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Abstract

Silva Talarico, Erick Costa; Pesco, Sinésio (Advisor). Seismic to
Facies Inversion using Convolved Hidden Markov Model.
Rio de Janeiro, 2018. 120p. Dissertação de Mestrado – Departa-
mento de Matemática, Pontifícia Universidade Católica do Rio de
Janeiro.

Oil and Gas Industry uses seismic data in order to unravel the distribu-
tion of rock types (facies) in the subsurface. But, despite its widespread use,
seismic data is noisy and the inversion from seismic data to the underlying
rock distribution is an ill-posed problem. For this reason, many authors
have studied the topic in a probabilistic formulation, in order to provide
uncertainty estimations about the solution of the inversion problem. The
objective of the present thesis is to develop a quantitative method to es-
timate the probability of hydrocarbon bearing reservoir, given a seismic
reflection profile, and, to integrate geological prior knowledge with geophy-
sical forward modelling. One of the newest methods for facies inversion is
used: Convolved Hidden Markov Model (more specifically the Projection
Approximation from (1)). It is demonstrated how Convolved HMM can be
reformulated as an ordinary Hidden Markov Model problem (which models
geological prior knowledge). Seismic AVA theory is introduced, and used
with Convolved HMM theory to solve the seismic to facies problem. The
performance of the inversion technique is measured with common machine
learning scores, in a broad set of realistic experiments. The technique ca-
pability of estimating reliable probabilities is quantified, and it is shown
to present distortions smaller than 5%. As a conclusion, the studied Pro-
jection Approximation is applicable for risk management in Oil and Gas
applications, which integrates geological and geophysical knowledge.

Keywords
Seismic; Amplitude versus Angle; Seismic Inversion; Uncertainty

assessment; Hidden Markov Model; Convolutional model.
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Resumo

Silva Talarico, Erick Costa; Pesco, Sinésio. Inversao Sísmica
para fácies usando modelo de markov oculto com efeito
convolutivo. Rio de Janeiro, 2018. 120p. Dissertação de Mestrado
– Departamento de Matemática, Pontifícia Universidade Católica
do Rio de Janeiro.

A indústria de óleo e gás utiliza a sísmica para investigar a distribuição
de tipos de rocha (facies) em subsuperfície. Por outro lado, apesar de seu
corriqueiro uso em geociências, medidas sísmicas costumam ser ruidosas, e
a inversão do dado sísmico para a distribuição de facies é um problema mal
posto. Por esta razão, diversos autores estudam esta inversão sob o ponto
de vista probabilístico, para ao menos estimar as incertezas da solução do
problema inverso. O objetivo da presente dissertação é desenvolver método
quantitativo para estimar a probabilidade de reservatório com hidrocarbo-
neto, dado um traço sísmico de reflexão, integrando modelagem sísmica
direta, e conhecimento geológico a priori. Utiliza-se, um dos métodos mais
recentes para resolver o problema inverso: Modelo de Markov Oculto com
Efeito Convolucional (mais especificamente, a Aproximação por Projeção
de (1)). É demonstrado que o método pode ser reformulado em termos do
Modelo de Markov Oculto (MMO) ordinário. A teoria de sísmica de AVA
é apresentada, e usada conjuntamente com MMO com Efeito Convolucio-
nal para resolver a inversão de sísmica para facies. A técnica de inversão
é avaliada usando-se medidas difundidas em Aprendizado de Máquina, em
um conjunto de experimentos variados e realistas. Apresenta-se uma téc-
nica para medir a capacidade do algoritmo em estimar valores confiáveis
de probabilidade. Pelos testes realizados a aproximação por projeção apre-
senta distorções de probabilidade inferiores a 5%, tornando-a uma técnica
útil para a indústria de óleo e gás.

Palavras-chave
Sismica; Amplitude versus ângulo; Inversão Sísmica; Avaliação de

incerteza; Modelo de Markov Oculto; Modelo Convolucional.
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1
Introduction

1.1
Motivation: Seismic Data

Seismic is an indirect method that uses mechanical waves to probe the
subsurface. The basic elements for a seismic experiment are seismic sources
and sensors.

In the seismic experiment, a mechanical excitation is produced by the
source. This excitation produces a wave that travels through the subsurface
media. Whenever it hits a discontinuity of elastic property, it produces two
waves: a reflected wave, and a transmitted wave. The sensors record the
reflected waves arriving at the surface.

Figure 1.1 shows a seismic experiment. The arrows represent the mechan-
ical wave propagation, and reflection on the subsurface discontinuities.

A conventional seismic survey comprises the repetition of the latter
experiment for many source-sensor positions, in order to cover a large area.
The product of seismic imaging is a field of reflection intensities as a function
of time (t) and space (x,y), as illustrated in figure 1.1 (top right). This 3D
reflection image is a function of the subsurface rock properties, and the industry
rely on this image to determine where to drill in order to find new hydrocarbon
reservoirs.

The problem of defining the subsurface properties from a seismic image,
is an inversion problem (3). For many reasons (some discussed in section D.5),
this inversion is ill-posed, and the measurements are noisy. For this reason, the
Oil and Gas companies rely on risk estimates to rank and manage its portfolio
of drilling opportunities (4).
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Chapter 1. Introduction 17

Figure 1.1: Seismic experiment schematic1(top left). The mechanical pertur-
bation propagates away from the source, reflects at subsurface discontinuities
and is recorded by the sensors. The seismic processing produces an image of re-
flected amplitudes (top right). From the seismic reflection image, geophysicists
try to infer the distribution of rocks in the subsurface (illustrated by reservoir
rock in yellow and non reservoir in green) and support well drilling (bottom).

1.2
Objectives of this Thesis

The goal of the present thesis is to present a method to quantify the
drilling chance of success using seismic reflection data.

In order to acomplish this objective, a probabilistic inversion from seismic
reflection image to rock types (facies) will be studied. This topic dates back
to (5), and is still a topic of research (6, 7, 8, 9).

The inversion formulation adopted in this thesis is known as Convolved
Hidden Markov Model (1, 10). This tool will allow to quantify the probability
of hydrocarbon reservoir in different points of the subsurface.

More specifically, the projection approximation proposed in (1) will be
studied, with focus on the following questions:

• What is the most probable rock type sequence, given a seismic reflection
1Figure adapted from Nwhit - Own work, CC BY-SA 3.0, https://commons.wikimedia.

org/w/index.php?curid=18527767, in January 2018

https://commons.wikimedia.org/w/index.php?curid=18527767
https://commons.wikimedia.org/w/index.php?curid=18527767
DBD
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Chapter 1. Introduction 18

profile?

• What are the marginal probabilities profile for each rock type?

• How to sample possible rock type sequences from the posterior probabil-
ity distribution?

1.3
Chapters

Chapter 2 will introduce basic concepts to help understand the general
framework in which the present work is situated.

In chapter 3, 1D seismic forward modelling theory will be introduced in
order to clarify how the measured seismic dataset is generated. The forward
modelling will allow us to estimate the seismic reflection profile, given a facies
profile.

Chapter 4 will introduce Hidden Markov Model theory, and chapter 5
will show how to generalize this theory as an approximate solution to the
Convolved Hidden Markov Model problem.

In order to validate the inversion technique, chapter 6 will analyse its
performance with synthetic examples, under different modelling conditions.
Among other results, it will be shown that the inversion method estimates
reliable probabilities, and thus can be used for risk management by the Oil
and Gas industry.

The appendices give detailed mathematical demonstration of the results
and tools used throughout this thesis.
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2
Technical Background

2.1
Introduction

The present chapter will discuss two basic concepts for the work. The first
one is rock type, or facies. And the second one is Quantitative Interpretation.
It will also contextualize the present thesis in the seismic to facies inversion
literature.

2.2
Rock Types

Geology studies the types of rocks (lithologies), their properties, occur-
rence, and genetic relations. Facies are the set of textural characteristics that
define a rock, such as: mineralogy, pore sizes and shapes, grain sizes and shapes,
color, etc. But in this thesis, the terms facies, lithology and rock type will be
used interchangeably.

Common lithologies in passive margin basins (such as offshore Brazil)
are:

• Shales/Silt: fine-grained (micro to nanometer-scale) clay-mineral rich
sediments. These are impermeable rocks, and usually do not serve as
hydrocarbon reservoirs. Shales represent predominant fraction of typical
geological sequences.

• Sandstones: fine to coarse grained (mili to micrometer scale) quartz rich
sediments. These are important hydrocarbon reservoirs, but represent
small fraction of geological sequences.

As a function of the depositional dynamics, the facies sequencing will
have some geometrical characteristics, such as: typical facies proportion, and
thickness. Also, some groups of facies will tend to intercalate with others at a
certain frequency, while some groups of facies will never be in direct contact.

As an example, due to gravitational sorting, a gas bearing sandstone
layer can not be directly under an oil or water bearing sandstone layer, as gas

DBD
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Chapter 2. Technical Background 20

is lighter than oil and water. For the same reason, an oil bearing sand can not
be directly under a water bearing sand.

Figure 2.1 shows a synthetic facies sequence, together with the corre-
sponding elastic property profile (property which will be introduced in section
D.5).

Facies
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Figure 2.1: Synthetic facies sequence, and corresponding property profile.
The yellow samples represent oil-bearing sandstone, and the green samples
represent shale.

Summarizing, each facies occurs in the subsurface, respecting some
stacking pattern, which depends on the local geology. First order Markov
Chains have been used in geophysics (11, 12) to model facies sequences as
a stochastic process, respecting prior knowledge about the stacking pattern.

Markov Chains helps to regularize the inversion by reducing the set
of possible solutions. Furthermore, Markov Chains also provides a natural
way to integrate geological knowledge in the geophysical analysis, while this
integration is harder in other approaches, for example in seismic inversion
directly to rock properties (as discussed in section D.5).

For the above mentioned reasons, Markov Chain is used in the present
thesis.

Another important aspect to be noticed, is that each facies presents a
range of possible properties (as the dispersion in figure 2.1 illustrates).

The algorithms studied in this thesis will vastly use probability theory, in-
stead of deterministic formalism, to allow modelling the variabilities discussed
above.
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2.3
Quantitative Interpretation

In chapter 1, it has been introduced the concept of a seismic measure-
ment, and the idea that a seismic image has to be inverted in order to result
in useful subsurface information. Historically, this inversion problem has been
solved by dividing it in smaller inverse problems (3).

This thesis will study reflection images, which are already the product
of some inversion steps, given the acquired seismic data. The present work lies
on the last inversion problem, that is to unravel the subsurface geology given
seismic reflection images, which is also known as Quantitative Interpretation
(6).

Quantitative Interpretation is the field that links facies, elastic properties
(to be further explained in chapter 3), and seismic reflection data. Figure 2.2
illustrates the relationship between these variables.

The seismic to facies inversion studied in this thesis is illustrated in
figure 2.2 with arrow 1. It will also be developed the theory to estimate the
elastic properties joint conditioned on the inverted facies and on the seismic
measurement (arrows 2 in figure 2.2).

Other inversion formulations are possible, as illustrated in figure 2.2. One
can perform inversion from seismic images to elastic properties (13) (briefly
discussed in section D.5). And, given the estimated elastic properties, invert
for facies (5, 14, 15), which might be referred to as rock physics inversion or
facies classification.

Even though the facies inversion approach (larger arrow in figure 2.2) has
to implicitly deal with the elastic parameters, its advantage over the sequential
approach (elastic inversion, then rock physics inversion) is that it correctly
accounts for geological prior knowledge (presented in chapter 3), and avoids
elastic inversion problems (modelling elastic prior knowledge, as discussed in
section D.5).

As pointed out in section D.5, seismic to facies inversion has an additional
advantage. It promotes the interaction between the geoscientists, since it
highly depends on the interaction between geophysical forward modelling and
geological prior knowledge.

Chapter 3 will describe rock physics and seismic modelling, for these
tools represent the forward model of our inversion problem.

However, rock physics topic will be analysed from a statistical point of
view. For deeper understanding of rock physics modelling theories, one should
read (16).
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Although not illustrated in figure 2.2, other variables of interest exist in
the Oil and Gas industry. For instance, some authors (17, 18, 19, 20) invert
elastic property volumes to petrophysical properties: porosity, oil saturation,
and shale content. Another approach would be to invert seismic reflections
data directly to petrophysical properties, as in (21, 22).

Finally, some authors even joint invert seismic reflection data to facies,
elastic properties, and petrophysical properties (23, 24, 25).

Figure 2.2: Sketch, adapted from (2), comparing direct seismic to facies
inversion, and sequential inversion, from seismic to elastic properties, and then
to facies.

From another point of view, an inversion can be deterministic, if it is
formulated as a minimization problem, or probabilistic, if it is written in terms
of probabilities (using Bayesian formalism (26, 27)).

The formalism studied in this work is probabilistic, because the inverse
problem is ill-posed (to be discussed in D.5) and seismic measurement is noisy.
So, the best one can do is to take into account all the admissible solutions
and measure the probability of finding hydrocarbon bearing reservoir, which
cannot be handled by deterministic methods.

2.4
Related Works

The present thesis will study the seismic to facies inversion technique
developed by (1). In this section, we will contextualize the techniques used in
this thesis within the literature of seismic to facies inversion.

The most simple way to interpret facies from seismic is to sequentially
invert seismic to elastic properties, and then from elastic properties to facies
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(5). The problem with this approach is the possible bias introduced by the
prior model of the elastic inversion (as will be discussed in section D.5).

(28, 29) are two of the pioneering works that made probabilistic inference
directly from reflection images, and it already used the concept of Markov
Random Fields, in order to impose a lateral smoothness constrain in the
facies simulations. These works already used Monte Carlo Markov Chain
(MCMC) technique to sample facies scenarios from the posterior distribution
(this MCMC will also be used in the present work). Both papers assumed the
approximation that the reflection was generated by an interface separating two
semi infinite spaces, so they inverted a reflection horizon (map) to the possible
facies in the lower layer, considering a known upper layer.

(8) was the first to elaborate an inversion from a seismic profile directly to
facies profile. The likelihood approximation used in (8) is maximally factorized,
meaning that the likelihood term is approximated as a product of point-wise
terms: p (s | π) ∼ ∏n p (s | πn). Even so, the inversion results were encouraging.

(2) also uses a point-wise approximation for the posterior probabilities as
in (8), with a faster algorithm, adequate for inverting large seismic datasets.
But, the main reason for the algorithm’s efficiency was ignoring facies stacking
patterns (considering point-wise prior distribution for facies) in the facies prior
distribution. So it did not use Markov Chain.

Both (8) and (2) did not use MCMC technique to assess the exact poste-
rior distribution, but rather presented an approximated posterior distribution
as solution to their inversion problem.

Later publications (30, 31, 32) use MCMC sampling in order to assess
the exact posterior distribution, but with a Gibbs sampling strategy while the
present thesis uses independent proposal Metropolis-Hastings sampling.

The advantage of Gibbs strategy is that one does not need to approximate
the likelihood term, since in this technique one always have the full facies
profile, and perturbs it in order to propose a new facies configuration. On the
other hand, these publications’ algorithms take longer time per facies sampling
than the present thesis. In (32), 20000 samplings take 30 hours, while section
6.4 shows that with the algorithms used in this thesis 20000 samplings take
50 min, plus a small overhead time for the first forward recursion, which, in
the worst case scenario, is approximately 15 min (for k = 15).

(33, 34, 35, 36) presents and analyses an extension of (8) model to invert
2D seismic sections. The idea was to include the influence of neighbouring fa-
cies profiles, in order to sample the current facies profile taking into account
lateral continuity. Thus, each facies profile sampling is done using (8) approxi-
mation, while an MCMC Gibbs strategy is used to update the 2D facies section
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profile-by-profile. The experiments in (33, 36) produced over confident results,
thus, underestimating uncertainties.

(37) improves the model in (33), by considering the model parameters
(such as transition matrix, wavelet, etc.) uncertainties in the facies inversion.
As a consequence, they achieve a higher variability in the facies posterior
distribution, thus, a more robust uncertainty estimation.

(38, 39) improve the point-wise likelihood approximation in (8), by
reformulating the problem in terms of facies patterns with length k, just like
in this thesis, but with a different likelihood approximation (for a discussion
see (1)).

(39, 10) study the joint inference of model parameters (transition matrix,
and wavelet) with the posterior facies probability estimation.

Some other authors (40, 9) assess the posterior distribution for facies
by simulating a large amount of facies profiles, from the prior probability
distributions, and then ranking the simulated profiles by comparing their
corresponding modelled seismic profile with the measured seismic profile. This
method has the advantage of not using an approximate seismic likelihood,
but, on the other hand, it demands a lot of processing time in order to sample
enough profiles with good match (high likelihood) to the measured seismic.

Another advantage of this methodology is that it allows for modelling
complex prior models, while the convolved HMM developed by (1), demands a
Markov Chain type of prior for facies profile, and can not appropriately model
vertical correlation of rock properties.

In (9), the petrophysical properties associated with the facies profile are
inferred together with the facies.

(41, 7) addressed the idea of joint impedances-facies inversion, using
an EM-like algorithm (Expectation-Maximization (26)). The technique is
nowadays known as Ji-Fi (joint impedance-facies inversion) as in (24, 42).

