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Abstract

Filizzola Colombo, Eduardo Henrique; de Porto, Celia Beatriz An-
teneodo (Advisor). Collective behavior of living beings un-
der spatiotemporal environment fluctuations. Rio de Janeiro,
2018. 117p. Tese de doutorado – Departamento de Física, Pontifícia
Universidade Católica do Rio de Janeiro.
Living entities have their own means of locomotion and are capable of

reproduction. Furthermore, the habitat in which organisms are embedded
is typically heterogeneous, such that environment conditions vary in time
and space. In this thesis, theoretical models to understand the collective
dynamics of living beings have been proposed and investigated aiming to
address relevant questions such as population organization and persistence
in the environment, using analytical and numerical techniques. Initially,
considering an homogeneous habitat, in which the statistical properties of
the environmental conditions are time and space independent, we study
how spatiotemporal order can emerge in the population distribution due to
nonlocal interactions and investigate the role of environment fluctuations
in the self-organization process. Further, we continue our investigation
assuming an heterogeneous environment, starting with the simplest case of
a single habitat domain, and we obtain the critical conditions for population
survival for di�erent population dynamics. Considering a class of nonlinear
equations, introducing temporal oscillations and interactions among the
organisms, we are able to provide a general picture of population stability in
a single habitat domain, challenging previous ecological concepts. At last,
assuming a fragmented complex landscape, resembling realistic properties
observed in nature, we additionally assume that individuals have access to
information about the spatial structure. We show that individuals survive
when patches of viable regions are clustered enough and, counter-intuitively,
observe that population size is maximized when individuals have partial
information about the habitat. Finally, since, analytical exact results are
not feasible in many important situations, we propose an e�ective approach
to interpret experimental data. This way we are able to connect environment
heterogeneity and population persistence.

Keywords
Non-equilibrium statistical physics; Active matter; Population survi-

val.
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Resumo

Filizzola Colombo, Eduardo Henrique; de Porto, Celia Beatriz
Anteneodo. Comportamento coletivo de organismos vivos
sob flutuações espaço-temporais do meio ambiente. Rio de
Janeiro, 2018. 117p. Tese de Doutorado – Departamento de Física,
Pontifícia Universidade Católica do Rio de Janeiro.
Organismos vivos têm seus próprios meios de locomoção e são capa-

zes de se reproduzir. Além disto, o habitat no qual os organismos estão
inseridos é tipicamente heterogêneo, de modo que as condições ambientais
variam no tempo e no espaço. Nesta tese, são propostos e investigados mo-
delos teóricos para compreender o comportamento coletivo de organismos
vivos, visando responder questões relevantes sobre a organização e preser-
vação da população utilizando técnicas analíticas e numéricas. Inicialmente,
considerando um habitat homogêneo, em que as propriedades estatísticas
das condições ambientais são independentes do tempo e do espaço, estu-
damos como padrões espaço-temporais podem emergir na distribuição da
população devido a interações não-locais e investigamos o papel das flutua-
ções ambientais neste processo. Em seguida, assumindo um meio ambiente
heterogêneo, analisamos o caso de um único domínio de habitat. Conside-
rando uma classe de equações não lineares, introduzindo flutuações tem-
porais e interações entre os organismos, fornecemos uma perspectiva geral
da estabilidade de populações neste caso, desafiando os conceitos ecológi-
cos anteriores. Em um segundo passo, assumindo uma paisagem complexa
fragmentada, consideramos que os indivíduos têm acesso a informações so-
bre a estrutura espacial do meio. Mostramos que os indivíduos sobrevivem
quando as regiões espaciais viáveis estão suficientemente aglomeradas e ob-
servamos que o tamanho da população é maximizado quando os indivíduos
utilizam parcialmente a informação do meio ambiente. Finalmente, como re-
sultados exatos analíticos não são factíveis em muitas situações importantes,
propomos uma abordagem efetiva para interpretar os dados experimentais.
Assim, somos capazes de conectar a heterogeneidade do ambiente e a persis-
tência da população, caracterizada pela distribuição de probabilidade para
os tempos de vida.

Palavras-chave
Física estatística de não equilíbrio; Matéria ativa; Sobrevivência de

populações.
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1
Introduction

Statistical physics has been providing a path to connect the microscopic
dynamics to the macroscopic observable phenomena. In the pursuit of this
connection, the discipline has crossed the traditional boundaries, reaching
other fields such as Chemistry, Biology and Sociology [1–3]. The collective
dynamics of living begins is one of the cross-interdisciplinary subjects that
has received attention recently. In considering di�erent fundamental living
entities (e.g. bacteria, ants, birds and humans), some particular features are
introduced in the system. Here, in contrast to the classical case where particles
are passive, the elementary units are self-propelled and endowed with the
remarkable capacity of reproduction [2, 4].

The microscopic dynamics of living beings depends on a large web of
processes through a wide range of scales. Due to the complexity involved
in the constitution of the individuals and on the mechanisms of interaction,
the relevant macroscopic behavior is disconnected from the low level physics
underneath [5]. Nevertheless, macroscopic laws can be defined for a density
field in its own scale [6–8]. The mathematical approach adopted in this work
is based on writing a dynamical equation for the temporal evolution of the
population density distribution fl(x, t). For example, the number of insects
per square meter, where x is a location in space and t a time instant.
Besides that, any population is intrinsically coupled to the environment, which
controls many of the biological processes. Therefore, we assume that the
density distribution is subjected to external conditions represented by M(x, t)
(e.g. nutrient concentration, temperature, humidity, soil and so on) which is
typically heterogeneous in space and time.

In this thesis, given the rules of the dynamics, such as laws for movement,
reproduction, interactions and environment coupling, we investigate the set of
environment conditions for which population survival occurs. We will develop
mathematical models, gradually incorporating fundamental features of living
organisms and the ones observed in natural habitat, such as fragmentation,
seasonality and randomness. The collection of results presented provide a
general picture about the stability of biological populations with applications
to conservation biology.
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Chapter 1. Introduction 11

The theoretical investigation of population dynamics in heterogeneous
environment has always been a central issue to spatial ecology [9–11]. In
1951, J. Skellam [12] noticed that the habitat should have size L above a
certain threshold L

c

to allow population survival (L > L

c

). Later, in 1979,
this problem was revised to determine the occurrence of an species invasion
(such as a plague) [13]. For both cases, the conditions investigated assumed
that the external conditions M generate a single time-independent habitat
domain surrounded by harmful conditions. Subsequent models introduced
di�erent individual movement and growth laws [14]. More recently, this topic
has also received renewed attention [15–21], revealing additional features of
the dynamics. In all these cases, it is a robust feature that population survives
for L > L

c

, where the particular value of L

c

depends on each model detail.
The investigation of population persistence in more complex habitats

started around 1967 with the theory of island biogeography by R. MacArthur
and E. O. Wilson [9], followed by S. Levin’s work on population dynamics in
heterogeneous habitat [10], culminating with I. Hanski et al. [22], giving rise to
the so called metapopulation theory [11,22,23]. In these cases, it is considered
that the habitat is fragmented, being composed not by one but by many spatial
domains, known as patches, in which the individuals find suitable condition for
reproduction, such shelter, food, etc. These subpopulations remain coupled
due to individual dispersal, creating a population network [24]. In this
scenario, the critical spatial condition appears condensed in the form of the
metapopulation capacity [22], which takes into account the major component
of the spatial patch distribution (related to the maximum eigenvalue of
the network adjacency matrix). Similarly to the single domain case, in the
fragmented landscape, there is a threshold related to its connectivity.

It is worth to stress that biodiversity ensures ecosystem robustness
against environmental changes [25]. Understanding this issue is relevant in
times when habitats are getting smaller and fragmented and climate [26].
Human activity has been considered one of the main causes of these recent
changes, defining the antropocene epoch [27]. Notable examples of human
impact on habitat spatiotemporal patterns are deforestation and urbanization
processes [24, 28]. On the other hand, human intervention can also be
constructive, for instance, implementing proper design and management of
habitats to promote population conservation [14,29].

This thesis will be divided as described hereafter. In Chapter 2, we
present the mathematical framework used to describe the system. We also
define important concepts about the environment modeling and a proper
definition of the population persistence is presented.
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Chapter 1. Introduction 12

In Chapter 3, we assume that environmental properties are homogeneous,
i.e., the environment conditions might change in time, but local statistical
properties are invariant in time and space. First, we introduce the local
(Sec. 3.1) and spatial (Sec. 3.2) components of the dynamics. Further, we take
the opportunity to consider interesting scenarios where spatiotemporal order
emerges exclusively due to individual interaction (Sec. 3.3). We will investigate
how environment fluctuations interfere in the stability of pattern formation in
the population density distribution.

In Chapter 4, we will start our discussion regarding population
conservation, reviewing the classical single habitat domain case and then
extending the model by assuming di�erent population dynamics and also
considering environment seasonality. Our results show how di�erent scenarios
a�ect the population persistence criteria. Investigating a general nonlinear
case (Sec. 4.1), we find that, for a certain class of dynamics, the ecological
establishment that the critical habitat size is a lower bound for population
survival breaks down. Counter-intuitively, we find cases in which the
population survives when the habitat size is smaller than a critical value
L < L

c

, or for any habitat size L > 0. Furthermore, we analyze the role of
higher order interaction (Sec. 4.2) and habitat temporal fluctuations (Sec. 4.3)
and show that both considerably a�ects the value of the critical habitat size.

In chapter 5, we investigate the persistence of a population with
information based dispersal (Sec. 5.1) in a complex habitat (Sec. 5.2).
In nature, fractality might appear due to power-law correlations between
environment resources [24,28,30,31] or due to complex transformations, such as
urbanization processes [32]. One of our results shows that there is a threshold
for habitat clusterization (fractal dimension) for which the population can
survive (Sec. 5.3). Moreover, we discuss the role that the habitat spatial
information plays in the dispersal of the individuals (Sec. 5.4). We show
that population size is maximized for a specific balance between random and
directed movement towards more viable locations. In the last section (Sec. 5.5)
we propose an e�ective model to interpret metapopulation experimental data,
bypassing analytical di�culties in solving exactly nonlinear spatial stochastic
processes [8].

The results presented in the upcoming chapters can be found in the
following publications: Chapter 3 in Ref. [33]; Chapter 4 in Refs. [34, 35] and
Chapter 5 in Ref. [36].

Final remarks on population conservation are presented in the last
chapter. We also state a summary of our findings and the general picture
of the results.
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2
Basic concepts and tools

In order to be precise about the system that we will study, we present
below the mathematical tools and concepts that are fundamental to the next
chapters.

The fundamental object that defines the population state is the
individuals’ position set X = {x

n

}’n<N

, including the full information about
population spatial structure and size N . The temporal evolution of X depends
on the rules for the biological processes that drive displacement, creation and
annihilation of the elements in the set [37].

⌦i, Mi

�x

Figure 2.1: Illustration of the coarse-grained perspective. Dots represent
particles, while lines separate cells �

i

with environment conditions M

i

and
area �x

2. Arrows indicate that particles might flow between cells.

Instead of dealing with a potentially large set, N ∫ 1, the system can
be described in a coarse-grained perspective. We start by subdividing the
environment domain � ™ R

d in identical regions �
i

with area (�x)d arranged
in a lattice. The habitat dimension d is tipically d = 2, although in some cases
d ¥ 1, when the dynamics occurs in narrow corridors or channels [17]. Then, we
define the population density at region i as fl

i

© n

i

/(�x)d = 1

�x

d

q
N

i

�i(xi

),
where the indicator operator

�i(xi

) = 1 if x

i

œ �
i

, and zero otherwise [8].
Locally, we will assume that individuals reproduce, die and compete,

increasing or decreasing population size, respectively. The spatial coupling
between regions �

i

arises due to fluxes between locations or due to nonlocal
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PUC-Rio - Certificação Digital Nº 1412801/CA



Chapter 2. Basic concepts and tools 14

interactions. Individuals change location by their own means, moving through
the ecological landscape (flux between adjacent cells), being constantly a�ected
by the habitat; or, di�erently, as in the case of birds that can fly over
the landscape, nonlocal fluxes can also occur [11]. Moreover, individuals
might interact at distance, due to communication or hidden mechanisms (see
Fig. 3.3). In Fig. 2, we illustrate this coarse-grained perspective, recalling that
to each region �

i

is associated with an environment condition M

i

.
Thus, we construct the general model with local and nonlocal terms,

ˆ

t

fl

i

= F (fl
i

|M
i

) + �[fl|M ] , (2-1)

where F is the net growth per capita at region i and � the changes due
to individual flux and interaction, both written as a function of population
density.

In a compact way, we can write

ˆ

t

fl

i

(t) = L[fl|M ] , (2-2)

which might also be written in the continuous space form,

ˆ

t

fl(x, t) = L[fl|M ] . (2-3)

Particular forms for L and environment M will be discussed in the next
chapters. Diverse features of the system will be analyzed numerically with
methods described in Appendix E and also analytically, with methodology
discussed separately in Chapters 3, 4, 5. We will mainly focus on the
asymptotic behavior of the population density distribution and the condition
for population survival.

Environment spatiotemporal structure

The combination of di�erent environment factors result in a macroscopic
quantity M(x, t), that provides habitat quality for a given species. In ecology,
this is known as the ecological landscape [28]. The landscape represents
the mesoscopic view of the environment, taking into account only the
major variations of the habitat quality. An habitat domain is defined when
a particular location meets the species requirement, having a particular
microbioma, such as a bog, bush, tree, or even created artificially [28,30,38,39].
In some models, for instance, the landscape is considered a binary lattice with
cells being suitable or not to population development [24].

The spatial structure of the landscape can be diverse. For the following
chapters, three major categories are relevant: homogeneous, single domain
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PUC-Rio - Certificação Digital Nº 1412801/CA



Chapter 2. Basic concepts and tools 15

(a) (b)

Figure 2.2: Pictorial representation of (a) single habitat domain and (b)
metapopulation network. The shades of green represent possible variations
in habitat quality and black lines the delimitation of the habitat domains.

and fragmented. The homogeneous case refers to the situations in which
environment conditions are constant in space and time. In Fig. 2.2a, we
illustrate the single domain case and in Fig. 2.2b the fragmented habitat case.

For instance, a single habitat domain can be created for bacteria,
combining a background of abundant resources that promotes population
growth and a heterogeneous field of UV-light that increase the death rate
(see Sec. 4.3). In this case, there exists a single domain where the population
is protected from the harmful radiation [17]. In the ecological scale this single
domain might be generated by public policies, delimiting reserves, with the
implementation of fishing and hunting regulations.

In nature, the landscape is typically fragmented, being composed by
many habitat domains that are patches of the landscape [24]. A clear example
is an archipelago, where the geographical constraints set the landscape spatial
structure. More sophisticated landscapes arise, for instance, in the case of
butterflies, where only particular locations fullfill the basic requirements for
population development, such as level of humidity, temperature, water, sun
light [24,28]. Further details will be discussed in chapters 4 and 5.

Moreover, we should have in mind that the landscape is also in constant
change. At short scales, the parameters that quantify the environment
conditions have high uncertainty in short scales due to the complexity of
the environment dynamics. At longer scales, ecosystems follow the circadian
rhythm (day-night cycles) and seasons, generated by the one year oscillation
of sun light. We illustrate this with the data for temperature at Copacabana
beach (Rio de Janeiro, Brazil) in Fig. 2.3. The temporal evolution of the
temperature is shown on the left for several years (with the one year cycle
highlighted), while the right plot shows the power spectrum with peaks at
the year and half-year frequencies. Despite the annual periodicity, there is
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Chapter 2. Basic concepts and tools 16

also a small semiannual oscillation, which is known to occur in some globe
locations [40]. The spectrum has also an exponential tail (red line), indicating
that correlation decays as a power-law for at least for short time scales. This
features are not particular to the temperature, but typically observed in many
other environment parameters [28, 31].

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

T
em

p
er

at
u
re

(o
C

)

t (days)

1 year

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.02 0.04 0.06 0.08 0.1 0.12 0.14
S

⌘

!

1 year

0.5 year

10�6

10�5

10�4

10�3

10�2

10�1

0 0.5 1 1.5 2 2.5

Figure 2.3: From the INMET dataset from Rio de Janeiro, we extract the
period from 1961-2014 wich contain temperature records every 12 hours. On
the top, we show the evolution of the average daily temperature. On the
bottom, we show the power spectrum for the average daily temperature with
inset indicating the behavior exponential (·

c

ƒ 0.7) behavior for short wave
length in log scale. Semiannual oscillations [40] are also detected. Performing
a detrending analysis [41] of the time series on the top, we observe a Gaussian
like probability distribution and variance È÷2Í œ [1, 3].

For the cases investigated in the following chapters, we will focus on
the fundamental aspects of the environment temporal behavior, discussing the
role of seasonality and uncorrelated random fluctuations. The impact of other
details shown in Fig. 2.3 are addressed when necessary, but in general, are not
expected to a�ect qualitatively the presented results.

Extinction characterization

The core results of the following chapters depend on the definition of the
extinction criteria. Extinction will be determined analyzing the asymptotic
dynamics of the total population size,

N(t) =
⁄

�

fl(x, t)dx . (2-4)

We consider that an extinction event occurred if, when starting from a positive
initial condition N(0) > 0, the population size becomes null (N(t) = 0) at a
given instant t. However, in some cases, the null steady state is approached
asymptotically, so N > 0 for all times. In these cases, after a transient, the
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Chapter 2. Basic concepts and tools 17

total population typically will either grow towards a constant value or decay
according to a certain law. Then, we will assume that extinction (survival)
occurs when ˙

N

N

< 0 ( ˙

N

N

Ø 0).
Furthermore, when we consider stochastic fluctuations, population

persistence needs to be characterized by the statistical properties of the
population lifetimes T . This will be discussed in details in Sec. (3.1).
In the limit of infinite number of individuals, there is a clear choice,
since the population average extinction time diverges for some range of
environment parameters [21, 42], meaning full persistence. For other cases, in
which extinction times are finite, we say that population will get extincted.
However, when the number of individuals is small, survival is never fully
achieved [21, 42]. In these cases, one should look to relevant changes in the
dependency of the extinction times with environmental parameter. Assuming a
suitable microscopic description of the system [21], previous results show that
the deterministic analyzes point out the correct threshold for environment
conditions that delimits the extinction-survival phases [21]. It is worth to
mention, that other extinction criteria might be more relevant [42], but only
quantitative corrections should be added.

For the cases that will be investigated in Chapter 4 and 5, there is clear
surface M

c

in environment parameter space that separates the extinction and
survival phases. Nevertheless, in general, the extinction and survival phases in
the environment parameter space, could be more complicated, since there is
no guarantee that the interface between phases is well defined. Then, perhaps,
in a broader perspective, we should define that in the set of all possible
environment conditions, there exists a subset M

s

, for which if M œ M

s

,
population survives, meanwhile, if the environment conditions belongs to the
complement M

e

© M \ M

s

, population will get extincted (eventually).
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3
Homogeneous environment

In this chapter, we will investigate population dynamics in a
homogeneous environment. We will assume that habitat is made of random
fluctuations, but assuming its statistical properties are time and space
independent. We start introducing basic elements in the mathematical
model, such as birth-death and dispersal processes, in Sec. 3.1 and 3.2.
The homogeneous case allows us to understand population spatial distribution
without any habitat bias. In the last section, we will show that nonlocal
interactions triggers population selforganization, generating spatiotemporal
patterns in the population density distribution. Further, we show how
environment fluctuations can a�ect the pattern formation process.

3.1
Local dynamics

The first ingredients that we introduce in the dynamics are the
elementary processes: reproduction, death and competition that occur locally.
Those processes can be written in terms of reactions,

A

ab≠æ A + A (3-1)
A

ad≠æ ÿ (3-2)

A + A

b≠æ A . (3-3)

where the a

b

and a

d

are the birth and death rates and b the competition term,
when the population interact in pairs for resources.

Following the master equation approach (for details see Appendix A), the
implementation of the above reaction chain gives us a Fokker-Planck equation
for the number of individuals n,

ˆ

t

P = ≠ˆ

n

[f(n)P ] + (1/2)ˆ
nn

[g(n)P ] , (3-4)

with

f(n) = (a ≠ bn)n ,

g(n) = (a
b

+ a

d

)n + bn

2

,
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where a © a

b

≠ a

d

.
In the limit of large n, the population statistics is well described by

its first and second cumulants. This is not true in general, particularly for
the extremelly small and large population sizes, the Fokker-Planck equation
(3-4) has minor but significant deviations from the exact solution. A more
accurate prediction of the probability density distribution for population
size n can be made following more sofisticated methods such as a WKB
approximation [43,44].

The first term in Eq. (3-4) takes into account the drift, driven by the
deterministic forces f(n) = (a ≠ bn)n. At low densities, population grows
exponentially and then reaches a saturation point n

0

= a/b, for which
reproduction and resource availability balance, f

Õ(n
0

) = 0. The particular form
of f in Eq. 3-4 is known as logistic growth or Verhulst model [6,45]. The second
term of Eq. (3-4), introduces the fluctuations of the birth-death processes.

The temporal evolution of the population size can also be posed as a
Langevin equation,

ṅ = f(n) +
Ò

g(n) ¶ ›(t) , (3-5)
where n is treated as a continuous variable and intrinsic stochasticity is
implemented introducing a zero mean unit variance noise ›. Since › enters
in Eq. (3-5) as multiplicative noise, we introduce the notation of a small
circle (¶) to recall that › should be interpreted following Ito prescription, since
demographic noise is nonantecipative, being strictly uncorrelated [46].

