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Abstract 

Galvão, Maurício da Silva Cunha; Carvalho, Márcio da Silveira (Advisor); 

Barreto Jr., Abelardo Borges (Co-Advisor). Analytical Models for Thermal 

Wellbore Effects on Pressure Transient Testing. Rio de Janeiro, 2018. 

166p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

 

This work presents a new coupled transient-wellbore/reservoir thermal 

analytical model, consisting of a reservoir/casing/tubing combined system. The 

analytical solutions consider flow of a slightly compressible, single-phase fluid in 

a homogeneous infinite-acting reservoir system and provide temperature- and 

pressure-transient data for drawdown and buildup tests at any gauge location along 

the wellbore, accounting for Joule-Thomson, adiabatic fluid-expansion, conduction 

and convection effects. The wellbore fluid mass density is modeled as a function of 

temperature and the analytical solution makes use of the Laplace transformation to 

solve the transient heat-flow differential equation, accounting for a rigorous 

transient wellbore-temperature gradient		�� ��⁄ . Regarding pressure transient 

analysis (PTA), thermal impacted pressure data may lead to the interpretation of 

false geological heterogeneities, since the heat loss during the buildup period 

provides an increase in the pressure exerted by the wellbore-fluid column, due to 

an increase in the oil mass density, and a change in tubing length, consequently 

causing a change in the gauge location. These effects can make a homogeneous 

reservoir be wrongly interpreted as a double-porosity reservoir, yielding invalid 

conclusions to geological modeling. Results are compared to the response of a 

commercial non-isothermal simulator and thermal impacts on PTA interpretations 

are thoroughly investigated. In addition, a field case study is also provided to verify 

the proposed analytical solutions. The proposed model provides more accurate 

transient temperature flow profiles along the wellbore when compared to previous 

models in Literature. 

 

Keywords 

Pressure Transient Analysis; Transient Temperature Data; Joule-Thomson 

Coefficient; Coupled Wellbore/Reservoir System; Laplace Transformation. 
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Resumo 

Galvão, Maurício da Silva Cunha; Carvalho, Márcio da Silveira (Orientador); 

Barreto Jr., Abelardo Borges (Co-Orientador). Modelos Analíticos de 

Efeitos Térmicos em Testes de Pressão Transiente Rio de Janeiro, 2018. 

166p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

 

Este trabalho apresenta um novo modelo térmico analítico que acopla poço e 

reservatório, constituído por um sistema combinado de reservatório, revestimento 

e coluna de produção. As soluções analíticas consideram fluxo monofásico de 

fluido pouco compressível em um reservatório homogêneo e infinito e fornecem 

dados transitórios de temperatura e pressão ao longo do poço para testes de fluxo e 

de crescimento de pressão, considerando efeitos Joule-Thomson, de expansão 

adiabática, de condução e convecção. A massa específica do fluido é modelada 

como função da temperatura e a solução analítica faz uso da transformada de 

Laplace para resolver a equação diferencial de fluxo de calor transiente, assumindo 

o termo	�� ��⁄  totalmente transiente. Com relação à análise de transientes de 

pressão (PTA), dados de pressão impactados por variações térmicas podem levar à 

interpretação de falsas heterogeneidades geológicas, pois a perda de calor durante 

a estática proporciona um aumento da pressão exercida pela coluna de fluido, 

devido ao incremento de sua massa específica, além de uma contração da coluna de 

produção, provocando uma mudança na posição do registrador. Esses efeitos 

podem fazer com que um reservatório homogêneo seja erroneamente interpretado 

como um reservatório de dupla porosidade, resultando em conclusões inválidas para 

a modelagem geológica. Os resultados deste trabalho são comparados com a 

resposta de um simulador comercial não-isotérmico e impactos nas interpretações 

são extensivamente investigados. Adicionalmente, um estudo de caso de campo é 

fornecido para validar as soluções analíticas propostas. Comparado à Literatura, o 

modelo proposto fornece perfis transientes de temperatura mais acurados. 

 

Palavras-chave 

Teste de Pressão em Poços de Petróleo; Transientes de Temperatura; 

Coeficiente Joule-Thomson; Acoplamento Poço/Reservatório; Transformada de 

Laplace. 
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Nomenclature 

� = Parameter defined by Eq. (3.12) �� = Constant defined by Eq. (2.23) � = Cross-sectional area of the pipe 	 = Formation volume factor 
 = Isothermal compressibility �� = Conversion factor  � = Conversion factor �� = Constant defined by Eq. (2.53) �� = Conversion factor �� = Conversion factor  ���� = Conversion factor  
� = Specific heat capacity 
�� = Ratio of volumetric-heat capacity of fluid to volumetric heat-

capacity of fluid-saturated porous medium, defined by Eq. 

(2.7)  

CPG1 = First coefficient in gas-phase heat-capacity correlation used 

in the CMG-STARS simulator  

CPG2 = Second coefficient in gas-phase heat-capacity correlation 

used in the CMG-STARS simulator �� = Thermal-storage coefficient �� = Energy of the fluid per length �� = Energy of the wellbore per length � = Gravitational acceleration �� = Conversion factor, 1 kg.m/(N.s²) �� = Geothermal gradient � = Gravitational acceleration ℎ = Reservoir thickness � = Specific enthalpy � = Conversion factor, 1 N.m/J � = Permeability  ! = Pipe length between the gauge and the fixed point at shut-in  � = Relaxation distance, defined by Eq. (3.4)  " = Relaxation distance considering the fluid property #�$%��&��, 
defined by Eq. (3.27) ' = Pressure '� = Critical pressure ( = Volumetric-flow rate at standard conditions ) = Volumetric-flow rate at bottomhole conditions * = Radius 
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1 
Introduction 

The process of flowing a well and monitoring pressure, temperature and flow 

rate data, followed by the interpretation of these data, is called well testing. The 

available interpretation methods assume the isothermal hypothesis, i.e., they do not 

consider the influence of temperature on pressure data. This assumption is valid for 

several cases, nonetheless it may not be reasonable under some well-testing 

operational conditions and reservoir parameters. In particular, the pressure response 

measured far above the producing horizon in high transmissibility reservoirs can be 

severely affected by temperature effects. 

This work develops a new coupled transient-wellbore/reservoir thermal 

analytical model designed to provide temperature-transient data for drawdown and 

buildup tests at any gauge location in the wellbore. The wellbore fluid mass density 

is modeled as a function of temperature and the wellbore-temperature 

gradient	�� ��⁄  is not a known input to solve the transient problem. The analytical 

solution makes use of the Laplace transformation to solve the heat-flow differential 

equation and the resulting model accounts for a fully coupled 

reservoir/casing/tubing system. The analytical model considers a slightly 

compressible fluid under single-phase flow in an infinite-acting reservoir, 

accounting for Joule-Thomson (J-T), adiabatic fluid-expansion, conduction and 

convection effects. Moreover, the pipe-contraction effect due to temperature 

changes during buildup is taken into account. 

Results are compared to the rigorous response of a commercial non-

isothermal simulator (CMG STARS, 2017). In addition, a field case study is 

provided. 

 

1.1. 
Well-Testing Operations 

Well testing can be defined as a group of planned procedures and equipment 

designed to acquire the necessary data to enable the understanding of the potential 
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Chapter 1. Introduction 18 

of a reservoir. Both near-wellbore and far-field parameters can be determined, 

providing valuable information for reservoir characterization. Together with 

geological, geophysical and petrophysical data, well-test analysis is used to build 

reservoir models designed to predict field performance, such as the evolution of 

pressure depletion and fluid saturation. In essence, well testing comprises the 

monitoring of flow rates, pressure, and temperature while the reservoir is in a 

transient state. Due to recent studies, the acquisition and interpretation of downhole 

temperature has gained special attention. 

A typical well test lasts about 2 - 7 days, however in the case of reservoir limit 

testing several months of data may be required. This kind of test is known as 

Extended Well Test (EWT). One of the main differences of well-test data from other 

data sources (e.g., core plugs) is that they provide a description of the reservoir in 

dynamic conditions and at a larger scale. Pressure transient analysis (PTA) consists 

of applying mathematical models together with measured rates and pressures to 

determine well and reservoir properties. The main outcomes are: 

1. Productivity index (PI) and skin factor S; 

2. Radial and vertical permeabilities; 

3. Reservoir heterogeneities, such as flow barriers; 

4. Reservoir initial/average pressure, reservoir boundaries and volume. 

Additionally, well tests also enable downhole fluid sampling at reservoir 

conditions. 

 

1.1.1. 
Types of Transient Well Tests 

The execution of a well test consists of measuring the reservoir response in 

the form of pressure and temperature changes due to an input impulse, being a 

change in flow rate. The reservoir response depends on a series of rock and fluid 

parameters, such as fluid viscosity, permeability, skin factor and flow barriers.  

There are several types of transient tests. The most common ones are: 

• Drawdown test: a shut-in well in stable condition is opened to flow 

at a constant production rate and the flowing bottomhole pressure is 

used for analysis. In practice, it is difficult to keep a well producing at 

a constant rate, hence drawdown data are often not conclusive. 
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• Buildup test: In this type of test, a well flowing at a nearly constant 

rate is shut in and the increase of bottomhole pressure is used for 

analysis. The main advantage of buildup tests is that the surface rate 

can be kept at a constant value (zero). This is by far the most common 

well-test configuration. 

• Injection test and fall-off test: these tests are analogous to those 

previously described, however, instead of producing, a flow rate is 

imposed upon the well. Multiphase flow may occur, providing a more 

complex behavior of pressure transient data. 

• Interference test: while another well is producing or injecting, the 

changes in bottomhole pressure are observed in a shut-in well. The 

main outcome of this test is to evaluate communication between wells. 

 

1.1.2. 
Well-Testing Data Acquisition 

The flow rate is measured at surface, and the pressure and temperature data 

are measured at a downhole gauge, placed relatively close to perforations. Some 

wells may not be completed with a downhole gauge, hence measurements are taken 

at the wellhead. 

A special case occurs when the well is completed temporarily with a 

downhole tester valve, and a drill stem test (DST) is conducted. Frequently the well 

is already cased, and the test string is instrumented with a downhole gauge. 

Some well tests may be designed to run a production logging tool (PLT), 

which is used to measure rate, fluid density, pressure, and temperature at the 

producing zones. The main outcome of this operation is the flow distribution across 

the perforations, being of special importance in cases of thick and heterogeneous 

reservoirs. 

 

1.1.3. 
Well-Test Interpretation Methods 

Well-test interpretation is an inverse problem, since inputs and outputs are 

known and the system has to be determined. Interpretation methods combine 

pressure and flow rate data to estimate wellbore and reservoir parameters. In 
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essence, pressure-data interpretation entails matching real data to a mathematical 

model, from which reservoir parameters can be inferred. 

The most usual technique for analyzing variable pressure and rate problems 

is to apply Superposition-Time functions, e.g., Agarwal Equivalent Time (Agarwal, 

1980). The work of van Everdingen and Hurst (1949) addressed the superposition 

principle to solve the variable terminal rate case. In essence, the authors made use 

of Duhamel’s principle, which had been previously used to solve heat-flow and 

electric-circuit problems, and successfully applied it to pressure diffusivity in 

porous medium. They presented a solution in terms of a convolution integral for the 

pressure drop in a continuously varying flow scenario. 

Horner (1951) made use of the superposition principle to evaluate pressure 

buildup tests (PBU), presenting a method based on the solution of the infinite-acting 

radial flow, for a single and constant flow rate period followed by a shut-in period. 

The method calculates reservoir permeability, skin factor, and initial pressure 

through straight-line analysis. 

Russell (1963) applied the superposition principle to the two-rate test case. 

The author developed a method capable of estimating formation permeability, skin 

factor, and average reservoir pressure. Odeh and Jones (1965) then extended this 

solution for multi-rate tests. 

The type curve analysis technique was introduced by Ramey (1970) and 

provided a way to identify the proper theoretical reservoir model to match real data. 

Gringarten et al. (1979) presented a type curve commonly known as the Gringarten 

type curve, which plotted '^ against	0^ �^⁄  for different values of 	�^T_, with 

great importance for well-test analysis. Agarwal (1980) presented a method that 

copes with producing time effects and allows the use of drawdown type curves for 

analyzing pressure buildup data. 

The introduction of the derivative method by Bourdet et al. (1989) was a 

turning point in well-test analysis. The method made it possible to understand and 

recognize heterogeneous behaviors, such as double-permeability and composite 

reservoirs, and handle a wide range of boundary effects (Gringarten, 2006). The 

pressure derivative method comprises plotting both the pressure change and the 

pressure derivative with respect to the natural logarithm of time against the 

logarithm of time. The method has greater diagnosis capabilities in comparison to 

the analysis of the change in pressure itself, enabling the identification of several 
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flow regimes at early, middle and late times. Moreover, this method is the most 

common tool for verification and incorporation of well-test data into reservoir 

models. 

Later, von Schroeter et al. (2001) introduced an effective algorithm for 

variable rate pressure data deconvolution. This technique converts variable-rate 

pressure data into a constant single-rate drawdown with a duration equal to the total 

duration of the test. The result provides an extension of the radius of investigation, 

and the application of the derivative method to deconvolved data allows the 

identification of additional geological features not seen in individual flow periods. 

 

1.2. 
Literature Review 

Wellbore heat transfer has been a subject of study in the oil and gas industry 

over the past decades and gained special attention in recent years due to the 

improvement in temperature measurement technologies. Downhole temperature 

monitoring devices can now provide high accuracy and a resolution better than  

0.01 K (Duru and Horne, 2011a; Muradov and Davies, 2012; Sidorova et al., 2015). 

Due to this technological advance, several studies have proposed combined 

analyses of transient pressure and temperature data to enhance the information 

obtained from downhole gauges, in order to better characterize near-wellbore and 

far-field reservoir parameters. Literature provides analytical, semi-analytical, and 

numerical models for predicting both sandface and wellbore temperatures. 

The classical work of Ramey (1962) provided an approximate solution to the 

transient heat-conduction problem in a vertical injection well, where the 

temperature of the wellbore system (fluids, tubing and casing) is a function of depth 

and time. The solution assumes a steady-state thermal energy balance in the 

wellbore, while the heat transfer to the rock formation occurs under transient radial 

conduction. The well is modeled as a line source and the net heat flow resistance in 

the wellbore caused by the fluid inside the tubing, tubing wall, fluid in the annulus, 

casing wall and cement is modeled by an overall heat transfer coefficient. Ramey’s 

model provides reasonably accurate results after sufficient long elapsed times, 

nevertheless it may introduce substantial deviations from reality, especially at early 

times (Hasan and Kabir, 1991). Willhite (1967) developed a method to determine 
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the value of the overall heat-transfer coefficient, considering the radial thermal 

resistances of each of the aforementioned wellbore elements.  

Curtis and Witterholt (1973) presented a method for determining individual 

zone flow rates in producing wells using dynamic temperature logging data. The 

method comprised an adaptation of Ramey’s solution for producing wells. Horne 

and Shinohara (1979) presented another modification of Ramey’s model for both 

production and injection wells to calculate heat losses along the wellbore to evaluate 

reservoir temperature. 

Sagar et al. (1991) provided a multiphase flow model, accounting for kinetic 

energy and Joule-Thomson (J-T) effects. Hasan and Kabir (1991) studied the early-

time thermal behavior and proposed a transient-diffusion temperature function 

considering a finite-size wellbore. The authors represented the heat transfer at the 

formation/wellbore interface by the Fourier law of heat conduction. The model 

provided more accurate results at early times when compared to Ramey’s model. 

Alves et al. (1992) developed a general model for predicting flow temperature 

profiles in wellbores and pipelines in a multiphase flow condition, accounting for 

conduction, convection and Joule-Thomson effects. Moreover, the model can be 

applied to any wellbore inclination angle. 

Hasan et al. (1997) stated that wellhead pressure (WHP) cannot be translated 

into bottomhole pressure (BHP) by simply adding the hydrostatic head to it. The 

authors concluded that transient thermal effects must be taken into account for the 

correct pressure translation. The authors have developed a numerical wellbore 

model and assumed a steady-state fluid-temperature profile. 