In Ji-Fi, one alternates between estimating the best facies sequence, given
the elastic profile, and then the most probable elastic profile given the facies
and the seismic reflection profiles. An advantage of this technique is that it
uses graphical models to take into account spatial facies correlations, other
than just vertical (as in Markov Chain). On the other hand, this method is an
optimization technique, and does not assess the inversion uncertainty.
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3
Seismic Forward Modelling

3.1
Introduction

Chapter 1 introduces the idea that seismic acquisition provides reflection
images (figure 1.1), and that the Oil and Gas industry is interested in
determining the subsurface distribution of facies given a seismic reflection
image.

So, the unkown variable is the facies sequence π. The measurement are
the seismic profiles s. And the link between facies and seismic are the elastic
properties m.

This chapter will explain seismic forward model using AVA (amplitude
versus angle) theory.

First, the equations for reflection intensity on an interface will be dis-
cussed. Second, it will be shown how to forward model a seismic reflection
profile, given an elastic properties profile. Then, the elastic profile will be mod-
elled from the facies profile. Finally, it will be introduced how to use Markov
Chain to model the prior knowledge of the facies profile.

In the end, Bayes Rule (26) will be used to formulate the inversion
problem, and its complexity will be discussed.

3.2
Reflection from an Interface

Consider an incident plane compressional wave (P-wave) hitting an
interface between two homogeneous isotropic elastic media. From this incident
P-wave, four waves are generated: reflected and transmitted compressional and
shear waves, as in Figure 3.1.

Nowadays, the most commonly recorded seismic data is compressional
wave, so only the RP coefficient will be modelled.

Equations 3-1 through 3-5 estimate P-wave reflected amplitude RP using
Aki Richards 3-term approximation (43). The reflection intensity depends on
the elastic contrast between the upper (x1 in equation 3-5) and lower media
(x2 in equation 3-5).
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Figure 3.1: The figure1 illustrates the incidence of a plane wave on an interface,
and the associated reflected, and transmitted waves. In this thesis, only the
P-wave reflection will be studied.

R(θ) = A+B sin2(θ) + C tan2(θ) (3-1)

A = 1
2

(
∆vP
v̄P

+ ∆ρ
ρ̄

)
(3-2)

B = −2
(
v̄S
v̄P

)2 (
2∆vS
v̄S

+ ∆ρ
ρ̄

)
(3-3)

C = 1
2

∆vP
v̄P

(3-4)

∆x
x̄

= 2x2 − x1

x2 + x1
(3-5)

In the equations 3-1 through 3-4, vP , vS, and ρ are rock elastic properties.
vP is the compressional (or P) wave velocity, vS is the shear (or S) wave velocity,
ρ is the bulk density. θ is an acquisition parameter, and refers to the angle of
incidence (θ1 in figure 3.1).

From the Appendix D, it has been shown that equation 3-1 can
be approximately re-written in matrix form, if parametrized in terms of
(log(ρ), log(vP ), log(vS)) as in (44, 45, 13), and considering k = 4( v̄S

v̄P
)2 as a

known constant.
In fact, k = 1 is a good approximation, and k is known to vary in

1Figure adapted from Evan - Own work, http://www.subsurfwiki.org/wiki/
Zoeppritz_equation, in January 2018

http://www.subsurfwiki.org/wiki/Zoeppritz_equation
http://www.subsurfwiki.org/wiki/Zoeppritz_equation
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the range from 0.6 ( v̄P
v̄S

= 2.5) to 1.7 ( v̄P
v̄S

= 1.5), typically for consolidated
sandstones and shales.

3.3
Seismic Modelling from an Elastic Profile

This section will show how the seismic trace is generated from an elastic
parameters profile.

Suppose that the elastic properties profile is known: mn =
(log(ρi), log(vPi), log(vSi)), i = n, . . . , N . The elastic sequence is distributed
on a regular lattice in time domain, where n is the index along this lattice.
Between each sample in this lattice, there is an interface, and, consequently,
a reflection.

Earth acts as a bandpass filter to the wave propagation (3). Peg-leg
multiples, and seismic attenuation are two physical processes that filter the
high and low bands of the wave spectra. For this reason, seismic record will be
a blurred version of the reflectivity profile.

The one dimensional convolution model has been used in the industry for
decades as a good approximation to the seismic reflection data (for detailed
introduction to seismic forward and inverse modelling, refer to (3)). In this
context, the reflection profile is modelled as the vertical convolution of the
subsurface reflectivity profile and a blurring kernel (commonly known as
wavelet), as described in equation 3-6.

s(x, y, t, θ) = w(t, θ) ∗R(x, y, t, θ) :=
∫ +∞

−∞
w(τ, θ)R(x, y, t− τ, θ)dτ (3-6)

In equation 3-6, w(t, θ) is known as the seismic wavelet. It is a function
of the seismic apparatus (source spectra for example), as well as a result of the
wave propagation dynamics (dispersion, for example).

Appendix D derives the output seismic profile s given the elastic profile
m, in matrix form:

s = W ADm := Gm (3-7)
In equation 3-7, the linear transform W computes the convolution with

the seismic wavelet from equation 3-6. The matrix A represents the reflectivity
coefficients (presented in equation D-15). And the linear transform D is the
differentiation operator.

Also, in equation 3-7, s = vec(s(θ1), . . . , s(θM)), and m =
vec(log(ρ), log(vP ), log(vS)), and the operator vec is defined in Appendix
D.
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Figure 3.2 illustrates the general structure of matrix G. There are M
output profiles, for this is the number of incidence angles, and there are 3
input profiles: vP , vS and ρ.

It can be seen in figure 3.2, that G is a banded matrix, where each band
refers to the contribution of an elastic property profile on a seismic profile.
The bands are proportional to w(θ)∗ d

dt
, the convolution of the seismic wavelet

at angle θ and the derivative operator. The result of the convolution w(θ) ∗ d
dt

will be referred to as effective seismic kernel.

Figure 3.2: Example of a matrix G plotted in grayscale. The inputs are
described in the columns, and the outputs in the rows. The matrix has a banded
structure, because of the convolution effect in equation 3-6. The interval 1 + l′

to N − l′ represents the output sample range of the seismic trace, as discussed
in D.4.

The seismic effective kernel is responsible for mixing the elastic properties
at different positions. A typical seismic wavelet used in seismic modelling is the
ricker ("mexican hat"). Figure 3.3 shows the seismic wavelet, the corresponding
effective kernel, and its Fourier transform.

From equation 3-7, one can model a noiseless seismic profile, given the
elastic profile. Suppose the seismic measurement has some additive Gaussian
noise, with covariance matrix Σee. Then, the seismic measurement is given by
the equation 3-8.

p (s | m) = N (s | Gm,Σee) (3-8)

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



Chapter 3. Seismic Forward Modelling 29

55 27 0 27 55
samples

0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5
cycles/samples

seismic wavelet

Figure 3.3: Typical seismic wavelet in time (top) and frequency domain
(bottom).

3.4
Elastic Modelling from a Facies Profile

Now, let us assume the facies sequence to be known: π = (π1, ..., πN),
where πn ∈ Ω = {0, ..., K − 1}. Each facies have a range of elastic properties,
which can be described by a probability distribution:

p (mn | πn = i) = N (mn | µi,Σi) (3-9)
In the above equation, µi is the mean elastic vector (log ρ, log vP , log vS)

for facies i, and Σi is the corresponding covariance (of dimensions 3×3). These
parameters might be estimated from well logs.

The present work assumes a probabilistic independence of the elastic
parameters in position n to all the other samples, given the facies in position n.
(1) considers spatial dependence among neighbouring elastic parameters, and
models this dependency using Gaussian distribution with spatial correlation.

Although elastic properties do have spatial dependency, in real datasets
this dependency occurs only within contiguous samples of the same facies. As
this situation is not easily approximated in the Gaussian approximation step
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(equation 5-13), we have decided to avoid modelling spatial dependency.
So, given a facies profile, the corresponding elastic profile is described by

the following Gaussian distribution:

p (m | π) =
N∏
n=1
N (mn | µπn ,Σπn) = N (m | µπ,Σπ) (3-10)

µπ := E [m|π]

= ([µπ1 ]1 , . . . , [µπN ]1 , [µπ1 ]2 , . . . , [µπN ]2 , [µπ1 ]3 , . . . , [µπN ]3)
(3-11)

Σπ := COV [m|π]

=



[
Σπ1

]
1,1

· · · 0
[
Σπ1

]
1,2

· · · 0
[
Σπ1

]
1,3

· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · ·

[
ΣπN

]
1,1

0 · · ·
[
ΣπN

]
1,2

0 · · ·
[
ΣπN

]
1,3[

Σπ1

]
2,1

· · · 0
[
Σπ1

]
2,2

· · · 0
[
Σπ1

]
2,3

· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · ·

[
ΣπN

]
2,1

0 · · ·
[
ΣπN

]
2,2

0 · · ·
[
ΣπN

]
2,3[

Σπ1

]
3,1

· · · 0
[
Σπ1

]
3,2

· · · 0
[
Σπ1

]
3,3

· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · ·

[
ΣπN

]
3,1

0 · · ·
[
ΣπN

]
3,2

0 · · ·
[
ΣπN

]
3,3


(3-12)

3.5
A Priori Information about Facies

Section 2.2 have introduced the idea that vertical facies sequences,
although not deterministic, follow some stacking pattern. It has also been
pointed out that facies vertical patterns are usually modelled with first order
Markov Chains.

(11) discusses probabilistic formulations to describe the possible stacking
patterns: first (and higher) order Markov chains, and discrete time Markov
chains. The present work adopts the first order Markov chain formalism, due
to its easier parametrization.

Considering the facies sequence π as a random array, distributed as a
first order Markov Chain, the following probability relation holds:

p (πn = j | πn−1 = i) = Tij (3-13)
The probability of occurring a given facies sequence π is:

p(π) = ps(π1)
N∏
n=2

p (πn | πn−1) (3-14)

Where ps is the stationary probability distribution associated with tran-
sition matrix T , as defined in equation A-2.
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3.6
Seismic Inversion to Facies

Thus, given a facies sequence, one can model the seismic output, using
the results from the previous sections. Figure 3.4 illustrates the probabilistic
dependency between each variable in the problem. In figure 3.4, each elastic
property depends only on the facies at the same position, and each seismic
sample depends on the neighbouring elastic properties, where the neighbour-
hood size is equal to the effective kernel size.

As explained in section D.4, this thesis uses the concept of "valid"
convolution. As a consequence the output seismic profile has smaller length
than the input elastic and facies profiles, as illustrated in figure 3.4.

Figure 3.4: Convolved HMM forward model. The π profile is the facies
sequence, the m profile is the corresponding elastic properties, and s is the
recorded seismic AVA. In the illustration, k′ = 2l′ + 1 is the length of the
seismic effective kernel. See appendix D for more details on the convolution
formulation.

As demonstrated in section B.5, the seismic conditional probability given
the facies profile is computed by:

p (s | π) =
∫
m
p (s | m) p (m | π) d3Nm

= N
(
s
∣∣∣ Gµπ,GΣπGT + Σee

) (3-15)

In order to estimate the inverse conditional probability p(π|s) (also
known as posterior probability), the Bayes theorem was used:

p (π | s) = p (s | π) p(π)
p(s) (3-16)
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In equation 3-16, the denominator p(s), is a normalization constant, given
by the sum of the joint probability distribution p(s, π) = p (s | π) p(π), over all
possible facies sequences:

p(s) =
∑
π

p (s | π) p(π)

=
∑
π1

· · ·
∑
πN

p (s | π1, . . . , πN) p(π1, . . . , πN)
(3-17)

The great challenge, given a measured seismic profile, is to imply some
knowledge about the hidden facies sequence, for there are KN possible se-
quences, where typically N ≈ 100, and K ≈ 3.

For example, to find the most probable facies sequence, one has to eval-
uate p (s | π) p(π) for all KN possible facies sequences and find the maximal.

If one is interested in sampling possible facies sequences conditioned on
the seismic measurement, it would have to, first, compute the normalizing
constant (summation over KN terms), in order to compute each individual
facies sequence probability by normalizing the term p (s | π) p(π) (normalize
each of the KN possible sequences).

There is no easy way to evaluate the conditional probability distribution
p (π | s), because each seismic sample depends on the interaction of many
neighbouring facies samples, making seismic to facies inversion a complex
combinatorial problem.

Chapter 5 shows the approximate approach used in (1), to efficiently
solve the facies inversion problem. Since this approach is a generalization of the
Hidden Markov Model (HMM) formulation, chapter 4 is devoted to describe
HMM probabilistic model and to present its main results.
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4
HMM Theory

4.1
Introduction

In Hidden Markov Models (HMM), there us a sequence of measurements,
and each measurement is a property of a hidden categorical variable. One is
interested in assessing the categorical variables from the measurements, given
predefined knowledge about the stacking patterns of these categories.

Thus, HMM is intimately related to the seismic to facies problem, and
will be studied further in this chapter.

4.2
Hidden Markov Model

Hidden Markov Model (HMM) is a probabilistic model that deals with
a sequence of observed measurements, when each observed measurement is
associated with a hidden state (categorical variable), also known as latent
variable. A good overview of the model is given in (46).

The latent, and the measurement sequences are denoted by z and X, as
described in equations 4-1 and 4-2.

z = (z1, ..., zN), zn ∈ {0, ..., K − 1} (4-1)

X = (x1, ..., xN), xn ∈ RD (4-2)

Where, N is the size of the hidden states vector, and K is the number of
possible hidden state variable values. D is the dimension of each measurement.

The name Hidden Markov Model, comes from the fact that the latent
sequence is a Markov Chain. The markovian property means, in probability
terms, that the conditional probability of a hidden variable, given all previous
hidden sequence is only a function of the immediate previous state:

p(zn|z1, ...zn−1) = p(zn|zn−1) (4-3)
Since z is a categorical variable, equation 4-3 can be stored as a matrix,

known as transition matrix:
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p (zn = j | zn−1 = i) = Tij (4-4)
Even though, there are many variations of HMM, the canonical definition

implies a conditional independence of the measurement in position n to all
other variables, given the hidden state in the same position n. This relation is
described equation 4-5.

p(xn|X∼n, z1, . . . , zN) = p(xn|zn) (4-5)
The term p(xn|zn) is known as emission probability.
For there are K possible states for the hidden variables, there are

K different emission probability distributions: p(x|zn = i) = fi(x), ∀n.
Although not used in this thesis, it would be possible to model an emission
probability that depended on n. It would be useful, for example, to model
depth dependent rock-physics.

For an HMM problem, usually, one is interested in accessing the pos-
terior probability distribution p (z | X) for the categorical sequences, given a
sequence of measurements. Bayes theorem calculates the posterior probability
as:

p (z | X) = p (X | z) p(z)
p(X) (4-6)

The major problem with equation 4-6 is the normalization constant p(X),
which is expensive to be calculated, for it is the sum of p(z,X), over all possible
hidden sequences z.

While a naive computation of p(X) would take O(KN) operations,
the forward recursion algorithm, derived in section A.3, takes only O(NK2)
operations:

Data: Transition matrix Tij, and emission probability densities fi
Result: Normalizing constant p(X) = ∑

z p(z,X), and α array

1 Initialize α1(i) = fi(x1)ps(z1 = i);
2 for n = 2 to N do
3 for i = 0 to K − 1 do
4 αn(i) = fi(xn)∑K−1

j=0 Tjiαn−1(j);
5 end
6 end
7 Finally: p(X) = ∑K−1

i=0 αN(i)
Algorithm 1: Forward Recursion

A direct application of the posterior probability is the computation of
the posterior marginal probabilities p (zn = i | X). This probability would be
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computed with cost O(KN) by a naive approach, because it would have to
sum p (z | X) over all possible sequences z∼n = (z1, . . . , zn−1, zn+1, . . . , zN)

The following algorithm, derived in section A.4, computes p (zn = i | X)
with cost O(NK2):

Data: α array, normalizing constant p(X), Transition matrix Tij,
and emission probability densities fi

Result: Posterior marginal probabilities p (zn | X) for every sample
n

1 Initialize βN(i) = 1, ∀i;
2 Compute: for i = 0 to K − 1 do
3 p(zN = i|X) = αN (i)βN (i)

p(X) ;
4 end
5 for n = N − 1 to 1 do
6 for i = 0 to K − 1 do
7 βn(i) = ∑K−1

j=0 βn+1(j)fj(xn+1)Tij;
8 p(zn = i|X) = αn(i)βn(i)

p(X) ;
9 end

10 end
Algorithm 2: Backward Recursion: marginal probability

Another use of the posterior probability is sampling possible hidden
sequences z from it. The sampling algorithm comes from the fact that the
posterior distribution can be rewritten as:

p(z|X) = p (zN | X)× p (zN−1 | zN , X)× · · · p (z1 | z2, . . . , zN , X) (4-7)

So, one can sample the hidden sequence, according to the following
schedule: first, sample the last hidden variable zN from the distribution
p (zN | X); and then, in descending order, sample each hidden variable zn,
given the previously sampled hidden variables zn+1, . . . , zN and the measured
sequence X (according to the distribution p (zn | zn+1, . . . , zN , X)).

Section A.5 derives the following algorithm, with complexity O(NK), for
sampling a hidden sequence z given an observed sequence X:
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Data: α array, posterior marginal probability p (zN | X) for the last
sample N , and Transition matrix Tij

Result: sequence z = (i1, . . . , iN), sampled from the posterior
distribution p (z | X)

1 Sample zN = iN from the probability distribution p (zN | X);
2 for n = N − 1 to 1 do
3 Compute c = ∑K−1

j=0 Tj,in+1αn(j);
4 Sample zn = in from the probability distribution:

p(zn = i|zn+1 = in+1, X) = Ti,in+1αn(i)
c

;
5 end

Algorithm 3: Backward Recursion: posterior sampling

The last result in this chapter gives the most probable latent sequence,
given an observed sequence. In other words, it finds the hidden sequence that
maximizes the posterior probability distribution p (z | X).

