References

DANESHY, A. A. Hydraulic Fracture Propagation in the Presence of Planes of Weakness, SPE European Spring Meeting. Society of Petroleum

Miranda, A. C. de O. and Martha, L. F. Hierarchical template-based

PERKINS, T. K. AND KERN, L. R. Widths of Hydraulic Fractures, Journal of

Annex A
Resulting space discretization

The weak formulation of the differential equations gives the following equalities (repeated from equations presented in Chapter 3 of the main document):

\[
\int_{\Omega} \delta \epsilon \cdot \sigma' \, d\Omega - \int_{\Omega} \delta \epsilon \cdot m \cdot p \, d\Omega + \int_{\Gamma_d} \delta \mathbf{u} \cdot (t_F - p_F \cdot n_{\Gamma_d}) \, d\Gamma \\
- \int_{\Gamma_t} \delta \mathbf{u} \cdot \mathbf{t} \, d\Gamma = 0
\]
\[(A.1)\]

\[
\int_{\Omega} \nabla \delta p k_F \nabla p \, d\Omega + \int_{\Gamma_d} \delta p [\bar{w}] n_{\Gamma_d} \, d\Gamma + \int_{\Omega} \delta p \cdot \nabla \bar{u} \, d\Omega \\
+ \int_{\Gamma_w} \delta p \cdot \bar{q} \, d\Gamma = 0
\]
\[(A.2)\]

\[
\int_{\Gamma_d} \frac{\partial \delta p_F}{\partial x'} k_F \cdot 2h \cdot \frac{\partial p_F}{\partial x} \, d\Gamma - \int_{\Gamma_d} \delta p_F q_F n_{\Gamma_d} \, d\Gamma + \\
\int_{\Gamma_d} \delta p_F \cdot 2h \cdot \left(\frac{\partial \bar{u}_x'}{\partial x} \right) \, d\Gamma + \int_{\Gamma_d} \delta p_F \cdot [\bar{u}_y'] \, d\Gamma = 0
\]
\[(A.3)\]

It may be admitted that the test functions \(\delta u, \delta p \) and \(\delta p_F \) follow the same discretization rules as the variables \(u, p \) and \(p_F \). It is also considered that the vector of the nodal variables for each element node is given by \(\bar{u} \). Although generalized for any number of enriched degrees of freedom, for the sake of clearness the discretization is developed for one enriched displacement variable \(a \) and one enriched pressure variable \(p_a \). Eq. (A.4) to Eq. (A.16) present the discretization of the variables and their derivatives.

\[
u = N_{\text{std}}^{u} \bar{u} + N_{\text{enr}}^{u} \bar{\alpha}
\]
\[(A.4)\]

\[
\delta u = N_{\text{std}}^{\delta u} \delta \bar{u} + N_{\text{enr}}^{\delta u} \delta \bar{\alpha}
\]
\[(A.5)\]

\[
[\mathbf{u}] = [N_{\text{std}}^{u}][\bar{u}] + [N_{\text{enr}}^{u}][\bar{\alpha}] = [N_{\text{enr}}^{u}] [\bar{\alpha}]
\]
\[(A.6)\]

\[
\varepsilon = B_{\text{std}}^{u} \bar{u} + B_{\text{enr}}^{u} \bar{\alpha}
\]
\[(A.7)\]
\[\delta \varepsilon = B_{u}^{\text{std}} \delta \bar{u} + B_{u}^{\text{enr}} \delta \bar{a} \]
(A.8)

\[\nabla \delta \bar{u} = B_{u}^{\text{std}} \delta \bar{u} + B_{u}^{\text{enr}} \delta \bar{a} \]
(A.9)

\[p = N_{p}^{\text{std}} \bar{p} + N_{p}^{\text{enr}} \bar{p}_{a} \]
(A.10)

\[\delta p = N_{p}^{\text{std}} \delta \bar{p} + N_{p}^{\text{enr}} \delta \bar{p}_{a} \]
(A.11)

\[\nabla \delta p = B_{p}^{\text{std}} \delta \bar{p} + B_{p}^{\text{enr}} \delta \bar{p}_{a} \]
(A.12)

\[\delta \nabla p = B_{p}^{\text{std}} \delta \bar{p} + B_{p}^{\text{enr}} \delta \bar{p}_{a} \]
(A.13)

\[p_{F} = N_{pF}^{\text{std}} \bar{p}_{F} \]
(A.14)

\[\delta p_{F} = N_{pF}^{\text{std}} \delta \bar{p}_{F} \]
(A.15)

\[\nabla p_{F} = B_{pF}^{\text{std}} \bar{p}_{F} \]
(A.16)