Despite the fact that we obtain a quadratic g in Eq. (3-4), typically
fluctuations associated to the competition process are neglected in the
literature [44, 47–49]. Then, in the following chapters, we considered that
g(n) Ã n.

In the next step, we consider that the environment is fluctuating in time.
We assume that the reproduction rate a æ a + ÷, where ÷ is a zero mean
Gaussian white noise,

ṅ(t) = f(n) + ÷(t) • n(t) + ›(t) ¶
Ò

n(t) . (3-6)

Equivalently, substituting n = fl�x

d and setting new scaled parameters,
the above equation can be written for the population density [44],

fl̇(t) = f(fl) + ÷(t) • fl + ›(t) ¶ Ô
fl . (3-7)

Eq. (3-7), with these two components of randomness, is known as the canon-

ical model [44]. The notation applied to the multiplicative noises remindes
their origins, giving a modeling consistency to Eq. (3-7). The environmental
noise is produced by the complex ecosystem dynamics, which makes the
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evolution of the environment conditions behave erratic in time. Nevertheless,
produced by a dynamical system any environment property should exhibit a
nonnull time correlation, even if arbitrarily small. This leads us to interpret ÷

following Stratonovich prescription (•) [46]. Di�erently, as mentioned above,
demographic noise is internal to the dynamics (¶), being nonantecipative [33,
46]. Despite the fact that there is a mathematical equivalence between both
approaches, we keep this distinction between noises ÷ and › in Eq. (3-7) to
highlight the model structure. The consequences of each noise prescription to
the dynamics will be tackled in the last section.

In the limit of large population size demographic noise can be neglected,
since it goes as the square of the population size, while environmental noise
and f certainly contain higher order terms. This approximation is typically
used in the case of microorganisms, where entities are numerous [17] and it
will be used in Chapter 4.

In order to understand the di�erent roles of ÷ and ›, we set their variance
to ‡

÷

and ‡

›

, respectively. From the stochastic di�erential equation Eq. (3-6),
we can obtain the associated Fokker-Planck

ˆ

t

p(n) = ≠ ˆ

ˆn

(f(n) + ‡

2

÷

n/2)p(n)] +
‡

2

›

2
ˆ

2

ˆn

2

(np(n)) +
‡

2

÷

2
ˆ

2

ˆn

2

(n2

p(n)) . (3-8)

which extends Eq. (3-4), including environment fluctuations ÷. Ignoring the
occurrence of extinctions, that is, neglecting the flux of probability that leaves
the system at n = 0, Eq. (3-8) admits a steady solution

p

s

(n) Ã 1
(‡2

›

+ ‡

2

÷

n)n exp
A⁄

n

f(z) + ‡

2

÷

z/2
‡

2

›

z + (‡
÷

z)2

dz

B

,

Ã (‡2

›

+ ‡

2

÷

n)[a+b‡

2
› /‡

2
÷ ] exp

C ≠bn

‡

2

›

+ ‡

2

÷

D

. (3-9)

In the limit of low population density n æ 0,

p

s

(0) Ã ‡

2[a+b‡

2
› /‡

2
÷ ]

›

. (3-10)

This shows that demographic stochasticity › is the main mechanism of
extinction. That is, if only environmental stochasticity is present (‡

›

= 0),
the null state is a natural boundary, being automatically inaccessible starting
from N

0

> 0 [50]. In this case, mathematical modeling becomes incomplete and
an artificial mechanism of extinction needs to be implemented (e.g. consider
extinction ocurrs when the total population density goes below a certain
value) [50].

In order to have a more realistic scenario, we can introduce an e�ective
term to account for the flux exchange with the surroundings. For instance,
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Figure 3.1: Temporal evolution of the local population density for the canonical
model (3-7) plus the additive migration term. The interval · highlights a
lifetime event.

below we consider an extra additive term ’ in Eq. (3-7),

fl̇(t) = f(fl) + ÷(t) • fl(t) + ›(t) ¶
Ò

fl(t) + ’(t) , (3-11)

with ’ as a Gaussian white noise. The protocol ’ is the pressure that drives the
migration inwards and outwards of the system. Since ’ can assume positive
values, the null state is not absorbent anymore and an extinction dynamics is
established (see Fig. (3.1)). In this case, there is a steady state such as the one
found in Eq. (3-9).

Taking into account all the elementary features of the canonical model, we
see that an isolated population will be certainly extincted at some time. From
Eq. (3-7), for the population density fl, we can obtain the mean population
extinction time (see Appendix B for derivation)

T =
⁄

fl(0)

0

⁄ Œ

z

exp (
s

v

z

�(u)du)
V (v) dvdz , (3-12)

where �(fl) = 2M(fl)/V (fl), with M(fl) = afl ≠ bfl

2 + ‡

2

÷

fl/2 and V (fl) =
‡

2

÷

fl

2 + ‡

2

›

fl + ‡

2

’

(see Eq. (3-8)). In Fig. (3.1) we show the comparison between
the theoretical prediction given by Eq. (3-12) and numerical simulation of
Eq. (3-7) (see Appendix E). In this scenario, averages are performed over an
ensemble of realizations starting from fl(0).

Other possible extensions of the canonical model might be implemented
to include more realistic features of the natural systems. The canonical
model introduced environmental stochasticity in a standard way. Nevertheless,
environment is known to have two remarkable features: randomness and
seasonality. Typically, environment conditions have nontrivial statistical
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Figure 3.2: Mean lifetime T starting from fl(0) = 1 as a function of ‡

÷

, ‡

›

with ‡

’

= 0 (left) and ‡

’

for È’Í = 0 and È’Í = 1 with ‡

÷

= ‡

›

= 1 (right).
Remaining parameters are a = b = 1. Solid line represents the result from
Eq. (3-12) and dots the direct integration of Eq. (3-11).

properties [28,31]. As an example, in Fig. 2.3, we showed the temporal evolution
of the temperature at Copacabana beach (“posto 6”). The power spectrum
shows the evident one year cycle accompanied by colored random fluctuations.

Typically, many environment conditions will posses similar temporal
behavior, embodying these two fundamental features of the environment. Then,
one might be interested, in assuming that

a(t) = a

0

+ A sin(�t) + ÷(t) . (3-13)

In this case, even for small A, stochastic resonance phenomenon might tune
the extinction times [51].

In the following chapter, we will investigate the role of both aspects
in population conservation. However, seasonality and randomness will be
considered in simplified forms to avoid unnecessary complications.

3.2
Dispersal

Population spread due to organism active motion, walking, swimming,
and so on, or passively, as it occurs in seed dispersal, when displacement is
promoted by wind and active agents, such as birds [7]. These mechanisms
produce statistical fingerprints in individuals’ movement that can be obtained
experimentally.

Microscopically, individuals’ trajectory might be modeled as an stochastic
processes composed by runs and tumbles [52]. In the case of bacteria,
coordination of the flagella allows directional movement. However, at some
times, when flagella dynamics is not synchronized, bacteria tumble and change
orientation. The alternation between these two stages generate a random walk.
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Note that since we are dealing with active entities, changes in momentum can
occur despite of collisions or any type of interaction, since they have their
mechanisms of motion.

In the coarse-grained perspective, movement is described as fluxes
between the sites �

i

(see Fig. 2). In the limit of small �x, below we derive
some preliminary results about dispersal assuming simple behavior (for details
about the discrete version, see Appendix E).

To start, we assume that individuals behave randomly, performing
uncorrelated jumps with sizes sorted according to a given probability
distribution “. In this case, in one-dimension, during an interval �t the density
change due to dispersal can be written as

�[fl] = ≠fl(x)
⁄ Œ

≠Œ
“(|x ≠ x

Õ|)dx

Õ +
⁄ Œ

≠Œ
“(|x ≠ x

Õ|)fl(xÕ)dx

Õ
, (3-14)

= ≠fl(x) +
⁄ Œ

≠Œ
“(|x ≠ x

Õ|)fl(xÕ)dx

Õ
. (3-15)

The first term represents the outward flow from position x, while the second
term represents the incoming flow from the neighborhood. The normalized
kernel “ sets that the flux exchange is a function of distance. Typically, the
flux intensity decays with the distance, meaning that individuals tend to move
to locations near their current patch. For instance, for active individuals,
such as butterflies, but also for passive entities, such as seeds, “ is set
to an exponential [7, 11]. But power-laws, and other forms have also been
investigated [7, 53–55].

In the limit of small jumps, we might expand the convolution term,

�[fl] = ≠fl(x) +
⁄ Œ

≠Œ
“(xÕ)fl(x ≠ x

Õ)dx

Õ (3-16)

= ≠fl(x) +
ÿ

n=0

(ˆ
x

)n

fl(x)
n!

⁄ Œ

≠Œ
(xÕ)n

“(xÕ)dx

Õ (3-17)

=
ÿ

i=1

µ

n

n! (ˆ
x

)n

fl(x) (3-18)

= 1
2µ

2

(ˆ
x

)2

fl + 1
24µ

4

(ˆ
x

)4

fl + . . . (3-19)

where µ

i

are the moments of the kernel “ (only the even ones are non-null since
“ is symmetric). The traditional di�usion equation emerges when the expansion
of Eq. (3-19) is truncated at first order, considering that µ

2

∫ µ

4

∫ µ

6

∫ . . ..
The above expansion sums up the contributions of di�erent scale components
represented by derivatives of di�erent order (see Appendix E).

Neglecting the presence of other processes, the changes exclusively due
to dispersal evolve population density distribution as
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ˆ

t

fl = ≠fl +
⁄ Œ

≠Œ
“(x ≠ x

Õ)fl(xÕ)dx

Õ = �[fl] . (3-20)

Performing the Fourier transform of the above equation, we obtain

ˆ

t

fl̃ = ≠fl̃ + “̃fl̃ = (“̃ ≠ 1)fl̃ , (3-21)

where the notation “̃ represents the Fourier transform of the given function,
“̃(k) =

s Œ
≠Œ “(r)e≠ikr

dr. Note that since “ is normalized, the growth of the
total population (k = 0) is null, since no reproduction or death is taking place.

The solution of Eq. (3-20) can be written explicitly,

fl̃(k, t) = fl̃(k, 0)e(“̃≠1)t

, (3-22)

in which the mode growth rate is given by the dispersion relation

⁄(k) © “̃ ≠ 1 . (3-23)

It is clear from Eq. (3-23) that dispersal damps fluctuations, with stronger
e�ects for high frequencies. For instance, if “(r) Ã exp(≠|r|), ⁄(k) = 1/(1 +
k

2) ≠ 1.
Now, noting that,

Èx2Í = ≠d

2

fl̃

dk

2

-----
k=0

, (3-24)

we can see that the nonlocal dispersal in Eq. (3-20) generates di�usion-like
evolution of the second moment

Èx2Í = ≠
A

d

2

“̃

dk

2

B

t = µ

2

2 t , (3-25)

where the second moment of kernel “ determines an e�ective di�usion
coe�cient. This matches the di�usion term in Eq. (3-19). The temporal
evolution of higher momentum can be obtained with similar procedure.

This result ignores the influence of environment properties M and
other factors that might interfere in dispersal. As we will investigate further,
individuals movement might be biased by the environment (Sec. 5.1) and
also influence by the local density that might increase or decrease individual
mobility (Secs. 4.1 and 4.2). In general, in the continuous space formulation,
the term � can be written in a general form as

�[fl|M ] =
Œÿ

i

j

i

(fl|M)(ˆ
x

)2i

fl . (3-26)

At last, recalling the growth term f(fl) = afl ≠ bfl

2 from Eq. (3-7) and
additionally assuming standard di�usion � ≥ Ò2, the temporal evolution of
the population distribution is given by

ˆ

t

fl = DÒ2

fl + afl ≠ bfl

2

. (3-27)
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The above equation is known as the Fisher-KPP equation, named after the
biologist R. Fisher and commonly followed by the names of the mathematicians
A. Kolmogorov, I. Petrovsky, N. Piskunov [56,57]. Eq. (4-1) is a paradigmatic
model for population biology due to the fact the it includes the elementary
features of the dynamics, i.e., spread, growth and competition. It is worth
to point out that Eq. (4-1) has also been applied to describe the evolution
of genes in phenotype space [56]. In this situation, spatial dispersal is
translated in terms of mutations which promote random changes in individuals
characteristics (e.g. size, color, speed), enlarging its diversity. This brings an
interesting ambiguity to the results presented, in the sense that there is a direct
translation to the context of the genetic evolution.

In the following section, we will investigate other types of spatial
coupling that represents, for instance, individual interaction at distance. We
will see that, when there is a particular combination of interaction scales,
spatial and temporal order can appear in the population distribution. In
details, for a particular model, we show how spatial patterns can appear.
Further, we investigate the role of environment random fluctuations in this
self-organization phenomenon.

3.3
Nonlocal interactions

In the previous section, we presented the role of dispersal in the
evolution of the population density distribution. Those simple models predict
the relaxation towards an homogeneous steady state. However, the temporal
evolution of biological populations can present complex spatiotemporal
patterns, a signature of self-organization, as can be observed in populations
of slime mold, bacteria, ants, birds, fishes and human beings [3, 58–61].
Self-organization may arise due to non-local interactions [6, 62–67] or other
mechanisms introducing a spatial scale, and can be triggered by di�erent
phenomena that drive a system far from equilibrium towards a spatiotemporal
organization. The environment certainly interferes in most of those processes.
For example, for microorganisms, the environment temperature can a�ect
the reproduction rate [68] and many other processes [69] such as spatial
spread. Competition is intrinsically mediated by the environment due to
its limited resource availability (carrying capacity) [45]. Now, due to the
inherent complexity, an environment parameter is typically subjected to a
complex web of diverse processes, varying at di�erent scales, both in space
and time. Therefore, it is interesting to consider that environment conditions
fluctuate randomly as discussed in Sec. 3.1, changing the reproduction rate.
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w

Figure 3.3: Illustration of nonlocal competition in plants promoted by roots in
semi-arid regions and nonlocal reproducation rates induced by seed dispersal.
The length w delimits the competitive interaction for water, mediated by the
roots.

Also, as mentioned, external fluxes appear as an extra term in the canonical
local equation (3-11), then the environment may also influence the system
evolution through additive noise fluctuating forces (see Fig. 3.1). It is our
goal to investigate the impact of such fluctuations on the system dynamics,
particularly on the self-organization process. In order to do that, we will
consider a single species scenario in one-dimension [33].

A standard deterministic model that takes into account the above
mentioned governing rules is the generalized Fisher-KPP equation [56,57,65],
namely, the integro-di�erential equation

ˆfl(x, t)
ˆt

= a fl(x, t) ≠ b fl(x, t) �[fl](x, t) + D

ˆ

2

ˆx

2

fl(x, t) , (3-28)

where �[fl](x, t) =
s

�

“(x ≠ x

Õ)fl(xÕ
, t)dx

Õ and f describes the influence of two
interacting infinitesimal elements at a distance |x ≠ x

Õ|. This generalized form
of Eq. (4-1) embodies nonlocal competition. In models similar to Eq. (3-28),
nonlocal competition appears, for instance, in the context of vegetation,
where the biomass concentrated at a given point consumes water around a
neighborhood using its roots. In fact, this has been shown to be one of the
main causes of self-organization in semi-arid regions [62,70,71]. In Fig. 3.3 we
illustrate this situation. In fact, a derivation of the nonlocal interaction from
the vegatition-water dynamics is possible in particular cases [63].

It is also worth to mention that non-locality might be present on the
reproduction term, a æ a

s
“

d

(x≠x

Õ)fl(xÕ
, t)dx

Õ. In the context of Fig. (3.3), “

d

would represent the seed dispersal kernel [7,64]. But here we proceed only with
the nonlocal competition term, since it is the minimum mechanism for pattern
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formation. That is, other processes interfere but are not necessary conditions
for pattern formation. Further comments will be addressed in Sec. (3.3.1).

In Eq. (3-28), the environment participates in defining all the set of
control parameters {a, b, D}. The inclusion of small fluctuations (or noise)
allows to reflect the realistic spatiotemporal variability of the environment.
In a first step, as in Eq. (3-11), we will focus on the e�ects of an additive
noise ‡

’

’(x, t) and a fluctuating growth rate, resorting to the transformation
a æ a + ‡

÷

÷(x, t). We consider both ’ and ÷ independent Gaussian noises,
with null averages È’(x, t)Í = È÷(x, t)Í = 0, and white in space-time, i.e.,
È’(x, t)’(xÕ

, t

Õ)Í = ”(x ≠ x

Õ)”(t ≠ t

Õ) and È÷(x, t)÷(xÕ
, t

Õ)Í = ”(x ≠ x

Õ)”(t ≠ t

Õ).
In this section, we choose to neglect demographic fluctuations, assuming large
population size. In this way, we can investigate pattern in the long time limit,
where certainly there is a stationary state. However, its qualitative role could
be predicted from the following calculations.

Therefore, our object of study is the dynamical equation that can be cast
in the following form:

ˆfl(x, t)
ˆt

=
1
a + ‡

÷

÷(x, t)
2
fl(x, t) + ‡

’

’(x, t) +

≠bfl(x, t)�[fl] + D

ˆ

2

ˆx

2

fl(x, t) . (3-29)

Since the shape of the influence function does not lead to substantially di�erent
results [65], throughout this section, we will use a Heaviside influence function
defined as “(x≠x

Õ) = 1

2w

�(w≠|x≠x

Õ|) for the sake of simplicity. In the previous
expression, w is a positive constant, defining the range of the interactions.
Moreover, for the multiplicative white noise term, one must state an additional
prescription, typically, either Itô or Stratonovich [46].

As discussed in Sec. 3.1, we argued that environment should be taken
into account following Stratonovich interpretation. This is suitable since
when fluctuations come from the environment, it is expected that temporal
correlation might be weak but non-null (see Fig. 2.3). Indeed, the derivation
of the Stratonovich prescription is based on performing this limit in a general
noise [46]. This means that environment is not sensed in a nonantecipative
manner by the individuals [72]. Below, we extend our results considering also
the Itô prescription. This will show in a didactic way how both noises di�er
when interacting with the dynamics of Eq. (3-28).
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3.3.1
Instability conditions

In the deterministic case [65], i.e., when ‡

’

= ‡

÷

= 0, one can determine
the instability condition for the emergence of periodic structures by following
the standard procedure of linearizing Eq. (3-28) around the homogeneous
solution fl

0

© a/b, assuming fl(x, t) = fl

0

+ Á(x, t), where Á(x, t) = Á

0

exp[ikx +
⁄(k)t] is a small perturbation around the uniform state fl

0

under periodic
boundary conditions. This procedure leads to the dispersion relation

⁄(k) = ≠a“̃(k) ≠ Dk

2

, (3-30)

where “̃ is the Fourier transform of the influence function, that in the particular
case of the Heaviside influence becomes “̃(k) = sin (wk)/[wk]. The relation
(3-30) indicates instability with respect to a certain mode k, if ⁄(k) > 0.
Then, in general, patterns are expected if the dispersion relation satisfies two
conditions: (i) ⁄(0) < 0, to avoid instability of the total population size, and
(ii) there must exist a positive global maximum at certain k

ú
> 0 [73], to

give rise to an emergent characteristic mode. For Eq. (3-30), this maximum
exists if “̃ changes its sign for di�erent values of k. Following the dispersion
relation (3-30), we show in Fig. 3.5 that, when the di�usion coe�cient is
reduced with the other parameters kept constant, the homogeneous solution
can become unstable and patterns emerge in the population [33, 65]. Then,
both instances are depicted in Fig. 3.5, for fixed parameters a, b, w. Notice
that in both cases ⁄(0) < 0, but, for small D, ⁄(k) takes positive values, while
for D above a threshold value ⁄(k) is always negative indicating the stability
of the homogeneous state.

In general, it is necessary to have oscillations in “̃ to obtain a maximum
⁄(kı) > 0. This occur if the kernel “ is compacted enough. A precise definition
of this degree of compactness is only known in particular cases. For instance, if
“(r) = exp(≠|r|p), it is known that patterns can only be formed for p > 2 [74].
For infinitesimal interaction, it can be shown that the kernel’s kurtosis must be
below a certain value [75]. For q-Gaussian profile, “(r) Ã [1 + (1 ≠ q)x2]1/(1≠q),
patterns only emerge if q < 0, even if for q < 1 q-Gaussians have the compact
support property. But only at q < 0 the derivative is discontinuous border of
the interaction range. The triangular kernel is the marginal case q = 0. For this
particular case, in Fig. 3.3.1, we show the profile shapes for di�erent values of
q, together with the respective Fourier transform.

From the examples above, there is not a clear constraint to “ in position
space. Nevertheless, there is an indicative that the kurtosis of “ plays an
important role on pattern formation.
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Figure 3.4: q-Gaussian kernel “(r) Ã [1 + (1 ≠ q)x2]1/(1≠q) profiles for di�erent
values of q and correspondent Fourier transform. Oscillations in “̃ appear for
q < 1, but only for q < 0 a change in sign occurs.

Here, we proceed with the homogeneous form �(w ≠ |x ≠ x

Õ|)/(2w),
focusing in understanding the role of environment stochastic fluctuations.

