
  
  

4  
Implementation  

The core of this research is the delivery of an implementation that is capable 

of simulating the propagation of hydraulic fractures and their intersection with 

existing fractures. Different codes in different languages were implemented and put 

together in a suite named XFEMHF. In this chapter all the implementation steps are 

presented explained. A more detailed description is made of the subroutines that are 

plugged in a finite element solver, which is the software Abaqus, by Simulia (2014). 

First, the Abaqus software is presented, with focus to the user subroutines 

tool. Then, after an overview of every step of the XFEMHF code, each of the 

subroutines are explained in detail. An explanation on the type of elements and their 

integration procedures is also given and, finally, the limitations of the 

implementation are discussed.  

4.1.  
Abaqus Software 

4.1.1.  
General Description 

Abaqus is a widely used commercial software, both in industry and academia, 

mainly known for its adaptability to very different kinds of numerical problems. In 

its essence, it is a solver for linear system of equations which allows the 

incorporation of non-linear problems with different physics in various types of 

finite elements.  

Within a wide variety of modules and add-ons, the Abaqus finite element 

suite includes a graphical interface for input, monitoring of simulations and output 

interpretation (Abaqus/CAE) and three modules: Abaqus/Standard, a general-

purpose finite element program, Abaqus/Explicit, an explicit dynamics finite 

element program and Abaqus/CFD, a general-purpose computational fluid 

dynamics program (Simulia, 2014). For the sake of simplicity, from this point the 
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word Abaqus is meant to represent the module used in this work, which is 

Abaqus/Standard v6.14. 

Abaqus offers an extensive diversity of element types and material models, 

applicable to different physical analyses: mechanical, pore hydraulic, thermal, 

electrical, electromagnetic and acoustic. Some of the available elements also allow 

coupled simulations between two or more of the previously mentioned physics. 

Although it offers a wide variety of functionalities, also allows users to 

integrate their own subroutines in the calculation, which expand even more the 

software capabilities. More than 50 available user subroutines have many different 

functions, such as definition of complex constitutive models (p. ex. CREEP, 

HARDINI, UDMGINI, UMAT), definition of complex boundary conditions (p. ex. 

DFLOW, DLOAD, DISP), definition of constraints (p. ex. MPC, 

UMESHMOTION), definition of elements (p. ex. UEL and UELMAT) and 

management with external applications (UEXTERNALDB). 

Abaqus solves non-linear problems by breaking the simulation into a number 

of time increments and finds the approximate equilibrium configuration at the end 

of each time increment. Using the Newton method, it often takes Abaqus several 

iterations to determine an acceptable solution to each time increment (Simulia, 

2014). The calculations may be subdivided in: 

• Steps: define an analysis procedure or loading. Different loads, 

boundary conditions, analysis procedures, and output requests can be 

used in each step,  

• Increments: are part of a step. In nonlinear analyses each step is 

broken into increments so that the nonlinear solution path can be 

followed. The size of each increment may be fixed by the user or 

automatically chosen by Abaqus, 

• Iterations: are an attempt at finding an equilibrium solution in an 

increment. If the model is not in equilibrium at the end of the iteration, 

Abaqus tries another iteration.  
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4.1.2.  
XFEM in Abaqus 

Abaqus presents different techniques or elements to simulate discontinuities 

in a FEM model. Within the XFEM, which is called in the Abaqus Documentation 

as an “enriched feature”, the software differentiates between stationary and 

propagating cracks. Considering the focus of this research, in this chapter only the 

coupled hydro-mechanical element with XFEM for propagating cracks is detailed. 