A method to compute the bottomhole pressure (BHP) from wellhead pressure 

(WHP) was proposed by Hasan et al. (2005). An analytical single-phase flow 

wellbore-temperature equation was developed to predict transient temperature 

profiles along the wellbore for drawdown and buildup tests, accounting for J-T 

effects and conserving momentum iteratively. Regarding transient well testing, the 

authors concluded that high transmissibility reservoirs might not yield 

representative translations of WHP to BHP data. Moreover, the authors concluded 

that flow capacity (kh) is the most important parameter to be considered in the 

context of transient testing and quality of results are improved with increasing flow 

rates.  
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Izgec et al. (2007) presented a wellbore simulator coupled with a semi-

analytical temperature formulation for transient drawdown and buildup tests. The 

authors concluded that a numerical differentiation procedure can be used to 

overcome the limitation imposed by assuming a constant overall heat-transfer 

coefficient, especially for early-time transients.  

The models previously discussed considered the heat transfer along the 

wellbore with fluid entering the well at a constant temperature from the reservoir. 

Sui et al. (2008a, 2008b) proposed a single-phase coupled wellbore-reservoir 

thermal model, assuming that pressure and temperature equations are decoupled. 

The temperature equation accounts for J-T effects and adiabatic 

expansion/compression by using a finite-difference method. The pressure is 

obtained from analytical solutions considering isothermal flow of slightly 

compressible fluid with constant isothermal compressibility and viscosity. Later, 

Sui et al. (2010) extended the model to single-phase gas flow. The authors proposed 

a multilayer testing method intended to investigate formation properties in 

commingled multilayered reservoirs, including damaged zone permeability and 

radius. 

App (2009, 2010) presents field cases of non-isothermal behavior due to J-T 

and transient fluid expansion/compression effects, where either a cooling or a 

heating response is observed after rate changes. The author evaluates the impact of 

thermal effects considering a high drawdown scenario using a single-phase thermal 

simulator in which the oil viscosity depends on both temperature and pressure. The 

author concludes that a significant increase in well the productivity index may occur 

due to the improved mobility in the near-wellbore region. Besides, conventional 

well-test analysis considers constant viscosity, hence an overestimation of the near-

wellbore permeability and an underestimation of the skin factor may occur. 

Duru and Horne (2010a, 2010b, 2011a, 2011b) developed a thermal model in 

which pressure and temperature equations are decoupled, accounting for heat 

convection and conduction, J-T and adiabatic effects. The authors use a semi-

analytical method to estimate reservoir and fluid parameters and conclude that 

temperature provides an additional source of information in transient analysis in 

comparison to conventional well-test analysis. Near-wellbore features, such as 

fracture network permeability, skin-zone permeability and skin-zone radius, can be 
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obtained. Furthermore, the authors present a well-test design that addresses the 

necessary procedures to guarantee useful temperature data. 

Ribeiro and Horne (2013) investigated the application of transient 

temperature analysis in the context of hydraulic fracturing operations. The authors 

developed a coupled well-fracture-reservoir thermal model, which accounts for heat 

convection and conduction, J-T and adiabatic effects. The energy balance is coupled 

with the mass balance and geomechanical relationships. The authors concluded that 

transient temperature analysis is capable of reducing the uncertainty related to 

fracture length and reservoir permeability. Ribeiro and Horne (2016) extended the 

model to the case of multiple fractures along a horizontal well. The authors 

demonstrated that temperature data can provide valuable information regarding the 

existence of multiple fractures and any eventual crossflow between them.  

Sidorova et al. (2014) investigated the impact of downhole gauge location on 

conventional pressure transient analysis in the case of high-productivity reservoirs. 

The authors used a transient thermal reservoir numerical model, which considers 

heat convection and conduction, J-T and adiabatic effects. The model also accounts 

for mixing of fluids in the well, heat transfer between wellbore fluid and formation, 

and heat caused by friction. The authors show the effects of temperature changes 

on pressure during buildup periods, when downhole temperature decreases. The 

increase of wellbore fluid mass density and tubing contraction lead to a decrease in 

the hydrostatic pressure over time between the gauge and the perforations. The 

authors provide a procedure for translating the recorded pressure to a corresponding 

isothermal condition. Nonetheless, the authors conclude that the resulting 

reconstructed data carry high uncertainty from the viewpoint of transient testing 

interpretation. Sidorova et al. (2015) used the same reservoir numerical model to 

evaluate the application of temperature transient data in different testing scenarios. 

In particular, the authors show the effects on wellbore temperature data caused by 

mud circulation, fluid losses, and cementing. 

An analytical solution was presented by Chevarunotai et al. (2015) to 

calculate the temperature distribution in a reservoir under a constant-rate single-

phase flow, incorporating the energy exchange from the reservoir to the over-

burden and under-burden formations. The energy balance accounts for convection 

and J-T effects and neglects radial heat conduction and adiabatic expansion effects.  
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Mao and Zeidouni (2017) presented a method to incorporate fluid property 

variations in analytical solutions of temperature transient analysis. According to the 

authors, assuming constant fluid properties can result in significant errors when 

modeling transient temperature data in the case of high drawdown conditions. The 

authors identified that viscosity causes the largest impact on temperature data and 

the correct treatment of this fluid property by the application of the proposed 

method provides better results to the existing analytical solutions. 

In a series of papers, Onur and Cinar (2016, 2017a), Palabiyik et al. (2016) 

and Onur et al. (2016a) presented semilog straight line and temperature logarithmic-

time derivative methods for interpreting temperature transient data jointly with 

pressure transient analysis. Solutions for both constant-rate drawdown and buildup 

tests are provided considering a line-sink well in a single-layer infinite-acting 

homogeneous reservoir under single-phase flow of a slightly compressible fluid of 

constant compressibility and viscosity. The proposed analytical solution for the 

thermal energy-balance equation is decoupled from the pressure solution, and it is 

expressed explicitly in terms of temperature and J-T coefficients of oil and connate 

water. Early- and late-time approximate solutions for the buildup period are 

provided, whereas a complete solution for the drawdown period is derived. Results 

successfully reproduce the response of a commercial non-isothermal simulator and 

it is shown that decoupling pressure and temperature equations is a valid 

assumption. Therefore, sandface transient-pressure data under non-isothermal flow 

can be interpreted by conventional methods. Sandface-temperature responses for 

both drawdown and buildup periods are thoroughly investigated. The authors show 

that drawdown-sandface temperature at early times presents a cooling behavior, 

dominated by the fluid adiabatic expansion. During late times, the sandface 

temperature is dominated by the Joule-Thomson effect, providing a heating 

response for oil flow. The buildup-sandface temperature presents an increase at 

early times due to the compression of the fluid near the wellbore. As for late-time 

data, temperature is dominated by Joule-Thomson and conduction effects, yielding 

a cooling response. Another important conclusion shows that the presence of a skin 

zone has a dominant effect on drawdown- and buildup-sandface temperatures at 

early and intermediate times, when temperature is controlled by skin-zone 

properties. Among other important contributions, the authors provide a 
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methodology to estimate skin-zone permeability and skin-zone radius, consisting 

of semilog and derivative analyses of drawdown and buildup temperatures. 

Onur et al. (2016b, 2017) extended the previous study by developing 

analytical and semi-analytical thermal models, considering a coupled wellbore-

reservoir system. This important improvement allowed the investigation of 

transient-temperature measurements along the wellbore during drawdown and 

buildup tests, accounting for sandface-temperature changes. Moreover, the 

proposed semi-analytical non-isothermal model accounts for wellbore storage and 

momentum effects. 

 Onur and Cinar (2017b) extended the solutions to account for heat losses to 

strata in the reservoir. Besides, the authors presented solutions for the general case 

of variable surface-rate production history. Onur (2017) reviewed the interpretation 

methods and provided additional analyses regarding the previous results.  

 

1.3. 
Conceptual Model  

Classical well-test analysis assumes an isothermal wellbore/reservoir system. 

Nonetheless, the real system is non-isothermal, and the influence of temperature in 

pressure data may induce PTA to indicate false geological features.  

The most significant impact of temperature changes on pressure data occurs 

during a buildup test. After a stabilized flow period, the wellbore-temperature 

distribution is higher than the Earth original temperature in depth. When the well is 

shut in, the wellbore fluid does not take long to start cooling due to thermal radial 

diffusion to the surroundings. The heat loss causes the wellbore fluid mass density 

to vary with time, consequently the pressure exerted by the static fluid between the 

downhole gauge and the perforations also varies with time. Moreover, depending 

on the type of well completion, expansion joints may allow the tubing to contract 

during buildup, changing the gauge location. 

The classical assumption of a constant static-fluid pressure, which is the base 

of conventional PTA interpretation methods, may fail for some wellbore/reservoir 

systems. 
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Figure 1.1 illustrates a simplified wellbore/reservoir system with a gauge 

placed above the perforations. 

 

Figure 1.1: Simplified Wellbore/Reservoir System 

 

For an isothermal system, the pressure at the gauge located in a slanted 

wellbore is described by the well-known hydrostatic expression (assuming 

negligible effect of pressure on the fluid mass density) ':(�:, 0) = '��(0) − K���: sin F, (1.1)

where '�� refers to the sandface pressure, � is the acceleration of gravity, �: is the 

gauge distance from perforations, K� is the fluid mass density and F is the 

inclination angle with the horizontal. 

Under the isothermal hypothesis, the hydrostatic pressure is constant. 

Consequently, the derivative of pressure gauge data used for interpretation is equal 

to the sandface pressure derivative. 

e �':� ln 0g���831hijk = �'��� ln 0	. (1.2)

Yet, under the real non-isothermal condition, the gauge derivative data in Eq. 

(1.2) may fail to describe the reservoir, since the fluid mass density is a function of 

temperature and pressure, which are functions of time and depth. Moreover, the 

gauge location may change due to tubing expansion or contraction. Hence, the 

generalized non-isothermal expression for pressure gauge data is given by  
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':m�:, 0n = '��(0) − o K�(�, 0)� sin F p�CqDr<(8)
! , (1.3)

where Δ (0) represents the change in tubing length over time. The logarithmic-time 

derivative of Eq. (1.3) is given by �':� ln 0 = �'��� ln 0 − � sin F �� ln 0 eo K�(�, 0)p�CqDr<(8)
! g. (1.4)

The result in Eq. (1.4) leads to the conclusion that Eq. (1.2) is only valid when �'��� ln 0 ≫ � sin F �� ln 0 eo K�(�, 0)p�CqDr<(8)
! g	. (1.5)

In high transmissibility reservoirs, the sandface-pressure derivative is small, 

hence the isothermal hypothesis is not valid. Moreover, it is also clear in Eq. (1.5) 

that a gauge placed far from perforations also discredits the isothermal hypothesis. 

Therefore, the use of isothermal methods depends on an intrinsic relation between 

the reservoir transmissibility and the gauge location. Among other results, this work 

provides an analytical expression to calculate the maximum gauge distance given a 

specific non-isothermal wellbore/reservoir system. 

 

1.4. 
Research Objectives  

The main objective of this research is to solve the integral in Eq. (1.3), thus 

providing the means to understand and interpret well tests under non-isothermal 

conditions. 

A fully coupled transient reservoir/casing/tubing thermal analytical model 

will be provided, accounting for Joule-Thomson, adiabatic fluid-expansion, 

conduction and convection effects. The wellbore fluid mass density will be modeled 

as function of temperature and the wellbore-temperature gradient	�� ��⁄  is not a 

known input for the transient problem. Moreover, the change in pipe length will be 

taken into account. 

Once the transient thermal analytical model is derived, an analytical solution 

for the integral in Eq. (1.3) can be obtained, which is the pressure exerted by the 

wellbore fluid as a function of time and depth. As a result, the wellbore cooling 

behavior during buildup tests can be analytically determined, hence permitting a 

thorough assessment of thermal impacts on PTA interpretations. 
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1.5. 
Dissertation Outline 

This dissertation is organized in eight chapters, including the Introduction and 

the Conclusions. 

Chapter 2 describes the mathematical modeling of the energy balance in the 

reservoir. This chapter derives a new analytical solution for the reservoir buildup 

temperature that applies from early to late shut-in times. 

Chapter 3 describes the mathematical modeling of the energy balance for a 

fully coupled reservoir/casing/tubing system. This chapter derives new analytical 

solutions for both drawdown and buildup transient-wellbore temperatures. The 

solutions account for a temperature-dependent fluid mass density K�(�) and do not 

assume any approximation for the transient wellbore-temperature gradient �� ��⁄  

to solve the partial-differential equation that describes the transient-wellbore-

temperature distribution. 

Chapter 4 uses the derived transient-wellbore solutions to describe the 

variation of the fluid mass density and the change in tubing length over time and 

depth. The integral in Eq. (1.3) is solved, yielding a fully analytical solution for the 

time dependent pressure exerted by the wellbore-fluid column during the buildup 

period. Moreover, practical and easy to compute metrics are derived for evaluating 

whether a particular wellbore/reservoir system fails under the isothermal 

hypothesis. 

Chapter 5 presents the verification of results. Verifications are performed by 

comparing the derived analytical solutions to the response of a commercial non-

isothermal simulator (CMG-STARS, 2017). 

Chapter 6 presents synthetic case studies, where thermal impacts on PTA 

interpretations are investigated. It will be shown how the thermal effects can affect 

interpretation results. 

Chapter 7 presents a field case study, where thermal impacts on pressure data 

are assessed at two different depths during a real DST operation. The proposed 

analytical solution in this work was able to reproduce the real data and to provide 

the true reservoir characterization, mitigating the risk of interpreting false 

heterogeneities. All wellbore, reservoir and fluid properties are provided, allowing 
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replication of results. Moreover, the production logging flow profile and the 

associated temperature curve are also provided. 

Chapter 8 summarizes the results of this work, presents conclusions and 

outlines recommendations for further work. 
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2 
Analytical Reservoir-Temperature Solutions 

This chapter presents analytical reservoir temperature solutions for both 

drawdown and buildup tests. First, the analytical single-rate drawdown solution 

developed by Onur and Cinar (2017a) is presented. Regarding the buildup period, 

the authors did not provide a complete solution, instead they derived analytical 

early- and late-time approximations.  

At the end of this chapter, the mathematical formulation proposed by Onur 

and Cinar (2017a) is used as the basis to derive the proposed reservoir buildup-

temperature solution, which applies from early to late shut-in times. 

 

2.1. 
Pressure-Diffusion Equation 

The well-known pressure-diffusion partial-differential equation is given by 1* ��* u* �'�*v = MI�
8�� 	�'�0 , (2.1)

where M is the reservoir porosity, I� is the oil phase viscosity, �� is the effective 

oil permeability and 
8 is the fluid-saturated rock isothermal compressibility, 

defined by 
8 = +�
� + +�
� + 
h , (2.2)

where the parameter 
 is the isothermal compressibility and the subscripts Y,\ and * refer to the oil phase, aqueous phase and solid rock, respectively. 

The derivation of Eq. (2.1) comprises the following assumptions: 

1. The reservoir is homogeneous and isotropic; 

2. Single-phase radial flow (oil with immobile connate water saturation); 

3. Oil and water are slightly compressible fluids and are immiscible; 

4. Fluid flow is governed by Darcy’s law; 

5. Rock and fluid properties are constant; 

6. Well is vertical in the reservoir, fully penetrating the entire formation 

thickness; 
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7. Gravity and capillary effects are negligible; 

8. The pressure and temperature equations are decoupled. 

The next sections evaluate Eq. (2.1) under the appropriate initial and 

boundary conditions, in order to serve as a known input to the energy-balance 

equation. 

 

2.2.  
Reservoir Energy-Balance Equation 

In addition to the aforementioned assumptions, the non-isothermal reservoir 

model is based on the following assumptions (Onur and Cinar, 2017a): 

1. Thermal properties of fluid and rock do not vary with pressure and 

temperature; 

2. The solid matrix, oil and connate water are in local thermal 

equilibrium; 

3. There exists no heat transfer to over- and under-burden strata from the 

reservoir. 

The energy-balance partial-differential equation, which describes the 

temperature behavior for radial flow, is given by (Onur and Cinar 2017a) 

mK
�n8 ���0 − mK
�Nn8 �'�0 + K�
��xh� ���* − K�
��xh�$%�� �'�*
− 1* ��* uH8 ���*v = 0, 

(2.3)

where the subscript 0 refers to total system (fluid plus rock) properties. The 

parameter xh� represents the oil phase radial velocity, given by Darcy’s equation, 

xh� = −��I� �'�*	. (2.4)

The authors treat all physical and thermal properties of rock and fluid in Eqs. 