Replacing the variables in Eq. (3.14), the following equation is obtained:

\[
\int_{\Omega} \delta \varepsilon. D. \varepsilon. d\Omega - \int_{\Omega} \delta \varepsilon. m. p. d\Omega + \int_{\Gamma_{d}} \left[\delta \bar{u} \right] \left(t_{F} - p_{F}. n_{\Gamma_{d}} \right) d\Gamma \\
- \int_{\Gamma_{t}} \delta \bar{u}. \bar{t} \; d\Gamma \\
= \int_{\Omega} (B_{u}^{\text{std}})^{T} \delta \bar{u} \bar{D}_{u} B_{u}^{\text{std}} \; d\Omega \\
+ \int_{\Omega} (B_{u}^{\text{std}})^{T} \delta \bar{u} \bar{D}_{u}^{\text{enr}} \; d\Omega \\
+ \int_{\Omega} (B_{u}^{\text{enr}})^{T} \delta \bar{a} \bar{D}_{u} B_{u}^{\text{std}} \; d\Omega \\
+ \int_{\Omega} (B_{u}^{\text{enr}})^{T} \delta \bar{a} \bar{D}_{u}^{\text{enr}} \; d\Omega \\
- \int_{\Omega} m(B_{u}^{\text{std}})^{T} \delta \bar{u} N_{p}^{\text{std}} \bar{p} \; d\Omega \\
- \int_{\Omega} m(B_{u}^{\text{std}})^{T} \delta \bar{u} N_{p}^{\text{enr}} \bar{p}_{a} \; d\Omega \\
- \int_{\Omega} m(B_{u}^{\text{enr}})^{T} \delta \bar{a} N_{p}^{\text{std}} \bar{p} \; d\Omega \\
- \int_{\Omega} m(B_{u}^{\text{enr}})^{T} \delta \bar{a} N_{p}^{\text{enr}} \bar{p}_{a} \; d\Omega \\
+ \int_{\Gamma_{d}} \left[N_{u}^{\text{enr}} \right]^{T} \delta \bar{a} \left[D_{F} \left[N_{u}^{\text{enr}} \right] \right] \; d\Gamma \\
+ \int_{\Gamma_{d}} \left[N_{u}^{\text{enr}} \right]^{T} \delta \bar{a} \left(-p_{F}. n_{\Gamma_{d}} \right) \; d\Gamma \\
- \int_{\Gamma_{t}} (N_{u}^{\text{std}})^{T} \delta \bar{u} \; d\Gamma - \int_{\Gamma_{t}} (N_{u}^{\text{enr}})^{T} \delta \bar{a} \; d\Gamma \\
= 0
\]
(A.17)
Assembling the test functions, it gives

\[
\delta \vec{u} \left\{ \int_\Omega (B_u^{\text{std}})^T D B_u^{\text{std}} \, d\Omega + \int_\Omega (B_u^{\text{std}})^T D B_u^{\text{en}} \, \vec{a} \, d\Omega \right\} \\
- \int_\Omega m(B_u^{\text{std}})^T N_p^{\text{std}} \vec{p} \, d\Omega \\
- \int_\Omega m(B_u^{\text{en}})^T N_p^{\text{en}} \vec{c} \, d\Omega - \int_{\Gamma_t} (N_u^{\text{std}})^T \vec{\xi} \, d\Gamma \\
+ \delta \vec{a} \left\{ \int_\Omega (B_u^{\text{en}})^T D B_u^{\text{std}} \, \vec{u} \, d\Omega \right\} \\
+ \int_\Omega (B_u^{\text{en}})^T D B_u^{\text{en}} \, \vec{a} \, d\Omega \\
- \int_\Omega m(B_u^{\text{en}})^T N_p^{\text{std}} \vec{p} \, d\Omega \\
- \int_\Omega m(B_u^{\text{en}})^T N_p^{\text{en}} \vec{p} \, d\Omega \\
+ \int_{\Gamma_d} \left[N_u^{\text{en}} \right]^T D_F \left[N_u^{\text{en}} \right] \, \vec{\alpha} \, d\Gamma \\
- \int_{\Gamma_d} \left[N_u^{\text{en}} \right]^T \left(p_F n_{\Gamma_d} \right) d\Gamma - \int_{\Gamma_t} \left(N_u^{\text{en}} \right)^T \vec{\xi} \, d\Gamma \right\} \\
= 0
\]