As for the previous algorithms, a naive implementation would require
evaluating p (z | X) for all possible hidden sequences z, which is computa-
tionally intractable. Section A.6 derives, yet, another flavour of the Forward-
Backward Algorithm, commonly known as Viterbi Algorithm:

Data: Transition matrix Tij, and emission probability densities fi
Result: Most probable hidden sequence ẑ:

(ẑ1, ..., ẑN−1, ẑN) = arg maxz1,...,zN p(z1, ..., zN |x1, ..., xN),
and its posterior probability: p (ẑ | X)

1 Forward Recursion:

2 Initialize ω1(i) = fi(x1)ps(z1 = i), ∀i ∈ {0, . . . , K − 1};
3 for n = 1 to N − 1 do
4 ψn(i) = arg maxj {Tjiωn(j)};
5 ωn+1(i) = fi(xn+1) maxj {Tjiωn(j)};
6 end

7 Backward Recursion:

8 Initialize: ẑN = arg maxi ωN(i);
9 Compute maximal probability: p (ẑ | X) = ωN (ẑN )

p(X) ;
10 for n = N − 1 to 1 do
11 ẑn = ψn(ẑn+1);
12 end

Algorithm 4: Viterbi Algorithm
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4.3
Closing Remarks

It is important to notice that the number of operations in the algorithms
is O(NK2) (except for 3, whose complexity is O(NK)), so it is linear in the
sequence size, and quadratic on the number of classes (which is usually small,
in geologic applications). This chapter has demonstrated that, the posterior
probability distribution of an HMM, although defined on state space with
high cardinality (KN), is computationally tractable.

Our seismic to Facies inversion problem is not a HMM model, because a
seismic sample is not independent of the other variables, given the facies sample
on the same time index n: p (sn | s∼n, π) 6= p (sn | πn). Actually, the seismic
sample n is not a function of the facies sample n, but instead it depends on the
sum of contributions from neighbouring facies samples, due to the convolution
effect.

Next chapter presents a reformulation of the seismic to facies problem,
making it equivalent to the HMM problem. This reformulation makes it
possible to apply the algorithms described in the current chapter.
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5
Convolved HMM

5.1
Introduction

Chapter 4 have derived algorithms to assess the posterior probability
distribution of a Hidden Markov Model.

The fact that an HMM problem can be expressed as a product of factors
involving a maximum of 2 variables makes it possible to develop efficient
algorithms to solve for the latent sequence given a sequence of measurements
(for a more general solution of factorizable probabilistic models see (47)).

Seismic to facies inversion is similar to HMM, for it also involves an
observable sequence of measurements (seismic), and a hidden sequence of
categorical variables (facies). But it does not have the factorizability property
of an HMM, because each seismic sample results from the contribution from
many neighbouring facies samples (making it a more difficult problem to solve).

This chapter introduces approximate methods, developed in (1), to solve
seismic to facies inversion problem. These methods transform the original
problem into a factorizable equivalent problem, making it possible to use the
efficient algorithms from the previous chapter.

5.2
Relation between Facies Inversion and HMM

Assuming a facies sequence in a regular lattice in time domain with N
samples. Each sample n has a rock type denoted by πn, which belongs to a
finite set of K possibilities Ω = {0, . . . , K − 1}.

The approximation which will be discussed deal with a strategy to
factorize the conditional seismic probability (seismic likelihood) as a product
of factors, each one containing k = 2l+ 1 facies samples (where k is chosen by
the user):

p (s | π) ≈
N−l∏
n=l+1

qn(π∂k(n)) :=
N−l∏
n=l+1

qn(πn−l, . . . , πn+l) (5-1)

π∂k(n) is defined as the facies pattern of size k at position n.
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The prior probability distribution p(π), although already factorizable in
pairs of neighbouring facies, can be written in terms of facies patterns:

p(π) = ps(π1)
N∏
n=2

p (πn | πn−1)

= p(π∂k(l+1))
N−l∏
n=l+2

p
(
π∂k(n)

∣∣∣ π∂k(n−1)
) (5-2)

Where equation 5-2 holds, since the following relations hold:

p(π∂k(l+1)) = ps(π1)
k∏

n=2
p (πn | πn−1) (5-3)

p
(
π∂k(n)

∣∣∣ π∂k(n−1)
)

= p (πn+l | πn+l−1) (5-4)

Equations 5-3 and 5-4 are true for first order Markov Chain. They can
be adapted for the case of higher order Markov Chains.

By using the approximate likelihood and the formulation of the prior
distribution, the posterior probability distribution can also be factorized as a
product of terms in π∂k(n):

p (π | s) ∝ p(π) (s | π) = p(π)
N−l∏
n=l+1

qn(π∂k(n))

= p(π∂k(l+1))ql+1(π∂k(l+1))
N−l∏
n=l+2

p
(
π∂k(n)

∣∣∣ π∂k(n−1)
)
qn(π∂k(n))

(5-5)

Now, the categorical vector (π1, . . . , πk), can be seen as equivalent to
a categorical variable z in the set Ω̃ =

{
0, . . . , Kk − 1

}
, because Kk is the

number of possible sequences of size k and K states. A bijective function ψ

can be built from Ωk to Ω̃:

ψ(π1, . . . , πk) =
k∑
i=1

πiK
i−1 = z (5-6)

By making a correspondence between z1 and π∂k(l+1), z2 and π∂k(l+2), and
so on, one can re-write equation 5-5:

p (z1, . . . , zN−l | s) ∝ p(z1)ql+1(ψ−1(z1))
N−2l∏
n=2

p (zn | zn−1) qn+l(ψ−1(zn)) (5-7)

In other words, convolutional model becomes an HMM problem on the
new variable. The terms qn+l(ψ−1(zn)) work as likelihood terms. The transition
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matrix and the stationary probability are given by:

p (zn = j | zn−1 = i) = p
(
π∂k(l+n) = ψ−1(j)

∣∣∣ π∂k(l+n−1) = ψ−1(i)
)

= Tψ−1(i)k,ψ−1(j)k

k−1∏
n′=1

1{ψ−1(j)n′ ,ψ−1(i)n′+1}
(5-8)

p(z1 = i) = p(π∂k(l+1) = ψ−1(i))

= ps(ψ−1(i)1)
k∏

n=2
Tψ−1(i)n−1,ψ−1(i)n

(5-9)

In the above equations, T is the transition matrix of the Markov Chain
in terms of π, and 1{x,y} equals 1 if x is equal to y, and 0 otherwise.

All the efficient algorithms developed in chapter 4 for HMM can be used
here to assess the posterior probability distribution over z, and consequently
over π.

The complexity of algorithms 1 and 2 for HMM are O(NK2), for a
problem with cardinality K, and N samples. Since the number of elements
in Ω̃ is Kk, and the number of samples is reduced to N − 2l = N − k + 1, it
yields O((N − k + 1)K2k) for the facies inversion case.

Actually, the complexity is O((N − k + 1)Kk+1), since equation 5-8
restricts each state transition to only K possible states, instead of Kk. For the
same reason, the sampling algorithm 3 has the complexity O((N − k + 1)K),
in the facies inversion case.

The next section will explain the likelihood approximation that factorizes
in the required form of equation 5-1.

5.3
Projection Approximation

This approach was developed in (1). The strategy is to marginalize the
effect of facies farther than l lags from the central sample n (where the chosen
pattern size is k = 2l + 1).

p
(
s
∣∣∣ π∂k(n)

)
=
∑
π1

· · ·
∑

πn−l−1

∑
πn+l+1

· · ·
∑
πN

p
(
s, π∼∂k(n)

∣∣∣ π∂k(n)
)

=
∑
π1

· · ·
∑

πn−l−1

∑
πn+l+1

· · ·
∑
πN

p (s | π) p
(
π∼∂k(n)

∣∣∣ π∂k(n)
) (5-10)

This marginalization is not feasible because one would have to sumKN−k

possible facies sequences.
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Instead, the likelihood approximation is developed by focusing on the
elastic properties. If one rewrite the conditional probability distribution
p
(
s
∣∣∣ π∂k(n)

)
as the marginalization in relation to the elastic properties trace:

p
(
s
∣∣∣ π∂k(n)

)
=
∫
m
p
(
s,m

∣∣∣ π∂k(n)
)

=
∫
m
p (s | m) p

(
m
∣∣∣ π∂k(n)

)
=
∫
m∂k(n)

∫
m∼∂k(n)

p (s | m) p
(
m∂k(n),m∼∂k(n)

∣∣∣ π∂k(n)
)

=
∫
m∂k(n)

∫
m∼∂k(n)

p (s | m) p
(
m∼∂k(n)

∣∣∣ m∂k(n), π∂k(n)
)
p
(
m∂k(n)

∣∣∣ π∂k(n)
)

(5-11)

In equation 5-11, the inner integral is the marginalization over the
variables m∼∂k(n), for which there is no knowledge about the corresponding
facies samples. The outer integration is over the variables m∂k(n), which
correspond to the facies samples of interest π∂k(n).

Since, the probabilistic model for m is a Hidden Markov Model (π
being the hidden states), the term p

(
m∼∂k(n)

∣∣∣ m∂k(n), π∂k(n)
)

is equal to
p
(
m∼∂k(n)

∣∣∣ π∂k(n)
)
, due to conditional independence. Now, two approxima-

tions comes in place.
The first one is that p

(
m∼∂k(n)

∣∣∣ π∂k(n)
)
≈ p(m∼∂k(n)), which is approxi-

mately true if the mixing time of the facies markov chain is small enough.
The second approximation consists in substituting the probability distri-

bution p(m), which is a Gaussian mixture, with a single Gaussian distribution.

p(m) =
∑
π∈ΩN

p (m | π) p(π) ≈ p∗(m) (5-12)

The best approximation is achieved by minimizing the Kullback-Leibler
divergence from the the approximate distribution p∗(m) to the true one p(m):

arg min
µ∗,Σ∗

DKL(p‖p∗) = −
∫
m
p(m) log p∗(m)

p(m)
s.t. p∗(m) = N (m | µ∗,Σ∗)

(5-13)

It is shown in appendix C that the solution to the optimization problem
5-13 is:
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µ∗ = (µS, . . . , µS), µS =
K∑
i=0

ps(i)µi (5-14)

[Σ∗]n,n+l =
K∑
i=0

K∑
j=0

p(π1 = i, πn+l = j)(µi − µS)(µj − µS)T , l ≥ 1 (5-15)

[Σ∗]n,n =
K∑
i=0

ps(π = i)
[
Σi + (µi − µS)(µi − µS)T

]
(5-16)

The above equations are different from the ones obtained in (1), be-
cause of the assumption of elastic conditional independence p (m | π) =∏
n p (mn | πn). In (1), it is assumed that elastic properties are spatially cor-

related, given the facies sequence. But, by the way it is formulated, it creates
correlation between properties across facies boundaries, which is not reason-
able. So, in order to use the cleanest approach, this spatial correlation is not
considered in the present work.

Adapting the notation used in (1), we will denote the approximate
likelihood as p(k)

∗
(
s
∣∣∣ π∂k(n)

)
. Using the above mentioned approximations, one

can rewrite equation 5-11 as:

p(k)
∗

(
s
∣∣∣ π∂k(n)

)
=
∫
m∂k(n)

∫
m∼∂k(n)

p (s | m) p∗(m∼∂k(n))p
(
m∂k(n)

∣∣∣ π∂k(n)
)

=
∫
m∂k(n)

∫
m∼∂k(n)

p∗
(
s,m∼∂k(n)

∣∣∣ m∂k(n)
)
p
(
m∂k(n)

∣∣∣ π∂k(n)
)

=
∫
m∂k(n)

p∗
(
s
∣∣∣ m∂k(n)

)
p
(
m∂k(n)

∣∣∣ π∂k(n)
)

(5-17)

The term p∗
(
s
∣∣∣ m∂k(n)

)
in equation 5-17 might be computed by

marginalizing p∗(m, s) with respect to m∼∂k(n) and, then, conditioning over
m∂k(n).

First, p∗(m, s) is computed using the results from section B.2:

p∗(m, s) = p (s | m) p∗(m)

= N
m

s

 ∣∣∣∣∣∣
 µ∗

Gµ∗

 ;
 Σ∗ Σ∗GT

GΣ∗ GΣ∗GT + Σee

 (5-18)

The mean background µ∗ will be constant as shown in equation 5-14,
unless the facies markov chain is inhomogeneous. Thus the term Gµ∗ is usually
zero, because G is a composition of a derivative operator and a wavelet. For
now on, it will be assumed that Gµ∗ = 0. This simplification is not necessary
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for the approximation, but will make the equations uncluttered.
Second, the marginalization over m∼∂k(n) (section B.4) yields:

p∗(m∂k(n), s) = N
m∂k(n)

s

 ∣∣∣∣∣∣
[µ∗]∂k(n)

0

 ;
[Σ∗]∂k(n),∂k(n) [Σ∗]∂k(n),: GT

G [Σ∗]:,∂k(n) GΣ∗GT + Σee


(5-19)

In the above equations: [µ∗]∂k(n) = Ep∗

[
m∂k(n)

]
, [Σ∗]∂k(n),∂k(n) :=

COVp∗
[
m∂k(n),m∂k(n)

]
, and [Σ∗]∂k(n),: := COVp∗

[
m∂k(n),m

]
= [Σ∗]T:,∂k(n)

Third, using equations B-13 and B-16, one derives the conditional prob-
ability:

p∗
(
s
∣∣∣ m∂k(n)

)
= N

(
s
∣∣∣ µs|m∂k(n) ,Σs|m∂k(n)

)
(5-20)

µs|m∂k(n) = G [Σ∗]:,∂k(n) [Σ∗]−1
∂k(n),∂k(n) (m∂k(n) − [µ∗]∂k(n)) (5-21)

Σs|m∂k(n) = GΣ∗GT + Σee −G [Σ∗]:,∂k(n) [Σ∗]−1
∂k(n),∂k(n) [Σ∗]∂k(n),: GT (5-22)

To simplify the notation, we will denote G = G [Σ∗]:,∂k(n) [Σ∗]−1
∂k(n),∂k(n).

Finally, in order to compute the integral in equation 5-17, one needs the
conditional distribution of elastic properties given the facies pattern:

p
(
m∂k(n)

∣∣∣ π∂k(n)
)

= N
(
m∂k(n)

∣∣∣ µπ∂k(n) ; Σπ∂k(n)

)
(5-23)

Where, µπ∂k(n) , and Σπ∂k(n) are defined the same way as in equations 3-11
and 3-12, respectively.

Conditional distribution p∗
(
s
∣∣∣ m∂k(n)

)
works as p(Y |X) from section B.5

and the distribution p
(
m∂k(n)

∣∣∣ π∂k(n)
)
plays the role of p(X) in section B.5.

The result of the integral 5-17 can be computed using equation B-29:

p(k)
∗

(
s
∣∣∣ π∂k(n)

)
= N

(
s
∣∣∣ µs|π∂k(n) ,Σs|π∂k(n)

)
(5-24)

µs|π∂k(n) = G(µπ∂k(n) − [µ∗]∂k(n)) (5-25)

Σs|π∂k(n) = GΣπ∂k(n)G
T + Σs|m∂k(n) (5-26)

Equation 5-25 works as an approximate forward model that relates the
mean impedances of the facies pattern µπ∂k(n) with the corresponding synthetic
seismic, taking into account the effect of the mean background [µ∗]∂k(n). If
µπ∂k(n) = [µ∗]∂k(n), then, µs|m∂k(n) = 0, meaning that if the mean impedances
of the facies pattern is equal to the background impedances [µ∗]∂k(n), then no
seismic reflection is expected.
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A difference between the present work and the original work (1) is to
consider only a vicinity s∂k′ (n) in the likelihood, instead of the whole seismic
trace s. In fact, given π∂k(n), not much can be said about the whole seismic
trace. So, we can consider a parameter k′, such that the seismic samples s∼∂k′ (n)

are conditionally independent of π∂k(n) given s∂k′ (n):

p
(
s
∣∣∣ π∂k(n)

)
= p

(
s∼∂k′ (n)

∣∣∣ s∂k′ (n), π∂k(n)
)
p
(
s∂k′ (n)

∣∣∣ π∂k(n)
)

∝ p
(
s∼∂k′ (n)

∣∣∣ s∂k′ (n)
)
p
(
s∂k′ (n)

∣∣∣ π∂k(n)
)

∝ p
(
s∂k′ (n)

∣∣∣ π∂k(n)
) (5-27)

Figure 5.1 illustrates this point for patterns of size 11, and seismic kernel
of size 31. The mean seismic predictions (equation 5-25) are the black lines,
stacked for all possible patterns. The grey interval is the staked 80% confidence
interval for each prediction.

One can notice, that beyond the dashed lines, all predictions are zero.
Thus, whatever measurement is found beyond this point, it would not improve
our knowledge about the possible facies pattern.

The red dashed lines correspond to the seismic kernel size plus the pattern
size, and would represent a more conservative range of influence k′. But in
practice, the range of influence can be smaller.

Figure 5.1: The seismic mean predictions, and 80% confidence intervals for
all facies patterns are stacked in this figure. The red dashed lines represent a
conservative measure of the influence range for patterns of size 11, and seismic
kernel of size 31.

