
  
  

5  
Validation tests 

The implementation described previously is validated in this chapter. This is 

achieved by comparing the results of the XFEMHF code with analytical or other 

software solutions. First, the results of a single propagating planar fracture are 

compared with the analytical solution of the near-K vertex of the KGD model.  

Next, a group of simulations focus in flow through fractured media. A 

problem with unidimensional flow in a fractured element is compared with the 

analytical solution. Plus, bi-dimensional flow both in permanent and transient 

regimes is tested in three examples and compared with models with interface 

elements. In all models of this section a variation of hydraulic parameters is applied, 

in order to validate different percolation behaviours. 

Finally, the validation of the contact model with friction is achieved, first by 

using a one-element mesh with a single fracture followed by a multi-fractured 

problem. The single element models are used for three different situations where 

fracture position or load conditions change. First, an element with a horizontal 

fracture is subjected to a vertical cyclic displacement applied at its top. Second, an 

element with a horizontal fracture is subjected to a horizontal monotonic 

displacement at its top for three different vertical confining stresses. Third, an 

element with an inclined fracture is subjected to a vertical cyclic displacement 

applied at its top. In the multi-fractured model an unconfined compression test is 

simulated and the stress trajectories of the fractures are plotted against the 

implemented Mohr-Coulomb failure surface. 

5.1.  
KGD analytical solution 

General description of the simulation 

As stated in Chapter 2, there are analytical formulations for propagating 

fractures in a homogeneous medium. The KGD solution assumes a fracture which 

is infinite in one of its dimensions, so this means it can be modelled using a two-
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dimensional plane strain model. In this simulation, a numerical model is compared 

with the KGD K-vertex analytical storage-toughness solution, as presented by 

Bunger, Detournay and Garagash (2005). 

Model geometry and mesh 

The model’s dimensions are 45 m x 30 m and the mesh is regular with 75 

elements in each direction, as seen in Figure 5.1. An initial fracture of 1,2 m is 

placed at half-height on the left side of the model. 

 

Figure 5.1 – Geometry of the mesh and boundary conditions 

Material properties 

The material properties are presented in Table 5.1 and Table 5.2. Considering 

that the KGD K-vertex storage-toughness solution is valid for almost impermeable 

materials, it is assumed that the rock is impermeable. The parameters are adopted 

based in the work by Zielonka et al. (2014).  
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Table 5.1 – Hydraulic properties 

 Parameter All Models 

Fractures 

Initial hydraulic 

aperture (m) 
2x10-3 

Fluid Viscosity (kPa.s) 10-7 

 

Table 5.2 – Mechanical properties 

 Parameter  

Continuous 

Region 

E (kPa) 17x107 

ν 0,2 

σt (kPa) - Numerical 1250 

ΚIC (kPa.m1/2) - Analytical 1460 

 

Boundary and loading conditions 

Along the borders of the model the displacements are fixed in the 

perpendicular direction, as seen in Figure 5.1. The simulations are set to run one 

single step of 10 s with time increments of size between 0,5 s and 2 s. The fluid 

injection in the fracture is given by a constant volumetric flux of 1x10-3 m3/s at the 

hydraulic fracture mouth. No in-situ stress state was defined for this analysis. 

Results 

Figure 5.2 presents the variation of injection pressure, fracture aperture and 

fracture length over time, for both analytical and numerical solution. It is noticeable 

that, although some slight differences exist, the results and the tendencies of the 

numerical model are in good agreement with the analytical solution. 

The differences in results may be explained mostly due to three factors. First, 

it is known how mesh refinement influence the results. As stated by Zielonka et al. 

(2014), the relative error between solutions decrease monotonically as the mesh is 

refined. Second, the fact that the model has finite dimensions, in opposition to the 

infinite medium of the analytical solution, thus leading to possible influence of the 

boundary conditions at the borders of the model. Third, the theoretical formulations 

are different. As the KGD solution relies on the stress intensity factor for fracture 
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propagation, the numerical model bases its propagation criterion on the average 

stress state in a region in the front of the crack tip. As there is no analytical relation 

between critical stress intensity factor and tensile strength, the solutions may be 

similar but exact match would only be possible by doing back-analysis to find the 

correspondent tensile stress. 

 

a) 

 

b) 

 

c) 

Figure 5.2 – Plots for KGD analytical and numerical solution. 

a) Injection pressure vs time. b) Fracture maximum aperture vs time. 

c) Fracture length vs time. 
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5.2.  
Flow in a fractured medium 

5.2.1.  
Unidimensional percolation 

General description of the simulation 

A unidimensional flow simulation of two distinct situations – percolation 

through (Situation 1) and percolation from (Situation 2) a fracture – may be 

compared with an analytical solution. Figure 5.3 shows a schematic model for flow 

through materials with different permeabilities. On the left side of Figure 5.3 a 

gradient of pore pressure is imposed in the bottom and top of the model (Pr,b and 

Pr,t), leading to a one-way flow. On the right side of Figure 5.3 a pressure is imposed 

inside the fracture (Pf) and a gradient is created by imposing a lower pressure on 

the bottom and top of the model (Pr,b and Pr,t). It is assumed that the filter cake is a 

layer of infinitesimal length with conductivity equivalent to the fracture face 

transversal conductivity being O = C õ⁄ .  