Now let us turn to the stochastic version of the nonlocal Fisher-KPP
equation. By linearizing Eq. (3-29) around fl

0

= a/b, in the small noise
approximation, we have

ˆÁ(x, t)
ˆt

= ≠a�[Á] + D

ˆ

2

ˆx

2

Á(x, t)+

+ ‡

÷

Á(x, t)÷(x, t) + ‡

÷

fl

0

÷(x, t) + ‡

’

’(x, t) , (3-31)

where the deterministic terms are represented in the first line of the right
hand side of Eq. (3-31), while the second line contains the multiplicative and
additive noise terms. A suitable way to verify pattern formation is to measure
the spatial autocovariance C(r, t) =

s ÈÁ(x, t)Á(x + r, t)Ídx (which does not
depend on t if stationarity holds) or, alternatively, its Fourier transform, that
is the structure function

S(k, t) © ÈÁ̂(k, t)Á̂(≠k, t)Í , (3-32)

where Á̂ is the Fourier transform of Á.
Following the lines of Refs. [76, 77], we derive the evolution equation

of S(k, t) under the Stratonovich interpretation. Starting from the Fourier
transform of Eq.(3-31), considering ˆ

t

(Á̂Á̂

Õ) = Á̂ˆ

t

(Á̂Õ)+ Á̂

Õ
ˆ

t

(Á̂), where Á̂ © Á̂(k, t)
and Á̂

Õ © Á̂(≠k, t), and averaging, we obtain
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Figure 3.5: Dispersion relation Eq. (3-30) for a = 2, b = 1, w = 4, and two
values of the di�usion coe�cient D indicated on the figure.

1
2

ˆ

ˆt

S(k, t) = ⁄(k)S(k, t) + ‡

÷

ÈÁ̂Õ „
Á÷Í + ‡

÷

fl

0

ÈÁ̂Õ
÷̂Í + ‡

’

ÈÁ̂Õ
’̂Í . (3-33)

In order to evaluate the average of multiplicative terms, we resort, for
the case of the Stratonovich interpretation, to the so-called Furutsu-Novikov
theorem [78], namely

È‰(q)B[‰]Í =
⁄

dyÈ‰(q)‰(y)Í
K

” [B(q)]
”‰(y)

L

, (3-34)

where B(qÕ) is functionally dependent on the Gaussian stochastic process
‰, such as ÷ and ’. Hence, the averages of interest, in the small noise
approximation, are

2ÈÁ̂Õ „
Á÷Í = ‡

÷

K

÷

S(k, t) , (3-35)
2ÈÁ̂Õ

÷̂Í = ‡

÷

fl

0

, (3-36)
2ÈÁ̂Õ

’̂Í = ‡

’

, (3-37)

where K

÷

is to be interpreted as the spatial correlation function of the noise for
x = x

Õ, numerically computed as K

÷

= 1/�x, where �x is the lattice spacing.
Finally, substituting the averages into Eq. (3-33), the dynamical equation

for the structure function reads

ˆ

ˆt

S(k, t) = 2�
‹

(k)S(k, t) + ‡

2

÷

fl

2

0

+ ‡

2

’

, (3-38)

with
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�
‹

(k) = ≠a“̃(k) ≠ Dk

2 + 1
2‹‡

2

÷

K

÷

(0) . (3-39)
where, the factor ‹ allows to select either the Itô (‹ = 0) or Stratonovich
(‹ = 1) rules.

Notice that Eq. (3-39) can be identified as the stochastic generalization
of the dispersion relation given by Eq. (3-30). If �

‹

(k) is positive in some
range of k, then perturbations grow, indicating that the homogeneous state fl

0

is unstable. Otherwise, i.e., if �
‹

(k) < 0 for all k, the state fl

0

is stable and
perturbations vanish. The contribution of noise is given by the last term in
Eq. (3-39), that is always nonnegative and independent on k. No such e�ect
is predicted when noise is interpreted under the Itô rule (‹ = 0). In any case,
the additive noise does not a�ect the dispersion relation. Also notice that,
although the multiplicative noise ÷ is destabilizing in the Stratonovich case,
it will a�ect all modes. Then, the dispersion relation obtained by the linear
analysis already points out that noise can reveal the instability built by the
nonlocal competitive interactions.

Additional information can be obtained from the structure function.
Under stationarity, Eq. (3-38) leads to

S(k) =
‡

2

÷

fl

2

0

+ ‡

2

’

≠2�
‹

(k) . (3-40)

Therefore, although the analysis of the signal of �
‹

(k) predicts no e�ects
caused by noise under the Itô prescription, the structure function reveals that
noise can induce some kind of coherence. The numerical analysis in the next
sections will clarify this issue.

3.3.2
Impact of noise

Let us remark that the stationary amplitude S(kı), of the dominant mode
k

ı grows with both noise intensities. Moreover, note that k

ı is defined by the
deterministic component only, hence by the dispersion relation (3-30). It is in
that sense that noise reveals the instability of a hidden dominant mode that has
been built by the nonlocal interactions and suppressed by the homogenizing
di�usion process.

It is also noteworthy that, according to Eq. (3-40), noise has a
constructive role only if fl

0

> 0. Otherwise, if the homogeneous state is null,
only the presence of additive noise can induce patterns.

The above analytical statements allow to predict the stability of the
homogeneous state in the presence of noise in the dynamic rules. That analysis
tacitly assumes the stability of the homogeneous distribution in the absence
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of noise (i.e., ⁄(k) < 0 for all k), a case that will be numerically investigated
in subsection 3.3.2.2.

On the other hand, it is also important to know how noise a�ects the
asymptotic state of the population in the situations where patterns emerge
in the deterministic limit (i.e., ⁄(0) < 0 and ⁄(kı) > 0), hence when the
homogeneous state is unstable leading to growing patterns in that limit. This
case is analyzed in subsection 3.3.2.1.

In order to go beyond small noise and linear approximations, numerical
integration of Eq. (3-28) can be performed to shed light on the far from
equilibrium and nonlinear dynamics. We follow the Heun algorithm for
stochastic equations [79], discretizing space and time, with �x = 10≠1 and
�t < 10≠3 (for more details see Appendix E)

In all cases, we quantify spatial coherence, at a given time t, by means
of the structure function, which is an ensemble average. Actually, since we
verified ergodicity, ensemble averages have been substituted by temporal ones.
From the structure function, one can extract the dominant mode k

ı and its
corresponding amplitude. After a transient period, stationarity of the structure
function is attained. The stationary characteristic mode is well predicted by
Eq. (3-40), as illustrated in Fig. 3.6 where we show a comparison between the
numerical result for the stationary structure function and the linear theory
prediction for the Itô case, given by Eq. (3-40) with ‹ = 0.

For Stratonovich, the scenario is qualitatively similar, as soon as the noise
intensity is below the critical value.

Through numerical simulations, one can observe that the dominant mode
k

ı adopts a typical value, in the whole noise intensity range, showing that the
uncorrelated noise introduced in the dynamics appears in a correlated manner.

The maximum value S

ı = S(kı) gives a measure of the intensity of the
dominant mode. In the inset of Fig. 3.6 we show a normalized histogram of
S

ı

1

for an individual realization. Then, although there exists a good agreement
between the numerical structure function and its theoretical prediction, there
is a large dispersion as depicted by means of an individual realization (dotted
line) and also by the distribution of values of S

ı

1

= S

1

(kı), where S

1

(k) is the
power spectrum of each single realization.

The structure function measures coherence in Fourier space, what
definitely provides information about the presence of patterns with a
characteristic spatial scale. However, it does not guarantee that those patterns
are persistent in position space. In subsection 3.3.2.2 we shall exploit this
aspect, by directly measuring the temporal correlation and its dependency on
noise intensity ‡

÷

.
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Figure 3.6: Stationary structure function S(k), for a = 2, b = 1, w = 4,
D = 1, ‡

’

= 0 and ‡

÷

= 0.5 (Itô noise), obtained numerically (symbols) and
through Eq. (3-40) with ‹ = 0 (solid line). For comparison, we also display the
stationary power spectrum for an individual realization S

1

(k) (dotted line).
The inset shows the distribution of values of S

ı

1

= S

1

(kı): numerical (symbols)
and gamma distribution fit as a guide to the eyes (solid line).

3.3.2.1
When patterns are present in the deterministic case

Let us consider values of the parameters for which patterns arise in the
absence of noise. Then, we consider for instance the values used in Fig. 3.5
(solid line). We perform an analysis of the spatial coherence by means of the
steady value of S

ı, for di�erent noise intensities. We analyze the stochastic
equation under both Itô and Stratonovich prescriptions.

Let us first consider the Itô case. In Fig. 3.7, we represent the steady
value of the spatial average density ÈuÍ, together with S

ı. The results show
that multiplicative noise plays a destructive role in the coherence level up
to ‡

÷

ƒ 1. For higher values of the noise intensity, the reduction of S

ı is
due to the concomitant reduction of the population average size. In fact, for
the set of parameters chosen, there exists a threshold value, ‡

e

÷

¥ 1.8 in
the case of the figure, that represents the extinction threshold. This means
that, for noise intensities greater than the threshold, the population becomes
extinguished. Through the deterministic mechanisms the system would go
towards a stationary state that is represented by a well defined population
distribution pattern, meanwhile the presence of multiplicative noise in the
dynamic forces, even at low intensity, spoils that spatial order.

In the Stratonovich case, we observe a quite di�erent behavior, as
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Figure 3.7: Analysis of the spatial coherence. Steady values of the intensity of
the dominant mode S

ı = S(kı) and of the average population density, ÈuÍ,
as a function of ‡

÷

(under the Itô prescription), for the choice: a = 2, b = 1,
w = 4, D = 0.1 and ‡

’

= 0. The intensity of the dominant mode was scaled by
a factor 10≠2 just to employ a unique axis scale. The dotted lines are guides
to the eyes.

displayed in Fig. 3.8. Increasing the noise intensity ‡

÷

induces growth both
of the average level and of the intensity of the dominant mode, in such a way
that also the ratio S

ú
/ÈuÍ increases. However, as shown in the inset of the

same figure, while the amplitude of the patterns grows with increasing noise,
their shape becomes more irregular, indicating that the other modes also grow
together with the dominant one, as predicted by Eq. (3-39).

One can cast a Stratonovich stochastic di�erential equation into the form
of an Itô equation with an e�ective (or spurious) drift. For our Eq. (3-29), this
implies the change a æ a+ K÷(0)

2

‡

2

÷

. Because the additional term is positive, this
change amounts to increasing the growth rate a. On the other hand, increasing
a, with the other parameters fixed, does not alter the stability condition. This
situation would lead to increase the average density and to strengthen patterns,
which is in fact the outcome observed in Fig. 3.8, indicating that the destructive
role observed for Itô noise (Fig. 3.7) is not enough to spoil the constructive
e�ect of the spurious drift.

3.3.2.2
When patterns are absent in the deterministic case

In this subsection we concentrate in our main case of interest, that is
when the homogeneous solution is stable despite nonlocality. The purpose of
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Figure 3.8: Analysis of the spatial coherence for the choice: a = 2, b = 1, w = 4
D = 0.1 and ‡

’

= 0 (under the Stratonovich prescription). The intensity of
the dominant mode was scaled by a factor 10≠3 just to use the same axis scale.
In the inset we exhibit typical patterns for low (solid line) and high (dotted
line) noise intensities, namely for ‡

÷

= 0.1 and 1.9, respectively. The dotted
lines are guides to the eyes.

analyzing this situation is to verify if the introduction of noise in the dynamic
rules can reveal the characteristic scale of interaction.

Let us first analyze the Itô case. In Fig. 3.9, we observe how the dominant
mode intensity S

ı changes as a function of the noise intensity ‡

÷

. Our results
point out that when noise intensity is small enough (‡

÷

< 1.0), the behavior
S Ã ‡

2

÷

predicted by Eq. (3-40) occurs. However, when we increase the
noise intensity beyond the linear regime, we note that there is a break in
the monotonic behavior of S

ı with a peak that characterizes an optimum
value ‡

o

÷

¥ 2.0. Above this optimum value, noise starts to play a destructive
role in spatial coherence. As a consequence, the dominant mode becomes less
intense until it is completely destroyed. Actually, this is due to the concomitant
decrease and extinction of the population, as shown by the quotient S

ı

/ÈuÍ
also exhibited in Fig. 3.9.

On the one hand, noise in the reproduction rate a�ects the number of
individuals in the population, as expected. There exists a value ‡

c

÷

¥ 3 that
represents the extinction threshold: if a noise intensity greater than this value
is set, population vanishes. This implies a shift transition [50] for the critical
growth rate that now competes with noise.

This is a strongly nonlinear e�ect dependent on the noise intensity. It
is noteworthy that, in the local mean-field approximation described by the
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Figure 3.9: Analysis of the spatial coherence for the choice: a = 2, b = 1,
w = 4, D = 1 and ‡

’

= 0, for Itô noise. The symbols correspond to numerical
results. The quotient S

ı

/ÈuÍ is also plotted. The solid line corresponds to the
theoretical prediction given by Eq. (3-40), the dotted lines are guides to the
eyes.

equation dfl

dt

= (a ≠ bfl)fl + ‡÷fl, one can show that the ensemble average
stationary density is given by fl̄ = a

b

≠ ‡

2

/2, indicating a critical threshold.
On the other hand, although noise does not shift the dispersion relation,

it forces an anticipation of mode instability, which is illustrated by the bursts
of coherence displayed by density inhomogeneities in Fig. 3.11.

Now we perform the same analysis for the Stratonovich case. Figure 3.10
displays the analysis of spatial coherence, while the time evolution is depicted
in Fig. 3.12. In the inset of the last figure we also show the theoretical prediction
given by Eq. (3-40), which is only valid up to a critical value, ‡

c

÷

ƒ 0.33 in the
case of the figure, point at which the theoretical structure function becomes
divergent, although its numerical computation is possible.

In terms of a spurious drift, Strotonovich noise would essentially lead
to a larger growth rate, with the concomitant increase of the average density.
Moreover, that spurious drift has the e�ect of shifting the dispersion relation,
yielding Eq. (3-39). But, in contrast to Sec. 3.3.2.1, increasing noise intensity
can shift the maximum of the dispersion curve from the stability to the
instability region for su�ciently large noise intensity (above its critical value).
When this happens, di�erently to the Itô case for the same value of the
parameters, persistence of spatial patterns emerges. The resulting profiles are
similar to those observed for the parameter region in which patterns already
occur in the deterministic limit.
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Figure 3.10: Analysis of the spatial coherence for the choice: a = 2, b = 1,
w = 4, D = 1 and ‡

’

= 0, for Stratonovich noise. The symbols correspond to
numerical results. The inset shows a blow up of the vicinity of the origin, where
the solid line corresponds to the theoretical prediction given by Eq. (3-40).

Although for both noises one has S

ı

> 0, indicating the presence
of coherence, in the Stratonovich case, �

1

(kı) > 0, while in the Itô case
�

0

(kı) = ⁄(kı) < 0. That is, despite some kind of coherence is always revealed
by noise, in the Stratonovich case there is persistence of the patterns, while in
the Itô case they are weakly correlated in time. Moreover, comparison of the
profiles shown in Figs. (3.11) and (3.12), reveals a greater regularity and more
pronounced peaks in the distribution fl(x, t) in the Stratonovich case.

3.3.2.3
Temporal correlations

In order to quantify the degree of persistence, we measured the spatial
average of the time autocorrelation function of fl(x, t), R(·) as a function of
the time lag · . The autocorrelation function presents an exponential behavior
after an abrupt decay, then, we considered di�erent e�ective correlation times
(as defined in Fig. 3.13), as measures of the degree of persistence. All these
quantities plotted as a function of ‡

÷

, under the Stratonovich interpretation,
are presented in Fig. 3.13. The figure shows that persistence first increases with
noise intensity, attaining a maximum, and thereafter decays with larger noise
intensities for which order is spoiled. Notice than in the limit of vanishing
noise intensity, the correlation times do not go to zero. The limiting values
remain almost constant up to a value of ‡

÷

that approximately coincides with
the critical one predicted by the condition �

1

(kı) = 0 in Eq. (3-39), in the

DBD
PUC-Rio - Certificação Digital Nº 1412801/CA



Chapter 3. Homogeneous environment 38

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

0 20 40 60 80 100

x

t

0

0.5

1

1.5

2

2.5

3

3.5

4

⇢
(x

,
t
)

x

Figure 3.11: (Color online) Time evolution of the density fl(x, t) in a color map
(upper panel), for a = 2, b = 1, w = 4, D = 1, ‡

’

= 0, ‡

÷

= 1.0 (Itô noise). In
the lower panel we exhibit a density profile corresponding to a cut of the color
map at t = 50.

case of the figure, the aforementioned critical value is ‡

c

÷

ƒ 0.33. In fact,
the kind of persistence observed in Fig. 3.12 can be attributed to a positive
maximum of the dispersion relation (�

‹

(kı) > 0). This condition is possible
only for ‹ = 1 (Stratonovich interpretation) and ‡

÷

> ‡

c

÷

. Notice that, under
the Itô interpretation (‹ = 0), �

0

(kı) is always negative if ⁄(kı) < 0, then
such kind of persistent pattern cannot occur. In fact, for the Itô simulations,
we observed (not shown) that below the extinction threshold noise does not
a�ect the correlation times that remain at the level of those at vanishing noise
intensity in the Stratonovich case. Hence we can conclude that for the same
parameters, the e�ect of Itô noise is equivalent to that of Stratonovich noise
below ‡

c

÷

.
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Figure 3.12: (Color online) Time evolution of the density fl(x, t) in a color
map (upper panel), for a = 2, b = 1, w = 4, D = 1, ‡

’

= 0 and ‡

÷

= 1.0
(Stratonovich case). In the lower panel we exhibit a profile corresponding to a
cut of the color map at t = 50.
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= 0 (with Stratonovich noise). The inset shows typical curves of the
autocorrelation function vs the time lag · , from which correlation times were
extracted: ·

c

is the inverse rate of exponential decay, since there is an abrupt
decay before the exponential regime, we also computed ·

0.25

= ·(R = 0.25)
and ·

0.10

= ·(R = 0.10).
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4
Single habitat domain

In this chapter, we start our investigation regarding population
persistence in heterogeneous environment. Before proceeding to more
sophisticated scenarios, we should review the classical results for single
habitat domain [12,13], that will also help introduce the main concepts of the
problem.

A region, like a shelter, shield, mask, etc., that allows individuals to
be protected against unfavorable conditions (e.g. predation, water scarcity,
sun light) [28] constitutes the habitat in the form of a refuge. This region
might appear naturally due to resource spatial correlations, or artificially,
for instance, in ecological reserves, or in the case of microorganisms, where
artificially constructed landscapes can be made [17,80].

For simplicity, we start with the already introduced Fisher-KPP equation
in one dimension,

ˆ

t

fl(x, t) = f(fl) + DÒ2

fl , (4-1)
which includes random individual movements through the Laplacian term and
logistic growth f(fl) = (a ≠ bfl)fl without any noise terms.

Despite its simplicity, Eq. (4-1) includes the elementary processes
in population dynamics and also resembles a reaction-di�usion process
encountered in many di�erent areas, such as plasma physics, combustion and
physiology. Therefore, the results found for the biological problem might reach
di�erent contexts.

The most elementary definition of the landscape is to consider a single
convex habitat domain surrounded by harmful regions, where negative e�ects
are present. In one-dimension, a particular length in the line is considered the
habitat. Population dynamics at the habitat boundary ˆ� can be defined in
many ways [81], for instance, establishing its permeability (von Neumann) or
its influence on the local population density (Dirichlet). For this first contact,
we shall consider Dirichlet boundary condition,

fl(x, t)|
xœˆ�

= 0 , (4-2)

assuming that individuals that leave the habitat domain die in short time.
Under these conditions, the stability of the null state can be easily investigated.
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In the low density regime, the competition term in f can be neglected,
making Eq. (3-27) linear. Then, the general exact solution for the Fisher
dynamics with harsh vicinity conditions can be written in terms of the allowed
modes in the domain,

fl(x, t) =
ÿ

i

fl̃(k, 0) cos(k
i

x)e⁄it
. (4-3)

The solution is now decomposed in the base of Fourier modes i that grow
according to the rate ⁄

i

. For the case of Eq. (3-27),

⁄

i

= a ≠ Dk

2

i

with k

i

= fi(i + 1)
L

for i = 0, 1, 2, . . . . (4-4)

Population size will remain positive in the long time if at least one positive
eigenvalue exists ⁄. Then, if population survives, certainly max{⁄

i

} = ⁄

0

=
a ≠ Dfi

2

/L

2

> 0. Then, the critical value for L is giving by

L

c

= fi

Û
D

a

. (4-5)

For L > L

c

, we have ⁄

0

> 0, then population survives. For L < L

c

,
population size decays to zero. This establishes an intuitive ecological concept
that habitats need to exceed a certain minimum (critical) size to allow
population development. In order to provide a concrete example, in Fig. (4.1),
setting an homogeneous initial condition, we show the temporal evolution of
the population density distribution for L < L

c

, L = L

c

and L > L

c

. Further
details will be discussed in the next section.