The conditional mean and covariance for s∂k′ (n) given π∂k(n) are computed
by marginalizing out s∼∂k′ (n) in equation 5-24:
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E

[
s∂k′ (n)|π∂k(n)

]
=
[
µs|π∂k(n)

]
∂k′ (n)

(5-28)

COV
[
s∂k′ (n)|π∂k(n)

]
=
[
Σs|π∂k(n)

]
∂k′ (n),∂k′ (n)

(5-29)

The above approximation 5-27, allows one to compute and store each
µs∂k′ (n)|π∂k(n) , and Σs∂k′ (n)|π∂k(n) , for each π∂k(n) ∈ Ωk, since, storing µs|π∂k(n) and
Σs|π∂k(n) for each possible π∂k(n) would require much more memory. So it saves
computation time during inversion, at the expense of some pre-processing time,
and memory storage.

Figures 5.2(a) and 5.2(b) illustrate the approximate forward model. They
show two proposed facies patterns, and their resulting mean seismic prediction
µs∂k′ (n)|π∂k(n) , plus an 80% confidence interval, computed from the conditional
covariance matrix Σs∂k′ (n)|π∂k(n) .

The pattern in figure 5.2(b) shows a better match to the measured
seismic, thus higher likelihood. The pattern in this figure is more similar to the
true facies sequence than the other pattern, but higher likelihood does not in
general translate in proximity to the true facies because the forward model is
not injective.

true facies 
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seismic seismic pattern

pattern k(n)

5.2(a)

true facies 
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20

40
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80
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seismic seismic pattern

pattern k(n)

5.2(b)

Figure 5.2: The figures illustrate the approximate seismic forward model for two
possible patterns. The output of pattern in the right shows higher similarity
with the seismic profile, so it will tend to be associated with higher posterior
probability. Not coincidentally the pattern on the right has higher similarity
with the true facies sequence, although this is not a rule that higher likelihoods
come from solutions closer to the true geology.
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5.4
Complete Likelihood

Last section estimated an approximated conditional distribution
p

(k)
∗
(
s∂k′ (n)

∣∣∣ π∂k(n)
)

for the seismic given a facies pattern centred at po-
sition n. Now, it will be shown how to relate it to the full approximated
likelihood p(k)

∗ (s | π).
The complete likelihood is computed in (1) in a Naïve Bayesian assump-

tion, i.e., the full likelihood p(k)
∗ (s | π) is computed as the product of indepen-

dent factors p(k)
∗
(
s
∣∣∣ π∂k(n)

)
. It works as if each facies pattern π∂k(n) carries a

bit of independent information about the total seismic trace.
(1) uses an exponent correction, to compensate the number of times each

variable πn is used (each one appears in k factors in the following equation).
Finally, in the original work (1) (equation 3.30), there are border factors

to account for the fact that the facies at the border are used less than k times
in equation 5-30. In the present thesis, no boundary terms are used. On the
other hand, the facies trace is bigger than the seismic trace (ls samples in the
beginning and ls samples in the end, where ks = 2ls + 1 is the seismic effective
kernel size). With this strategy, the facies at the border of the seismic profile
are accounted for k times, and the border distortion is pushed away from the
region of interest. The concept is illustrated in 5.3.

From the discussion above and approximation 5-27, the complete likeli-
hood in the present thesis can be estimated by the following expression:

p(k)
∗ (s | π) =

N∏
n=1

p(k)
∗

(
s∂k′ (n)

∣∣∣ π∂k(n)
) 1
k (5-30)

One important topic to be stressed is that in equation 5-30, the length
of the measurement s is N − 2ls, where ks = 2ls + 1 is the size of the seismic
effective kernel, while the length of the unknown facies sequence π is N + 2k
(where the additional 2k variables are marginalized in the result).

The challenge with this formulation is how to compute the likelihood for
facies patterns away from the seismic top and bottom. The likelihood at these
positions is computed taking into account the available seismic samples, and
marginalizing out the missing seismic values (as explained in section B.4), like
illustrated in the figure 5.4.

This causes facies patterns further away from the seismic borders to be
less conditioned by seismic (less informative likelihoods). This can be noted in
figure 5.3, as the outer facies probabilities converge to the prior distribution
ps = [0.75, 0.25].

In chapter, only the central N−2ls part of the inversion will be analysed,
for the outer facies samples are less conditioned by seismic information.
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Figure 5.3: The figures shows this thesis implementation of the inversion,
which uses additional facies samples in the inversion. CI stands for confidence
interval.

5.4(a) 5.4(b)

Figure 5.4: The figures illustrates the strategy used to compute the likelihood
with missing data, for a pattern size of k = 3, and seismic kernel size of k′ = 5.
In the seismic central part 5.4(a), there is no missing samples, so the full
conditional covariance and mean are used. At the borders 5.4(b), some seismic
samples will be missing for comparison with the pattern synthetic, so just the
corresponding indices in the conditional covariance matrix and mean, will be
used.
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5.5
Exact Inversion Assessment

There is a sampling technique, called Markov Chain Monte Carlo
(MCMC) that will allow us to sample from the correct posterior probability
distribution p (π | s), given the approximation p(k)

∗ (π | s).
This thesis will use an MCMC strategy known as independent sampler

Metropolis-Hastings.
A demonstration for MCMC method and related results is outlined in

appendix E).
The MCMC technique is an iterative approach, that allows one to sample

a population of sequences π, which will converge to a population drawn from
the exact posterior distribution, as the number of sampled sequences grows.
Theorem 5.5.1 below shows how the MCMC technique is applied to seismic to
facies inversion.

Theorem 5.5.1 (MCMC for facies inversion). π is a random vector, corre-
sponding to the hidden facies sequence. Given some measured seismic trace, the
facies sequence has posterior probability distribution p (π | s) ∝ p(π)p (s | π).
Given an approximate posterior distribution p(k)

∗ (π | s), the following algorithm
asymptotically samples facies sequences from the desired distribution p (π | s):

Data: Approximate posterior p(k)
∗ (π | s), and exact posterior

distribution p (π | s) ∝ p(π)p (s | π)
Result: Sampled population of sequences π1, π2, . . . , πM

1 Sample π1, from p
(k)
∗ (π | s);

2 for t = 1 to M − 1 do
3 sample π′ from p

(k)
∗ (π | s), and sample u ∼ U [0, 1];

4 compute απt,π′ = min
{
p(π′)p(s | π′)p(k)

∗ (πt | s)
p(πt)p(s | πt)p(k)

∗ (π′ | s)
, 1
}
;

5 if u < απt,π′ then
6 πt+1 = π′;
7 else πt+1 = πt;
8 end
9 end

One can use the sampled facies sequences (according to the theorem
E.2.3) to approximate functionals on π. For example, one might be interested
in estimating the marginal probabilities (which is an integral over the indicator
function) for a facies type i, at a position n.

p (πn = i | s) =
∑
π∈ΩN

1{πn,i}p (π | s) = 1
M

M∑
t=1

1{πtn,i} (5-31)
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Sadly, there is no algorithm to estimate the most probable sequence a
posteriori, when using MCMC. One ought to use the marginal maximum a
posteriori (MMAP) definition as an approximation:

πMMAP
n = arg max

i
p (πn = i | s) (5-32)

5.6
Elastic Inversion Conditioned on Facies

In the present chapter, it has been discussed how to sample facies
sequences given a seismic measurement. Now, we can use this knowledge
to sample the elastic properties conditioned on both the underlying facies
sequence and on the seismic measurement (as illustrated in figure 2.2:

p (m | π, s) ∝ p (m, s | π)

= p (s | m) p (m | π)
(5-33)

Equation 5-33 is a Bayesian Inversion expression (as in sections B.3, and
D.5), with likelihood term p (s | m), and prior probability term p (m | π).

From equation 3-10, p (m | π) = N (m | µπ,Σπ), where µπ and Σπ are
defined in equations 3-11, and 3-12, respectively.

From equation 3-8, p (s | m) = N (s | Gm,Σee). Thus, one can derive the
joint distribution p (m, s | π), analogously to equation 5-18:

p (m, s | π) = N
m

s

 ∣∣∣∣∣∣
 µπ

Gµπ

 ;
 Σπ ΣπGT

GΣπ GΣπGT + Σee

 (5-34)

The conditional probability p (m | π, s) may be computed by conditioning
equation 5-34, on s:

p (m | π, s) = N
(
m
∣∣∣ µm|s,π,Σm|s,π

)
(5-35)

µm|s,π = µπ + ΣπGTΣ−1
ss (s−Gµπ) (5-36)

Σm|s,π = Σπ − ΣπGTΣssGΣπ (5-37)

Σss = GΣπGT + Σee (5-38)

Similar joint facies-elastic inversion is discussed in (41, 48, 7, 49).
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6
Application on Synthetic Examples

6.1
Introduction

Chapter 5 has shown a class of approximations parametrized by pattern
size k, used to make the seismic to facies inversion problem computationally
feasible. A MCMC algorithm was presented in order to iteratively assess the
exact posterior distribution .

In this chapter the inversion is tested for a variety of synthetic examples,
with different parametrizations: high and low facies’ elastic variability, high
and low signal-to-noise ratio, wavelets with different frequency contents, and
different transition matrices.

Different scores are used to evaluate the inversion performance, focusing
on the classification error, the processing time, and the reliability of the
probability estimates.

The pattern size k is a user defined parameter, and will be probed in
order to understand its impact on the inversion results.

This chapter assumes that the seismic reflection profile comes from a
single angle of incidence θ. As explained in section D.5, this reduces the number
of necessary elastic parameters to one (denoted by log-impedance), simplifying
the analysis of the results.

6.2
Performance Measures

Measuring performance is a proper way to evaluate the characteristics
of an algorithm and to allow reproducibility. The performance scores for
classification problems available in (50) are used and described below.

Accuracy is the ratio of right predictions to the total number of samples.
It measures how assertive is the inversion. Sometimes a classification algorithm
may favour a predominant type of rock, at the expense of making big mistakes
in other less common rocks. But, as the Oil and Gas Industry is interested in
a rare facies (hydrocarbon bearing sand), the above bias should be detected
and avoided. Hence, the following two scores will be used: precision and recall.
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Precision is the ratio of right predictions of certain facies to the total
of predictions of that facies. It measures how frequently one is right in its
prediction regarding a specific facies. Recall is the ratio of right predictions of
certain facies to the total amount of samples of that facies. It measures how
probable is for a sample of a certain facies to be detected by the algorithm.

The ideal scenario would be a high precision and high recall for every
facies of interest. Figure 6.1 summarizes the explained scores.

Figure 6.1: Illustration of precision and recall scores1.

As discussed in section D.5, seismic inversion is an ill-posed problem,
and this is the reason of using probabilistic formalism in this thesis. So, there
should be a score to measure the quality of the estimated probabilities.

For example, the algorithm will estimate for some samples 80% of chance
to belong to facies i. This should truly mean that 80% of those samples are
really from that facies.

Related to this concept, one can define the probability distortion score
in equation 6-1.

distortion(i) =

√√√√ 1
N

B∑
b=1

nb(p̄b − fi,b)2 (6-1)

In equation 6-1, N is the number of samples in the dataset, the distortion
is being computed for facies i. The [0, 1] segment has been uniformly divided
in B bins. nb is the number of samples with probability estimate in that bin, p̄b

1Figure adapted from Walber - Own work, CC BY-SA 4.0, https://commons.
wikimedia.org/w/index.php?curid=36926283, in January 2018

https://commons.wikimedia.org/w/index.php?curid=36926283
https://commons.wikimedia.org/w/index.php?curid=36926283
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is the mean probability estimate of the samples in bin b, and fi,b is the fraction
of samples in that bin which are from facies i.

Figure 6.2 exemplifies a graph of p̄b (mean estimated probabilities) versus
fi,b (fraction of true samples for facies i). The graph was generated by a HMM
classifier, on a synthetic example with 1001 samples. Although the theoretical
distortion should be zero, because there are no approximations involved, there
is a non-zero empirical distortion, due to statistical fluctuations.

In figure 6.2, the calibration graphs for facies 0 and facies 1 are re-
dundant (they are antisymmetric). It only happens for binary problems: high
probabilities of one facies implies low probabilities for the other, and correctly
classifying one facies is equivalent to correctly not classifying the other.

For this reason, in the following sections, only the calibration curve for
facies 1 will be shown.
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Figure 6.2: Probability calibration graph for a well calibrated classification
algorithm. The distortion score is the RMSE between the fraction of positives
and mean probability estimates

It is important to notice that an adequate choice for the number, B,
of bins depends on the amount of available samples N , and on the dataset
variability. Small amount of data will cause some bins to have too small number
of examples, nb, to estimate the probability distortion. In figure 6.2 the size of
the circles is proportional to the amount of samples in that bin.

Finally, an algorithm is useful only if it can be computed in a reasonable
amount of time. So the seismic to facies inversion algorithm will also be
evaluated on this premise.

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



Chapter 6. Application on Synthetic Examples 53

First, the algorithm needs a preprocessing step to store all the facies
patterns of size k and the associated approximate responses. This preprocessing
has the advantage to speed up the Forward-Backward algorithm, as it inquires
the facies responses many times. On the other hand, it introduces an overhead
time, which can be very long, depending on the number of facies types, and
the pattern size k. Hence, this overhead time is used as another performance
indicator.

Another time-consuming step in the inversion is the likelihood computa-
tion for the forward recursion, because one has to compareKk seismic synthetic
patterns with N measured seismic patterns, and this comparison involves com-
puting the inverse of synthetics’ covariance matrix 5-26. The time spent in the
likelihood computation will be measured and discussed.

The time spent in the Forward recursion (algorithm 1) was insignificant
when compared to the overhead and the likelihood computation time, so it
was not taken into account.

The last performance measure is the average amount of time elapsed to
sample each facies sequence from the posterior distribution (algorithm 3). The
complexity of this step is O((N−k+1)K), but as many posterior samplings are
performed in the MCMC algorithm, this step is crucial to the algorithm overall
processing time. This measure will be referred to as the time per sampling.

6.3
Dataset Generation

This chapter assumes that one has measured seismic from a single angle
of incidence. In this situation, section D.5 shows that equation 3-7 can be
simplified to:

s(θ) = W (θ)D log(IE) = W (θ)Dm (6-2)
In equation 6-2, IE is known as elastic impedance (51). The elastic

impedance is already enough, in the single angle case, to fully describe the
elastic behaviour of the rock.

In the following the inversion will be studied for different parametriza-
tions.

For each parametrization, 20 facies profiles were randomly sampled from
the prior distribution and used to generate elastic properties and synthetic
seismic. The 20 datasets were inverted and the scores were used to evaluate
the algorithm performance. This evaluation routine is similar to the one used
in (34).
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The model parameters of interest are in the following list. The first two
parameters refer to the geological a priori information and the others refer to
seismic measurement conditions.

• transition matrix

• log-impedance standard deviation

• signal-to noise ratio (defined in B-23)

• seismic wavelet frequency content

The only fixed parameters, through all the examples, are the size of the
chain (121 samples, unless stated otherwise), the number of classes (2), and
their log-impedance mean values (0.5, for facies 0, and −0.5 for facies 1).

The facies 0 represent shale (green in the figures), and facies 1 represents
hydrocarbon bearing sand (yellow in the figures). So, computing p (πn = 1 | s)
actually is the same as computing the probability of success in finding hydro-
carbon at position n.

The noise covariance matrix is defined by equation 6-3.

Σee = cGGT + 10−2
1 (6-3)

In equation 6-3, G refers to the seismic forward model in matrix form.
The term cGGT introduces a coloured noise in the same bandwidth as the
seismic effective kernel (as illustrated in figures 6.18(d) - 6.18(f)). The term
10−2

1 introduces a negligible level of white noise (uncorrelated noise), just to
guarantee that Σee is positive definite (since GGT is positive semi-definite).

Equation B-23 defines the signal-to-noise ratio. In order to compute
this ratio, one needs an estimate of ΣXX , which comes from the approximate
Gaussian covariance matrix Σ∗ (equation 5-13).

So the signal-to-noise ratio will be computed in the following sections as:

γ = tr(GΣ∗GT )
tr(cGGT + 10−21)

≈ tr(GΣ∗GT )
c tr(GGT )

(6-4)

From equation 6-4, one can estimate the coloured noise level c from the
signal-to-noise ratio γ and vice-versa.

As will be explained further in the next sections, three scenarios were
tested for each parameter: a base and two extreme values, corresponding
to lowest and highest expected in practical situations (from the author’s
experience). The three scenarios will be compared based on the performance
scores across the 20 sample inversions.

For each inversion, 5000 facies sequences will be sampled from the
posterior probability distribution.
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6.4
Base Case

The base case consists of the following parameters

• transition matrix:

T =
0.83 0.17

0.5 0.5

 ps =
0.75

0.25

 (6-5)

• log-impedance standard deviation: σ = 0.3

• signal-to-noise ratio: γ = 4

• wavelet: ricker with central frequency 0.08cycles/sample (period
12.5samples/cycle), and size 31 samples

First, the performance results will be shown as a function of the pattern
size k. Parameter k′ is always defined as k plus the length of the seismic effective
kernel, as discussed in section 5.3.