 

Figure 5.3 – Two situations of unidimensional fluid percolation in a 

model with different layers. On the left side, percolation from the bottom to 

the top of the model. On the right side, percolation from the fracture to the 

porous medium 

Considering that the different layers are placed in series, the equivalent 

resistance (or conductivity) may be computed as 

Cí� = ∑ õ∑ õC (5.1) 

Therefore, following Darcy’s law the volumetric flux in the model is given by 
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Situation 1 Situation 2 

Cx÷ = ∑ õ∑ õC = õ� + õ�õ�C + 1O� + 1O� + õ�C  Cx÷ = ∑ õ∑ õC = õ�õ�C + 1O�
 

� = −C ∆6õ = −Cx÷ 6z,� − 6z,�õ� + õ�  � = −C ∆6õ = −Cx÷ 6z,� − 6Gõ�  

 

The pressures may then be computed for both situations as 

� = −C 6z,� − 6G,�õ� ⇔ 6G,� = 6z,� − � õ�C  

� = −C 6G,� − 6z,�õ� ⇔ 6G,� = 6z,� − � õ�C  

� = −O�Í6G − 6G,�Ï ⇔ 6G = 6G,� − ùúû (only for situation 1) 

Model geometry and mesh 

Given that a unidimensional situation is being modelled, the single element 

model presented in Figure 5.4 was defined. 

 

Figure 5.4 – Geometry and boundary conditions of the mesh 

Material properties 

Six different simulations were defined by changing material properties or 

boundary conditions. The hydraulic properties both for the porous region and the 

fractures are presented in Table 5.5.  
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Boundary and loading conditions 

The flow regime is guaranteed by imposing constant pressures in the bottom 

and the top of the model (and also in the fracture, in Situation 2), following the 

values presented in Table 5.4. Considering that a permanent regime occurs, the time 

interval and the number of steps are indifferent. 

Table 5.4 – Model boundary conditions 

 
Situation 1 Situation 2 

Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

Case 

6 

Pr,b (kPa) 1000 0 

Pr,t (kPa) 0 0 

Pf (kPa) - 1000 

Results 

The pressure profiles along a vertical section of the model are presented in 

Figure 5.5. It is evident that the numerical simulation results match exactly the 

analytical solutions. When the fluid flows from the bottom to the top of the model 

(situation 1) it is noticeable how the decrease of the fracture face transversal 

conductivity c increases the jump of pressure between the fracture faces. When the 

Table 5.3 – Hydraulic properties  

  Situation 1 Situation 2 

Parameters 
Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

Case 

6 

Porous Region 

Hydraulic 

Conductivity 

k = kx = ky  

(m/s) 
10-8 

Fracture face 

transversal 

conductivity. 

ctop  

(m/s.kPa-1) 
1 10-8 10-13 1 10-8 

10-10 

cbottom  

(m/s.kPa-1) 
10-8 
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injection is made from the fracture (situation 2) the XFEM element is capable of 

simulating both the loss of pressure in the fracture faces (filter cake) and through 

the porous medium. Results of Calculation 6 show how different fracture face 

transversal conductivity in the top and bottom faces of the fracture influence the 

pressure profile in both halves of the model. 

Situation 1 (Pr,b = 1000 | Pr,t = 0) 

Case 1 (ctop = cbottom = 1) Case 2 (ctop = cbottom = 10-8) Case 3 (ctop = cbottom = 10-13) 

   

Situation 2 (Pr,b = Pr,t = 0 | Pf = 1000) 

Case 4 (ctop = cbottom = 1) Case 5 (ctop = cbottom = 10-8) Case 6 (ctop = 10-10 | cbottom = 10-8) 

   

Figure 5.5 – Pressure profiles of the model and analytical solution for 

each calculation  

 

DBD
PUC-Rio - Certificação Digital Nº 1313002/CA



121 
 

 

5.2.2.  
Injection in fracture intersection  

General description of the simulation 

This model contemplates two intersecting fractures with a flow injection in 

the intersection. The pressure gradient between the injection point and the porous 

medium is created by imposing a null pressure in the corner nodes of the model. In 

this model, only hydraulic variables are considered: pore-pressures and fracture 

pressures. As there are no deformations in the model, a permanent regime is 

obtained.  

Two calculations are performed with variation of the fracture faces 

transversal conductivity. The results are compared with an Abaqus model with 

interface elements. 

Model geometry and mesh 

The model is symmetric, both in horizontal and vertical direction. Its 

dimensions are 10 m x 10 m and the mesh is regular with 15 elements in each 

direction, as seen in Figure 5.6. 