Abaqus implements the XFEM using the Phantom Node technique (Song, 

Areias and Belytschko, 2006), which was based on a previous work by Hansbo and 

Hansbo (2004). This technique considers the duplication of the mesh elements, 

being the duplicated nodes called “Phantom Nodes”, represented in Figure 4.1 by 

hollow circles. Moreover, additional nodes, known as “Edge-Phantom Nodes” (red 

triangles in Figure 4.1), allow the representation of the fluid pressure inside the 

fracture. Prior to damage initiation only one copy of the element is active. Upon 

damage initiation the displacement and pore pressure degrees of freedom associated 

with the corner phantom nodes are activated and both copies of the element are 

allowed to deform independently, pore pressures are allowed to diffuse 

independently, and the created interface behaviour is enforced with a traction-

separation cohesive law. The pore fluid pressure at the top and bottom faces of the 

fracture are interpolated from the pore pressure degrees of freedom at the corner 

real nodes and phantom nodes. The difference with the fracturing fluid pressure 

(interpolated at the edge-phantom node) is the driving force that controls the 

leakage of fracturing fluid into the porous medium (Zielonka et al., 2014). 

The fracture geometry is mathematically described by the Level-Set Method, 

which assumes that two signed distance functions per node are generally required 

to describe a crack geometry (Simulia, 2014). 

The propagation criterion may be based on stress or strain state, which 

interpolated to the crack tip or computed in the element ahead of the crack tip. Its 

direction is set to have perpendicular direction to the minimum principal stress in 

the tip region. 
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Figure 4.1 – Implementation of the XFEM with “corner” and “edge” 

phantom nodes (Zielonka et al., 2014) 

Areias and Belytschko (2006) showed that the kinematic decomposition in 

the Phantom Node method is equivalent to the one in the extended finite element 

method (XFEM) by Moes and Dolbow (1999) and Belytschko and Black (1999), 

having the advantage of being of easier implementation in a standard FEM code. 

On the other hand, it turns the implementation of partially cracked elements 

cumbersome. 

The Abaqus XFEM elements have had a very positive effect of facilitating 

the use of this technique both in industry and academia (see Chapter 2). However, 

these cannot be used in the scope of this research, once Abaqus refers that XFEM 

elements cannot be intersected by more than one fracture (Simulia, 2014). 

Therefore, the built-in Abaqus XFEM elements are not part of this research, being 

substituted by the use of user elements coded in subroutines.  

4.1.3.  
Abaqus User Subroutines 

To achieve this thesis's proposed goals, two Abaqus user subroutines were 

used. The two user subroutines that manage and organize the workflow composed 

by most of the code written for this research are presented next. Figure 4.2 shows 

the flow of an Abaqus calculation and when each of the subroutines are called. 

UEXTERNALDB 

Though very simple, this is an extremely helpful subroutine when the user 

needs external procedures to be run during the simulation. This user subroutine is 
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called once at the beginning of the analysis, at the beginning of each increment, at 

the end of each increment, and at the end of the analysis (in addition, the user 

subroutine is also called once at the beginning of a restart analysis). In addition to 

the number of the step, number of the increment and the time interval information, 

the variable LOP given to the user defines in which phase of the calculation (step, 

increment, etc.) the subroutine is being called. This way, it is possible to manage 

the calls to: 

• Read the input files at the beginning of the calculation,  

• Other processes or subroutines at the beginning/end of each 

increment/step 

• Prepare output files at the end of each step or the calculation. 

UEL 

The User ELement subroutine gives the user the freedom to define any type 

of element topology and which governing equations are considered in that element. 

The user defines in the input the number of nodes of the element and their position. 

Furthermore, the input must also define the degrees of freedom, up to 30, that are 

attributed to each node. 

Each time element calculations are required, i.e. for every element in every 

iteration, the UEL subroutine is called. Then, the code must perform all the 

calculations that are appropriate for the topology and the physics of the element. 

The subroutine must deliver the jacobian matrix of the Newton-Raphson method 

(AMATRX), the right-hand-side vector of the overall system of equations (RHS) 

and an array containing the values of the eventual solution-dependent state variables 

associated with the element (SVARS). 

 

DBD
PUC-Rio - Certificação Digital Nº 1313002/CA



93 
 

 

 

Figure 4.2 – Calls of user subroutines within the flow in Abaqus 

4.2.  
XFEMHF code 

4.2.1.  
Overview 

As usual in research focused in code implementation, different software or 

codes were used to achieve the proposed goals.  