Figure 6.3 shows the classification scores. There is no significant difference
in accuracy, precision, and recall with increasing k. The similar results may be
indicative that the number of MCMC iterations is enough for convergence to
the right posterior distributions, for all k values.
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Figure 6.3: The graphs show, as a function of the lag parameter k, classifi-
cation scores 6.3(a) accuracy, 6.3(b) precision, and 6.3(c) recall for the base
case. There is no significant difference in accuracy, precision, and recall with
increasing k.

From a computational time perspective, figure 6.4 shows an exponential
increase in the overhead time and in the forward recursion time for increasing
k, as expected. The time spent per sampling is approximately constant as
expected, as algorithm 3 has complexity O(K).

For k = 15, the inversion starts to become not feasible, as the forward
recursion itself takes 1000s ≈ 16min. This performace means that the present
inversion implementation is not applicable to process a seismic volume, as it
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has around 103 up to 106 profiles and each profile would spend this amount of
time just in the forward recursion.

Although not plotted, another issue with the projection approximation
is the amount of computer memory needed to store all the possible k-lag facies
vectors, and their associated seismic signatures, which increases exponentially
as O(Kk), thus limiting the pattern size k, and the number of possible facies
types K.
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Figure 6.4: The graphs show the time spent 6.4(a) in the overhead processing,
6.4(b) in the forward recursion, and 6.4(c) per sampling, as a function of the lag
parameter k. An exponential increase in overhead and forward recursion time
can be noticed, and the elapsed time per sampling is approximately constant,
as expected.

Figure 6.5 shows the acceptance rate as a function of pattern size k.
The increase in the acceptance rate with k, is a weak symptom that the
approximate posterior distribution is becoming more similar to the exact
posterior distribution. In the limiting case, if k equals to the whole facies
profile, there would be no approximation at all.

For higher acceptance rates, it is expected a faster convergence to the
exact posterior probability distribution with less iterations. So, there is a trade-
off between faster convergence and bigger computational demands (figure 6.4),
as k increases.

In the next sections, the pattern size k will be fixed at 11, as a compromise
between acceptance rate and computation time.

Figure F.1 illustrates the inversion of a seismic trace, for k = 11.
In the next sections, the base case scenario will be compared to other

parametrizations.
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Figure 6.5: Mean acceptance rate as a function of lag parameter k.

6.5
Transition Matrix

This section compares the inversion results for three different transition
matrices.

• Extreme case 1 (equiprobable):

T =
0.5 0.5

0.5 0.5

 ps =
0.50

0.50

 (6-6)

• Base case (mildly unbalanced):

T =
0.83 0.17

0.5 0.5

 ps =
0.75

0.25

 (6-7)

• Extreme case 2 (highly unbalanced):

T =
0.95 0.05

0.67 0.33

 ps =
0.93

0.07

 (6-8)

Ten sequences sampled from the above transition matrices are illustrated
in figure 6.6 for comparison. It can be seen a decrease in fraction of facies 1
from 6.6(a) to 6.6(c)

For each transition matrix, 20 datasets were sampled, and their associ-
ated modelled seismic were inverted. The inversion results are shown in figures
6.7 and 6.8.

Figure 6.7 shows that, as the transition matrix becomes more biased
towards facies 0, the accuracy increases. But this happens at the expense
of decreasing the precision and the recall of facies 1. Intuitively, the more
dominant facies 0 becomes, the lower the cost of mistaking facies 1 with 0.
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Figure 6.6: The graphs illustrate facies profiles sampled from the prior proba-
bility distribution, for the three transition matrix scenarios: 6.6(a), equiprob-
able, 6.6(b) mildly unbalanced, and 6.6(c) highly unbalanced.
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Figure 6.7: The graphs compare the classification scores 6.7(a) accuracy, 6.7(b)
precision, and 6.7(c) recall between the three transition matrix scenarios.

The high accuracy values do not reflect a good classification result, but
rather just expresses the percentage of facies 0 in the profile (a constant
prediction will already yield a high accuracy).

In order to validate the marginal probability estimates, probability
calibration graphs (explained in section 6.2) are used. Figure 6.9 shows that
all the parametrization are well calibrated.

Finally, figures F.2 and F.3 exemplify the inversion for the extreme cases.
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Figure 6.8: Mean acceptance rate as a function of transition matrix
parametrization.

0.00 0.25 0.50 0.75 1.00
mean predicted probability

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n 

of
 p

os
iti

ve
s

Extreme 1: distortion = 4.0%
Base: distortion = 3.0%
Extreme 2: distortion = 1.0%

Figure 6.9: The graph show the experimental marginal posterior probability
calibration for each of the three transition matrix scenarios. The size of the
points represent the amount of samples in each bin.

6.6
Impedances Variability

The closer the facies are in terms of elastic properties, the harder it is
for the inversion to distinguish them. Having the difference between the mean
log-impedance of the two facies fixed at 1, the impedance standard deviation
cases are:

• Extreme case 1: σ = 0.05

• Base case: σ = 0.3

• Extreme case 2: σ = 1

In linear AVA theory, what matters in the seismic forward modelling is
the contrast between the log-impedance of neighbouring layers as stated in
equation D-7.
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On the other hand, given the facies difference in mean elastic property,
one needs the facies standard deviation in order to determine how distinguish-
able they are. The statistical quantity named the effect size, defined in equation
6-9 (borrowed from (52)) quantifies this concept.

δij = |µi − µj|√
σ2
i + σ2

j

(6-9)

In equation 6-9, µi and σi are the mean log-impedance and standard
deviation for facies i. The synthetic examples studied in the present chapter
can be compared to real datasets with similar effect sizes.

• Extreme case 1 (completely separable facies): δ = 20.0

• Base case (reasonable facies separation): δ = 3.3

• Extreme case 2 (almost indistinguishable facies): δ = 1.0

Figure 6.10 shows log-impedance profiles sampled from the prior distri-
bution, for the three cases.
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Figure 6.10: The graphs illustrate log-impedance profiles sampled from the
prior probability distribution, and the corresponding theoretical histograms for
the three impedance variability scenarios: 6.10(a) and 6.10(d) small variability,
6.10(b) and 6.10(e) mild variability, and 6.10(c) and 6.10(f) big variability.
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Figure 6.11 compares the inversion results for the three cases in 20
datasets.
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Figure 6.11: The graphs compare the classification scores 6.11(a) accuracy,
6.11(b) precision, and 6.11(c) recall between the three impedance variability
scenarios.
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Figure 6.12: Mean acceptance rate as a function of impedance variability
parametrization.

The first thing to notice is the degradation of classification scores as
the impedance variability increases. As the effect size decreases, the algorithm
starts giving more weight to the prior information p(π), than to the seismic
likelihood p(s|π). As a consequence, the mean precision and recall for facies 1
decreases from extreme case 1 to extreme case 2.

Figure 6.12 illustrates the acceptance rate, with higher rates for extreme
case 2. This can be explained by the fact that the Gaussian approximation,
presented in apendix C becomes accurate, when facies elastic distributions’
are indistinguishable.

Figure 6.13 shows the probability calibration plots, with distortions of
3% for the three cases, which is low.

Finally, figures F.4 and F.5(c) illustrate the inversion of a single seismic
trace using the extreme scenarios.
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Figure 6.13: The graph show the experimental marginal posterior probability
calibration for each of the three impedance variability scenarios. The size of
the points represent the amount of samples in each bin.

6.7
Acquisition Error

The more noise in the seismic profile, the harder it is for the inversion to
distinguish between the facies. This problem is even worse if the noise spectrum
is similar to the seismic kernel spectrum, which is the present case, because the
noise will be indistinguishable from signal. The signal-to-noise ratios studied
in this section are:

• Extreme case 1 (almost noiseless seismic): γ = 20

• Base case (typical noise level): γ = 4

• Extreme case 2 (very noisy seismic): γ = 1

Figure 6.14 shows seismic profiles sampled from the forward model 3-8,
for the three parametrizations.

Figure 6.15 compares the classification scores between the study cases.
There is a decrease in the classification scores as noise goes higher, as would
be expected.

The acceptance rate in figure 6.20 increases with decreasing signal-
to-noise ratio. It happens because, with increasing noise level, the seismic
likelihood becomes less informative, so the difference between the approximate
and exact distributions becomes less important.

Figure 6.17 show the probability calibration plots, without meaningful
distortions, as in previous sections.

Finally, figures F.6 and F.7(c) show the inversion results for both extreme
parametrizations.
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Figure 6.14: The graphs illustrate the facies profiles sampled from the prior
probability distribution and the modelled seismic, for the three signal-to-noise
scenarios: 6.14(a) low noise level, 6.14(b) mild noise level, and 6.14(c) high
noise level.
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Figure 6.15: The graphs compare the classification scores 6.15(a) accuracy,
6.15(b) precision, and 6.15(c) recall between the three acquisition error sce-
narios.
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Figure 6.16: Mean acceptance rate as a function of acquisition error
parametrization.
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Figure 6.17: The graph shows the experimental marginal posterior probability
calibration for each of the three transition matrix scenarios. The size of the
points represent the amount of samples in each bin.

6.8
Wavelet

From section D.5 it is known that the wavelet high-frequency content will
limit the resolution of the inversion. Thus it is expected that wavelets with less
resolution will not detect high frequency intercalation between facies.

In this section, we will investigate how the wavelet’s high frequency
content influence facies inversion. The possible wavelets are:

• Extreme case 1 (high resolution): Ricker with peak frequency
0.32cycle/samples (period 3.125samples/cycle), and size 21 sam-
ples

• Base case (medium resolution): Ricker with peak frequency
0.08cycle/samples (period 12.5samples/cycle), and size 43 samples

• Extreme case 2 (low resolution): Ricker with peak frequency
0.02cycle/samples (period 50.0samples/cycle), and size 113 sam-
ples

The above values of frequency are parametrized in terms of
cycle/samples, since different seismic data may be measured at different
sampling rates.

The following figure 6.18 illustrates the three wavelets (6.18(a) - 6.18(c)).
It also illustrates (6.18(d) - 6.18(f)) the modelled synthetic seismic.

Figures 6.18(d) - 6.18(f) show the seismic with and without noise, in order
to demonstrate how the modelled noise has the same frequency spectrum as
the seismic effective kernel.
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Figure 6.18: The graphs illustrate the seismic effective kernel (wavelet and
derivative effects), and corresponding seismic for the three wavelet scenarios:
6.18(a)-6.18(d) short wavelet, 6.18(b)-6.18(e) medium wavelet, and 6.18(c)-
6.18(f) long wavelet.

Figure 6.19 compares the scores of the study cases. As the wavelet peak
frequency increases, precision and recall for facies 1 decreases.

Recall decreases dramatically, because layers of facies 1 has typically
small thickness, which are not resolved by the wavelet, and thus are not
detected. On the other hand, the inversion will predict facies 1 only when
there is a strong negative reflection, which is typically related to a region
with thick facies 1 layer (or set of layers), which explains that precision not
decreasing so much as recall.

Extreme wavelet 1 has high frequency content, allowing it to discriminate
even thin layers of facies 1, which explains the higher classification scores.

Figure 6.20 shows the acceptance rate. Figure 6.5 illustrates that in
general as the pattern size k increases in relation to the seismic kernel length,
the acceptance rate will increase. This explains the decrease in acceptance rate

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



Chapter 6. Application on Synthetic Examples 66

Extreme 1 Base Extreme 20.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

6.19(a)

Extreme 1 Base Extreme 20.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

facies 0
facies 1

6.19(b)

Extreme 1 Base Extreme 20.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

facies 0
facies 1

6.19(c)

Figure 6.19: The graphs compare the classification scores 6.19(a) accuracy,
6.19(b) precision, and 6.19(c) recall between the three wavelet scenarios.

with the increase in seismic kernel in figure 6.20.
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Figure 6.20: Mean acceptance rate as a function of the seismic wavelet.

Figure 6.21 shows the probability calibration plots, with small values of
distortion.
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Figure 6.21: The graph shows the experimental marginal posterior probability
calibration for each of the three transition matrix scenarios. The size of the
points represent the amount of samples in each bin.
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Finally, a concrete example for each of the extreme cases is given in
figures F.8, and F.9.
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7
Conclusions

It has been seen that the Oil and Gas industry uses seismic reflection
images in order to infer the spatial distribution of hydrocarbon bearing
reservoirs in the subsurface. Owing to the fact that this problem is ill-posed,
and the seismic data is noisy, probabilistic methodologies must be used in order
to assess the chance of success before drilling.

The present work had the objective to quantify the chance of drilling
success given a seismic image, taking into account the physical model that
relates facies to seismic.

The problem of predicting the spatial distribution of facies in the
subsurface, from the seismic reflection data, known as Convolved Hidden
Markov Model, was demonstrated to be a complex combinatorial problem, due
to the long range interaction between the categorical variables that represent
facies. Other works in the literature have been analysed, all of them using
either approximate or iterative methods to solve the problem.

In this thesis, a technique called projection approximation has been
used to tackle the problem. It has been shown that this method is based on
approximating the high dimensional complex probability distribution with a
product of factors, each involving a reduced number of unknowns.

Synthetic experiments were set in order to analyse the technique perfor-
mance in a wide range of geological and measurement conditions. In order to
test the robustness of the approximation in quantifying the posterior proba-
bility of facies given seismic, some performance scores commonly used in the
field of machine learning were used. A not so common score called probabil-
ity distortion was introduced, which is useful to quality control the posterior
probability estimates.

Additionally, the synthetic examples and their parametrization was de-
signed in such a way that the results in this thesis can be compared to real
datasets, regardless of absolute values of seismic amplitude, noise level, sam-
pling rate, and absolute values of elastic properties.

Thus it can be stated that the projection approximation to the Convolved
Hidden Markov Model yields reliable probability estimates, under a wide
range of geological and acquisition conditions. It can be used by the Oil and
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Gas industry to invert seismic traces at different positions and compare their
probability of success.

7.1
Future Works

The experiments in chapter 6 assess the inversion performance under a
wide range of conditions, but under the hypothesis of known model parameters.
For this reason, the inversion technique might not perform as well in real
datasets as it performed in the synthetic examples in the present thesis. So, an
interesting future topic of research is to understand the inversion sensibility to
uncertainties in the model parameters.

The application of the developed technique in the inversion of real data is
of utmost importance, with the same goal of further validating the robustness
of the method.

As stated above, even though the projection approximation presented
promising results in synthetic 1D seismic inversion, the present implementation
has great limitations in terms of computation time. The time it took for a single
seismic profile inversion makes it prohibitive to invert 3D seismic volumes of
typical size (up to millions of profiles). This problem is worse in real datasets,
where the number of facies of interest increases the computation effort in
relation to the binary case studied in this work.

In order to deal with this limitation, a future research topic of interest
is to apply high performance computing techniques to optimize the algorithm.
Once, with a more efficient implementation, another step will be to generalize
the method for 3D seismic application.

Another future work will be to generalize the projection approximation
to deal with a more complex spatial correlation of elastic properties, since
the Gaussian approximation in chapter C was demonstrated only for spatially
uncorrelated properties.

A final future direction would be taking into account the non-linearities
of AVA model in relation to the pattern properties m∂k(n), while linearising in
relation to the background properties m∼∂k(n).
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A
Hidden Markov Model

A.1
Introduction

This chapter focuses on deriving the main results concerning Hidden
Markov Models. One can find an overview about HMM in the seminal work
(46). But the notations, and demonstrations from this appendix were addapted
from (26).

A.2
Easy Questions on HMM

From the definition of a HMM, given in chapter 4, it is easy to derive the
following relations.

The first one is the probability distribution of happening a sequence of
hidden variables, before taking any measurement. This is known as the prior
probability:

p(z) = p(zN |z1, ..., zN−1)× p(z1, ..., zN−1)

= p(zN |zN−1)× p(z1, ..., zN−1)

= ... = p(zN |zN−1)× ...× p(z2|z1)× p(z1)

(A-1)

To compute p(z1), we use the hypothesis that the Chain has translational
invariance. Thus, p(z1 = i) = p(zn = i) regardless the position n in the
sequence. We define ps(i) the stationary distribution, so that p(z1 = i) = ps(i).

To compute the stationary probability, one has to marginalize the joint
probability p(zn, zn−1) :

ps(j) = p(zn = j) =
K−1∑
i=0

p(zn = j, zn−1 = i)

=
K−1∑
i=0

p (zn = j | zn−1 = i) p(zn−1 = i)

=
K−1∑
i=0

Tijps(i)

(A-2)
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The above equation is an eigenvector equation (with eigeinvalue equal to
1). Its solution exists and is unique from Pierre-Frobenius theorem E.2.1.

