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Abstract

Cuellar Loyola, Nilton Alejandro; Menezes, Ivan Fábio Mota de; Pereira,
Anderson. Robust topology optimization using a non-intrusive
stochastic spectral approach. Rio de Janeiro, 2018. 140p. Tese de
Doutorado — Departamento de Engenharia Mecânica, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

This work presents some applications of stochastic spectral methods for

structural topology optimization in the presence of uncertainties. This pro-

cedure, known as robust topology optimization, minimizes a combination of

the mean and standard deviation of the objective function. For this purpose, a

non-intrusive polynomial chaos expansion is integrated into a topology optimi-

zation algorithm to calculate the first two statistical moments of the mechanical

model response. In order to address variabilities in the structural response, the

uncertainties are considered in the loading and the material properties. In this

proposed probabilistic formulation, uncertainties are represented as a set of

random variables (e.g., magnitudes and directions of the loads) or as random

fields (e.g., distributed loads and material properties). A non-Gaussian ho-

mogenous random field with a specified marginal distribution and covariance

function is used to represent the material uncertainties because it ensures their

physical admissibility. Nonlinear “memoryless” transformation of a homogene-

ous Gaussian field is used for obtaining non-Gaussian fields. The Karhunen-

Loève expansion is employed to provide a representation of the Gaussian field in

terms of countable uncorrelated random variables. The sparse grid quadrature

is considered for reducing the computational cost when computing the coe-

fficients of the polynomial chaos expansion. Moreover, an efficient prediction

(i.e., with a low computational cost) of the structural response under uncer-

tainties is presented. Accuracy and applicability of the proposed methodology

are demonstrated by means of several topology optimization examples of 2D

continuum structures. The obtained results are in excellent agreement with

the solutions obtained using the Monte Carlo method. Finally, conclusions are

inferred and possible extensions of this work are proposed.

Keywords
Robust topology optimization; Uncertainty quantification; Stochastic

spectral methods; Generalized polynomial chaos; Karhunen-Loève expan-

sion;
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Resumo

Cuellar Loyola, Nilton Alejandro; Menezes, Ivan Fábio Mota de; Pereira,
Anderson. Otimização topológica robusta usando uma aborda-
gem espectral estocástica não intrusiva. Rio de Janeiro, 2018. 140p.
Tese de Doutorado — Departamento de Engenharia Mecânica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Este trabalho apresenta aplicações de métodos espectrais estocásticos para

otimização topológica de estruturas na presença de incertezas. Esse procedimento,

conhecido como otimização topológica robusta, minimiza uma combinação entre a

média e o desvio padrão da função objetivo. Para tanto, uma expansão de caos po-

linomial não intrusiva é integrada a um algoritmo de otimização topológica para se

calcular os dois primeiros momentos estat́ısticos da resposta do modelo mecânico. A

fim de abordar as variabilidades na resposta estrutural, as incertezas são considera-

das no carregamento e nas propriedades do material. Na formulação probabiĺıstica

proposta, as incertezas são representadas como um conjunto de variáveis aleatórias

(por exemplo, magnitudes e direções das cargas) ou como campos aleatórios (por

exemplo, cargas distribúıdas e propriedades do material). Um campo aleatório ho-

mogêneo não Gaussiano com uma função de distribuição marginal e covariância espe-

cificada é usado para representar as incertezas nas propriedades dos materiais, pois

garante a sua admissibilidade f́ısica. A transformação não-linear “sem memória” de

um campo Gaussiano homogêneo é usada para obter campos não Gaussianos. A ex-

pansão de Karhunen-Loève é empregada para fornecer uma representação do campo

Gaussiano em termos de um número finito de variáveis aleatórias independentes.

A quadratura de grade esparsa é empregada para reduzir o custo computacional no

cálculo dos coeficientes da expansão do caos polinomial. Além disso, é mostrada uma

previsão eficiente (isto é, com um baixo custo computacional) da resposta estrutural

sob incertezas. A precisão e a aplicabilidade da metodologia proposta são demons-

tradas por meio de vários exemplos de otimização topológica de estruturas cont́ınuas

2D. Os resultados obtidos estão em excelente concordância com as soluções obtidas

pelo método de Monte Carlo. Finalmente, conclusões são apresentadas e posśıveis

extensões deste trabalho são propostas.

Palavras–chave
Otimização topológica robusta; Quantificação de incertezas; Métodos

estocásticos espectrais; Caos polinomial generalizado; Expansão de

Karhunen-Loève;
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1
Introduction

The field of stochastic computations in the context of understanding the

impact of uncertainty sources on numerical modeling and simulation results, is

relatively new. It has become the main tool in many fields for understanding

complex systems and predict physical events with greater accuracy. Thanks

to the evolution of computers, simulation techniques have become essential

tools for engineers because they can minimize the need for costly physical

experiments specially during early design stages. Nevertheless, to get a good

performance we must be careful to design models that produce useful and

reliable information regarding the system being studied.

In this chapter it is presented the motivation for the development of this

thesis, followed by the issues of scientific and technological interest associated

to the subject, the problem statement, the methodology for achieving the

objectives and contributions and finally the scope of the thesis.

1.1
Motivation and related works

Nowadays there exists an increasing variety of engineering systems that

require more critical and complex designs. For this reason, several engineers

integrate uncertainties into their simulations to find critical values in the initial

stage of design. Therefore, this new process will allow one to design mechanical

systems statistically with better performance, because the probability of failure

of the mechanical systems due to uncertainties will be minimized. Thus, with

this perspective of design, there is a need to develop more robust and accurate

approaches to effectively represent uncertainties in the computer models.

There are several real-world engineering problems for which the require-

ments are related to finding optimal solutions. We can frequently find these ap-

plications in the design of mechanical structures or other particular problems
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Chapter 1. Introduction 15

in the field of engineering. For instance, new systematic and computational

tools have been developed for designing high-performance structures with a

minimal cost. Numerous computational optimization methods have become

available to solve problems highly constrained and with multiples objectives.

Due to new requirements of design associated with the most modern

engineering applications, mechanical systems with very complex geometrical

configurations are becoming increasingly common. In this context, some of

the most promising design approaches are based on topology optimization

(TO), which seeks to find the best layout for a system, by optimizing the

material distribution in a predefined design domain [9, 12]. The growing

popularity of TO solutions is demonstrated by their wide range of application

in various fields such as structural mechanics [13–18], composite and multi-

materials [19, 20], nanotechnology [21], fluid mechanics [22, 23], fluid-structure

interaction [24], medicine [25], etc.

The main goal of an optimization is to find an optimum solution with a

high degree of precision. Generally, classical algorithms consider deterministic

models to solve the problem. For this reason, that solution is not robust to

the perturbations leading to a final design whose performance might degrade

significantly. In this scenario, a better methodology would be used to get an

optimal design with a minimum level of sensitivity to variability on the system

parameters. This methodology for finding such optimal is known, in the field

of engineering, as robust optimization or robust design.

Since various optimization models, where their objective and constraint

functions are highly sensitive because involve uncertainties within the model,

the optimization under uncertainties (OUU) becomes an issue transposing

the concepts of robustness and reliability into the conventional optimization

context.

In the last few years, a variety of approaches have been developed to solve

the OUU problems [26]. We can find in several works (see for example [27–30]),

that the OUU problems may be subdivided into two main fields, namely: Ro-

bust design optimization (RDO) and Reliability-based optimization (RBDO).

There are other approaches to OUU, such as: stochastic programming (robust

stochastic programming, recourse models and probabilistic models), fuzzy pro-

gramming (flexible and possibilistic programming), and stochastic dynamic

programming whose applications are mainly applied to linear problems [31],

and are not in the scope of this work.

RDO and RBDO are effective tools to incorporate uncertainties in the

design: while RDO minimizes the loss quality of the product, RBDO achieves

the target confidence of product reliability. When we consider Robustness in
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PUC-Rio - Certificação Digital Nº 1413449/CA



Chapter 1. Introduction 16

the problem of RBDO simultaneously, a new formulation called Reliability-

Based Robust Optimization (RBRDO) was proposed in various papers [32–36],

to generate reliable and robust solutions.

Another powerful approach in OUU is the use of global approximations,

i.e., meta-models, surrogate models or emulators, since they are used as tem-

porary substitution for the true objective and constraint functions by means

of a mathematical expression that is much cheaper to evaluate. There are

many techniques to generate surrogate models, such as, Kriging, Artificial

Neural Networks, Support Vector Machine (SVM), Polynomial Response Sur-

face Models, among others [37, 38]. The Surrogate-based analysis and optimiz-

ation (SBAO) approach has been shown to be an effective tool for optimization

problems. An overview of SBAO can be found in [39, 40], where some of the

most popular methods in OUU problems were covered.

The application of surrogate models in optimization can be found in

many publications (see, for example, [41–43]). Also, to reduce the numerical

effort related to the described robustness analyses, surrogate techniques are

used to replace the actual numerical analysis codes by simple formulations

together with RDO [44–46] and RBDO [47–49].

The need for robust design and analysis of uncertainties in topological

optimization applications naturally induce the search for computationally

efficient frameworks for TO. For this purpose, TO literature started to take

uncertainty quantification (UQ) into account over the last decade, as can be

seen in several papers addressing the two issues [50–63].

Some of these works are based on classical techniques for stochastic

computation like Monte Carlo (MC) method [57, 61] or series expansion

[52, 56, 58, 60, 62] which, despite of being very simple in conceptual terms,

are limited by the high computational cost, the former, or very small range

of applicability, the latter. These limitations open space for spectral-based ap-

proaches [50, 51, 54, 55, 59, 63], that use state-of-the-art tools for representing

and propagating uncertainties in computational models, like Karhunen-Loève

(KL) and generalized polynomial chaos (gPC) expansions. They add robust-

ness to the topology optimization model to become a robust model of Topology

Optimization (RTO) (see, for example, [64–69])

A recent work by Keshavarzzadeh et. al [51] presents a non-intrusive

gPC strategy to propagate uncertainties in topology optimization problems.

They use non-intrusive polynomial chaos expansion to evaluate low-order

statistics of compliance and volume and the uncertainties are considered in the

applied loads and also in the geometry of the problems. However, few works

in TO under uncertainty that use stochastic spectral method for quantifying
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Chapter 1. Introduction 17

uncertainties can be found in the technical literature.

Finally, another important point that should also be considered, is related

with the frameworks that are available for quantification of uncertainties

and Topology Optimization. UQLab is a general purpose UQ framework

developed at ETH Zurich (Switzerland) and is implemented in protected

file of Matlab known as a P-file [70]. Dakota is other software open-source

under GNU LGPL and written in C++. The Dakota project delivers both

state-of-the-art research and robust, usable software for optimization and UQ

developed at Sandia National Laboratories [71]. OpenTurn is other framework

open-source under GNU LGPL and written in Python initiative to Treat

Uncertainties, Risks’N Statistics [72]. Top3d is programs that solves topology

optimization in 3D written in Matlab code [73]. ToPy is a lightweight topology

optimization framework for Python that can solve compliance (stiffness),

mechanism synthesis [74]. PolyTop is an efficient Matlab code for structural

topology optimization that includes a general finite element routine based on

isoparametric polygonal elements [75].

After an extensive literature review, we can view that there are very few

works and softwares implemented for the treating in topology optimization

in presence of uncertainties. This motive the study and development of an

efficient computational algorithm, capable of performing a minimum number

of simulations to achieve a robust optimal solution.

1.2
Problem statement

The use of deterministic models to approximate physical systems may

cause some structural failure due to the several uncertainties that are not often

considered within the mathematical models and may be found for example

in structural mechanical systems, i.e. in their material properties, geometric

shapes, distributed loads, manufacturing processes, among others. Another

system where such uncertainties arise are in robotic control whose applications

have been important in surgery or in the control of unmanned space vehicles

whose mass and moments of inertia might change over time. We can also notice

the source of uncertainties in the evaluation of forces of turbulence that a plane

interacts during its flight or those turbulent vortices that an offshore platform

supports daily.

Therefore, when the levels of uncertainty sources are very high, we must

use stochastic approaches to develop mathematical models to describe the real

physics. For example, the consideration of the uncertainties in the material

properties of mechanical structures has attracted significant interest in the
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engineering community owing to the need for quantitatively characterizing and

reducing the variability in the analysis and optimal design of such structures.

Additionally, there are criteria and methodologies for modeling uncer-

tainties, such that, represent the phenomena with greater accuracy. Returning

to the previous example, sometimes structural analysis assumes that the uncer-

tainties in the material properties are concentrated at discrete points in space

as a variation across samples, represented as single-valued random variables

that are mostly used for concentrated loads, stiffness of joint and supports, etc.

However, most properties of mechanical structures are distributed in space and

not concentrated at a point; such as, distributed loads, Young’s modulus, and

geometric properties that vary over the length, area, or volume.

In recent years, several approaches have been developed to quantify and

propagate uncertainties whose main goal is to address the impact of such

errors and subsequently to provide more reliable predictions for this class of

problems. In order to accomplish this goal, it is required the numerical solution

of numerous high-order nonlinear algebraic and differential equations.

Many different approaches have been considered in the past to include

uncertainty in the modeling or in the design process. Most of these approaches

are based on applications or extensions of the Monte Carlo method. The crude

Monte Carlo method is a widely used and very powerful technique to propagate

the input randomness onto the system response or specific quantities of interest

in problems without limitations concerning the structure of the uncertainty

or the properties of the probability distribution. On the other hand, this

method has a major disadvantage of being extremely expensive in terms of

computational cost, and also to present a very slow convergence rate, despite of

being flexible and of easy implementation. Therefore, this method is sometimes

avoided for large real-time applications.

In order to overcome the lack of exploitation of possible regularities that

the solution must present with respect to the input variables, several methods

have recently been developed, such as, Stochastic Galerkin, Polynomial Chaos

expansion, Probabilistic Collocation, Karhunen-Loève expansion, among oth-

ers. These approaches are known as stochastic spectral methods and their ap-

plications to problems of uncertainty propagation and quantification in model-

based computations are an open and relevant research topic.

There exist many commercial software and tools to quantify robustness

and to achieve optimal design that are now available to the engineers, such

as: modeFRONTIER, OptiY, LS-Opt, optiSlang for Ansys and COSSAN-X.

However, only a few of them are mainly concentrated on quantifying reliability

and robustness of a given solution, rather than performing the optimization
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under uncertainty.

Therefore, the optimization models often need broader measures of ob-

jective and constraint functions and their respective sensitivities, several stat-

istical measures such as: expected value, standard deviation, and probability of

failure can provide such information. Since these statistical measures usually

cannot be integrated analytically within the optimization model due to their

nonlinearity, they must be approximated numerically. Then, both the objective

function and implicit constraints will require the execution of an uncertainty

quantification procedure to evaluate the output response. Each evaluation of

the response is carried out by calculating the nonlinear model which, in turn,

is a very expensive computationally task.

In order to deal with this problem, we should develop an efficient al-

gorithm to reduce the number of simulations and to manage the uncertainties

in the optimization procedure. In this case, procedures to quantify and propag-

ate uncertainties such as the Stochastic Spectral approach will be study for

the conception of the solution.

1.3
Objectives and Methodology

Being motivated by the importance of finding robust designs in mechan-

ical structures, the main objectives of this thesis are:

• Describe all the basic ingredients necessary for the understanding of

stochastic methods to quantify uncertainties;

• Implement the most common stochastic spectral methods: the Polynomial

Chaos and Karhunen-Loève expansion;

• Investigate and compare the efficiency of the non-intrusive Polynomial

Chaos expansion with other techniques, e.g. the Monte Carlo simulation

method;

• Investigate non-Gaussian random field in order to represent the spatial

variabilities of uncertainty material;

• Develop in a systematic and coherent way numerical strategies to optimize

mechanical structures in the presence of uncertainties based on polyno-

mial chaos expansion, which it is called Robust Topology Optimization;

• Compare the efficiency and assess the performance of the numerical

algorithms developed with some examples available in the literature;

In order to accomplish the goals of this proposal, a deep literature review

is necessary to learn the concepts and techniques of the different approaches

that will be used to solve our problem. The proposed methodology will be

divided into four main parts:
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First, we must realize study the details about quantification and propaga-

tion of uncertainties, whose approach demands previous knowledge on func-

tional calculus, approximation theory, numerical integration, probability the-

ory, stochastic process and stochastic spectral methods. Thus, we will be

able to model the uncertainties mathematically and propagate them efficiently

through the appropriate choice of different techniques found in the literature.

We need to perform a detailed comparison between Monte Carlo Simulation

and the most advanced methods, such as, polynomial chaos expansion and or

stochastic collocation to solve benchmark uncertainty quantification problems.

Second, we continue with the study about convexity and the different op-

timization algorithms known as Unconstrained and Constrained optimization,

such as: Dichotomy, Nelder Mead, Steep Descent, Method of Penalties, New-

ton Raphson, Lagrange Method, among others. To compare each algorithm,

we should consider three criteria: Efficiency, Robustness and Accuracy. These

different elements are usually a trade-off. The responsibility in choosing the

algorithm will be an important step of the work, because it often determines

the quality and speed of the problem resolution.

Third, it will be studied all theoretical principles for modeling continuum

structures, starting from basic concepts to the design of mathematical equa-

tions that describe its physical behavior. Next, we will formulate the basic

equations to achieve optimal designs using the topology optimization method-

ology. This step involves other methods of optimization, such as: Optimality

Criteria, Sequential Quadratic Programming and Method of Moving Asymp-

totes, together with the evaluation of the finite element method. Therefore, we

need to develop a finite element code with the capability to be coupled with

the topology optimization modulus.

Finally, we began to formulate the optimization problem in the presence

of uncertainties. The various approaches developed in the literature will be

the starting point to find the best alternatives and thus to achieve the optimal

robust design. The results of the proposed methodology will be compared with

the ones available in the technical literature.

1.4
Research Contribution

This doctoral thesis presents as main contributions:

• Nilton Cuellar, Anderson Pereira, Ivan F Menezes (2015). Robust To-

pology Optimization under Uncertain Loads: A Spectral Stochastic Ap-

proach. CILAMCE2015.
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• Nilton Cuellar, Anderson Pereira, Ivan F Menezes and Americo Cunha

(2018). Nonintrusive polynomial chaos expansion for topology optimiza-

tion using polygonal meshes. Journal of the Brazilian Society of Mechan-

ical Sciences and Engineering (Accepted).

• Nilton Cuellar, Anderson Pereira, Ivan F Menezes and Americo Cunha

(2018). An Accurate Representation of Material Uncertainty using non-

Gaussian Random Field applied in Topology Optimization. (To be sub-

mitted).

• All developed Matlabr code during the thesis( the Polynomial Chaos ex-

pansion, the Karhunen-Lo‘eve expansion, two-dimensional non-Gaussian

random field and the computational algorithm for solving the Robust To-

pology Optimization (RTO) problem) will be made available after being

published.

1.5
Outline of the thesis

This thesis is divided into seven chapters being the first one a brief

introduction which seeks to give an ambience of the work to be developed.

The remainder of this thesis is organized as follows:

In chapter 2, it is introduced the definition of Uncertainty Quantification

(UQ) that is concerned with understanding and calculating the uncertainties

inherent in such system and by which are characterized and propagates to a

given quantity of interest. A more precise characterization is based on the

identification of the types of uncertainties (aleatory and epistemic), while

uncertainty propagation is often associates to the effects with each of the

system’s inputs on the system’s outputs. In addition, in this chapter it is

investigated how the analysis UQ can reduce the impact caused by the

uncertainties and subsequently to provide more reliable prediction for practical

problems. Several classes of methods have been developed to represent and

propagate uncertainties, in this thesis a special focus is given to well-known

probabilistic methods, which are also described in this chapter. It also shown

as uncertainties are represented as random variables or random fields which are

generated from a probability density function through of a random sampling

method.

In chapter 3, it is presented in detail the underlying theory and imple-

mentation of stochastic spectral methods of a specific class random model

output. Generally, these spectral methods consist in representing the random

model response through of a series expansion composed of selected functionals

basis suitable on a particular space and a set of deterministic coefficients in
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order to satisfy the response as well as possible. Thus, this series expansion

once available can be immediately used to determine the statistical meas-

ures of random model output. We focus our attention in two stochastic spec-

tral methods: the Karhunen-Loeve and Polynomial expansion where the main

concepts, rate convergence and approximation error are briefly analyzed. The

Karhunen-Loeve expansion of a second-order random process or field, is based

on the spectral decomposition of its autocorrelation function and are extended

to discretize them in an optimal way and be computationally implementable.

The mathematical formulation and basic steps for the construction of the PC

expansion are examined for the case de different types of random variables

and through of non-intrusive way, the deterministic coefficients are estimated.

This chapter also provide some practical examples for the well understanding

of both methods.

In chapter 4, we provide a brief overview about the structural optim-

ization which is a class of optimization problem where the evaluation of an

objective function or constraints require the use of structural analyses. Due

to increasing demands for performance improvement together with reduced

weight and costs several strategies and methods such as size, shape and topo-

logy optimization were developed for achieving such objectives. Our attention

is focused in the Topology optimization problem which consists to find the best

distribution of material in a domain previously defined to obtain a structure

with an optimal format for a given set of loads. It also introduces fundamental

concepts about optimization under uncertainties which is referred as a branch

of optimization problem when uncertainties are involved in the parameters

or model. Therefore, this thesis does a review the main approaches and the

state-of-art in computation which it is key for understanding and for the im-

plementation of algorithm proposed.

The next chapters are devoted to the author’s contribution in the field

of robust design optimization for mechanical structures.

In chapter 5, we present the robust topology optimization (RTO), which

is mathematically formulated for simultaneously addresses optimization and

robustness analysis. This strategy combines deterministic topology optimiza-

tion algorithm with stochastic spectral methods for a non-intrusive propaga-

tion of uncertainties which are associated with loads that can be in either

concentrated or uniformly distributed and structural stiffness, such as, mater-

ial properties or structure geometry. The use of spectral methods in turn leads

to significant computational reducing when compared with Monte Carlo simu-

lation which involve multiple assessments and inversions of the global stiffness

matrix. Also, an efficient sensitivity analysis is developed and integrated to
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solve the robust topology optimization problem.