(A.18)

Considering that this condition is valid for any test function, the term within the brackets must equal zero. Arranging the terms into a matrix form, the following relation is obtained

\[
\begin{bmatrix}
K_{uu} & K_{ua} \\
K_{au} & K_{aa}
\end{bmatrix}
\begin{Bmatrix}
\{\vec{u}\} \\
\{\vec{a}\}
\end{Bmatrix}
- \begin{bmatrix}
Q_{up} \\
Q_{ap}
\end{bmatrix}
\begin{Bmatrix}
\vec{p} \\
\vec{\alpha}
\end{Bmatrix}
= \begin{Bmatrix}
f_u^{\text{ext}} \\
f_{alpha}^{\text{ext}}
\end{Bmatrix}
- \begin{Bmatrix}
f_u^{\text{int}} \\
f_{alpha}^{\text{int}}
\end{Bmatrix}
\]

(A.19)

where

\[
K_{uu} = \int_\Omega (B_u^{\text{std}})^T D B_u^{\text{std}} \, d\Omega
\]

(A.20)

\[
K_{ua} = \int_\Omega (B_u^{\text{std}})^T D B_u^{\text{en}} \, d\Omega
\]

(A.21)

\[
K_{au} = \int_\Omega (B_u^{\text{en}})^T D B_u^{\text{std}} \, d\Omega
\]

(A.22)

\[
K_{aa} = \int_\Omega (B_u^{\text{en}})^T D B_u^{\text{en}} \, d\Omega
\]

(A.23)

\[
Q_{up} = \int_\Omega (B_u^{\text{std}})^T m N_p^{\text{std}} \, d\Omega
\]

(A.24)
\[Q_{uc} = \int_{\Omega} (B_u^{std})^T mN_p^{enr} \, d\Omega \] \hspace{1cm} (A.25)

\[Q_{ap} = \int_{\Omega} (B_u^{enr})^T mN_p^{std} \, d\Omega \] \hspace{1cm} (A.26)

\[Q_{ac} = \int_{\Omega} (B_u^{enr})^T mN_p^{enr} \, d\Omega \] \hspace{1cm} (A.27)

\[f_u^{ext} = -\int_{\Gamma_t} (N_u^{std})^T \, \bar{t} \, d\Gamma \] \hspace{1cm} (A.28)

\[f_a^{ext} = \int_{\Gamma_t} (N_u^{enr})^T \, \bar{t} \, d\Gamma \] \hspace{1cm} (A.29)

\[f_u^{int} = 0 \] \hspace{1cm} (A.30)

\[f_a^{int} = \int_{\Gamma_d} [N_u^{enr}]^T D_F \, \bar{a} \, d\Gamma - \int_{\Gamma_d} [N_u^{enr}]^T (p_F n_{r_d}) \, d\Gamma \] \hspace{1cm} (A.31)

\[m = \{1 \quad 1 \quad 0\}^T \] \hspace{1cm} (A.32)

Generalizing the equations and terms, it gives

\[[K]\{\bar{U}\} - [Q]\{\bar{P}\} + f_u^{int} - f_u^{ext} = 0 \] \hspace{1cm} (A.33)

\[K_{\beta\gamma} = \int_{\Omega} (B_u^\beta)^T D B_u^\gamma \, d\Omega \] \hspace{1cm} (A.34)

\[Q_{\beta\zeta} = \int_{\Omega} (B_u^\beta)^T m N_p^\zeta \, d\Omega \] \hspace{1cm} (A.35)

\[f_\beta^{int} = \int_{\Gamma_d} [N_u^\beta]^T D_F \, \bar{\beta} \, d\Gamma - \int_{\Gamma_d} [N_u^\beta]^T (p_F n_{r_d}) \, d\Gamma \] \hspace{1cm} (A.36)

\[f_\beta^{ext} = \int_{\Gamma_t} (N_u^\beta)^T \, \bar{t} \, d\Gamma \] \hspace{1cm} (A.37)