The second easy relation is the conditional probability of an observed se-
quence of measurements, given a sequence of latent variables. This conditional
probability is also known as likelihood.

p(X|z) = p(xN |x1, ..., xN−1, z)× p(x1, ..., xN−1, z)

= p(xN |zN)× p(xN−1|x1, ..., xN−2, z)× p(x1, ..., xN−2, z)

= ... = p(xN |zN)× ...× p(x1|z1)

(A-3)

A.3
Posterior Normalization Constant

The posterior probability distribution for the hidden states sequence,
given a sequence of measurements is given by, from Bayes theorem (a good
reference is (26)).

p(z|X) = p(X, z)
p(X) = p(X|z)× p(z)

p(X) (A-4)

=
p(z1)p (x1 | z1)∏N

n≥2 p(xn|zn)p(zn|zn−1)
p(X) (A-5)

Given an observable sequence X, p(X) is a constant. It can be calculated
by summing p(X, z) for all possible latent sequences z:

p(X) =
∑
z∈ΩN

p(X, z) =
∑
z∈ΩN

p(X|z)p(z)

=
K−1∑
z1=0

K−1∑
z2=0

...
K−1∑
zN=0

p(z1)p (x1 | z1)
N∏
n≥2

p(xn|zn)p(zn|zn−1)
(A-6)

The above summation involves O(KN) operations, thus is unfeasible in
normal applications. In order to efficiently calculate p(X), one uses the fact
that the joint probability p(X, z) = p(X|z)p(z) can be expressed as a product
of factors, each involving only 2 variables:

p(X, z) = q1(z1)∏n≥2 qn(zn−1, zn) (A-7)

q1(z1) = p(x1|z1)p(z1) (A-8)

qn(zn−1, zn) = p(xn|zn)p(zn|zn−1), n ≥ 2 (A-9)
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From this fact, the summation in equation A-6, can be rearranged as:

p(X) =
K−1∑
zN=0

K−1∑
zN−1=0

qN(zN−1, zN)× ...×
K−1∑
z2=0

q3(z2, z3)×
K−1∑
z1=0

q2(z1, z2)q1(z1)

(A-10)
Or in recursive form:

α1(z1) = q1(z1) (A-11)

αn(zn) = ∑K−1
zn−1=0 qn(zn−1, zn)αn−1(zn−1) (A-12)

p(X) = ∑K−1
zN=0 αN(zN) (A-13)

The recursive equations take O(NK2) operations, thus is feasible, since
it is linear in the sequence size. By substituting the q factors, one obtain what
is known as Forward Recursion:

α1(z1) = p(x1|z1)p(z1) (A-14)

αn(zn) = p(xn|zn)∑K−1
zn−1=0 p(zn|zn−1)αn−1(zn−1) (A-15)

p(X) = ∑K−1
zN=0 αN(zN) (A-16)

Conjecture A.3.1 gives the interpretation of the α array.

Conjecture A.3.1. αn(zn) = p(x1, ..., xn, zn)

Proof. By finite induction. For n=1

α1(z1) = p(x1|z1)p(z1) = p(x1, z1) (A-17)

Let the conjecture be true for index n− 1. Then, for n:
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αn(zn) = p(xn|zn)
K−1∑
zn−1=0

p(zn|zn−1)αn−1(zn−1)

= p(xn|zn)
K−1∑
zn−1=0

p(zn|zn−1)p(x1, ..., xn−1, zn−1)

= p(xn|zn)
K−1∑
zn−1=0

p(zn|zn−1)p(zn−1|x1, ..., xn−1)p(x1, ..., xn−1)

= p(xn|zn)
K−1∑
zn−1=0

p(zn, zn−1|x1, ..., xn−1)p(x1, ..., xn−1)

= p(xn|zn)p(zn|x1, ..., xn−1)p(x1, ..., xn−1)

= p(xn|zn)p(x1, ..., xn−1, zn)

= p(xn|zn, x1, ..., xn−1)p(x1, ..., xn−1, zn)

= p(xn, zn, x1, ..., xn−1)

= p(x1, ..., xn, zn)

(A-18)

�

A.4
Posterior Marginal Probabilities

The marginal probability for a given state variable zn given the sequence
of all measurements is given by p(zn|X). The equation below expresses the
marginal probabilities in terms of αn(zn), and an additional factor:

p(zn|X) = p(X, zn)
p(X) = p(xn+1, ..., xN |x1, ..., xn, zn)p(x1, ..., xn, zn)

p(X)

= p(xn+1, ..., xN |zn)αn(zn)
p(X)

(A-19)

If one defines: βn(zn) := p(xn+1, ..., xN |zn) for n ≤ N − 1, and βN := 1,
the above equation can be written as:

p(zn|X) = αn(zn)βn(zn)
p(X) (A-20)

Just like the Forward Recursion, one can derive the Backward Recursion,
which computes all the βn terms from N − 1 down to 1.
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βn(zn) = p(xn+1, ..., xN |zn)

=
K−1∑
zn+1=0

p(xn+1, ..., xN , zn+1|zn)

=
K−1∑
zn+1=0

p(xn+1, ..., xN , zn+1, zn)
p(zn)

=
K−1∑
zn+1=0

p(xn+2, ..., xN |xn+1, zn+1, zn)p(xn+1, zn+1, zn)
p(zn)

=
K−1∑
zn+1=0

p(xn+2, ..., xN |zn+1)p(xn+1|zn+1, zn)p(zn+1, zn)
p(zn)

=
K−1∑
zn+1=0

p(xn+2, ..., xN |zn+1)p(xn+1|zn+1)p(zn+1, zn)
p(zn)

=
K−1∑
zn+1=0

p(xn+2, ..., xN |zn+1)p(xn+1|zn+1)p(zn+1|zn)

=
K−1∑
zn+1=0

βn+1(zn+1)p(xn+1|zn+1)p(zn+1|zn)

(A-21)

A.5
Sampling from the Posterior Distribution

The topic from this section was adapted from the unpublished work (53),
and it can also be found in (1).

From the previous section, one can choose any position n in the sequence
and sample the hidden state given all the measurements. But, if one wants to
sample the entire hidden state sequence, it is needed a sampling schedule, where
the next chosen position is sampled conditioned on all the measurements, and
all the already sampled hidden values, in order to respect the stacking pattern
of the hidden variables.

We will use a backward schedule, starting from the last sample N , and
at each step sample the zn given all the measurements and all zm for m > n.
This schedule can be written as the following factorization A-22.

p (z | X) = p (zN | X)× p (zN−1 | zN , X)× . . .× p (z1 | z2, . . . , zN , X) (A-22)

First, one needs the marginal probability for the last index zN :

p(zN |X) = αN(zN)βN(zN)
p(X) (A-23)

From equation A-13, and the definition of βN :
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p(zN |X) = αN(zN)∑K−1
z′N=0 αN(z′N)

(A-24)

Now, assume one has already sampled all hidden variables from n+ 1 to
N . Then:

p(zn|zn+1, ..., zN , x1, ..., xN) = p(zn|zn+1, x1, ..., xn)

= p(zn, zn+1, x1, ..., xn)
p(zn+1, x1, ..., xn)

= p(zn, zn+1, x1, ..., xn)∑K−1
z′n=0 p(z′n, zn+1, x1, ..., xn)

(A-25)

The above equation depends on terms like p(zn, zn+1, x1, ..., xn).

p(zn, zn+1, x1, ..., xn) = p(zn+1|zn, x1, ..., xn)p(zn, x1, ..., xn)

= p(zn+1|zn)p(zn, x1, ..., xn)

= p(zn+1|zn)αn(zn)

(A-26)

Thus,

p(zn|zn+1, ..., zN , X) = p(zn+1|zn)αn(zn)∑K−1
z′n=0 p(zn+1|z′n)αn(z′n) (A-27)

A.6
Most Probable Sequence a Posteriori

Given a measured sequence, one might be interested to know the most
probable latent state sequence. This is known as maximum a posteriori
sequence zMAP .

The most probable sequence zMAP is the solution of the following
optimization problem:

zMAP = arg max
z

p(z|X) = arg max
z

p(z,X) (A-28)

Since the cardinality of the set of possible solutions is KN , it is infeasible
to try all of them. Instead, we will once more use the factorization property of
the HMM problem. The first step is to observe the following general property
of the max operator:

Fact A.6.1. Let f : A×B → R be a real function from set A×B. Then:

max
a,b

f(a, b) = max
b

max
a

f(a, b) = max
a

max
b
f(a, b)
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Also, let g(b) := maxa f(a, b), and let b̂ := arg maxb g(b). Then,

arg max
a,b

f(a, b) = (arg max
a

f(a, b̂), b̂)

To the above fact, we will add the following useful definitions:

Definition A.6.1.

Γn(zn) := arg max
z1,...,zn−1

p(x1, ..., xn, z1, ..., zn), n ≥ 2

Definition A.6.2.

ωn(zn) := max
z1,...,zn−1

p(x1, ..., xn, z1, ..., zn) = p(x1, ..., xn,Γn(zn), zn)

ω1(z1) := p(x1, z1) = p(x1|z1)p(z1)

Now, analogously to the previous sections, we will derive a forward-
backward type of algorithm.

Let’s say that we know at step n the maximal a posteriori trajectory
(Γn(zn), zn), for every choice of zn. By keeping track of the cost function
ωn(zn) for each maximal trajectory (one for each zn), we can update the
maximal trajectories for the next step n+ 1: for each possible final state zn+1,
the maximal trajectory Γn+1(zn+1) will be one of the previous K maximal
trajectories (Γn(zn), zn) plus the final transition from zn to zn+1. In order to
decide which of the previous maximal trajectories, one must compute the cost
for each one of them, with:

ωn+1(zn+1) = max
z1,...,zn

p(x1, ..., xn+1, z1, ..., zn+1)

= max
z1,...,zn

{p(xn+1, zn+1|x1, ..., xn, z1, ..., zn)p(x1, ..., xn, z1, ..., zn)}

= max
z1,...,zn

{p(xn+1, zn+1|zn)p(x1, ..., xn, z1, ..., zn)}

= max
z1,...,zn

{p(xn+1|zn+1, zn)p(zn+1|zn)p(x1, ..., xn, z1, ..., zn)}

= max
z1,...,zn

{p(xn+1|zn+1)p(zn+1|zn)p(x1, ..., xn, z1, ..., zn)}

= p(xn+1|zn+1) max
z1,...,zn

{p(zn+1|zn)p(x1, ..., xn, z1, ..., zn)}

= p(xn+1|zn+1) max
zn

max
z1,...,zn−1

{p(zn+1|zn)p(x1, ..., xn, z1, ..., zn)}

= p(xn+1|zn+1) max
zn

{
p(zn+1|zn) max

z1,...,zn−1
{p(x1, ..., xn, z1, ..., zn)}

}
= p(xn+1|zn+1) max

zn
{p(zn+1|zn)ωn(zn)}

(A-29)

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



Appendix A. Hidden Markov Model 83

From the fact A.6.1, it is natural to define a maximal zn in equation A-29
as a function of zn+1:

Definition A.6.3.

ψn(zn+1) = arg max
zn

{p(zn+1|zn)ωn(zn)} , 1 ≤ n ≤ N − 1

And, we can calculate the Γn+1(zn+1) vector, again using fact A.6.1:

Γn+1(zn+1) =
(

arg max
z1,...,zn−1

p(x1, ..., xn, z1, ..., zn−1, ψn(zn+1)), ψn(zn+1)
)

= (Γn(ψn(zn+1)), ψn(zn+1))
(A-30)

For n = 2, we can compute the initial value for the Γ sequence:

Γ2(z2) = arg max
z1

p(x1, x2, z1, z2)

= arg max
z1

{p(x2|z2)p(z2|z1)p(x1, z1)}

= arg max
z1

{p(z2|z1)p(x1, z1)}

= arg max
z1

{p(z2|z1)ω1(z1)}

= ψ1(z2)

(A-31)

Finally, the maximum sequence probability is given by:

max
z1,...,zN

p(z1, ..., zN |x1, ..., xN) = 1
p(X) max

z1,...,zN
p(x1, ..., xN , z1, ..., zN)

= 1
p(X) max

zN
max

z1,...,zN−1
p(x1, ..., xN , z1, ..., zN)

= 1
p(X) max

zN
ωN(zN)

(A-32)

And the last state corresponding to this maximum value is ẑN =
arg maxzN ωN(zN). Now, one just has to back substitute the maximum states,
just like stated in fact A.6.1:
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zMAP = arg max
z1,...,zN

p(z1, ..., zN |x1, ..., xN)

= arg max
z1,...,zN

p(x1, ..., xN , z1, ..., zN)

=
(

arg max
z1,...,zN−1

p(x1, ..., xN , z1, ..., ẑN), ẑN
)

= (ΓN(ẑN), ẑN)

(A-33)

Defining ẑn = ψn(ẑn+1), and using equation A-30, we write down the
maximal sequence:

zMAP = arg max
z1,...,zN

p(z1, ..., zN |x1, ..., xN) = (ΓN(ẑN), ẑN)

= (ΓN−1(ẑN−1), ẑN−1, ẑN) = ...

= (Γ2(ẑ2), ẑ2, ..., ẑN−1, ẑN)

= (ẑ1, ..., ẑN−1, ẑN)

(A-34)

It’s important to notice that each ẑn from the maximal sequence depends
on ẑn+1, from the definition A.6.3.

Another important topic is that the maximal sequence is not given by
the marginal maximum for each position n in the sequence. In other words:
ẑn 6= arg maxzn p(zn|X) (in general). It happens because the sequence obtained
this way does not take into account the inter-relations between neighbouring
latent states.

Nonetheless, a useful definition is the marginal maximum a posteriori
sequence:

zMMAP :=
(

arg max
z1

p(z1|X), . . . , arg max
zN

p(zN |X)
)

(A-35)
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B
Gaussian Distribution

B.1
Definitions

A multivariate Gaussian distribution is given by the following PDF:

Definition B.1.1 (Multivariate Gaussian). A random vector X ∈ RN is said
to be a multivariate Gaussian, if its probability density function if given by:

p(X = x) = N (x | µ; Σ) := 1√
2πΣ

exp
{
−1

2 (x− µ)T Σ−1 (x− µ)
}

Where:

µ = E [X]

Σ = E

[
(X − µ) (X − µ)T

]
From the above equation, Σ is a positive-definite symmetric matrix

(called covariance matrix), and its elements are given by:

Σi,j = E [(Xi − µi) (Xj − µj)]

B.2
Affine Transformations

Say X is a multivariate Gaussian vector and Y is another random vector,
defined by a affine transformation of X plus a Gaussian error (independent of
X).

Y = AX + b+ E (B-1)

p(E = ε) = N (ε | 0; Σee) (B-2)

p(X = x) = N (x | µX ; ΣXX) (B-3)

Another way of expressing the linear system, in terms of the variable Y
is:
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p (Y = y | X = x) = p(E = y−Ax−b) = N (y − Ax− b | 0; Σee) = N (y | Ax+ b; Σee)
(B-4)

Then, Y is also a multivariate Gaussian, its mean and covariance matrix
given by:

µY = AµX + b (B-5)

ΣY Y = E

[
(Y − µY )) (Y − µY ))T

]
= E

[
(AX + b+ E − AµX − b)) (AX + b+ E − AµX − b))T

]
= E

[
(AX + E − AµX)) (AX + E − AµX))T

]
= AE

[
(X − µX)) (X − µX))T

]
AT + AE

[
(X − µX)ET

]
+ E

[
E(X − µX)T

]
AT + E

[
EET

]
= AΣXXA

T + AE[X − µX ]E[E]T + E[E]E[X − µX ]TAT + Σee

= AΣXXA
T + Σee

(B-6)

The crosscovariance between variables X and Y is:

ΣXY = E

[
(X − µX)(Y − µY )T

]
= E

[
(X − µX)(AX + b+ E − AµX − b)T

]
= E

[
(X − µX)(AX + E − AµX)T

]
= E[(X − µX)(X − µX)T ]AT + E

[
(X − µX)ET

]
= ΣXXA

T

(B-7)

By definition, the joint probability of the augmented vector (X, Y ) is:

p(X = x, Y = y) = N
x

y

 ∣∣∣∣∣∣ µ; Σ


= N
x

y

 ∣∣∣∣∣∣
µX
µY

 ;
ΣXX ΣXY

ΣY X ΣY Y

 (B-8)

By substituting the block matrices in the above equation, with their
values from equations B-7 and B-6, one obtains:
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p(X = x, Y = y)

= N
x

y

 ∣∣∣∣∣∣
 µX

AµX + b

 ;
 ΣXX ΣXXA

T

AΣXX AΣXXA
T + Σee

 (B-9)

B.3
Bayesian Inversion

Now, consider a situation where one has a realization of Y , and want
to use this information to learn something about X. We have to estimate
p (X | Y ), also known as posterior distribution:

p (X = x | Y = y) = p(Y = y,X = x)
p(Y = y) = p(Y = y,X = x)∫

x′ p(Y = y,X = x′) (B-10)

Thus, to find the posterior distribution, ones has to fix Y = y in the joint
distribution p(X, Y ), and renormalize in relation to X.

By defining Λ = Σ−1 in equation B-8, one can write p(X, Y ) as:

p(X = x, Y = y) ∝ exp

−1
2
[
x− µX y − µY

]
Λ
x− µX
y − µY


∝ exp

−1
2
[
∆x ∆y

] ΛXX ΛXY

ΛY X ΛY Y

∆x
∆y


∝ exp

{
−1

2
[
∆xTΛXX∆x− 2∆XTΛXY ∆y + ∆yTΛY Y ∆y

]}
(B-11)

Where ∆x = x− µX and ∆y = x− µY . One can "complete the squares"
in relation to ∆x, and treat ∆y as a constant, in order to arrive at a quadratic
form:

p(X = x, Y = y) ∝ exp
{
−1

2
[
∆xTΛXX∆x− 2∆xTΛXY ∆y + ∆yTΛY Y ∆y

]}
∝ exp

{
−1

2(∆x− Λ−1
XXΛXY ∆y)TΛXX(∆x− Λ−1

XXΛXY ∆y)
}

(B-12)

By inspection, one checks that the desired probability distribution is
Gaussian.