In chapter 6, it is provided a detailed treatment of elementary numerical

examples of applications using the proposed RTO methodology. The analysis is

focused on the optimization of 2D mechanical structures where our discussion

covers the setup of the deterministic and stochastic problems, the representa-

tion of uncertainties, the spatial discretization of random fields and addresses

various numerical results which show the performance and efficiency of the

computational algorithm.

Finally, in chapter 7 are presented the conclusions of the thesis with some

remarks and suggestions for possible future works.
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2
Uncertainty Quantification

Uncertainty Quantification (UQ) is a inter-disciplinary area and lies

at the intersection of branches of physics and applied mathematics. UQ is

concerned with of quantitative characterization, management and reduction

of uncertainties to evaluate the likelihood of a certain outcomes in a given

quantity of interest. When real-world phenomena need to be studied through

of mathematical and computer models, UQ describe a framework to estimate

and predict the impact caused for those uncertainties onto the physics system

response.

UQ addresses two main aspect to develop and analyze the solution

through of numerical methods. i.e., forward problems with uncertain inputs

(propagating of uncertainties in model inputs to model outputs) and inverse

problems (where unknown model inputs are to be estimated from possibly

noisy observations of model outputs) being the latter one will not be considered

in this work.

In this chapter it is presented briefly an overview of fundametal concepts

corncerning to the types of uncertainties, the probabilistic modeling, defini-

tiond of random variables and random fields. Finally it discusses and illustres

some approaches for quantifying uncertaties with conventional methods.

2.1
Definition and basic concepts

The need to make prediction of physical reality is increasing as the

computational science has been revolutionizing but we must know how good

the predictions are. Thus the process of prediction taken on a special meaning

and attention. The systematic treatment of model and data uncertainties and

their propagation through a computational model to produce predictions of

quantities of interest with quantified uncertainty but What are the target
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outputs? What are the principal quantities of interest, or QoI’s?

Quantities of Interest (QoI), specific objectives that can be expressed

as the target outputs of a model (mathematically, they are often defined

by functionals of the solutions and provide focus on the goal of scientific

computation). Before asking whether a model is or is not invalid, we must

specify the quantities we wish to predict, and the situations or scenarios in

which they are to be predicted [1].

It is also important to understand the distinctions between a compu-

tational model, a simulation or analysis, and a mathematical model, which

are an important part of this prediction process. A mathematical model is

an approximate representation of the behaviour and essential aspects of a

real physical system that is based on theoretical hypotheses and empirical ob-

servations thus it presents the knowledge of the system in a usable form. A

computational model uses numerical techniques to disrcete and produce an ap-

proximate solution of a mathematical model. Therefore, a mathematical model

and a computational model are tools which are used to perform an analysis or

simulation.

However, mathematical models generally involve parameters that must

be tuned so that the model best represents the particular system and com-

putational model must use good numerical techniques that can simulate the

continuous behavior of a system inside a computer code. On the other hand,

the experimental observations themselves are often fraught with errors and

uncertainties owing to imperfections in the instruments or the difficulty or

impossibility of acquiring observational data relevant to the problem at hand.

The imperfect mathematical model of reality with the unknown or incom-

plete information on model parameters, with incomplete observational data or

observations delivered by imperfect devices or instruments, and the corruption

of the model itself through the discretization process necessary for computa-

tion, all lead to imperfect paths to knowledge [1], depicted symbolically in

Figure 2.1.

In the scheme of the imperfect path of knowlegde (Figure 2.1), we also

include the UQ to obtain the computational predicition from an engineering

perspective which is the main focus of this study.

2.1.1
Error and Uncertainties

Traditionally, in the area of measurement, the error is defined as the

difference between the value true and the measured value, and uncertainties

as the variation of measured value that would be obtained if the measurement
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Figure 2.1: The Imperfect Paths to Knowledge. (Adapted from [1])

were infinitely repeated (in this case it is assumed as a distribution).

The acuracy of the measurement result, is characterized by measurement

uncertainty (or simply uncertainty), which defines an distribution or interval

around of the measured value. Figure 2.2, show the relation the accuracy (bias)

and the uncertainty also referred to as random error.

True
Value

Measured
Value

bias
(system error)

Measurement
uncertainty

Measurement value

Figure 2.2: Interrelations between the concepts true value, measured value,
error and uncertainty.

The American Institute of Aeronautics and Astronautics (AIAA) Guide

for the Verification and Validation of CFD Simulations [76] defines errors

as recognisable deficiencies of the models or the algorithms employed and

uncertainties as a potential deficiency that is due to lack of knowledge. From

these two definitions imply that error is deterministic in nature and uncertainty

is stochastic or non-deterministic in nature.
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According to Gianluca Iaccarino [77], the latter definition does not

emphasize a distintion between the mathematics and the physics, i.e., the

errors must be defined as the translation of a mathematical formulation into

a computational numerical algorithm and uncertainties as the choice of the

physical models and to the specification of the input physical parameters

required for performing the analysis.

In most cases the errors will be allowed to remain in a computational

model if they are estimated to be within reasonable limits and whose effect

on the results is deemed negligible. These error are known as acknowledged

errors, e.g. (round-off error, discretization error, limited convergence error of

certain iterative numerical algorithm). On the other hand, when the errors

are not recognizable and have no set procedures for finding them. Moreover

they migth continue within the code or computational model. These error are

known as unacknowledged errors, e.g. (computer programming errors or usage

errors, including mistakes and blunders).

Therefore, it is important to distinguish between, ”uncertainty” and

”error” to understand and evaluate contribution in modeling and simulation

and how they should be represented and propagated through the mathematical

model.

For example, Figure 2.3, show a mathematical model for the friction

force (blue line) and data points were taken experimentally (red points), boths

associated with velocity (see [78]). This classical model known as Coulomb

friction model is used to estimate the true friction force, which is formulated

as:

F =

Fc sign(v) if v 6= 0,

Fapp if v = 0 and |Fapp| < Fc.
(2-1)

where F is the friction force, v the velovity and Fapp the applied force on the

body. Fc is the Coulomb sliding friction force defined as Fc = µN being µ is

the coefficient of friction and N the normal load in the contact.

It also can be seen from Figure 2.3, that the Coulomb model does not

represent perfectly the experimental results, which generates an error. This

may be due the several uncertainties that are integrated to the model and we

represented them through a distribution (blue dashed line).

2.1.2
Aleatory and Epistemic Uncertainties

Uncertainty analysis are being adopted due to the need of obtaining

more rigour safety factors, to asses the safe lifetime and quantify the risk
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True
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Measurement
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Figure 2.3: Example of matematical model for the friction force.

involved. Thus, the degree of conservatism in traditioanl enginering design can

be diminished.

Through this analysis we can determine what procediment might be used

when uncertainties are found. For example, uncertainties in the mathematical

modeling can be reduced with a additional knowledge available. On the other

hand, uncertainties that are related with the physical or intrinsic nature can

not. Then, a correct clasification of the uncertainties will help to represent the

behavior of the model that want to approximate.

Although, the entire spectrum of uncertainties is also not known (Figure

2.4), the sources of uncertainties must be appropriately accounted for to

guarantee that the components or systems will continue to perform satisfactory

despite fluctuations. Otherwise, different representations of uncertainty may

yield different interpretations for the given system.

Therefore, due to this limitation a more precise categorization is based on

the distiction according to their fundamental essence. Generally, uncertainties
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Physical

Mathematical Model

Spectrum of Uncertainties

Figure 2.4: Entire spectrum of uncertainties (Adapted from [2]).

can be classified in two categories: as either aleatory or epistemic.

Aleatory uncertainty is also called variability, stochastic uncertainty or

inherent uncertaintiy. It is related with physical phenomena, which are random

by nature and are not strictly due to a lack of knowledge. Therefore it cannot

be reduced. For example:

• Determination of material properties or operating conditions of a physical

system.

• Determination of the pressure field in a fully developed turbulent bound-

ary layer.

• Determination of the wind speed for a wind turbine plant to produce

electric power.

Epistemic uncertaint is a potential deficiency due to a lack of knowledge,

imprecision (vagueness), measurement error and ignorance. It should be noted

that epistemic uncertainty can be reduced by further studies. For example:

• It can arise from assumptions introduced in the derivation of the math-

ematical model or from simplications as surrogates etc.

• The lack of knowledge in the mechanical description of a boundary

condition in a structure.

• The geometrical tolerances induced by the manufacturing process in a

structure.

Figure 2.5, summarizes with a pratical example the two types of uncer-

tainties tha can be identified in a Industrial manipulator robot. These uncer-

tainties will be adressed with differents theories for being characterized.
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- Length and mass of links
- Mathematical model
- Measurement sensors
- Calibration process
- Design decision

Can not be reduced
by adding information.
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Figure 2.5: Classification of uncertainties: Aleatory and Epistemic.

2.1.3
Sources of Uncertainties

Uncertainty arises from different sources in various forms and must be

identified. Thus, the uncertainties should be classified as aleatory, epistemic, or

mixed uncertainites and through of a appropriate mathematical representation

they are charaterized. Variability, vagueness, ambiguity and confusion are some

factors that introduce uncertainties in the simulations and must be treated in

different ways.

When physical systems need to be studied, a useful tool for this is through

of mathematical models but in reality the parameters and model are not

known exactly because they contain uncertainties. Then, model and parameter

uncertainties are the two main sources of uncertainty able to affect the analysis

of physical systems.

Model uncertainty starts from the fact that conceptual models are based

on simple mathematical equations which represent reality but cannot com-

pletely characterize the complex physical systems of any given phenomenon,

usually represents a superposition of errors [79]; [80]. The parametric uncer-

tainty related to the inputs arises from the inability to define exact values for
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certain parameters of the mathematical model [81].

In this study, only parametric uncertainties are addressed due that this

type of uncertainty has the most significant effect on the model response and

needs to be quantified accurately in order for the UQ analysis to be reliable.

Two approaches are found in the literature for the development of parametric

uncertainty analysis: Probabilistic and non-probabilistic approach.

The Probabilistic aproach uses probability theory to model the physical

system uncertainties as random quantities such as random variables, process

random or random fields. Consequently, the model response becomes aleatory

and is calculated using a stochastic solver.

The non-probabilistic approach uses possibility theory to model the

physical system uncertainties when has one value but we don’t know what

it is due to lack of information. Fuzzy, Interval, Evidence and Information-gap

theory are some of the theories used for this analysis. This approach is less

suitable for problems in high stochastic dimension. Usually it is applied only

when the probabilistic approach can not be used [82].

Figure 2.6, illustrates five uncertainty handling theories: Probabilistic,

Fuzzy, Interval, Evidence and Information-gap theory.

Uncertainty analysis

Epistemic uncertainty
(lack human knowledge, reducible)

Probabilistic theory
(Randomness and subjective uncertainty)

Monte Carlo Method
Latin Hypercube
Bayesian Method
Random Process/Random Field
Reliability Method

Aleatory uncertainty
(natural variability, irreducible)

Fuzzy theory
(Ambiguity with ill-defined boundaries)

Derived uncertainty theory
(Human’s subjective uncertainty)

Interval theory
(Bounds on rounding errors)

Information-gap theory
(Immeasurable factors by probability)

Theory to handle
uncertainties

Figure 2.6: Uncertainty Analysis Categories.

Thus, the parametric probabilistic approach is an appropriate method to

describe aleatory uncertainties. In addition, a consistent estimate of the pior

probability distribution of the parameters can be carried out in several ways;
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• The probability distributions are assigned by assumption to the paramet-

ers taking into account experience and wisdom

• Through of extensive measurements of the parameters or when a signific-

ant amount of experimental data is available, the probability distributions

are fitted using several statistical techniques.

• Through of statistical inference, the probability distributions are recon-

structed using measurements of the quantity of interest.

• When few or none experimental data is available, a tool from information

theory can be used e.g. Maximum Entropy Principle.

Some uncertain parameters may have a time-space dependency and this

leads to the necessity of employing random processes or random fields when

they are indexed by a space variable.

2.1.4
Sensivity and Uncertainties analysis

In the this section was addressed the uncertainty analysis whose aims

at identifying and describing the input and output uncertainty of in a given

model, i.e., the probability distributions of the QoIs. It is understood that

the stochastic dimension depends on the number of parametric uncertainty

that will be represented in the model and as this number increases the com-

putational cost as well. However, not all uncertainties need to be represented

because their influence in some cases does not cause greater variability on the

model output.

Sensitivity analysis describes the relation between the inputs and outputs

of model, i.e., it allows to identify and predict how the variability in an output

QoIs is connected to an input in the model and which input sources will

dominate the response of the system.

Therefore, the sensitivity analysis is an important and useful tool for

model refinement, once the most influential parameters have been identified,

the remaining parameters can be considered without uncertainty, leading to a

model with a lower stochastic dimensional input. This refined model can then

be used for other more accurate and efficient analysis [77].

Sensitivity analysis is often based on the concept of sensitivity derivat-

ives, the gradient of the output of interest with respect to input variables.

2.1.5
Verification and Validation

The American Institute for Aeronautics and Astronautics (AIAA) has

developed the Guide for the Verification and Validation (V&V) of Computa-
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tional Fluid Dynamics Simulations [76]: define Verification as the process of

determining that a model implementation accurately represents the developer’s

conceptual description of the model and Validation as the process of determin-

ing the degree to which a model is an accurate representation of the real world

for the intended uses of the model.

From this definition, we can characterize them in terms of two questions:

Verification (are we solving the equations correctly?):

• Estimates the errors (due to discretization, iteration, and computer round

off) in the computational model implementation of the mathematical

model.

• Compares the several numerical methods used in the computational code

to exact analytical results.

Validation (are we solving the correct equations?):

• Estimates the magnitude of the difference between the computational

model response and physical phenomenon or quantity of interest.

• Statistical comparisons of model results with experimental results care-

fully obtained from the real system.

Finally, we also can represent a relation for V&V similar to the indic-

ated for the error and uncertainty, i.e., verification makes a reference for a

mathematical context while validating for a physical context.

Taking the last example of friction force model 2.3, we can show a possible

notion of V&V. In the literature, the Coulomb model is not the only model

used to represet the friction force, there are another models that can represent

better the experimental results. Figure 2.7, present the Coulomb-Viscous and

Static-Coulomb-Viscous friction model and whose equations are the following.

F =

Fc sign(v) + Fvv if v 6= 0,

Fapp if v = 0 and |Fapp| < Fc.
(2-2)

F =


Fapp if v = 0 and |Fapp| < Fc

Fc sign(v) + Fvv if v 6= 0,

Fs sign(Fapp) if v = 0 and |Fapp| ≥ Fc.

(2-3)

We can see that the latter model (b), has a minor error because it

covers more points of the experimental result. The implementation of this

mathematical model to a computatational code leads to a verification being

this as a mathematical exercise. However, when looking for other models to
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a)

b)

Figure 2.7: Coulomb-Viscous (a) and Static-Coulomb-Viscous (b) friction
model.

have a better approximation we are doing a validation being this as a physical

exercise.

Through of V&V, and comparing the simulation and experiment results

a correct model can be found to reduce the error even more and so we would

be so close to the real model. Figure 2.8 show the Stribeck friction model [83]

and whose equation is as follow

F =


Fapp if v = 0 and |Fapp| < Fc(
Fc + (Fs − Fc) e−(|v|/vs)2

)
sign(v) + Fvv if v > 0,

Fs sign(Fapp) if v = 0 and |Fapp| ≥ Fc.

(2-4)
The Stribeck friction model to reach a better agreement between simu-
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Figure 2.8: Stribeck friction model.

lation and experiment. From the figure 2.8, the reader can see the comparison

between experimental results and the responses of the model, where we note

that the improved model provides more plausible result.

Finally, the computational model is considered acceptable if the admiss-

ible range for the experimental value (represented by red line) is contained

within the reliability envelope around the simulation (blue dashed line).

2.2
Preliminary definitions and notation

Consider the triplet (Ω,F, P ), where Ω is called the sample space, F a

σ-field over Ω, and P denotes the probability measure.

The sample space Ω is a set which contains all possible outcomes (events)

for a certain random experiment. An elementary event belonging to space Ω is

denoted by ω. The sample space may contain a number of events that is finite

or infinite (countable or uncountable).
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Let F be an non-empty collection of subsets of Ω, but not all of the

outcomes are of interest so that, in a probabilistic context. We will only focus

in a collection of relevant outcomes for a random experiment, which is called

σ−field on Ω satisfying the following conditions:

• ∅ ∈ F and Ω ∈ F

• If A ∈ F, then Ac ∈ F

• If A1, A2, . . . ,∈ F, then
∞⋃
i=1

Ai ∈ F and
∞⋂
i=1

Ai ∈ F (2-5)

The probability measure is a function P : F 7→ [0, 1] ⊂ R which indicates

the level of expectation that a certain event in F occurs.

• 0 ≤ P (A) ≤ 1,∀A ∈ F

• P (Ω) = 1

• For A1, A2, . . . ,∈ F and Ai ∩ Aj = ∅,∀i 6= j

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (2-6)

Note that P (∅) = 0 (empty set have probability zero).

Throughout this thesis, random variables are denoted by upper case

letters X(ω), while their realizations are denoted by the corresponding lower

case letters, e.g. x. Moreover, bold upper and lower case letters are used to

denote random vectors, e.g. X = {X1, . . . , Xn} and their realizations, e.g.

x = {x1, . . . , xn}.

2.2.1
Random Variables

In many random experiments the outcome of the experiment are not ne-

cessarily numbers, but it is always of interest that has a numerical representa-

tion even if we do not know precisely what mechanism drives the experiments.

Many problems are associated with random variable X, e.g. when tossing a

coin we get two possible outcomes.

A real random variable X on the probability space (Ω,F, P ), is a mapping

X : Ω 7→ DX ⊂ R. Then, X is a R-valued random variable, where usually it is

denoted a realization of X by X(Ω).

The image X(Ω) of Ω under X is a countable or non countable set DX ,

i.e.,X−1(x) = {ω ∈ Ω : X(ω) = x} ∈ F orX−1(x) = {ω ∈ Ω : X(w) ≤ x} ∈ F,

for all x ∈ R respectively.

The cumulative distribution function, or simply distribution function, of

a random variable X is defined by the collection of the probabilities
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FX(x) = P
(
X−1(〈−∞, x])

)
= P (X ≤ x) = P ({ω : X(ω) ≤ x}) (2-7)

where FX is the distribution function of X.

The distribution function is right-continuous and is monotone non-

decreasing whit range [0, 1]. In addition,

lim
x→+∞

FX(x) = 1, lim
x→−∞

FX(x) = 0

It yield the probability that X belongs to an interval [a, b〉, [a, b] or 〈a, b]
for all a〈b, That is,

P (ω : a ≤ X(ω) < b) = FX(b)− FX(a) + P (x = a)− P (x = b)

P (ω : a ≤ X(ω) ≤ b) = FX(b)− FX(a) + P (x = a)

P (ω : a < X(ω) ≤ b) = FX(b)− FX(a)

Moreover, we obtain the probability that X is equal to a number

P (X = x) = FX(x)− lim
ε→0

FX(x− ε)

For continuous random variable its distributions function does not have

jumps i.e. FX is absolutely continuous in R; hence

P (X = x) = 0, ∀x ∈ R

or, equivalently
lim
ε→0

FX(x+ ε) = FX(x), ∀x; (2-8)

Therefore, there is a function fX called the probability density function

or density function, is defined as:

fX(x) = lim
ε→0,ε>0

P (x ≤ X ≤ x+ ε)/ε (2-9)

Hence:
fX(x) =

d

dx
FX(x) (2-10)

so,

FX(x) =

∫ x

−∞
fX(y)dy (2-11)

where fX satisfy

fX(x) ≥ 0 ∀x ∈ R,
∫ ∞
−∞

fX(y)dy = 1
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The mathematical expectation will be denoted by E[·] The mean value

(or expected value) of a random variable X is defined by

µX ≡ E[X] =

∫
DX

xfX(x)dx (2-12)

For a real-valued function g(x), the expectation of g(X) is defined as

E[g(X)] =

∫
DX

g(x)fX(x)dx (2-13)

The m-th moment of a random variable X for m ∈ N is defined by

E[Xm] =

∫
DX

xmfX(x)dx (2-14)

The variance, the standard deviation and the coefficient of variation of a

random variable X, is defined as follows:

Var(X) = E
[
(X − µX)2] (2-15)

σX =
√

Var(X) (2-16)

CVX =
σX
µX

, µX 6= 0 (2-17)

The ratio between the standard deviation σX and the expected value

µX of a random variable X is denoted the coefficient of variation CVX . The

coefficient of variation provides a useful descriptor for the variability of a

random variable around its expected value.