A known limitation of the Abaqus graphical interface (Abaqus/CAE) is that 

it does not support the definition and visualization of user elements. Although not 

being the main focus of the research, the input and output tools are also essential. 

In a first step, during implementation, as they make the code validation easier. In a 

second step, because they guarantee that other users run simulations without need 

of advanced knowledge about the background process, allowing further 

contributions to the research topic. 

The whole process of preparing, running and analysing a simulation may be 

described in three main steps, as seen in Figure 4.3. 
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Figure 4.3 – Main steps of a simulation 

Input generator 

Four input files must be defined for every simulation: node data, mesh 

(topological) data, fracture data and Abaqus regular input data. These files are 

automatically generated by a code developed in VBA – Visual Basic for 

Applications. 

Abaqus internal and external subroutines 

The core code of this research is written in Fortran and compiled by 

Abaqus/Standard; therefore, this Chapter focus specifically in this step. The XFEM 

formulation is implemented in the external Abaqus User Subroutines, while several 

processes that are common with the standard FEM, such as the global stiffness 

matrix assembling or the convergence checker, are left to be done by the Abaqus 

internal subroutines. In specific cases, which will be referred in Chapter 4.2.2.2, a 

Python Script is used to interpret and adapt results during the simulation. 

Output 

The results may be visualized in the software Pos3D (Carvalho, Martha and 

Filho, 1997) which reads a Neutral File type generated during the simulation. For 

some specific variables along the fractures, a code developed in VBA interprets the 

fracture results and properly shows them in MS Excel graphs. 
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4.2.2.  
Abaqus algorithm 

4.2.2.1. General algorithm 

As mentioned before, the core of the implementation of this research is the 

Abaqus + User subroutines algorithm, i.e. the intermediate step of Figure 4.3. A 

more detailed flow of this algorithm is shown in Figure 4.4, where the boxes with 

dashed outlines represent the parts of the simulation where the code implemented 

in this research is called. 

Starting by doing some Abaqus internal checks, the simulation then runs a 

user subroutine that reads all the input files generated in the first step of Figure 4.3 

and allocates the auxiliary matrices and vectors in memory. Next, a geometry pre-

processor is run. Based on the mesh and initial fracture information provided in the 

input files, this processor attributes all the values related with enrichment functions 

to the nodes and integration points of the model. Further information about the 

geometry pre-processor is present in Chapter 4.2.3. Then, the loops over steps, 

increments and iterations start. At the beginning of a new increment, the simulator 

checks if propagation occurred at the end of the previous increment – evidently, this 

does not happen at the first increment of the first step of the simulation. If 

propagation occurred, then new enriched degrees of freedom are active and the pre-

processor is run, in order to update all the enrichment related data in the newly-

propagating segments.  

The loop over the iterations starts with a loop over all mesh elements. For 

each element the UEL subroutine computes the Jacobian matrix, the right-hand-

side and the state variables are computed. This procedure is explained in more detail 

in Chapter 4.2.4. After assembling all the external forces defined in the input, the 

internal functions of Abaqus use the element matrices to assemble the global 

matrices and solve the linear system of equations. If convergence is not attained, 

another iteration is run.  

When the solution converges, the increment finishes and a fracture geometry 

post-processor is called. This procedure checks if propagation criteria are meet 

anywhere in the model. In case propagation occurs, the direction and length of the 

new fracture segments are also computed. A more detailed explanation of this 

procedure is delivered in Chapter 4.2.5. When the loop over the increments restarts, 
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the coordinates of the new fracture segments are used by the pre-processor to place 

them in the mesh and compute their enrichment data, which will be used in the next 

increment. 

Finally, when the last increment of the last step converges, the simulations 

finishes by writing all Abaqus output files and also the user output files that are 

interpreted in the third step of Figure 4.3. 

4.2.2.2. The specific case of in-situ stress state 

In most geotechnical events involving hydraulic and natural fractures the 

overburden cannot be neglected. Furthermore, it is widely known that the in-situ 

stress state extremely affects the way fractures behave and propagate. 