 

Figure 5.6 – Geometry of the mesh and boundary conditions 
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Material properties 

The hydraulic properties both for the porous region and the fractures are 

presented in Table 5.5. An isotropic hydraulic conductivity and equal fracture face 

transversal conductivity for every fracture are used.  

Table 5.5 – Hydraulic properties 

 Parameter Case 1 Case 2 

Porous 

Region 

Hydraulic conductivity:  

k = kx = ky (m/s) 
10-8 

Fracture 

 Fracture face transversal conductivity: 

c = ctop = cbottom (m/s.kPa-1) 
10-12 10-9 

Hydraulic aperture (m) 2x10-3 2x10-3 

Fluid Viscosity (kPa.s) 10-6 

Boundary and loading conditions 

The flow regime is guaranteed by imposing a constant pressure in the fracture 

intersection of 1000 kPa and a pressure of 0 kPa in the corners of the node, as 

indicated in Figure 5.6. Considering that a permanent regime occurs, the time 

interval and the number of steps are indifferent. 

Results 

Figure 5.7 shows the pore-pressure fields for the two calculations run, as well 

as the results obtained using Abaqus with interface elements. Figure 5.8 presents 

the values of the pore-pressures along the sections A-A and B-B (defined in Figure 

5.6). It is easily noticeable that the comparison of the two simulation tools shows a 

very good agreement. Slightly differences are due to the way the different output 

tools plot their results. 

As the porous medium and the fracture longitudinal transmissibility are the 

same in both calculations, the change in the fracture face transversal conductivity 

strongly affects the pore-pressure fields. For lower values of the coefficient (Case 

1: c = 10-12) a drop of pressure from 1000 kPa to around 30 kPa occurs between the 

fracture and the porous medium in both sections. On the other hand, a much smaller 

drop of pressure is verified in Case 2, since the increase of the coefficient obviously 

reduces the gradient.  
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Overall, it is shown that the implemented code is able to simulate the effect 

of the hydraulic behaviour in intersection of fractures and the leak-off to the porous 

region. 

Case 1 (c = 10-12)  

   

XFEMHF Abaqus  

Case 2 (c = 10-9)  

   
XFEMHF Abaqus  

Figure 5.7 – Pore-pressure fields 

Case 1 (c = 10-12) 

Section A-A Section B-B 
Case 2 (c = 10-9) 

  
Section A-A Section B-B 

Figure 5.8 – Pore-pressures in sections A-A and B-B 
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5.2.3.  
Percolation through a fractured medium  

General description of the simulation 

In this model, four randomly orientated fractures intersect each other. A 

pressure gradient is created. Only the hydraulic variables are considered: pore-

pressures and fracture pressures, obtaining a permanent regime. Four calculations 

are performed with variation of the fracture face transversal conductivity and the 

fracture hydraulic aperture. The results are compared with a model where the 

fractures are represented by interface elements. 

Model geometry and mesh 

The model dimensions are 30 m x 15 m and the mesh is regular with 30 and 

15 elements in the horizontal and vertical directions, respectively, as seen in Figure 

5.9. The fractures have different orientations and lengths that were defined 

randomly. 

Figure 5.10 shows the mesh with interface elements represented in red. A 

total of 1382 elements are used, where 73 are 4-node two-dimensional cohesive 

elements (COH2D4P) and 1309 are 4-node bilinear displacement and pore pressure 

elements (CPE4P). 

 

Figure 5.9 – Geometry of the mesh and boundary conditions 
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Figure 5.10 – Geometry of the mesh of Abaqus with interface elements 

model 

Material properties 

The hydraulic properties both for the porous region and the fractures are 

presented in Table 5.6. The porous media is isotropic and the fracture face 

transversal conductivity and hydraulic apertures are the same for every fracture in 

each of the calculations.  

Table 5.6 – Hydraulic properties 

 Parameter Case 1 Case 2 Case 3 Case 4 

Porous 

Region 

Hydraulic conductivity:  

k = kx = ky (m/s) 
10-8 

Fracture 

Fracture face transversal 

conductivity: 

c = ctop = cbottom (m/s.kPa-1) 

10-7 10-7 10-12 10-12 

Hydraulic aperture (m) 2x10-3 2x10-6 2x10-3 2x10-6 

Fluid Viscosity (kPa.s) 10-6 

Boundary and loading conditions 

The flow regime is guaranteed by imposing a constant pressure of 1000 kPa 

at the left border and a null pressure at the right border, as indicated in Figure 5.9. 

Considering that a permanent regime occurs, the time interval and the number of 

steps are indifferent. 
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Results 

Figure 5.11 shows the pore-pressure fields for the four simulations, as well as 

the results obtained using Abaqus with interface elements. Figure 5.12 presents the 

values of the pore-pressures along sections A-A and B-B defined in Figure 5.9. It 

is easily noticeable from both figures that the XFEMHF simulations show very 

good agreement with the interface element solution.  