The third and fourth order centered moment is called skewness δX and

kurtosis κX repectively and they are denoted by

δX =
1

σ3
X

E
[
(X − µX)3] (2-18)

κX =
1

σ4
X

E
[
(X − µX)4] (2-19)

The covariance of two random variables X and Y is defined as:

Cov[X, Y ] = E [(X − µX) (Y − µY )] (2-20)

The correlation coefficient of two random variables is obtained by nor-

malizing the covariance by the respective standard deviations:

ρX,Y =
Cov[X, Y ]

σXσY
(2-21)

DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Chapter 2. Uncertainty Quantification 39

2.2.2
Random Vectors

A real random vector X on the probability space (Ω,F, P ), is a mapping

X : Ω 7→ DX ⊂ Rn, where n is the size of vector (n > 1). Then,

X is a Rn-valued random vector whose components are random variables,

X ≡ {X1, . . . , Xn} and their realizations are denoted by x = {x1, . . . , xn}.
The joint distribution function of X is the direct extension of the

definition of the random variable distribution function:

FX(x) = P

(
n⋂
i=1

{Xi ≤ xi}

)
, x = {x1, . . . , xn} ∈ Rn (2-22)

The following properties of the joint distribution function of x are:

lim
xi→−∞

FX(x) = 0, i = 1, . . . , n;

xi 7→ FX(x), is increasing, i = 1, . . . , n;

xi 7→ FX(x), is rigth-continuous, i = 1, . . . , n;

In addition,

lim
xi→+∞

FX(x) = FX|i(x|i), i = 1, . . . , n;

is the joint distribution of the Rn−1-valued random vector

X |i = {X1, . . . , Xi−1, Xi+1, . . . , Xn}

The probabilistic description of X is contained in its joint PDF denoted

by fX , thus

fX(x) =
∂nFX(x)

∂x1 · · · xn
(2-23)

The marginalization is a reduction for obtaining derive expression for the

joint density or distribution of a subset of coordinates X. For instance, the

joint distribution of X |i is

FX|i(x|i) = FX (x1, . . . , xi−1,∞, xi+1, . . . , xi) , (2-24)

whereas
fX|i(x|i) =

∫ +∞

−∞
fX (x1, . . . , xi) dxi (2-25)

The marginal distribution of a given component Xi is
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FXi(xi) = FX(∞, . . . ,∞, xi,∞, . . . ,∞) (2-26)

and the marginal density of Xi is obtained by integrating the joint PDF

over all the remaining components

fXi(xi) =

∫
DX|i

fX(x)dx|i (2-27)

where DX|i is the subset of DX defined by {x ∈ DX , xi fixed}.
Similarly, the joint distribution of two component (Xi, Xj) is given by:

fXi,Xj(xi, xj) =

∫
DX|(i,j)

fX(x)dx|ij (2-28)

The expextion of random vector X, is the vector containing the expect-

ation of each component:

µX = {µX1 , . . . , µXn} (2-29)

The covariance matrix of X is a n× n square symetric matrix C

Ci,j = Cov [Xi, Xj] (2-30)

ad the correlation matrix
Ri,j = ρXi,Xj (2-31)

Let Λ be the diagonal matrix containing the standard deviation of each

component of X. Then, the following relation is satisfied

C = ΛRΛ (2-32)

2.2.3
Random Fields

Consider a function X(t, ω) : T ×Ω 7→ Rd with two arguments t ∈ T ⊂ R
and ω ∈ Ω, being T a countable or uncountable index set. Generally, a Rd-

valued stochastic process is a family (or an ensemble) of functions X. Each

function X(·, ω) : t ∈ T 7→ Rd for a specified outcome ω ∈ Ω is called

a sample path or straightforwardly a realization of a deterministic function

X(·, ω); whereas, X(t, ·) : ω ∈ Ω 7→ Rd is a Rd-valued random variable on the

probability space (Ω,=, P ) [84].

If we consider Rd-valued random variables indexed by a spatial coordin-

ate, i.e., x ∈ D ⊂ Rn, n ≥ 1, then, the function H : D × Ω 7→ Rd, is called

Rd-valued random field.

We define L2(Ω, P ) as the Hilbert space of the second-order random

variable (finite second moment E [X2] < ∞) defined on probability space

(Ω,=, P ) equipped with the inner product 〈·,·〉 and associated norm ‖·‖L2(Ω,P ),
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where the expectation operation permits to define an inner product and the

related norm as follows:

〈X,Y 〉 = E [XY ]

‖X‖ =
√

E [X2]
(2-33)

We will focus on a specific class of Rd-valued random field that can be

defined as a curve belonging to the space L2(Ω, P ). It implies that for a fixed-

probability random field, the output H(x0, ω) is a trajectory, i.e., a curve,

whereas, for a fixed-space random field, H(x, ω0) transforms into a Rd-valued

random variable.

Certain properties of random fields are characterized by its statistical

moments using similar formulas in accordance with the definitions of the

moments of the random variable. Thus, the expectation function is given by

the first moment
µH(x) = E [H(x, ω)] , (2-34)

and the variance function by the second moment

σ2
H(x) = E

[
(H(x, ω)− µH(x))2] , (2-35)

The autocovariance is a function that yields the covariance of the field

with itself at pair points and is expressed by

CHH(x1,x2) = E [(H(x1, ω)− µH(x1)) (H(x2, ω)− µH(x2))] , (2-36)

The autocorrelation function is expressed by

RHH(x1,x2) = E [H(x1, ω)H(x2, ω)] , (2-37)

and the correlation coefficient function expressed as

ρHH(x1,x2) = C(x1, ω)/σH(x1)σH(x2), (2-38)

Furthermore, a random field H : D × Ω 7→ Rd is called Homogeneous in the

strict sense (or, for n = 1 called Stationary) if all its probability distribution

functions are invariant under arbitrary translations of index x (but not rotated)

in the parameter space, i.e.,

FH (h1, · · · , hn; x1, · · · ,xn) = FH (h1, · · · , hn; x1 + τ, · · · ,xn + τ) (2-39)

This implies that all the probabilities depend only on the relative location

of the points x at which the samples are extracted, and not on the absolute one.

Accordingly, all the moments of a homogeneous random field are independent

of x.

A random field H : D × Ω 7→ Rd is called homogeneous in the wide

sense if its expectation functions are invariant, i.e., µ (x) is constant and
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the autocorrelation function RHH (x1,x2), or equivalently the autocovariance

CHH (x1,x2), depends only on the distance | x1 − x2 |,i.e.,

RHH(x1,x2) = RHH(| x1 − x2 |) (2-40)

This type of a field is a special case of homogeneous fields, which exhibits

certain symmetry in the domain. Otherwise, it is called a non-homogeneous

random field.

A random field is said to be ergodic if its statistical properties can

be deduced by considering a sample path or a realization over all x or by

considering the whole ensemble at a specific x. This is not feasible for a non-

ergodic field. Moreover, all ergodic random fields are homogeneous, although

not all homogeneous fields are ergodic [85].

Therefore, a random field can be regarded as a generalization of a

stochastic process when indexed by a spatial variable, i.e., one- or multi-

dimensional according to the dimension of x; moreover, if H(x, ·). is a random

variable or random vector for a point fixed x, the random field is called

univariate or multivariate, respectively.

There is a large class of random fields that can be constructed by

imposing homogeneity (strictly or in the wide sense) condition. Examples

include Gaussian, Poisson, and Brownian. However, the last two is not the

focus of this survey.

Gaussian fields are an important family of random fields, exhibiting

the property wherein all its probability density functions are multivariate

normal distributions. These fields are completely characterized only by second-

order statistics, i.e., by their expectation µH(~x), and variance σ2
H(~x), and

autocovariance functions; they are stable under linear combination, and their

marginal and conditional distribution are conveniently computable [86].

Homogeneous non-Gaussian random fields are more challenging to be

characterized, i.e., they are not uniquely determined by their first two mo-

ments; we generally have only a partial second-order description. The unavail-

ability of significant experimental data about the probabilistic characteristic of

the random field has increased the consideration of the Gaussian assumption

[87].

2.2.4
Translation Random Field

Grigoriu proposed a technique for simulating homogeneous (non-

Gaussian) fields according to an autocorrelation function called Grigoriu’s
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translation process theory [88]. This framework, which exhibits mathematical

rigorousness, is wide applicable in engineering and applied science.

Let H(x, ω) be a Rd-valued homogeneous Gaussian field with zero-

expectation, unit-variance, and autocovariance function CHH . The translation

of fields are memoryless nonlinear transformation of the form Z(x, ω) =

g [H(x, ω)], where, Z(x, ω) is a homogeneous non-Gaussian field in the strict

sense with finite variance, and g(·) is a real-valued differentiable function

defined on real line that increases monotonically, i.e.,

g(Hm) < g(Hn) ∀ Hm < Hn, (2-41)

Let g = F−1
Z ◦ Φ; then, Z(x, ω) is obtained through the following non-

linear transformation

Z(x, ω) = F−1
Z ◦ Φ (H(x, ω)) , (2-42)

where F−1
Z (·) denotes the inverse of the prescribed marginal CDF of the non-

Gaussian field Z(x, ω) and Φ is the CDF of the standard Gaussian.

The transformation of Eq.(2-42) exactly matches the target marginal

distribution of Z(x, ω) as

P (Z(x, ω) ≤ z) = P
(
F−1
Z ◦ Φ (H(x, ω)) ≤ z

)
= P (H(x, ω) ≤ Φ−1 (FZ))

= FZ .

(2-43)

Therefore, Z(x, ω) is referred to as a translation field, and its probability

law is completely defined by the covariance function of H(x, ω) and an

arbitrary CDF FZ .

The expectation and variance of the field are

µZ(x) = E [g (H(x1, ω))] =

∫ ∞
−∞

g(h)φ(h)dh, (2-44)

and

σ2
Z(x) = E

[
(g (H(x1, ω))− µZ)2] =

∫ ∞
−∞

[g(h)− µZ ]2 φ(h)dh, (2-45)

respectively, where, φ(h) = (2π)−1/2 exp(−1/2h2) is the standard Gaussian

density function. The autocorrelation function is given by

RZZ(x1,x2) =

∫ ∞
−∞

∫ ∞
−∞

F−1
Z ◦ Φ (H(x1, ω)) · F−1

Z Φ (H(x2, ω))

×φ (x1,x2; ρHH (x1,x2)) dx1dx2

(2-46)

where,

φ (x1,x2; ρHH (x1,x2)) = [2π(1− ρHH)]−1/2 exp

(
−
(
x2

1 + x2
2 − x1x2ρHH

)
2π (1− ρHH)2

)
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is the density of the bivariate standard Gaussian [89].

In general, the autocovariance function of Z(x, ω) is not equal to CHH

because the autocovariance function of H(x, ω) is not preserved by the trans-

formation defined by Eq.(2-42). Numerous cases are available where marginal

changes to the covariance function can be omitted; e.g., when FZ is the CDF

of a symmetric and standard beta distribution. However, another case, the

covariance functions of H(x, ω) and Z(x, ω) , is very different and cannot be

omitted.

Let Z̃(x, ω) be a normalized version of Z(x, ω) such that

Z̃(x, ω) =
Z(x, ω)− µZ

σZ
(2-47)

Then, the autocorrelation function of Z̃(x, ω) is denoted as

RZ̃Z̃(x1,x2) =
RZZ(x1,x2)− µ2

Y

σ2
Z

(2-48)

Note, that the autocovariance function of H(x, ω) satisfies | RZZ |≤ 1 ,

and according to Grigoriu [89], for RHH = 0 and RHH = 1 imply RZ̃Z̃ = 0

and RZ̃Z̃ = 1, respectively. In addition, RZ̃Z̃ and RHH satisfy the inequality

| RZ̃Z̃ |≤| RHH | ∀ | x1 − x2 |∈ D, and RZ̃Z̃ is bounded, i.e., −1 ≤ R∗
Z̃Z̃
≤

RZ̃Z̃ ≤ 1 , where

R∗
Z̃Z̃

=
E [g (H(x, ω)) g (−H(x, ω))]− µ2

Z

σ2
Z

(2-49)

The value of R∗
Z̃Z̃

corresponding to RHH = −1 can be attained if, for

example, g is an odd function (odd memoryless transformation), in which case

µZ = 0 and E [g (H(x1, ω)) g (−H(x1, ω))] = −σ2
Z .

For the pair {FZ , RZ̃Z̃}, with RZ̃Z̃ assuming values outside the range[
R∗
Z̃Z̃
, 1
]
, the translation functions do not exist. The requirement of RZ̃Z̃ ∈[

R∗
Z̃Z̃
, 1
]

is necessary but not sufficient for the existence of translation functions

[90]. The existence of translation functions also requires that the image RHH

of RZZ in the Gaussian space must be positive definite.

The relationship between RHH and RZZ , i.e., RHH = 6
π

sin−1
(
RHH

2

)
,

is determined for a marginal uniform distribution of non-Gaussian field with

parameters [−1, 1] [91, 92]. Figure 2.9. reveals a low distortion of the auto-

covariance function of Z(x, ω) owing to the transformation. Moreover, note

that for all the points, the values of RZZ within the interval [−1, 1] match

one-to-one with the RHH values.
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Figure 2.9: Relationship between autocreation function of non-Gaussian and
Gaussian fields for a marginal uniform distribution.

2.2.5
Random Field Discretization

In the previous section, we described certain properties and types of

random fields. It is necessary to represent them according to the probability

distribution to model uncertain system properties. The procedure to represent

a continuum-parameter random field in terms of a finite set of random variables

is known as random field representation. Discretization methods can be divided

into two main types: methods that seek the representation of Gaussian fields

and those that seek the representation of non-Gaussian fields.

There are several methods for the discretization of Gaussian fields, which

are grouped into three main categories (see e.g. [93]): point discretization,

average discretization, and series expansion. In this work, we will focus on the

series expansion method, which employs a finite series expansion of random

variables and deterministic spatial functions to represent the field in an exact

manner. For practical implementation, the approximation is obtained as a

truncation of the series (finite number of terms).

The group of series expansion methods includes the orthogonal series

expansion [94], expansion optimal linear estimator (EOLE) [95], perturbation

methods [96], and Karhunen-Loève (K-L) expansion [97, 98], whose effective-

ness in reducing dimensionality of the random field representation is highly

effective. Therefore, the K-L expansion will be amply explained in the next

chapter.

DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Chapter 2. Uncertainty Quantification 46

2.3
Uncertainties in structural analysis

Structural analysis involves the computation of the response of the struc-

ture to the design load and imposed deformations that it will be required to

resist during its lifetime. In order to develop this analysis is necessary the defini-

tions of basic input variables (loading, material properties, geometry), response

variables (deformation, strain, stresser) and the relationships between these

quantities. For this razon, the improving mathematical models, constitutive

laws and the evolution of computational tools continues to be the attention of

several researches and with the development of processor faster and powerful,

the numerical constraint is no longer a problem.

However, this constitutive models and the constant enhancement of the

computational tools does not solve the problem of the uncertainties associated

to the parameters. As these uncertainties produce variation over space and

time domains, the response of the struture are accordingly affected by theses

parameters.

In order to work around this problem, it is traditionally used an average

characteristics, i.e., a single design point, considering it sufficient to represent

the response and at best lead to rough representations of the reality. Figure

2.10, show the response of a simulation with respect to single design point

which becomes it inadequate and unrealistic when characterizing structures

under varying loads or material properties. For instance, we cannot cover all

types of response with a single simulation, would need more one.

Therefore, the modeling of uncertainties associated to the parameters

for representing the randomness and spatial variability become extremely

important and it is one of the tasks of stochastic or probabilistic model to

obtain better realistic simulation.

Probabilistic models are used for representing different types of uncer-

tainties in mechanical structures. Basic structural parameters as for example

magnitude and direction of concentrated load, lengths, stiffness of joint and

supports, etc. are assumed to be discrete, allowing them to be represented as

radom variables. We refer to as discrete quantities when they are concentrated

at discrete points in space.

However, there are others parameters that are not concentrated at a

point, they are distribuited in the space. Some examples are distributed loads,

material properties (Young’s nodulus, strength) and geometric properties

(width, thickness) they vary over the length, area or volume and cannot be

represented as random variables. Figure 2.11, show uma simple beam where

its Young’s modulus fluctuates over the length (blue line) and also when the
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Figure 2.10: Deterministic Conception versus Concept including Uncertainties.

variation is only across the sample (green line). Then, the mathematical model

of the variation over the length, parameterized by the correlation between

different locations, can be characterized by means of random process. Thus,

analysis of the random process is a realistic approach that can produce a whole

design space instead of just a one-point result.

For the sake of simplicity, sometime the variability of Young’s modulus

is considered as a random variable, i.e., it would be seen as several beams but

if the Young’s modulus fluctuates over the length, it causes randomness in

the strcutural response. Then, for representing the uncertainties in mechanical

structures, we must know the nature of its random variability and classify

them as well variation across samples or variation over space. If the Young’s

modulus consider also fluctuates over the thickness and height of beam, then

it will be a multidimensional spatial and not only along one-dimensional, then

in this case its characterization will be by means of a random field.

Thus, this whole procedure will allow the structural designer to select

materials and member sizes that provide the structure with adequate strength

and ensure that the chances of collapse are acceptably small.

2.4
General Framework for UQ

In this thesis, we follow a general framework for UQ presented and

formalized in the past few years at the R&D Division of EDF ([99]; [100];[3])
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Figure 2.11: Simple beam where the Young’s modulus E, fluctuates over the
length.

together with various companies and academic research groups. This general

framework is sketched and summarized in Figure 2.12.

Computational Model
Moments

Probability of failure

Response PDF

Random Variables/Fields

Step 2

Quantification of

source of uncertainty

Step 1

Model(s) of the system

Assessment criteria

Step 3

Uncertainty propagation

Step 4

Sensitivity Analysis

- Material properties
- Geometry
- Loading

Figure 2.12: General sketch for probabilistic uncertainty analysis (Adapted
from [3])

In the above figure, four steps are described as follow:

• Step 1: consists in defining the model as well as associated criteria (e.g.

safety criteria) that should be used in order to assess the system under
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consideration. This step gathers all the ingredients used for a classical

deterministic analysis of the physical system to be analyzed.

• Step 2: This step consists in identifying and characterizing the uncertain

input parameters and modelling them by random variables or random

fields.

• Step 3: consists in propagating the uncertainty in the input parameters

through the deterministic model, i.e. characterizing the statistical prop-

erties of the output quantities of interest.

• Step 4: consists in hierarchizing the input parameters according to their

respective impact on the output variability. This study, known as sens-

itivity analysis, is carried out by post-processing the results obtained at

the previous step.

The present thesis is focused in this four step to quantify uncertainties

in mechanical structures.

2.4.1
Probabilistic Models

Let M : Rn 7→ R, n ≥ 1 be the mathematical model of mechanical

system, which can be analytical o more generally algorithmic (e.g. a finite

element model), which describe a deterministic mapping, i.e.,

M : x ∈ D ⊂ Rn 7→ y =M(x) ∈ R (2-50)

where, x = {x1, . . . , xn} is the vector of input parameters and y is the quantity

of interest (QoI) in the analysis called the model response.

The function M has generally no explicit expression and can be known

only by pointwise evaluations: y(i) = M(x(i)) for each input vector x(i) (e.g.

each run of computer program). In this sense, M can be referred to as a

black-box function that takes input values and return a result.

In the fields of mechanical structure, the vector of input parameters x

typically may represent loading, material properties and geometrical proper-

ties. In contrast, the quantity of interest y migth for instance represent the

displacements, strains or stresses at the nodes of a finite element mesh, etc.

In this thesis only models that have a single (scalar) quantity of interest

are studied and used in the application of the proposed algorithm.

2.4.2
Uncertainty propagation

Consider that the model x 7→ y =M(x) of a mechanical physic include

uncertainties in the input parameters and their probabilistic description is
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modelled in term of a random vector X = [X1, . . . , Xn] with prescribed

joint probability density function fX . Hence, the model response (quantity

of interest) becomes a random variable defined by:

Y =M(X) (2-51)

When the input parameters are assumed statistically independent, this

joint distribution is equivalently defined by the set of marginal distribution

of all input parameters, i.e., {fXi , i = 1, . . . , n}. Otherwise, if dependence

exists, the copula formalism may be used. Figure 2.13, show the uncertainty

propagations through of a generic computational model.

Random Vector of
input parameters

Random model
responseProbabilistic-Computational

Model

Geometry

Material property

Loading

Analytical formula

Finite Elements Model

Finite Volume Model

Strain, stresses

Displacements

Temperature, etc

Figure 2.13: General sketch for uncertainty propagation (Adapted from [4])

The uncertainty propagation study the randomness of model response

Y , through of its joint probabilistic density function fY (y). Note, that this

function is not always directly computable except in some simples cases.

The uncertainty propagation step is needed to transform the measure

of uncertainty on the inputs onto a measure of uncertainty on the outputs of

the pre-existing model. Depending on the information obtained in the model

response, its analysis can be treated through three types according [3] (see

Figure 2.14).

From Figure 2.14, the three types of model response are described as

follow:

• Second moment methods: Compute and analyze the mean value µY and

standard deviation σY of model response.

• Structural reliability methods: Investigate the tails response probability

density function by computing the probability that the response exceeds

a given threshold (probability of failure).

• Spectral methods: Compute and analyze the complete probability density

function of the response in an intrinsic way by using suitable tools of

functional analysis.
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Computational Model

Random Variables/Fields
Spectral Methods

Response Variability

Reliability Methods

Probabilistic-Computational

Model

- Material properties
- Geometry
- Loading

Figure 2.14: Classification of the types of model response of uncertainty
propagation (Adapted from [3])

The equation of mathematical model used for representing the mechan-

ical system can be used of two types Non-intrusive and Intrusive approach.

(see Figure 2.15)

Non-Intrusive method

The non-intrusive method requires no modification in the deterministic

model and only require (multiple) solutions of the original model which

can be treated as a black box. The main advantages of this method is the

simplicity for obtaining the response model through of repeated simulations

using deterministic solver on limited number of samples and the embarrassingly

parallel computing possibilities. In addition, comercial softwares can used to

propagate such uncertainties due that only we need the response model.

Intrusive Models method

The intrusive method require the formulation and solution of a stochastic

version of the original model, i.e., the substitution of all uncertain variables

in the governing equations. The main disavantages of this method may be

the dificult for formultating the equation and the high computational cost for

obtaining the response of quantity of interest for many problems. Besides, the

sources of most commercial codes are not accessible, and thus, it is not feasible

to use.
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Probabilistic-Computational
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Output variableInput variable
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b)
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Probabilistic-Computational
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’

Figure 2.15: a) Non-Intrusive and b) Intrusive models

2.5
Sampling Methods

Sampling methods are advantageous because can be used directly

through of experiments to obtain a probabilistic information of model re-

sponse whose equations cannot be solved easily by known procedures. Sampling

methods have been intensively used in uncertainty analysis due that is straight-

forward to apply and convergence rate is independent of number of parameters.