For the continuity in the porous region, the replacement of Eqs. (A.4) to (A.16) in Eq. (A.2) gives
\[
\int_{\Omega} \nabla \delta p k_f \nabla d\Omega + \int_{\Gamma_d} \delta p_c (p - p_F) n_{\Gamma_d} d\Gamma + \int_{\Omega} \delta p \nabla \hat{u} d\Omega
\]
\[
+ \int_{\Gamma_w} \delta p \bar{q} d\Gamma
\]
\[
= \int_{\Omega} (B_p^{std})^T \delta \bar{p} k_f B_p^{std} \bar{p} d\Omega
\]
\[
+ \int_{\Omega} (B_p^{std})^T \delta \bar{p} k_f B_p^{enr} \bar{p}_a d\Omega
\]
\[
+ \int_{\Omega} (B_p^{enr})^T \delta \bar{p}_a k_f B_p^{std} \bar{p}_a d\Omega
\]
\[
+ \int_{\Omega} (B_p^{enr})^T \delta \bar{p}_a k_f B_p^{enr} \bar{p}_a d\Omega
\]
\[
+ \int_{\Gamma_d} (N_p^{std})^T \delta \bar{p} c N_p^{std} \bar{p}_a d\Gamma
\]
\[
+ \int_{\Gamma_d} (N_p^{enr})^T \delta \bar{p}_a c N_p^{enr} \bar{p}_a d\Gamma
\]
\[
- \int_{\Gamma_d} (N_p^{std})^T \delta \bar{p} c N_p^{std} \bar{p}_F d\Gamma
\]
\[
- \int_{\Gamma_d} (N_p^{enr})^T \delta \bar{p}_a c N_p^{enr} \bar{p}_F d\Gamma
\]
\[
+ \int_{\Omega} (N_p^{std})^T \delta \bar{p} m B_u^{std} \hat{u} d\Omega
\]
\[
+ \int_{\Omega} (N_p^{enr})^T \delta \bar{p}_a m B_u^{enr} \hat{u} d\Omega
\]
\[
+ \int_{\Omega} (N_p^{enr})^T \delta \bar{p}_a m B_u^{std} \hat{u} d\Omega
\]
\[
+ \int_{\Omega} (N_p^{std})^T \delta \bar{p}_a \bar{q} d\Gamma + \int_{\Gamma_w} (N_p^{enr})^T \delta \bar{p}_a \bar{q} d\Gamma
\]
\[
= 0 \quad (A.38)
\]
Assembling the test functions, it gives

\[
\delta p \left\{ \int_{\Omega} (B_{p}^{\text{std}})^T k_F B_{p}^{\text{std}} \hat{p} \, d\Omega + \int_{\Omega} (B_{p}^{\text{std}})^T k_F B_{p}^{\text{emr}} \bar{p}_a \, d\Omega \\
+ \int_{r_w} (N_{p}^{\text{std}})^T \bar{q} \, d\Gamma + \int_{r_w} (N_{p}^{\text{std}})^T m B_{u}^{\text{std}} \hat{u} \, d\Omega \\
+ \int_{r_d} (N_{p}^{\text{std}})^T m B_{u}^{\text{emr}} \hat{a} \, d\Omega \\
+ \int_{r_d} (N_{p}^{\text{emr}})^T c N_{p}^{\text{std}} \hat{p} \, d\Gamma \\
+ \int_{r_d} (N_{p}^{\text{emr}})^T c N_{p}^{\text{emr}} \bar{p}_a \, d\Gamma \\
- \int_{r_d} (N_{p}^{\text{emr}})^T c N_{p}^{\text{std}} \bar{p}_a \, d\Gamma \right\} \\
+ \delta p \left\{ \int_{\Omega} (B_{p}^{\text{emr}})^T k_F B_{p}^{\text{std}} \hat{p} \, d\Omega \\
+ \int_{\Omega} (N_{p}^{\text{emr}})^T k_F B_{p}^{\text{emr}} \bar{p}_a \, d\Omega + \int_{r_w} (N_{p}^{\text{emr}})^T \bar{q} \, d\Gamma \\
+ \int_{\Omega} (N_{p}^{\text{emr}})^T m B_{u}^{\text{emr}} \hat{u} \, d\Omega \\
+ \int_{\Omega} (N_{p}^{\text{emr}})^T m B_{u}^{\text{emr}} \hat{a} \, d\Omega \\
+ \int_{r_d} (N_{p}^{\text{emr}})^T c N_{p}^{\text{emr}} \hat{p} \, d\Gamma \\
+ \int_{r_d} (N_{p}^{\text{emr}})^T c N_{p}^{\text{emr}} \bar{p}_a \, d\Gamma \\
- \int_{r_d} (N_{p}^{\text{emr}})^T c N_{p}^{\text{std}} \bar{p}_a \, d\Gamma \right\} = 0
\]

(A.39)