A sensitivity analysis of two parameters – fracture longitudinal 

transmissibility and fracture face transversal conductivity – shows the strong 

influence that these have on the pressure fields. 

The calculation with higher values of fracture transversal and longitudinal 

transmissibility (Case 1: c = 10-7 || winit = 2x10-3) shows that when both 

permeabilities are high, fluid easily flows to the fractures, showing an effect of 

“drainage canals”. The fluid from the porous region tends to flow to the fracture, 

reducing the fluxes in the middle part of the model. Then, it leaves the right sided 

fracture to reach the model border, as seen in Figure 5.13. This effect also proves 

that the fracture intersections are capable of transmitting the fluid flow between 

different fractures. 

In Case 2 (c = 10-7 || winit = 2x10-6), the longitudinal transmissibility is reduced 

by means of the fracture aperture. Keeping a higher transversal conductivity, the 

flow easily enters or leaves the fractures. However, the drainage effect related with 

the longitudinal flow no longer occurs. This way, the flow crosses the fractures but 

does not enter in this preferential path, keeping the same direction in the porous 

region. 

Case 3 (c = 10-12 || winit = 2x10-3) and Case 4 (c = 10-12 || winit = 2x10-3) show 

that the reduction of the fracture face transversal conductivity decreases the 

transversal conductivity to a point that the flow is no longer capable of entering the 

fractures. Therefore, the fractures represent a barrier and the fluid has to deviate to 

continue to flow through the porous region, as seen in Figure 5.13. Despite the 

difference in the longitudinal transmissibility between Case 3 and Case 4, there is 

no significant difference in the results, as the flow does not flow along the fractures. 
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Case 1 (c = 10-7 || winit = 2x10-3)  

  

XFEMHF Abaqus  

Case 2 (c = 10-7 || winit = 2x10-6)  

  

XFEMHF Abaqus  

Case 3 (c = 10-12 || winit = 2x10-3)  

  

XFEMHF Abaqus  

Case 4 (c = 10-12 || winit = 2x10-6)  

  

XFEMHF Abaqus  

Figure 5.11 – Pore-pressure fields 
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Case 1 (c = 10-7 || winit = 2x10-3) 

  

Section A-A Section B-B 

Case 2 (c = 10-7 || winit = 2x10-6) 

  

Section A-A Section B-B 

Case 3 (c = 10-12 || winit = 2x10-3) 

  

Section A-A Section B-B 

Case 4 (c = 10-12 || winit = 2x10-6) 

  

Section A-A Section B-B 

Figure 5.12 – Pore-pressures in sections A-A and B-B 

 

DBD
PUC-Rio - Certificação Digital Nº 1313002/CA



129 
 

 

Case 1 (c = 10-7 || winit = 2x10-3) 

 

Case 4 (c = 10-12 || winit = 2x10-6) 

 

Figure 5.13 – Flow vectors along the model 

5.2.4.  
Consolidation in a fractured medium  

General description of the simulation 

In this model, a distributed uniform load is applied at the top of the model 

while the pressure is imposed to be zero in the same border. All the physics are 

considered and coupled: displacements, pore-pressures and fracture pressures, 

obtaining a transient regime. The displacement boundary conditions are set to the 

model to represent a unidimensional consolidation problem. However, four 

randomly orientated and intersected fractures exist in the model. Four calculations 

are performed with variation of the fracture face transversal conductivity and the 
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fracture hydraulic aperture. The results are compared with a model with interface 

elements generated and run in the software GeMA (Mendes, Gattass and Roehl, 

2016). 

Model geometry and mesh 

This model has the same geometry as the one presented in Chapter 5.2.3. The 

model’s dimensions are 30 m x 15 m and the mesh is regular with 30 and 15 

elements in the horizontal and vertical directions, respectively, as seen in Figure 

5.14. The fractures have different orientations and lengths that were defined 

randomly. 

Figure 5.15 shows the mesh used in the GeMA simulation, with the interface 

elements represented in red. The mesh was generated by the software Sigma2D 

(Miranda and Martha, 2017) and total of 1382 elements are used, where 73 are 4-

node two-dimensional cohesive elements and 1309 are 4-node bilinear 

displacement and pore pressure elements. 

 

Figure 5.14 – Geometry of the mesh and boundary conditions 
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Figure 5.15 – Geometry of the mesh of GeMA with interface elements 

model 

Material properties 

The hydraulic properties both for the porous region and the fractures are 

presented in Table 5.6. An isotropic hydraulic conductivity is used in the porous 

medium. The fracture face transversal conductivity and initial hydraulic apertures 

are the same for every fracture in each of the calculations and the variation between 

analyses is similar to the one presented in Chapter 5.2.3. As this model contemplates 

deformations, the hydraulic aperture changes during the simulation. 