Consequently, this effect must also be considered in the developed simulator. 

The in-situ stress state occurs due to various phenomena that happened during 

the geological history of the layer, such as overburden, tectonic movements and 

metamorphism. The modelling of all these effects to attain a correct in-situ stress 

state is extremely difficult. For that reason, that modelling is usually disregarded 

when only short periods of time (in a geological time scale) are to be simulated, 

being substituted by the input definition of an initial stress state. Therefore, the 

consideration of in-situ stresses in Abaqus is not straightforward, given that an 

initial stress field must be simulated as an equilibrium state which is the result of 

the gravitational fields and the model’s boundary conditions. Due to the use of a 

User Element Subroutine (UEL), Abaqus cannot interpret the in-situ stresses from 

the input file and consequently a specific algorithm has to be defined. 
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Figure 4.4 – Flow of a XFEMHF simulation – dashed outlines represent 

coded subroutines and continuous represent Abaqus internal routines 

The implemented code contemplates the following steps, in order to consider 

in-situ stresses in the model (see Figure 4.5): 

• On a first Abaqus analysis, all degrees of freedom of the mesh are 

considered to be fixed (i.e. boundary conditions set to zero). The in-

situ stresses are applied to the whole model as internal stresses and 

DBD
PUC-Rio - Certificação Digital Nº 1313002/CA



98 
 

 

one calculation step is run. The obtained reactions in every degree of 

freedom are output to a specific file and the simulation finishes; 

• A Python script compiled by Abaqus is then run. This script translates 

the reactions in the previous mentioned output file to a new format, 

which is readable by Abaqus; 

• A second Abaqus analysis is run. In the first step of this simulation, 

all the reactions obtained in the first simulation are applied to all 

degrees of freedom. Together with the internal stresses applied 

previously, this will guarantee that the simulation starts in equilibrium 

with zero displacement and the defined in-situ stress. Then, all the 

steps are defined as in a regular simulation, with all the loads and 

boundary conditions that the user requests. 

Due to Abaqus limitations, this simulation must be run in two separated 

analyses. If this process was run in one single analysis, the Abaqus preparation 

subroutines would search for the files with the reactions generated by the Python 

script at the beginning of the analysis. As these files are generated after the geostatic 

step of the simulation, the preparation subroutines would deliver an error and 

Abaqus would abort before starting computations. 

 

Figure 4.5 – General flow of a XFEMHF simulation with initial stress 

state 

4.2.3.  
Fracture geometry pre-processor 

The fracture geometry pre-processor runs at the beginning of the simulation 

and then updates data at the beginning of each increment that follows a propagation 
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event, as seen in Figure 4.4. It should be noted that fractures do not change geometry 

during the iterations of an increment, so there is no need to run this procedure inside 

the increment loop. 

The goal of this procedure is to define the enrichment data for the mesh, so 

the element matrices are built accordingly. The following information is delivered 

by the pre-processor: 

• Which nodes and elements in the mesh are enriched, and which 

fracture is associated with that enrichment 

• Enrichment function values at every enriched node 

• Local coordinates and weight of integration points in enriched 

elements 

• Enrichment function values at every integration point of the enriched 

elements 

• Position of all fracture segments 

• Local coordinates and weight of all fracture integration points 

• Value of the jump function at every fracture integration point 

• Fracture segments direction and length 

At the first run, which can be called the "general definition stage", the 

pre-processor has the flow presented in Figure 4.6. After the reading of all the input 

data, each set of enrichment functions (Hi, Hii, Hiii, etc.) is attributed to the initial 

fractures. Then, all the nodes and elements that are affected by fractures have their 

enrichment degrees of freedom activated. It must be noted that, because specific tip 

enrichments are not being used, the representation of the tip is achieved by 

deactivating the enrichment in the nodes that belong to the element border that is 

touched by the tip. 