2.5.1
Monte Carlo Simulation (MCS)

The Monte Carlo simulation is known as a simples random sampling

method to solve problems that might be deterministic in principle [101]. This

method is a powerful computerized mathematical tool and consists in making

realizations based on pseudo-randomly generated sampling sets for determining

the approximate probability of the outcome of a specific event.

Monte Carlo simulation can be used in order to estimate the mean value

µY and the standard deviation σ2
Y of a response quantity Y . Then, a sample

set of independent realizations {x(1), . . . ,x(N)} of the input random vector X

is generated from the joint probability density function fX . To each of these

realization corresponds a unique solution of the model y(k) =M(x(k))

Then, the estimators of the second order moments of Y are as follow:

µ̂Y =
1

N

n∑
k=1

M(x(k)) (2-52)

σ̂2
Y =

1

N − 1

n∑
k=1

(
M(x(k))− µ̂Y

)2
(2-53)

One of the advantages of Monte Carlo Simulation is the minimum effort
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developed to propagate the uncertanties through of invidual deterministic

model realization, i.e., it is only sufficient to resolve the deterministic model

(applicable to nonlinear models).

However, the rate of convergence of Monte Carlo Simulation is the

main limitation because depende on of number N of realizations, i.e., the

convergence of variance estimates behaves as O(N−1/2) which is relatively low

compared to the convergence of other methods, e.g., spectral methods. Thus

many model evaluations are usually required in order to reach a good accuracy

requiring a large computational effort.

High order moments can also be computed through the Monte Carlo

Simulation, but their convergence is slower than the mean and standard

deviation. Several sampling methods have been proposed in order to accelerate

the convergence of MCS, but these are generally insufficient to provide accurate

characterization of uncertainties systems.

2.5.2
Latin Hypercube Sampling (LHS)

Latin Hypercube Sampling was first proposed by McKay [102] and is one

the widely used random sampling method for Monte Carlo-based uncertainty

quantification and reliability analysis.

In this method, the points are randomly generated in a square grid across

the design space, but no two points share the same value. (i.e., so no point

shares a row or a column of the grid with any other point). A Latin hypercube

is the generalisation of this concept to an arbritray number of dimension.

LHS operates by dividing the distribution function FXi of each variable

Xi, i = 1, . . . , n, into N non-overlapping intervals of equal probability 1/N .

One value from each interval is selected at random according to the

probability density in the interval. The N values obtained for X1 are randomly

paired with N other values of X2. These N pairs are combined in a random

manner with the N values of X3 to form N triplets, and so on, until a set of

N n-tuples is formed. This set of n-tuples is a LHS. Figure 2.16, illustrates an

LHS in a two-dimensional space with sample size N = 5.

LHS represents a multivariate sampling method that guarantees non-

overlapping designs. Several examples show that more than 50% of the com-

puter effort is saved through this method. Figure 2.17, show the LHS are

generated in such a way that each sample is randomly generated, but no two

points share input parameters of the same value as its Monte Carlo sampling

counterpart.
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1

Figure 2.16: Basic Concept of LHS: Two Variables and Five Realizations

Figure 2.17: Monte Carlo Simulation with LHS and without LHS

Therefore, the LHS reduce the number of samples required for a given

accuracy, but the number of analyses still remains too high for practical use,

particularly in the case of computationally demanding analysis codes
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3
Stochastic Spectral Methods

This chapter explores two approaches to forming stochastic expansions:

the Polynomial Chaos expansion to propagate uncertainties, which employs

bases of multivariate orthogonal polynomials, and the Karhunen-Loeve expan-

sion, which provides an representation of random field in term of countable un-

correlated random variables. Also, it present several non-intrusives methodos

for computing the coefficients of polnomial chaos. Both approaches capture

the functional relationship between a set of output response metrics and a set

of input random variables.

3.1
Spectral Methods

Let ξξξ = {ξi(ω)}Ni=1 be a set of N independent and identically distributed

random variables for ω. We denote L2(Ω, P ) the space of second-order random

variable defined on (Ω,F, P ) with the inner product 〈·, ·〉 and associated norm

‖ · ‖L2(Ω,P ).

Let X(w) be a second-order random variable (finite second moment)

belonging to the space:

L2(Ω, P ) =

{
X : Ω→ R

∣∣∣ E[X2] ≡
∫

Ω

X2dP (w) < +∞
}
, (3-1)

where E[·] is the expected operator. This space is an Hilbert Space with respect

to the inner product between two random variables X(w) and Y (w) belonging

to L2(Ω, P ):

〈X(ω), Y (ω)〉 ≡ E[Xω)Y (ω)] ≡
∫

Ω

X(ω)Y (ω)dP (ω) (3-2)

This inner product induces the norm:

‖X‖2
L2(Ω,P ) = 〈X2〉 (3-3)
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Generally, spectral representation of random functionals aim at finding

a series expansion of the form:

X(ω) =
∞∑
j=0

ujΨj(ξξξ(w)) (3-4)

where {Ψj(ξξξ)}∞j=0 is the set of basis functions and {uj}∞j=0 is the set of

coefficients to be determined. Therefore, stochastic spectral expansion may

be seen as a particular case of the response surface methods where the

approximation of the functional is given in terms of orthogonal polynomials

basis.

3.2
Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) theory was first introduced in the

form of Wiener’s Hermite-chaos by N. Wiener, in 1938 [103]. It is also called

Homogeneous Chaos and was also developed as a framework by Ghanem and

Spanos [104].

For a sequence of centered, normalized and mutually orthogonal Gaussian

random variables {ξi}∞i=1, define Γ̂p to be the space of polynomials in {ξi}∞i=1

having a polynomial degree of less than or equal to p ∈ N. Furthermore, define

Γp ⊂ Γ̂p to be the set of polynomials, which belong to Γ̂p and which are

orthogonal to Γ̂p−1. The space spanned by Γp shall be denoted by Γ̃p. Then,

the Cameron and Martin theorem [105] yields:

Γ̂n = Γ̂n−1 ⊕ Γ̃n, L2(Ω, P ) =
∞⊕
i=0

Γ̃i (3-5)

Here, the subspace Γ̃p of L2(Ω, P ) is called the p-th Homogeneous

Chaos, whereas Γp is called the Polynomial Chaos of order p. Therefore, The

Polynomial Chaos of order p consists of all polynomials of order p, involving all

possible combinations of the random variables {ξi}∞i=1. Note that since random

variables are functions, the polynomials chaoses are functions of functions, and

are thus regarded as functionals.

This expansion technique employs Hermite polynomials based on inde-

pendent Gaussian random variables ξ which are associated with an individual

random event w ∈ Ω.

Thus, a general second-order Gaussian random response X(ω) ∈
L2(Ω, P ), viewed as a function of w as the random event, admitted a poly-
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nomial chaos expansion represented in the form:

X(ω) = u0Γ0 +
+∞∑
i1=1

ui1Γ1(ξi1(ω))

+
+∞∑
i1=1

i1∑
i2=1

ui1i2Γ2(ξi1(ω), ξi2(ω))

+
+∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω))

+
+∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4Γ4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,

(3-6)

The second-order random process from (3-6) represents the infinite space

of a complete multidimensional orthogonal polynomial space. Γp(ξi1 , . . . , ξip)

denotes the Hermite-Chaos of order p in the variables (ξi1 , . . . , ξip), where the

Γp are set orthogonal Hermite polynomials in term of the standard Gaussian

random variable ξ with zero expected and unit variance, which constitutes

a complete basis in the Hilbert space L2(Ω, P ). ui1 , . . . , uip are deterministic

constants.

According to the theorem by Cameron and Martin [105], it can approx-

imate any functionals in L2(Ω, P ) and as consequence it converges in the mean-

square L2(Ω, P ) sense, i.e.:

lim
p→∞

E[(u0Γ0 + · · ·+
+∞∑
i1=1

· · ·
ip−1∑
ip=1

ui1··· ipΓp(ξi1 , . . . , ξip)−X)2] = 0 (3-7)

Therefore, PCE provides a means for expanding second-order random

processes in terms of Hermite polynomials. Second-order random processes

are the ones with finite variances, and this applies to most physical processes.

Then, the pth order polynomial chaos expansion consists of all orthogonal poly-

nomials of order p, including any combination of {ξi}∞i=1; furthermore, Γp⊥Γq

for p 6= q. This orthogonality greatly simplifies the procedure of statistical

calculations, such as moments. Thus, PCE could be used to approximate non-

Gaussian distributions using a least-square scheme: for example in order to

compare the skewness and kurtosis distributions. By construction, the chaos

polynomials whose orders are greater than one have vanishing expectation:

E[Γp>0] = 0 (3-8)

The original Wiener polynomial chaos expansion is composed of continu-

ous integrals and were replaced by summations to get a discrete version in
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(3-6). The general expression to obtain the multi-dimensional Hermite poly-

nomials of order n is given by:

Γn(ξi1 , . . . , ξin) = e
1
2
ξξξTξξξ(−1)n

∂n

∂ξi1 · · · ∂ξin
e−

1
2
ξξξTξξξ (3-9)

Therefore, Hermite-Chaos provides a means for expanding not only

second-order random variables but also random fields in terms of orthogonal

polynomials. Second-order random field is a generalization of random processes

whose variance is also finite.

For notational convenience and in order to facilitate the manipulation of

the PC expansion, we rely on an univocal relation between the Γ() and a new

functionals Ψ(). Then, the expression (3-6), can be rewritten as:

X(ω) =
+∞∑
j=0

ûjΨj(ξξξ) ξξξ = {ξ1, ξ2, . . .} (3-10)

Thus, this results is a more compact expression where there is a one-to-one

correspondence between the functionals Γp(ξi1 , . . . , ξip) and Ψj(ξξξ), and also

between the coefficients ui1··· ip and ûj. The deterministic expansion coefficients

ûj are simply called PC coefficients.

The expansion above involves an infinite collection of ξi. In practice, it is

necessary to restrict the representation to a finite number of random variables.

Specifically, the PC of dimension N and order p is the subspace of Γ̃p generated

by the elements of Γp that only involve N independent random variables

ξ1, . . . , ξN . Therefore, each of the Ψj(ξξξ) are multi-dimensional polynomials

which involve products of the one-dimensional Hermite polynomials.

Let {ψik(ξk)}Nk=1 be the one-dimensional Hermite polynomials of order

ik less than equal to p whit {ψ0(ξk)}Nk=1 ≡ 1, and let λ = i1 + · · · + iN be a

multi-index such that 0 ≤ λ ≤ p. Then Γp can be represented as:

Γp(ξi1 , . . . , ξip) = Ψj(ξξξ) =
N∏
k=1

ψik(ξk) λ = p (3-11)

Furthermore, the polynomial basis {Ψj} of Hermite-Chaos forms a com-

plete orthogonal basis of L2(Ω, P ), i.e.:

〈Ψi,Ψj〉 = E[ΨiΨj] = 〈Ψ2
i 〉δij (3-12)

where δij is the Kronecker delta and the inner product in the Hilbert space is

determined by the support of the Gaussian variables.

In the one-dimensional case, we can expand the random response U using

orthogonal polynomials in ξ, which has a known probability distribution such

as unit normal, N (0, 1). If X is a function of a normally distributed random
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variable Y , which has the known mean µY and variance σ2
Y , ξ is a normalized

variable:
ξ =

X − µY
σY

(3-13)

Generally, the one-dimensional Hermite polynomial are defined by:

ψp(ξ) = (−1)p
ϕ(p)(ξ)

ϕ(ξ)
(3-14)

where ϕ(p)(ξ) is the p(th) derivative of the normal density function, ϕ(ξ) =
1√
2π
e−ξ

2/2. This is simply the single-variable version of equation 3-9 For

example, the one-dimensional Hermite polynomials are:

Ψ0(ξξξ) = ψ0(ξ1) = 1

Ψ1(ξξξ) = ψ1(ξ1) = ξ

Ψ2(ξξξ) = ψ2(ξ1) = ξ2 − 1

Ψ3(ξξξ) = ψ3(ξ1) = ξ3 − 3ξ, . . .

In the case of a two-dimensional expansion, we can write

X(ω) = u0Γ0 +
2∑

i1=1

ui1Γ1(ξi1) +
2∑

i1=1

i1∑
i2=1

ui1i2Γ2(ξi1 , ξi2)

+
2∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3Γ3(ξi1 , ξi2 , ξi3)

+
2∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4Γ4(ξi1 , ξi2 , ξi3 , ξi4) + . . . ,

or alternatively:

X = u0Γ0 + u1Γ1(ξ1) + u2Γ2(ξ2)

+u11Γ2(ξ1, ξ1) + u21Γ2(ξ2, ξ1) + u22Γ2(ξ2, ξ2)

+u111Γ3(ξ1, ξ1, ξ1) + u211Γ3(ξ2, ξ1, ξ1) + u221Γ3(ξ2, ξ2, ξ1)

+u222Γ3(ξ2, ξ2, ξ2) + u1111Γ4(ξ1, ξ1, ξ1, ξ1) + . . . ,

and using the simplified form (3-10):

X = û0Ψ0(ξξξ) + û1Ψ1(ξξξ) + û2Ψ1(ξξξ)

+û3Ψ3(ξξξ) + û4Ψ4(ξξξ) + û5Ψ5(ξξξ)

+û6Ψ6(ξξξ) + û7Ψ7(ξξξ) + û8Ψ8(ξξξ) + û9Ψ9(ξξξ) + · · ·

Then calculating the multi-dimensional basis polynomials over two random
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dimensions, we get:

Ψ0(ξξξ) = ψ0(ξ1)ψ0(ξ2) = 1

Ψ1(ξξξ) = ψ1(ξ1)ψ0(ξ2) = ξ1

Ψ2(ξξξ) = ψ0(ξ1)ψ1(ξ2) = ξ2

Ψ3(ξξξ) = ψ2(ξ1)ψ0(ξ2) = ξ2
1 − 1

Ψ4(ξξξ) = ψ1(ξ1)ψ1(ξ2) = ξ1ξ2

Ψ5(ξξξ) = ψ0(ξ1)ψ2(ξ2) = ξ2
2 − 1

Ψ6(ξξξ) = ψ3(ξ1)ψ0(ξ2) = ξ3
1 − 3ξ1

Ψ7(ξξξ) = ψ2(ξ1)ψ1(ξ2) = ξ2
1ξ2 − ξ2

Ψ8(ξξξ) = ψ1(ξ1)ψ2(ξ2) = ξ2
2ξ1 − ξ1

Ψ9(ξξξ) = ψ0(ξ1)ψ3(ξ2) = ξ3
2 − 3ξ2, . . .

and, finally, the expansion of X is given by:

X = û0 + û1ξ1 + û2ξ2 + û3(ξ2
1 − 1) + û4(ξ1ξ2) + û5(ξ2

2 − 1) + û6(ξ3
1 − 3ξ1)

+û7(ξ2
1ξ2 − ξ2) + û8(ξ2

2ξ1 − ξ1) + û9(ξ3
2 − 3ξ2) + . . . ,

X = û0 + û1ξ1 + û2ξ2

+û3(ξ2
1 − 1) + û4(ξ1ξ2) + û5(ξ2

2 − 1)

+û6(ξ3
1 − 3ξ1) + û7(ξ2

1ξ2 − ξ2)

+û8(ξ2
2ξ1 − ξ1) + û9(ξ3

2 − 3ξ2) + . . . ,

3.2.1
Truncated PC Expansion

When the examined system contains multiple uncertain parameters,

a single variable polynomial basis is no longer sufficient to perform the

polynomial expansion. Multi-dimensional polynomials must be constructed to

have the correct number of variables and polynomial order.

In practical computations, a finite number of basic variables shall be

chosen, and the polynomial expansion (3-10), must be limited to a finite

number of dimensions.

The number of basis functions (M + 1) is dependent on the number of

stochastic dimensions and the order of truncation of the chaos expansion.

The selection of the number of independent sources of uncertainty (i.e.
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the number of independent random variables used to describe the process

ξξξ = (ξ1, . . . , ξN)T ) in the system is denoted by N . The maximum order p

of the multi-dimensional polynomial basis also has to be defined. Then, given

the two values N and p, the total number of polynomials terms is truncated

to a (M + 1) finite number defined by the following equation:

(M + 1) =

(
N + p

p

)
=

(N + p)!

N ! p!
(3-15)

while for the tensor polynomial basis we have:

(M + 1) = (p+ 1)N (3-16)

Therefore, the truncated expression of the random variable U can be

expressed as:

X(ξ) =
M∑
j=0

ûjΨj(ξξξ) + ε(N, p) (3-17)

The truncated expansion also converges in the mean square sense as N

and p go to infinite, i.e.:

lim
N, p→∞

〈ε(N, p); ε(N, p)〉 = 0 (3-18)

The PC representation will be computationally efficient when small

values de N and p are sufficient for an accurate representation of U , or in

other words, when 〈ε2(N, p)〉 → 0 rapidly with N and p.

Note that the Table 3.1 provides values de (M + 1) for p and N in the

interval [1 − 8]. The dependence of (M + 1) on N and p is illustrated in the

Figure 3.1.

Table 3.1: Number of terms (M + 1) in the N -dimensional PC expansion
truncated at order p

p/N 1 2 3 4 5 6 p/N 1 2 3 4 5 6

1 2 3 4 5 6 7 5 6 21 56 126 252 462

2 3 6 10 15 21 28 6 7 28 84 210 462 924

3 4 10 20 35 56 84 7 8 36 120 330 792 1716

4 5 15 35 70 126 210 8 9 45 165 495 1287 3003

For example, consider the case where N = 2 and p = 6. That means

49 tensor polynomial basis and 21 basis function for the complete polynomial

basis. If we increase the stochastic dimension to N = 5 by keep p = 6 ,
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Figure 3.1: Number of terms in the PC expansion plotted against the order p
and the number of dimensions N (Adapted from [5]).

the complete polynomial basis contain 462 basis functions. In contrast, the

corresponding tensor polynomial basis contain as many as 16807 basis.

An increase in the number of random parameters corresponds to an

exponential increase in the terms of the series. This quickly leads to infeasible

numerical problems and has spurred broad interest in alternative formulations

not based on the tensorization introduced earlier.

3.3
Generalized Polynomial Chaos

The Wiener’s Hermite-chaos expansion has been quite effective in solv-

ing stochastic differential equation with Gaussian inputs but many stochastic

problems involve certain types of non-Gaussian inputs, e.g., Lognormal distri-

butions; this can be justified by the Cameron-Martin theorem [105]. Moreover,

for general non-Gaussian random inputs when these are approximated with

Wiener’s Hermite-chaos chaos expansions, the convergence may be slow and

in some cases, the convergence rate is, in fact, severely deteriorated [106]. The

main reason for this is that, when expressed as functions of a collection of Gaus-

sian basic random variables, these function are often highly non-linear and can

only be well approximated by truncated Wiener’s Hermite-chaos expansions of

very high order. A possible remedy is to base the expansion on non-Gaussian

basic random variables whose distribution is closer to the random variables

under expansion, thus permitting good approximations of lower order. As a
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consequence, such expansions involve polynomials orthogonal with respect to

non-Gaussian measures replacing the Hermite polynomials. In principle a se-

quence of orthogonal polynomials exists for any probability distribution on R
with finite moments of all orders [107].

Xiu and Karniadakis [108, 109] introduce the term generalized polyno-

mial chaos (gPC) expansions and have in fact shown that for a large number

of common probabilities laws, any random functions can be represented by

the corresponding families of the set of hypergeometric polynomial from the

Askey-scheme (Wiener-Askey polynomial chaos) as generalization of the ori-

ginal Wiener’s Hermite-chaos expansion.

The expansion basis of the Wiener-Askey polynomial chaos by the

complete set of orthogonal polynomials from the Askey-scheme can be used

to represented both Gaussian and non-Gaussian random functions instead of

the Hermite polynomial. For instance we represent the general second-order

random response U(ξ) as:

X(ξ) = u0I0 +
+∞∑
i1=1

ui1I1(ζi1(ξ))

+
∞∑
i1=1

i1∑
i2=1

ui1i2I2(ζi1(ξ), ζi2(ξ))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3I3(ζi1(ξ), ζi2(ξ), ζi3(ξ)) + . . . , (3-19)

where Ip(ζi1 , . . . , ζip) denote the Wiener-Askey polynomial chaos expansion of

order p in terms of the multi-dimensional random variable ζζζ = (ζi1 , . . . , ζip).

In the Wiener-Askey chaos expansion the polynomial Ip are not restricted

to Hermite polynomial but instead they could be any member of the Askey-

scheme [110]. As it was described above, for notational convenience we rewrite

(3-19) as:

X(w) =
∞∑
j=0

ĉjΦj(ζζζ) (3-20)

where also there is a one-to-one correspondence between the functional Ip()

and Φj(ζζζ), and between the coefficients ui1··· i2 and ĉj.

Each type of polynomial {Φj} from the Askey-scheme forms a complete

basis in the Hilbert space determined by its corresponding support and

converge in the L2(Ω, P ) sense. The orthogonality relation of the Wiener-Askey

polynomial chaos takes the form:

〈Φi,Φj〉 = 〈Φ2
i 〉δij (3-21)
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where δij is the Kronecker delta and the inner product in the Hilbert space of

the variable ζζζ denoted by:

〈f(ζ), g(ζ)〉 = E[f(ζ)g(ζ)] =

∫
Ω

f(ζ)g(ζ)%(ζζζ)d(ζζζ) (3-22)

whereas probability measure may be represented by the joint probability

density function (weighting function %(ζζζ) corresponding to the Wiener-Askey

polynomial chaos) of the multi-dimensional independent random variable ζ:

%(ζζζ) =
N∏
i=1

%i(ζi) (3-23)

For instance, in the case of multi-dimensional independent Gaussian

random variables:

%(ζζζ) =
1√

(2π)n
e−

1
2
ζζζtζζζ =

dP

d(ζζζ)
(3-24)

and similarly for the discrete case:

〈f(ζ), g(ζ)〉 = E[f(ζ)g(ζ)] =
∑

Ω

f(ζ)g(ζ)%(ζζζ) (3-25)

Then, we observe that some types of orthogonal polynomials from the

Askey-scheme have weighting functions of the same form as the probability

density function of certain types of random distributions. Then, this establishes

a corresponding relation between the distributions of the independent random

variable ζζζ and the type of orthogonal polynomial {Φj(ζζζ)} of the Askey-scheme

(gPC basis), according to Table 3.2.