(2.3) and (2.4) as constant, hence the energy-balance equation can be expressed as ���0 + 6��(*, 0) ���* − ;8* ��* u* ���*v = N8∗ �'�0 + $%��6��(*, 0) �'�*, (2.5)

where 6�� is referred to as the velocity of convective heat transfer, defined by 

6��(*, 0) = 
���xh� = −
��� ��I� �'�*	. (2.6)

The parameter 
��� is the ratio of the volumetric-heat capacity of oil to the 

volumetric-heat capacity of the fluid-saturated porous medium, given by  
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��� = K�
��mK
�n8	, (2.7)

where mK
�n8is the volumetric-heat capacity of the fluid-saturated porous medium, 

defined by mK
�n8 = Mm+�K�
�� + +�K�
��n + (1 − M)Kh
�h	. (2.8)

In Eq. (2.5), ;8 and N8∗ represent the thermal diffusivity and the effective 

adiabatic-expansion coefficient of the fluid-saturated rock, respectively, defined by 

;8 = H8mK
�n8, (2.9)

and  

N8∗ = mK
�Nn8mK
�n8 , (2.10)

where H8	is the thermal conductivity of the fluid-saturated porous medium. The 

authors did not provide an explicit expression to calculate this parameter. Hence, 

this work adopts the default expression used by the non-isothermal simulator 

(CMG-STARS, 2017) H8 = M(+�H� + +�H�) + (1 − M)Hh , (2.11)

where H is the thermal conductivity. The term mK
�Nn8 is referred to as the 

adiabatic-expansion coefficient of the fluid system, defined by mK
�Nn8 = Mm+�K�
��N� + +�K�
��N�n. (2.12)

The parameters K, +, 
� and N represent the mass density, fluid saturation, 

isobaric-heat capacity and adiabatic-thermal expansion coefficient of fluid, 

respectively. The parameter $%�� represents the oil phase Joule-Thomson 

coefficient.  

The first term in the left-hand side (LHS) of Eq. (2.5) is the accumulation 

term and the third term refers to the conduction effect. The second term in the LHS 

and the second term in the right-hand side (RHS) of Eq. (2.5) refer to convection 

effects. The latter entails the Joule-Thomson expansion effect. The first term in the 

RHS of Eq. (2.5) refers to the fluid adiabatic expansion effect. 
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2.3. 
Constant-Rate Drawdown-Temperature Solution  

Onur and Cinar (2017a) considered a line-sink well producing at a constant 

rate, in absence of wellbore effects, in an infinite-acting homogeneous reservoir 

with uniform thickness. The appropriate initial and boundary conditions for 

pressure are given by IC: '(*, 0 = 0) = '�, (2.13)

IBC: limh→! u* �'�*v = �(�	�I���ℎ , (2.14)

OBC: limh→�'(*, 0) = '�. (2.15)

The parameter � is a unit conversion factor (see Appendix A) and the oil rate 

at standard conditions is represented by the parameter (� . 
The solution of Eq. (2.1) subject to the described conditions is the well-known 

expression 

Δ'(*, 0) = '� − '(*, 0) = −12�(�	�I���ℎ Ei e− *4��E�0g. (2.16)

The parameter �� is a unit conversion factor (see Appendix A), E�	is the 

effective oil hydraulic-diffusivity, defined by  

E� = ��MI�
8, (2.17)

and Ei(−@) is the exponential integral function. 

Under the adopted assumptions, the solution for pressure is independent of 

temperature and the result in Eq. (2.16) is used to solve the energy-balance 

differential equation. The appropriate initial and boundary conditions for 

temperature are given by (Onur and Cinar, 2017a) IC:	�(*, 0 = 0) = ��, (2.18)

IBC: limh→! u* ���*v = 0, (2.19)

OBC: limh→��(*, 0) = ��. (2.20)

The inner-boundary condition in Eq. (2.19) describes an insulated wellbore at 

perforations. For the drawdown energy balance, Onur and Cinar (2017a) neglected 

the conduction term in Eq. (2.5) (third term in the LHS). The result is a first-order 

partial-differential equation, given by 
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���0 + 6��(*, 0) ���* = N8∗ �'�0 + $%��6��(*, 0) �'�*	. (2.21)

To solve Eq. (2.21) the authors decouple the pressure solution by using the 

result of Eq. (2.16), hence the RHS is a known input. Further, the authors applied 

the Boltzmann transformation to obtain the single-rate drawdown solution: 

�(*, 0) = �� + 12� (�	�I���ℎ �$%��Ei e− *4��E�0g
+ mN8∗ − $%��nEi e− *4��E�0 − ��Tu�	 h������8vg�, 

(2.22)

where �� is a constant defined by 

�� = 12� 
���(�	�E�ℎ 	. (2.23)

The sandface-temperature change is obtained by evaluating Eq. (2.22) at * = *�. In presence of skin effects, the authors show that a good approximation for 

the sandface-temperature solution at early and intermediate times is obtained by 

using the skin zone altered permeability	(�_) in Eq. (2.22). 

 

2.4. 
Buildup-Temperature Solution 

Regarding the buildup period, Onur and Cinar (2017a) neglected the 

convective terms in Eq. (2.5), by assuming the fluid velocity to be negligible during 

the shut-in period. Therefore, the buildup energy balance can be expressed by the 

following second-order partial-differential equation: ���0 − ;8* ��* u* ���*v = N8∗ �'�0 	. (2.24)

The initial and boundary conditions are given by IC: �m*, 0 = 0�n = ��(*), (2.25)

IBC: limh→! u* ���*v = 0, (2.26)

OBC: limh→��(*, 0) = ��, (2.27)

where 0� is the producing time before shut-in and ��(*) represents the temperature 

distribution in the reservoir at shut-in, computed from Eq. (2.22) at 0 = 0�. 

The authors propose a more convenient way to approach the problem, 

defining time and temperature differences, where Δ0 represents the elapsed time 
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since the beginning of shut-in (Δ0 = 0 − 0�) and Δ� is the temperature difference 

for buildup, defined by Δ�(*, Δ0) = �(*, Δ0) − ��(*). (2.28)

The energy balance in Eq. (2.24) and the initial and boundary conditions can 

be rewritten as follows (Onur and Cinar, 2017a): 

PDE:	 �Δ��Δ0 − ;8* ��* u* �Δ��* v − ;8* ��* e* ����* g = N8∗ �'�Δ0	, (2.29)

IC:	Δ�(*, Δ0 = 0) = 0, (2.30)

IBC: limh→! u* �Δ��* v = limh→! u* ���*v − limh→!e* ����* g = −� (�	�I���ℎ $%��, (2.31)

OBC:	 limh→�Δ�(*, Δ0) = 0. (2.32)

The inner-boundary condition in Eq. (2.31) is obtained from the combination 

of Eq. (2.26) and Eq. (2.22) evaluated at	0 = 0�. 

Onur and Cinar (2017a) did not provide a complete solution, instead they 

derived asymptotic early- and late-time approximate solutions.   

The early-time approximate solution considers that the temperature change is 

mainly caused by adiabatic compression, yielding the following expression at 

sandface: 

Δ�(* = *�, Δ0) = −12� (�	�I���ℎ N8∗Ei e− *�4��E�Δ0g. (2.33)

For the late-time approximate solution, the authors neglected the adiabatic 

compression term and considered only the conduction terms. Moreover, the authors 

set the third term in the LHS of Eq. (2.29) as zero. The next subsection evaluates 

when this simplification may fail. 

The late-time approximate solution is given by  

Δ�(*, Δ0) = −12�(�	�I���ℎ $%��Ei e− *4;8Δ0g, (2.34)

where the sandface-temperature change is obtained by evaluating Eq. (2.34)  

at * = *�. 

All mathematical treatment and results up to this point were obtained from 

the formulations proposed by Onur and Cinar (2017a). The following subsection 

presents the novel solution for the buildup period. 
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2.4.1. 
Proposed Buildup-Temperature Solution 

The proposed line-sink analytical solution in this work for the buildup initial 

boundary problem has been developed considering well-testing operational 

conditions, where producing and shut-in times are in the order of hours and flow 

rates range from hundreds to few thousands of m³/d. Furthermore, the solution does 

not take into account skin effects and assumes the porous medium not to be a  

low-permeability reservoir. These assumptions allow the derivation of a complete 

analytical solution that applies from early to late shut-in times. The verification of 

the solution is presented in Chapter 5. 

The pressure difference for a buildup test after a constant production rate can 

be obtained by superimposing two constant-rate drawdown solutions (Horner, 

1951) '� − '(*, Δ0) = Δ'm*, 0� + Δ0n − Δ'(*, Δ0), (2.35)

where Δ' is given by the constant-rate drawdown solution in Eq. (2.16).  

Assuming a sufficiently long drawdown period, the derivative of Eq. (2.35) 

with respect to Δ0 can approximated by: �'(*, Δ0)�Δ0 ≈ �Δ'(*, Δ0)�Δ0 = 12� (�	�I���ℎ 1Δ0 Tu�	 h�����r8v. (2.36)

Eq. (2.36) neglects the pressure superposition effect. Indeed, for pressure 

analysis this assumption is not reasonable, nevertheless this approximation entails 

negligible impacts for the buildup-temperature problem, even for relatively long 

shut-in times. Therefore, the expression in Eq. (2.36) will be used to describe the 

pressure-derivative term in the RHS of Eq. (2.29). 

Regarding the third term in the LHS of Eq. (2.29), it can be expanded into the 

following expression (adapted from Onur and Cinar, 2017a): 

;8* ��* e* ����* g = 1mE�0�n �;8* 	12 � (�	�I�Tu�	 h������8�v4��ℎ�� � × Y(*), (2.37)

where 
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Y(*) = −4$%��* + 4mN8∗ − $%��n �*��m4��E�0�nTu�	 h������8�v − *��
�u *4��E�0�v + ��Tu�	 h������8�v� 	. (2.38)

Following the same approach proposed by Onur and Cinar (2017a), this term 

will be set to zero. It is important to state that this assumption may fail for low flow 

capacity (kh) reservoirs and short drawdown times. 

Under the adopted assumptions, the buildup energy-balance differential 

equation is given by �Δ��Δ0 − ;8* ��* u* �Δ��* v = N8∗ 12�(�	�I���ℎ 1Δ0 Tu�	 h�����r8v. (2.39)

Eq. (2.39) is a second-order linear partial-differential equation. The initial and 

boundary conditions are the same presented in Eqs. (2.30) through (2.32). The 

Boltzmann transformation will be used to solve the described problem.  

The Boltzmann variable is defined by 

J = *4E���Δ0	. (2.40)

The transformation of the first term in the LHS of Eq. (2.39) is given by �Δ��∆0 = �Δ��J e *4E��g u−1Δ0v = −�Δ��J J 1Δ0	. (2.41)

The second term in the LHS of Eq. (2.39) can be split into two terms: ;8* ��* u* �Δ��* v = ;8* �Δ��* + ;8 �Δ��* 	. (2.42)

The transformation of each term in the RHS of Eq. (2.42) is given by, 

respectively, ;8* �Δ��* = ;8* �Δ��J 2*4E���Δ0 = �Δ��J u ;82E���v 1Δ0	, (2.43)

and 

;8 �Δ��* = �Δ��J J u ;8��E�Δ0v + �Δ��J 12	u ;8��E�Δ0v	. (2.44)

Finally, the transformation of the RHS of Eq. (2.39) is given by 

N8∗ �'�Δ0 = N8∗ 12� (�	�I���ℎ 1Δ0 T��	. (2.45)
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The energy balance expressed in Eq. (2.39) can be rewritten as 

−�Δ��J J 1Δ0 − �Δ��J 12 ;8��E� 1Δ0 − �Δ��J J ;8��E� 1Δ0 − �Δ��J 12 ;8��E� 1Δ0 =
= N8∗ 12� (�	�I���ℎ 1Δ0 T�� . (2.46)

The transformations of the initial and outer-boundary conditions are given by Δ�(*, Δ0 = 0) = lim�→	�	Δ� = 0, (2.47)limh→�	Δ�(*, Δ0) = lim�→	�	Δ� = 0. (2.48)

Note that the transformation of the initial condition is identical to the 

transformation of the outer-boundary condition. As for the inner-boundary 

condition, 

limh→! u* �Δ��* v = lim�→!	 2J pΔ�pJ = −�(�	�I���ℎ $%� . (2.49)

The multiplication of Eq. (2.46) by (−Δ0)	and rearranging its terms yields the 

following second-order linear ordinary-differential equation: 

ODE:	 uJ ;8��E�v pΔ�pJ + u ;8��E� + JvpΔ�pJ = −��N8∗T�� . (2.50)

The appropriate boundary conditions for the transformed problem are given 

by BC: lim�→	�	Δ� = 0, (2.51)

BC:	 lim�→!	 J pΔ�pJ = −��$%� , (2.52)

where the constant ��	is defined by 

�� = 12� (�	�I���ℎ 	. (2.53)

The solution of Eq. (2.50) subject to the conditions presented in Eqs. (2.51) 

and (2.52) is given by 

Δ�(J) = �� � N8∗( ;8��E� − 1)Ei(−J)
− � N8∗� ;8��E� − 1� + $%��� Ei �− J;8��E���	. (2.54)

Finally, the solution expressed in terms of the original variables * and Δ0 is 

given by 
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Δ�(*, Δ0) = � (�	�I���ℎ 12
×	� N8∗�1 − ;8��E�� �−Ei e−

*4��E�Δ0g + Ei e− *4;8Δ0g�
− $%��Ei e− *4;8Δ0g�. 

(2.55)

In the RHS of Eq. (2.55), the first term inside the braces refers to the 

adiabatic-compression effect and provides a heating response, since the hydraulic-

diffusion coefficient is much greater than the thermal-diffusion coefficient. 

Conversely, the second term entails a cooling behavior for oil flow, related to 

conduction and J-T effects. The solution is valid from early to late well-testing shut-

in times and the temperature change is a result of the balance between the 

aforementioned heating and cooling effects.  

The sandface-temperature change is obtained by evaluating Eq. (2.55) at * = *�: 

Δ�(*�, Δ0) = �(�	�I���ℎ 12
×	� N8∗�1 − ;8��E�� �−Ei e−

*�4��E�Δ0g + Ei e− *�4;8Δ0g�
− $%��Ei e− *�4;8Δ0g�. 

(2.56)

The logarithmic approximation of the exponential integral function yields 

Δ�(*�, Δ0) = � (�	�I���ℎ 12	� N8∗�1 − ;8��E�� ln u
E���;8 v + $%�� ln u4;8Δ0*�T  v�. (2.57)

Note that only the J-T/conduction term is time dependent in this 

approximation. The adiabatic-compression effect occurs instantaneously at shut-in. 

It is noteworthy to state that when Δ0 → ∞ the solution given by Eq. (2.56)  

fails to describe the buildup-sandface temperature limr8→	�	Δ�(*�, Δ0) = −∞. (2.58)
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 Nonetheless, in Chapter 5 the proposed solution is compared to the response 

of a commercial non-isothermal simulator and it is shown that the solution is valid 

from early to late shut-in times in the context of well testing. 
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3 
Analytical Transient-Wellbore-Temperature Solutions 

This chapter presents a novel solution for the transient-wellbore-temperature 

distribution, where the fluid mass density is a function of temperature, and the 

wellbore comprises a fully coupled reservoir/casing/tubing system. Moreover, the 

wellbore-heat-flow partial-differential equation is modeled not making use of the 

classical approximation of using the wellbore-temperature gradient �� ��⁄  from the 

steady-state regime to solve the transient problem. This work will present complete 

transient analytical solutions for both drawdown and buildup tests. 

The coupled non-isothermal wellbore/reservoir model is based on the 

following assumptions: 

1. The wellbore accounts for an inclination angle F above the 

perforations; 

2. The volumetric rate along the wellbore is uniform, therefore wellbore 

storage (WBS) and momentum effects are neglected; 

3. Fluid properties along the wellbore are constant, except for the fluid 

mass density, which depends on temperature; 

4. There is cement between the formation adjacent to the wellbore and 

the outside-casing wall; 

5. The casing-tubing annulus is filled with fluid (or an insulation 

material); 

6. Tubing and casing account for finite walls and a packer isolates the 

casing-tubing annulus from the formation; 

7. Wellbore components have constant thermal conductivities; 

8. The gauge can be placed at any depth, including a location in the 

production casing below the bottom of the tubing string; 

9. There is no friction loss along the wellbore; 

10. Viscous dissipation effects are neglected; 

11. Heat transfer to the surroundings occurs due to radial diffusion. There 

is no axial heat transfer; 
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12. The model accounts for Joule-Thomson and gravity effects; 

13. Initial thermal equilibrium responds to the geothermal gradient; 

14. Perforations are assumed to be a point source; 

15. Tubing may contract or expand due to thermal effects, letting the 

gauge location be adjusted. 