In the limit of large population size, agent simulations, performed with
suitable reproduction and spread with rates, show that at the critical habitat
size the mean extinction time diverges and population persists at long times.
Particularly, it is shown that T ≥ L

2

/(L2

c

≠ L

2) (valid for L < L

c

) [21].
This shows that the deterministic contributions are the main reference for
population persistence. For small population, survival is never fully achieved
due to demographic noise, however, extinction times are significantly bigger
for L > L

c

[21].
Before proceeding beyond the linear and static case, it is necessary to

introduce an alternative modeling of the habitat [17]. It is more realistic to
assume that the natality rate is space dependent, such as

a æ a ≠ A�(|x| ≠ L/2) (4-6)

with A > a. This means that inside the habitat � = [≠L/2, L/2], the growth
rate is positive, while outside the habitat domain the population dies due to
the lack of environment support with rate |a ≠ A| (see Fig. 4.11).
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Aiming to investigate the stability of the null state, we linearize Eq. (3-27)
which becomes

ˆ

t

fl = Dˆ

xx

fl + afl for x œ � (4-7)
= Dˆ

xx

fl ≠ |A ≠ a|fl for x /œ � .

For L æ Œ, the population dynamics will be dominated by the dynamics
inside the domain, such that the population will survive. For L æ 0 the
opposite behavior occurs and the population size must decay with time.
Then, a critical habitat size L

c

for population survival exists. Precisely at
the critical value L = L

c

, population approaches the steady solution for
Eq. (4-7). The critical condition for this case emerges assuming the continuity
of the population density distribution at the boundary. The imposition of the
continuity of the zeroth and first order derivative can be cast setting equal the
logarithm derivative of the inner and outer solution,

fl

Õ
in

fl

in

-----
ˆ�

= fl

Õ
out

fl

out

-----
ˆ�

, (4-8)

where the prime notation indicates spatial derivative. The steady solution for
Eq. (4-7) at each region is given by

fl

in

(x) Ã cos(q
+

x) , (4-9)
fl

out

(x) Ã e

≠q≠|x|
, (4-10)

with q± =
Ò

a±/D, where a

+

= a and a≠ = |A ≠ a|.
Substituting Eq. (4-9)-(4-10) in Eq. (4-8) setting x = L

c

/2, we obtain
tan(q

+

L

c

/2) = q≠
q+

. Rearranging,

L

c

= 2
q

+

tan≠1

A
q≠

q

+

B

= 2
Û

D

a

+

tan≠1

A
a≠

a

+

B

. (4-11)

In the limit of harsh outside conditions a≠ ∫ a

+

, we recover Eq. (4-5).
The methodologies used to obtain the critical size for the harsh (4-5)

and smooth (4-11) boundaries, di�er significantly. For the former, we could
solve the eigenvalues problem for the dynamical equation, which certainly will
not be easy, or possible, to do in general. This is what exactly occurs in the
case of smooth habitat boundary, where we used a geometric condition to find
the steady state that arises at L

c

. This second strategy is more general and
it should be specially useful when the eigenvalues problem cannot be solved
easily, as we will see in the next section.
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4.1
Nonlinear population dynamics

0.0

0.5

1.0 (a)

0.0

0.5

1.0 (b)

0.0

0.5

1.0

�2 �1 0 1 2

(c)

⇢

x

Figure 4.1: Temporal evolution of the density distribution profile, in the linear
case ‹ = µ = 1. For (a) L < L

c

, (b) L = L

c

= fi and (c) L > L

c

, the population
becomes extinct, attains a steady state or blows up, respectively. The lines are
produced with Eq. (4-16). The arrows indicate the direction of time.

Despite many studies about the critical habitat size L

c

, one aspect that
has been overlooked is the role of nonlinear di�usion and growth rate [14],
which we address in this section. Our results will show, in particular, that the
idea that the habitat size needs to overcome a critical value to allow population
survival is not always valid. Depending on the kind of nonlinearities present,
population survival occurs for L > L

c

, L < L

c

or for any L. Additionally,
nonlinearity introduces sensitivity to initial conditions, which a�ects the values
of L

c

.
We address these issues assuming a general nonlinear population

dynamics taking into account, in an e�ective manner, density-dependent
regulatory mechanisms [34]. We focus on the one dimensional case, where L is
the length of the habitat. The evolution equation for the population density
distribution fl(x, t) at position x and time t is given by

ˆ

t

fl = ˆ

x

(fl‹≠1

ˆ

x

fl) + fl

µ

, (4-12)
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where ‹ > 0, µ œ R, together with the absorbing boundary condition
fl(±L/2, t) = 0 and a uniform initial condition fl(x, 0) = N

0

/L, where N

0

is the
initial population size. The terms of Eq. (4-12) represent di�usion and growth,
respectively, with di�usion coe�cient fl

‹≠1 and per capita growth rate fl

µ≠1,
which depend on fl when ‹, µ ”= 1. The boundary conditions take into account
a nonviable neighborhood. Competition was neglected by assuming abundance
of resources. Further details of the model and its biological motivations will be
given in Sec. 4.1.1.

The emergence of these nonlinearities in population dynamics has
di�erent origins that will be discussed in Sec. 4.1.1 too. But beyond the
biological motivation, the nonlinear mathematical problem can be also of
interest for diverse other fields such as combustion theory, heat conduction
and transport in porous media [82, 83]. It is also related to the so-called
blow-up (divergence at finite time) of solutions, found in the mathematical
literature [82–84].

In the next sections, our goal is to determine the critical size and
characterize the regimes of extinction and survival in the general nonlinear
case. In order to do that, we perform a systematic analysis, both numerically
and analytically, of the asymptotic behavior of the total population N(t) ©
s

�

fl(x, t)dx, where � © [≠L/2, L/2]. For numerical integration of the partial
di�erential Eq. (4-12), the standard forward-time centered-space discretization
scheme 1 was used.

4.1.1
Density-dependent feedback

Recalling the Fisher-KPP equation [56] ,

ˆ

t

fl = Dˆ

xx

fl + afl ≠ bfl

2

, (4-13)

we introduce density-dependent rates, through nonlinearities in the growth and
di�usion processes. These dependencies on the density represent macroscopic
feedbacks in the regulatory mechanisms, that can emerge from the complex
interactions at individual level, such as cooperation, competition or homophilia
(the preference to be among peers) [86], or from the interactions with a complex
environment. Assuming power-law forms, we generalize Eq. (4-13) as

ˆ

t

fl = Dˆ

x

(fl‹≠1

ˆ

x

fl) + afl

µ ≠ bfl

µ+”

, (4-14)
1
We used a forward-time centered-space (FTCS) scheme, with integration steps �t and

�x adequate for convergence. Typically it was necessary that �t/�x

2 . 10

≠3
. See, for

instance, Ref. [85]
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with exponents ‹ > 0, ” > 0 and real µ.
Di�usion. In many real cases, the di�usion coe�cient is not constant,

which may be a consequence of the interaction between individuals [87, 88].
For instance, in populations of insects, such as grasshoppers, the di�usion
coe�cient is enhanced at high densities (‹ > 1), but, in other species, this
occurs at low densities (‹ < 1) [88]. The adopted form of the di�usion
coe�cient, Dfl

‹≠1, allows to embrace all these cases. The spread of insect
swarms, bacteria and other organisms has been also described through a
nonlinear di�usion equation with di�erent values of ‹ [82,88–90]. When ‹ > 1,
the di�usion coe�cient increases with population density. Then, large dispersal
takes place in dense regions (fl > 1), but low mobility occurs where the
population is sparse (fl < 1). This indicates that individuals become more
active when they encounter more individuals, a type of positive feedback that
increases with ‹. In contrast, when 0 < ‹ < 1, the di�usion coe�cient is
enhanced in regions of low density, in comparison to highly populated ones.
Then, this dispersion in open space yields long tails in the distribution of
individuals [91–93], but here we are dealing with a bounded domain.

Alternatively, nonlinear di�usion may also have external origin, from the
spatial heterogeneity of the environment, such as the recently investigated
case of bacteria developing in porous media [94]. In fact, ˆ

t

fl = Dˆ

x

(fl‹≠1

ˆ

x

fl)
is known as porous media equation [95, 96], which arises in other contexts
too [82, 83, 97]. Let us note that the associated random dispersal yields
anomalous di�usion in open space, where x ≥ t

1/(1+‹). That means normal
di�usion for ‹ = 1, subdi�usion for ‹ > 1 and superdi�usion for ‹ <

1 [91, 93,98].
Growth. A clear interpretation can also be given to the growth rate afl

µ≠1.
For µ > 1, it goes to zero as density goes to zero, which means that the
population is losing its ability to survive when less individuals live in the
habitat. This can be related to the feature known in ecology as Allee e�ect [86],
which is reported in a wide range of scenarios. On the other hand, when µ < 1,
population responds to low densities increasing its growth rate, which functions
as a regulatory mechanism for survival, preventing extinction. This feature
is present, for instance, in parasite dynamics, where the reproduction rate
increases in low density [99]. This is because, the lower the population density,
the larger the female worm size, producing more eggs [99]. It is worth recalling
that, when only the growth term is present (D = b = 0), with the initial
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condition fl(t = 0) = fl

0

, the average density is

fl(t) = fl

0

C

1 + (1 ≠ µ)
fl

1≠µ

0

at

D 1
1≠µ

, (4-15)

which generalizes the exponential growth, recovered for µ æ 1. This solution
means sub-exponential growth with time when µ < 1 (linear in the case µ = 0
or sub-linear for µ < 0), or divergent behavior at finite times when µ > 1.

Competition for resources. The last term in Eq. (4-14) represents
intra-specific competition, preventing unlimited growth. Sometimes in
the literature, the logistic growth is written in the form afl(1 ≠ fl/K),
introducing the notion of environment carrying capacity K (related
to resource availability). In our case, the logistic-like term becomes
afl

µ(1 ≠ fl

”

b/a) = afl

µ(1 ≠ (fl/K)”), then K = (a/b)1/”, recalling that ” > 0 to
ensure the limiting e�ect.

In the subsequent analysis, we neglect competition by setting b æ 0
(K æ Œ). This approximation corresponds to a su�ciently large carrying
capacity, when resources are sustainable or unlimited, for the investigated
range of fl. Now, a simple change of variables, x æ x

Ò
D/a and t æ at,

turns Eq. (4-14) dimensionless, leading to Eq. (4-12), that will be the object
of our study.

Evolution equations similar to Eq. (4-12), used to model population
dynamics [31, 100] and transport in absorbing porous media [96], were
previously investigated, but for infinite habitats, in contrast to our bounded
problem. Reaction-di�usion systems governed by Eq. (4-12), such as in
combustion theory and heat conduction, motivated the study of the existence
of blow-up solutions [83]. The issue of the critical habitat size L has been
addressed before for modified forms of Eq. (4-13), including, for instance,
chemotaxis and advection [13,14,101]. Here we extend that problem to analyze
the impact of the interplay between density-dependent di�usion coe�cient and
growth rate on the critical size.

Before passing to the general case, we revisit the linear problem, ‹ = µ =
1, for our particular setup.

For ‹ = µ = 1, we can propose, as solution of the problem defined in
Eq. (4-12), a cosine series of the form fl(x, t) = q

kØ0

c

k

(t) cos([2k + 1]fix/L),
where each term satisfies symmetry around x = 0 and vanishes at the
boundaries x = ±L/2. Substituting this expression into Eq. (4-12), solving
for c

k

(t) and adjusting the initial condition (uniform population with total
size N

0

), one obtains the exact solution
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fl(x, t) = 4N

0

fiL

Œÿ

k=0

(≠1)k

2k + 1 cos([2k + 1]fix/L)e⁄kt

, (4-16)

where ⁄

k

= 1 ≠ [(2k + 1)fi/L]2 [101].
Modes have discrete wavelength values, to obey the boundary conditions,

and their amplitudes grow according to the dispersion relation ⁄

k

. When
L < L

c

= fi, then ⁄

k

< 0 for all k; as a consequence, the total population
goes to zero (extinction). When L > L

c

, one has ⁄

k

> 0 for all modes with
index k < (L/L

c

≠ 1)/2 (which includes at least the fundamental mode, given
by k = 0); then the density grows indefinitely. Only when L = L

c

, a finite
steady state fl(x) is attained, since ⁄

0

= 0, while ⁄

k

< 0 for all k > 0, namely,

fl(x) = 4N

0

fi

2

cos x . (4-17)

These regimes are illustrated in Fig. 4.1.
Integration of Eq. (4-16) over the interval � = [≠L/2, L/2] provides the

total population size N as a function of time:

N(t) = 8N

0

fi

2

Œÿ

k=0

e

⁄kt

(2k + 1)2

. (4-18)

As time passes, the evolution becomes dominated by ⁄

0

= max{⁄

k

} =
1≠(fi/L)2, then N(t) ≥ e

⁄0t. In particular, at the critical length, the stationary
population size is N = (8/fi

2)N
0

, which is smaller than N

0

, because some
modes decayed.

4.1.2
Nonlinear asymptotic behavior

For the nonlinear problem, the superposition principle (i.e., linear
combination of solutions is solution) does not apply, hence, only limited
knowledge about the dynamics is accessible analytically. Then, we resort to
numerical integration and address analytically only particular classes of (‹, µ)
to obtain information about the asymptotic behavior of the total population
N .

Separation of variables, using fl(x, t) = X(x)T (t) into Eq. (4-12), leads
to

T

Õ

T

µ

= (X‹)ÕÕ

X

T

‹≠µ + ‹X

µ≠1

. (4-19)
The spatial and temporal parts can be separated, if ‹ = µ or µ = 1. But,

since a superposition of solutions for di�erent modes does not apply due to
the nonlinearity of Eq. (4-12), then the solution remains fl(x, t) = X(x)T (t).
This would mean that the spatial profile is invariant unless a prefactor T (t).
But, this is not true in general. However, if after a transient time, the profile
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tends to adopt a spatially invariant shape, from that moment separation is
sound. The di�culty of assessing analytically the initial transient will have
a quantitative, but not qualitative, impact on the results reported in the
following subsubsections assuming the existence of an asymptotic profile.
Case ‹ = µ

If ‹ = µ, Eq. (4-19) can be separated into two ordinary di�erential
equations, for time and space, as

T

Õ = ⁄T

µ

, (4-20)

⁄ = Y

ÕÕ + µY

Y

1/µ

, (4-21)

where we identified Y = X

µ and ⁄ is a separation constant, determined by the
shape of the asymptotic profile.

The solution of the temporal part is

T (t) = T

0

C

1 + (1 ≠ µ)
T

1≠µ

0

⁄t

D 1
1≠µ

, (4-22)

which, of course, has the form of Eq. (4-15). To obtain the inverse timescale
⁄, we need to solve the spatial part, together with the requirements at
the boundaries. However, if we assume the existence of a (symmetric)
steady solution (hence ⁄ = 0), the spatial solution of Eq. (4-21), Y (x) =
cos(fiÔ

µx/L), yields

fl(x) Ã [cos(fiÔ
µx/L)]1/µ

. (4-23)

Furthermore, to obey the condition at the boundaries, L must be L

c

= fi/

Ô
µ,

which generalizes the exact result obtained in the linear case. In Fig. 4.2, we
show a comparison of the profile given by Eq. (4-23) with the steady state
obtained by numerical integration of Eq. (4-12), for ‹ = µ = 0.5, 1, and 1.5.
The agreement is very good.

The temporal evolution of the total population, N versus t, is illustrated
in Fig. 4.3 (insets), for di�erent values of the habitat size L, when ‹ = µ = 0.5
and 1.5. The main frames show the corresponding data collapses near the
critical size, obtained for N vs ⁄t, where ⁄ = 1 ≠ [L

c

(µ)/L]2 ≥ L ≠ L

c

,
like in the linear case. The observed plots are typical of an absorbing phase
transition [102] at L

c

, being N ≥ t

–, with – = 0 in our case.
Moreover, in this figure, we compare the numerical results with the

growth law predicted by Eq. (4-22). For µ < 1, the absorbing state is attained
at finite time, while for µ > 1, there is blow up, at finite time.
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Figure 4.2: Steady state profiles, normalized by the maximal value fl

ı, for (‹, µ)
indicated on the figure. The habitat size is L = L

c

for the cases µ Ø ‹, and
L = 5, otherwise, that is for (1,0) and (1,-3). Symbols correspond to numerical
integration of the di�erential equation (4-12). Solid lines represent the analytic
solutions given by Eqs. (4-17), (4-23), (4-32), (4-38), (4-39).

Case µ = 1, arbitrary ‹

In this case, Eq. (4-19) can be separated into

T

Õ = T (‹ ≠ ⁄T

‹≠1) , (4-24)
(X‹)ÕÕ = ≠⁄X . (4-25)

A nontrivial steady state exists if T = (‹/⁄)1/(‹≠1).
The solution of Eq. (4-24) is:

T (t) =
C

⁄

‹

+
3

T

1≠‹

0

≠ ⁄

‹

4
e‹(1≠‹)t

D
1/(1≠‹)

. (4-26)

In the large time limit, T (t) tends to (‹/⁄)1/(‹≠1) for any ‹ > 1, while the
expression diverges for ‹ < 1, except if ⁄ Ø ‹T

1≠‹

0

, suggesting the existence of
a critical condition for the spatial shape.

In the particular case ‹ æ 1, we recover T (t) = T

0

e(1≠⁄)t. In the limit
‹ æ 0, T (t) æ T

0

+ ⁄t. Note, however, that beyond these particular cases,
timescales are not dictated by ⁄, which interferes only in the additive and
multiplicative constants in Eq. (4-26).

The spatial part will be treated within the general case of arbitrary values
of µ and ‹, in the following subsubsection.
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Figure 4.3: Temporal evolution of the total population size N(t) when ‹ = µ,
in the cases µ = 0.5 (a) and 1.5 (b), for several values of L indicated on the
figure. The scaling parameter is ⁄ = 1≠(L

c

(µ)/L)2. Results were obtained from
numerical integration of Eq. (4-12), starting from a uniform initial distribution
with N

0

= 1. The solid lines correspond to the scaling law (4-22), with T

0

as
a fitting parameter.
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Figure 4.4: Temporal evolution of the total population size N(t) for di�erent
habitat sizes L indicated on the figure, when µ = 1 and ‹ = 2, i.e., µ/‹ < 1.

4.1.3
Steady states and critical habitat size

In general, we observe two main classes of behaviors. For µ/‹ > 1, the
dynamics behaves like in the case µ/‹ = 1 illustrated in Fig. 4.3. That is,
there is a critical size L

c

that separates the extinction and survival regimes,
while at the critical value a nontrivial steady state is reached. In this class,
extinction can occur conditioned to the habitat size. Di�erently, for µ/‹ < 1, a
finite steady state solution is attained for any L, as illustrated in Fig. 4.4. That
is, the e�ective critical value is L

c

= 0. It is interesting that this stationary
state is a result of the balance between growth and di�usion, in contrast to
the steady state that emerges from a logistic rule.

Assuming that a steady state fl(x) is attained, Eq. (4-12) becomes

[fl(x)‹ ]ÕÕ + ‹[fl(x)]µ = 0 , (4-27)

or, alternatively, making the change of variables Z = fl

‹ , then

Z

ÕÕ + ‹Z

µ
‹ = 0 . (4-28)

Defining V © d

dx

Z, hence d

dx

V = V

dV

dZ

, we can rewrite Eq. (4-28) in
separate di�erential form as

V dV = ≠‹Z

µ
‹
dZ . (4-29)

Integrating over a path from the center (at x = 0), where V = 0 and Z = Z

0

is
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the maximum value, towards its right border, up to generic (Z, V ), we obtain

V

2

2

-----

V

0

= ≠‹

Z

1+

µ
‹

1 + µ

‹

-----

Z

Z0

=
A

‹

1 + µ

‹

B 5
Z

1+

µ
‹

0

≠ Z

1+

µ
‹

6
, (4-30)

where the case µ/‹ = ≠1 is recovered from limiting values.
Integration of dx = dZ/V (Z), taking into account the symmetry of the

solutions due to the even initial condition, leads to
Û

|‹ + µ|
2‹

2

⁄
Z0

Z

dZ

Ò
|Z1+

µ
‹

0

≠ Z

1+

µ
‹ |

=
⁄

x

0

dx . (4-31)

The integral in the right-hand-side can be expressed in terms of
hypergeometric2 function

2

F

1

. Then, we obtain the steady solution in implicit
form. For instance, when – = µ/‹ + 1 > 0, we have

Z |
2

F

1

(1/–, 1/2, 1/– + 1, 2A

2

‹Z

–

/–)| = |x|/A , (4-32)

where A > 0 is an integration constant, that depends on the initial condition.
We want to obtain the possible habitat sizes, L

ı, for which an steady
state exists. In order to do that, we perform the change of variables z = Z/Z

0

and consider that Z = 0 at the border (where x = L

ı

/2), then we obtain

Z

(1≠ µ
‹ )/2

0

⁄
1

0

dz

Ò
|1 ≠ z

1+

µ
‹ |

=
ı̂ıÙ 2‹

2

|‹ + µ|
L

ı

2 . (4-33)

Therefore,
L

ı = Z

(1≠ µ
‹ )/2

0

Ò
2|‹ + µ|

‹

I(µ/‹) , (4-34)
where

I(“) =

Y
_______]

_______[

Ô
fi

�

1
1+

1
1+“

2

�

1
1
2 +

1
1+“

2
, if 1 + “ > 0 ,

Ô
fi

�

1
1
2 ≠ 1

1+“

2

�

1
≠ 1

1+“

2
, if 1 + “ < 0 ,

(4-35)

and � corresponds to the the Gamma function3. In the marginal case, I(“ æ
≠1) æ 1. Hence, for µ/‹ = ≠1, we obtain L

ı = Z

0

Ò
2fi/‹.