Arranging the terms into a matrix form, the following relation is obtained

\[
\begin{bmatrix} Q_{pu} & Q_{pa} \\ Q_{cu} & Q_{ca} \end{bmatrix} \begin{bmatrix} \hat{u} \\ \hat{a} \end{bmatrix} = \begin{bmatrix} H_{pp} + L_{pp} & H_{pc} + L_{pc} \\ H_{cp} + L_{cp} & H_{cc} + L_{cc} \end{bmatrix} \begin{bmatrix} \bar{p} \\ \bar{p}_a \end{bmatrix} + \begin{bmatrix} L_{ppr} \\ L_{cpp} \end{bmatrix} \begin{bmatrix} \bar{p}_r \\ \bar{p}_a \end{bmatrix}
\]

(A.40)

where

\[
Q_{pu} = \int_{\Omega} (N_{p}^{\text{std}})^T m B_{u}^{\text{std}} \, d\Omega \\
Q_{pa} = \int_{\Omega} (N_{p}^{\text{std}})^T m B_{u}^{\text{emr}} \, d\Omega
\]

(A.41)

(A.42)
Generalizing the equations and terms, it gives
\[
[Q^r]\{\ddot{U}\} + [H + L1]\{\ddot{\mathbf{P}}\} - [L2]\{\dddot{\mathbf{P}}_f\} - q_{ext}^r = 0 \tag{A.57}
\]
\[
H_{\delta\zeta} = \int_{\Omega} (B_p^\delta)^T k_F B_p^\zeta \mathrm{d}\Omega \tag{A.58}
\]
\[
L1_{\delta\zeta} = \int_{\Gamma_d} (N_p^\delta)^T c N_p^\zeta \mathrm{d}\Gamma \tag{A.59}
\]
\[L2 \delta p_F = \int_{\Gamma_d} \left(N^d_p \right)^T c N_{\text{std}} d\Gamma \] \tag{A.60}

\[q^\text{ext}_\delta = \int_{\Gamma_w} \left(N^d_p \right)^T \bar{q}_w d\Gamma \] \tag{A.61}

For the continuity in the fracture region, the replacement of Eqs. (A.4) to (A.16) in Eq. (A.3) gives

\[
\int_{\Gamma_d} \frac{\partial \delta p_F}{\partial x'} k_{\text{ff}} \cdot 2h \frac{\partial p_F}{\partial x'} d\Gamma + \int_{\Gamma_d} \delta p_F \cdot c(p_F - p)n_{\Gamma_d} d\Gamma \\
+ \int_{\Gamma_d} \delta p_F \cdot 2h \nabla \bar{u}' \cdot \nabla p_F t_{\Gamma_d} d\Gamma \\
= \int_{\Gamma_d} \left(B^\text{std}_{pF} \right)^T t_{\Gamma_d} \delta \overline{p_F} \left(2h \right) k_{\text{ff}} \nabla \overline{p_F} t_{\Gamma_d} d\Gamma \\
- \int_{\Gamma_d} \left(N^\text{std}_{pF} \right)^T \delta \overline{p_F} c N^\text{std}_{pF} \left(\overline{p}_p \right) d\Gamma \\
- \int_{\Gamma_d} \left(N^\text{std}_{pF} \right)^T \delta \overline{p_F} c N^\text{enr}_{pF} \left(\overline{p}_a \right) d\Gamma \\
+ \int_{\Gamma_d} \left(N^\text{std}_{pF} \right)^T t_{\Gamma_d} \delta \overline{p_F} \left(2h \right) \nabla \bar{u} t_{\Gamma_d} d\Gamma \\
+ \int_{\Gamma_d} \left(N^\text{std}_{pF} \right)^T \left[\overline{\nabla u} \right] n_{\Gamma_d} d\Gamma = 0 \] \tag{A.62}

Assembling the test functions, it gives

\[
\overline{p_F} \left\{ \int_{\Gamma_d} \left(B^\text{std}_{pF} \right)^T t_{\Gamma_d} \left(2h \right) k_{\text{ff}} \nabla \overline{p_F} t_{\Gamma_d} d\Gamma \\
+ \int_{\Gamma_d} \left(N^\text{std}_{pF} \right)^T t_{\Gamma_d} \left(2h \right) \nabla \bar{u} t_{\Gamma_d} d\Gamma \\
+ \int_{\Gamma_d} \left(N^\text{std}_{pF} \right)^T \left[\overline{\nabla u} \right] n_{\Gamma_d} d\Gamma \right\} \tag{A.63}
\]