Regarding the last assumption, the wellbore completion may comprise 

expansion joints between the gauge and the packer used to compensate for tubing 

movement due to temperature changes. This work provides an analytical continuous 

solution that encompasses the effect of tubing contraction during shut-in. First, the 

solution for a fixed gauge location is obtained and then the effect of change in 

tubing length is incorporated. This effect will be addressed in Chapter 4. 

Figure 3.1 shows a schematic of the coupled non-isothermal 

wellbore/reservoir system considered in this work. The wellbore is cased, cemented 

and completed with a production tubing. Moreover, there is a packer isolating the 

casing-tubing annulus, filled with annular fluid. 

 

Figure 3.1: Schematic of the Coupled Wellbore/Reservoir System 

 

In Figure 3.1, perforations are assumed to be a point source and the parameter �� is the distance between the producing horizon and the bottom of the tubing string. 

A finite perforated interval is out of the scope of this work, nonetheless the field 

case study in Chapter 7 provides an approach to circumvent this limitation. 
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3.1. 
Wellbore-Heat-Flow Model 

The transient-wellbore-temperature distribution can be modeled by the 

following partial-differential equation (adapted from Hasan et al. (2005) and Onur 

et al. (2017)): 

�(1 + ��) ����0 = )� �¢�1�(�) − ��(�, 0)£ 
−)� ������ − Φ('�, ��) + � sin F��
����, (3.1)

where )� is the volumetric oil rate at bottomhole conditions, � is the cross-sectional 

area of the pipe and the subscript \ refers to properties inside the wellbore.  

Eq. (3.1) considers the coordinate axis � positive in the upward direction and 

the value of � = 0 is set at the producing horizon. The first term in the in the RHS 

of Eq. (3.1) refers to the heat loss to the formation and the second term represents 

the convective energy transport into and out of the control volume. The LHS of Eq. 

(3.1) refers to the accumulation term, where �� is the thermal-storage coefficient, 

defined by 

�� = ���� , (3.2)

where �� is the energy of the wellbore per length and �� is the energy of the fluid 

per length. The thermal-storage represents the wellbore capacity to store or release 

heat and its value depends on a series of thermal, dimensional and operational 

parameters (Hasan et al., 2005). �1�(�) is the initial Earth temperature distribution due to the geothermal 

gradient, defined by �1�(�) = �1�23 − ��� sin F, (3.3)

where �1�23	is the Earth temperature at � = 0 and 0 = 0. The geothermal gradient �� adopted in this study is the same value of 0.03	K/m used by Onur et al. (2017). 

In Eq. (3.1), �� and � are unit conversion factors and  � is the relaxation-distance 

parameter, defined by 

 � = 2§*8�78H1K���)�
��¢H1 + *8�78[̂ (0^)£	, (3.4)

where �� is a unit conversion factor (see Appendix A), 78 is the overall heat-transfer 

coefficient and H1 is the thermal conductivity of the formation adjacent to the 
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wellbore. For flow inside a cased tubing, the overall heat-transfer coefficient is 

defined by (Sagar et al., 1991) 

78 = 1*8� �ln(*�� *8�⁄ )Hj¨ + ln(*� *��⁄ )H�1i ���. (3.5)

In absence of a tubing, 78 is defined by (Sagar et al., 1991) 

78 = 1*�� �ln(*� *��⁄ )H�1i ���. (3.6)

In Eqs. (3.5) and (3.6), *8� is the inside-tubing radius, *8� is the outside-tubing 

radius, *�� is the inside-casing radius, *�� is the outside-casing radius, Hj¨ is the 

thermal conductivity of the annular fluid and H�1i is the thermal conductivity of 

cement. 

In this work, the finite wellbore model comprises a cased tubing (see Figure 

3.1), therefore the parameters � and  � vary with depth. In Eq. (3.4), *8� is replaced 

by *�� in the wellbore section without a tubing string. 

In Eq. (3.4), [̂ (0^) is the dimensionless heat-transfer function. Onur et al. 

(2017) uses the approximation proposed by Hasan and Kabir (2002). This work 

adopts the same expression, given by [̂ (0^) = ln©T�!.8ª + (1.5 − 0.3719T�8ª)®0^	¯, (3.7)

where 0^ represents the dimensionless time, defined by (Onur et al., 2017) 

0^ = ;1*�� 0	, (3.8)

where ;1 is the thermal-diffusivity coefficient of the formation adjacent to the 

wellbore. It is noteworthy to state that Hasan and Kabir (2002) define the 

dimensionless time 0^ with respect to the wellbore radius	*�. 

The overall heat-transfer coefficient 78 models the resistances to heat flow in 

the wellbore, and the relaxation distance  � can be viewed as the overall resistance 

for the formation/wellbore system (Hasan and Kabir, 2002). This parameter is the 

inverse of the parameter � defined by Ramey (1962). 

The parameter Φ(�, 0) combines the Joule-Thomson effect and kinetic-

energy contribution (Hasan et al., 2005). The parameter is given by (Onur et al., 

2017) 

Φ('�, ��) = $%�� �'��� − )��
����� �)��� . (3.9)
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The results to be given in this study are derived for a constant volumetric rate 

and viscous dissipation effects are neglected. Hence, Eq. (3.9) reduces to 

Φ('�, ��) = $%�� e−K�('�, ��)��� g = −$%��&�('�, ��), (3.10)

where � is the gravitational acceleration and &� is the oil specific weight, which 

depends on pressure and temperature, therefore depends on � and 0. 
The wellbore energy balance presented in Eq. (3.1) can be rewritten as  1� ����0 =  �¢�1�(�) − ��(�, 0)£ − ������ + $%��&�(�, 0) + � sin F��
����, (3.11)

where the constant � is defined by (Onur et al., 2017) 

� = ��)��(1 + ��). (3.12)

It is more convenient to work with the temperature difference, now defined 

by Δ��(�, 0) = ��(�, 0) − �1�(�). (3.13)

The combination of Eqs. (3.3) and (3.13) yields Δ��(�, 0) = ��(�, 0) − �1�23 + ��� sin F. (3.14)

The temporal and spatial derivatives of Δ�� are given by, respectively,  �Δ���0 = ����0 − ��1�23�0 + �(��� sin F)�0 = ����0 , (3.15)

and �Δ���� = ����� − ��1�23�� + �(��� sin F)�� = ����� + �� sin F. (3.16)

Then, the energy balance expressed in Eq. (3.11) can be rewritten as 1� �Δ���0 = − �Δ�� − ��Δ���� − �� sin F + $%��&�(�, 0) + � sin F��
����. (3.17)

The next subsection will provide an expression for the oil specific weight as 

a function of temperature. Then, the final expression for the energy-balance 

equation will be presented. 
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3.1.1. 
Oil Mass Density as a Function of Temperature  

The oil specific weight &�(�, 0) in Eq. (3.17) is a direct function of the oil 

mass density, which depends on both pressure and temperature: 

&�('�, ��) = K�('�, ��) ���	. (3.18)

The mass density can be related to the isothermal compressibility	
� and the 

isobaric-thermal-expansion coefficient	#�, as described by the following equations: 


� = 1K� u�K��' v� , (3.19)

and  

#� = − 1K� u�K��� v�. (3.20)

The combination of Eqs. (3.18) through (3.20) provides the expression for the 

oil specific weight &�('�, ��) = &��T¢��r��"�(�°��±²³´)£, (3.21)

where &�� is a reference oil specific weight, evaluated at initial temperature �1�23 

and initial pressure '� at � = 0. 

In this work, the adopted oil properties and well-testing operational features 

provide a product #(� − �1�23) having a magnitude of 1E-2, being much greater 

than the product	
�Δ', which ranges from 1E-4 to 1E-3. Therefore, the pressure 

dependency will be neglected and the expression for the oil specific weight will be 

given by &�(��) = &��T¢�"�(�°��±²³´)£. (3.22)

It is convenient to apply the Taylor series approximation to the expression in 

the form T(�µ) ≈ 1 − @. (3.23)

 Then, Eq. (3.22) can be written as &�(�) = &��¢1 − #�(� − �1�23)£. (3.24)

The use of Eq. (3.14) in Eq. (3.24) provides the final expression for the oil 

specific weight: &�(�, 0) = &��¢1 − #�(Δ�� − ��� sin F)£. (3.25)

The next subsection provides the final expression for the wellbore energy-

balance equation used to derive all transient-wellbore-temperature solutions. 
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3.1.2. 
Transient-Wellbore-Temperature Differential Equation 

Regarding the terms in the energy-balance equation presented in Eq. (3.17), 

let the parameter P be defined by (adapted from Onur et al., 2017) 

P = �� sin F − $%��&���� − � sin F��
��	�	, (3.26)

where �� is a unit conversion factor (see Appendix A). Due to the adopted 

assumptions, P is constant. 

It is convenient to define a new relaxation-distance parameter	 ", which 

accounts for the fluid thermal property	#�$%��&��, now defined by 

 " =  � − #�$%��&���� 	. (3.27)

Another important parameter defined in this work is	Ω, given by 

Ω = ��#�$%��&�� sin F�� . (3.28)

Finally, combining Eqs. (3.17), (3.25), (3.26), (3.27) and (3.28), the 

expression for the wellbore energy balance is given by 1� �Δ���0 = − "Δ�� − �Δ���� − �Ω + P. (3.29)

For well-testing applications, the parameter  � can be assumed constant, 

since [̂ (0^) is a weak function of time (Hasan and Kabir, 2002) and changes in the 

oil mass density can be neglected for this parameter. Izgec et al. (2007) showed that 

this assumption is particularly reasonable for buildup tests. This approach follows 

the works of several authors, e.g., Hasan et al. (2005) and Onur et al. (2017). 

Consequently, the parameter  "	is also constant. 

Under the adopted assumptions, Eq. (3.29) is a first-order linear partial-

differential equation. The appropriate initial and boundary conditions depend on the 

flow period, i.e., drawdown or buildup, and on the wellbore configuration. 

The following sections derive the coupled analytical wellbore/reservoir 

temperature solutions. 
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3.2. 
Transient-Wellbore-Temperature Solutions: Drawdown Period 

The wellbore-heat-flow drawdown problem considers the following initial 

condition: Δ��(�, 0 = 0) = 0. (3.30)

Eq. (3.30) states that the wellbore is in thermal equilibrium with the formation 

at	0 = 0. 

The boundary condition depends on whether there is a tubing in the wellbore. 

The solution for flow in a production casing and the solution for flow in a cased 

tubing are presented in this work. 

The use of the Laplace transformation in Eq. (3.29) takes the problem to the 

Laplace domain with the Laplace-transform variable 6 with respect to time	0. The 

overbars denote the Laplace transformed quantities. ℒ8·Δ��(�, 0)¸(6) = Δ�¹¹¹¹�(�, 6), (3.31)1� m6Δ�¹¹¹¹� − Δ��(0D)n = − "Δ�¹¹¹¹� − pΔ�¹¹¹¹�p� − �Ω6 + P6. (3.32)

The use of Eq. (3.30) in Eq. (3.32) reduces the expression to 1� 6Δ�¹¹¹¹� = − "Δ�¹¹¹¹� − pΔ�¹¹¹¹�p� − �Ω6 + P6. (3.33)

Eq. (3.33) is a first-order linear ordinary-differential equation. The solution is 

given by 

Δ�¹¹¹¹�(�, 6) = MT�	»Cj 	�C<¼
+ �m� " + 6n u−�Ωu� "6 + 1v + �Ω6 + �P "6 + Pv, 

(3.34)

where M is a constant of integration and depends on the problem’s boundary 

condition.  

The following two subsections present the solutions for the flow in a 

production casing and flow in a cased tubing, respectively. It will be shown that the 

wellbore solution is fully coupled with the reservoir response. 
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3.2.1. 
Flow in a Production Casing: Drawdown-Temperature Solution 

In this particular case, the appropriate boundary condition is given by Δ��(� = 0, 0) = Δ���(0), (3.35)

where	Δ���(0) is the drawdown sandface-temperature solution, obtained by 

evaluating Eq. (2.22) at * = *�. Eq. (3.35) states that the wellbore temperature at 

the producing horizon (� = 0)	is in equilibrium with the sandface temperature. 

 The transformation of Eq. (3.35) to the Laplace domain is given by ℒ8·Δ��(� = 0, 0)¸(6) = Δ�¹¹¹¹��(6). (3.36)

It will be shown that there is no need to explicitly transform the result in Eq. 

(2.22), due to an important Laplace transform property. 

The combination of Eqs. (3.34) and (3.36) provides the solution for the 

production casing drawdown temperature in the Laplace domain: 

Δ�¹¹¹¹�(�, 6) = T�	»Cj½ �Δ�¹¹¹¹��(6) − ��m�� "� + 6n
× u��Ω6 + ��P "�6 + Pv� T�C<¼½ + ��m�� "� + 6n
× u−�Ω u�� "�6 + 1v + ��Ω6 + ��P "�6 + Pv, 

(3.37)

where the subscript 
 refers to production casing properties. 

Regarding the analytical inversion of term dependent on the boundary 

condition in Eq. (3.37) uΔ�¹¹¹¹��(6)T��	¾¿À½	�C<¼½�v, the well-known Laplace transform 

Time Delay property can be used: ℒ»��ÁÂ(6)T(�»j)Ã(0) = Θ(0 − �)[(0 − �), (3.38)

where Θ(@)	is the Heaviside Step function, also known as the Unit Step function, 

defined by 

Θ(@) = Ä0, @ < 01, @ ≥ 0	. (3.39)

Hence, the inversion of the boundary-condition term is given by 

ℒ»�� ÄΔ�¹¹¹¹��(6)T��	»Cj½ 	�C<¼½�Ç (0) = Θ u0 − ���v T�C<¼½Δ��� u0 − ���v. (3.40)
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As mentioned before, the explicit transformation of Δ���(0) was not 

necessary. The analytical inversion of Eq. (3.37) provides the solution in the real 

space: Δ��(�, 0) = Â(^^,�)È� (�, 0) + Â(^^,�)(�, 0). (3.41)

It is convenient to split the solution into these two functions, where Â(^^,�)È� (�, 0) depends on the boundary condition and the function Â(^^,�)(�, 0) does 

not. For the specific case of flow in a production casing, these functions are given 

by, respectively, 

Â(^^,�)È� (�, 0) = Θ u0 − ���v T�C<¼½Δ��� u0 − ���v, (3.42)

and 

Â(^^,�)(�, 0) = T�<¼½(8j½DC) "� ÄΘ u0 − ���v× ©TC<¼½m0��Ω "� − �Ω "� + Ω + P "�n− T8j½<¼½mΩ + P "�n¯+ TC<¼½Ω�m1 − � "�nT8j½<¼½ − 0�� "� + � "� − 1�
+ TC<¼½P "�(T8j½<¼½ − 1)Ç. 

(3.43)

The function Â(^^,�)È� (�, 0) carries all the information from the sandface-

temperature solution, keeping the reservoir and the wellbore fully coupled. Note 

that the expression entails a time delay, which is expected, since reservoir 

temperature changes cannot be read instantaneously by the gauge. 

The solution in Eq. (3.41) is fully analytical, requiring no iterative or 

numerical methods to be computed. It can be easily implemented in any software, 

since it only makes use of two fundamental mathematical functions, the exponential 

function and the Heaviside Step function. 

As mentioned before, past studies have adopted the term �� ��⁄  from the 

steady-state regime to solve the transient problem, e.g., Hasan et al. (2005) and 

Onur et al. (2017). One of the main contributions of this work is to provide the 

transient expression for the wellbore-temperature gradient, which is given by the 

differentiation of Eq. (3.41) with respect to �: �¢Δ��(�, 0)£�� = �©Â(^^,�)È� (�, 0)¯�� + �©Â(^^,�)(�, 0)¯�� . (3.44)
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The explicit expression for flow in a production casing is given by 

�¢Δ��(�, 0)£�� = −Tm�C<¼½n�� �> u0 − ���v Δ��� u0 − ���v + Θu0 − ���v
× ��� "�Δ��� u0 − ���v + � ÉΔ��� �0 − ����Ê�� ��
+ 1�� "� Ä> u0 − ���v
× É "� uΩ�Tm�8j½<¼½n + P�Tm�C<¼½n − Tm�8j½<¼½n�v
+ Ω�Tm�C<¼½n − Tm�8j½<¼½n� − 0�� "�ΩTm�8j½<¼½nÊ
+ �� "�Θu0 − ���v ÉΩ�Tm�C<¼½n − Tm�8j½<¼½n�
+  "�PTm�C<¼½nÊÇ + Ω�Tm�8j½<¼½n − 1� "� 	, 

(3.45)

where >(@)	is the well-known Dirac delta function defined by 

>(@) = pp@ ¢Θ(@)£	, (3.46)

and the term eËÉr�ÌÍ�8	�	 ¿À½�ÊËC g is given by the partial derivative of the drawdown 

sandface-temperature solution, obtained by evaluating Eq. (2.22) at * = *� and 

substituting 0 for �0 − Cj½�. 