Table 5.7 – Hydraulic properties 

 Parameter Case 1 Case 2 Case 3 Case 4 

Porous 

Region 

Hydraulic conductivity:  

k = kx = ky (m/s) 
10-8 

Fracture 

Fracture face transversal 

conductivity:  

c = ctop = cbottom (m/s.kPa-1) 

10-7 10-7 10-14 10-14 

Initial hydraulic aperture 

(m) 
2x10-3 2x10-6 2x10-3 2x10-6 

Fluid Viscosity (kPa.s) 10-6 

 

The mechanical properties of the porous region are defined in Table 5.8. The 

fractures have a traction free behaviour. However, if subjected to compression, the 

contact between faces is modelled. 
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Table 5.8 – Mechanical properties 

 Parameter Case 1 Case 2 Case 3 Case 4 

Porous 

Region 

E (kPa) 40x103 

ν 0,3 

Boundary and loading conditions 

To simulate an effect similar to a unidimensional consolidation problem the 

bottom border of the model is fixed in the vertical direction, while the right and left 

borders are restrained to horizontal displacements. The displacement of the model 

is guaranteed by a uniform distributed load of 1000 kPa in the top border. As for 

hydraulic boundary conditions, the top border is fixed to a pressure of 0 kPa. 

The previous mentioned boundary conditions are applied in a first step with 

a time interval of 10-7 s. This very small time interval may be considered as an 

instantaneous application of the load, guaranteeing that consolidation practically 

does not occur during the step. 

The loads and boundary conditions are then kept constant for 50 varying time 

intervals, while consolidation occurs. 

Results 

Figure 5.16 shows the pore-pressure fields for the four simulations at the same 

time (t = 95 x 105 s), as well as the results obtained using GeMA with interface 

elements. Figure 5.17 presents the values of the pore-pressures along the sections 

A-A and B-B (defined in Figure 5.14). It is easily noticeable from both figures that 

the XFEMHF simulations show a very good agreement with the GeMA built-in 

with interface elements.  

Similarly to Chapter 5.2.3, a very simple sensitivity analysis of two 

parameters – fracture longitudinal transmissibility and fracture face transversal 

conductivity – shows the strong influence that these have in the pressure fields and 

model behaviour. 

The calculation with higher values of fracture transversal and longitudinal 

transmissibility (Case 1: c = 10-7 || winit = 2x10-3) shows that when both 

permeabilities are high, then fluid easily flows to the fractures, which have an effect 

of “drainage canals”. The fluid from the porous region tends to flow to the fracture, 

reducing the pore pressures drastically in the vicinity of the fractures. Figure 5.18 
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shows how the fractures work as drains, collecting fluid from the more pressurized 

regions to as near as closer to the top border. This effect also proves that the fracture 

intersections are capable of transmitting the fluid flow between different fractures. 

This way, it should be expected that with influence of the “drains”, the 

consolidation occurs faster that in a standard unidimensional consolidation, as seen 

in Figure 5.19 

In Case 2 (c = 10-7 || winit = 2x10-6), the longitudinal transmissibility is reduced 

by means of the fracture aperture. Keeping a higher transversal conductivity, the 

flow easily enters or leaves the fractures. However, the drainage effect related with 

the longitudinal flow no longer occurs, due to the reduction of longitudinal 

transmissibility. This way, the flow crosses the fractures but does not enter in this 

preferential path, keeping the same direction in the porous region. The lack of 

influence of the fractures is visible in Figure 5.19, as the curve for this calculation 

overlaps the standard unidimensional consolidation solution. 

In Case 3 (c = 10-14 || winit = 2x10-3) and Case 4 (c = 10-14 || winit = 2x10-3) it is 

shown that the reduction of the fracture face transversal conductivity decreases the 

transversal conductivity to a point that the flow is no longer capable of entering the 

fractures. Therefore, the fractures represent a barrier and the fluid has to deviate to 

continue to flow along the porous region. As seen in Figure 5.18, the flow is almost 

inexistent under the group of fractures. Despite the difference in the longitudinal 

transmissibility between Case 3 and Case 4, there is no significant difference in the 

results, as the flow does not flow along the fractures. The influence that the 

reduction of fracture transversal flow has in the model is visible in Figure 5.19, as 

the time vs deformation curve shows that in Case 3 and 4 the sample takes more 

time to consolidate. 
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Case 1 (c = 10-7 || winit = 2x10-3)  

   

XFEMHF GeMA  

Case 2 (c = 10-7 || winit = 2x10-6)  

   

XFEMHF GeMA  

Case 3 (c = 10-14 || winit = 2x10-3)  

   

XFEMHF GeMA  

Case 4 (c = 10-14 || winit = 2x10-6)  

   

XFEMHF GeMA  

Figure 5.16 – Pore-pressure fields at time 95 x 105 s 
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Case 1 (c = 10-7 || winit = 2x10-3) 

  

Section A-A Section B-B 

Case 2 (c = 10-7 || winit = 2x10-6) 

  

Section A-A Section B-B 

Case 3 (c = 10-14 || winit = 2x10-3) 

  

Section A-A Section B-B 

Case 4 (c = 10-14 || winit = 2x10-6) 