From (54), and since Λ = Σ−1, one can simplify equation B-12:
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Λ−1
XX = ΣXX − ΣXY Σ−1

Y Y ΣY X (B-13)

ΛXY = ΛXXΣXY Σ−1
Y Y (B-14)

From the above result, one can rewrite the posterior probability in
equation B-10:

p (X = x | Y = y) = N
(
x
∣∣∣ µX|Y ; ΣX|Y

)
(B-15)

µX|Y = µX + ΣXY Σ−1
Y Y (y − µY ) (B-16)

ΣX|Y = ΣXX − ΣXY Σ−1
Y Y ΣY X (B-17)

In order to gain some insight over the above equations, we will analyse
them in the scalar case Y = aX + b+ E:

µX|Y = µX + a
σ2
XX

σ2
Y Y

(y − aµX − b) (B-18)

σ2
X|Y = σ2

XX

(
1− a2σ2

XX

σ2
Y Y

)
(B-19)

σ2
Y Y = a2σ2

XX + σ2
ee (B-20)

The term a2σ2
XX is the expected variance in the data due to input

variance, and σ2
ee is the noise variance. One can define the signal-to-noise ratio

as γ = a2σ2
XX

σ2
ee

. The equations simplify to:

µX|Y = µX + γ

γ + 1
y − aµX − b

a
(B-21)

σX|Y = σXX

√
1− γ

γ + 1 (B-22)

Figure B.1 illustrate the effect of the signal-to-noise on the conditional
probability distribution, in the linear equation Y = X + E, given Y = 2. The
prior mean is µX = 1, and the prior standard deviation is σXX = 1.

Figure B.1 illustrates that in the limit of small signal-to-noise ratio, the
conditional mean and standard deviation tend to their prior values: µX = 1,
and σXX = 1. In the opposite limit of high signal-to-noise, the conditional
mean tends to the measurement value, and the conditional standard deviation
tends to zero.

From the scalar case, one can understand that the prior knowledge about
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Figure B.1: Illustration on the posterior distribution dependency on the signal-
to-noise ratio (SNR). B.1(c) shows, for SNR= 1, a comparison between prior
and posterior distributions. B.1(a) shows the conditional mean as a function
of the signal-to-noise ratio. B.1(b) shows the conditional standard deviation
as a function of the signal-to-noise ratio.

the input variable X will be gradually replaced by the knowledge given by
the linear system, as the signal-to-noise ratio increases. And the conditional
variance, will be smaller than the prior variance, and will decrease gradually,
also, as the signal-to-noise ratio increases.

Now, we go back to the analysis of the multidimensional case. To treat
this case, the definition of signal-to-noise ratio must be extend:

γ = tr(AΣXXA
T )

tr(Σee)
(B-23)

In this case, if the system of equations is not injective, the posterior
variances will not asymptotically reach zero in the limit of γ → +∞ (like
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in figure B.1(b)). This is the challenge in equation D-26 (and in geophysical
applications in general).

For an overview of Bayesian methods see (26). For an introduction to
Bayesian inversion, and applications to geophysics, see (27, 55).

B.4
Gaussian Marginalization

Suppose, one has a multivariate Gaussian variable Z, partitioned in two
groups of variables: Z = (X, Y ). Suppose, that one can measure the variables
X, but not the other variables Y .

Suppose, one needs to describe the probability distribution of this subset
of measurable variables X. It will be necessary to marginalize the remaining
variables Y : p(X = x) =

∫
y p(X = x, Y = y).

We assume that the joint distribution p(X, Y ) assumes the same func-
tional form as equation B-11. We also assume that Λ = Σ−1, and Σ is the joint
covariance matrix.

By "completing the squares" in equation B-11 in relation to ∆y, one
arrives at two quadratic forms:

p(X = x, Y = y) ∝ exp
{
−1

2
[
∆xTΛXX∆x

+
(
∆y − Λ−1

Y Y ΛY X∆x
)T

ΛY Y

(
∆y − Λ−1

Y Y ΛY X∆x
)

−∆xTΛXY Λ−1
Y Y ΛY X∆x ]}

= exp
{
−1

2∆xT
(
ΛXX − ΛXY Λ−1

Y Y ΛY X

)
∆x

}
exp

{
−1

2
(
∆y − Λ−1

Y Y ΛY X∆x
)T

ΛY Y

(
∆y − Λ−1

Y Y ΛY X∆x
)}

= Q1(x)Q2(x, y)
(B-24)

Term Q2(x, y) is a Gaussian, thus its integral in relation to y is invariant
under translation, thus independent of x. Thus

∫
yQ2(x, y) = C, where C is a

constant.
Thus:

p(X = x) ∝ Q1(x) = exp
{
−1

2∆xT
(
ΛXX − ΛXY Λ−1

Y Y ΛY X

)
∆x

}
(B-25)

Inspection of equation B-25, shows that p(X) is a Gaussian distribution.
Since Σ = Λ−1, and using the same reasoning as in equation B-13, it

holds that: Σ−1
XX = ΛXX − ΛXY Λ−1

Y Y ΛY X . Substituting this result in equation
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B-25, one obtains:

p(X = x) = N (x | µX ; ΣXX) (B-26)

B.5
Affine Transformations and Marginalization

Let us assume once again that X and Y are multivariate Gaussian
random variables with the holding following relationship:

p(X = x) = N (x | µX ,ΣXX) (B-27)

p (Y = y | X = x) = N (y | AX + b; Σee) (B-28)

One might be interested in knowing the marginal distribution p(Y ).
First, one must, compute the joint distribution p(X, Y ), which corresponds
to equation B-9. Then, one use the results in section B.4, to arrive at the
result:

p(Y = y) = N
(
y
∣∣∣ AµX + b;AΣXXA

T + Σee

)
(B-29)

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



C
Gaussian Approximation to a Gaussian Mixture

C.1
Introduction

In this appendix, we will derive the formulas for the Gaussian approxi-
mation of a Gaussian mixture distribution. This problem was posed in section
5.3.

The first thing to notice, is that the maximation of the DKL(p‖q)
operator is equivalent of finding the probability distribution q with is the best
approximation to the probability distribution p. In this apendix, it will be
demonstrated the results of the optimization problem 5-13.

The tools we will use are the following:

Fact C.1.1.
tr {BA} = tr {AB} (C-1)

Fact C.1.2.
∂Atr {BA} = B (C-2)

Fact C.1.3.
∂A log det(A) =

[
A−1

]T
(C-3)

C.2
Optimization

In section 5.3, we found the following optimization problem:

arg min
µ∗,Σ∗

DKL(p‖p∗) = −
∫
m
p(m) log p∗(m)

p(m)
s.t. p∗(m) = N (m | µ∗,Σ∗)

(C-4)

Where, p(m) is a Gaussian mixture, given by:

p(m) =
∑
π∈ΩN

p (m | π) p(π)

=
∑
π∈ΩN

N (m | µπ,Σπ) p(π)
(C-5)

So, discarding the terms without p∗, one wants to maximize:
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−
∫
m
p(m) log(p∗(m))

= 1
2
∑
π∈ΩN

p(π)
∫
m
N (m | µπ,Σπ)

{
log det(Σ∗) + (m− µ∗)TΣ∗−1(m− µ∗)

}
= 1

2
∑
π∈ΩN

p(π)
∫
m
N (m | µπ,Σπ)

{
log det(Σ∗) + tr

[
Σ∗−1(m− µ∗)(m− µ∗)T

]}
(C-6)

The term (m− µ∗)(m− µ∗)T can be rewritten:

(m− µ∗)(m− µ∗)T = (m− µπ)(m− µπ)T −∆µ(m− µπ)T

− (m− µπ)∆µT + ∆µ∆µT
(C-7)

∆µ = µ∗ − µπ (C-8)

So, we can compute the following integrals:

∫
m
N (m | µπ,Σπ) (m− µπ)(m− µπ)T = Σπ (C-9)∫

m
N (m | µπ,Σπ) ∆µ(m− µπ)T = 0 (C-10)∫

m
N (m | µπ,Σπ) (m− µπ)∆µT = 0 (C-11)∫

m
N (m | µπ,Σπ) = 1 (C-12)

So, the optimization problem, can be further rewritten as the optimiza-
tion of:

1
2
∑
π∈ΩN

p(π)
{
− log det(Σ∗−1) + tr

[
Σ∗−1(Σπ + ∆µ∆µT )

]}
(C-13)

Deriving in relation to µ∗, and equalling to zero:

∑
π∈ΩN

p(π)Σ∗−1∆µ = 0 (C-14)

µ∗ =
∑
π∈ΩN

p(π)µπ = (µS, . . . , µS)T (C-15)

µS =
K∑
i=0

ps(π1 = i)µi (C-16)

Doing the same, in relation to Σ∗−1, one gets:
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∑
π∈ΩN

p(π)
{
−Σ∗ + Σπ + ∆µ∆µT

}
= 0 (C-17)

Σ∗ =
∑
π∈ΩN

p(π)
{

Σπ + ∆µ∆µT
}

(C-18)

[Σ∗]n,n+l =
K∑
i=0

K∑
j=0

p(π1 = i, πn+l = j)(µi − µS)(µj − µS)T , l ≥ 1 (C-19)

[Σ∗]n,n =
K∑
i=0

ps(π = i)
[
Σi + (µi − µS)(µi − µS)T

]
(C-20)

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



D
AVA Matrices

D.1
Definitions

A basic tool in this Appendix is the kronecker product:

Definition D.1.1 (Kronecker Product). Given two matrices A and B, of size
(nA,mA), and (nB,mB), respectively. We define the kronecker product of the
matrices A⊗B by the block matrix defined by:

A⊗B =


a1,1B · · · a1,mAB

· · · . . . · · ·
anA,1B · · · anA,mAB


The A⊗B matrix has size (nAnB,mAmB)

Another definition of interest to make the notations lighter, is the
following:

Definition D.1.2 (vectorize). Given a set of vectors M (v1, . . . , vM), all with
the same number of elements N (or, given a matrix of size (N,M)), we define
the vectorize operations over them, as the vertical stacking of their elements:

vec(v1, . . . , vM) =



v11

· · ·
v1N

v21

· · ·
v2N

· · ·
vM1

· · ·
vMN
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D.2
Linearisation of AVA Equations

Consider an incident plane compressional wave (P-wave) hitting an
interface between two homogeneous isotropic elastic media, as in figure 3.1.
From this incident P-wave, four waves are generated: reflected and transmitted
compressional and shear waves, as illustrated in figure 3.1.

The system of equations that estimates the amplitudes of each gener-
ated wave, given a unit amplitude incident P-wave, are known as Zoeppritz
equations (56). The books (3), and (43) are good references to the topic.

RPRS
TP
TS

 =


− sin(θ1) − cos(φ1) sin(θ2) cos(φ2)
cos(θ1) − sin(φ1) cos(θ2) − sin(φ2)

sin(2θ1) vP1
vS1

cos(2φ1)
ρ2v2

S2vP1
ρ1v2

S1vP2
cos(2φ1) ρ2vS2vP1

ρ1v2
S1

cos(2φ2)

− cos(2φ1) vS1
vP1

sin(2φ1) ρ2vP2
ρ1vP1

cos(2φ2) ρ2vS2
ρ1vP1

sin(2φ2)


−1  sin(θ1)

cos(θ1)
sin(2θ1)
cos(2φ1)

 (D-1)

In the system of equations D-1, RP , RS, TP and TS are the reflected
compressional wave, compressional shear wave, transmitted compressional
wave, and transmitted shear wave, respectively. The variables θ1, φ1, θ2 and φ2

are the corresponding angles with the interface normal vector (in accordance
with figure 3.1).

The above system of equations D-1 is non linear on the elastic parameters,
so there is no analytic way to formulate its inverse. Some authors (for example,
(44), (57) and (43)) have developed approximations to the above equations, in
order to make it easier to understand the contribution of each elastic parameter
in the reflection behaviour.

As we will show, the approximations to Zoeppritz equation makes it
easier to invert.

Usually, one is interested in the reflected compressional wave. A well
known approximation for RP is the Aki-Richards 3 (43) terms equation:

R(θ) = A+B sin2(θ) + C tan2(θ) (D-2)

A = 1
2

(
∆vP
v̄P

+ ∆ρ
ρ̄

)
(D-3)

B = −2
(
v̄S
v̄P

)2 (
2∆vS
v̄S

+ ∆ρ
ρ̄

)
(D-4)

C = 1
2

∆vP
v̄P

(D-5)

In equation D-2, R is the same as RP , and θ is the same as θ1 in equation
D-1. The Aki-Richards equation D-2 depends on terms like:

∆x
x̄

= 2x2 − x1

x2 + x1
(D-6)
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Where x denotes the elastic property (density ρ, shear velocity vS,
or acoustic velocity vP ), and 2 and 1 denote the lower, and upper media,
respectively. And x̄ equals to the mean property between both media.

Thus, the dependency of the reflectivity on the elastic parameters is a
non linear one. But, for weak contrasts, equation D-6 can be approximated, as
in (44) and (45), by:

∆x
x̄
≈ log(x2)− log(x1) = ∆ log(x) (D-7)

Figures D.1 and D.2 show the quality of the log approximation to the
elastic contrast. In figure D.2 the elastic contrast error is always below 4%
of the total exact elastic contrast, but for practical situations (weak elastic
contrast), this error will be lower.
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Figure D.1: log approximation (in
red) to the elastic contrast terms
∆x
x̄

(in black)
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Figure D.2: Error of the log approx-
imation

So, should we re-parametrize our problem in terms of the log of the elastic
parameters, instead of in terms of the elastic parameters themselves, we have
a linear equation, apart from the term k = 4( v̄S

v̄P
)2, which is generally, handled

by assuming a fixed (or smooth background model), which is not inverted for.
Equation D-2 can be grouped in terms of each elastic parameter (as in

(13)), to arrive at equation:

R(θ) = Aθ,ρ∆ log(ρ) + Aθ,vP∆ log(vP ) + Aθ,vS∆ log(vS) (D-8)

Aθ,ρ = 1
2
(
1− k sin2(θ)

)
(D-9)

Aθ,vP = 1
2
(
1 + tan2(θ)

)
(D-10)

Aθ,vS = −k sin2(θ) (D-11)

Equation D-8 can be written in matrix form as:

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



Appendix D. AVA Matrices 98

R(θ) =
[
Aθ,ρ Aθ,vP Aθ,vS

] 
∆ log(ρ)

∆ log(vP )
∆ log(vS)

 (D-12)

We can denote A(θ) := [Aθ,ρ Aθ,vP Aθ,vS ].
The above equation D-12 is linear, and each elastic parameter’s contri-

bution to the output is given by a Aθ,x coefficient. Each observation angle
will yield an additional equation. With three observation angles, the system
of equations is invertible. With more than three observation angles, it may be
solved using least squares method. For any number of observation angles the
tools developed in appendix B are applicable (although they will yield little
help with less than 3 angles).

One important point is that one can only hope to invert the AVA equation
to the elastic contrasts between the upper and lower media: ∆ log(x) =
log(x2) − log(x1). The absolute elastic values of the lower (or upper) layer
could only be determined if one knew beforehand the upper (or the lower,
respectively) elastic parameters.

D.3
AVA Reflectivity Profile

The last section has shown how to linearize and express in matrix form
the AVA relations in terms of elastic contrasts in an interface. Now, say one
has a sequence of elastic properties (from well logs, for example), and wants to
simulate the corresponding sequence of reflectivity coefficients. In this section,
we will develop the matrix formulation for this problem.

Taking equation D-12, and stacking it for different angles, one obtains
the following matrix equation:


R1(θ)
· · ·

RN(θ)

 =
[
Aθ,ρ1 Aθ,vP 1 Aθ,vS1

]



∆ log(ρ)1

· · ·
∆ log(ρ)N
∆ log(vP )1

· · ·
∆ log(vP )N
∆ log(vS)1

· · ·
∆ log(vS)N



(D-13)

Where 1 is the identity matrix with size (N,N). We assume for equation
D-13 that ( v̄S

v̄P
)2 is constant throughout the profile, to make the matrix

formulation uncluttered.

DBD
PUC-Rio - Certificação Digital Nº 1613077/CA



Appendix D. AVA Matrices 99

Now, say we have measured the reflection coefficients for M different an-
gles of incidence (θ1, . . . , θM). We can group the different reflection coefficients
equations as follows:



R1(θ1)
· · ·

RN(θ1)
R1(θ2)
· · ·

RN(θ2)
· · ·

R1(θM)
· · ·

RN(θM)



=


Aθ1,ρ1 Aθ1,vP 1 Aθ1,vS1

Aθ2,ρ1 Aθ2,vP 1 Aθ2,vS1

· · ·
AθM ,ρ1 AθM ,vP 1 AθM ,vS1





∆ log(ρ)1

· · ·
∆ log(ρ)N
∆ log(vP )1

· · ·
∆ log(vP )N
∆ log(vS)1

· · ·
∆ log(vS)N



(D-14)

The above equation can be re-written in terms of kronecker product and
the vec operator:

vec(R(θ1), . . . , R(θM)) = A vec(∆ log(ρ),∆ log(vP ),∆ log(vS)) (D-15)

A =


A(θ1)
· · ·

A(θM)

⊗ 1 (D-16)

Finally, the vector vec(∆ log(ρ),∆ log(vP ),∆ log(vS)) can be written as a
function of the elastic profiles vec(log(ρ), log(vP ), log(vS)). First, we note that:


∆ log(x)1

∆ log(x)2

· · ·
∆ log(x)N

 =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 1





log(x)1

log(x)2

log(x)3

· · ·
log(x)N

log(x)N+1


:= D log(x)

(D-17)

Where D is the matrix that takes the finite differences. Based
on equation D-17, one can write equation D-18 for the vector
vec(∆ log(ρ),∆ log(vP ),∆ log(vS)) of all elastic derivatives:
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∆ log(ρ)1

· · ·
∆ log(ρ)N
∆ log(vP )1

· · ·
∆ log(vP )N
∆ log(vS)1

· · ·
∆ log(vS)N



=


D 0 0
0 D 0
0 0 D





log(ρ)1

· · ·
log(ρ)N+1

log(vP )1

· · ·
log(vP )N+1

log(vS)1

· · ·
log(vS)N+1


= D vec(log(ρ), log(vP ), log(vS))

(D-18)

D = 1⊗D (D-19)

In the above equation, the identity matrix 1 has size (3, 3).