Indeed, computing the Dirac delta function is not an easy task. Nevertheless, 

the results in this study do not require the computation of Eq. (3.45). This 

expression has been derived to show that the wellbore-temperature gradient 

presents a strong transient behavior. The impact of assuming the steady-state 

temperature gradient to solve the transient problem is evaluated in Chapter 5, where 

the proposed analytical solution in this work is compared to other two analytical 

solutions that make use of this simplification, proposed by Hasan et al. (2005) and 

Onur et al. (2017). Moreover, the three analytical solutions are compared to the 

rigorous response of a commercial non-isothermal simulator. 
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3.2.2. 
Flow in a Cased Tubing: Drawdown-Temperature Solution 

In this case, the appropriate boundary condition has to account for the flow 

transition between the production casing and the tubing string. It is convenient to 

define a new variable	�8, referenced at the bottom of the tubing string: �8 = � − �� . (3.47)

The subscript 0 refers to the tubing string and �� is the constant distance 

between the producing horizon and the bottom of the tubing (see Figure 3.1). 

Since the solution is obtained by Laplace transformation, the boundary 

condition will be given in the Laplace domain by evaluating Eq. (3.37) at � = �� ℒ8·Δ��(�8 = 0)¸(6) = Δ�¹¹¹¹�(�� , 6) = Δ�¹¹¹¹C½ 	, (3.48)

where 

Δ�¹¹¹¹C½ = T�	»C½j½ �Δ�¹¹¹¹��(6) − ��m�� "� + 6n
× u��Ω6 + ��P "�6 + Pv� T�C½<¼½ + ��m�� "� + 6n
× u−��Ωu�� "�6 + 1v + ��Ω6 + ��P "�6 + Pv. 

(3.49)

The use of this boundary condition in Eq. (3.34) provides the cased-tubing 

solution in the Laplace domain: 

Δ�¹¹¹¹�(6, �8) = T�	»CÎjÎ �Δ�¹¹¹¹C½(6, ��) − �8m�8 "8 + 6n
× u�8Ω6 + �8P "86 + Pv� T�CÎ<¼Î + �8m�8 "8 + 6n
× u−�8Ωu�8 "86 + 1v + �8Ω6 + �8P "86 + Pv, 

(3.50)

where the subscript 0 refers to tubing properties.  

The analytical inversion of Eq. (3.50) is given by Δ��(�8, 0) = Â(^^,8)È� (�8, 0) + Â(^^,8)(�8, 0). (3.51)

In the same way as in the production-casing solution, the function Â(^^,8)È� (�8, 0) depends on the boundary condition and the function Â(^^,8)(�8, 0) does 

not. 
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It is convenient to write the function Â(^^,8)È� (�8, 0) as a summation of four 

functions: Â(^^,8)È� (�8, 0) = [�(^^,8)È� + [(^^,8)È� + [�(^^,8)È� + [�(^^,8)È� , (3.52)

where 

[�(^^,8)È� (�8, 0) = 1�8 "Ï ÄΘ u0 − �8�8 − ����v
× u��Ω "� u0 − �8�8v �8T�j½�8�CÎjÎ�<¼½�CÎ<¼ÎvÇ, (3.53)

 

[(^^,8)È� (�8, 0) = 1�8 "Ï �Θu0 − �8�8 − ����v
× �−�8ΩÐeTj½8<¼½ − Tj½<¼½CÎjÎ D<¼½C½g
× T�j½8<¼½�<¼½C½�CÎ<¼Î +  "���T�j½�8�CÎjÎ�<¼½�CÎ<¼ÎÑ��, 

(3.54)

 

[�(^^,8)È� (�8, 0) = 1�8 "Ï �Θ u0 − �8�8 − ����v
× �−�8 "� ÐPeTj½8<¼½ − Tj½<¼½CÎjÎ D<¼½C½g
× T�j½8<¼½�<¼½C½�CÎ<¼Î
− T�C½<¼½�CÎ<¼Î "�Δ��� u0 − �8�8 − ����vÑ��, 

(3.55)

and 
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[�(^^,8)È� (�8, 0) = 1�8 "Ï Ò−Θ u0 − �8�8v
× T�j½�8�CÎjÎ�<¼½�CÎ<¼Î Ð�8mΩm�� "� − 1n − P "�n
× uTj½�8�CÎjÎ�<¼½ − 1v + ��Ω "��8 u0 − �8�8vÑÓ. (3.56)

The function Â(^^,8)(�8, 0) is analogous to the production casing result, with 

the substitution of the variable � for the variable �8 and tubing properties: 

Â(^^,8)(�8, 0) = T�<¼Î(8jÎDCÎ) "Î ÄΘ u0 − �8�8v× ©TCÎ<¼Îm0�8Ω "8 − �8Ω "8 + Ω + P "8n− T8jÎ<¼ÎmΩ + P "8n¯+ TCÎ<¼ÎΩ�m1 − �8 "8nT8jÎ<¼Î − 0�8 "8 + �8 "8 − 1�
+ TCÎ<¼ÎP "8(T8jÎ<¼Î − 1)Ç, 

(3.57)

The function Â(^^,8)È� (�, 0) provides the coupling with the sandface and 

production casing temperature changes at		� = ��, hence keeping the reservoir, 

casing and tubing as a fully coupled system. 

Again, the solution is fully analytical and it can be easily implemented in any 

software, requiring only the exponential function and the Heaviside Step function 

to be computed. The transient-wellbore-temperature gradient for flow in a cased 

tubing can be obtained by the differentiation of the Eq. (3.51) with respect to	�8. 
 

3.3. 
Transient-Wellbore-Temperature Solutions: Buildup Period 

The results in this study do not consider WBS effects, hence the buildup 

bottomhole flow rate is zero. However, the buildup solution will be obtained for an 

approximate general case, where the differential equation is solved assuming a  

non-zero constant rate, allowing the use of wellbore-fluid-flow models (WBS or 

momentum) afterwards. Onur et al. (2017) adopted this approach to derive their 

drawdown and buildup solutions. 
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 For the buildup case, it is convenient to keep the temperature difference 

referenced to the Earth initial temperature over depth Δ���(�, Δ0) = ���(�, Δ0) − �1�(�), (3.58)

where the subscript \+ refers to the well shut-in period and Δ0 represents the 

elapsed time since the beginning of shut-in (Δ0 = 0 − 0�).  
The wellbore-heat-flow buildup problem has the following appropriate initial 

condition: Δ���(�, Δ0 = 0D) = Δ���m�, 0�n + Δ���(0D) = Δ�C(!D). (3.59)

Eq. (3.59) states that the wellbore-temperature distribution right after shut-in 

is described by the final flowing temperature distribution added to the immediate 

impact of shutting in the well, i.e., the heating response due to adiabatic fluid 

compression. For the production casing configuration, Δ���	is the well flowing 

temperature obtained by evaluating Eq. (3.41) at 0 = 0�, whereas in presence of a 

tubing it	must be evaluated by Eq. (3.51). Δ���(0D) is obtained by evaluating Eq. 

(2.56) for a small Δ0 (1 – 5 seconds). 

The energy-balance equation is given by Eq. (3.29) and the boundary 

condition depends on whether there is a tubing in the wellbore. The use of the 

Laplace transformation in Eq. (3.29) takes the problem to the Laplace domain with 

the Laplace-transform variable 6 with respect to the shut-in time	Δ0. ℒr8·Δ���(�, Δ0)¸(6) = Δ�¹¹¹¹��(�, 6), (3.60)1� m6Δ�¹¹¹¹�� − Δ���(0D)n = − "Δ�¹¹¹¹�� − �Δ�¹¹¹¹���� − �Ω6 + P6. (3.61)

The combination of Eqs. (3.59) and (3.61) gives 6� Δ�¹¹¹¹�� − Δ�C(!D)� = − "Δ�¹¹¹¹�� − �Ω6 − �Δ�¹¹¹¹���� + P6. (3.62)

Eq. (3.62) is a first-order linear ordinary-differential equation and the solution 

in the Laplace domain is given by 

Δ�¹¹¹¹��(�, 6) = MT�	»Cj �C<¼
+ �m� " + 6n �−�Ω u� "6 + 1v + �Ω6 + � "P6 + P
+  "Δ�C(!D) + 6Δ�C(!D)� �, 

(3.63)

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 3. Analytical Transient-Wellbore-Temperature Solutions 57 

where M is a constant of integration and depends on the problem’s boundary 

condition. 

 

3.3.1. 
Production Casing: Buildup-Temperature Solution 

In this particular case, the appropriate boundary condition is given by Δ���(� = 0, Δ0) = Δ���(Δ0), (3.64)

where	Δ���(Δ0) is the buildup sandface-temperature solution, given by Eq. (2.56). 

Eq. (3.64) states that the wellbore temperature at the producing horizon (� = 0)	is 

in equilibrium with the sandface temperature. The transformation of the boundary 

condition to the Laplace domain is given by ℒr8·Δ���(� = 0, Δ0)¸(6) = Δ�¹¹¹¹��(6). (3.65)

Like in the drawdown case, there is no need to explicitly transform Eq. (2.56) 

due to the use of the Time Delay property afterwards. 

The combination of Eqs. (3.63) and (3.65) provides the solution for the 

production casing buildup temperature in the Laplace domain: 

Δ�¹¹¹¹��(�, 6) = T�	»Cj½ �Δ�¹¹¹¹��(6) − ��m�� "� + 6n
× Ð��Ω6 + �� "�P6 + P +  "�Δ�C(!D) + 6Δ�C(!D)�� Ñ�
× T�C<¼½ + ��m�� "� + 6n
× Ð−�Ω u�� "�6 + 1v + ��Ω6 + �� "�P6 + P
+  "�Δ�C(!D) + 6Δ�C(!D)�� Ñ. 

(3.66)

The analytical inversion of Eq. (3.66) provides the solution in the real space: Δ���(�, Δ0) = Â(ÈÔ,�)È� (�, Δ0) + Â(ÈÔ,�)(�, Δ0). (3.67)

Following the same approach as in the drawdown case, the function Â(ÈÔ,�)È� (�, Δ0) depends on the boundary condition and the function Â(ÈÔ,�)(�, Δ0) 
does not. 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 3. Analytical Transient-Wellbore-Temperature Solutions 58 

Â(ÈÔ,�)È� (�, Δ0) = Θ uΔ0 − ���v T�C<¼½Δ��� uΔ0 − ���v, (3.68)

and 

Â(ÈÔ,�)(�, Δ0) = T�<¼½(r8j½DC) "� ÄTC<¼½ uΩ �m1 − � "�nTr8j½<¼½
− Δ0�� "� + � "� − 1�
+  "��PmTr8j½<¼½ − 1n +  "�Δ�C(!D)�v − ΘuΔ0 − ���v× ÉTC<¼½ uΩm−Δ0�� "� + � "� − 1n
+  "�� "�Δ�C(!D) − P�v + Tr8j½<¼½mΩ + P "�nÊÇ. (3.69)

The function Â(ÈÔ,�)È� (�, Δ0) carries all the information from the sandface-

temperature solution, keeping the reservoir and the wellbore fully coupled. 

However, during the buildup period the rate rapidly reaches small values, regardless 

of the use of wellbore-fluid-flow models (WBS or momentum). Consequently, the 

argument of the Heaviside Step function in Eq. (3.68) tends to large negative values, 

yielding a null value for the function. Then, as expected, the reservoir and the 

wellbore become decoupled (except at	� = 0), since there is no longer any available 

information in the form of convection to connect the reservoir to the gauge. From 

this moment, the temperature change is dominated by the radial heat loss to 

surroundings. 

Once again, the solution in Eq. (3.67) is fully analytical and it only requires 

the exponential function and the Heaviside Step function to be computed. 

 

3.3.2. 
Cased Tubing: Buildup-Temperature Solution 

In this case, the appropriate boundary condition has to take into account the 

flow transition between the production casing and the tubing string. Since the 

solution is obtained by Laplace transformation, the boundary condition will be 

given in the Laplace domain by evaluating Eq. (3.66) at � = ��. 

It is convenient to use the variable �8 defined by Eq. (3.47), therefore the 

boundary condition for the cased tubing in the Laplace domain is given by ℒr8·Δ���(�8 = 0)¸(6) = Δ�¹¹¹¹��(�� , 6) = Δ�¹¹¹¹C½ 	, (3.70)
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where the term Δ�¹¹¹¹C½ is the buildup solution for the production casing at � = �� in 

Eq. (3.66): 

Δ�¹¹¹¹C½ = T�	»C½j½ �Δ�¹¹¹¹��(6) − ��m�� "� + 6n
× Ð��Ω6 + �� "�P6 + P +  "�Δ�C(!D) + 6Δ�C(!D)�� Ñ�
× T�C<¼½ + ��m�� "� + 6n
× Ð−��Ωu�� "6 + 1v + ��Ω6 + �� "�P6 + P
+  "�Δ�C(!D) + 6Δ�C(!D)�� Ñ. 

(3.71)

The use of this boundary condition in Eq. (3.63) provides the cased-tubing 

solution in the Laplace domain. The analytical inversion yields Δ���(�8, Δ0) = Â(ÈÔ,8)È� (�8, Δ0) + Â(ÈÔ,8)(�8, Δ0). (3.72)

Following the same approach as in the drawdown case, the function Â(ÈÔ,8)È� (�, Δ0) depends on the boundary condition and the function Â(ÈÔ,8)(�, Δ0) 
does not.  

Â(ÈÔ,8)È� (�8, Δ0) = 1�8 "Ï ÄΘ uΔ0 − ���� − �8�8v [�(ÈÔ,8)È�
− ΘuΔ0 − �8�8v [(ÈÔ,8)È� Ç, 

(3.73)

where 
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[�(ÈÔ,8)È� = ��Ω "�(Δ0�8 − �8)Tj½uCÎ<¼½jÎ �r8<¼½v�CÎ<¼Î
− �8 �ΩÐeTj½r8<¼½ − Tj½<¼½CÎjÎ D<¼½C½g
× T�j½r8<¼½�<¼½C½�CÎ<¼Î +  "���Tj½uCÎ<¼½jÎ 	�r8<¼½v�CÎ<¼ÎÑ
+  "� ÐPeTj½r8<¼½ − Tj½<¼½CÎjÎ D<¼½C½g
× T�j½r8<¼½�<¼½C½�CÎ<¼Î
+  "� eΔ�C(!D)Tj½uCÎ<¼½jÎ �r8<¼½v�CÎ<¼Î

− Δ��� uΔ0 − ���� − �8�8v T�C½<¼½�CÎ<¼ÎgÑ�, 
(3.74)

and 

[(ÈÔ,8)È� = Tj½uCÎ<¼½jÎ �r8<¼½v�CÎ<¼Î ��8 ÐΩm�� "� − 1n
× eTj½ur8<¼½�<¼½CÎjÎ 	v − 1g
−  "� eP eTj½ur8<¼½�<¼½CÎjÎ 	v − 1g +  "�Δ�C(!D)gÑ
+ ��Ω "�(�8Δ0 − �8)�. 

(3.75)

The function Â(ÈÔ,8) is given by  

Â(ÈÔ,8)(�8, Δ0) = T�<¼Î(r8jÎDCÎ) "Î ÄTCÎ<¼Î uΩ �m1 − �8 "8nTr8jÎ<¼Î
− Δ0�8 "8 + �8 "8 − 1�
+  "8�PmTr8jÎ<¼Î − 1n +  "8Δ�C(!D)�v − ΘuΔ0 − �8�8v× ÉTCÎ<¼Î uΩm−Δ0�8 "8 + �8 "8 − 1n
+  "8� "8Δ�C(!D) − P�v + Tr8jÎ<¼ÎmΩ + P "8nÊÇ. (3.76)
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The function Â(ÈÔ,8)È� (�, Δ0) provides the coupling with the sandface and 

production casing temperature changes at		� = ��, hence keeping the reservoir, 

casing and tubing as a fully coupled system. However, as mentioned before, 

regardless of the use of wellbore-fluid-flow models, the rate rapidly tends to small 

values. Therefore, the Heaviside Step functions yield null values and, as expected, 

the reservoir and the wellbore become decoupled (except at	� = 0), since there is 

no longer any convection to feed the gauge with sandface-temperature data. 