  

Section A-A Section B-B 

Figure 5.17 – Pore-pressures in sections A-A and B-B at time 95 x 105 s 
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Case 1 (c = 10-7 || winit = 2x10-3) 

 

Case 4 (c = 10-14 || winit = 2x10-6) 

 

Figure 5.18 – Flow vectors along the model at time 95 x 105 s 

 

Figure 5.19 – Vertical displacement in the top border’s mid-point for all 

four analyses with XFEMHF 
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5.3.  
Contact and friction 

5.3.1.  
Single element with horizontal fracture 

5.3.1.1. Vertical cyclic load 

General description of the simulation 

The objective of this simulation is to show in a simplistic manner how the 

implemented contact model works. A cyclic prescribed displacement is applied in 

the top of a single element with one horizontal fracture and the fracture behaviour 

depends on its relative position. If the fracture faces touch each other, contact exists. 

If not, fracture faces move independently. In this simulation only mechanical 

degrees of freedom are used. 

Model geometry and mesh 

The model has a single square element with dimensions 1,0 m x 1,0 m, as 

seen in Figure 5.20. The fracture is horizontal at half-height of the element. 

 

Figure 5.20 – Geometry of the mesh and boundary conditions 

Material properties 

The mechanical properties of the solid region are defined in Table 5.9. The 

fractures have a traction free behaviour. However, if subjected to compression, the 

contact between faces is modelled using a penalty parameter of 1011 kPa. 
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Table 5.9 – Mechanical properties 

 Parameter Value 

Solid 

Region 

E (kPa) 106 

ν 0,3 

 

Initial conditions 

To assess the effect of initial stresses in the contact behaviour, two distinct 

calculations are made, one without initial stresses and other with an initial vertical 

stress of 500 kPa. 

Boundary and loading conditions 

The boundary conditions are set in order that only vertical displacements 

occur in the model, as seen in Figure 5.20. A prescribed vertical displacement at the 

top of the model, u, is applied in 65 increments of a fixed length of 1 second each 

and follows the sinusoidal function presented in Figure 5.21. It must be reminded 

that, although the notion of time is used, the calculation in each increment is static. 

 

 

Figure 5.21 – Prescribed vertical displacement at the top of the model 

Results 

The results show that the contact model simulates the effect of contact 

between faces correctly. Figure 5.22 shows a set of frames taken from the deformed 

mesh at the end of 8 increments, with the undeformed mesh being represented by 

grey dashed lines. In both models it is visible that when contact exists in the fracture 

faces, the compression in the continuous region is transmitted and the whole model 
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deforms monolithically (see t = 0,3 s and t = 2,9 s). It is also noticeable that when 

the fracture faces are not in contact, the upper half of the model translates vertically 

without affecting the lower half (see t = 1,6 s, t = 2,0 s and t = 2,6 s). The main 

difference between the simulations with and without in-situ stress is visible in 

increment t = 1,4 s. In the case without in-situ stress, a positive displacement at the 

top of the model results in an opening of the fracture. On the other hand, when 

in-situ stresses exist, the before fracture opening the model expands to relieve the 

initial stresses. This way, as seen in t = 1,4 s the two element halves are still in 

contact and therefore the fracture opening will be smaller. 

 

a) 

 

b) 

 

c) 

Figure 5.22 – Deformed mesh at the end of 8 increments. a) Time 

increments represented. b) Model without in-situ stress. c) Model with in-situ 

stress of 500 kPa 

Figure 5.23 gives further insight about the contact behaviour. As expected, 

while in compression, the fracture opening assumes a very small negative value, 

which can be considered zero, i.e. the fracture faces are in contact. When the 

fracture faces move apart, there is no stress transmission between the two halves of 
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the model. Consequently, the vertical stress in the continuous region is reduced to 

zero. 

As stated previously, the expansion due to the stress relief in the model with 

initial stresses results in a smaller fracture opening (see Figure 5.23a). Therefore, 

the contact and the compressive stresses in the model occur in longer periods, as 

seen in Figure 5.23b. 

 

a) 

 

b) 

Figure 5.23 – Fracture opening (a) and vertical stress in the continuous 

region (b) 

Finally, it is visible in Figure 5.24 that the initial normal stress in the fracture 

is correctly computed, as a value of 500 kPa is obtained in the first increment of 

Figure 5.24b. It may also be stated that the penalty method correctly represents the 

effect of compression when in contact and a stress-free situation when the fracture 

opens. 
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a) b) 

Figure 5.24 – Fracture opening vs Normal stress in the fracture for every 

increment (grey circle points the first increment). a) Simulation without in-situ 

stress. b) Simulation with in-situ stress 

5.3.1.2. Horizontal load 

General description of the simulation 

This model shows how the implemented contact and friction models work. A 

horizontal prescribed displacement is applied in the upper half of a single element 

with one horizontal fracture. The boundary conditions are defined in a way that only 

shear stress occur, and different initial stress conditions are defined to confirm the 

effect that confinement has in shear strength. 