Arranging the terms into a matrix form, the following relation is obtained
\[
[L_{p_{FP}} \ L_{p_{FC}}] \{\bar{P} \bar{P}_d\} + [H_{p_{FPF}} + L_{p_{FPF}}]\{\bar{P}_F\} = q_{p_{F}}^{\text{int}} \tag{A.64}
\]

where

\[
H_{p_{FPF}} = \int_{\Gamma_d} (B_{p_{FP}}^{\text{std}})^T t_{\Gamma_d} (2h) k_{\Gamma_d} \nabla \bar{P}_F t_{\Gamma_d} d\Gamma \tag{A.65}
\]

\[
L_{p_{FPF}} = \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T c N_{p_{FP}}^{\text{std}} d\Gamma \tag{A.66}
\]

\[
L_{p_{FPF}} = \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T c N_{p}^{\text{std}} d\Gamma \tag{A.67}
\]

\[
L_{p_{FC}} = \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T c N_{p}^{\text{env}} d\Gamma \tag{A.68}
\]

\[
q_{p_{F}}^{\text{int}} = \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T t_{\Gamma_d} (2h) (\nabla \hat{u}) t_{\Gamma_d} d\Gamma
\]
\[+ \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T [\hat{u}] n_{\Gamma_d} d\Gamma \tag{A.69}\]

Generalizing the equations and terms, it gives

\[-[L_{2}^T]\{\bar{P}\} + [H_{F} + L_{3}]\{\bar{P}_F\} - q_{p_{F}}^{\text{int}} = 0 \tag{A.70}\]

where

\[
L_{2}^{P_{F}} = \int_{\Gamma_d} (N_{p}^{\text{std}})^T c N_{p_{FP}}^{\text{std}} d\Gamma \tag{A.71}
\]

\[
L_{3} = \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T c N_{p_{FP}}^{\text{std}} d\Gamma \tag{A.72}
\]

\[
H_{F} = \int_{\Gamma_d} (B_{p_{FP}}^{\text{std}})^T t_{\Gamma_d} (2h) k_{\Gamma_d} B_{p_{FP}}^{\text{std}} t_{\Gamma_d} d\Gamma \tag{A.73}
\]

\[
q_{p_{F}}^{\text{int}} = \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T t_{\Gamma_d} (2h) (\nabla \hat{u}) t_{\Gamma_d} d\Gamma
\]
\[+ \int_{\Gamma_d} (N_{p_{FP}}^{\text{std}})^T [\hat{u}] n_{\Gamma_d} d\Gamma \tag{A.74}\]

The values related with velocity are defined as
\[\langle \nabla \ddot{u} \rangle = \nabla \ddot{u}^+ + \nabla \ddot{u}^- \]

\[
= \frac{1}{2} \left[(B_u^{\text{std}} \ddot{u} + B_u^{\text{env}} \dot{\alpha})^+ + (B_u^{\text{std}} \ddot{u} + B_u^{\text{env}} \dot{\alpha})^- \right]
\]

\[
= \frac{1}{2} \left[2B_u^{\text{std}} \ddot{u} + B_u^{\text{std}}(H^+ + H^-) \dot{\alpha} \right]
\]

\[
= B_u^{\text{std}} (\ddot{u} + \ddot{u}^+ + \ddot{u}^-) + B_u^{\text{std}} \langle H \rangle \dot{\alpha}
\]

\[
= B_u^{\text{std}} \frac{(\bar{u}_n - \bar{u}_{n-1})}{\Delta t} + B_u^{\text{std}} \langle H \rangle \frac{(\bar{\alpha}_n - \bar{\alpha}_{n-1})}{\Delta t}
\]

\[\llbracket \ddot{u} \rrbracket = \hat{u}^+ - \hat{u}^-
\]

\[
= \left(N_u^{\text{std}^+} \ddot{u} + N_u^{\text{std}^+} H^+ \dot{\alpha} \right)
- \left(N_u^{\text{std}^-} \ddot{u} + N_u^{\text{std}^-} H^- \dot{\alpha} \right)
= N_u^{\text{std}^+} \llbracket H \rrbracket \dot{\alpha}
\]

\[\text{(A.76)} \]