Like in the previous cases, the solution in Eq. (3.72) is fully analytical, 

requiring no iterative or numerical methods to be computed. It requires only the 

exponential function and the Heaviside Step function to be implemented. 

The following section addresses an important solution for the buildup period, 

which is the zero-rate case. 

 

3.3.3. 
Zero-Rate Case: A Buildup Particular Solution 

When the rate is zero, the solution is considerably simpler. The particular 

solutions to be presented can be obtained by either solving the partial-differential 

equation in Eq. (3.29) considering the rate as zero, or by setting the rate to zero in 

the previously derived solutions. 

Assuming the rate is zero, the energy balance is given by the following 

ordinary differential equation pΔ��p0 = −� �Δ��	. (3.77)

For a null rate, the product � " reduces to the product	� �. The initial 

condition to solve the problem is expressed in Eq. (3.59). 

In absence of a tubing string, the solution is given by Δ���(�, Δ0) = T�r8j½<Õ½Δ�C(!D), (3.78)

The solution in Eq. (3.78) is similar to the constant zero-rate buildup 

expressions presented by Hasan et al. (2005) and Onur et al. (2017), except that Eq. 

(3.78) accounts for the adiabatic compression effect at Δ0 = 0D. The solution 

proposed by Onur et al. (2017) also accounts for this effect, but it requires a 

wellbore-fluid-flow model to keep the wellbore coupled with the reservoir. 
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In presence of a tubing string, the solution is given by 

Δ���(�, Δ0) = Ö	T�r8j½<Õ½Δ�C(!D)	, � ≤ ��T�r8jÎ<ÕÎΔ�C(!D)	, � > �� 				 (3.79)

It is important to state that after Δ0 = 0D the wellbore-temperature changes 

are no longer coupled with the reservoir response (except at	� = 0). 
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4 
Thermal Impacts on Wellbore Pressure: Non-Isothermal 
Well-Testing Solutions 

This chapter investigates thermal impacts on pressure gauge data during 

buildup tests. Solutions are given in the form of buildup-pressure differences for 

different completion scenarios. 

If the wellbore completion comprises expansion joints, the tubing string may 

compensate thermal effects during buildup in the form of pipe contraction, therefore 

the gauge location may be adjusted. This work provides three solutions: 

Constant Pipe-Length Solutions: 

1. Buildup-Pressure Difference in a Production Casing; 

2. Buildup-Pressure Difference in a Cased Tubing; 

Variable Pipe-Length Solution: 

3. Buildup-Pressure Difference in a Cased Tubing. 

In addition, metrics for evaluating the application of the isothermal 

hypothesis are also derived. 

 

4.1. 
Pressure Gauge Data 

The measured pressure at a gauge above the perforations can be expressed as ':j»:1 = '�� − '� , (4.1)

where '�� is the sandface pressure and '�	refers to the pressure exerted by the 

wellbore-fluid column between the downhole gauge and the producing horizon.  

Under the isothermal hypothesis, '� is the constant hydrostatic pressure given 

by (assuming negligible effect of pressure on the fluid mass density) '� = &��: sin F, (4.2)

where �: is the distance from the producing horizon and &� is the wellbore-fluid 

specific weight.  

Under the real non-isothermal condition, '� must be expressed in a 

generalized form as 
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  '�m�:, 0n = o &�(�, 0) sin F p�	CqDr<(8)

! , (4.3)

where Δ (0)	is the change in pipe length over time, which depends on temperature 

changes, and �:	is the original gauge location. The wellbore-fluid specific weight is 

a function of temperature, therefore depends on time and depth. 

The next subsection provides the constant pipe-length solutions. Then, the 

variable length configuration will be addressed. 

 

4.2. 
Thermal Impacts on Buildup Pressure: Constant Pipe-Length 
Configuration 

For a constant pipe length, Eq. (4.3) can be written as 

'�m�:, 0n = o &�(�, 0) sin F p�	Cq
! , (4.4)

where &�	is given by (see Eq. (3.25)) &�(�, 0) = &�� − &��#�Δ��(�, 0) + &��#���� sin F.	 (4.5)

The combination of Eqs. (4.4) and (4.5) yields 

'�m�:, 0n = �:&�� sin F − #�&�� sin Fo Δ��(�, 0)p�Cq
!

+ �:2 &��#���(sin F). (4.6)

Rewriting Eq. (4.1), the measured pressure under the non-isothermal 

condition is given by 

':m�:, 0n = '��(0) − �:&�� sin F + sin F #�&��o Δ��(�, 0)p�Cq
!

− �:2 &��#���(sinF). (4.7)

Note that under the non-isothermal condition, the pressure is not a linear 

function of depth. In particular, the initial pressure is a quadratic function of depth. 

At the end of this chapter, the initial pressure datum shifting procedure will be 

discussed. 

In Eq. (4.7), the pressure at a gauge above the perforations responds to the 

sandface pressure '�� and to a time depending fluid pressure. 

Recalling the purpose of this work, apart from the change in tubing length, 

Eq. (4.7) is equal to Eq. (1.3), where the integral of mass density has been converted 
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into an integral of the wellbore-temperature distribution. The pipe-contraction 

effect will be addressed afterwards to provide the complete final solution, which is 

the main objective of this work. 

The following expression describes the flowing pressure at the moment of  

shut-in (0 = 0�):  
':m�:, 0�n = '��m0�n − �:&�� sin F + #�&�� sin Fo Δ���m�, 0�np�Cq

!
− �:2 &��#���(sin F), (4.8) 

where Δ��� refers to the wellbore flowing temperature change at 0 = 0�.  

After shut-in, the buildup pressure for a fixed gauge location is given by 

':m�:, Δ0n = '��(Δ0) − �:&�� sin F + #�&�� sin Fo Δ���(�, Δ0)p�Cq
!

− �:2 &��#���(sinF). (4.9)

Let the buildup-pressure difference at the gauge be defined by Δ':m�:, Δ0n = ':m�:, Δ0n − ':m�:, 0�n. (4.10)

The calculation expressed in Eq. (4.10) is of paramount importance for well-

test analysis, since it comprises the buildup-pressure data to be interpreted. 

Combining Eqs. (4.8), (4.9) and (4.10), the pressure difference can be 

rewritten as Δ':m�:, Δ0n = Δ'��(Δ0)
+ #�&�� sin Fo ©Δ���(�, Δ0) − Δ���m�, 0�n¯p�Cq

! . 
(4.11)

The integrand in Eq. (4.11) is composed by the analytical solutions derived 

in this work. Let the static-fluid buildup-pressure difference be defined by 

Δ'�m�:, Δ0n = #�&�� sin Fo ©Δ���m�, 0�n − Δ���(�, Δ0)¯p�Cq
! . (4.12)

Therefore, the buildup-pressure difference for a fixed gauge location is given 

by Δ':m�:, Δ0n = Δ'��(Δ0) − Δ'�m�:, Δ0n. (4.13)

The term	Δ'� in Eq. (4.13) represents the fluid thermal impact on gauge data 

during buildup, responsible for part of deviations in PTA interpretations. The total 
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impact must account for the additional effect of change in tubing length, to be 

addressed afterwards in this chapter. 

 The solution of the integral in Eq. (4.12) depends on whether there is a tubing 

in the wellbore. All results to be presented assume the buildup zero-rate case. 

 

4.2.1. 
Production-Casing Solution: Thermal Impacts on Buildup Pressure 
(Constant Pipe Length) 

The analytical expression for the buildup-pressure difference at a fixed gauge 

location in a production casing is given by  Δ':�m�:, Δ0n = Δ'��(Δ0) − Δ'��m�:, Δ0n, (4.14)

where the static-fluid pressure difference during the buildup period is given by Δ'�½m�:, Δ0n = −�:#�&�� sin F Δ���(0D)T�r8j½<¼½+ #�&�� sin F m1 − T�r8j½<¼½n
× �W(^^,�)È� m�:, 0�n +W(^^,�)m�:, 0�n�. (4.15)

See Appendix B for the derivation of this solution. 

 

4.2.2. 
Cased-Tubing Solution: Thermal Impacts on Buildup Pressure  
(Constant Pipe Length) 

The expression for the buildup-pressure difference at a fixed gauge location 

in a cased tubing is given by  Δ':8m�:, Δ0n = Δ'��(Δ0) − Δ'�8m�:, Δ0n, (4.16)

where the static-fluid pressure difference during the buildup period in this 

configuration is given by Δ'�Îm�:, Δ0n = Δ'�½(�� , Δ0)− #�&�� sin F Δ���(0D)T�r8jÎ<ÕÎm�: − ��n+ #�&�� sin F (1 − T�r8jÎ<ÕÎ)
× uW(^^,8)È� �m�: − ��n, 0�� +W(^^,8) �m�: − ��n, 0��v, (4.17)

where Δ'�½(�� , Δ0) is given by Eq. (4.15) evaluated at � = ��. 
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For a constant tubing length, Eq. (4.17) comprises all thermal impacts on 

gauge data during shut-in. Like in the production-casing result, the solution is fully 

analytical. See Appendix B for the derivation of this solution. 

The complete and final solution accounting for the additional pipe-

contraction effect will be addressed in the following section. 

 

4.3. 
Thermal Impacts on Buildup Pressure: Variable Pipe-Length 
Configuration 

If the tubing string comprises expansion joints, the expression for the pressure 

exerted by the wellbore-fluid column between the gauge and the producing horizon 

during buildup is given by 

'�,jm�:, Δ0n = o &�(�, Δ0) sin F p�CqDr<(r8)
! ,	 (4.18)

where Δ (Δ0) is the change in tubing length over the shut-in time, which depends 

on temperature changes, and �: is the gauge location at the end of the flowing 

period. The subscript � refers to the adjustable gauge location. 

The buildup-pressure difference at the gauge, accounting for the pipe-

contraction effect, can be written as Δ':8,jm�:, Δ0n = Δ'��(Δ0) − Δ'�8m�:, Δ0n − Δ'��¨8m�:, Δ0n, (4.19)

where Δ'��¨8 is the transient pipe-contraction effect on pressure during the buildup 

period, given by Δ'��¨8m�:, Δ0n = Δ (Δ0)m&�� sin F + &���:#���(sinF)n. (4.20)

The transient change in pipe length is given by Δ (Δ0) = ;<�= 	(1 − T�r8jÎ<ÕÎ)× ©W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n¯− ;<�=Δ���(0D)T�r8jÎ<ÕÎ !.	 (4.21)

See Appendix B for the derivation Eqs. (4.19), (4.20) and (4.21). 

The final expression for Δ':8,jm�:, Δ0n is given by the combination of Eqs. 

(4.17), (4.19), (4.20) and (4.21): 
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  Δ':8,jm�:, Δ0n = Δ'��(Δ0)− ÚΔ'�½(�� , Δ0)− #�&�� sin F Δ���(0D)T�r8jÎ<ÕÎm�: − ��n+ #�&�� sin F (1 − T�r8jÎ<ÕÎ)

× uW(^^,8)È� �m�: − ��n, 0��
+W(^^,8) �m�: − ��n, 0��vÛ
− Úm&�� sin F + &���:#���(sin F)n× Á;<�= 	(1 − T�r8jÎ<ÕÎ)× ©W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n¯− ;<�=Δ���(0D)T�r8jÎ<ÕÎ !ÃÛ, (4.22)

where Δ'�½(�� , Δ0) is given by Eq. (4.15) evaluated at � = ��. 

Eq. (4.22) is the solution of Eq. (1.3) in terms of pressure differences. The 

solution is fully analytical, requiring no iterative or numerical methods to be 

computed. It is noteworthy to state that after deriving the solution in Eq. (4.22), the 

main objective of this work has been accomplished. 

 

4.4. 
Metrics for Evaluating the Isothermal Hypothesis 

As mentioned before, the derivative method (Bourdet et al., 1989) is the most 

important interpretation tool for pressure transient analysis. It is desired to derive 

practical metrics to evaluate thermal impacts on pressure derivative curves.  

The buildup-pressure derivative with respect to ln Δ0 at a gauge is given by: ∂Δ':8,jm�:, Δ0n� ln Δ0 = ∂Δ'��(Δ0)� ln Δ0 − ∂Δ'�Îm�:, Δ0n� ln Δ0 − ∂Δ'��¨8m�:, Δ0n� ln Δ0 	, (4.23)

where Δ'�� is the reservoir response and 
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  ∂Δ'�Î� ln Δ0 = Δ0�� ��#�&�� sin F T�r8j½<Õ½

× ���Δ���(0D) +W(^^,�)È� m�� , 0�n +W(^^,�)m�� , 0�n�+ Δ0�8 �8#�&�� sin F T�r8jÎ<ÕÎ× �m�: − ��nΔ���(0D) +W(^^,8)È� m�: − �� , 0�n
+W(^^,8)m�: − �� , 0�n�	, (4.24)

and ∂Δ'��¨8� ln Δ0 = Δ0�8 �8T�r8jÎ<ÕÎ 	;<�=m&�� sin F + &���:#���(sinF)n
× � !Δ���(0D) +W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n�	. (4.25)

Eqs. (4.24) and (4.25) are the derivatives of Eqs. (4.17) and (4.20), 

respectively. All thermal impacts on the derivative method are enclosed in these 

two expressions, which can be viewed as the derivative “thermal noise” and Δ'�� 

is the formation signal. 

The following subsection will derive the shut-in time when impacts on 

pressure data are most significant. In addition, an important relation is derived to 

evaluate whether the isothermal hypothesis can be used during a well test.  From 

these results, several operational parameters can be determined. First, the maximum 

gauge distance from the producing horizon will be derived. Then, analytical 

expressions for the required minimum drawdown rate and the associated  

signal-to-noise ratio (SNR) in a well test will be provided. 

 

4.4.1. 
Time of Maximum Thermal Impact on Pressure ÝÞßà 

 The logarithmic-time derivative of thermal noise, which is the sum of 

expressions in Eqs. (4.24) and (4.25), comprises a function with inflections, 

therefore presents local minimum and maximum values. The impact of local 

maxima on the signal of a homogeneous reservoir creates “valleys” in the pressure 

derivative data, which can be interpreted as false heterogeneities and lead to invalid 

conclusions. 

For sufficiently long producing times, the buildup-pressure derivative with 

respect to ln Δ0 can be treated as constant in infinite-acting homogeneous 
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reservoirs. Under this condition, the temporal derivative of Eq. (4.23) can be written 

as ��Δ0 e∂Δ':8,jm�:, Δ0n� ln Δ0 g ≈ − ��Δ0 e ∂Δ'�Î� ln Δ0 + ∂Δ'��¨8� ln Δ0 g. (4.26)

  Therefore, the shut-in times when inflections occur can be estimated by 

calculating the local minima and maxima of the derivative thermal noise, which are 

the roots of the following expression: 

− ��Δ0 e ∂Δ'�Î� ln Δ0 + ∂Δ'��¨8� ln Δ0 g =
= (Δ0�� �� − 1)T�r8j½<Õ½Á�� ��#�&�� sin F× ©��Δ���(0D) +W(^^,�)È� m�� , 0�n +W(^^,�)m�� , 0�n¯Ã+ (Δ0�8 �8 − 1)T�r8jÎ<ÕÎÁ�8 �8#�&�� sin F× ©m�: − ��nΔ���(0D) +W(^^,8)È� m�: − �� , 0�n+W(^^,8)m�: − �� , 0�n¯ + �8 �8	;<�=× m&�� sin F + &���:#���(sin F)n© !Δ���(0D)+W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n¯Ã. (4.27)

Eq. (4.27) can be rewritten as: 

− ��Δ0 e ∂Δ'�Î� ln Δ0 + ∂Δ'��¨8� ln Δ0 g =
= L�(Δ0�� �� − 1)T�r8j½<Õ½+ L8(Δ0�8 �8 − 1)T�r8jÎ<ÕÎ 	, (4.28)

where L� = �� ��#�&�� sin F× ©��Δ���(0D) +W(^^,�)È� m�� , 0�n +W(^^,�)m�� , 0�n¯, (4.29)

and L8 = �8 �8#�&�� sin F× ©m�: − ��nΔ���(0D) +W(^^,8)È� m�: − �� , 0�n+W(^^,8)m�: − �� , 0�n¯ + �8 �8	;<�=× m&�� sin F + &���:#���(sin F)n© !Δ���(0D)+W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n¯. (4.30)

Let the LHS of Eq. (4.28) be equal to zero: 
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  0 = L�(Δ0�� �� − 1)T�r8j½<Õ½ + L8(Δ0�8 �8 − 1)T�r8jÎ<ÕÎ . (4.31)

Solving Eq. (4.31) for Δ0 provides the shut-in times when valleys occur in the 

gauge derivative curve. In practical cases, only one valley is observed during  

well-testing times, since tubing and casing usually share similar pipe diameters and 

thermal-storage coefficients. Therefore, the expression in Eq. (4.31) reduces to 0 = mΔ0�� �� − 1nT�r8j�<Õ� , (4.32)

where the subscript ' refers to properties of the pipe that governs the fluid flow. As 

a rule of thumb, for small values of ��, tubing properties should be used, whereas 

for large values casing properties must be used. 