Model geometry and mesh 

The model has a single square element with dimensions 1,0 m x 1,0 m, as 

seen in Figure 5.25. The fracture is horizontal at half-height of the element. 

 

 

Figure 5.25 – Geometry of the mesh and boundary conditions 

DBD
PUC-Rio - Certificação Digital Nº 1313002/CA



142 
 

 

Material properties 

The mechanical properties of the solid region and the fracture are defined in 

Table 5.10. The fracture has a friction behaviour given by the Mohr Coulomb 

model. A non-associated law is used, i.e. no dilatation occurs due to shear 

deformations. 

Table 5.10 – Mechanical properties 

 Parameter Value 

Solid 

Region 

E (kPa) 106 

ν 0,3 

Fracture 

Kn (kPa) 0** 

Ks (kPa) 107 

φ' (º) 35 

c' (kPa) 0 

**value in traction. In compression, a penalty factor is applied 

Initial conditions 

To assess the effect of the confinement stresses in the friction behaviour, six 

distinct initial stresses are defined, as seen in Table 5.11. 

Boundary and loading conditions 

The defined boundary conditions (see Figure 5.25) fix the lower half of the 

model in every direction, while the upper half is only able to translate horizontally. 

After a first step for definition of initial stress, a horizontal displacement is 

prescribed and subdivided in 20 increments. In the first three tests a positive 

displacement is applied, while in the other three tests a negative value is used, as 

seen in Table 5.11. 
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Table 5.11 – Prescribed horizontal displacement and 

initial vertical stress 

 
Initial vertical stress 

(kPa) 

Prescribed horizontal 

displacement (m) 

Test 1 -1346,1 5x10-4 

Test 2 -2692,3 5x10-4 

Test 3 -4038,4 5x10-4 

Test 4 -673,1 -5x10-4 

Test 5 -2019,2 -5x10-4 

Test 6 -3365,3 -5x10-4 

 

Results 

In the deformed mesh presented in Figure 5.26 it is visible that only 

translation between both parts of the model occurs. Figure 5.27 shows the resulting 

shear stress in the fracture. As expected, the fracture behaves elastically initially 

and when failure occurs it deforms at constant shear stress. It is also visible that the 

value for which the failure is reached changes for each confinement stress. 

 

Figure 5.26 – Deformed mesh 
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Figure 5.27 – Horizontal displacement versus shear stress in the fracture 

In Figure 5.28, the normal and shear stresses in the fracture are plotted, so is 

the Mohr-Coulomb failure surface (in dashed lines). As only the shear stress varies 

during the simulations, the stress paths are vertical. It is evident that failure occurs 

at different shear values, depending on the normal stress, as stated by the 

Mohr-Coulomb constitutive law. 

 

Figure 5.28 – Normal stress versus shear stress in the fracture 

5.3.2.  
Single element with inclined fracture 

General description of the simulation 

As stated by several authors (Jiao and Qiao, 2008; Das, 2013; Esterhuizen, 

2014), the results of a uniaxial compression test of a sample with a single fracture 

are strongly dependent on the fracture inclination. In order to simulate that effect, a 

model with a single element and one inclined fracture is subjected to uniaxial 
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compression so the uniaxial strength is obtained for different fracture inclinations 

and compared with the analytical solution. 

The analytical strength of a single fractured sample subjected to uniaxial 

stress may be obtained by the Mohr-Coulomb equation, as presented by Das (2013). 

The equation is given by 

Ø� = 2. O�1 − tan } . cot ±� sin 2± (5.2) 

where c is the fracture cohesion, } the friction angle and ± the fracture angle with 

the horizontal. This solution is only valid for values of the inclination angle between } and 90°, where it takes values of infinite. Therefore, it is assumed that the intact 

rock strength is 20 MPa so the fracture influences the results in a range between 36° 

and 84°. Moreover, the lowest strength is achieved for a fracture angle of þ 4⁄ +} 2⁄ . 

Model geometry and mesh 

The model has a single rectangular element with dimensions 0,1 m x 0,01 m, 

as seen in Figure 5.29. A high height-width ratio is used in order to be sure that for 

all the tested inclinations the fracture crosses the element in the vertical boundaries. 

This way, different influence of the boundary conditions for different inclinations 

is avoided. Although it is widely known that such ratios are not recommended, it is 

considered that in this simple model it does not affect the results. 

The fracture left extremity position is constant, while the right extremity 

changes with the fracture inclination. Seven different inclinations are tested: 37°, 

40°, 50°, 60°, 70°, 80° and 83°. 

 

Figure 5.29 – Mesh and boundary conditions 
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Material properties 

The mechanical properties of the solid region and the fracture are defined in 

Table 5.12. The fracture has a friction-cohesive behaviour given by the Mohr 

Coulomb model. A non-associated law is used, i.e. no dilatation occurs due to shear 

deformations. 