Given that

\[N_u^{\text{std}^+} = N_u^{\text{std}^-} = N_u^{\text{std}} \]

\[N_u^{\text{env}^+} = N_u^{\text{std}^+} H^+ = N_u^{\text{std}} H^+ \]

\[N_u^{\text{env}^-} = N_u^{\text{std}^-} H^- = N_u^{\text{std}} H^- \]

\[B_u^{\text{std}^+} = B_u^{\text{std}^-} = B_u^{\text{std}} \]

\[B_u^{\text{env}^+} = B_u^{\text{std}^+} H^+ = B_u^{\text{std}} H^+ \]

\[B_u^{\text{env}^-} = B_u^{\text{std}^-} H^- = B_u^{\text{std}} H^- \]

\[\text{(A.77)} \]

\[\text{(A.78)} \]

\[\text{(A.79)} \]

\[\text{(A.80)} \]

\[\text{(A.81)} \]

\[\text{(A.82)} \]

Where \(H^+ \) and \(H^- \) represent the values of the enrichment function \(H \) in the fracture top and bottom faces, respectively. In \(\bar{u}_n - \bar{u}_{n-1} \), \(n \) represents the current increment and \(n-1 \) the previous one.

Generalizing a number of degrees of freedom equal to \(\text{ndof} \), it gives

\[\langle \nabla \ddot{u} \rangle = \sum_k^{\text{ndof}} \langle B_u^k \rangle \frac{(\bar{k}_n - \bar{k}_{n-1})}{\Delta t} \]

\[\text{(A.83)} \]

\[\llbracket \ddot{u} \rrbracket = \sum_k^{\text{ndof}} \llbracket N_u^k \rrbracket \frac{(\bar{k}_n - \bar{k}_{n-1})}{\Delta t} \]

\[\text{(A.84)} \]

with \(\langle B_u^k \rangle = B_u^{\text{std}} \) and \(\langle B_u^a \rangle = B_u^{\text{std}} \langle H_a \rangle \)
Annex B
Newton-Raphson Algorithm

The Jacobian of derivatives is given by

\[
J = \begin{bmatrix}
\frac{\partial \psi_U}{\partial \mathbf{U}} & \frac{\partial \psi_U}{\partial \mathbf{P}} & \frac{\partial \psi_U}{\partial \mathbf{F}} \\
\frac{\partial \psi_F}{\partial \mathbf{U}} & \frac{\partial \psi_F}{\partial \mathbf{P}} & \frac{\partial \psi_F}{\partial \mathbf{F}} \\
\frac{\partial \psi_{\mathbf{F}_F}}{\partial \mathbf{U}} & \frac{\partial \psi_{\mathbf{F}_F}}{\partial \mathbf{P}} & \frac{\partial \psi_{\mathbf{F}_F}}{\partial \mathbf{F}}
\end{bmatrix}
\]

(B.1)

Multiplying the second and third lines for \(\Delta \) it gives

\[
J = \begin{bmatrix}
\frac{\partial f_U^{\text{int}}}{\partial \mathbf{U}} & \frac{\partial f_U^{\text{int}}}{\partial \mathbf{P}} & \frac{\partial f_U^{\text{int}}}{\partial \mathbf{F}} \\
\frac{\partial q_{\mathbf{F}_F}^{\text{int}}}{\partial \mathbf{U}} & \frac{\partial q_{\mathbf{F}_F}^{\text{int}}}{\partial \mathbf{P}} & \frac{\partial q_{\mathbf{F}_F}^{\text{int}}}{\partial \mathbf{F}}
\end{bmatrix}
\]

(B.2)

Re-scaling the problem formulation for one standard \(u \) and one enriched degree of freedom \(a \), the derivatives for the mechanical equation are
\[
\frac{\partial f_{U}^{\text{int}}}{\partial \bar{U}} = \left\{ \frac{\partial}{\partial \bar{u}} \right\} \left\{ \int_{\Gamma_d} \left[N_{\text{enr}}^u \right]^T (D_F \bar{a} - p_F n_{r_d}) d\Gamma \right\}^T = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \int_{\Gamma_d} \left[N_{\text{enr}}^u \right]^T D_F \left[N_{\text{enr}}^u \right] d\Gamma = \begin{bmatrix} 0 \\ T_a \end{bmatrix}
\] (B.3)

\[
\frac{\partial f_{U}^{\text{int}}}{\partial \bar{p}} = \left\{ \frac{\partial}{\partial \bar{p}} \right\} \left\{ \int_{\Gamma_d} \left[N_{\text{enr}}^u \right]^T (D_F \bar{a} - p_F n_{r_d}) d\Gamma \right\}^T = 0
\] (B.4)

\[
\frac{\partial f_{U}^{\text{int}}}{\partial \bar{p}_F} = \frac{\partial}{\partial \bar{p}_F} \left\{ \int_{\Gamma_d} \left[N_{\text{enr}}^u \right]^T (D_F \bar{a} - p_F n_{r_d}) d\Gamma \right\} = \left\{ -\int_{\Gamma_d} \left[N_{\text{enr}}^u \right]^T n_{r_d} N_{p_F}^{\text{std}} d\Gamma \right\} = \{-Q_{ap_F}\}
\] (B.5)