In sequence, all the elements that are cut by fractures are divided into 

sub-domains, allowing definition of the position of the integration points, as 

explained in Chapter 4.2.7.2. Next, the enrichment functions in every enriched node 

and integration points of enriched elements are computed. Although different types 

of enrichment functions are allowed in this implementation, only the signed level 

set function (H) is used in the simulations, as stated in Chapter 3.3.2.  

Following, the fracture pressure degrees of freedom are attributed to the 

nodes, using the methodology described in Chapter 4.2.6. Then, the fracture 
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integration points are placed and their weights attributed. Finally, the geometry of 

the fractures segments is stored, after computing their lengths and directions. 

 

 

Figure 4.6 – General flow of the general definition stage of the pre-

processor 

The update stage run the same procedure for the enrichment data in the newly 

fractured elements and nodes, while the data in elements and nodes that had no 

change is kept the same. 

A special procedure is considered in the geometry pre-processor in specific 

cases, when the continuous region is impermeable. As leak-off does not occur and 

no injection or fixed pressure points exist inside the fracture, there is no border or 

point for fluid to leave or enter it. Therefore, because the fluid is incompressible, 

the fracture cannot have any volumetric deformation to comply with the continuity 

equation. This way, all the displacements between the natural fracture faces may be 
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highly compromised before intersection with hydraulic fractures occur. A way to 

overcome this problem is to define a criterion of fracture pressure activation, which 

allows the fracture pressure degrees of freedom to be deactivated at the beginning 

of the simulation and then be activated. Three types of criterion are implemented: 

• The fracture pressure in a segment is activated as soon as that segment 

is in contact with another segment which has its pressure activated; 

• The fracture pressure in a segment is activated as soon as a limit value 

of a pre-defined grandness – fracture aperture, fracture normal stress, 

fracture shear stress, fracture relative stress; 

• A mixture of the previous two criteria, i.e., the pressure in a segment 

is activated when that segment is in contact with another segment with 

activated pressure and if a certain limit value is reached. 

4.2.4.  
UEL algorithm 

This is an essential step for any FEM simulation, as it is where the physical 

behaviour of the governing equations is represented through the construction of the 

elemental matrices that compose the global system of equations. These matrices are 

obtained by computing the integrals presented in Eqs. (3.38) to (3.40) and Eq. 

(3.43). Auxiliary procedures are also used to compute the non-linear terms, such as 

the elastoplastic stiffness matrix for material constitutive behaviour or the fracture 

longitudinal transmissibility.  

A general flow of the coded UEL subroutine is presented in Figure 4.7. As 

stated previously, this procedure is run for every user element in every iteration of 

the simulation. Therefore, the first step of the routine is to select, both from the 

input files or the pre-processor, only the data relevant to that particular element. 

Then, two domains are integrated separately: the continuous region and the fracture.  

First, the procedure loops over all the integration points in the continuous 

area. For each, it builds the shape functions and their derivatives (N and B, 

respectively), for both standard and enriched degrees of freedom, and also for both 

displacements and pore-pressures. Then, the code computes the stresses and the 

material stiffness matrix, which is elastic in the continuous region (see Figure 4.8). 

These matrices are then used to compute the contribution of the integration point 

for each of the area integrals, K, Q and H present in Eq. (3.43). 
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Second, the procedure loops over all the integration points in the fractures. 

Evidently, this part of the procedure is not run if there are not fractures in the 

element. For each fracture integration point, the routine builds the shape functions, 

their derivatives and the jump functions (N, B and "]#, respectively), considering 

the contribution of the fracture pressure degrees of freedom. After, the code 

computes stresses and the material stiffness matrix, which may be elastoplastic in 

the fracture region (see Figure 4.8). The fracture longitudinal transmissibility is then 

computed, by applying the cubic law is used. It should be noted that the cubic law 

uses the fracture aperture to compute the transmissibility. Considering that, even 

when in contact, fractures present a larger transmissibility due to its roughness, a 

hydraulic aperture is used. At the beginning of a simulation, the hydraulic aperture 

is different from the mechanical aperture, taking a value defined by the user in the 

input files. All the previously mentioned matrices are then used to compute the 

contribution of the integration point for each of the fracture integrals, T, L, éu�f and 

��f�f present in Eq. (3.43). 