The expression in Eq. (4.32) has two roots. The first root comprises a local 

maximum value, providing a drop in the gauge derivative signal. The second root 

occurs after long shut-in times	(Δ0 → ∞), and it can be interpreted as the 

asymptotic fading of the thermal noise. Hence, under the adopted assumptions, 

thermal effects cause only one valley in the derivative curve and the Time of 

Maximum Thermal Impact on Pressure	(Δ0i�) is given by 

Δ0i� = 1�� ��	, (4.33)

where 

�� �� = 2§*��78�H1K��
��©H1 + *��78�[̂ (0^)¯��(1 + ���)	. (4.34)

Note that Δ0i�	does not depend on the gauge location, tubing length nor on 

reservoir properties. Moreover, it does not depend on the preceding production rate 

magnitude nor on the duration of the drawdown period. It only depends on the radial 

diffusion (heat loss) to surroundings and on some wellbore and fluid properties, 

such as inside-pipe radius and fluid heat capacity. The verification of this result is 

presented in Chapter 5. 

Depending on wellbore and operational features, additional inflections may 

occur, as shown by Eq. (4.31). This condition will be addressed in Chapter 6.  

The following metrics assume the same assumptions used to derive Eq. 

(4.33). 

 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 4. Thermal Impacts on Wellbore Pressure: Non-Isothermal 72 
Well-Testing Solutions 
 
  

4.4.2. 
Isothermal Hypothesis Test  

A metric for evaluating whether a well test is impacted by thermal effects can 

be easily drawn. In Eq. (4.23), when the sandface-pressure derivative is much 

greater than the thermal noise derivative, the isothermal hypothesis is valid.  

Here the derivation of Δ0i� turns out to be of paramount importance, since there is 

only the need to evaluate the thermal impacts at this specific time. In other words, 

if the gauge data are not impacted at	Δ0i�, then the isothermal hypothesis is valid 

for all shut-in times. It will be assumed a typical well-test configuration, where  �� 

is small, i.e., the test string is placed near the perforations. Hence, only test string 

properties are required for calculations. 

The thermal noise derivative maximum value is given by the combination of 

Eqs. (4.24), (4.25) and (4.33): 

e∂mΔ'�Î + Δ'��¨8n� ln Δ0 gr8á�
=

= #�&�� sin FT ��:Δ���(0D) +W(^^,8)È� m�:, 0�n
+W(^^,8)m�:, 0�n� +	;<�=&��T msin F + �:#���(sinF)n
× � !Δ���(0D) +W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n�, (4.35)

where T is Euler’s number. 

Therefore, the thermal signal-to-noise ratio (SNR) can be defined by 

(SNR) = u∂Δ'��� ln Δ0vr8á�e∂mΔ'�Î + Δ'��¨8n� ln Δ0 gr8á�
	. (4.36)

Under the adopted assumptions, the expression for the buildup-sandface 

pressure in SI units is given by Δ'��(Δ0) = '��m0� + Δ0n − '��m0�n =
= 14§ (�	�I���ℎ �ln e 0�Δ00� + Δ0g + ln u 4��MI�
8*�T v + ,�, 

(4.37)
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where the term u 8�r88�Dr8v is the well-known Agarwal Equivalent Time (Agarwal, 

1980) and & is the Euler-Mascheroni constant. The sandface-pressure derivative 

with respect to ln Δ0	is given by ∂Δ'��� ln Δ0 = 14§ (�	�I���ℎ e 0�0� + Δ0g. (4.38)

Eq. (4.38) evaluated at Δ0i� gives 

e∂Δ'��� ln Δ0gr8á�
= 14§(�	�I���ℎ e �8 �80��8 �80� + 1g. (4.39)

For a generic unit system, Eq. (4.36) can be written as 1��12�(�	�I���ℎ u �8 �80��8 �80� + 1v Ð
#�&�� sin FT ��:Δ���(0D)

+W(^^,8)È� m�:, 0�n +W(^^,8)m�:, 0�n�
+	;<�=&�� sin FT m1 + �:#��� sin Fn � !Δ���(0D)
+W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n�Ñ = 1(SNR)	. (4.40)

It is desired to develop a metric that evaluates whether the isothermal 

hypothesis can be applied. Therefore, a minimum signal-to-noise ratio is required 

and Eq. (4.40) will be expressed in the form of an inequality. Under the adopted 

assumptions, the sums in the LHS of Eq. (4.40) are governed by the W(^^,8) 
functions. Further, the product m�:#��� sin Fn is much smaller than the unity, even 

for �: in the order of kilometers. Then, Eq. (4.40) can be written as 12� (�	�I���ℎ u �8 �80��8 �80� + 1vsin F�� e#�&��T �W(^^,8)m�:, 0�n� +	;<�=&��T �W(^^,8)m !, 0�n�g > (SNR)	. (4.41)

The appropriate minimum value for the SNR will be discussed afterwards. 

Rearranging the terms in Eq. (4.41), it is possible to isolate and verify reservoir 

properties against wellbore/fluid properties: 
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��ℎI� < 12 1sin F 	(�	� u� × ��(SNR) v u �8 �80��8 �80� + 1v#�&��T �W(^^,8)m�:, 0�n� +	;<�=&��T �W(^^,8)m !, 0�n�	. (4.42)

The LHS of Eq. (4.42) accounts for reservoir properties, in the form of the 

effective oil transmissibility. The RHS describes the dependency on the operating 

drawdown rate, fluid thermal properties and wellbore thermal and dimensional 

properties. Among other wellbore features, the gauge depth �: is an explicit input 

to calculate W(^^,8)m�:, 0�n (see Eq. (B.18)). 

A reasonable approximation for W(^^,8) can be made when 

0� >  !�8 , (4.43)

which is the argument of the Heaviside step function in Eq. (B.18), substituting  m�: − ��n for  !. This condition is satisfied in a few hours of well flow, considering 

lengths in the order of few kilometers and downhole rates greater than 300 m³/d. 

Then, the function W(^^,8) can be written as 

W(^^,8)(@) = − Ω@2 "8 + e Ω "8� + P "8 g �@ "8 + Tm�µ<¼În − 1�, (4.44)

where @ is replaced by �: and  ! in the arguments of the W(^^,8) functions in Eq. 

(4.42). 

Under the adopted assumptions, the terms �: "8 and  ! "8 yield small values. 

Hence, it is convenient to apply the Taylor series approximation in the form 

@ + T�µ ≈ 1 + @2 	. (4.45)

Therefore, the expression in Eq. (4.44) can be rewritten as 

W(^^,8)(@) = − Ω@2 "8 + e Ω "8� + P "8 g m@ "8n2 	. (4.46)

Rearranging the terms in Eq. (4.46), the expression reduces to 

W(^^,8)(@) = @P2	. (4.47)

The combination of Eqs. (4.42) and (4.47) yields 

��ℎI� < (�	�sin F u� × ��(SNR) v u �8 �80��8 �80� + 1v#�&��T �:P +	;<�=&��T ( !)P 	. (4.48)
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Eq. (4.48) provides an important conclusion. It shows that thermal impacts 

on pressure gauge data respond to the square of the distance from the producing 

horizon.  

The metric can be rearranged to calculate two important parameters that can 

be controlled in well-test design and operations. The following subsections provide 

the expressions for the maximum gauge distance from the producing horizon and 

the minimum drawdown rate, respectively. Then, the expression for the SNR will 

be addressed. 

 

4.4.3. 
Maximum Gauge Distance from the Producing Horizon Ýâßãä 

The inequality in Eq. (4.48) can be removed by adopting the concept of a 

maximum gauge distance from the producing horizon		Δ�ijµ. For a specific 

wellbore/reservoir system undergoing a well test, the gauge must be placed within Δ�ijµ to allow the use of isothermal interpretations methods. 

��ℎI� = (�	�sin F u� × ��(SNR) v u �8 �80��8 �80� + 1v#�&��T (Δ�ijµ)P +	;<�=&��T ( !)P	. (4.49)

Eq. (4.49) can be rearranged as 

Δ�ijµ 	= 	å (�	�I���ℎ sin F 1P T#�&�� u� × ��(SNR) v e �8 �80��8 �80� + 1g − ;<�=( !)#� 	. (4.50)

Eq. (4.50) states that for a specific wellbore/reservoir system, the isothermal 

hypothesis is only valid when the gauge is placed below	Δ�ijµ. It is important to 

state that all inputs in Eq. (4.50) are commonly known fluid and wellbore 

parameters. 

Further approximations for usual property values and operational conditions 

can be made. The product #�&�� typically ranges from 6 to 8	(�� W�⁄ /æ) and the 

value of the term u jÎ<ÕÎ8�jÎ<ÕÎ8�D�v lies between 0.80 and 0.99 in well-testing operations. 

Moreover, for a vertical well and typical fluid thermal properties, the constant P 

can be approximated by 90% of the geothermal gradient (see Eq. (3.26)), and the 

dimensionless ratio 	çèéê"� 		has a magnitude of 1.0E-2. 	
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With the aforementioned considerations, the expression for Δ�ijµ is given 

by (in SI units) 

(Δ�ijµ)ë!° =	åu94 T§v(�	�I���ℎ 1(SNR) − ( !)100 . (4.51)

For a different unit system,  

(Δ�ijµ)ë!° =	å(����)(�	�I���ℎ 1(SNR) − ( !)100 	, (4.52)

where	���� is a unit conversion factor. The value of ���� is 11,322 in Oil Field units 

and 4,778 for the adopted unit system in this work (see Appendix A). The value of 

SNR should range between 4 and 6. 

In the particular case of constant pipe length, the term dependent on tubing 

length ( !) in Eqs. (4.50), (4.51) and (4.52) must be set to zero. 

The expression in Eq. (4.52) is a powerful result and easy to compute. If the 

pressure gauge is placed below	Δ�ijµ, then the isothermal hypothesis is valid. If 

the gauge is placed above	Δ�ijµ, then the well test must be considered  

non-isothermal and be interpreted considering the influence of thermal effects. 

The expression in Eq. (4.52) is useful for quick analyses. For a more accurate 

result, one must perform calculations with Eq. (4.50). Chapter 5 will verify the 

results presented in this section. 

 

4.4.4. 
Minimum Operating Drawdown Rate  

Given the gauge location	�:, there is a minimum drawdown rate prior to  

shut-in that must be imposed to allow the application of the isothermal hypothesis. 

Rearranging Eq. (4.50), the expression for the minimum rate is given by 

(i�¨ = u ��ℎI�	�v m#��: +	;<�=( !)n
× P &�� sin FT e (SNR)� × ��ge�8 �80� + 1�8 �80� g. 

(4.53)

Following the same idea to derive the approximate expression for Δ�ijµ in 

Eq. (4.52), the expression for the minimum rate in a vertical well is given by 
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((i�¨)ë!° = u ��ℎI�	�v �:
 + ( !)100(����) (SNR). (4.54)

For a specific wellbore/reservoir system, the isothermal hypothesis is only 

valid when the drawdown rate prior to shut-in is greater than	(i�¨. 

 

4.4.5. 
Signal-to-Noise Ratio (SNR)  

Eq. (4.53) can be rearranged to provide an easy to compute expression for the 

SNR, given a particular wellbore/reservoir system undergoing a well test.  

(SNR) = �(�	�I���ℎ �m#��: +	;<�=( !)n uTPv u� × ��&�� sin Fv e �8 �80��8 �80� + 1g. (4.55)

It is noteworthy the inverse relation with the parameters	#�, ;<�= and	&�� and 

with the square of	�:. 

Eq. (4.54) can also be rearranged to provide an expression for quick analyses: 

(SNR)ë!° = �(�	�I���ℎ � (����)
�: + ( !)100 	. (4.56)

As mentioned before, the value of SNR should range between 4 and 6. 

 

4.5. 
Non-Isothermal Initial Pressure 

The initial pressure is computed from Eq. (4.7) evaluated at	0 = 0. ':m�:, 0 = 0n = '��(0 = 0) − �:&�� sin F
+ sin F #�&��o Δ��(�, 0 = 0)p�Cq

! − �:2 &��#���(sin F). 
(4.57)

The value of Δ�� at 0 = 0 is zero. Then, it becomes clear that the expression 

for the initial pressure at a gauge is a quadratic function of depth: 

'�m�:n = '�h1� − �:&�� sin F − �:2 &��#���(sinF),	 (4.58)

where		'�h1� refers to the initial pressure at � = 0. 

As mentioned before, one of the main outcomes of a well test is to determine 

the reservoir initial pressure. Under the isothermal hypothesis, the initial pressure 
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measured at a gauge is simply shifted to the desired datum by using the fluid 

specific weight. The error associated to this procedure under a non-isothermal 

condition can be easily determined. The pressure-shift relative error (PSRE) is 

given by: 

PSREm�:n = 1 − �'�h1� − '�m�:n�����'�h1� − '�m�:n�¨�¨���� = 1 − 22 + �:#��� sin F. (4.59)

Note that the error does not depend on the fluid mass density. For a vertical 

well and typical values, the resulting initial pressure encompasses an error ranging 

from 0.1% to 2% when the isothermal hypothesis is assumed. 
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5 
Validation of Analytical Solutions 

This chapter compares the derived analytical solutions to the rigorous 

response of a commercial non-isothermal simulator (CMG-STARS, 2017). All 

synthetic examples used to verify the proposed analytical solutions consider an 

oil/water system, where the only flowing phase is oil with presence of connate 

water. 

The rigorous non-isothermal simulator model accounts for a finite wellbore 

coupled to the reservoir grid. The model consists of 200 gridblocks in the r-direction 

and 41 gridblocks in the z-direction. The finite wellbore is cased, cemented and 

completed with a production tubing. The reservoir comprises only the bottom layer, 

which is fully perforated, and the other 40 layers represent the formation adjacent 

to the wellbore. Layers may exchange heat between them, but no fluid flow occurs. 

Figure 5.1 illustrates the schematic of the wellbore/reservoir system to be 

used in the examples. 

 

Figure 5.1: Schematic of Wellbore/Reservoir System 
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The non-isothermal simulator model comprises a finite perforated interval, 

whereas the proposed analytical solution assumes perforations to be a point source. 

Hence, the location of � = 0	at the top of the completed interval in Figure 5.1 is 

merely schematic. 

The parameter �� is the distance between the producing horizon and the 

bottom of the tubing string. In the simulator, fluid flows from perforations through 

the production casing between � = 0 and	� = ��. Above	��, flow occurs only 

through the tubing string, because a packer has been placed in the casing-tubing 

annulus. Likewise, the analytical solution assumes no flow in the annulus. 

Reservoir properties are presented in Table 5.1. 

Table 5.1: Reservoir Properties 

Property Value '� (kgf/cm²) 500.0 �� (K) 334.0 �hjí�jk (mD) depends on the example �î1h8��jk (mD) 0 ℎ (m) depends on the example *1 (m) 25,000.00 M (fraction) 0.12 
h (cm²/kgf) 3.0E-5 +� (fraction) 0.15 �� (K/m) 0.03 
�h(J/m³/K) 2.347E+6 Hh (J/m/h/K) 1.396E+4 H1 (J/m/h/K) 1.383E+4 ;1(m²/h) 5.894E-3 

 

The results in this study consider only single-phase-liquid flow, therefore the 

adopted fluid model in the simulator only accounts for one water and one dead oil. 