For instance, for Uniform and Binomial distribution, the Legendre and

Krawtchouk polynomials are more appropriate choices to be optimally repres-

ented with respect to their weighting functions, respectively. It is clear that

the original Wiener polynomial chaos corresponds to the Hermite-chaos and is

a subset of the Wiener-Askey polynomial chaos.

Furthermore, in the case of the probability functions for which one does

not readily dispose of an orthogonal family of polynomials, it is generally

possible to rely on a numerical construction of the PC basis, following a Gram-

Schmidt orthogonalization process [111].

The optimality of the choice of stochastic expansion pertains to the

representation of the input; the representation of the output of a nonlinear

problem will likely be highly nonlinear as expressed in the basis of the

input [112]. The Cameron-Martin theorem [105] applies also to gPC with

non-Gaussian random variable, but only when the probability distribution

(measure) of the stochastic expansion variable ζ is uniquely determined by

the sequence of moments.
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Table 3.2: Correspondence between the type of gPC and their underlying
random variables

Distribution
of ζ

gPC basis
polynomials

Weight function Support

Continuous

Uniform Legendre 1
2

[−1, 1]

Gaussian Hermite 1√
2π
e−

ζ2

2 (−∞,+∞)

Gamma Laguerre ζαeζ

Γ(α+1)
[0,+∞)

Beta Jacobi (1+ζ)α(1−ζ)β
2α+β+1B(α+1,β+1)

[−1, 1]

Discrete

Poisson Charlier e−λ λ
ζ

ζ!
{1, 2, . . .}

Binomial Krawtchouk
(
N
ζ

)
pζ(1− p)N−ζ {1, 2, . . . , N}

Negative
Binomial

Meixner
(β)ζ
ζ!

(1− c)βcζ {1, 2, . . .}

Hipergeometric Hahn
(αζ)(

β
N−ζ)

(α+βN )
{1, 2, . . . , N}

This is not always the case in situations commonly encountered. For

instance, probability distributions, for which the moment problem is uniquely

solvable are the uniform, beta, gamma and the normal distributions. By

contrast, the moment problem is not uniquely solvable for the lognormal

distribution, so that the sequence of orthogonal polynomial with respect to

the lognormal random variable does not constitute a basis of the Hilbert

space, and there will be some elements (random variables) in this space which

are not the limit of their gPC expansion. Thus, there are cases where the

gPC expansion does not converge to the true limit of the random variable

under expansion. Further examples of random variables with indeterminate

distribution are certain power of random variables with normal or gamma

distribution (see e.g. [113, 114]). However, lognormal random variables may be

successfully represented by gPC satisfying the determinacy of moments, e.g.

Hermite polynomial [107].

Another possible choice for PCE of non-Gaussian cases is the transform-

ation technique introduced by Isukapalli [11] in the stochastic response surface

method. In this procedure, the random input variables, which include non-

normal distributions, are transformed into standard normal random variables

[115]. According to Table 3.3, the input random variable z can be represented
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by a function of standard normal random variable ζ. The µ and σ are the mean

and standard deviation of the input random variable, respectively, while a, b

and λ are scale parameters of each distributions. Then, the original PCE can

be employed as the response surface model for uncertain systems.

Table 3.3: Representation of Various Distributions as Functionals of Normal
Random Variables (According to [11])

Distribution Type Transformation

Normal (µ, σ) µ+ σζ

Lognormal (µ, σ) exp(µ+ σζ)

Uniform (a, b) a+ (b− a)
(

1
2

1
2

erf
(

ζ√
2

))
Gamma (a, b) ab

(
ζ
√

1
9a

+ 1− 1
9a

)3

Exponential (λ) − 1
λ

log
(

1
2

1
2

erf
(

ζ√
2

))

3.3.1
Stochastic Quantities

The stochastic spectral expansion of a random quantity gives us a con-

venient representation of their information available implicitly (measures do

the probability, statistic moments, analysis of correlations, local and global

sensitivity analysis, etc) at low computational cost provided that the coeffi-

cients of the representation of relevant quantities are known.

Let X be a second-order random variable defined on a probability space

(Ω,F, P ) with a distribution function FX(x) = P (X ≤ x) and finite moments

E[X2] < +∞. Its expansion on the orthogonal gPC basis {Φj}∞j=0 is given by:

X =
∞∑
j=0

ĉjΦj(ζζζ) (3-26)

where we assume an indexation such that Φ0(ζζζ) = 1 and satisfying the property

of orthogonal polynomials

〈Φ0(ζζζ),Φj(ζζζ)〉 = E[Φi(ζζζ)Φj(ζζζ)] = γiδij (3-27)

where γi = E[Φ2
i (ζζζ)] are the normalization factors. Then, as a consequence,

important properties from (3-27) can be obtained:

E[Φ0(ζζζ)Φj(ζζζ)] = 0 ∀j > 0

E[Φ0(ζζζ)Φ0(ζζζ)] = 1
(3-28)
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The expression that calculates the expectation of X is given by:

E[X] = E[Φ0(ζζζ)X] = 〈Φ0(ζζζ), X〉 =
N∑
j=0

ĉj〈Φ0(ζζζ),Φj(ζζζ)〉 (3-29)

then:
E[X] = ĉ0 (3-30)

Therefore, we obtain the expected value of the random variable X, from the

indexation convention, whose value is the coefficient ĉ0.

From (3-29), we can also calculate the variance of X as:

σ2
X = E[(X − E[X])2] = E[(

N∑
j=1

ĉjΦj(ζζζ))]

=
N∑

i,j=1

ĉiĉj〈Φi(ζζζ),Φj(ζζζ)〉 =
N∑
j=1

ĉ2
j〈Φ2

j〉 (3-31)

Note the variance of X is given as a weighted sum of its squared gPC

coefficients. If the bases are orthonormal polynomials so, 〈Φ2
j〉 = 1 and the

variance depends only of the sum of its squared gPC coefficients. Similar

expressions can be derived for higher order moments of X in terms of its gPC

coefficients, e.g. skewness, kurtosis and others. However higher order moments

do not have an expression as simple as that for the first and second-order ones.

Another alternative can be used to estimate the expectation and variance

values and another moments using sampling strategies. Realization of X can

be obtained by sampling of ζζζ following its density function followed by the

evaluation of the gPC expansion at sample point ζζζ(ω).

Note that in the context of the analysis of any model, the sampling

scheme for a output known from its gPC expansion is simpler and more

efficient than the full evaluation of the model realization such as in Monte

Carlo methods.

3.4
Non-Intrusive Spectral Method (NISP)

Let M be a real scalar model in function of N independent real-valued

random variables X(ω) = {X1(ω), . . . , XN(ω)}, such that, X(ω) : ω ∈ Ω 7→
DX ⊂ R with prescribed joint probability density function fX(x) with respect

to the support DX :

fX(x) =
N∏
i=1

fXi(xi) (3-32)

If we denote Y as the model response, then:

M : X ∈ DX 7→ Y =M(X) ∈ R (3-33)

DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Chapter 3. Stochastic Spectral Methods 68

Note that the model response is also a random variable Y (w) = M(X(w)).

The NISP aims at computing the projection coefficients of random model

response Y on a finite dimensional stochastic subspace PNM of L2(DX , fX)

which is a Hilbert space.

Let us suppose that its random response Y ∈ L2(DX , fX) is a second-

order random variable:
E[Y 2] =< +∞ (3-34)

and {Ψj}Mj=0 are the orthogonal basis of PNM which consists of the set of gPC

truncated to order p.

Let PMY be the projection of Y onto PNM via the inner product 〈·, ·〉L2 ,

then we define its gPC orthogonal projection as:

PMY =
M∑
j=0

ŷjΨj(X) (3-35)

where {ŷj} are the generalized Fourier coefficients. Due to the orthogonality

of the selection of basis of PNM , the projection coefficients ŷj are given by:

ŷj =
〈Y,Ψj〉
〈Ψ2

j〉
=

1

〈Ψ2
j〉

∫
DX

YΨj(X)fX(x)dx (3-36)

furthermore, for all {Ψj} ∈ PNM :

Y − PMY ⊥ PNM ⇔ 〈Y − PMY,Ψj〉 = 0 0 ≤ j ≤M (3-37)

The existence and convergence of the projection follow directly from the

classical approximation theory; i.e.:

‖Y − PMY ‖L2 → 0, M →∞ (3-38)

which is also referred to as mean-square convergence or strong norm sense.

Furthermore, it implies that PMY converges to Y in probability, i.e. PMY
P→ f ,

which further implies the convergence in distribution, i.e., that PMY
d→ f , as

M →∞.

From the expression (3-35) the factor 〈Ψ2
j〉 depends only on the basis used

which are known analytically for gPC bases and classical probability density

functions, but the determination of the numerator is to be discussed. Note that

ŷj does not depend on the dimension of the projection subspace, but only on

the basis function Ψj. This implies that since the basis has been selected, the

determination of ŷj are independent from each other.

Two different techniques have been proposed to numerically estimate

the right-hand side of (3-36): Simulation method, where one relies on pseudo-

random sampling strategies, and cubature methods which involve deterministic

schemes to numerically estimate the integrals.

DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Chapter 3. Stochastic Spectral Methods 69

3.4.1
Sampling Method

In this approach, the correlation between Y and Ψj(X) is estimated by

means of a pseudo-random sampling of the parameter space DX .

The Monte Carlo method (MCM) is one of the simplest crude simulation

techniques to compute ŷj. Then, a sample of set of independent realizations of

X is generated from fX using a pseudo-random number generator. Denoting

X(i) the i-th element of the sample set, and Y (i) =M(X(i)) the corresponding

model response and as 〈Y,Ψj〉 = E[YΨj]. Then the empirical mean is evaluated

by:

〈Y,Ψj〉 ≈
1

m

m∑
i=1

Y (i)Ψj(X
(i)) (3-39)

where m is the sample set dimension. The convergence rate of Monte Carlo

simulation is well known and a variance of εm asymptotically goes to zero as

O(1/
√
m) for sufficiently large m according to the law of large numbers. There

exists another sampling techniques that can achieve lower sampling errors.

This strategies are known as Latin Hypercube Sampling and Quasi Monte

Carlo sampling. The main idea is to force the sampler to draw points that

cover the parameter domain in a more uniform way than the MCM. Hence, in

general, the accuracy of another sampling methods increases faster than the

Monte Carlo method.

3.4.2
Cubature Method

The integrals over the stochastic domains of the gPC projections defined

by (3-36) can be approximated employing numerical quadratures schemes.

We denote g(X) = YΨj(X) over DX with non-negative weight fX

having a product form. Then, the numerator of right-hand expression (3-36)

can be represented as:

I(g) = 〈Y,Ψj〉 =

∫
DX

g(X)fXdx (3-40)

This integral can be determined employing effectively deterministic cubatures.

A cubature is an approximation of the multidimensional integral as a discrete

sum:

I(g) =

∫
DX

g(X)fXdx ≈ Im(g) =

mQ∑
i=1

g(X(i))W (i) (3-41)

where X(i) ∈ DX and W (i) ∈ R, i = 1, . . . ,mQ, are the nodes and weights of

the mQ-node cubature.

In the context of NISP, the integration weights W (i) are the product

probability density functions fXi > 0 of the random parameter over their
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respective domains. Consequently I(g) can be approximated using Gauss

quadrature formulas.

The Gauss quadrature chooses the points {X(i)}mQi=0 over DX for evalu-

ations in an optimal distribution rather than equally spaced way. The Gauss

formula is closely related to the orthogonal polynomial family for the weight

functions fXi , which is also the basis for gPC expansions. For instance, we

choose {X(i)} to be the set of Gauss-Legendre quadrature points for the case

of uniformly distribution, and the set of Gauss-Hermite quadrature point for

the case of gaussian distribution.

For multiples stochastic dimensions another techniques more efficient can

be used as tensor product and Smolyak quadrature (sparse grid) scheme.

3.4.3
Sparse Grid

Non-intrusive spectral method by using the tensor product as strategies

of integration achieves an exponential convergence. However, as the number

of random variables increases (N >> 1) , the collocation points (nodes) that

employ a selected subset of Gaussian quadrature points grows very rapidly for

largeN , i.e.,mc = (p+1)N , and the rate of convergence deteriorates drastically

owing to a very slow convergence. Moreover, if each collocation point requires

a large computing time, it becomes highly expensive computationally. This is

the well-known “curse of dimensionality”. Therefore, tensor product is mostly

used for low dimensional problems, i.e., with less than five [116].

An efficient alternative approach to the tensor product is using the

Smolyak sparse grid [117]. The algorithm is based on the sparse tensor product

construction by using quadrature nested formulas [118]. Nested rules generally

involve nested sets of nodes whose dimensions double each time the level is

incremented. The level is used to distinguish quadrature formulas with different

orders of accuracy. In the literature, several nested rules are available, e.g.,

Trapezoidal, Clenshaw-Curtis, Ferjèr, and Gauss-Patterson rules.

Let Q
(1)
l f be a family of quadrature rules and define the difference

relations:

∆
(1)
l f =

(
Q

(1)
l −Q

(1)
l−1

)
f (3-42)

with Q
(1)
0 = 0. Note that ∆

(1)
l f is also a quadrature rule and contains the set

of nodes in Q
(1)
l f with weights equal to the difference of weights between levels

l and l − 1.

Then, we introduce the multi-index I = (I1, . . . , IN) ∈ NNto construct

the sparse grid such that
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| I |=
N∑
i=1

li (3-43)

Therefore, using the multi-index, the sparse quadrature formula at level

l is expressed by

Q
(N)
l f =

∑
|I|≤l+N−1

(
∆

(1)
l1
⊗∆

(1)
l2
⊗ · · · ⊗∆

(1)
lN

)
(3-44)

It is observed that the sparse grid method involves a significantly reduced

number of nodes from the construction of grids and weights that yields similar

accuracy as the tensor product, albeit with a low computational cost.

In this work, we use the 1D Gaussian nested quadrature rules with

Gaussian weight. These rules are shown in Figure 3.2 for four points of

integration.
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3.2(a): Univariate Gaussian quadrature rules as basis
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3.2(b): Univariate Kronrod-Patterson nested quadrature rules as basis

Figure 3.2: Sparse grids with four integration points by sparsification of tensor
products of 1D.

3.5
Regression Method

In this work, a different non-intrusive approach based on linear regression

is employed. Let u =
[
û0, . . . , ûνpc)

]T
be a vector of unknown coefficients,
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Ψ = ψj a matrix with the gPC and Y is the random field (variable) of

interest that is evaluated in a finite set of νgq possible realizations of the

germ ξ, and thus the coefficients of the expansion are obtained through

u = (ΨT Ψ)−1ΨT Y, the solution of the mean-square problem

Ψ u ≈ Y, (3-45)

where 
ψ0 (ξ1) · · · ψνpc (ξ1)

...
. . .

...

ψ0

(
ξνgq
)
· · · ψνpc

(
ξνgq
)


︸ ︷︷ ︸
Ψ


û0

û1

...

ûνpc


︸ ︷︷ ︸

u

≈


Y (x, ξ1)

...

Y (x, ξνgq)

 .
︸ ︷︷ ︸

Y

(3-46)

For further information about the basic aspects of gPC expansion the

reader is encouraged to see the references [119–124], and for more advanced

topics [125–129].

3.6
Karhunen-Loève Expansion

The KL expansion [119, 120] is one of the most widely used and

powerful techniques for analysis and synthesis of random fields, providing a

denumerable representation, in terms of the spectral decomposition of the

correlation function, for a random field parametrized by a nondenumerable

index [125, 130].

Let H̃(x, ω) : D × Ω 7→ R be second-ordered Homogeneus Gaussian

field (finite second order E[H̃(x, ω)]2), where H̃(x, ω) is called centered, if

E[H̃(x, ω)] = 0 ∀ x ∈ D. Let H(x, ω) : D × Ω 7→ R be an arbitrary random

field and we note that

H̃(x, ω) = H(x, ω)− E[H(x, ω)] (3-47)

Suppose that random field H̃(x) is mean-square continuous, if

lim
ε→0

E[H(x1+ε, ω)−H(x1, ω)]2 = 0. (3-48)

The autocorrelation function of H̃(x) is RH̃H̃(·, ·) : D × D → R defined

for any pair of vectors x1, x2 ∈ D by means of

RH̃H̃(x1,x2) = E[H̃(x1, ω)H̃(x2, ω)] = CH̃H̃(x1,x2) (3-49)

The following well-known result states that for a random field the

continuity of its autocorrelation function is a necessary and sufficient condition
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for the mean-square continuity of the field.

We call a function k : D ×D 7→ R a Hilbert-Schmidt kernel if∫
D

∫
D
|k(x1,x2)|2dx1dx2 < +∞ (3-50)

that is, k ∈ L2(D × D). Then, we define the integral operator K on L2(D),

K : u 7→ Ku for u ∈ L2(D), by

[Ku](x1) =

∫
D
k(x1,x2)u(x2)dx2 (3-51)

It is simple to show that K is a bounded operator on L2(D), where convergence

is absolute and uniform on D ×D.

The following Mercer’s theorem [131], provides a series representantion

for the kernel function k based on spectral representation through Hilbert-

Schmidt operator K. Suppose further that the corresponding Hilbert-Schmidt

operator K : L2(D) 7→ L2(D) given by Eq.(3-51) is possitive. If λi ∈ [0,+∞〉
and φi : D 7→ R are the eigenvalues and eigenvectors of K then ∀ x1, x2 ∈ D

K(x1,x2) =
+∞∑
i=1

λiφi(x1)φi(x2) (3-52)

Under these assumptions, the linear integral operator, i.e., k(x1,x2) =

RH̃H̃(x1,x2)
RH̃H̃ φ (x1) =

∫
D
RH̃H̃(x1,x2)φ(x2) dx2 (3-53)

defines a Hilbert-Schmidt operator [125, 130]. In this context, based on Eq.(3-

52), the eigenvalues and associated eigen functions can be obtained by solving

the Fredholm integral equation of the second kind∫
D
RH̃H̃(x1,x2)φi(x2)dx2 = λiφi(x1), x ∈ D, (3-54)

which has denumerable family of eigenpairs {(λi, φi)}+∞
i=1 , where λi are the

eigenvalues and φi the corresponding eigenfunctions of the operator defined by

Eq.(3-53). Besides that, the sequence of eigenvalues is such that
∑+∞

i=1 λi < +∞
and λ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · · → 0; and the family of functions {φn}+∞

i=1 defines

an orthonormal Hilbertian basis in L2(D), i.e.,

φiφj = δij , (3-55)

where Kronecker delta is such that δij = 1 if i = j and δij = 0 for i 6= j.

By definition, RH̃H̃(x1,x2) is bounded, symmetric, and positive definite.

Therefore, the eigen functions φi(x) of RH̃H̃(x1,x2) form a complete orthogonal

set that satisfy ∫
D
φi(x)φj(x)dx = δij (3-56)

Therefore, applying two standard results of functional analysis [132], the
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theorems of Hilbertian basis and orthogonal projection, it is possible to show

that the random field H̃(x) admits a decomposition

H̃(x, ω) =
+∞∑
i=1

√
λi φi(x) ξi(ω) , (3-57)

Susbtituting Eq.(3-47) in Eq.(3-57) the Karhunen-Loève expansion of H(x, ω)

is given by

H(x, ω) = µH(x) +
+∞∑
i=1

√
λi φi(x) ξi(ω) , (3-58)

where {ξi(ω) : Ω 7→ R}+∞
i=1 is a family of random variables which are centered

(zero mean) and mutually uncorrelated, i.e.,

E[ξi] = 0, and E[ξi ξj] = δij . (3-59)

In addition, if we calculate the orthogonality relation of ξi from Eq.(3-59), this

implies that ξi forms a set of orthonormal random variable with respect to

the inner product. Therefore, from Eqs.(3-59), the set of uncorrelated random

variables straightforwardly attains a closed form expressed by

ξi =
1√
λi

∫
D

(H(x, ω)− µH(x))φi(x)dx, (3-60)

As the homogeneous field is Gaussian, the mutually independent, uncor-

related random variables can be obtained from a standard Gaussian distribu-

tion [98].

To computationally implement the K-L expansion, it is convenient to use

a series expansion involving a finite number of random variables. Thus, a finite

dimensional approximation for H(x, ω), denoted by Ĥ(x, ω), is constructed by

truncation of the series in Eq.(3-58) i.e.

H(x, ω) ≈ Ĥ(x, ω) = µH(x) +

νkl∑
i=1

√
λn φi(x) ξi, (3-61)

where the integer νkl is chosen such that

Energy(νkl) =

∑νkl
i=1 λi∑+∞
i=1 λi

≥ τ, (3-62)

for a heuristically chosen threshold τ (e.g. τ = 90%). In practice, as a closed

formula for λi is not available in general, energy(νkl) is estimated using a

finite (but large) number of eigenvalues, instead of an infinite quantity. This

procedure is justified in light of the eigenvalues decreasing property.

The error variance when truncating the expansion after terms, may be
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obtained as follows

Var
[
H(x, ω)− Ĥ(x, ω)

]
= σ2

H − E
[(∑νkl

i=1

√
λiφi(x)ξi

)2
]

= Var [H(x, ω)]−
νkl∑
i=1

λiφ
2
i (x)

(3-63)

It is known that the variance of a quantity is always positive. This means that

the K-L expansion always under-represents the true variance of the field [133].