In particular, when µ/‹ = 1, I(1) = fi/2, then

L

ı = fiÔ
µ

, (4-36)

which is independent on Z

0

, that is, a unique value arises independently of the
initial condition. This value can be identified with L

c

, recovering the result of
2
The hypergeometric function is defined by the series 2F1(a, b; c; z) =

qŒ
n=0

anbn
cn

zn

n! ,

where xn = �(x + n)/�(x), and � is the Gamma function [103].

3
The Gamma function can be defined as �(z) =

s Œ
0 dy y

z≠1
e

≠y
[103].
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Section 4.1.2.
In general, L

ı depends on the initial condition, through Z

0

. Its connection
with N

0

, that defines the initial total population size, can be obtained as
follows. Recalling the change of variables Z = fl

‹ , then, the maximum value of
Z, occurring at the center of the habitat, is Z

0

= [fl
0

]‹ , where fl

0

= fl(x = 0). On
the one hand, the stationary total population can be written as N

s

= gfl

0

L

ı,
where g is a geometric factor that depends on the shape of the steady state. On
the other, we assume that N

s

= ÷N

0

, where ÷ takes into account the transient
e�ects that relate the initial and final population sizes. Therefore, we have
Z

0

= fl

‹

0

= [N
s

/(gL

ı)]‹ = [÷N

0

/(gL

ı)]‹ Ã (N
0

/L

ı)‹ . This is expected to be
valid, if a finite steady state actually emerges, for some length L

ı. Otherwise
the population will go extinct (÷ æ 0) or su�er unbounded growth (÷ æ Œ).
Then, when ÷ is finite, substituting Z

0

Ã (N
0

/L

ı)‹ into Eq. (4-34) and solving
for L

ı, we obtain

L

ı Ã
A

2 N

‹≠µ

0

|‹ + µ| [I(µ/‹)]2/‹

2

B 1
2+‹≠µ

. (4-37)

Note that L

ı increases with the initial population size N

0

, when µ < ‹ or
µ > ‹ + 2, while it decreases otherwise, being independent only for µ = ‹.
Moreover, the exponent of N

0

diverges when µ æ ‹ + 2.
When µ/‹ Ø 1, we observed in numerical simulations that a steady state

exists for a unique value of L (that is, L

c

> 0). Then, we are tempted to identify
L

ı with L

c

. In fact, as shown in Fig. 4.5, Eq. (4-37) is in excellent accord with
numerical values, except that the proportionality constant ÷ which embodies
transient e�ects is unknown from this analytical approach, therefore it was
obtained as a fitting parameter.

Furthermore, the critical size determines whether the population will
either go extinct or survive. Numerical simulations show that survival occurs
for L > L

c

, when ‹ < µ < ‹ + 2, that is, a minimal size of the viable region
is required, like in the linear case. However, when µ > ‹ + 2, the population
survives for L < L

c

. It is worth recalling that precisely for µ > ‹+2, the nature
of global solutions changes drastically [83,84]. This result means a violation of
the usual result about extinction conditions in finite domains where L

c

gives
the minimum habitat size for survival.

For µ/‹ < 1, numerical results indicate that a steady state exists for
any L. Explicit solutions can be obtained in some particular cases, by directly
solving Eq. (4-28), instead of inverting Eq. (4-32), as follows:

(i) When µ/‹ æ 0, Eq. (4-28) becomes Z

ÕÕ + ‹ = 0, which has solutions
Z(x) = ≠‹x

2

/2 + Z

ı, that under the boundary conditions lead to
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Figure 4.5: Critical habitat size L

c

as a function of the exponents µ and ‹.
The shaded region indicates survival for the case µ = 1 in the top panel and
for ‹ = 1 in the lower panel. The initial distribution is homogeneous with
N

0

= 1. The solids lines are given by Eq. (4-37), with a fitted value of the
proportionality factor. Notice that when µ/‹ < 1 the critical size vanishes,
signaling that the population survives for any L, but the theoretical prediction
given by Eq. (4-37) still indicates when the population initially grows or
decreases (dashed lines).

fl(x) = (‹L

2

/8)1/‹(1 ≠ 4x

2

/L

2)1/‹

. (4-38)
Integrating this profile to obtain the steady total population N

s

, one has,
L Ã N

‹/(‹+2)

s

, in accord with Eq. (4-37).
(ii) When µ/‹ = ≠3, we obtain

fl(x) = (‹L

2

/4)1/(4‹)[1 ≠ 4x

2

/L

2]1/(2‹)

, (4-39)
for which L Ã N

2‹/(2‹+1)

s

, also in agreement with Eq. (4-37).
These theoretical profiles are compared to numerical results in Fig. 4.2.

Let us remark that, for fixed µ/‹, the slope at the boundaries is finite for
a critical value of ‹, but vanishes (diverges) below (above) that value. For
instance, when µ/‹ æ 0, the critical value is ‹ = 1, while for µ/‹ = ≠3, it is
‹ = 0.5.
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Figure 4.6: Gray-scale map of the habitat size L

ı given by Eq. (4-37), in
the plane (‹, µ), for initial condition N

0

= 1. The solid line separates the
phases where survival always occurs (below) or it is conditioned (above the
line), while dashed lines highlight particular families analyzed numerically and
analytically. We recall that in the survival phase (µ < ‹), survival occurs for
any L, meanwhile, in the conditioned phase, extinction occurs when L < L

c

(if
‹ < µ < ‹ +2 or L > L

c

(if µ > ‹ +2), otherwise the population survives. Also
recall that — = 1 + 2/(µ ≠ ‹ ≠ 2), ruling the scaling relation between L

c

≥ N

—

0

.

In both cases (which belong to the region µ/‹ < 1), a nontrivial steady
state exists for any L, hence the population always survives. As a consequence,
the critical size for survival is L

c

= 0. Therefore, in this case, L

ı in Eq. (4-37)
is not associated to the survival-extinction dilemma, but it still reflects the
threshold that separates the regimes in which the population grows or decays
to attain the steady state (see Fig. 4.4, where L

ı = 1.64).
A synthesis of our results is given in Fig. 4.6, in a gray-scale map

representing the value of the critical habitat size L

c

in the plane ‹ ≠ µ. The
solid line separates the two di�erent regimes. Notice that although “ = µ/‹

determines that frontier, the critical size L

c

is not uniquely determined by “,
neither is the inversion (dotted) line.

4.1.4
Role of initial conditions

Di�erently from the linear case, nonlinearities cause dependence on
initial conditions. This feature has practical relevance, since when one tries to
reintroduce an species in a given habitat, the initial quantity released changes
the outcome of the ecological management [29].
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Figure 4.7: Critical habitat size as a function of the initial population size N

0

,
when µ/‹ > 1. Solid lines represent the scaling law provided by Eq. (4-37).

We considered a uniform initial population density, assuming that
individuals are placed homogeneously within the full habitat domain. For such
initial profile, we show in Fig. 4.7, the critical habitat size as a function of the
initial total population N

0

, when µ/‹ > 1. The degrees of nonlinearity change
the sensitivity to the initial value N

0

, according to the scaling L

c

≥ N

—

0

, with
— = 1 + 2/(µ ≠ ‹ ≠ 2), following Eq. (4-37). The exponent — is a decreasing
function of the di�erence µ ≠ ‹, diverging at µ ≠ ‹ = 2. It vanishes only
at ‹ = µ, in which case there is independence on the initial conditions, that
would correspond to a (non plotted) horizontal line in the figure. The exponent
— is negative in the interval 0 < µ ≠ ‹ < 2, producing negative slopes in the
log-log plots of Fig. 4.7. This means that, as expected, when more individuals
are introduced at early times (larger N

0

), smaller habitat sizes are needed for
survival where L > Lc. Di�erently, when µ≠‹ > 2, survival occurs for L < L

c

,
and, in addition, — is positive (see Fig. 4.6), therefore, the maximum habitat
size L

c

increases with the initial population density N

0

, which does not have
any ecological benefits.

4.2
Higher order interactions

In this section, we present a brief discussion about the persistence of
population considering higher order interactions. Higher order interaction are
known to produce spatiotemporal patterns, as the ones seen in Sec. (3.3). In
specific, the previous nonlocal competition discussed in Sec. (3.3) does not
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Figure 4.8: Long time population density distribution in a large habitat
L = 10 > L

c

with a = D = 1, Ÿ = 10≠4, l = 3/fl

0

, fl

0

= 105. Doted
lines indicated the distribution evolution while color are darker for later time
instants.

play a role in population conservation, since its impact vanishes near the null
state. However, in a specific model for bacteria pattern formation, higher order
interaction interfere in the critical habitat size L

c

, as we will see. In Fig. 4.2
we show the a typical steady state formed for L > L

c

.
Following a possible derivation for active matter from Cates et al. [52,87],

we see that bacteria due to self-interaction exhibit density-dependent di�usion
as well as surface tension term in the equation for the evolution of the
population density distribution. Additionally, considering the logistic growth,
we arrive that the aforementioned model,

ˆ

t

fl(x, t) = ˆ

x

(D
eff

(fl)ˆ
x

fl) + rfl(1 ≠ fl/fl

0

) ≠ Ÿˆ

4

x

fl , (4-40)

where D

eff

(fl) = D(fl)+flD

Õ(fl) with D(fl) = v(fl)2

· and v(fl) = v

0

exp(≠lfl/2),
such that

D

eff

(fl) = D(fl)(1 ≠ lfl/2) (4-41)
= (v

0

·)2 exp(≠lfl)[1 ≠ lfl/2] (4-42)
= D

0

exp(≠lfl)[1 ≠ lfl/2] . (4-43)

Following the same methodology used in Sec. 3.2 and 3.3, the dispersion
relation around the homogeneous fl

0

can be obtained

⁄(k) = ≠1 ≠ D

eff

(fl
0

)k2 ≠ Ÿk

4

. (4-44)
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Figure 4.9: Critical habitat size L

c

as a function of parameter Ÿ with a = D =
1, Ÿ = 10≠4, l = 3/fl

0

, fl

0

= 105. Solid line is given by Eq. (4-49).

Patterns arise if D

eff

< 0 due to density-dependent e�ects, while high modes
growth is bounded by the surface tension term Ÿ > 0. This can occur when

� © lfl

0

/2 > 1 , (4-45)
R © D

0

/

Ô
rŸ > 2 exp(2�)/(� ≠ 1) . (4-46)

Eq. (4-44) provides the pattern stability condition that predict the periodic
structures in Fig. 4.2.

Despite the interesting pattern formation phenomena that arises in this
case [87], we will focus on the determination of the critical habitat size of
this model. Note, that since population persistence is investigated in the low
density regime (stability of the null state), pattern formation is not directly
related to the following analysis (see Eq. (4-44)).

Assuming that we are in the limit of harsh conditions outside habitat
domain, we set fl(±L/2) = 0. The stability of the null state, in this case, is
given by the dispersion relation

⁄(k) = ≠D

0

k

2 ≠ Ÿk

4 + r , (4-47)

such that fl̃(k, t) = fl̃(k, 0)e⁄(k)t is the exact solution at low densities.
The dispersion relation given Eq. (4-47) is monotonically decreasing, with

⁄(0) = r > 0. Thus, for some k

0

the ⁄ becomes negative. From Eq.(4-47) we
find four possible solutions, but only two of them are suitable,

k

2

0

=
≠D

0

+
Ò

D

2

0

+ 4Ÿr

2Ÿ

. (4-48)
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The correspondent ⁄

0

= 2fi/k

0

, is the smaller spatial scale. Then, survival
occurs if L > L

c

, with L

c

= ⁄

0

. In this case we find that

L

c

= 2fi

Ô
2Ÿ

Ú
≠D

0

+
Ò

D

2

0

+ 4Ÿr

. (4-49)

In Fig. 4.9, we show the critical habitat size given by Eq. (4-49), which increases
with Ÿ.

The model discussed reproduces experimental results qualitatively well
and might shed light into the positive deviations found in the measured Fisher
critical size (Eq. 4-11) [17]. However, an interdisciplinary collaboration is
needed to ensure that Eq. (4-44) has proper biological motivation. Moreover,
it would be interesting to extend this result to the case where habitat
heterogeneity is considered in a more realistic way a æ a ≠ A�(|x| ≠ L/2), as
discussed at the beginning of this chapter.

4.3
Habitat temporal behavior

In order to predict the future of a given population in a particular
habitat, it is necessary to take into account the nontrivial spatial distribution
of resources, shelter, nutrients and other factors that compose the so called
ecological landscape [28]. Moreover, the ecological factors change in time with
a characteristic periodicity (seasonality) accompanied by random fluctuations.
Then, the environment critical conditions for population survival rely on a
combination of the spatial and temporal variability of the environment [22,35,
36,104–106]. Its time variability can have di�erent origins. For instance, when
the system is found in a natural habitat, it is typically subjected to inherent
cycles of the ecosystem such as oscillations in sun light, seasonal changes,
and other external dynamics that can interfere in the refuge conditions. For
ecological reserves, the time scale can be introduced, for instance, by fishing (or
hunting) prohibition laws that are made flexible during specific periods of the
year. In the case of microorganisms, where artificially constructed landscapes
can be made [17,80], time scale might be introduced in the experimental setup
via manipulation of a mask that can protect a population of bacteria from a
harmful e�ect [17] (see Fig. 4.10).

Changes in size [15], position [107] or even rotations [16] of the
refuge, as well as stochastic fluctuations [21, 42, 108] have been considered
before. Continuing our discussion of this chapter, we proceed making basic
assumptions about the population dynamics, we investigate population
survival when there is an intermittent refuge of size L (see Fig. 4.10). We
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consider that the refuge alternates, with period · , between active and inactive
states, such that the population can be protected or not, during intervals ⁄·

and (1 ≠ ⁄)· (where 0 Æ ⁄ Æ 1), respectively. We mainly investigate the
requirements for survival as a function of the characteristic time scales and
size of the refuge, aiming to provide general insights that can guide population
management and conservation [14].

(a)

L/20- L/2

(b)

Figure 4.10: Pictorial representation of a onedimensional habitat subject to an
external harmful e�ect (downwards arrows) with a refuge (thick segment) of
size L in the inactive (a) and active (b) states. In the active state, the refuge
is able to block the harmful e�ect.

The temporal evolution of the population density distribution fl(x, t) is
described by the Fisher-KPP equation [6, 56, 109] plus an additional term,
namely,

ˆ

t

fl(x, t) = Dˆ

xx

fl(x, t) + f(u) + Â(x, t)fl(x, t) , (4-50)
where, as usual, D is the di�usion coe�cient, f(fl) is the local growth rate given
by the logistic or Verhulst expression f(fl) = afl(x, t)

Ë
1 ≠ fl(x,t)

K

È
, with intrinsic

growth rate a and carrying capacity K, which bounds population growth,
inducing negative growth rates for fl > K. For Â(x, t) = 0, one recovers the
standard Fisher-KPP equation. In our model,

Â(x, t) = ≠A [1 ≠ �(L/2 ≠ |x|)Ï(t)] , (4-51)

with A > a. It contains the environment structure, pictorially represented
in Fig. 4.10, where a harmful e�ect is always present (downwards arrows),
contributing with an additional death rate in Eq. (4-50), but a refuge located at
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Figure 4.11: Asymptotic population distribution when the refuge is static, for
two di�erent refuge sizes L indicated in the figure. In this case, L

c

ƒ 0.73, for
our choice of the parameter values a = 1, K = 104, D = 10≠1, A = 6 defined
in the beginning of the section. The gray vertical lines indicate the boundaries
of the refuge for each refuge size.

|x| Æ L/2 can mitigate the e�ect. The factor Ï(t) embodies the time variability
of the refuge. If the refuge is absent or inactive (Fig. 4.10.a), Ï(t) = 0,
then Â(x, t) = ≠A for all x. The refuge can protect the region |x| Æ L/2
(Fig. 4.10.b), either partially (when 0 < Ï(t) < 1) or totally (when Ï(t) = 1).
For simplicity, we assume a binary time behavior, such that Ï(t) can only
take the values 0 and 1. Additional parameters ⁄ and · control the fraction of
time that the harmful e�ect penetrates the refuge and the protocol time scale,
respectively. Namely, during an interval ⁄· , the refuge is inactive, allowing the
harmful e�ect to penetrate the refuge. Afterwards, the refuge becomes active,
protecting the population during an interval (1 ≠ ⁄)· .

Equation (4-50) will be numerically integrated by means of a standard
fourth-order Runge-Kutta algorithm, together with spatial discretization,
using �x = 10≠2 and �t < 10≠5, adequate for convergence. Along this section,
we will focus mainly on population preservation at long times as a function
of the refuge size L and time scale · , keeping the remaining parameters fixed.
Motivated by experiments for a nonchemotactic strain of E. Coli bacteria [17],
we set a = 1, K = 104, D = 10≠1, A = 6, except when di�erent values are
explicitly indicated. Nevertheless, analytical expressions allow to extend the
numerical results shown for that set of values.
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4.3.1
Static refuge case

The case where the refuge is always active (Ï = 1) is well known
in the literature [12, 13] and has been analyzed in the previous section.
The refuge imposes an heterogeneous spatial condition which is the spatial
component of Â. When the refuge has size L larger than a critical value L

c

,
the population survives achieving a nontrivial steady state. In Fig. 4.11 we
show the distribution profiles for two values of L, with L > L

c

.
The critical refuge size L

c

can be obtained as shown in the beginning of
this chapter and detailed in Sec. 4.1. Following Eq. (4-11), it is straightforward
to obtain [12,13,18,20]

L

c

= L

ú © 2
Û

D

a

arctan
Q

a
Û

A ≠ a

a

R

b
. (4-52)

In the literature, this result has been extended to modified forms of the static
Eq. (4-50), including advection, nonlinear di�usion, other boundary conditions
and functional forms of f [12–14,18,101,110]. For instance, in the limit of harsh
unfavorable conditions, A ∫ a, Eq. (4-52) yields L

c

Ã
Ò

D/a [18]. For other
cases, Eq. (4-52) still holds for e�ective values of the rates inside and outside
the refuge [14,101]. It is still a good reference even when demographic noise is
included to account for the fact that the population is constituted by a finite
number of individuals [21].

In this section, we present our results that show the influence of refuge
temporal variability in population conservation. We consider a refuge whose
temporal behavior is deterministic and periodic with period · .

Figure (4.12) shows the temporal evolution of the total population
size N(t) =

s Œ
≠Œ fl(x, t)dx, starting from population densities well below the

carrying capacity (fl(x, 0) π K, for all x). We vary the time scale · for fixed
⁄. Even if the fraction of time that the harmful e�ect penetrates the refuge
is the same, we observe that, when subject to a fast varying environment, the
population decays to extinction, but, di�erently, for large · , the population
grows and survives at long times. This drastic change from extinction to
survival occurs because L is near enough a critical value, as we will see in
subsection 4.3.2. However, increasing · favors population growth for any L. In
order to show these e�ects, we define the growth rate per capita

� © Ṅ/N = d(ln N)
dt

, (4-53)

whose average over one cycle is È�Í(t) = 1

·

s
t+·

t

�(tÕ)dt

Õ. After a short transient,
while the population still remains low, this average attains a quasi-steady value
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Figure 4.12: Temporal evolution of the total population size N , for di�erent
values of the period · , fixed average rate ⁄ = 0.1 and size L = 1.28 (for
the values of the parameters used, L

c

= 1.295). The dotted and dashed lines
represent the slow and fast limit approximation (for details, see Sec. 4.3.2).
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Figure 4.13: Average population growth rate È�Í, computed over entire cycles,
as a function of protocol period · for L = 1.28 and ⁄ = 0.1. The dashed and
dotted lines represent the rates at the slow and fast limits (for details, see
Sec. 4.3.2).
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È�Í, corresponding to the average slope of the curves plotted in Fig. (4.12).
For negative È�Í, its steady value will remain for long times, otherwise, it will
decay at later times when the population becomes comparable to the carrying
capacity and stops growing attaining a steady level. In Fig. 4.13, we show È�Í
as a function of · .

For the extreme cases of slow and fast time scales, we show, in Sec. 4.3.2,
the derivation of the average growth rates, represented in Figs. 4.12 and 4.13.
These limits provide the bounds of the influence of refuge temporal variability.

4.3.2
Slow and fast limits

First, we start by assuming that flashes occur in a very short time
scale · π ·

S

= 1/a, such that the system does not have time to respond,
where ·

S

is the system time scale. In this limit, environment fluctuations
can be locally averaged, producing an e�ective growth inside the refuge
(1 ≠ ⁄)a ≠ ⁄(A ≠ a) = a ≠ ⁄A (dashed line in Fig. 4.12). Substituting the
intrinsic growth rate a by the e�ective one into Eq. (4-52), gives

L

c

(⁄; · π ·

S

) = 2
Û

D

a ≠ A⁄

arctan
Q

a
Û

A ≠ a

a ≠ A⁄

R

b
, (4-54)

where ·

S

≥ 1/a is the system response time. This result is expected to
be independent on the microscopic details of the protocol, i.e. whether it is
regular or stochastic behavior, being only dependent on its averaged behavior,
characterized by parameter ⁄.