Finally, all the computed integrals are inserted in the jacobian and the right-

hand-side matrices and all the rows and columns related with deactivated degrees 

of freedom are zeroed. 

It should be noted that every time the procedure is run, it stores and updates 

significant state variables related with every integration point, namely the stress 

tensor and plastic deformations. 

Figure 4.8 presents the general steps taken to compute the stresses and the 

material stiffness matrix in every integration point (from continuous or fracture 

region), based on the material constitutive behaviour defined by the user. 
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Figure 4.7 – General flow of the UEL subroutine 

 

Figure 4.8 – General flow of the material constitutive subroutine 
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4.2.5.  
Fracture geometry post-processor 

At the end of each increment, the algorithm checks the occurrence of fracture 

propagation. The verification is made using a user-defined propagation criterion. If 

a fracture propagates, then both the direction and length of propagation are 

computed. As seen in Figure 4.9, the post processor starts by defining in which 

regions of the model the propagation should be checked. Then, the propagation 

criterion is verified in each region. For every region where propagation occurs, the 

direction of the propagating segment is defined based on the direction criterion. 

Finally, the length of the propagating segment is computed. With the computed 

direction and length, the new coordinates for the propagating segments are 

obtained. 

 

Figure 4.9 – General flow of the fracture geometry post-processor 

The adopted propagation criterion is based on the average minimum principal 

stress at the integration points of a region that is perpendicular to the fracture tip, as 

seen in Figure 4.10. The region may have different shapes. However, in this 

implementation, the region may be square or rectangular, depending on the user’s 

choice. If it is square, its side is equal to the dimension of the average. If it is 

rectangular, then it's dimensions are equal to the mesh average element.  
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Figure 4.10 – Examples of regions where propagation is checked 

A specific treatment is made when a fracture tip is close to another fracture. 

Considering that stress fields are usually different at each side of a fracture, it would 

not be correct to pick the stresses in the opposite side of the fracture tip. This way, 

the region is redefined considering only the part that is of interest to the fracture tip, 

as seen in Figure 4.11.  

 

Figure 4.11 – Examples of regions close to other fractures 
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Once the borders of the region are defined, the following criterion is applied  

Øê��� > Ø� (4.1) 

Where Øê��� is the average of the minimum principal stresses in the region’s 

integration points and Ø� is the tensile strength of the rock. The direction criterion 

used is also based on the average of the principal stresses. Propagation occurs 

perpendicularly to the average of the minimum principal stress in the computed 

region.  

Finally, the length of a propagating segment is such that propagation always 

extends up to the next element border. Consequently, only one element is allowed 

to propagate per increment. This is a similar approach as the one used in the Abaqus 

built-in XFEM elements. Despite the fact that this approach may lead to a decrease 

of the crack tip speed, as mentioned by Song, Areias and Belytschko (2006), this 

problem can be overcome by using sufficiently refined meshes. 

4.2.6.  
Element topology 

As mentioned previously, the Abaqus user element subroutine allows the 

implementation of any kind of finite element in the code. In this work, only one 

element was coded. However, its implementation is flexible enough to model 

different situations: standard porous finite element with hydro mechanical coupling, 

enriched porous finite element with coupling between the hydro mechanical porous 

region and the fracture fluid pressure, enriched porous finite element with multiple 

fractures and intersections with coupling between the hydro mechanical porous 

region and the fracture fluid pressure.  

This flexibility is achieved by allocating degrees of freedom to all the 

mentioned situations, activating and deactivating them during the simulation 

depending on the modelling needs. For example, if there is need to simulate an 

impermeable element with one fracture, all the pore pressure degrees of freedom 

and intersection degrees of freedom should be deactivated. Once Abaqus does not 

allow run time deactivation, this is achieved by zeroing every coefficient related to 

those degrees of freedom.  