The derivatives for the continuity equation in the fracture are

\[
\frac{\partial q_{p_F}^{\text{int}}}{\partial \bar{U}} = \left\{ \frac{\partial}{\partial \bar{u}} \right\} \left\{ \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T \left(t_{r_d} (2h)(\nabla \bar{u}) \right) t_{r_d} d\Gamma + \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T [\bar{u}] n_{r_d} d\Gamma \right\} = \left\{ \begin{bmatrix} \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T \left(B_{u}^{\text{enr}}(H) \frac{1}{\Delta t} \right) t_{r_d} d\Gamma \\ \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T \left(2h \right) t_{r_d} d\Gamma + \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T [\bar{u}] n_{r_d} d\Gamma \end{bmatrix} \right\} = \left\{ \begin{bmatrix} \frac{1}{\Delta t} S_{p_F u} \\ \frac{1}{\Delta t} S_{p_F a} + \frac{1}{\Delta t} V_{p_F a} \end{bmatrix} \right\}
\] (B.6)

\[
\frac{\partial d_{p_F}^{\text{int}}}{\partial \bar{p}} = \left\{ \frac{\partial}{\partial \bar{p}} \right\} \left\{ \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T t_{r_d} (2h)(\nabla \bar{u}) \right\} = 0
\] (B.7)

\[
\frac{\partial q_{p_F}^{\text{int}}}{\partial \bar{p}_F} = \frac{\partial}{\partial \bar{p}_F} \left\{ \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T \left(t_{r_d} (2h)(\nabla \bar{u}) \right) t_{r_d} d\Gamma + \int_{\Gamma_d} \left(N_{\text{enr}}^{\text{std}} \right)^T [\bar{u}] n_{r_d} d\Gamma \right\} = 0
\] (B.8)

Substituting the derivatives in the Jacobian, it gives
If both porous and fracture material constitutive behaviour are such that their matrices K and T are symmetric, the Jacobian may be symmetric if the following simplifications are considered:

- The lines relative to pore and fracture pressures (third, fourth and fifth lines) are multiplied by -1
- $S_{Pa} = 0$
- $(S_{Pa} + V_{Pa}) = Q_{Pa} = Q_{app}^T$

The resulting Jacobian matrix is then given by

$$
J = \begin{bmatrix}
K_{uu} & K_{ua} & -Q_{up} & -Q_{uc} & 0 \\
K_{au} & K_{aa} + T_a & -Q_{ap} & -Q_{ac} & -Q_{app} \\
Q_{pu} & Q_{pa} & \Delta t(H_{pp} + L_{pp}) & \Delta t(H_{pc} + L_{pc}) & \Delta t.L_{ppf} \\
Q_{cu} & Q_{ca} & \Delta t(H_{cp} + L_{cp}) & \Delta t(H_{cc} + L_{cc}) & \Delta t.L_{cpp} \\
-S_{Pf, u} - (S_{Pf, a} + V_{Pf, a}) & \Delta t.L_{ppf} & \Delta t.L_{ppc} & \Delta t(H_{ppf} + L_{ppf}) &
\end{bmatrix}
$$

(B.9)

Generalizing the terms, it gives

$$
J = \begin{bmatrix}
K + T & -Q & -Q_F \\
-Q^T & -\Delta t(H + L_1) & \Delta t.L_2 \\
-Q_F^T & \Delta t.L_2^T & -\Delta t(H_F + L_3)
\end{bmatrix}
$$

(B.10)

Where the matrices are given by Eqs. (A.34), (A.35), (A.58) to (A.60), (A.71) to (A.73), and

$$
T_{\beta Y} = \int_{\Gamma_d} \left[N_u^\beta \right]^T D_F \left[N_u^\gamma \right] d\Gamma
$$

(B.12)

$$
Q_{Fpp,F} = \int_\Omega \left[N_u^\beta \right]^T n_{\Gamma_d} N_{pp}^{std} d\Omega
$$

(B.13)