In order to estimate the slow-limit behavior, it is useful to observe the
evolution of the growth rate �, for di�erent time scales · , as depicted in
Fig. 4.14, where we have rescaled time t to facilitate the comparison of di�erent
periods · . During the interval ⁄· , when the harmful e�ect penetrates the
refuge, the growth is negative, constant and independent of time scale. When
the harmful e�ect is blocked, the growth rate tends to attain a maximal value
�

0

, which is achieved for large · , · ∫ ·

S

.
In this slow limit, we approximate the average growth rate by È�Í ¥

(1≠⁄)�
0

(L)≠⁄(A≠a). Then, imposing È�Í = 0, the critical refuge size under
slow environmental changes can be written by using the inverse function of the
growth rate, L

c

ƒ �(≠1)

0

[⁄(A ≠ a)/(1 ≠ ⁄)].
The behavior of �

0

as a function of refuge size is shown in Fig. 4.15.
Approximate expressions for �

0

(L) are presented in appendix C.1. The
numerical data can be well described by the heuristic expression (see appendix
C.1)
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�
0

(L) = a ≠ A

1 + A≠a

a

(L/L

ú)2

, (4-55)

where L

ı is the static case critical size given by Eq. (4-52). Explicitly, the
critical refuge size for the slow limit becomes

L

c

(⁄; · ∫ ·

S

) = L

ú
Û

a

a ≠ ⁄A

. (4-56)

We summarize the results of this section in Fig. 4.16, where we show the
upper and lower bounds for the critical size L

c

(⁄; · ∫ ·

S

) Æ L

c

Æ L

c

(⁄; · π
·

S

), together with numerical results for di�erent values of · . The dashed region
represents the possible range of L

c

as a function of protocol temporal behavior.
A critical value of · , for which the average growth rate È�Í changes sign, always
exists for L within that range.

Notice that when ⁄ = 0, the bounds given by Eqs. 4-54 and 4-56 coincide,
recovering the static value of L

c

. In the limit ⁄ æ a/A < 1, the critical size is
divergent.

4.3.3
Spatial response

In this section, we will focus on the mechanism that connects the spatial
and temporal components of the environment. Considering the low density
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Figure 4.15: Population growth rate �
0

vs refuge size L (black circles).
The solid line represents the ansatz given by Eq. (4-55), and the dotted
line represents the growth rate in the limit case of harsh conditions outside
the refuge, explicitly given by Eq. (C-9), and the dashed line the linear
approximation given by Eq. (C-3). In the inset, we show that the fitting
parameter L

ú in the ansatz (4-55) follows Eq. (4-52).

regime fl π K, and integrating Eq. (4-50) in space, we obtain that

ˆ

t

N = ≠(A ≠ a)N
out

+ {[a ≠ A[1 ≠ Ï(t)]}N

in

, (4-57)

where N

in

and N

out

are the total populations inside and outside the refuge
domain, respectively. Due to the fact that population growth occurs only inside
the refuge, the external population is the result of the accumulated flux of
individuals leaving the refuge. This makes the unfavorable neighborhood work
as a reservoir of individuals. Explicitly, in the linear regime,

Ṅ

out

(t) = ≠(A ≠ a)N
out

+ J (4-58)

and
Ṅ

in

= {[a ≠ A[1 ≠ Ï(t)]}N

in

≠ J. (4-59)
where J/D = ≠2(±ˆu/ˆx)|

x=±L/2

= 2(V fl)|
x=±L/2

is the flux through the
refuge boundary and V the net velocity outward the refuge. Due to the
combination of a nonlinear spatial dynamics and heterogeneous environment,
the flux J has a nonlinear dependency with N

in

and N

out

and it is also
history-dependent. This means that attempts to define J as proportional to
the population density di�erence N

in

≠N

out

ignore nonlinearities of the spatial
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Figure 4.16: Theoretical predictions for the critical size L

c

in the slow and fast
protocol limits, given by Eqs. (4-56) and (4-54), respectively, together with
numerical data for di�erent · . The stripped region (black) between the curves
represents the variability of L

c

with · . The inset shows L

c

vs · for ⁄ = 0.16
and the slow limit approximation (blue dotted line).

dynamics and will not be suitable to model the system behavior (see Sec. 4.3.4),
yielding · -independent results.

For the case of a time periodic protocol, in Fig. 4.17, we show typical
trajectories in the plane fl≠V , where the density and the velocity are evaluated
at one of the boundaries. Time integration of these trajectories provides
the total flux that left the refuge. The emergent cycles are induced by the
protocol and their shape reveals the relation between the localized perturbation
produced by the protocol and spatial changes in population distribution. First,
when the condition inside the refuge changes from favorable to unfavorable,
the population decays and its population tends to be flattened, as we see in
Fig. 4.17, V (x = L/2) decreases (decay period). When the refuge becomes
active, the population inside the refuge starts to grow while the surrounding
population is in constant process of extinction. This creates a fast stretch of the
distribution, rapidly increasing the derivative of the population distribution at
the refuge boundary (transient period). After the transient, relaxation towards
the steady state occurs, where the velocity at the boundary is kept roughly
constant (recovery period), |V | =

Ò
(A ≠ a)/D ¥ 7.0 in the case of the figure,

as predicted by the linear approximation (see Appendix C.1).
As shown in Fig. 4.17, for L > L

c

, in the steady state, these cycles are
closed curves. In contrast, for L < L

c

, the curves are not closed, although the
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Figure 4.17: Velocity V (x = L/2) vs population density fl(x = L/2) at the
refuge boundary, for di�erent values of · indicated in the figure, with ⁄ = 0.1
and refuge size L = 2 (hence, L > L

c

). The single dot represents the limiting
case · æ 0.

shape drawn in Fig. 4.17 remains essentially the same, but, at each period, the
cycle is progressively shifted to the left (i.e., towards lower densities).

4.3.4
Recolonization process

We now proceed to investigate the recolonization process that occurs
when all the population inside the refuge dies due to a catastrophic
phenomenon. Such extreme situation allows us to follow in detail the
recolonization process that takes place from the lateral population reservoirs
formed during the period when the refuge was active. In Fig. 4.18, we show, for
L > L

c

, how the total flux at the borders and the population densities inside
and outside the refuge behave during the recolonization process. Focusing on
the temporal evolution of N

in

, it is very clear that the population growth is
maximal just after the reset (t = 50). This occurs due to the migration of
the ‘stocked’ population in the vicinity of the refuge. This is confirmed by the
change in the sign of the flux J , which becomes negative just after the reset,
indicating that the net flux is inwards the refuge. Due to the fact that the
source of the surrounding population is the flux of individuals from the refuge
(see Eq. (4-57)), we can say that the environment spatial structure introduces a
dependency on the history of the system. This is revealed by the non-monotonic
response of J and N

in

in Fig. 4.18. Moreover, comparing the flux J with the

DBD
PUC-Rio - Certificação Digital Nº 1412801/CA



Chapter 4. Single habitat domain 70

101

102

103

104

105

49 50 51 52 53 54 55
t

�0

N

J/D

Nin
Nout
Nin � Nout

Figure 4.18: Temporal evolution of the total population N , the scaled flux
J/D, the populations inside N

in

and outside N

out

the refuge (after resetting
the population inside the refuge at t = 50) and their di�erence. In this case,
the refuge size is L = 2 > L

c

. After the transient, the population achieves the
recovery state, growing with rate �

0

.

population di�erence N

in

≠N

out

, it is clear that the simplification of Eq. (4-50)
to a two-population model [24], defining J Ã (N

in

≠ N

out

) will not reproduce
the observed behavior.
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5
Metapopulation dynamics

Habitat fragmentation is commonly observed in nature associated with
heterogeneity in the distribution of resources, e.g., water, food, shelter sites,
physical factors such as light, temperature, moisture, and any feature able to
a�ect the growth rate of the population of a given species [24]. A fragmented
population made of subpopulations receives in the literature the suitable name
of metapopulation [23, 24, 111]. These fragments, also known as patches, are
not completely isolated as they are coupled, for instance, due to movements
of individuals in space. For modeling purposes, as a first step one can adopt
a single patch viewpoint, taking into account the impact of the surrounding
population in an e�ective manner [33, 44, 47, 112]. As a further step beyond
the single patch level, one can resort to a spatially explicit model. From
this perspective, deterministic and stochastic theoretical models have been
developed to obtain the macroscopic behavior of the whole population [11,23,
113–116]. One of the main results is the detection of critical thresholds that
delimit the conditions for the sustainability of the population, which occurs
for a suitable combination of diverse factors, related to quality and spatial
structure of the habitat, migration strategies and extinction rates. Here, we
address related fundamental questions in metapopulation theory proposing a
model that includes a general dispersion process, incorporating random and
selective dispersal strategies. Additionally, we investigate the model dynamics
on top of a complex ecological landscape whose spatial structure can be tuned,
ranging from spread to aggregated patches [36].

Let us start from the local dynamics perspective. We assume that the
rules that govern the dynamics of each patch can be modelled by the canonical
model [33,44,48,49]:

fl̇

i

= [a
i

+ ‡

÷

• ÷

i

(t)]fl
i

≠ bfl

2

i

+ ‡

›

Ô
fl

i

¶ ›

i

(t) , (5-1)

where ‡

÷

and ‡

›

are positive parameters, and ÷

i

and ›

i

are assumed to be
mutually independent zero mean and unit variance Gaussian white noises.
Moreover each patch i can either be favorable if it induces positive growth at
low densities (i.e., a

i

= A

+

i

> 0) and unfavorable if it is adverse to support life
(i.e., a

i

= A

≠
i

< 0).
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Now, introducing spatial coupling from migrations from one patch to
another, the full model can be expressed by

fl̇

i

= a

i

fl

i

≠ bfl

2

i

+ D �
i

[fl] + ‡

÷

fl

i

• ÷

i

(t) + ‡

›

Ô
fl

i

¶ ›

i

(t) , (5-2)

where the additional term D�
i

[fl], with D > 0, arises from the net flux towards
patch i. It is the nonlocal term that couples the set of stochastic di�erential
equations (5-1). We model the populational exchange between patches based on
two behavioral strategies: one where the individuals spread in space di�usively,
driven by density di�erences, and another where individuals transit selectively,
mainly driven by patch-quality di�erences. The precise form of these exchanges
will be presented in Sec. 5.1.

Finally, we construct a complex arrangement of favorable and unfavorable
patches, that will be defined in Sec. 5.2. For the sake of simplicity, we consider a
binary landscape, where sites can be in any of two states, A

+

i

= ≠A

≠
i

= A > 0,
as assumed in previous studies [110,117]. A typical configuration of the model
system in a square lattice is illustrated in Fig. 5.1.
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Figure 5.1: Ecological landscape and population distribution in a square lattice
of linear size L = 100. Each lattice cell represents a patch. The landscape is
defined by the configuration of favorable (positive growth rate) and unfavorable
(negative growth rate) patches. A favorable patch is denoted by a black
open square. The population density (number of individuals per unit area)
is represented by shades of green.
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5.1
Dispersal guided by habitat information

In order to define the coupling scheme let us state some considerations.
First, let us assume that spatial spread is conservative, preserving the number
of individuals during travels, and also that it is nonlocal, in the sense that
individuals can travel long distances over the landscape, for example like
butterflies and birds [11,118].

Furthermore, it is reasonable to assume that active individuals like
butterflies, birds and also terrestrial animals use their perception and memory
to increase the e�ciency in the search for viable habitats. Spatial knowledge
can be acquired, for instance, by a direct visualization, previous visit or by
the perception of the collective dynamics. The spatial information stored by
the individuals can yield optimized routes between favorable regions. In fact,
there is a relation between spatial memory and migration strategy [119]. We
introduce this trait by allowing individuals to have access to information about
the spatial distribution of patch quality. This will originate selective routes
towards favorable patches and some directions will be preferred. Otherwise, if
individuals do not have any information about the ecological landscape, or if
they do not have memory, uncorrelated trajectories (random movements) can
emerge. In fact, this has been the focus of works on animal foraging, where
optimal e�ciency in resource search occurs without previous knowledge of food
distribution [120]. This type of behavior has isotropy as a main trait, indicating
directional indi�erence.

We contemplate both scenarios by modeling spread through a di�usive
component together with a contribution of direct routes connecting favorable
patches, governed by quality di�erences. The relative contribution of both
mechanisms is regulated by parameter ”, with 0 Æ ” Æ 1 tuning from the
ecologically driven (” = 0) to the purely di�usive (” = 1) cases. Moreover,
we assume that coupling is weighted by a factor “(d

ij

) that decays with the
distance d

ij

[121] between patches i and j, as will be defined below. Then, the
flux J

ij

from patch i to j is given by

J

ij

= [” + (1 ≠ ”)–
ij

] “(d
ij

)fl Ø 0 , (5-3)

where –

ij

© (a
j

≠ a

i

)/(4A) + 1/2. Hence, the total flux is

�
i

[fl] =
ÿ

j ”=i

(J
ji

≠ J

ij

)

=
ÿ

j

“(d
ij

) [”(fl
j

≠ fl

i

) + (1 ≠ ”)(–
ji

fl

j

≠ –

ij

fl

i

)] . (5-4)
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The total density is conserved by the exchanges described by Eq. (5-4), as
can be seen by summing over i. It indicates that individuals tend to move
towards patches with fewer individuals and better quality. For ” = 1, Eq. (5-4)
represents a generalization of the Fick’s law for nonlocal dispersal driven by
density gradients. For ” = 0, with our definition of –

ij

, and binary patch
growth rate, the possible values of –

ji

fl ≠ –

ij

fl are

j

i

A ≠A

A (fl
j

≠ fl

i

)/2 fl

j

≠A ≠fl

i

(fl
j

≠ fl

i

)/2

This means that, when the quality of two patches is di�erent, the flux occurs
in the direction of the higher quality, weighted by the out-flowing population
density (lowest quality patch). Only when the quality is the same, di�usive
exchange can occur, to allow a network of favorable patches.

Concerning the factor that takes into account the distance between
patches, there is empirical evidence [11, 53] that the frequency of occurrence
of flights between patches decays with the distance, which is reasonable due
to the increase of energetic cost. Although diverse decay laws are possible, we
will assume exponential decay of the weight “ with the traveled distance ¸, as
observed for some kinds of butterflies [11,53,54], that is

“(¸) = N ≠1 exp(≠¸/¸

c

) , (5-5)

where ¸

c

is a characteristic length (the average traveled distance) and the
normalization constant N is such that the sum of the contributions of all
patches equals one. Operationally, we will truncate the exponential at ¸ ƒ
8¸

c

<< L, where L is the linear characteristic size of the landscape.

5.2
Complex landscape

In nature, the arrangement of the ecological landscape is built by
many distinct processes, occurring in many time scales, creating complex
spatiotemporal structures. Then, beyond the inclusion of the environmental
noise ÷, it is also important to take into account the spatial organization of
patches [11,113,122,123].

Heterogeneity and patchiness are adequate to capture the complexity
of diverse ecological systems [124–128]. Here we propose to use as complex
ecological landscape a Lévy dust [120] distribution of favorable patches on a
square domain of size L ◊ L patches, with periodic boundary conditions. Over
a background of adverse patches (a

i

= ≠A), we construct a Lévy dust of
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favorable patches (a
i

= A) given by the sites visited by a Lévy random walk
with step lengths ¸ drawn from the probability density function

p(¸) Ã 1/¸

µ

, (5-6)

with 1 Æ ¸ Æ L. This protocol has been used in the study of di�erent
problems [120, 125, 126], but we apply it here in the study of metapopulation
dynamics. It allows to mimic a general class of realistic conditions [124,126–128]
and to tune di�erent habitat landscapes through parameter µ, from widely
spread (for µ = 0) to compactly aggregated in a few clusters separated by
large empty spaces (for µ = 3), as illustrated in Fig. 5.2. Moreover it is
relavent to mention that the produced landscape pattern can be related to
a fractal dimension, d

f

= µ ≠ 1 (for 1 < — < 3) [120].

µ = 0.5 µ = 1.5

µ = 2.0 µ = 3.0

Figure 5.2: Ecological landscape for di�erent values of the exponent µ that
characterizes the distribution of Lévy jumps given by Eq. (5-6), used to build
the configuration of favorable patches in a square domain with L = 100.
Black cells indicate positive growth rate A (favorable patches) and white cells
negative growth ≠A. In all cases the density of favorable patches is h = 0.1.

We quantify the change in the spatial structure by computing the
probability distribution of the distance d between favorable patches P

µ

(d) (see
Fig. 5.3). For the density h = 0.1 used in the figure, when µ . 1, patches
are typically far from each other. For high values (µ & 3), the generating
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Figure 5.3: Probability distribution of the distance between favorable patches
for di�erent values of exponent µ in Eq. (5-6), for density h = 0.1 and
lattice size L = 100 (200 configurations were used). Fluctuations are due to
the discrete nature of the possible distances in the lattice. The dotted lines
are a guide to the eye. The solid line represents the probability distribution
for the distance between uniformly distributed random points in continuous
space, drawn for comparison: P (d) = 2fihd if d < L/2, P (d) = 2fihd(1 ≠
4arcos(L/[2d]), otherwise.

walk approaches the standard random walk, creating a much more clustered
structure, evidenced by the peak at short distances. However the shape of P

µ

(d)
changes with h. When the patch density h is high, the shape of P

µ

(d) resembles
that of the uniform arrangement even for large µ, while at low densities P

µ

(d)
presents a peak at small d since the resulting configuration of patches is very
localized even for small µ, as will be discussed in Sec. 5.4.3. Furthermore, P

µ

(d)
is also sensitive to L, but we kept L fixed (L = 100), even if some properties
may have not attained the large size limit, as far as µ and h allow to scan
many qualitatively di�erent possibilities of landscape structure.

5.2.0.0
General considerations about the model

The set of parameters {D, ”, ¸

c

} regulate the nonlocal dynamics. While
D is the strength of the nonlocal coupling, ” controls the balance between
di�usion and directed migration, and ¸

c

defines the coupling range. The
ecological landscape is characterized by h and µ that set the density and the
degree of clusterization, respectively.

In the results presented in the following sections, we will restrict
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the analysis to a region of parameter space relevant to discuss the main
phenomenology of the model. Thus, we will set A = b = 1 in all cases. We will
also consider L = 100 and typically h = 0.1. Concerning the noise parameters,
we set ‡

÷

= ‡

›

= 0 to analyze the deterministic case in Sec. 5.3 and turn
noise on by setting ‡

÷

= ‡

›

= 1 in Sec. 5.4. This choice is based on previous
works [44, 49]. Indeed, population size can be subject to large fluctuations as
demonstrated by experimental data [118].

We performed numerical simulations of Eq. (5-2) on top of di�erent
landscapes, by preparing the system in the stationary state of the deterministic
and uncoupled case, i.e., fl

i

(0) = max{a

i

/b, 0} for all i, plus a small noise.
Integration of Eq. (5-2) was carried out with Euler-Maruyama scheme with
a time step �t = 10≠3. Stratonovich noise was implemented by performing a
shift in the drift to obtain the corresponding equivalent Itô version [129] (for
more details see Appendix E).

5.3
Deterministic dynamics

Before proceeding to study the full model, we consider the deterministic
case. Locally, when stochastic contributions are neglected, the asymptotic value
of the population size for each patch is fl

i

= a

i

/b. Introducing nonlocal e�ects,
the population size might change. If population exchanges between patches are
guided solely by their quality (” = 0), then, the favorable-patch network will
conserve the initial population size, so no interesting phenomena occur from the
viewpoint of extinction. However, when ” > 0, the di�usive behavior induces
exploration of the neighborhood independently of habitat quality, which leads
to the occupation of unfavorable regions making likely the death of individuals.

By numerical integration of Eq. (5-2) we obtain the time evolution of the
total population density n(t) = q

L

2
i=1

fl

i

(t). In Fig. 5.4 we show the outcomes for
fixed values of the model parameters and di�erent initial conditions (di�erent
landscapes). While some of the realizations lead to exponential decay of the
population other ones attain finite values at long times. Several di�erent non
null steady states can be attained. Notice however, that the steady values of
di�erent realizations are all below that of the uncoupled case, hL

2

A/b = 1000
for the parameters of the figure. Hence, di�usion favors the decrease of the
total population density and the occurrence of extinctions, as expected.

In order to investigate how the fraction of survivals changes with the
topology, we plot in Fig. 5.5 the number of survivals per realization, f

s

, as
function of the landscape parameter µ, for several values of the coupling
coe�cient D. Besides the initial condition used throughout this section (see
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Figure 5.4: Deterministic (‡
÷

= ‡

›

= 0) time evolution of the total population
density n in di�erent initial landscapes, for ” = 1, h = 0.1, D = 10, ¸

c

= 0.5
and µ = 1.7. This particular set of values of the parameters results in about
half of 50 realizations leading to extinction. We use a dotted line to flag the
ones that tend to extinction exponentially fast and a solid line for those that
lead to population survival. Alternatively, the same data are represented as a
log-log plot in the inset.
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Figure 5.5: Fraction of surviving metapopulations f

s

(over 100 realizations) in
the deterministic case (‡

÷

= ‡

›

= 0) as a function of exponent µ in Eq. (5-6)
that gives the degree of clusterization. The other parameters are ” = 1, h = 0.1,
¸

c

= 0.5, for the values of the coupling coe�cient D indicated on the figure. In
this and following figures, dotted lines are a guide to the eye.
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Sec. 5.2), we observed that a perturbation of the null state also leads to
the same results of Fig. 5.5. For given µ, increasing D favors the occurrence
of extinctions as already commented above. For given D, below a threshold
value of µ the population gets extincted in all the realizations, while above a
second threshold it always survives (for the finite number of realizations done),
between thresholds both states, the null and non null ones, are accessible. The
number of non null stable states increases with µ.