The basis of the user element is a Q4 plane strain linear segment, with the 

corner nodes storing the standard displacement and pore pressure degrees of 
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freedom. Additionally, the same corner nodes also store the displacement and pore 

pressure enriched degrees of freedom.  

These degrees of freedom would be enough to model a multi fractured porous 

medium if there was no need to consider the fracture fluid pressure. However, 

considering the importance of working with the fracture fluid pressure as a variable 

(as explained in Chapter 3.1), additional degrees of freedom are added to consider 

it.  

By principle, it would be correct to place the fracture pressure degrees of 

freedom coincident with the fracture segments extremities. However, as seen in 

Figure 4.12, that is not possible with Abaqus. As known, XFEM is a technique that 

allows simulation of fracture propagation without prior knowledge of the fracture 

path, i.e. each new fracture segment is positioned as the simulation runs. 

Consequently, at the beginning of the simulation it is not possible to know which 

elements will me intersected by fractures or to state where the fracture pressure 

degrees of freedom will be. As Abaqus does not allow the placement of new nodes 

in elements while the simulation runs, it is impossible to guarantee that the fracture 

pressure degrees of freedom will be positioned coincident with the fracture 

segments. 

 

Figure 4.12 – Possible positions of fracture pressure degrees of freedom 

in possible fracture propagation segments 

To overcome this situation, the following workaround is implemented (see 

Figure 4.13): 

• 9 nodes are considered in every element since the beginning of the 

simulation – the already existing 4 corner nodes + 4 element border 

middle nodes + 1 node at the element centroid 
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• Every time a fracture propagates into a new element, an algorithm in 

the pre-processor defines which nodes should store the new fracture 

variables 

• If other fractures propagate into the same element (creating an 

intersection), the algorithm stores the new fracture variables in other 

nodes that are still available 

 

Figure 4.13 – Storage of fracture pressure degrees of freedom 

4.2.7.  
Numerical integration 

4.2.7.1. Introduction 

As stated previously, the Finite Element Method demands the problem sub-

domains (i.e. elements) to integrate smooth and continuous functions. In such cases 

as the discretization with interface elements, the integration on both sides of the 

fracture is made in separate continuous elements and the fracture domain 

integration is made directly in the interface elements that represent that fracture. In 

XFEM, the fracture domain is within the continuous region, leading to the need of 
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performing two types of integrations in the same element. In 2D the fracture domain 

(Γ) requires line integration and the element domain (Ω) requires area integration.  

 

Figure 4.14 – Difference of element definition between Interface elements 

and XFEM elements. On the left, black continuous lines represent element 

borders, grey hatches represent continuous elements and green hatches 

represent interface elements. On the right, black continuous lines represent 

element borders, grey hatches represent continuous elements and dashed lines 

represent the fracture inside the element domain 

4.2.7.2. Continuous Region 

In this work, the integration over continuous regions, i.e. Ω in 2D elements, 

is performed by using the Gauss Method. In elements where all the enriched degrees 

of freedom are deactivated, i.e. non-fractured elements, the integration may be 

performed following the conventional techniques, such as presented in Potts and 

Zdravković (1999). 

For enriched elements, the explicit consideration of fractures inside the 

element domain requires the implementation of non-standard techniques for 

element integration. The integrand in the element domain is no longer continuous 

with continuous derivative (C1 class) due to the presence of the enrichment 

functions (see Figure 3.7 or Figure 3.9). However, functions that develop on both 

sides of the fracture are C1 class and therefore the standard Gauss integration 

technique applies. Thus, sub-regions within the element where continuity applies 
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may be integrated separately and the results be summed. Eq. (4.2) shows a Gauss 

integration procedure applied to the element sub-regions ~�<�ìí�. Q���<� is the 

number of integration points in the sub-region, W the Gaussian weight and f the 

function to be integrated. 