One of the main difficulties to apply KL expansion to discrete random

fields is the determination of the eigenvalues and corresponding eigenfunctions

of the correlation function. Analytical solutions for the Fredholm integral

equation in (3-54) are almost never available. However, for some special cases,

such as exponential and Gaussian autocovariance functions, an analytical

solution can be obtained by converting the integral equation into a differential

equation through successive derivatives [119, 120].

Several numerical methods can be used to solve the eigenvalue problem

of Eq.(3-54), such as the direct method, projection methods, among others

[134, 135]. In this study, the direct method is employed to transform the

Fredholm integral equation into a finite dimensional eigenvalue problem, whose

the solution provides an approximation for the desired eigenvalues/eigenvectors

of the infinite dimensional problem.

In this numerical procedure, a set of M realizations of the random field

H(x) and its mean function µH(x) are numerically generated (These numerical

realizations are defined in a computational mesh x1,x2, · · · ,xn.) and grouped

into the matrices

H =


H1(x1) H2(x1) . . . HM(x1)

H1(x2) H2(x2) . . . HM(x2)
...

...
. . .

...

H1(xn) H2(xn) . . . HM(xn)



µH =


µH(x1) µH(x1) . . . µH(x1)

µH(x2) µH(x2) . . . µH(x2)
...

...
. . .

...

µH(xn) µH(xn) . . . µH(xn)



(3-64)

which are used to define the zero mean matrix Ĥ = H − µH . Then, the

correlation matrix is estimated with the aid of
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RĤ =
1

M
ĤĤT , (3-65)

and the discrete eigenvalue problem

RĤΦ = ΛΦ, (3-66)

is solved to obtain the matrices Φ and Λ, which present approximations for

the first M eigenfunctions/eigenvalues on the columns/main diagonal.

For further details on theoretical and practical aspects of K-L expansion

the reader is encouraged to see [121, 122, 136, 137].

From Eq.(3-58), the mean square truncation error decreases monotonic-

ally with the increase in the number of terms in the expansion. The selection

of νkl depends on the correlation function of the random field. This implies

that the more correlated the random field, the smaller the number νkl required

to achieve a desired marginal error. Conversely, if the random field is less cor-

related, a high number νkl will be required. Figure 3.3. shows the first twenty

eigenvalues of exponential autocovariance function 1D for different sizes of

length correlation and their variance error.

2 4 6 8 10 12 14 16 18 20

10-4

10-3

10-2

l=1
l=0.5
l=0.25
l=0.1
l=0.05

0 0.2 0.4 0.6 0.8 1

10-4

10-3

10-2

l=1, err=0.00048
l=0.5, err=0.0014
l=0.25, err=0.0033
l=0.1, err=0.0088
l=0.05, err=0.0176

Figure 3.3: Eigenvalues of exponential autocovariance function 1D and variance
error

Figure 3.4 illustrates the autocorrelation surface of an exponential kernel

and their approximation using an 8-term K-L expansion. Then, it can be

observed that both the surfaces are in good agreement.

DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Chapter 3. Stochastic Spectral Methods 77

1

0.02

0.04

1

0.06

0.5

0.08

0.5

0 0

1

0.02

0.04

1

0.06

0.5

0.08

0.5

0 0

Figure 3.4: Approximated exponential autocovariance function using 8-term
K-L expansion.
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4
Structural Optimization

This chapter we provides brief background information on structural op-

timization where the principal aim is to find a structure which can carry with

the loads applied doing this in an efficient way. For this, three main optim-

ization techniques can be grouped into Sizing optimization, Shape optimiza-

tion and Topology optimization whose objective of the optimization can be to

minimize the stress weight or compliance for a given amount of material and

boundary conditions. In addition, the presence of uncertainties in the optimiz-

ation problems is treated and studied in this chapter presenting an overvierw

the main approaches.

4.1
Mathematical Formulation

According to J.E. Gordon [138], a structure is defined as any assemblage

of materials that is intended to support different loads (statics or dynamics).

Optimization means how to make things in the best possible way (op-

timum) to achieve the desired goal among the several available alternatives.

Therefore, structural optimization is a sub-area of structural analysis that al-

lows one to obtain an assemblage of materials to sustain loads in the best

way.

Consider the cantilever beam, whose initial geometry and boundary

conditions are illustrated in figure 4.1. To find the structure that presents

the best performance we first need to specify the term “best”. As a first idea,

we can try to design a structure as light as possible, i.e., to minimize its

weight. Another idea might be to make the structure as stiff as possible, and

yet another one could be to make it as insensitive to buckling or instability as

possible.
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?
F t( )

F

Figure 4.1: Structural Optimization Problem (Adapted from [6])

In structural optimization problems the following functions and variables

can be defined as:

• Objective Function (f): This function is used to classify possible designs,

i.e., f evaluates possible solutions and returns a number which indicates

the characteristics of the design. Usually, we choose f such that a smaller

value is better than a larger one (minimization problem). Frequently,

in structural optimization f represents: weights, displacements, effective

stress, compliance or cost of production;

• Design variables (x): Describes the design of the problem, and can

be changed during the process of optimization. Also, it may represent

geometry or choice of material. When it describes geometry, it can be

related to a sophisticated interpolation of shape or it can be associated

to the areas of the bars, or the thickness of a sheet;

• State variable (y): For a given design x of a mechanical structure, y is a

function or vector that represents the response related to displacements,

stresses, strains or forces.

A general Structural Optimization problem can be expressed as:

(SO) =


minimize f(x,y) with respect to x and y

subject to


behavioral constraints on y

design constraints on x

equilibrium constraints

(4-1)

We might find a problem with several objective functions, a so-called

multiple criteria, or multi-objective optimization problems, i.e.:

minimize (f1(x,y), f2(x,y), . . . , fn(x,y))

where n, is the number of objective functions, and the constraints are the
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same as for (SO). To solve these kind of problems, we often use the so-called

Pareto optimality. A given design is a Pareto optimal if there is not any design

that satisfies all the goals better. In this work we will consider only structural

optimization problems of form (SO), i.e. problems with only one objective

function.

In 4-1, three types of constraints are indicated:

(1) Behavioral constraints are the ones applied to the variables y. Usually

they are written g(y) ≤ 0, where g is a function which represents, for

example, a displacement in a certain direction;

(2) Design constraints are applied to the design variables x. Obviously, these

two types of constraints can be combined;

(3) Equilibrium constraints are usually represented by a partial differential

equation. Moreover, in a dynamic structural optimization problem, equi-

librium should be seen as the dynamic equilibrium equation.

Moreover, in a naturally discrete problem or in a discretized problem the

equilibrium constraints can be expressed as:

K(x)u = F(x) (4-2)

where K(x) is the stiffness matrix of the structure, which generally is a

function of the design, u is the displacement vector and F(x) is the force

vector which may also depend on the design. Note that, in the equation (4-2),

the displacement vector u represents the general state variables y.

4.2
Techniques for Structural Optimization

In this work x represents some kind of geometrical feature of the

structure. Therefore, we divide the problem of structural optimization in three

types:

Sizing optimization is a type of optimization where the design variables

are associated whit the dimensions of the structures, such as, cross-section

areas of bars, thickness of plates, etc.

It is a powerful tool for efficient structural designs, and has been employed

by several industries to systematically achieve structural configurations with

better performance and reduced cost. Figure 4.2 shows two examples of sizing

optimization problems for a truss structure and a bike. Note that, sizing

optimization in both designs is used to find an optimal cross-section.

Shape optimization consists of finding the best contour shape of a given

structure in order to minimize some cost function, such as, weight, compliance,

etc.
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Initial Design Optimized Design

Figure 4.2: Sizing structural optimization problem (Adapted from [7, 8])

Figure 4.3, presents two examples of shape optimization problems for

a truss structure and a bike. Note that, the connectivity (or topology) of the

structure is not changed by the shape optimization process, i.e. new boundaries

are not created.

Initial Design Optimized Design

Figure 4.3: Shape structural optimization Problem (Adapted from [7, 8])

Topology optimization is the most general form of structural optimiza-

tion. This process involves the determination of new layouts of the structures,

i.e., the number and location of holes and the connectivity (or topology) of the

domain.

Figure 4.4 illustrates two examples of topology optimization problems for

a truss structure and a bike. Note that, the original continuum structures are

changed during the optimization process by removing material where is not

necessary.
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Initial Design Optimized Design

Figure 4.4: Topology structural optimization problem (Adapted from [7, 8])

Topology Optimization differs from shape optimization method in that

it seeks the best layout for a structure by optimizing the material distribution

in a predefined design domain. The popularity of topology optimization is

demonstrated by its widely application in many different fields of engineering.

However, most of the applications of topology optimization are limited to

deterministic conditions, i.e., the sources of uncertainties are not taken into

account.

4.3
Topology Optimization (TO)

The main objective of TO is to find the optimal distribution of materials,

for every point x in a given design domain Ω̄ ⊂ Rd, d = 2 or 3, which maximize

a certain performance measure subjected to a set of design constraints, i.e., to

determine which regions in Ω̄ should not present material (void regions), and

obtain the final topology of the structure.

By convention, points where material exists are represented by a density

value of 1, otherwise, the density value is 0. Note that, in this way, one has an

integer-programming problem, where the distribution of material is defined by

the density map x ∈ Ω̄ 7→ ρ(x) ∈ {0, 1}, for

ρ(x) =

1 if x is structural member,

0 if x is void.
(4-3)
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4.3.1
Minimum Compliance design

Commonly, the topology optimization problem seeks to minimize an

objective function defined by the continuum structure compliance, denoted

here by c, subject to a constraint on the final volume of the structure and

satisfying the equilibrium equations for a linear Hookean solid material. This

formulation, which is equivalent to maximize the structural stiffness subject

to the same constraints (see reference [9] for further details), can be stated as

min
ρ

c (u(ρ), ρ) =

∫
Ω̄

1

2
σ : ε dΩ̄,

subject to v(ρ) =

∫
Ω̄

ρ(x) dΩ̄ ≤ vS,

(4-4)

where σ and ε represent the tensors of stress and strain, respectively, vS is

a specified upper bound on the optimized structure volume, and the map

x ∈ Ω̄ 7→ u(ρ(x)) ∈ Rd is the continum structure displacement, parametrized

by ρ and implicitly defined by the elasticity equations

∇ · σ(u) = 0,

σ(u) = σ(u)T ,

ε(u) = 1
2

(
∇u +∇uT

)
,

σ(u) = C(ρ) : ε(u),

(4-5)

and the boundary conditions

σ(u) · n = t in ΓN ,

u = 0 in ΓD,
(4-6)

where ΓD is the partition of ∂Ω̄ on which the displacements are prescribed,

ΓN is the complimentary partition of ∂Ω on which tractions t are prescribed

such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅ and C(ρ) is the 4th order stiffness

tensor that depends on the density function ρ. As posed, finding ρ and C(ρ)

becomes a large integer programming problem, which can be impractical to

solve. Thus, we recast ρ as a continuous scalar field, ρ(x) ∈ [0, 1]. In order to

recover the binary nature of the problem, the SIMP [9] model is employed and

the stiffness tensor can be expressed as

C(ρ) = [ε+ (1− ε)ρp]C0, (4-7)

where p > 1 is the penalty parameter, 0 < ε � 1 is a positive parameter

ensuring well-posedness of the governing equations and C0 is the elasticity

tensor of the constituent material, i.e., is Young’s modulus of the material in

the solid phase corresponding to the density ρ = 1.
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In terms of computational implementation, the domain is splited into

Ne elementary regions, i.e., Ω̄ = ∪Nee=1Ω̄e, and the finite element method is

employed for the solution of the elasticity equations. Thus, the following finite

dimensional version of the optimization problem is considered

min
ρ

C(ρ) = F T U(ρ)

subject to V (ρ) =
Ne∑
e=1

ρe |Ω̄e| − vS ≤ 0,

with K(ρ) U(ρ) = F,

0 < ρmin ≤ ρ(Ω̄) ≤ 1.

(4-8)

where ρ = (ρ1, ρ2, · · · , ρNe) is a discretized version of the density map, |Ω̄e|
denotes the volume of the element e, U is the discrete displacement vector,

parametrized by ρ and implicitly defined by the equilibrium equation, F is

the global loading vector and K represents the global stiffness matrix, which

is also dependent on ρ. To prevent singularity of the stiffness matrix, a small

positive lower bound, e.g. ρmin = 10−3 is placed on the density.

4.3.2
Algorithm

During the solution of a TO problem it is very common to deal with

numerical anomalies, such as checkerboards, which are traditionally treated

through the use of higher-order elements or filters [139, 140]. However, Talischi

et al. [14] have shown that the use of the PolyTop framework, which employs

polygonal finite elements, can naturally address the checkerboard problem.

Besides that, this approach also allows flexibility in the optimization strategy

to be used, being compatible with the classical approaches based on the

optimality criteria (OC) [141] and the method of moving asymptotes (MMA)

[142].

An overview of the classical TO procedure, used in PolyTop framework

to obtain an optimal design, is illustrated in Figure 4.5. The sensitivity analysis

step described in this schematic is explained in details in section 4.3.3.

4.3.3
Sensitivity analysis

Most optimization algorithms use gradients during the optimization steps

to reach a solution. Due to the high computational cost associated, sensitivity

analysis plays an important role in the field of structural optimization.
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Figure 4.5: Overview of the classical topology optimization procedure (adapted
from [9]).

An efficient method to calculate the sensitivity of the objective function

with respect to the element design variable is the well-known adjoint method.

Its basic idea consists of adding to the objective function the equilibrium

equation (4-2), i.e.,

C(ρ) = FT U− λT (K U− F) , (4-9)

where the Lagrange multiplier λ is an arbitrary real vector. Then, taking the

derivatives of C with respect to the design variable ρe, one obtains

∂C

∂ρe
=
(
FT − λT K

) ∂U

∂ρe
− λT ∂K

∂ρe
U. (4-10)

By choosing λ = U in Eq.(4-10), the following equation is obtained

∂C

∂ρe
= −UT ∂K

∂ρe
U (4-11)

The global stiffness matrix from equation (4-8) can be expressed as

K =
Ne∑
e=1

Ke(ρe) (4-12)
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Let (Ke)ij be the e-th element stiffness matrix,

[Ke]ij =

∫
Ω̄e

[ε+ (1− ε)ρp]C0∇Ni : ∇Njdx (4-13)

where Ni is the base of the discrete displacement field and subindex i represent

the number of displacement degrees of freedom. The integral inside the

summation is the (i, j)-th entry of the stiffness matrix for element Ω̄e in the

global node numbering.

Then the Eq. (4-13) can be represented as:

Ke = [ε+ (1− ε)ρp] K0
e (4-14)

where K0
e is the element stiffness matrix of the solid material

Then, substituting the equation (4-12) in (4-11) ∂C
∂ρe

is expressed as

∂C

∂ρe
= −UT

e

∂Ke

∂ρe
Ue, (4-15)

where Ue denote the displacement vector of the element e and once the partial

derivative of the stiffness matrix with respect to the element design variable is

computed straightforwardly. , then

∂C

∂ρe
= −p (1− ε) ρp−1

e UT
e K0

e Ue, (4-16)

The gradient of the volume constraint function V (ρ) with respect to the

design variable ρe is given as

∂V

∂ρe
= |Ω̄e|. (4-17)

4.4
Optimization under Uncertainties

We should understand that optimization under uncertainty differs from

the field of stochastic programming since there exists a lack of specific math-

ematical structure that is often found in stochastic programming (e.g. linear

objective and constraint functions).

Sometimes optimization under uncertainty can be thought of as a highly

nonlinear programming under uncertainty because it involves nonlinear impli-

cit objective and constraint functions and non-deterministic parameters, where

the evaluation of these functions might require the execution of expensive com-

putation models (e.g. finite element method, finite volume method, etc).

Optimization under uncertainty is an important line of research due to
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the increasing need for robust and reliable designs, where the key objective is

to quantify and propagate uncertainties into the optimization process [143].

4.4.1
Robust Design Optimization

Robust optimization, also known as robust design optimization (RDO),

is a mathematical procedure that simultaneously addresses optimization and

robustness analysis, obtaining an optimal design that is less susceptible to vari-

abilities (uncertainties) in the system parameters. In contrast to conventional

optimization, that is deterministic, RDO considers uncertain parameters and

statistical measures in the objective function and/or constraint specifications.

Figure 4.6, show as comparative between RDO and conventional optimization

problem.

Design Variable

Deterministic Optimum
design

Performance

Uncertainty

Response
Performance

Range

Variation

Design Variable

Robust Optimum
design

Performance

Uncertainty

Response

Performance
Range

Variation

a)

b)

Response
function

Response
function

Figure 4.6: Comparison between: a) Conventional deterministic optimization
and b) Robust optimization.

From figure 4.6(a), we can see that the performance range increase

to small variations of the parameters at the optimal point. Through the
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same magnitude of variation for a point near the optimal, we can see that

performance range is smaller figure 4.6(b). Therefore, it is important to find a

suitable balance between effort and accuracy of the robustness measures with

a particular insight on their sensitivity due to random perturbation of design

variables or parameters (see references [144, 145]). The general overview of

RDO is explained in Figure 4.7,

Design Variable

Deterministic Optimum
design

Robust Optimum
design

Performance

Uncertainty

Response

Response
function

Figure 4.7: Robust Design Optimization (RDO).

RDO is advantageous because seeks to locate a robust optimum with

low performance variation directly evaluating robustness measures. Another

approaches widely used are the Taguchi method and its variants. According to

Taguchi [146, 147], through a systematic method of application of experimental

designs, one can achieve a robust design [148].

According to Chen [149], it is important for designers to identify where

the uncertainty sources reside in a system model in order to employ an appro-

priate uncertainty management method. For this reason, the Robust design

was categorized in type I and II. The type I is refered to uncertainty in un-

controllable independent system parameters which are known as noise factors.

The type II is refered to uncertainty in uncontrollable system variables which

are known as control factors. From this same approach a type III is defined in

[10] which identify adjustable ranges for control factors (design variable), that

satisfy a set of performance requirement targets and/or performance require-

ments ranges and are insensitive to the variability within the model. Figure 4.8

show the three type of Robust Design.

The general procedure of RDO in this thesis is explained in Figure 4.9,

which shows a computational model where the input is subjected to uncertain-

ties — that can be in material or geometrical properties, loadings, boundary
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Performance

Design Variable

Upper Limit

Lower Limit

Deterministic
Optimum

Robust Optimum
Type I, II

Robust Optimum
Type I, II, III

Response
function

Figure 4.8: An illustration of Type I, II, and III robust design (see reference
[10]).

conditions etc. — and, therefore, the model response has a certain probability

distribution. This distribution is used to compute some kind of statistical re-

sponse of the system, which is conveniently used to update the model input,

in order to reduce the output uncertainty.

Computational Model
i i

Robust Design
Optimization

(Output variable)

Response metric

(Input variable)

Model parameters

Robustness

Robust
Design

Figure 4.9: Overview of the classical Robust Design Optimization procedure
(RDO).

In this context, it is essential to understand the mathematical definition

of robustness, i.e., the choice of the robustness measure that is generally

expressed by the combination of statistical properties of the objective function.

Several definitions of measures of robustness have been proposed in literature
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[150–153] and the weighted sum of both the mean and the standard deviation

of the objective function is often considered. The tradeoff between these

two statistical measures gives rise to a final design that is less sensitive to

parameters variations, i.e., a kind of robust design.

Example 4.4.1

This example shows the procedure that RDO performs for finding robust

solutions. Consider the objective function that must be minimized:

y(x, ξ) = x4ξ2 + ξ3(3x3 + 2x) + 5ξ

where ξ is an arbitrary parameter. If we replace the value of ξ = 1 the function

y becames as follows

y(x) = x4 + 3x3 + 2x+ 5

The unconstrained optimization problem is formulated as

x∗d = argmin
x

{
x4 + 3x3 + 2x+ 5

}
where the optimal solution was found for x∗d = −2.3412.

Now, consider ξ to be a random parameter represented by a normal

distribution, i.e., ξ ∈ N (1, 1) and we want to find the optimal solution of

y(x, ξ) that is robust to the variability of parameter ξ. The latter is practically

an optimization problem in presence of uncertainties.

To find a robust solution we use weighted sum of the mean and standard

deviation value of y(x, ξ). This robustness measure gives an optimal solution

that is less sensitive to the variability of ξ.

The mean and standard deviation value of y(x, ξ) can be computed

analytically from Eqs. (2-53) and (2-53)

E [y(x, ξ)] = 2x4 + 12x3 + 8x+ 5

σ [y(x, ξ)] =
√

6x8 + 108x7 + 540x6 + 72x5 + 740x4 + 180x3 + 240x2 + 120x+ 25

In most cases, these analytical expressions are not easily calculable.

Therefore, the Monte Carlo Simulation can be used for estimating the mean

and standard deviation value through of a set of independent realizations of ξ.

Figure 4.10 shows the mean and standard deviation value of y(x, ξ) in function

of x.

To get better estimates through MCS, a big number of realization of ξ

is necessary. Figure 4.11, shows the error between the analytical value and the
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Figure 4.10: Estimation of the mean and standard deviation value of y(x, ξ)
through Monte Carlo Simulation usign 1000 realizations.

estimation obtained through different quantities of realizations for ξ. Note that

as the number of realizations increases the error tends to be close to zero

Then, the unconstrained optimization problem is formulated as:

x∗r = argmin
x
{E [y(x, ξ)] + k std [y(x, ξ)]}

where the optimal value was found for x∗r = −0.4. This value is different from

that was found when the parameter has its deterministic value. Figure 4.12

show the two objective functions with their respective optimal solutions.

Until now, we found the optimal solution of y when ξ(ω) is considered

a random parameter (uncertainties) and in the case when the ξ takes a fixed

value. The difference between two solution is in the robustness of y.

For x = −0.3225, the mean and standard deviation value of y was 2.0361

and 3.6864 respectively and for x = −2.3412, the mean and standard deviation

value of y was −107.6322 and 262.6252 respectively.