Summing over all i the deterministic form of Eq. (5-2), one finds that
the steady solution ṅ = 0 must satisfy q

i

a

i

fl

i

= b

q
fl

2

i

, which has infinite
solutions between the fundamental null state and the uncoupled case solution
(the only stable one for D = 0). The condition for stationarity of the total
density depends only on the local parameters, since fluxes are only internal,
however, the coupling and landscape can stabilize configurations other than
the trivial ones. Furthermore, in the Appendix, we performed an approximate
calculation to show that, for small D (recalling that a

i

= ±A), the null state
is stable if

A ≠ D(1 ≠ “

µ

) > 0 , (5-7)
where 0 Æ “

µ

Æ 1 is a factor that mirrors the topology, as defined in Eq. (D-3),
varying from “

µ

= h for the uniform case µ = 0 to “

µ

= 1 in the limits of large
µ or large h. Despite this approximate expression fails in providing accurate
threshold values, it predicts that survival is facilitated by larger A and spoiled
by increasing D. It also qualitatively predicts the impact of the topology, as
far as it indicates that the destructive role of di�usion can be compensated by
a large enough degree of clusterization of the resources given by large “

µ

.

5.4
Stochastic dynamics

First let us review some known results about the local (one site)
dynamics, which is obtained in the limit D æ 0 of Eq. 5-2 (canonical model). In
the deterministic case, the two-state habitat [110,117] leads to local extinction
(if a

i

= ≠A) or finite population A/b (if a

i

= +A). The presence of stochastic
contributions changes the stability of the patches. When a

i

= ≠A < 0, the
local extinction event predicted deterministically (Ṅ/N < 0, when t æ Œ,
see Sec. 2) is reinforced by noise. For a

i

= +A > 0, the demographic (Itô)
noise › (in the presence of the Stratonovich noise ÷) leads to extinction in a
finite time. But this time diverges as ‡

›

æ 0 [44,47]. This divergence is due to
the fact that when only the Stratonovich noise ÷ is present, the null state is
strictly not accessible, for any noise intensity, in the continuous model. That
is, the external noise ÷ reduces the most probable value of the population size,
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that becomes very close to zero, but non null, when ‡

÷

>

Ò
2A/b [50].

The population stability can be quantified by the mean time to extinction
T averaged over realizations starting at fl(0). Recalling the results from
Sec. 3.1, for Eq. (5-2) with D = 0, T is given by [49],

T =
⁄

fl(0)

0

⁄ Œ

z

exp (
s

v

z

�(u)du)
V (v) dvdz , (5-8)

where �(fl) = 2M(fl)/V (fl), with M(fl) = afl ≠ bfl

2 + ‡

2

÷

fl/2 and V (fl) =
‡

2

÷

fl

2 + ‡

2

›

fl. The results of Eq. (5-8) are in good accord with those from
numerical simulations, as shown before Sec. 3.1.

5.4.1
Spatially extended system

In this section we investigate the e�ects introduced by patch coupling,
i.e., when D ”= 0. Nonlocal contributions redistribute the individuals in space,
driven by density and quality gradients. In Fig. 5.7 we show that D ”= 0
prevents the extinction events that occur when D = 0 (see Fig. 5.6). Therefore,
in contrast to the deterministic case, now spatial coupling is constructive. On
the other hand, noise has also a constructive role when D ”= 0, di�erently to
the uncoupled case, not only preventing extinction but also contributing to the
increase of the population (as in the case D = 10). In a Sec. 3.3, we already
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Figure 5.6: Single patch dynamics. Mean extinction T time vs noise strengths
‡

÷

(fixing ‡

›

= 1, triangles), that modulates the fluctuations in the growth
rate, and ‡

›

(fixing ‡

÷

= 1, diamonds), that modulates the demographic noise.
Symbols correspond to numerical simulations averaged over 500 samples and
the full lines to the theoretical prediction given by Eq. (5-8). The curve for
variable ‡

›

diverges in the limit ‡

›

æ 0.
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observed the constructive role in population growth of linearly multiplicative
Stratonovich noise in contrast with the destructive behavior of its Itô version.
Therefore, environmental noise and coupling have a positive feedback e�ect on
population growth, as shown in Fig. 5.7.

We will compute the long-time total population density nŒ ©
lim

tæŒ n(t), which is useful to be compared with the initial value n

0

©
n(0) = hL

2

fl

0

= hL

2(A/b), that represents the asymptotic total density in
the deterministic uncoupled case. Then we will measure the long-time relative
total population density E © ÈnŒÍ/n

0

, that represents a kind of e�ciency,
where the brackets indicate average over landscapes and noise realizations.

In the upper panel of Fig. 5.8 we plot the long-time relative value E

as a function of D. We see that for very small values of D, the population
is non null, although the final relative population density E is smaller than
one. Moreover, for given D, the long-time relative value E is smaller when the
di�usive component is absent (” = 0). In all cases, E first increases with D

and even exceeds the value E = 1, indicating again that not only the noise
has a constructive role in preventing extinction but also in promoting the
increase of the initial total population. When the di�usive strategy is present
(” > 0), the increase of E occurs up to an optimal value of the coupling D (with
E > 1), above which the E decays. Hence, there is a nonlinear e�ect that does
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Figure 5.7: Temporal evolution of n/n

0

, the total population density relative
to the initial value n

0

(set as the uncoupled deterministic value). For ” = 0.5,
h = 0.1, ¸

c

= 0.5, µ = 2.0, ‡

÷

= ‡

›

= 1 and values of the coupling coe�cient
D indicated on the figure. We highlight a single realization (black full line) for
each set of 50 realizations (gray lines). The dashed line at n = n

0

is plotted
for comparison.
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Figure 5.8: Long-time relative total population density, E © ÈnŒÍ/n

0

, as a
function of the coupling coe�cient D, for di�erent values of ” (upper panel)
and E as a function of ”, for di�erent values of D (lower panel). Recall that
parameter ” regulates the balance between the di�usive (” = 1) and selective
(” = 0) strategies. The other parameters are h = 0.1, ¸

c

= 0.5, µ = 2.0
and ‡

÷

= ‡

›

= 1. The symbols represent the average over 20 samples and
the vertical bars the standard error. The dashed line at E = 1 is plotted for
comparison.
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not reflect the linear combination in Eq. (5-3), as shown in the lower panel
of Fig. 5.8. The di�usive component, despite being much less e�cient, like
in placing individuals in unfavorable regions, acts with greater connectivity.
Then, for small D, the nonlocal contribution of the di�usive coupling is much
higher than in the ” = 0 case, leading to a higher population size. In fact,
the abrupt transition in the connectivity of the spatial coupling is mirrored in
the abrupt change su�ered by E as ” becomes non null. Contrarily, for high
values of D, ” = 0 is more e�cient due to high damage caused by an intense
dispersal towards unfavorable regions, which in the case of Fig. 5.8 are the
majority of the sites. All these observations highlight the importance of the
di�usive strategy, that can become more e�cient than the ecological pressure
driven by the quality gradient.

5.4.2
Habitat topology and coupling range

The nonlocal contribution results from the combination of the spread
strategies, interaction range and topology, characterized by ”, ¸

c

and µ,
respectively. Fig. 5.9 shows the long-time relative population density E as
function of µ with di�erent values of ¸

c

for ” = 1 and ” = 0.
E > 1 means that the combination of habitat topology and

spatial coupling range leads the population to profit from the environment
fluctuations, increasing its size. The region E > 1 is bigger when individuals
are selective with respect to their destinations (” = 0) and increases with ¸

c

.
For the di�usive strategy (” = 1), E > 1 is attained only in a clustered habitat
(large µ) together with short-range dispersal (small ¸

c

). We have already seen
that in a sparse habitat, di�usion represents a waste, specially if the dispersal is
long-range. Instead, when ” = 0, the habitat does not need to be so clustered
or the range so short for population growth. In this instance, the optimal
combination occurs in a clustered habitat but with long-range coupling. Finally
note that, as ¸

c

increases, E becomes independent of the topology.

5.4.3
Density of favorable patches

Another important issue is the influence of the density h of favorable
patches in the dynamics. Until now, we have kept it constant to highlight
the e�ects of the heterogeneity of the habitat and of the coupling schemes in
the longtime behavior of the total population size. In terms of the protocol
used to generate the ecological landscape, h not only changes the proportion
of favorable patches but also reshapes the distribution of distances between
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Figure 5.9: Long-time relative total population density, E © ÈnŒÍ/n

0

, as a
function of exponent µ in Eq. (5-6) for di�erent values of the coupling range
¸

c

, when ” = 0 (selective strategy, upper panel) and ” = 1 (di�usive strategy,
lower panel), with h = 0.1, D = 20 and ‡

÷

= ‡

›

= 1. The symbols represent
the average over 20 samples and the vertical bars the standard error. The
dashed line at E = 1 is plotted for comparison.
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Figure 5.10: Ecological landscape (upper panels), with favorable patches in
black, probability distribution of the distance between favorable patches,
averaged over 100 landscapes (lower panel). Three di�erent values of h,
indicated on the figures, were considered. In all cases, Lévy exponent µ = 2.

favorable patches. In Fig. 5.10 we show three di�erent outcomes of the spatial
structure and the corresponding distance distribution for a fixed value of µ = 2.
For low h, patches organize in a kind of archipelago structure, that is much
smaller than the system size, and the distance resembles that obtained for large
µ when h = 0.1. For high h, many points of the domain are visited creating
a distance distribution that approaches the homogeneous form. For µ higher
than the value of the figure, profiles very similar to those shown in Fig. 5.10 are
obtained. Meanwhile, for small values of µ, the distribution is almost invariant
with h, being very close to that of the uniform case. This is due to frequent
flights with lengths of the order of system size. Concerning the factor “

µ

that
reflects the topology, as defined in Eq. (D-3), it can be a�ected by h more
through the amount of favorable patches n

v

than by its indirect consequences
on the spatial distribution P

µ

.
In Fig. 5.11, we show E as a function of h for the case µ = 2. By

comparing the outcomes for di�erent values of ”, we see the impact of distinct
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Figure 5.11: Long-time relative total population density, E © ÈnŒÍ/n

0

as
a function of the favorable-patch density h. Di�erent values of the strategy
balance parameter ” were also considered as indicated on the figure. Recall
that ” allows to tune from the purely di�usive strategy (” = 1) to the selective
one (” = 0) The remaining parameters are A = b = 1, D = 20, ¸

c

= 0.5,
µ = 2.0, ‡

÷

= ‡

›

= 1 and L = 100. The symbols represent the average over 20
samples and the vertical bars the standard error. The horizontal line represents
E = 1.

connectivities. In order to interpret this figure, recall that the initial population
density n

0

is proportional to the number of favorable patches n

v

, namely
n

0

= n

v

A/b = hL

2.
For ” = 1, E presents a minimum value for h ƒ 0.15. Beyond this value,

E grows with h attaining the value of the full favorable lattice. In the opposite
limit of vanishing h (no favorable patches), E diverges as far as, according
to the model, (intrinsically) favorable patches are not necessary to promote
growth, due to the noisy growth rate. However, if noise is reduced, then the
stochastic dynamics approaches the deterministic one, where the population
will certainly go extincted.

Now, turning our attention to the ” = 0 case, E is monotonically
increasing with h, also attaining a limiting value when h æ 1. Di�erently
from the di�usive case, there exists a critical value h

c

= 4 ◊ 10≠4 (n
v

= 4) for
population survival.

For small h, it is curious that the role played by the connectivity,
according to the model, makes the di�usive behavior more e�cient, while
selective moves are important at high values of h. In this case, when the system
is approaching a fully favorable landscape, the long-time relative population
density E tends to be the same for di�erent values of ”. For intermediate values
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of h, we see that the selective strategy overcomes the di�usive one (but never
overcomes the combined scheme).

5.5
Extracting metapopulation heterogeneity from ensemble data

Metapopulation experimental data has di�erent kind of limitations due
to the large ecological time scale and technical dificulties [24]. This issue is
reflected in low spatial statistics, such that at patch level no statistics can
be performed. It is necessary, then, to study the ensemble statistics of the
metapopulation [118, 130], with a mean-field perspective of the system. This
procedure groups data from di�erent pathces, causing loss of information about
the microscopic details of the environment, included in the ecological landscape
[28]. Nevertheless, here we propose a methodology to restore the distribution
of patch characteristics from the ensemble data, such as the variability of
environmental conditions and migration rate among patches. We will focus
our approach in the experimental data from a bird meta-population in United
States [118]. The data provides the lifetime probability distribution of the
ensemble set (all patches in the same sample). Our task will be to identify
patch variability from the ensemble set statistics.

As it has been argued, along the previous chapters, the idea of providing a
direct connection between patch and macroscopic levels has been a central issue
in metapopulation dynamics studies [24]. However, a rigorous mathematical
treatment for stochastic spatial explicit models face challenges to provide
expressions for macroscopic quantities. Thus, analytical calculation relying on
approximation methods such as moment closure or perturbative expansions
around the mean-field solution [131]. In order to bypass this challenges, we will
use an e�ective description to each patch dynamics to predict the ensemble
data.

The approach discussed here can be applied in cases in which the
metapopulation is in a quasi-steady state and patch temporal variability and
migration fluxes are weakly correlated in space [11]. That is expected to be true
for a large metapopulation and when migration is discrete with events fairly
spaced [132]. Our proposal can be adjusted to a particular problem, including
features as the Allee e�ect, cooperation, additional species [6, 109].

Deconvolution of the ensemble data

In the ensemble data, the observed lifetimes from each patch are mixed
together in the same set. In order to obtain some preliminary properties of the
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ensemble set, consider that for each patch i the set E
i

= {T

i,1

, T

i,2

, . . .} contains
the extinction times at the respective location. The metapopulation ensemble
data set is defined by Ē © E

0

fi E
1

fi . . . fi E
N

. The size |E
i

| of each set is the
number of extinction events. Defining ·

i

the mean extinction time in patch i,
the average set size is |E

i

| = T

o

/·

i

, where T

o

is the total observation time. Due
to the fact that in practical situations T

o

≥ ·

i

, a statistical analysis cannot be
performed locally (for each patch).

Nevertheless, if patches are grouped by same characteristics, we can
construct the set E(m) of patches with m œ [m ≠ �m, m + �m], which has
size |E(m)| = p(m)

·(m)

NT

o

, where ·(m) provides the mean extinction time as a
function of the characteristic m. In the limit of large N , NT

o

∫ 1, we can
obtain a probability distribution of the lifetimes given m, P (T |m).

10�4

10�3

10�2

10�1

100

5 10 15 20 25

P

T

101

102

0 2 4 6 8 10

⌧

�

� = 0.1
� = 0.5
� = 1.0
� = 2.0

Figure 5.12: Probability distribution of patch lifetimes P for di�erent average
migration rates ⁄. Solid lines represent the approximation in Eq. (B-13),
considering the migration term ’ as a Poisson shot noise with rate ⁄ and
fixed amplitude. In the inset, we show the behavior of · as a function of ⁄.
The dashed line represent an exponential fit, ·(⁄) = 2.39 exp(0.4⁄).

By performing an ensemble average we can obtain the probability
distribution of lifetime for the metapopulation. Explicitly, the ensemble average
is given by

P(T ) © 1
q

i

w

i

Nÿ

i

w

i

P

i

(T ) .

where w

i

≥ 1/·

i

. In the limit where N is large, we can rewrite the above
average in the characteristic space. Assuming that a continuous probability
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distribution p(m) exists for the set m = {m

1

, m

2

, . . .} œ �, then

P(T ) Ã
⁄

�

p(m)
·(m)P (T |m)dm . (5-9)

The mixing of probability distributions can yield di�erent outcomes
depending on the structural heterogeneity p and population dynamics through
·(m).

The particular form for the local lifetime probability distribution arises
from patch characteristics, such as amount of resources, quality of environment
conditions and the intensity of the migration between neighboring patches.
In order to provide a link between the probability distribution and patch
characteristic we recall the e�ective model described in Eq. (3-11),

fl̇(t) = f(fl) + ÷(t) • fl(t) + ›(t) ¶
Ò

fl(t) + ’(t) , (5-10)

where the e�ective noise ’ is a function of patch connectivity and dispersal
rates, while the rest of the terms refer to the local properties. In Fig. 5.5 we
illustrate this approach.

Figure 5.13: E�ective modeling of patch dynamics. For each node in the
metapopulation network, one can approximate the external fluxes and
environment fluctuations by suitable stochastic variables.

In Fig. (5.12) we show di�erent probability distributions for Eq. (3-11)
with ’ being a Poisson shot noise with rate ⁄. For local e�ective models the
probability distribution of lifetimes of a given patch has exponential tails. This
occurs due to the formulation with Markov chains (see Sec. (3.1)) [130].

For our canonical choice (Eq. 3-28), the mean lifetime ·(⁄) grows
exponentially with ⁄ for the Gaussian and Poisson shot noises [44,49,132,133],
and diverge as 1/⁄ at a maximum value for the constant migration rate (not
shown). This result is confirmed by Eq. (3-12) and numerical simulations.

Numerical simulations of metapopulation, in the limit of weakly coupled
patches (small D in Eq. (5-2)), show this same result but the migration rate
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is interpreted in terms of patch connectivity C, C

i

© q
i

“(|x
i

≠ x

j

|) . In
Fig. (5.14), we show that the mean lifetime increases exponentially as more
connected the patch is.
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Figure 5.14: Mean lifetime · vs. patch connectivity C for a random landscape
(µ = 0, see Sec. (5.2)) with fl = 1. Black dots represent cases with D = 0.01
and gray dots D = 1.

Due to this evidence, we proceed assuming that the local extinction
probability follows an exponential distribution with mean extinction time
·(m), given by a particular mathematical model, such as Eq. (5-10). In this
case, Eq. (5-9) becomes

P(T ) Ã
⁄

�

p(m)
·

2(m)e

≠T/·(m)

dm . (5-11)

After performing a change of variable, s(m) = 1/·(m), Eq. (5-11) becomes

P(T ) Ã
⁄

s(Œ)

s(0)

p(m(s))s2

m

Õ(s)e≠T s

ds . (5-12)

Now, assuming that the particular patch features considered m are
directly related to population persistence, such as migration and connectivity,
then we can approximate s(Œ) = 0 and s(0) = Œ. That is, with high
migration, patch lifetime diverges, while for low migration, it goes to zero.
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Thus,

P(T ) Ã ≠
⁄ Œ

0

p(m(s))s2

m

Õ(s)e≠T s

ds (5-13)

P(T ) Ã ≠L[p(m(s))s2

m

Õ(s)] . (5-14)

where L refers to the Laplace transform. Finally,

p(m) Ã ≠L

≠1[P(T )]
m

Õ(s)s2

-----
s=1/·(m)

=
A

d·(m)
dm

B

L

≠1[P(T )]
s=1/·(m)

, (5-15)

p(m) Ã h(m)L≠1[P(T )]
s=1/·(m)

(5-16)
where h(m) © d·(m)

dm

.
Eq. (5-15) provides the indirect transformation, that gives the

metapopulation heterogeneity p(m) from the ensemble probability distribution
P . Keep in mind that the Laplace transform connects T ¡ s, so after the
transformation we set s = 1/·(m).

Applications

Now we focus on the variation of a single patch feature, keeping
the remaining ones fixed. Also, let us consider that the dynamical model
provides ·(m) such that it covers the integral range in Eq. (5-13), as imposed
for the derivation of Eq. (5-15). That is, ·(0) = 0 and ·(Œ) = Œ.
Motivated by the previous observation in Figs. 5.12 and 5.14, a possible
choice would be ·(m) = e

cm ≠ 1. But also a power-law form for · would
satisfy the necessary requirements. Now assuming particular ensemble lifetime
probability distribution we shall use Eq. (5-15) to access information about
the metapopulation migration network.

Let us consider some particular cases. From Eq. (5-15), assuming that P
is exponential, automatically p(m) ≥ ”(m ≠ m

ı). This can also be seen from
Eq. (5-11). If P is for instance proportional to e

≠T/·c
/T , p will have a cuto�

in values of m. Below we list some relevant cases.

P(T ) p(m)
e

≠T/·c
h(m)”(1/·(m) ≠ 1/·

c

)
e

≠T/·c
/T h(m)�(�m) where �m © 1/·(m) ≠ 1/·

c

e

≠T/·c
/(·

0

+ T )—

h(m)�(�m)�m

—≠1

e

≠�m·0

The last case in the above table corresponds to the one observed in
experimental data for the North American Breeding Bird Survey with — = 1.6
and ·

c

= 14 (years) [118]. In Fig. 5.5, we show the probability distributions for
p as a function of the exponent —. This result relates a macroscopic property
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Figure 5.15: Probability distribution p for a given patch characteristic m. The
distribution are obtained applying Eq. (5-15) with ·(m) = e

cm ≠ 1. In this
case p can be interpreted as the distribution of migration rates m among the
metapopulation patch set. Solid line indicate the case — = 1.6.

