns
	Removal and Non-Removal Patterns

	Related Work
	Code Smells as Symptoms of Deeper Problems
	Studies of Software Refactoring
	Identification of Refactoring Opportunities

	Summary

	Investigating the Impact of Refactorings on Smells
	Settings of the Study
	Goal and Research Questions
	Study Phases
	Phase 1: Selection of Software Projects
	Phase 2: Smell and Refactoring Detection
	Phase 3: Refactoring Classification
	Phase 4: Manual Validation

	Preliminary Study
	Refactoring and Smells
	Smell-Neutral Refactorings are Common
	Stinky Refactorings

	Refactoring-Smell Patterns
	Removal vs. Non-Removal Patterns
	Creational Patterns
	Generalization Patterns
	Feature-Moving Patterns
	Method Extraction Patterns

	Sequence of Refactorings
	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Elements Touched by Refactoring
	Motivations to Refactor
	Benefits to Refactor
	Refactoring Recommendation Systems
	Introduction of Code Smells
	Relation Among Code Smells, Refactoring and Other Software Aspects
	Negative refactorings

	Summary

	Batch Refactoring: Characterization and Synthesis
	Refactorings Flock Together
	Batch Refactoring
	Batch Type
	Batch Timespan
	Batch Heterogeneity
	Batch Scope

	Batch Synthesis Heuristics
	Version-Based Heuristic
	Element-Based Heuristic
	Range-Based Heuristic

	Batch Classification
	Code Smells in the Batch Scope
	Positive, Neutral and Negative Batches

	Smell-Batch Patterns
	Batch Creational Patterns
	Batch Removal Patterns

	Towards the Investigation of Batch Refactoring

	Investigating the Impact of Batches on Smells
	Study Settings
	Goal and Research Questions
	Study Phases
	Phase 1: Dataset Acquisition
	Phase 2: Synthesis and Classification of Batches

	Batch Refactoring and Code Smells
	Single Refactorings
	Synthesized Batches
	Quantity and Size of Batches
	Heterogeneity and Timespan of Batches

	Most Batches are Neutral
	Stinky Batches

	Batch-Smell Patterns
	Feature Envy
	God Class
	Complex Class

	Threats to Validity
	Related Work
	Summary

	Improving Batch Refactoring: Recommendation Heuristics
	Smell Removal Heuristics
	Removing Feature Envy
	Removing God Class
	Removing Complex Class

	Heuristics Evaluation
	Goal and Research Question
	Experimental Tasks
	Data Presentation and Analysis
	Characterization Questionnaire Data
	Quasi-experiment Results

	Threats to Validity
	Summary

	Conclusion
	Revisiting the Thesis Contributions
	Future Work

	Bibliography
	Remaining Batch-Smell Patterns
	Quasi-Experiment Subject Characterization Questionnaire
	Presentation