D.4
AVA Seismic

In reality, the signal which travels through earth is not a Dirac’s delta,
but a finite length signal, called wavelet. As a consequence, what one measures
at the surface is a convolved version of the reflectivity:

s(θ, t) = w(θ) ∗R(θ) :=
∫ +∞

−∞
w(θ, τ)R(θ, t− τ)dτ (D-20)

In the case of digital signal, the above continuous convolution is substi-
tuted by a discrete convolution:

s(θ, i) = w(θ) ∗R(θ) :=
+∞∑
j=−∞

wj(θ)Ri−j(θ) (D-21)

Figure D.3 represents the above equation as a calculation work-flow.
Since, both the reflectivity profile (size N), and the wavelet w (size k = 2l+1)
have finite duration, the above equation can be expressed in matrix form, by
using the corresponding Toeplitz matrix:
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s1+l(θ)
· · ·

sN−l(θ)

 =



wk wk−1 · · · w1 0 · · · 0 · · · 0 0 0
0 wk · · · w2 w1 · · · 0 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0 · · · wk wk−1 · · · w1 0
0 0 · · · 0 0 · · · 0 wk · · · w2 w1




R1(θ)
· · ·

RN(θ)



:= W (θ)


R1(θ)
· · ·

RN(θ)


(D-22)

In the above equation, only N−2l output samples are computed, because
only these samples can be computed given the finite duration inputs without
padding, as depicted in the sketch D.4. This definition of the convolution is
usually referred to as valid convolution in programming packages (for example,
in Python’s Numpy (58)).

The advantage of using this definition, instead of the usually used full
convolution fornulation (as in (13)), is that it makes no assumption on the
input vector: the full convolution convention assumes that the unknown input
samples (R1 through Rl, and from RN−l+1 to RN , in equation D-22) are zero.

In other words, in the valid convolution formulation, the unknown
samples are dealt with correctly, for they are considered additional variables in
the input vector. No border effect is expected when inverting this formulation
of convolution.

So, for all the observation angles, the equation becomes:



s1+l(θ1)
· · ·

sN−l(θ1)
s1+l(θ2)
· · ·

sN−l(θ2)
· · ·

s1+l(θM)
· · ·

sN−l(θM)



=


W (θ1) 0 · · · 0

0 W (θ2) · · · 0
0 0 · · · W (θM)





R1(θ1)
· · ·

RN(θ1)
R1(θ2)
· · ·

RN(θ2)
· · ·

R1(θM)
· · ·

RN(θM)


:= W vec(R(θ1), . . . , R(θM))

(D-23)

Finally, we can join equations D-12, D-18, and D-23 to write a linear
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Figure D.3: Convolution calcula-
tion for each output sample sn.

Figure D.4: Valid convolution illus-
tration, a limited number of output
samples are computed

system relating the elastic property profile to the reflectivity measurement
profile.

vec(s(θ1), . . . , s(θM)) = W ADvec(log(ρ), log(vP ), log(vS)) (D-24)

Or, succinctly:

s = W ADm := Gm (D-25)
In practice, we have the seismic measurement s, and wish to invert for

the elastic properties m. The linear inversion problem s = Gm, can be dealt
with using the tools developed in Appendix B.

D.5
AVA Linear Inversion

As discussed in section B.3, Bayesian inversion is the methodology used
to describe the knowledge about a variable in a probabilistic framework, when
this variable is only known from an indirect measurement. It is suitable when
the forward model (relation between the variable and the measurement) is
ill-posed, and/or the measurement in noisy.

Section 2.3 introduces the idea of inverting seismic data to the elastic
properties. For a further discussion on AVA inversion, see (13, 59, 60).

In order to exemplify this technique and discuss its limitations, let’s
assume that we have seismic data measured at only one angle of incidence θ.
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In this case, equation D-25 can be simplified to:

s(θ) = W (θ)D log
(
ρAθ,ρv

Aθ,vP
P v

Aθ,vS
S

)
:= WDm (D-26)

Where, in the above equation, the elastic parameter triplet is reduced
to only m = log

(
ρAθ,ρv

Aθ,vP
P v

Aθ,vS
S

)
:= log(IE). The quantity IE is known as

elastic impedance (51), and we will refer to it simply as impedance.
The matrix WD expresses the convolution with the seismic effective

kernel: w ∗ d
dt
.

Since this equation have only convolution effects, we can write it in the
frequency domain, using Fourier transform:

F
{
w ∗ d

dt

}
(ω)×F {m} (ω) = F {s} (ω) (D-27)

But, from figure 3.3, one sees that equation D-27 is undefined, or at least
highly unstable because the low, and high frequencies of the Fourier spectrum
of the seismic kernel are very low. In other words, since the transfer function
of the linear system annihilates these frequency components, there is no way
of recovering them, by using linear theory.

In terms of low frequencies, one can sum any constant (or low frequency
trend) to a solution m of equation D-26, and it will yield another solution
m+ c, as good as the original one. This is a severe problem, since we need the
absolute values of the impedances, in order to understand the types of rocks
and their petrophysical properties.

The high frequencies determine the details of the solution. So, one
can sum any high frequency function c(t) (with frequency content above
∼ 0.25cycles/sample in figure 3.3) to a solution m, and the result will be
another solution as good as the first one. It means, that we cannot unravel the
detailed geology from the seismic data, and it makes sense, for seismic images
are a blurred version of the sub-surface properties.

The only hope is that one have some prior knowledge about the solution
at low frequencies, and high frequencies. If this is the case, one can can use
Bayesian framework for inversion.

Even though, the Bayesian Inversion, will not solve the above mentioned
ambiguities in the inversion of equation D-26, it will estimate confidence bands,
and provide tools to stochastically sample possible solutions conditioned on the
seismic measurement and on the prior information.

(61) shows that actual uncertainty in the inverted impedances is bigger
than the estimated by Bayesian theory. The reason is, what they call uncer-
tainty in the low-frequency model (prior mean µX in equation B-3).

Figure D.5 compares Bayesian inversion results, given the correct prior
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knowledge, versus the inversion result if one perturb the prior in different
frequency bands.
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Figure D.5: The graphs compare the Bayesian linear inversion result, for
different prior models. D.5(a) shows the inversion results with the correct prior
model, D.5(b) shows the result with a constant deviation in the correct prior,
and D.5(c) shows the result with a random oscillatory perturbation (within
the wavelet spectrum) to the prior. The recovered impedances are different,
but the modelled seismic is undistinguishable.

It can be noticed that the constant perturbation produces a bias in the
posterior mean solution µX|Y . As explained in D.5, this is due to the lack of
low frequencies in the seismic effective kernel (figure 3.3).

In figure D.5(c), the oscillatory perturbation in the prior mean µX is
within the seismic spectrum (figure 3.3), so the inversion was able to correct
the prior knowledge properly, given the seismic measurements.

Notwithstanding the biases generated on the inverted impedances µX|Y ,
the modelled seismic synthetics fit the measurement equally well, for the three
cases. So, there is no way of determining the true low-frequency content of
the impedance from the seismic measurement. (61) proposes a hierarchical
Bayesian approach to include the low-frequencies uncertainty in the inversion
formalism.

Similarly, the high frequency components of the impedance profile are
filtered out by the seismic effective kernel. The posterior mean µX|Y is a
smooth solution to the inversion problem. Although, the high frequency
information can be obtainted by sampling m from the posterior probability
distribution using equations B-15 to B-17 (see (62) for random variables
sampling techniques), this high frequency content is subject to the correct
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knowledge of the prior covariance matrix (which is estimated from nearby
wells).

Summarizing the above discussion, a prior mean of the impedances profile
(also known as the prior model, low frequency model, or background model)
is crucial for the seismic inversion. But it depends on a prior knowledge of
geology, which is minimal in regions between drilled wells.

Usually, inversion softwares create a prior model based on nearby drilled
wells, by laterally interpolating their impedances. (63, 64, 65) show advanced
methodologies for prior model building. Still, the available methods are a lot
limited, and impossible to apply when there are no nearby wells. See (61, 66, 64)
for a discussion on the difficulties and implications of prior model creation.

The above mentioned uncertainties on the elastic properties inverted from
seismic impacts facies probabilities estimation, if one is to use these properties
as input for rock physics inversion (illustrated in figure 2.2).

This thesis’ inversion method, on the other hand, does not need an elastic
background model, for it works on facies sequencing. Facies inversion uses
nearby wells to determine the elastic properties ranges that each facies might
have, and by working on the possible facies sequences, it can be used to improve
elastic inversion (as explained in section 5.6).

Although seismic to facies inversion does not depend on an elastic prior
model, it depends on the facies prior knowledge, which is also hard to be
determined in regions away from well control. This problem can be treated
more easily for it can be modelled from geological experience and analogues.
So, seismic to facies inversion highly depends on the interaction between
geophysicists and geologists.
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E
Markov Chain Monte Carlo

E.1
Introduction

Monte Carlo is the technique of numerically calculating the expectation of
some random variable. Usually, it is achieved through use of the Large Numbers
Theorem (67). But, the use of the Large Numbers Theorem, requires one to
be able to take independent samples from the desired probability distribution.
A good reference on random numbers generation is (62).

But for multidimensional problems, or complex combinatorial problems,
the sampling itself might be hard to be implemented, or even, the probability
distribution is known up to an unknown normalizing constant (such as in
equation 3-17). In these cases, one uses the technique known as Markov Chain
Monte Carlo (MCMC), which instead of sampling independent identically
distributed samples of the proposed distribution, uses a Markov Chain, whose
stationary distribution is the required distribution.

Since, this thesis main focus is not on this technique, it will not be
demonstrated it in depth, but instead it will be shown its reasoning, and only
for the discrete random variable case. For introductory reading on the topic,
we suggest (68), (26), and (69).

Definition E.1.1 (Markov Chain: discrete case). A random sequence
X1, X2, ..., where X ∈ Ω = {0, . . . , K − 1}, is said to be a Markov Chain,
with starting probability λ, and transition probability matrix T , if the following
relations hold:

p (Xn = in | X1 = i1, . . . , Xn−1 = in−1) = p (Xn = in | Xn−1 = in−1)

= Tin,in−1

(E-1)

p(X1 = i) = λi (E-2)
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E.2
MCMC Outlined

The Markov Chains of interest in this thesis are so called irreducible
(equivalently, they are said to be defined by irreducible transition matrices).
They are defined by the two equivalent conditions:

∀i, j ∈ Ω, ∀n > 0,∃m > 0, s.t. p (Xn+m = j | Xn = i) > 0 (E-3)

⇐⇒ ∀i, j ∈ Ω,∀n > 0,∃m > 0, s.t. [T ]mi,j > 0 (E-4)

In other words, in an irreducible Markov Chain, every state is achievable
from every state along the evolution of the Chain. As a consequence, every
state is visited infinitely many times, along the evolution of the Chain. For
irreducible chains, the following theorem holds:

Theorem E.2.1 (Perron Frobenius Theorem). Given, an irreducible Markov
Chain on a finite set Ω, with transition matrix T , there exists a unique vector
p, such that:

K−1∑
i=0

pi = 1 (E-5)

pi ≥ 0, ∀i ∈ {0, . . . , K − 1} (E-6)

pj =
K−1∑
i=0

piTi,j (E-7)

And let λ, any probability distribution on Ω. Let the vector sequence λn, defined
by λ0 = λ, and λnj = ∑K−1

i=0 λn−1
i Ti,j. The sequence converges:

lim
n→∞

λn = p (E-8)

The vector p is known as the stationary distribution of the Markov Chain.

The Perron Frobenius Theorem means that independently of the initial
state of the Markov Chain, after enough steps, it will converge to the same
probability distribution, given a transition matrix. There is a nice demonstra-
tion of this theorem in (69).

Theorem E.2.2 (MCMC). Say X is a random variable with
probability distribution p, on the finite set Ω. Say, q is any ir-
reducible transition matrix. Then the following algorithm gener-
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ates an irreducible Markov Chain with stationary distribution p:
Data: Proposed transition matrix q, and required probability

distribution p
Result: Random sequence X1, X2, . . . , XN , sampled from p

1 Initialize X1, with whatever heuristic;
2 for n = 1 to N do
3 sample X ′ from qXn,X′, and sample u ∼ U [0, 1];

4 compute αXn,X′ = min
{
pX′qX′,Xn
pXnqXn,X′

, 1
}
;

5 if u < αXn,X′ then
6 Xn+1 = X ′;
7 else Xn+1 = Xn;
8 end
9 end

Algorithm 5: MCMC sampling

Proof. The resulting transition matrix, from the above algorithm is:

Ti,j = qi,jαi,j, j 6= i (E-9)

Ti,i = qi,i +∑
j 6=i qi,j(1− αi,j) (E-10)

Because, in order to transition from i to j, first the transition must be
proposed, and then it must be accepted. On the other hand, for a transition
from i to itself, either, this transition was proposed and accepted, or any other
transition was proposed but rejected.

Then, one must check that p will be the stationary distribution of this
transition matrix, by simply checking that equation E-7 holds. From theorem
E.2.1, p is the unique stationary distribution of the transition matrix T .

K−1∑
i=0

piTi,j =
∑
i 6=j

piTi,j + pjTj,j

=
∑
i 6=j
{piqi,jαi,j}+ pjqj,j + pj

∑
i′ 6=j
{qj,i′(1− αj,i′)}

= pjqj,j +
∑
i 6=j
{piqi,jαi,j + pjqj,i(1− αj,i)}

= pjqj,j +
∑
i 6=j

A(i, j)

(E-11)

In the summation of the A(i, j) terms, for those terms i, for which
αi,j = pjqj,i

piqi,j
< 1, and consequently αj,i = 1:
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A(i, j) = piqi,jαi,j + pjqj,i(1− αj,i)

= piqi,j
pjqj,i
piqi,j

+ pjqj,i(1− 1)

= pjqj,i

(E-12)

For those i, for which αj,i = piqi,j
pjqj,i

< 1, and consequently αi,j = 1:

A(i, j) = piqi,jαi,j + pjqj,i(1− αj,i)

= piqi,j + pjqj,i(1−
piqi,j
pjqj,i

)

= piqi,j + pjqj,i − piqi,j = pjqj,i

(E-13)

Substituting back the above terms, the summation becomes:

K−1∑
i=0

piTi,j = pjqj,j +
∑
i 6=j

A(i, j)

= pjqj,j +
∑
i 6=j

pjqj,i =
K−1∑
i=0

pjqj,i

= pj
K−1∑
i=0

qj,i = pj

(E-14)

So, the algorithm really samples from the required probability distribu-
tion p.

�

From the above theorem, given, a proposal transition matrix q, one can
sample from a complex probability distribution p, the only requirement is that
q is an irreducible transition matrix.

On the other hand, p is the stationary probability distribution, meaning,
that the population sampled from algorithm 5 converges, as the iterations
grow, to a population sampled directly from p. The amount of samples needed
for convergence, depends on the quality of the transition matrix q in aliasing
the desired probability distribution p.

An indication that the approximation is converging fast is the accep-
tance ratio α: high acceptance ratios throughout the simulation, means fast
convergence.

Theorem E.2.2, together with the next theorem, makes it possible to
numerically compute expectation values for complex probability distributions.
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Theorem E.2.3 (Birkoff Theorem: discrete case). Let X be a random variable,
with values in Ω = {0, . . . , K − 1}, and probability distribution p. Let a real
function f over Ω. And, say that X1, X2, . . . is an irreducible Markov Chain
with stationary distribution p. Then, the expected value of the random variable
f(X) is given by the formula:

1
N

N∑
n=1

f(Xn) =
K−1∑
i=0

f(i)p(i) (E-15)

On the above equation, the left-hand side denotes an average of f over
the population sampled by the Markov Chain, while the right-hand side is the
expectation of the function f over the random variable X.

So, given a complex probability distribution p, one devises a Markov
Chain using theorem E.2.2. The expectation of any integrable function can be
computed using population mean over the chain sampled sequence.

There are many flavours of MCMC, each one using different of type of
transition matrix q ((68) gives a broad review). The one used in this thesis is
known as independent sampler Metropolis-Hastings:

Definition E.2.1 (Independent sampler Metropolis Hastings). Say X is a
random variable with probability distribution p. Say, qi,j = qj is a transition
matrix, which is independent on the initial state. Given that the following
restriction holds qj = 0 =⇒ pj = 0 (irreducible transition matrix over
the exact posterior probability space), then, the MCMC acceptance ratio will be
given by:

αi,j = min
{
pjqi
piqj

, 1
}

(E-16)

In this case, if q = p, then the acceptance ratio will be 1. Thus, the
acceptance ratio, in the case of independent sampler MH algorithm, is a
measure of similarity of the proposed distribution q and the true distribution
p.
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