Table 5.12 – Mechanical properties 

 Parameter Value 

Solid 

Region 

E (kPa) 5x106 

ν 0,25 

Fracture 

Kn (kPa) 0** 

Ks (kPa) 108 

φ (º) 30 

c (kPa) 2000 

**value in traction. In compression, a penalty factor is applied 

Boundary and loading conditions 

As seen in Figure 5.29, the model is fixed in its bottom and a prescribed 

displacement is applied at its top until failure occurs. 

Results 

Figure 5.30 shows that the obtained results match with the analytical solution. 

As expected, the fracture inclination affects the uniaxial strength in a range between 

36° and 84°. As the inclination increases from 36°, the strength reduces reaching 

its bottom value at 60°, such as predicted by the Mohr-Coulomb model (þ 4⁄ +} 2⁄ = 60°). Figure 5.31 presents the fracture stress paths (normal and shear 

stresses) for the different inclinations. It is noticeable that failure occurs when the 

Mohr-Coulomb surface is reached and that the values of normal and shear stress at 

failure increase with a decrease of fracture inclination. This happens because lower 

inclinations imply higher normal stresses and consequently higher shear strength. 
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Figure 5.30 – Uniaxial strength variation with fracture inclination 

(assumed rock intact strength is plotted in dashed lines) 

 

 

Figure 5.31 – Fracture stress paths for different fracture inclinations 

5.3.3.  
Multi-fractured medium 

General description of the simulation 

In this simulation, a sample with three intersecting fractures is subjected to a 

uniaxial compression at its top until failure is reached. As there is no analytical 

solution for this problem, the objective of this simulation is to assure that no fracture 

point crosses the failure surface defined by the Mohr-Coulomb model. 

Model geometry and mesh 

The model’s dimensions are 15 m x 20 m and the mesh is regular with 15 and 

20 elements in the horizontal and vertical directions, respectively, as seen in Figure 
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5.32. Three fractures are positioned in the sample in a way that two intersections 

occur. 

 

Figure 5.32 – Mesh and boundary conditions 

Material properties 

The mechanical properties of the solid region and the fractures are defined in 

Table 5.13. The fractures have a friction-cohesive behaviour given by the Mohr 

Coulomb model. A non-associated law is used, i.e. no dilatation occurs due to shear 

deformations. 

Table 5.13 – Mechanical properties 

 Parameter Value 

Solid 

Region 

E (kPa) 106 

ν 0,3 

Fractures 

Kn (kPa) 0** 

Ks (kPa) 105 

φ (º) 25 

c (kPa) 0 

**value in traction. In compression, a penalty factor is applied 
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Boundary and loading conditions 

As seen in Figure 5.32, the model is fixed in its bottom and a prescribed 

displacement of 0,15 m separated in 40 increments is applied at its top. Each 

increment size is defined by Abaqus automatic time incrementation algorithm, 

which reduces the increment size when convergence is harder to achieve and 

increases the increment size when few iterations are needed to converge. 

Results 

The simulation returned the expected behaviour of the model when subjected 

to the uniaxial load. In the deformed meshes at the end of two increments present 

in Figure 5.33 it is visible that relative movement between fracture faces occurred 

in every fracture.  

Along the model there is no noticeable superposition of faces, except in the 

intersections (highlighted by grey dashed circumferences). This is an expected 

limitation of the model, as explained in Chapter 3.6.1. 

 

Figure 5.33 – Deformed mesh in different increments 

Figure 5.34 shows the curve displacement-reaction at the top of the model. 

Although the Mohr-Coulomb model has an elastic-perfectly plastic constitutive 

behaviour, the whole model reacts with a stronger non-linearity due to the 

geometric position of the fractures. 
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Figure 5.34 – Prescribed displacement vs reaction at the top of the model 

Figure 5.35 presents the stress state in every fracture integration point of the 

model for each of the 3 fractures separately (see Figure 5.32 for each fracture 

number). Right after the first increment (Figure 5.35a), it is noticeable that even 

subjected to normal stress, all fractures are still in the elastic region. At an 

intermediate increment (Figure 5.35b), the shear stresses acting in the fractures 

increases. Shear stresses in fractures 1 and 2 take positive signs while fracture 3 has 

mostly negative values, as expected, due to each fracture inclination. It is also 

visible in Figure 5.35b that fracture 3 already has part of it in a failure situation. 

Finally, in the last increment of the simulation Figure 5.35c all the points in 

fracture 3 are in failure. Given that fracture 3 crosses the model from one side to 

the other, this corresponds to a generalized failure, as visible in Figure 5.34. 

From the obtained results, it is noticeable that after reaching failure, 

deformation occurs at constant stress, so it may be concluded that all the fractures 

are modelling correctly the implemented contact-friction behaviour. 
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a) b) 

 

c) 

Figure 5.35 – Fracture stress state (normal and shear stresses) for every 

fracture integration points of the model. a) d = 0,002 m. b) d = 0,045 m. 

c) d = 0,15 m. 
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