— to the metapopulation heterogeneity p. It has been a matter of debate
the origins of the power-law observed in the ensemble lifetime probability
distribution [118, 134]. In one hand, it is attractive to argue that power-laws
emerge from near-criticality phenomena, that produce long-range interactions.
However, here we see that spatial variability can also be the cause for this
power-laws. For instance, small exponents in tails of the ensemble lifetime
probability distribution P indicate that the majority of patches have its
characteristic concentrated that the maximum allowed values of m. For higher
values of the exponent patches characteristic shifts towards the minimum
value. For values in between these limits, the patch characteristics are roughly
homogeneous distributed between the allowed interval.

Eq. (5-15) provides interesting hints about the heterogeneity. However, a
systematic validation of Eq. (5-15), using metapopulation models such as the
one discussed in the previous section still lacking to proof the range of validity
of the approach.

DBD
PUC-Rio - Certificação Digital Nº 1412801/CA



6
Final remarks on population dynamics

In the present study, the role of environment heterogeneity in the
collective dynamics of living beings was investigated.

In Chapter 2, we introduced the mathematical framework used
to describe the system. We also defined important concepts about the
environment modeling and a proper definition of the population persistence
is presented.

In Chapter 3, we started by considering an homogeneous environment
and analyzed how stochasticiticy can trigger a self-organization process,
a�ecting the spatial distribution of the population. In this case, nonlocal
competitive interactions are the main mechanism for pattern formation,
while environment fluctuations a�ect di�erent features of this phenomenon.
Using analytical and numerical techniques, we obtained the transition
from homogeneous to patterned population distribution. We showed that
external fluctuations can shift the transition point (a noise induced shift
transition [108]). Besides that, there is an optimal intensity of the fluctuations
that tune patterns in space-time, generating large temporal correlation.

In Chapter 4, we discussed the case in which the environment landscape
is composed by a single habitat domain. In Sec. 4.1, we showed that the
ecological statement that population survives for habitats larger than a
minimum values L

c

is not valid in general. When nonlinearities are present,
population may survive for L > L

c

, L < L

c

, or even for any L > 0, depending
on the model parameters. In Sec. 4.2, we presented a brief discussion on
population conservation when higher order interactions are present. In Sec. 4.3,
introducing habitat seasonality, we obtained significant corrections to the
critical habitat size L

c

. Particularly, we found that L

c

decreases with habitat
oscillation period, that is, slow environments (with same average conditions)
make population perform better.

In Chapter 5, we developed a more sophisticated model, considering a
complex environment structure and information based dispersal. Regarding
habitat spatial structure, we showed, for instance, that population survives in
fragmented environments that are clustered enough (high fractal dimension).
About dispersal, we showed that random movement, up to a certain amount,
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introduces a positive feedback in population size. Then, counter-intuitively,
we see that population size becomes larger when individuals partially neglect
habitat information, choosing to visit locations that do not have the best
environment conditions, or even, where harmful factors are present. In Sec. 5.5,
we present an approximation to connect theory and experimental data,
bypassing di�cult mathematical challenges. This way, we were able to show
that intriguing power-laws in the metapopulation extinction times might not
be exclusively due to near-criticality phenomena, but due to metapopulation
heterogeneity.

In summary, recalling the general model (Eq. (2-3)), di�erent cases
were presented assuming di�erent population dynamics L and environment
spatiotemporal structure M . For instance, in Chapter 4 environment is
characterized by its spatial and temporal scales, M = (L, ·), where L is the
size and · the period of oscillation of the habitat. In Chapter 5, the landscape
is determined by M = (µ, h), where µ represents the degree of clusterization,
while the parameter h represent the fraction of space considered viable for
population development. In all these cases, we found that there is a critical
line M

c

in the environment parameter space that separates the extinction and
survival phases. The exact determination of M

c

was one of the main objectives
of previous chapters. The results explore fundamental features, relevant to
other disciplines, such as theoretical ecology and, in practical situations, it
might guide management and conservation protocols of natural habitats.

Finally, I would like to acknowledge the financial support of the FAPERJ
and CAPES agencies and PUC-Rio Physics department, that enable this
research.
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A
Master equation

In order to represent the reactions in Eq. (3-1), we write the master
equation of the probability P

N

(t) of having N individuals at instant t,

P

N

(t + dt) = P

N

(t) +
ÿ

n

[W (n æ N)P
n

(t) ≠ W (N æ n)P
N

(t)]dt , (A-1)

P

0

(t + dt) = P

0

(t) +
ÿ

n

W (n æ 0)P
n

(t)dt . (A-2)

From Eq. (3-1), we identify the rates, such that

W (n æ n + 1) = a

b

n , (A-3)
W (n æ n ≠ 1) = (a

d

+ bn)n . (A-4)

Then,

ˆ

t

P

n

(t) = W (n ≠ 1 æ n)P
n≠1

(t) + W (n + 1 æ n)P
n+1

(t)
≠ [W (n æ n ≠ 1) + W (n æ n + 1)]P

n

(t)
= [a

b

(n ≠ 1)]P
n≠1

(t) + [(a
d

+ b(n + 1))(n + 1)]P
n+1

(t)
≠ [(a

b

+ a

d

+ bn)n]P
n

(t) .

Taking the continuous limit, using that ˆ

n

f = [f(n+1)≠f(n≠1)]/2 and that
ˆ

nn

f = [f(n + 1) + f(n ≠ 1) ≠ 2f(n)],

ˆ

t

P

n

= ˆ

n

5
≠(a

b

≠ a

d

≠ bn)nP

n

+ 1
2ˆ

n

(a
b

+ a

d

+ bn)nP

n

6
, (A-5)

which recovers Eq. (3-4) in the form

ˆ

t

P (n, t) = ≠ˆ

n

[f(n)P (n, t)] + 1
2ˆ

n

[g(n)P (n, t)] . (A-6)

For more details see Appendix B.
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B
Mean extinction time

Assuming that the system is Markovian, we can write the temporal
evolution of the probability density distribution [135]

P (u, t + ·) =
⁄ Œ

0

W (u, t + · |uÕ
, t)P (uÕ

, t)du , (B-1)

with the population density u œ [0, Œ] and W (u, t + · |uÕ
, t) is the transition

probabilities (uÕ
, t) æ (u, t + ·).

Through the characteristic function method, using the Fourier transform,
we see that

W̃ (q, t, ·) ©
⁄ Œ

≠Œ
e

iq(u≠u

Õ
)

W (u, t + · |uÕ
, t) , (B-2)

= 1 +
Œÿ

n=0

(iq)n

n! È(u ≠ u

Õ)nÍ , (B-3)

thus,

W (u, t + · |uÕ
, t) =

⁄ Œ

≠Œ
e

≠iq(u≠u

Õ
)

W̃ (q, t + ·) , (B-4)

=
C

1 +
Œÿ

n=0

A

≠ ˆ

ˆu

B
n

W

n

D

”(u ≠ u

Õ) , (B-5)

where we define

W

n

= È[u(t + ·) ≠ u(t)]nÍ|
u(t)=u

Õ

n! = Ê

n

·

n! + O(· 2) , (B-6)

where È[u(t + ·) ≠ u(t)]nÍ are the jump moments [135] and Ê

n

the first term
in the expansion of order · . Finally, substituting (B-5) into (B-1), we obtain
in the limit of · æ 0,

ˆ

t

P (u, t) =
Œÿ

n=0

A

≠ ˆ

ˆu

B
n

W

n

(u, t, ·)P (u, t) . (B-7)

Pawula’s theorem shows, that if fluctuations are Gaussian, we can
truncate the sum in Eq. (B-7) at n = 2 [135]. This gives rise to the well-known
Fokker-Planck equation, such as Eq. (3-8).

The presence of stochasticity brings uncertainty to population size
allowing extinction. We proceed now to obtain the population mean lifetime

DBD
PUC-Rio - Certificação Digital Nº 1412801/CA



Appendix B. Mean extinction time 97

T [44].
The total flow towards extinction in interval · [135] is given by

P(· |t) ©
⁄ Œ

0

W (0, t + · |uÕ
, t)du

Õ
. (B-8)

Due to the properties of the fluctuations considered, the system is
invariant over time inversion. Thus, for convenience, we use the reverse version
of Eq. (B-5) for the temporal evolution of the probability distribution for W ,

W (u, t + · |uÕ) = [W
1

ˆ

u

W (u, t|uÕ) + W

2

ˆ

uu

W (u, t|uÕ)]”(u ≠ u

Õ) (B-9)

in the limit · æ 0,

Ẇ (u|uÕ
, t) = [f̄(u)ˆ

u

W (u, t|uÕ) + 1
2g

2(u)ˆ
uu

W (u, t|uÕ)]”(u ≠ u

Õ) , (B-10)

Integrating for all u

Õ, we obtain

Ṗ = f̄(u)ˆ
u

P + 1
2g

2(u)ˆ
uu

P , (B-11)

integrating from t = 0 up to t = Œ and noting that
s Œ

0

Ṗ = P(Œ)≠P(0) = ≠1
and that T = ≠ s Œ

0

tṖdt =
s Œ

0

Pdt, we obtain

f̄(u)ˆ
u

T + g

2(u)ˆ
uu

T = ≠1 . (B-12)

Integrating in T and fixing the initial population size u(0), we arrive at

T =
⁄

u(0)

0

⁄ Œ

z

2 exp (
s

v

z

�(u)du)
g

2(v) dvdz , (B-13)

with �(u) = 2f̄(u)/g

2(u). [48, 49,135].
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C
Time-dependent habitat

C.1
Population growth in heterogeneous static environment

Assuming that population density is low, such that we can neglect the
second order term from the carrying capacity, the temporal evolution of the
population spatial distribution in Fourier space, fl̃, from Eq. (4-50), is given by

ˆ

t

fl̃(k, t) = (≠Dk

2 + a)fl̃(k, t) + [Ẫ ı fl̃](k) , (C-1)
where the symbol ı denotes the convolution operation, i.e., Ẫ ı fl̃ =

s
Ẫ(k ≠

k

Õ
, t)fl̃(kÕ

, t)dk

Õ. From the protocol definition in Sec. 4.3, we obtain Ẫ(k, t) =
≠A

Ë
”(k) ≠ 2 sin(kL/2)

k

È
, where we consider the static case, setting Ï(t) = 1 for

all t. The growth rate of the total population size is obtained by taking k = 0,

ˆ

t

fl̃(0, t) = (a ≠ A)fl̃(0, t) + A

⁄ Œ

≠Œ

2 sin(kL/2)
k

fl̃(k, t)dk . (C-2)

In Sec. 4.3.3, the analysis of the spatial dynamics has shown, among
other results, that, when the population grows during the recovery time, the
spatial distribution changes but preserving its shape (see Fig. 4.17). Therefore,
we assume that fl(x, t) = N(t)fl

s

(x). Then, fl̃(k, t) = fl̃(0, t)fl̃
s

(k), where we
have arbitrarily set fl̃

s

(0) = 1. As a consequence, we can write Eq. (C-2) as
ˆ

t

fl̃(0, t) = �
0

(L)fl̃(0, t), with the intrinsic population growth rate being

�
0

(L) = a + A[S(L) ≠ 1] , (C-3)

where
S(L) ©

⁄ Œ

≠Œ

2fl̃

s

(k) sin(kL/2)
k

dk. (C-4)
First, we see that, independently of the shape of the distribution fl̃

s

, if
L æ 0, then S(L) æ 0, and as a consequence �

0

æ a≠A. Second, in the limit
of large refuge L æ Œ, we have Ẫ æ ”(k), then S(L) = 1, giving �

0

= a.
We proceed obtaining an approximate expression for the distribution

fl

s

(x). We start by recalling the steady solution of Eq. (4-50), in the static
case, for L = L

c

= L

ú (see Eq. (4-52)):
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fl(x, t) =

Y
_]

_[

c

1

cos(—
+

x) |x| Æ L

c

/2 , ,

c

2

e

≠—≠|x| |x| > L

c

/2 ,

(C-5)

where the parameters that regulate the spatial scale are —

+

=
Ò

a/D, —≠ =
Ò

(A ≠ a)/D and the constants c

1

and c

2

are such that fl(x, t) is continuous
and di�erentiable at x = ±L

c

/2. Eq. (C-5) can be used as a base to estimate
the shape of the distribution in the recovery period, for other values of L. In
order to do that, we keep the simple form of the critical solution but flexibilize
the conditions at the boundary of the refuge, allowing discontinuity of the first
derivative. This yields c

1

= c

2

exp(≠L

c

—≠/2)/ cos(—
+

L

c

/2). Normalization of
Eq. (C-5) provides the value of c

2

(L) (expression not shown). Then, the Fourier
transform fl̃

k

can be computed and substituted into Eq. (C-4), giving

S(L) = c

2

(L) exp(—≠L/2) tan(—
+

L/2)/—

+

. (C-6)

This expression is exact for L

c

, where �
0

(L
c

) = 0 and captures the main
contributions for L < L

c

, since the presence of higher modes in the limit of
small L is filtered by the shape Ẫ. For L > L

c

, the trigonometric solution loses
its validity and the distribution tends to flatten. For this case, small values of
k (long wavelenghts) have a significant impact on S(L). In order to provide an
analytical expression for small and large values of L, we propose the suitable
ansatz

S(L) = 1 ≠ 1
1 + A≠a

a

(L/L

ı)2

, (C-7)

therefore
�

0

(L) = a ≠ A

1 + A≠a

a

(L/L

ú)2

, (C-8)

where L

ú is the critical refuge size in the static case. The expression in Eq. (C-8)
recovers the known result for harsh conditions when A æ Œ, the asymptotic
behavior for large L, and the condition �

0

(L
c

) = 0. Comparison between
Eq. (C-3) (assuming S(L) as in Eq. (C-6) ), our proposal Eq. (C-8) and
numerical data is shown in Fig. 4.15.

C.2
Slow and fast limits with harsh conditions outside the refuge

In the limit of harsh conditions outside the refuge, the population density
goes to zero at the refuge boundary, i.e., fl(|x| > L/2) = 0. Under this
boundary condition, it is straightforward to obtain the largest eigenvalue which
determines the value of the growth rate �

0

[12, 101],

�
0

= a ≠ fi

2

D

L

2

. (C-9)

The condition �
0

= 0 gives L

ú = fi

Ò
D/a.
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Following the same procedure described in Sec. (4-56), in the fast limit,
we assume that the growth rate is locally averaged, then

L

c

(⁄; · π ·

S

) = fi

Û
D

a ≠ ⁄A

= L

ú
Û

a

a ≠ ⁄A

. (C-10)

In the slow limit, we assume that population growth switches between
a ≠ A < 0, during the harmful action, and �

0

, during the recovery period.
Then, È�Í = (a ≠ A)⁄ +

1
a ≠ fi

2
D

L

2

2
(1 ≠ ⁄). When È�Í = 0, hence L = L

c

, we
find that

L

c

(⁄; · ∫ ·

S

) = fi

Û
D(1 ≠ ⁄)
a ≠ ⁄A

= L

ú

Û
a(1 ≠ ⁄)
a ≠ ⁄A

. (C-11)

Therefore, the ratio between the critical refuge sizes in the slow and fast
limits is

L

c

(⁄; · π ·

S

)
L

c

(⁄; · ∫ ·

S

) = 1Ô
1 ≠ ⁄

. (C-12)

This means that, even in this case, where we neglect the role of the
surrounding population, the spatial dynamics distinguishes slow from fast
environment perturbations. Nevertheless, the ratio is only Lc(⁄;·π·S)

Lc(⁄;·∫·S)

= 1.091,
for ⁄ = a/A. Therefore, there is a relative di�erence of about 9% in refuge
critical size due to temporal variability of the environment. However, when
conditions are not harsh outside, like in the case of Fig. 4.16, the change in L

c

with · can reach 30%.
.
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D
Metapopulation stability

To study how steady state stability is a�ected by spatial coupling, let
us assume that the population is located at the favorable patches, which is
true for small D (that is, close to the uncoupled case), and that the coupling
is purely di�usive (” = 1). For a favorable patch, the deterministic form of
Eq. (5-2) reads

fl̇

i

= Afl

i

≠ bfl

2

i

+ D

ÿ

j ”=i

(fl
j

≠ fl

i

)“(d
ij

)

= (A ≠ D)fl
i

≠ bfl

2

i

+ D

ÿ

j ”=i

fl

j

“(d
ij

) , (D-1)

recalling that q
j ”=i

“(d
ij

) = 1. To estimate the last term, that represents the
flow of individuals from the neighborhood towards patch i, J

in

i

, we consider
that fl

j

¥ fl

i

. In this case

J

in

i

= fl

i

ÿ

j ”=i

“(d
ij

) , (D-2)

where the sum e�ectively runs over the n

v

favorable patches. The average over
arrangements of a landscape “

µ

© Èq
j ”=i

“(d
ij

)Í can be estimated as

“

µ

= n

v

⁄
P

µ

(¸)e≠¸/¸c
d¸ . (D-3)

It depends on µ and on the density h, such that it varies from h (when µ = 0)
to 1, in the extreme cases of either maximal density or very large µ. That is, “

µ

increases with µ, with h and with ¸

c

too. Then, Eq. (D-1) can be approximated
by

fl̇

i

ƒ (A ≠ D[1 ≠ “

µ

])fl
i

≠ bfl

2

i

© Gfl

i

≠ bfl

2

i

. (D-4)

If G > 0, the population will grow and assume a finite value, bounded by the
carrying capacity. Meanwhile, D diminishes the e�ective growth rate G, that
becomes negative for su�ciently large D, namely for

D > A/(1 ≠ “

µ

) , (D-5)

indicating decrease of the population. In fact, notice in Fig. 5.5 that, the
smaller D, the less frequent the extinction events, for a given µ. This e�ect

DBD
PUC-Rio - Certificação Digital Nº 1412801/CA



Appendix D. Metapopulation stability 102

can be mitigated by the landscape, through parameter “

µ

, when the density
of favorable sites or clusterization associated with large µ increases. Eq. D-5
also provides the linear stability condition for the null state. If G < 0, the
population will decrease and go extincted.
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E
Numerical method for partial di�erential equations

The numerical integration of the stochastic partial di�erential equations
investigated in this work (Eq. 2-3) were performed following standard finite
di�erence scheme known in the literature [79]. Here we present the method in
more details.

Given a partial di�erential equation such as

ˆ

t

fl(x, t) = F (fl) + �[fl] , (E-1)

we start discretizing the population density distribution, writing

fl

i,n

= fl(i�x, n�t) , (E-2)

where i and n are the space and temporal indexes.
To rewrite Eq. (E-1), we need first to note that the temporal derivative

can be cast as
ˆ

t

fl(x, t) ƒ fl

i,n

≠ fl

i,n+1

�t

, (E-3)
with small �t. Then, in first order

fl

i,n+1

= fl

i,n

+ L[fl|M ]�t , (E-4)
= fl

i,n

+ (F (fl|M) + �[fl|M ])�t . (E-5)

The correct discrete forms of the local F and � contributions are presented
below.

From the dynamical operator L in Eq. (3-7), we have that the local
contributions F come from deterministic and stochastic sources. Moreover,
the stochastic terms have di�erent interpretations and this should be taken
into account in the numerical integration. For the investigated model the local
contribution becomes

F (fl)�t =
3

f(fl
i,n

) + fl

i,n

�x

4
�t + ÷

d

fl

i,n

+ ›

d

Ô
fl

i,n

. (E-6)

where
÷

d

= ÷

i,n

Û
�t

�x

(E-7)

and
›

d

= ›

i,n

Û
�t

�x

, (E-8)
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with ÷ and › being zero mean white Gaussian noises. Note that Stratonovich
noise induces a shift in the deteministic term, due to its non-null
correlation [46]. For more details see Ref. [79].

The spatial contribution � in operator L is either written in terms of
spatial derivatives or convolutions. Respectively, we have that

(ˆ
x

)2m

fl ƒ 1
(�x)2m

2mÿ

j=0

(≠1)j

A
2m

j

B

u

3
x +

3
m

2 ≠ j

4
�x

4
, (E-9)

and ⁄ Œ

≠Œ
g(x ≠ x

Õ)fl(xÕ)dx

Õ ƒ
Œÿ

n

Õ
=≠Œ

f((n ≠ n

Õ)�x)fl
i,n

�x . (E-10)

At last, Eqs. (E-6), (E-9) and (E-10) sum up typical contribution used in all
previous chapters. In order to give a concrete example, consider, for instance,
the stochastic Fisher equation ˆ

t

fl = Dˆ

xx

fl + afl ≠ bfl

2 + ÷ • fl + Ô
fl ¶ ›. In this

case

fl

i,n+1

= fl

i,n

+ (afl

i,n

≠ bfl

2

i,n

+ fl

i,n

/�x)�t + ÷

d

fl

i,n

+ ›

d

Ô
fl

i,n

+ D

fl

i+1,n

+ fl

i≠1,n

≠ 2fl

i,n

�x

2

, (E-11)

where in order to obtain convergence 2D�t

�x

2 < 1. In other cases, the convergence
criteria is not clear, then a systematic investigation needs to be made.

The method described above can be straightforwardly applied in the
case of lattices, as done in Chapter 5. In some extreme situations studied, more
robust methods might be adequate, such as second or forth order methods [79],
to avoid a very small �t (see Sec. 4.3), making simulation last beyond a feasible
computational time.
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