From this results, we can conclude that the variation of y is smaller in

x = −0.3225 that x = −2.3412, which means that the function y is more

robust to the variability of ξ.
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5
Robust Topology Optimization

In this chapter it is presented the computational strategy to formulate

the Robust Topology Optimization. The strategy combines deterministic topo-

logy optimization techniques with the generalized polynomial chaos (gPC) for

the quantification of uncertainties associated with loading and material prop-

erties. The mathematical formulation for computing the statistical measures

of complainces are developed. Finally, the calculation of sensitivity of Com-

pliance function is showed using two non-intrusives methods to evaluate the

performance of gPC.

5.1
Topology Optimization considering Load uncertainty

In order to increase the optimal design robustness, the concept of robust

optimization described in section 4.4.1 can be applied to TO. This possibility

is addressed in this thesis where variabilities in the external loading acting on

the structure of interest are taken into account. Thus, the force vector and the

compliance function become random objects, more precisely, a random vector

F (ω) and a random variable C(ρ, ω), both defined on the probability space

(Ω,=, P ).

For the sake of computational implementation, these objects are para-

metrized by a set of νrv suitable random variables that are lumped into the

random variable ξ(ω) = {ξi(ω)}νrvi=1 so that force vector and compliance can be

expressed as F (ξ) and C(ρ, ξ).

5.1.1
Mathematical Formulation

This procedure, called robust topology optimization (RTO), can be

mathematically formulated as
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min
ρ

C̃ = E [C(ρ, ξ)] + k σ [C(ρ, ξ)] ,

subject to V (ρ) =
Ne∑
e=1

ρe |Ω̄e| ≤ vS; e = 1, 2, . . . , Ne.

with K(ρ)U(ρ, ξ) = F (ξ),

0 < ρmin ≤ ρ(Ω̄) ≤ 1

(5-1)

C̃ is the objective function of the RTO problem to be minimized and at the

same time is the structural performance measure (robustness), so that it is

a linear combination between the mean µC(ρ,ξ) = E[C(ρ, ξ)] and standard

deviation σC(ρ,ξ) = σ[C(ρ, ξ)] of the random compliance C(ρ, ξ), which

depends on the weight k ≥ 0 and on the random displacement map U(ρ, ξ),

implicitly defined by the random equilibrium equation.

The RTO problem defined in (5-1) can be solved by considering non-

intrusive methods for stochastic computation. The basic idea of non-intrusive

methods is to use a set of deterministic model evaluations to construct an

approximation of the desired (random) output response. The deterministic

evaluations are obtained for a finite set of realizations of parameter ξ with

the aid of a deterministic solver (e.g. finite element code), that is used as a

black box. Thus, non-intrusive methods offer a very simple way to propagate

uncertainties in complex models, such as structural optimization, where only

deterministic solvers are available. In this study the focus is on two non-

intrusive techniques, namely, MC simulation [154, 155] and gPC expansion

[120, 123].

5.1.2
Low-order statistics for compliance

Monte Carlo Simulation (MCS) method is one of the simplest crude

techniques for stochastic simulation and may be used to construct mean-square

consistent and unbiased estimations (approximations) — see [154] for details

— for µ̂C ≈ µC(ρ,ξ) and σ̂C ≈ σC(ρ,ξ), respectively defined by

µ̂C =
1

νmc

νmc∑
k=1

C(k), (5-2)

and

σ̂C =

(
1

νmc − 1

νmc∑
k=1

(
C(k) − µ̂C

)2

)1/2

, (5-3)

where C(k) = C(ρ, ξ(k)), ξ(k) is the k-th realization of the random variable ξ
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and νmc denotes the number of MC realizations.

Despite its simplicity, the slow convergence rate of MC method (∼
1/
√
νmc) usually makes it a very expensive stochastic solver in terms of

computational cost, particularly for TO problems, where a large number of

deterministic model resolutions needs to be obtained to achieve an adequate

response characterization. For this reason, a gPC procedure for low-order

statistics estimation is also considered in this work.

Using the gPC approach, an spectral representation of the compliance

function can be written as

C(ρ, ξ) =
+∞∑
j=0

ĉj(ρ)Φj(ξ) (5-4)

in a way that, because of properties E [Φ0] = 1 and E [Φj] = 0, j ≥ 1, the

mean value of C(ρ, ξ) writes as

µC = E [C(ρ, ξ)] ≈ µ̂
′

C = ĉ0(ρ), (5-5)

where an approximation for the gPC coefficient ĉ0 is obtained from the linear

regression (3-45). This procedure induces a Gaussian quadrature estimation of

µC , defined by the estimator

µ̂
′

C =

νgq∑
j=1

Wj Cj, (5-6)

where Cj = C(ρ, ξj) corresponds to the evaluation of the compliance at the

Gauss points and the quadrature weights Wj = Ψ†1j are given by the first line

entries of Ψ† = (ΨT Ψ)−1 ΨT , the pseudoinverse of the νgq × νpc regression

matrix Ψ defined in Eq. (3-46).

By definition, the standard deviation of compliance is written as

σC =
(
E
[
C(ρ, ξ)2

]
− E [C(ρ, ξ)]2

)1/2
, (5-7)

so that a procedure similar to that used to construct the estimator of Eq.(5-6)

can be adopted now to propose

σ̂
′

C =

(
νgq∑
j=1

Wj C
2
j −

(
µ̂
′

C

)2
)1/2

, (5-8)

as an estimator for σC .

The gPC-based estimators defined by Eqs.(5-6) and (5-8) provide a very

accurate and efficient framework for estimation of the compliance low-order

statistics, that demands a small number of deterministic model evaluations,

once in practice νgq � νmc.
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5.1.3
Sensitivity analysis

The partial derivative of the objective function C̃, defined in the optim-

ization problem (5-1), with respect to the element density function ρe is given

by
∂C̃

∂ρe
=
∂µC
∂ρe

+ k
∂σC
∂ρe

, (5-9)

where the partial derivatives on the right hand side can be approximated, via

crude MC, with the aid of the estimators

∂µC
∂ρe
≈ ∂µ̂C

∂ρe
=

1

νmc

νmc∑
k=1

∂C(k)

∂ρe
(5-10)

and

∂σC
∂ρe
≈ ∂σ̂C

∂ρe
=

1

(νmc − 1) σ̂C

((
νmc∑
k=1

C(k) ∂C
(k)

∂ρe

)
− νmc µ̂C

∂µ̂C
∂ρe

)
. (5-11)

However, from the point of view of computational cost, it is more efficient

to obtain these sensitivity coefficients using the gPC estimators, i.e.

∂µC
∂ρe
≈ ∂µ̂

′
C

∂ρe
=

νgq∑
j=1

Wj
∂Cj
∂ρe

(5-12)

and
∂σC
∂ρe
≈ ∂σ̂

′
C

∂ρe
=

1

σ̂
′
C

((
νgq∑
j=1

Wj Cj
∂Cj
∂ρe

)
− µ̂ ′C

∂µ̂
′
C

∂ρe

)
, (5-13)

obtained from Eqs.(5-6) and (5-8) by differentiation with respect to ρe.

5.1.4
Algorithm for robust topology optimization

The results obtained from the TO algorithm, i.e., the compliance and

sensitivities, are used to compute statistical measures in a non-intrusive way.

Therefore, the RTO algorithm, for problems with uncertain loading, can be

described as follows:

1. Topology Optimization Data: define finite element model, set optimizer

and underlying numerical and control parameters;

2. Stochastic Model: parametrize aleatory objects with a set of independent

random variables defined by the germ ξ. Choose an appropriate family of

orthogonal polynomials, define weight factor k and gPC order ppc;

3. Objective Function

– for each germ realization ξ(k) perform finite element analysis using

Eq.(4-2) and compute compliance sensitivities with Eq.(4-15);
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– Compute gPC coefficients from Eq.(3-45);
– Compute statistical estimates for mean and standard deviation with

aid of Eqs.(5-6) and (5-8);
– Compute the sensitivity of the objective function from Eq.(5-9).

4. Constraint Function: compute volume constraint using Eq.(5-1) and its

sensitivity with Eq.(4-17);

5. Update the design variables ρ according to the optimizer. Repeat from

step 3 until convergence is achieved;

A flowchart of the proposed RTO algorithm is depicted in Figure 5.1.

5.2
Topology Optimization considering uncertainties in material properties

The RTO problem in this case consider uncertainty material and it

is formulated for minimizing the volume of the structure subjected to the

compliance constraint whose limit is chosen for the designer. We must have in

mind that for each value of the limit we can obtain a different topology.

5.2.1
Mathematical Formulation

The RTO problem is mathematically formulated as

min
ρ

V (ρ) =
Ne∑
e=1

ρe |Ω̄e|; e = 1, 2, . . . , Ne

subject to C̃ = E [C(ρ,x)] + k σ [C(ρ,x)] ≤ Cs,

with K(ρ,x)U(ρ,x) = F,

0 < ρmin ≤ ρ(Ω) ≤ 1.

(5-14)

The objective function Eq.(5-14) that in this case represents the volume

of structure does not depend on the properties of the material related to

stiffness, therefore is considered deterministic so that the uncertainties are

presented only in the compliance constraint limted for Cs.

5.2.2
Modeling the uncertainty of material properties

Numerous physical phenomena can be modeled using random fields when

the variability is over space, i.e., stochastic variation along each dimension.

Moreover, in various practical situations, only upper and lower limits are

available.

For all these reasons, the Young’s modulus is considered as spatially

varying uncertain and is described by a 2D non-Gaussian random field.
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Figure 5.1: General flow chart of the gPC RTO integrated procedure.
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Let H(x) be the Gaussian field that represent the Young’s modulus and

its discretization consist in approximating it by Ĥ(x), which is defined by

means of a finite set of random variables ξ(ω) = {ξi(ω)}νrvi=1 gathered into a

random vector denoted by

H(x, ω) ≈ Ĥ(x, ω) (5-15)

From Eq.(2-42)., the Young’s modulus can be modeled as

E0(x, ω) = g [H(x, ω)] , (5-16)

where g(·) is a real-valued differentiable function by prescribing the marginal

distribution of a non-Gaussian field E(x, ω) . Then, the memoryless non-linear

transformation becomes

E0(x, ω) = F−1
E ◦ Φ (H(x, ω)) (5-17)

Typically, F−1
E can involve a log-normal, beta, or uniform distribution for

modeling the uncertainties in material properties. In this work, the latter is

used as the admissible marginal distribution to model the elastic properties.

Then, the support of uniform distribution is defined by two parameters, a and

b , which are its minimum and maximum values, respectively. Then, Eq.(5-17)

becomes
E0(x, ω) = a+ (b− a)Φ (H(x, ω)) (5-18)

To discretize a non-Gaussian field, the method of translation of field

is used and can be interpreted as a memoryless nonlinear transformation

of Gaussian field H(x, ω) . Then, we adopt an empirical and hypothetical

model for the Kernel that defines the correlation characteristic of the Gaussian

field. Therefore, the random field H(x, ω) is described by a 2D Gaussian

autocovariance kernel

CHH(x1,x2) = exp

(
−
(
x1 − x

′
1

)2

l21
−
(
x2 − x

′
2

)2

l22

)
(5-19)

where l1 and l2 are the correlation lengths parameters in different directions.

Figure 5.2 illustrates the first 12 2D eigenfunctions of the Gaussian Kernel

usign correlation lengths l1 = 20 and l2 = 15 .

In practice, it is common to distribute the random material properties

uniformly over the FE mesh for simplification; however, the inherent material

heterogeneity that is related to the manufacturing process implies that it is not

necessarily identical. For obtaining reasonable accuracy, we use two types of

meshes for the random field and FE, albeit with an identical boundary shape.

Each value of the random field is placed in each nodal point of the mesh.
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Figure 5.2: 2D Eigenfunction of Gaussian Kernel (Eq.(5-19)).

A regular rectangular mesh was used for the random field to facilitate the

discretization. As the RF mesh is different from the FE mesh (because it uses

a polygonal mesh) a mapping-interpolation method is required to transfer the

spatially-distributed material properties to the centroid of the FE mesh.

Figure 5.3 shows the fundamental concept underlying the mapping-

interpolation method.

5.2.3
Low-order statistics for compliance

As was seen in the previous formulation, the mean and standard deviation

of the compliance C(ρ,x) is in function of the coefficients of the gPC and they

were computed through linear regression.

From Eqs. 3-30 and 3-31, the mean and standard deviation of Compliance

given by:
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Figure 5.3: Illustration of RF and FE nodal points used for the mapping
interpolation .

µC = E [C(ρ,x)] ,

σC =
(
E [C(ρ,x)2]− E [C(ρ,x)]2

)1/2 (5-20)

are represented as

µ̂
′
C = ĉ0,

σ̂
′
C =

νgq∑
j=0

ĉ2
j〈Ψ2

j(ξ)〉 − ĉ2
0

(5-21)

In this case the coefiicients of gPC is computated through of spectral

projection approach.

5.2.4
Sensitivity analysis

The sensitivity of the objective function is straightforwardly determined

and is expressed by

dV

dρe
=

Ne∑
e=1

|Ω̄e| (5-22)

From the equilibrium equation K(ρ,x)U(ρ,x) = F, and Eqs. (4-16;4-

14) the partial derivative of the Compliance with respect to the element design

variable is straightforwardly computed:

∂C

∂ρe
= −p [1− ε] ρp−1

e UT
e K0

e(x) Ue, (5-23)

The sensitivity of the constraint Ĉ with respect to the design variable ρe

is expressed as
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∂C̃

∂ρe
=
∂µ̂

′
C

∂ρe
+ k

∂σ̂
′
C

∂ρe
(5-24)

Similarly, with a direct derivative of the equations that compute the

statistical measures through the gPC, we can obtain the sensitivity of Ĉ

∂µ̂
′
C

∂ρe
=

〈∂C(ρ,x)

∂ρe

〉
∂σ̂

′2
C

∂ρe
=

νgq∑
j=1

∂ĉ2
j

∂ρe
〈Ψ2

j(ξ)〉

(5-25)

if since

∂ĉ2
j

∂ρe
=

〈∂C(ρ,x)

∂ρe
,Ψj(ξ)

〉
〈Ψ2

j(ξ)〉
(5-26)

we substitute it in Eq.(5-25). to determine the sensitivity of the variance

∂σ̂
′
C

∂ρe
=

1

σ̂
′
C

[
νgq∑
j=1

ûj

〈∂C(ρ,x)

∂ρe
,Ψj(ξ)

〉]
(5-27)

5.2.5
Algorithm

The values computed through the TO algorithm, i.e., the compliance and

sensitivity information, are used to compute the statistical measures in a non-

intrusive manner. Therefore, the topology optimization algorithm for problems

with uncertain material properties can be formulated as follows:

1. Initialize the problem to represent the uncertain material properties by

using a probabilistic modeling, i.e. through a non-Gaussian random field;

2. A Gaussian field is used for obtaining a non-Gaussian field through the

memoryless transformation Eq.(2-42) and a desired marginal CDF;

3. Use the K-L expansion for discretizing the Gaussian field and obtaining

the eigenfunction and eigenvalue from the autocovariance function Eq.(3-

54);

4. Set the order of the gPC and select the roots of each random variable

according to the orthogonal polynomial;

5. Set the boundary condition for the problem and generate the polygonal

element mesh with PolyMesh;

6. Solve the finite element equation KU(i) = F(i) for i = 1, . . . , νgq
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7. Calculate the sensitivity of the compliance C and with respect to ρe

according to Eq.(5-22) and (5-23);

8. Calculate the coefficients ûj of the gPC using the sparse grid from Eq.(3-

44);

9. Calculate the statistical measures (E [·] and σ [·] ) according to Eqs.(5-21);

10. Calculate the sensitivity of the objective function Ĉ according to Eqs.(5-

25) and (5-27);

11. Update the design variables ρ by the optimizer. Repeat from step 6 until

convergence;

Figure 5.4. depicts the flowchart of the proposed TO algorithm.
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Figure 5.4: General flow-chart of TO algorithm under uncertain material
properties.
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6
Numerical Results

The effectiveness of the proposed gPC RTO algorithm is addressed in

this section by means of a study that considers bidimensional mechanical

systems subjected to uncertain loads. The goal is to show that different

statistical responses can be obtained when using the proposed gPC RTO

design algorithm and a non-robust design strategy, where TO is done first

(deterministically) and the propagation of uncertainties is computed later,

considering the deterministic optimized topology.

For the sake of accuracy verification, a reference crude Monte Carlo RTO

solution is employed. This comparison allows one verify the accuracy of the

statistical measures obtained with the proposed gPC approach. The influence

of the weight factor in the robust design is also addressed, as well as the

different effects that are observed when a random load is treated as a random

variable or a random field.

For the examples presented in the following section, consistent units are

used.

6.1
Cantilever beam design

As first example, we consider the same example from [156], which a

simple cantilever beam subjected to a pair of vertical loads, with uncertain

magnitudes, applied at the two right edge corners, such as illustrated in

Figure 6.1(a).

The vertical and horizontal dimensions of the structure are 30 and 60

units of length, respectively. The structure is composed of an isotropic material

with Young modulus E0 = 1 and Poisson ratio ν = 0.3. For the void material

an elastic modulus value equal to Emin = 10−9 is employed. The prescribed

volume fraction of material is set as 0.3, the filter radius as 1.5, the penalization
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(a) (b)

60

F
1

F
2

30

Figure 6.1: Cantilever beam structure: (a) original configuration, (b) non-
robust TO design.

factor 3, and the design domain is discretized by means of a polygonal mesh

with N = 7, 200 finite elements. The nominal (deterministic) configuration for

this problem adopts the magnitude of the two vertical forces as F1 = F2 = 1,

respectively.

On the other hand, in the stochastic case, magnitudes of the forces

are assumed to be uncertain and modeled by independent random variables

w ∈ Ω 7→ F1(ω) ∈ R and w ∈ Ω 7→ F2(ω) ∈ R, both defined on a suit-

able probability space (Ω,F, P ). For the sake of simplicity, but being con-

sistent with the physics of the mechanical problem, it is assumed that these

two random variables are uniformly distributed on the same positive sup-

port SuppF = [Fmin, Fmax] ⊂ (0,+∞). Three numerical studies are conduc-

ted in this example, where SuppF is chosen as [Fmin, Fmax] = [0.95, 1.05],

[Fmin, Fmax] = [0.9, 1.1] and [Fmin, Fmax] = [0.8, 1.2]. Note that these intervals

correspond to symmetrical variabilities of up to 5%, 10% and 20% around the

mean values µF1 = µF2 = 1, respectively.

The non-robust TO, obtained using the PolyTop with MMA optimizer,

is shown in Figure 6.1(b). The lack of material on the left side of the cantilever

is due to the two forces of equal magnitudes applied in opposite directions.

Therefore, the stress in the cantilever is distributed only on the right side of

the domain. However, to avoid instability (displacements going to infinity), a

minimum value of elastic modulus Emin is used.

In order to perform the gPC RTO one needs to define the random

variable ξ = (F1, F2), which is over the region [Fmin, Fmax] × [Fmin, Fmax] ⊂
(0,+∞) × (0,+∞), so that νrv = 2. In this case the optimal base for gPC

expansion is given by the Legendre polynomials [120]. For the three different

types of uniform distribution considered, a weight factor k = 1 is employed,

together with an expansion of order ppc = 5 (so that 1 + νpc = 21)(this value

was heuristically chosen to ensure the stochastic convergence.). A total number
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of νgq = 36 collocation points is used to generate realizations of ξ = (F1, F2).

To check the accuracy of the gPC RTO strategy, the same problem is addressed

using the MC simulation with νmc = 104 scenarios of loading magnitudes, a

reference result dubbed MC RTO.

(a) gPC RTO design

(b) MC RTO design

Figure 6.2: Optimized topologies for the cantilever beam using gPC RTO and
MC RTO designs, for uniform distributions over the intervals [Fmin, Fmax] =
[0.95, 1.05] (left), [Fmin, Fmax] = [0.9, 1.1] (center) and [Fmin, Fmax] = [0.8, 1.2]
(right).

In Figure 6.2 the reader can see the optimum topologies obtained by gPC

RTO (top) and MC RTO (bottom), for different support of the random variable

F . The topologies shown in Figure 6.2 are different from the deterministic

counterparts in Figure 6.1(b) – some extra members can be observed on the left

side of the structure – for different levels of uncertainties (length of SuppF ). As

the level of uncertainty increases, more members appear in the final topology.

Finally, the robust designs using MC simulation present equivalent topologies

and statistical measures, which demonstrates the accuracy of the proposed

gPC RTO approach.

Table 6.1 compares statistical estimates for the compliance expected

value µC and standard deviation σC , in the cases of robust and non-robust

design. Remember that, in this context, non-robust design means first optim-

izing the topology via classical (deterministic) TO and then using MC simu-

lation to propagate the loading uncertainties through the mechanical system.

A good agreement between robust strategies based on gPC and MC is noted,

as well as that the statistical measures for the non-robust design tend to ap-

proach infinity, since there is no connection between the left and right sides of

the domain.It is also worth noting that, while the MC RTO needs 104 eval-
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uations of the compliance function, the gPC RTO only needs 36 evaluations.

This difference of three orders of magnitude demonstrates the efficiency of the

gPC RTO implementation.

Table 6.1: Low-order statistics of cantilever beam compliance for robust and
non-robust TO strategies.

SuppF gPC RTO MC RTO Non-robust TO

µC σC µC σC µC σC

[0.95, 1.05] 21.4 1.2 21.4 1.2 5.7 E7 6.7 E7
[0.90, 1.10] 23.5 2.9 23.4 2.8 2.3 E8 2.7 E8
[0.80, 1.20] 29.4 7.7 29.4 7.6 9.1 E8 1.1 E9

6.2
Michell type structure

In this second example RTO is applied on a simple Michell type structure

considering three loads, with uncertain directions, applied at the bottom edge

of the two dimensional system, as illustrated in Figure 6.3(a).