î Ö�a, ï�=a=ï�
\� = V V ð[,v

��ñ:��
[�� . ÖÍa[,v, ï[,vÏyò��óxô

v��  (4.2) 

 

The subdivision process starts by cutting the element in sub-regions delimited 

by the fracture. Then the following rules apply: 

• If the sub-region has four sides, Gauss integration for quadrilateral elements 

apply, as in the sub-regions defined in Figure 4.15a) and b); 

• If the sub-region has three sides, Gauss integration for triangular elements 

apply, as seen in the lower left sub-region in Figure 4.15c); 

• If the sub-region has five sides or more, further subdivision defines triangles 

with vertices coinciding with the original sub-region vertices and its 

centroid. In these triangles, Gauss integration for triangular elements 

applies, as seen in the upper right sub-regions in Figure 4.15c); 

   

a) b) c) 

Figure 4.15 – Examples of integration points position in sub-regions 

For both non-fractured elements and sub-regions, the Gauss integration order 

is defined by the user, varying on a range from 1 to 7. 

4.2.7.3. Discontinuous Region 

The integrals over fracture regions, i.e. �+, are computed along fictitious line 

elements that coincide with the fracture position. Although these elements do not 

exist in the mesh topology, their implementation is critical to represent the fracture 

hydraulic and constitutive behaviour. The integration performed over these 
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elements also uses the Gauss integration rule. It is worth pointing out that a fracture 

intersected by another fracture may show a different behaviour on each side of the 

intersection. Therefore, the placement of Gauss points must consider not only the 

fracture position but also its intersections. Figure 4.16 shows some examples of the 

positioning of integration points along the discontinuity. In this research, only a 

second order integration scheme is used. 

   

Figure 4.16 – Examples of integration points position in fractures 

4.2.8.  
Limitations of the implementation 

Abaqus is a powerful and very versatile tool, both for the built in and external 

user implementations. Nevertheless, the use of a commercial software where only 

a part of the code algorithm is reachable by the user brings naturally some 

limitations.  

An already mentioned limitation of Abaqus is the impossibility to use the 

graphical interface both for input and output when using user elements. This issue 

which was overcome by the additional codes and software referred in Chapter 4.2.1.  

The main limitation of the implementation is the way Abaqus deals with 

degrees of freedom of user elements. The degrees of freedom that are access by a 

user element must be defined in the input before the simulation starts. As stated 

before, the principle of XFEM develops around the concept of activation of new 

degrees of freedom in the run. To guarantee that all possible degrees of freedom 

will be available during the simulation, they need to be previously declared in the 

input. This means that many elements that are never fractured during a simulation 

have stored within them the deactivated degrees of freedom. This has obviously a 

negative effect in the calculation time and memory consumption.  

Other related limitation is the number of degrees of freedom that Abaqus 

allows for user elements, which is limited to 30 per node. This is overcome by 
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attributing the same enrichment degree of freedom to different fractures, which is 

not problematic as long as different fractures do not share the same enriched nodes. 

However, when modelling intersection between fractures there are nodes that have 

enriched degrees of freedom from different fractures, so these fractures must have 

different enrichment degrees of freedom. This to say that with a limited number of 

degrees of freedom per node the number of fractures in the model is not limited, but 

the number of intersections inside one element is. 

The degrees of freedom of user elements may be attributed to any physical 

grandness, as the differential equations are defined in the code. However, every 

time Abaqus runs a step, a keyword related with the type of calculation must be 

defined. For example, static problems, where only displacement (position 1to 3) 

and rotation degrees of freedom (position 4 to 6) are active, or consolidation, where 

both displacement (position 1 to 3) and pore pressure (position 8) degrees of 

freedom are active. Although the implemented code has only intent of computing 

displacements and fluid pressures, the need of extra degrees of freedom for the 

enrichments demands a type of calculation that allows the maximum number of 

degrees of freedom possible. This is achieved by choosing a coupled 

displacement-temperature calculation. This way, the degrees of freedom 1 to 6 

(displacement and rotation) and 7 and 11-30 (temperature) are available. 

Finally, it must be highlighted that the computational geometry functions 

used in the fracture geometry pre and post-processor allow only the use of regular 

meshes. 
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