(a) (b)

120

F
1

F
3

50

F
2

4040

60

Figure 6.3: Michell type structure: (a) original configuration, (b) non-robust
TO design.

The length and height of the structure are equal to 120 and 50 units,

respectively. The design domain is discretized with a polygonal mesh with

N = 12, 000 finite elements, and all other parameters are the same as in the

first example. For the deterministic case, magnitudes and directions of the

three forces are defined as F1 = 1, F2 = 2, F3 = 1, and α1 = α2 = α3 = −90◦,

respectively.

Meanwhile, on the stochastic case, the forces directions are modeled

as the independent and identically distributed random variables ω ∈ Ω 7→
A1(w) ∈ R, ω ∈ Ω 7→ A2(ω) ∈ R and ω ∈ Ω 7→ A3(ω) ∈ R. Three scenarios
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of probabilistic distribution are analyzed: (i) Normal, (ii) Uniform, and (iii)

Gumbel. For the Normal and Gumbel distributions, mean values are assumed

to be equal to the nominal values of α1, α2 and α3, with all the standard

deviations equal to 10◦. In the Uniform case, the three supports are defined by

the interval [Amin, Amax] = [−100◦,−80◦]. The probability density functions of

these distributions are illustrated in Figure 6.4.
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Figure 6.4: Probability distributions for the loads angles: normal (left), uniform
(right) and Gumbel (bellow).

Now the random variable is defined as ξ = (A1, A2, A3), thus νrv = 3, and

the family of orthogonal polynomials (basis) is chosen according to the random

variable support. For simplicity, Hermite polynomials are used in the case of

Gaussian or Gumbel parameters, while Legendre polynomials are the option

when the random variable is uniform distributed. Employing gPC RTO with

an expansion of order ppc = 5 (thus 1 + νpc = 56) total number of νgq = 216

collocation points and and weight factor value k = 1, one obtains the robust

designs shown in Figure 6.5, where connections at fixed points are created to

balance the horizontal components of non-vertical forces. Note that the non-

robust design in Figure 6.5(b) only presents four bars connected at the forces

application points, no connection at the joints can be seen. This occurs because

the forces are always vertical. However, when gPC RTO design is used, there

are connections at the joints, because the angle variability induces horizontal
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force components.

6.5(a): Normal 6.5(b): Uniform

6.5(c): Gumbel

Figure 6.5: Optimized topologies for the Michell type structure using gPC RTO
design, with different probability distributions for load angle: (a) Normal, (b)
Uniform and (c) Gumbel.

The statistical results of the robust design compared with the non-robust

counterpart can be appreciated in Figures 6.6, 6.7 and Table 6.2, which show

the compliance probability densities and their low order statistics, respectively,

for the different distributions considered in the force angle.

One can observe from these simulation results that the range variability of

compliance is reduced, which implies that the robust design is less sensitive to

loading uncertainties than its non-robust counterpart. As shown in Figure 6.5,

the final topologies are symmetric for the normal and uniform distributions

but is asymmetric for the Gumbel distribution.

Table 6.2: Low-order statistics of the compliance for the Michell type structure
using robust and non-robust TO strategies.

distribution gPC RTO Non-robust TO

µC σC µC σC

Normal 251.6 6.0 314.2 113.3
Uniform 253.3 5.7 262.7 33.3
Gumbel 249.1 6.7 312.5 128.9

In the second analysis for this example, the influence of the weighting

factor in the robust optimization process is addressed. The aim is to minimize
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Figure 6.6: Estimation of the mean and standard deviation value of the robust
and non-robust design using Monte Carlo simulation.

the variability by increasing the value of k, because this factor is directly related

to the standard deviation term on the objective function.
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6.7(a): Normal
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6.7(b): Uniform
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6.7(c): Gumbel

Figure 6.7: Probability density function of the compliance for the Michell
type structure using non-robust and gPC RTO robust design, with different
probability distributions for load angle: (a) Normal, (b) Uniform and (c)
Gumbel.

Three different uniform distributions are considered for the random

angle of the force and their supports are respectively defined by the in-

tervals [Amin, Amax] = [−95◦,−85◦], [Amin, Amax] = [−100◦,−80◦] and

[Amin, Amax] = [−110◦,−70◦]. The gPC RTO design strategy is employed for

k ∈ {0, 1, 2, 3}, generating the optimal topologies shown in Figure 6.8.

According to Table 6.3, all the designs shown in Figure 6.8 present sig-

nificant lower expected compliance and standard deviation values when com-

pared to the non-robust solution. The highest values of standard deviation are

obtained using k = 0, since we are minimizing only the expected compliance.

For k > 0, both expected compliance and its standard deviation con-

tribute to the objective function and we can observe that as the value of k

increases, the standard deviation decreases. Based on the numerical experi-

ments presented in Table 6.3, we recommend the value k = 3, for practical

use, because it leads to the best values of standard deviation with only a slight

change in the expected compliance values.
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6.8(a): k = 0

6.8(b): k = 1

6.8(c): k = 2

6.8(d): k = 3

Figure 6.8: Optimized topologies for the Michell type structure using gPC RTO
strategy, for different values of weight k and different uniform distributions for
the angle: [−95◦,−85◦] (left), [−100◦,−80◦] (middle) and [−110◦,−70◦] (right).

Table 6.3: Low-order statistics of the compliance for the Michell type structure
using gPC RTO, with different force angles distributions and different weight
factors.

SuppA

[−95◦,−85◦] [−100◦,−80◦] [−110◦,−70◦]
k µC σC µC σC µC σC

gPC RTO 0 241.8 5.2 256.0 10.6 249.0 10.2
gPC RTO 1 247.2 4.3 253.3 5.7 249.2 6.4
gPC RTO 2 253.0 3.1 249.7 4.0 250.0 6.0
gPC RTO 3 248.9 2.4 247.0 2.9 250.1 5.6

Non-robust TO - 364.4 14.2 366.1 28.4 373.0 56.9

6.3
2D bridge structure

This example corresponds to a simple bridge structure subjected to an

uncertain distributed loading at the top edge, as illustrated in Figure 6.9(a).
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The nominal load is uniform throughout the structure, with magnitude per

unit of length equal to F = 1.

For the stochastic case, the load magnitude per unit of length in each

point is assumed to be a Gaussian random field (x, ω) ∈ [0, l]×Ω 7→ F (x, ω) ∈
R with correlation function

CFF (x, x′) = σF (6-1)

such that the loads at any pair of points x, x′ are fully correlated. The mean

and standard deviation of the random field F (x, ω) are assumed as µF = 1

and σF = 0.3, respectively.

For the optimization process, the prescribed volume fraction of material

is set as 0.3, the filter radius is set as 3, the penalization factor 3, and the

design domain is discretized with a polygonal mesh with N = 10, 000 finite

elements. The non-robust TO of the 2D bridge, performed using PolyTop with

MMA optimizer, is shown in Figure 6.9(b). Furthermore, the first two rows

of finite elements on the top of structure are fixed during the optimization

process, to ensure that the bridge remains attached to the loading conditions.

Allowing the final results to be more realistic. It is observed in Figure 6.9(b)

that the non-robust design leads to a final topology which is similar to the

classical case of a 2D bridge under an uniformly distributed load.

(b)

F

l=300m300m

(a)

50m

40m 40m

Figure 6.9: 2D Bridge structure: (a) original configuration, (b) non-robust RO
design.

For the purpose of numerical computation, the random field F (x, ω) is

discretized by means of ξ = (F1), a single Gaussian random variable for which

low-order statistics are the same as for the random field. The gPC RTO design

is obtained using an expansion of order ppc = 5 (with 1 + νpc = 6) and a total
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number of νgq = 6 collocation points for Hermite orthogonal polynomials, and

weight factor values k ∈ {0, 1, 2, 3}.
The final results are shown in Figure 6.10, where one can observe that

some bars connected at the bottom of the bridge are different from those of

the non-robust case in Figure 6.9(b). Moreover, as the value of k increases, the

structure presents a more robust physical form, which represents a consistent

result, because the standard deviation of the compliance is being forced to

be smaller. The corresponding mean value and standard deviation of the

compliance function, for the different values of k employed, are given in

Table 6.4.

(a) = 0

(b) = 1

(c) = 2

(d) = 3

k

k

k

k

Figure 6.10: Robust design for the 2D bridge structure with fully correlated
distributed load, for different values of weight k.

As a second analysis, the random load F (x, ω) is assumed to have the

same low-order statistics as before, but an exponentially decaying correlation

function
CFF (x, x′) = σF exp

(
−|x− x

′|
lcorr

)
, (6-2)

where lcorr is a correlation length for the random field. Note that, by this

assumption, the loads at any two points x, x′ in the 2D bridge are partially

correlated. If the correlation length is increased, a strong correlation is obtained
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Table 6.4: Low-order statistics of the compliance for a 2D bridge using gPC
RTO and different weight factors.

κ µC σC

0 5.4443 E5 3.0666 E5
1 5.4481 E5 3.0657 E5
2 5.4462 E5 3.0646 E5
3 5.4455 E5 3.0642 E5

between the points x, x′, so that lcorr = ∞ implies a perfectly correlated

random field — the previous case where the field depends on a single random

variable. On the other hand, when lcorr = 0, the random field is completely

uncorrelated — many independent random variables are necessary for an

accurate computational representation. In order to avoid the two limit cases,

lcorr = 120 is chosen.

In terms of computational representation for numerical calculations, the

random field F (x, ω) is discretized with the aid of Karhunen-Loève expansion

described in section 3.6. The number of terms in this expansion is chosen in

a heuristic way, seeking to satisfy the criterion presented in (3-62). A good

compromise between accuracy and computational efficiency is obtained with

νkl = 7. Therefore, the random variable is ξ = (F1, F2, · · · , Fνrv), a set of

νrv = 7 independent Gaussian random variables for which low-order statistics

are the same as for the random field. Then, for this case we use a total number

of νgq = 279936 collocation points.

A comparison between non-robust and gPC RTO design, for k = 1 and

the different types of distributed load considered, are shown in Figure 6.11.

The difference between the three obtained topologies is very clear, and can

also be appreciated in Table 6.5, which shows the low-order statistics of the

compliance in all cases analyzed.

Table 6.5: Low-order statistics of the compliance for a 2D bridge considering
different design scenarios.

Non-robust TO RTO full corr RTO partial corr
µC σC µC σC µC σC

5.449 E5 3.076 E5 5.448 E5 3.066 E5 2.361 E5 9.708 E4

This example clearly shows that the nature of the distributed load has

a significant effect on the RTO. Also from Table 6.5, it is possible to see that

the compliance low-order statistics for a 2D bridge under a distributed load,
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(b)

(a)

(  )c

Figure 6.11: Optimized topologies for the 2D bridge structure: (a) non-robust
TO with fully correlated load, (b) gPC RTO with fully correlated load, (c)
gPC RTO with partially correlated load.

emulated by a partially correlated random field, are smaller than those for a

fully correlated field.

6.4
Cantilever beam

This example considers a simple 2D Cantilever beam subjected to a

vertical point load P applied in the middle right end. The design domain

geometry is defined as L long, 5L/8 height and L/40 thickness as illustrated

in Figure 6.12(a). The topology optimization of cantilever for a deterministic

configuration adopt a structure with isotropic material and a constraint of

compliance C = (4000P )/EL, where E is the Young’s modulus considered

for all elements. The structure is discretized using 136 by 85 polygonal

element mesh, a minimum allowable filter radius equal to 0.0185L, and the

penalization factor equal to 3. The values of P , L and E are defined as 1,

40 and 100 respectively. Therefore, we obtain the topology optimization for

the deterministic case a minimum volume equal to 0.233, and is showed in

Figure 6.12(b).

For the robust design, we consider material uncertainty, specifically being

the Young’s modulus of each polygonal element. Commonly, several works
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Figure 6.12: 2D Cantilever Beam. (a) Design domaind geometry. (b) Minimum
volume under determinitics conditions. (c) Minimum volume under uncertainty
conditions

choose to use Gaussian fields to represent the Young’s modulus due to their

simplicity and well-established properties. For reasons of comparison, the

Cantilever beam example was take from [59], where an Log-normal Gaussian

field was used for representing the variability of the material uncertainty and

its propagtion was intrusively.

In this example, we represent a spatial variability through a 2D Gaussian

and Non-Gaussian Homogeneous field with expected E and standard deviation

value equal to 0.25E. Therefore, for discretizing Gaussian fields, we use the K-

L expansion presented in 3.6 with a correlation length L/2, H/2. Using νkl = 7

uncorrelated random variables, we obtain a good approximation of Gaussian

field. In Figure 6.13, are showed the eigenvalues and variance error with a

Energy equal to 0.8987.

We test the formulation proposed using a Log-normal Gaussian field with

equal conditions to the example from [59]. The constraint presented in Eq.(5-

14) using a k = 0 is estimated through the PCE of order 3. Thus, we obtain

a minimum volume equal to 0.247. The result of optimization is showed in

Figure 6.12(c).

From these results, we can see that the topologies obtained in the

deterministic or stochastic case are similar. But the main idea is to know

which topology is more robust to the variability caused by the uncertain

material. Then, using the topology of structure obtained in deterministic
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Figure 6.13: Approximation by truncated K-L expanson with 7 terms .

case, we calculate the expected value and standard deviation of volume using

the ensembles of random field being the values obtained 0.281 and 0.181

respectively.

In Table 6.6, the fisrt column shows the results obtained from [59] and the

second column shows the results using our algorithm both for diferent values

of k. The main differences of between two formulation highlights in the use of

polygon elements and the non-intrusive strategy for estimating the expected

and standard deviation of compliance. Therefore, from Table 6.6 can be seen

that the values are very similar.

Table 6.6: Comparison of Intrusive and Non-Intrusive Methods using Log-
normal Gaussian field.

[59] Formulation proposed

k µC σC µC σC Vol

0 1.000 0.131 1.000 0.135 0.249
1 0.885 0.115 0.881 0.118 0.273
2 0.793 0.103 0.787 0.106 0.298
3 0.719 0.094 0.712 0.096 0.320
4 0.658 0.086 0.649 0.087 0.350
5 0.606 0.079 0.597 0.081 0.375

From a Gaussian Field with autocovariance function presented in Eq.(5-

19). we obtain a Non-Gaussian field through of a non-linear transformation

using a marginal uniform distribution as shown in Figure 6.14.

To visualize the influence of the spatial variability using Non-Gaussian

field, we increase the standard deviation to 0.35E with same correlation length.

In Figure 6.15, the first two columns show the robust design for different values
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Figure 6.14: Ensemble of 2D Non-Gaussian field representing the Young’s
modulus.

of k. It may be noted that as the value of k increases the design becomes more

robust and consequently the volume as well. The values obtained can be seen

in the Table 6.7.

The varation of correlation length makes the random field more or less

correlated and it influences in the discretization. We change the correlation

length to la = L/4 and lb = H/4 then, the robust design and variation of the

results are shown in third column of Figure 6.15 and Table 6.7 respectively.

Table 6.7: Value of expected and standard deviation of compliance.

σE0 = 0.25E σE0 = 0.35E σE0 = 0.25E
la = L/2, lb = H/2 la = L/2, lb = H/2 la = L/4, lb = H/4

k µC σC Vol µC σC Vol µC σC Vol

0 1.000 0.148 0.249 1.000 0.229 0.259 1.000 0.105 0.247
1 0.870 0.129 0.276 0.813 0.186 0.304 0.904 0.095 0.265
2 0.771 0.114 0.302 0.684 0.157 0.349 0.826 0.086 0.284
3 0.691 0.102 0.324 0.591 0.136 0.393 0.762 0.079 0.300
4 0.627 0.093 0.354 0.521 0.119 0.441 0.704 0.073 0.315
5 0.574 0.085 0.385 0.466 0.106 0.494 0.656 0.068 0.339
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Figure 6.15: Robust design of 2D Cantilever beam problem.
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7
Concluding Remarks

The aim of this work was to provide a general framework for robust to-

pology optimization with the focus on mechanical structural where efficient

algorithms were developed in order to identify, quantify and include uncer-

tainties in the overall optimization procedure.

Therefore, this chapter recalls the themes addressed in the thesis, sum-

marizes and highlights its main conclusions, contributions and suggest some

paths for future works in the field of optimization under uncertainties.

7.1
Contributions and conclusions of the thesis

Firstly, In this thesis we presented the state-of-the-art techniques in

uncertainties quantification using polynomial chaos expansions. Furthermore,

we proposed a efficient approach for the topology optimization problem in

presence of uncertainties.

The Robust Topology Optimization problem has been formulated and

solved by means of an optimization procedure which integrates a classical TO

algorithm with a stochastic spectral expansion based on gPC. This procedure

compare their performance against the Monte Carlo simulation an established

techniques, which is used to verify the accuracy and efficiency of the proposed

methodology.

This approach is introduced to reduce the variability due to presence of

uncertainties in loading and material properties applied to the mechanical

structure of interest. The mathematical formulation of RTO problem was

defined in two ways to show the performance of algorithm proposed.

First, the RTO minimize the weighted sum of the mean and standard

deviation of the compliance subject to volume constraint where only loading

uncertainties were considered. Their characteriztion was through of random
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vectors and random field for the case of distributed loading. The Gaussian

field is used for representing the fluctuation of the load module over its

length and for this become computationally implementable the Karhunen-

Loève expansion was implemented for discretizing the random field.

Second, the RTO minimize the volume subject to weighted sum of the

mean and standard deviation of the compliance as constraint and where only

uncertainties in material properties (Young’s modulus) were considered. The

spatial variability introduced in Young’s modulus transform the optimization

problem into multiples scenaries and consequently, the computational cost

increases significantly with the dimension. Then, due to the spatial variability

of the Young’s modulus a Homogeneus Non-Gaussian field was used.

The simulation of second-order Non-Gaussian field was discussed in this

study for representing the Young’s modulus with upper and lower bounds.

The uniform marginal distribution was chosen because to its flexibility in

representing often distributions of data when upper and lower limits are given

in practice. In addition, we also show how Non-Gaussian field can be introduced

into topology optimization via the Translation of field and K-L expansion. The

Log-normal field is also a very useful description of randomness but in this case

for representing Young’s modulus is debatable.

The computational cost for computing the coefficients of gPC increase

as the stochastic dimension is defined with the number of random variables

in the RTO and this problem is seen when random field are discretized in

terms of countable uncorrelated random variables. The strategy for reducing

the computational cost, was employing the sparse grid instead of the tensor

product.

Furthermore, the gPC is compatible with RTO for computing the stat-

istical measures of the compliance. The numerical examples presented here

show a substantial benefit and exhibits topology changes within their design

domains compared with their deterministic counterpart. The optimal topo-

logy configurations confirm that the uncertainty parameters might change the

deterministically obtained optimal topologies.

The proposed methodology allows to obtain approximate outcomes with

a much lower computational cost than that associated with Monte Carlo

simulation, which makes it attractive, particularly in the context of structural

topology optimization. Moreover, when using random load fields, the results

show different topologies because the forces are correlated, i.e., each force

depends on the other and therefore, their interactions with the structure have

significant effects on the robust design. Also in this thesis, we compare the

results obtained with Non-Gaussian field with similar examples found in the
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literature where Gaussian field were considered.

Finally, a nice feature of these approach is that they can easily integrate

several improvements at different levels when uncertainties are considered in

various types of optimization problems.

7.2
Suggestions for future works

The limitation of the gPC can be observed when a large number of

random variables is used to parametrize the stochastic model, since in this

case a substantial number of terms is necessary to construct the expansion,

and, consequently, the computational cost increases significantly with the

dimension. This is often referred to as the curse of dimensionality, and it can

be reduced using adaptive techniques such as the adaptive sparse grid.

The Adaptive Sparse Polynomial Chaos approximations is other tech-

nique based on the Least Angle Regresion (LAR) which was proposed for

automatically detecting and retain progressively a small number of significant

coefficients of the PC expansion [157]; [4].

Multifidelity Optimization is other approach to optimization under un-

certainty that makes use of inexpensive, low-fidelity models to provide approx-

imate information about the expensive, high-fidelity model. The multifidelity

estimator is developed based on the control variate method to reduce the

computational cost of achieving a specified mean square error in the statistic

estimate [158]; [159].
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INSKY, P.. Friction models and friction compensation. Eur. J.

Control, 4(3):176–195, 1998.

https://top3dapp.com/
https://top3dapp.com/
https://github.com/williamhunter/topy
https://paulino.ce.gatech.edu/software.html
DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Bibliography 133

[84] HALDAR, A.; MAHADEVAN, S.. Reliability assessment using

stochastic finite element analysis. John Wiley & Sons, 2000.

[85] CHOI, S.-K.; GRANDHI, R. ; CANFIELD, R. A.. Reliability-based

structural design. Springer Science & Business Media, 2006.

[86] STEFANOU, G.; PAPADRAKAKIS, M.. Assessment of spectral rep-
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within the context of polynomial chaos. Annals of Nuclear Energy,

76:146–165, 2015.

[93] MATTHIES, H. G.; BRENNER, C. E.; BUCHER, C. G. ; SOARES, C. G..

Uncertainties in probabilistic numerical analysis of structures

and solids-stochastic finite elements. Structural safety, 19(3):283–

336, 1997.

[94] ZHANG, J.; ELLINGWOOD, B.. Orthogonal series expansions of ran-

dom fields in reliability analysis. Journal of Engineering Mechanics,

120(12):2660–2677, 1994.

[95] LI, C.-C.; DER KIUREGHIAN, A.. Optimal discretization of random

fields. Journal of engineering mechanics, 119(6):1136–1154, 1993.

DBD
PUC-Rio - Certificação Digital Nº 1413449/CA



Bibliography 134

[96] VANMARCKE, E.. Random fields: analysis and synthesis. World

scientific, 2010.

[97] KARRHUNEN, K.. Über lineare methoden in der wahrscheinlich-

keitsrechnung. Annales Academiae Scientiarum Fennicae Ser. A I, 37:3–

79, 1947.
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