When modeling pressure and temperature in the simulator, the following properties 

are variable with temperature and pressure: 

• Fluid mass densities; 

• Specific heat capacities; 

• Joule-Thomson coefficients; 

• Adiabatic-expansion coefficients. 
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All other properties have been set as constants to the simulator. The  

Joule-Thomson coefficients, heat capacities and adiabatic-expansion coefficients 

cannot be explicitly entered into the simulator. The software calculates these 

parameters from other input fluid properties, making use of the Lee-Kesler (1975) 

method to include the Joule-Thomson effect on the temperature transients. It 

requires critical properties of oil as input data, including critical pressure	('�), 
critical temperature	(��), molecular weight	(MW), acentric factor (Q) and two 

correlation gas-phase heat-capacity coefficients (CPG1 and CPG2). The simulator 

generates heat-capacity and enthalpy tables, which allow the calculation of the 

aforementioned properties as functions of pressure and temperature over time.  

The proposed analytical solution in this work models the oil mass density as 

function of temperature in the wellbore. All other physical and thermal properties 

of oil, water and rock are assumed constant, including the oil mass density in the 

porous medium. In order to be consistent with the simulator, the constant values for 

these properties are obtained from output tables generated by the software, 

evaluated at initial pressure and temperature.  

The input fluid properties are presented in Table 5.2.  

Table 5.2: Input Fluid Properties 

Property Oil Water 	 (m³/std m³) 1.4 1.0 
 (cm²/kgf) 1.10E-4 3.96E-5 I (cP) 0.9 1.0 MW (kg/gmol) 0.102 0.01802 �� (K) 513.15 647.35 '� (kgf/cm²) 30.0 224.83 Q, acentric factor 0.3506 - CPG1 (J/gmole/K) 8.845 - CPG2	(J/gmole/K²) 0.5067 - H (J/m/h/K) 5.833E+2 2.229E+3 K�� 	(kg/m³) 770.0 998.2 # (K-1) 1.11E-3 5.27E-4 

 

The adopted formation volume factor is 1.4 for oil and 1.0 for water. Though 

the non-isothermal simulator is not a black-oil simulator, it permits the modeling of 
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	� with a pressure/temperature cross term for liquid density (Onur and Cinar, 

2017a). 

The simulator uses the data in Table 5.1 and Table 5.2 to generate several 

fluid property tables. The output data will be interpolated to obtain the constant 

values for the Joule-Thomson coefficients, adiabatic-expansion coefficients and 

heat capacities at initial conditions. 

 Table 5.3 presents a portion of the oil heat capacity table generated by the 

non-isothermal simulator.   

Table 5.3: Oil Heat Capacity at Initial Pressure 

Temperature (K) 

(Reduced Temperature) 
Heat Capacity (J/kg/K) 

274.0 

(0.5340) 
2,008.38 

374.0 

(0.7288) 
2,415.90 

 

The interpolation of Table 5.3 data provides an oil heat capacity at initial 

pressure and temperature of 2,252.9 J/kg/K. 

Table 5.4 presents a portion of the oil specific enthalpy data generated by the  

non-isothermal simulator. These data are used to calculate both Joule-Thomson and 

adiabatic-expansion coefficients. 

Table 5.4: Specific Enthalpy Table (kJ/kg) 

 
Pressure (kgf/cm²) 

(Reduced Pressure) 

Temperature (K) 

(Reduced Temperature) 

250.0 

(8.33) 

500.0 

(16.67) 

1,000.0 

(33.33) 

274.0 

(0.5340) 
-423.733 -403.233 -362.127 

374.0 

(0.7288) 
-199.036 -181.089 -145.091 

 

The required thermodynamic relationships to calculate the coefficients are 

given by 
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$%�� = − 1
�� u���'v� , (5.1)

and 

N� = 1K��
�� + $%�� , (5.2)

where � is the specific enthalpy. 

The interpolation of Table 5.4 data combined with the thermodynamic 

relationships in Eqs. (5.1) and (5.2) provide an oil Joule-Thomson coefficient at 

initial conditions of -0.03374 K/(kgf/cm²) and an adiabatic-expansion coefficient of 

0.02279 K/(kgf/cm²). 

Water coefficients have been obtained by a similar procedure. Table 5.5 

summarizes the calculated fluid properties to be used in the analytical solutions. 

Table 5.5: Fluid Thermal Properties at Initial Conditions 

Property Oil Water 
�	(J/kg/K) 2252.90 4209.35 $%� (K/(kgf/cm²)) -3.374E-2 -1.921E-2 N (K/(kgf/cm²)) 2.279E-2 4.132E-3 

 

Shown in Table 5.6 are the saturated porous medium properties. The 

expressions to calculate	H8, ;8 and N8∗ are presented in Eqs. (2.9), (2.10) and (2.11), 

respectively. 

Table 5.6: Saturated Porous-Medium Properties 

Property Value H8 (J/m/h/K) 1.238E+4 N8∗ (K/(kgf/cm²)) 1.874E-3 ;8 (m²/h) 5.342E-3 

 

The gauge location depends on the example. Wellbore parameters are 

presented in Table 5.7. 
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Table 5.7: Wellbore Parameters 

Property Value *� (m) 0.156 *�� (m) 0.12224 *�� (m) 0.10839 *8� (m) 0.06985 *8� (m) 0.05931 H�1i (J/m/h/K) 6.833E+3 H�jkk (J/m/h/K) 1.617E+5 H�jkk��1i (J/m/h/K) 9.995E+3 Hj¨ (J/m/h/K) 5.833E+2 

Skin Factor 0 F (degree) 90° �� (m) 100 �:j»:1 (m) depends on the example ��� (dimensionless) depends on the example ��8 (dimensionless) depends on the example 

 

The parameters P and Ω are computed from Eqs. (3.26) and (3.28), yielding 

the values of 2.825 E-2 K/m and -8.652 E-8 K/m², respectively. 

It has been adopted an infinitesimal thickness for both casing and tubing walls 

in the simulation model. Besides, the casing wall/cement system has been modeled 

in the simulator as a single wellbore cylindrical layer, 

H�jkk��1i = lnm*� *��ð n �lnm*� *��ð nH�1i + lnm*�� *��ð nH�jkk ���. (5.3)

Gauges will be located below and above the packer, placed 87.5 m from the 

bottom of the tubing string. Therefore, to allow easy comparisons at different 

locations, the tubing string is not insulated. To model this condition, the proposed 

analytical solution assumes the same thermal conductivity for the annular fluid and 

the oil phase.  

The proposed analytical solution makes use of the relaxation distance  " to 

model the formation/wellbore overall resistance to heat flow. During the drawdown 

period, this parameter is computed from the combination of Eqs. (3.4) and (3.27). 

After shut-in, the parameter is set as constant, evaluated at 0 = 0�. 
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The following subsections present three examples. Except for the effective 

oil flow capacity (kh) and gauge locations, all examples share the data presented in 

this section. 

The examples are used to verify the proposed analytical transient solutions 

derived in this work, which are: 

• Buildup sandface-temperature solution (Chapter 2); 

• Wellbore-temperature solutions (Chapter 3); 

• Solutions for thermal impacts on wellbore pressure (Chapter 4). 

 

5.1. 
Validation of Analytical Buildup Sandface-Temperature Solution 

The proposed buildup sandface-temperature solution is presented in  

Eq. (2.56). Buildup tests usually comprise a 24-hour drawdown followed by a 24 

to 48-hour buildup period. To analyze and verify the proposed solution, the shut-in 

time will be 5 times greater than the producing period. Therefore, the simulated test 

sequence comprises 24 hours of production followed by a 120-hour buildup. The 

constant oil production downhole rate was set at 800 m³/d and the reservoir is 50 

meters thick. 

To evaluate the sandface temperature in absence of wellbore axial conduction 

effects, the casing wall was not considered in the finite wellbore simulation model 

of Example 1.  

By changing the reservoir permeability, the solution has been evaluated for 

different values of transmissibility. Table 5.8 presents the effective oil 

permeabilities for each case. 

Table 5.8: Effective Oil Permeabilities for Example 1 

Case 
Effective Oil 

 Permeability ñò(mD) 

Effective Oil 

Transmissibility (mD.m/cP) 

Case 1.1 1400 77,778 

Case 1.2 35 1,944 

 

Each case presents a Cartesian plot of the entire testing time (drawdown + 

buildup) and a semilog plot of the buildup period. Results are presented as follows. 
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Case 1.1 (ko = 1400 mD) 

  

(a) (b) 

Figure 5.2: Case 1.1 – (a) Cartesian Plot; (b) Semilog Plot 

 

The Cartesian plot in Figure 5.2 (a) is composed by three temperature curves: 

1. Non-isothermal simulator drawdown + buildup curve (in red); 

2. Onur and Cinar (2017a) analytical drawdown-sandface solution (in 

blue); 

3. The proposed analytical buildup-sandface solution in this work (in 

black). 

 

Onur and Cinar (2017a) drawdown sandface-temperature solution is used as 

the initial condition for the buildup problem (see Eqs. (2.28) and (2.30)). However, 

any other drawdown-sandface solution could be used. Nevertheless, this work 

recommends the use of the expression proposed by Onur and Cinar (2017a), since 

it presented a good match with the non-isothermal simulator in all analyses 

performed in this study. 

The semilog plot in Figure 5.2 (b) presents the buildup curves computed from 

the simulator (in red) and from the proposed solution (in black). 

In both plots, there is an evident deviation in early shut-in times. In this case, 

the difference between the maximum temperatures is 0.004 K. This difference will 

be discussed at the end of this subsection and it will be shown that it is systematic. 

Apart from that, the proposed solution presents a good match with the non-

isothermal simulator in both plots. 

 It is interesting to note that the initial reservoir temperature is 334 K and the 

cooling response at initial drawdown times is due to the adiabatic expansion effect.  
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Case 1.2 (ko = 35 mD) 

  

(a) (b) 

Figure 5.3: Case 1.2 – (a) Cartesian Plot; (b) Semilog Plot 

 

The previous comments apply to this case and the early-time deviation is 

 0.1 K. Two other cases with permeabilities of 700 mD and 350 mD have been run, 

providing deviations of 0.007 K and 0.013 K, respectively. In all cases the deviation 

occurred between 0.01 – 3.0 hours. Besides that, buildup temperatures computed 

from Eq. (2.56) match well with the corresponding simulator temperatures. 

The explanation for the mismatch lies on analyzing the early-time pressure 

response. When the well is shut in, the analytical solution considers the downhole 

rate to be zero, whereas the non-isothermal simulator presents a non-zero rate. The 

result on wellbore pressure is the well-known wellbore storage (WBS) effect, which 

implies a higher �Δ' �Δ0⁄ 	at early times. As for temperature, the impact comes in 

the form of a stronger adiabatic compression effect. This early-time thermal effect 

lasts longer than WBS effects, because in practical cases thermal conduction 

dominating the buildup period is a much slower process than pressure diffusion. 

The energy balance expressed in Eq. (5.4), which is the early-time 

approximation of Eq. (2.29), illustrates the relation between early-time pressure and 

temperature, 

Δ�(*, Δ0) = ouN8∗ �Δ'�Δ0vpΔ0	. (5.4)

The solution of Eq. (5.4) with the appropriate boundary conditions is given 

by Eq. (2.33), where temperature responds to the inverse of permeability (assuming 

a weak contribution of the exponential integral function). Hence, as expected, the 

absolute early-time temperature deviation also responds to the inverse of 

permeability, as shown by the negative slope close to −1 in Figure 5.4. 
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Figure 5.4: Absolute Early-Time Temperature Deviation vs. Effective 

Permeability 

 

Another analysis can be performed in terms of the relative early-time 

deviation, defined as the ratio of the analytical solution temperature difference to 

the simulator temperature difference.  

(Δ� Δ�⁄ )í1î�j8��¨ = m�ijµ − ���n(j¨.		��k»8��¨)m�ijµ − ���n(��i»kj8�h) 	. (5.5)

This analysis isolates the early-time		�Δ' �Δ0⁄  impact, as shown in 

Figure 5.5. 

 

Figure 5.5: Relative Early-Time Temperature Deviation vs. Effective Permeability 

 

The relative early-time temperature deviation is 40%, regardless of the value 

of permeability. Both analyses show that deviations are systematic. 
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In real well-testing operations, the downhole tester valve is usually placed 

near the bottom of the test string, reducing the WBS effect during buildup. Hence, 

real downhole data should be well described by the analytical solution. 

Apart from the wellbore storage impact on temperature, the proposed solution 

presents a good match with the non-isothermal simulator. Furthermore, results 

show that the analytical solution can be applied to a wide range of permeabilities, 

given the wellbore/reservoir system and operational conditions adopted in  

Example 1. Additionally, the solution presents a good match even for long shut-in 

times, making the solution valid for conventional test sequences. 

Regarding the magnitude of the drawdown rate, the proposed solution 

presents a good match for low rates at early times, however it fails to describe 

temperature changes at intermediate and late times due to the adopted assumptions. 

For the wellbore/reservoir system presented in Example 1, the match is good for 

rates above 300 m³/d, from early to late shut-in times. 

 

5.2. 
Validation of Analytical Transient-Wellbore-Temperature Solutions 

This section verifies the transient-wellbore-temperature solutions derived in 

this work. The production-casing drawdown and buildup solutions are expressed in 

Eqs. (3.41) and (3.78), and cased-tubing solutions are given by Eqs. (3.51) and 

(3.79). 

It is noteworthy to state that buildup wellbore-temperature solutions are only 

coupled with the buildup-sandface solution at	Δ0 = 0D. After this instant, wellbore 

solutions no longer depend on reservoir data (except at	� = 0). This feature is 

important to be clear, because wellbore solutions are not restricted to the limitations 

of the buildup-sandface solution and can be applied to low rate scenarios and to low 

permeability reservoirs. 

To the best of the author’s knowledge, the simulator finite wellbore 

completion model does not account for expansion joints. Therefore, this chapter 

assumes no tubing expansion or contraction. This effect will be evaluated in 

Chapter 6. 

The proposed solution will be compared to the rigorous non-isothermal 

simulator response. Analyses will be performed by evaluating both temperature and 
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pressure data from simulated gauges placed inside the finite wellbore model. Table 

5.9 presents the gauge locations. 

Table 5.9: Gauge Locations in Example 2 

Case 
Gauge Distance From the 

Producing Horizon âó (m) 
Gauge Location 

Case 2.1 0.0 Production Casing 

Case 2.2 100.0 Production Casing 

Case 2.3 137.5 Tubing 

Case 2.4 287.5 Tubing 

Case 2.5 512.5 Tubing 

 

The reservoir permeability is set at 100 mD and the reservoir thickness is 50 

meters. The simulated test sequence comprises 48 hours of production at a constant 

downhole rate of 800 m³/d followed by a 48-hour buildup. 

Recalling Figure 5.1, the schematic gauge location is presented as follows: 

 

Figure 5.6: Schematic Gauge Location in Example 2 

 

Besides the comparison with the non-isothermal simulator, the proposed 

solution will be compared to other two analytical transient-wellbore-temperature 

solutions, proposed by Hasan et al. (2005) and Onur et al. (2017). These solutions 

do not model temperature changes in a cased tubing, therefore they will only be 

addressed in cases 2.1 and 2.2.  
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This work assumes a constant volumetric production rate, which is a 

reasonable assumption regarding the wellbore/reservoir and operational properties 

adopted in the examples. Hence, the solutions proposed by Hasan et al. (2005) and 

Onur et al. (2017) will be computed under the same assumption. In addition, a 

constant fluid mass density will be adopted for these solutions. 

 

Case 2.1 (zg = 0 m) 

The objective of this case is to evaluate the wellbore-temperature solutions at � = 0, i.e., at sandface. Hence, Case 2.1 uses the same finite wellbore simulation 

model of Example 1. 

Figure 5.7 presents the drawdown response of the wellbore-temperature 

solutions at	� = 0, together with the sandface solution proposed by Onur and Cinar 

(2017a) and the non-isothermal simulator response. 

 

Figure 5.7: Drawdown Solutions at z = 0 

 

The analytical sandface solution (blue curve) proposed by Onur and Cinar 

(2017a) presents a good match with the non-isothermal simulator at � = 0 (red 

curve). The minor differences at early times have been previously discussed and 

they are due to WBS impacts on the fluid adiabatic expansion effect. 

The proposed analytical wellbore-temperature solution (green curve) is fully 

coupled with sandface-temperature changes (blue curve), yielding the exact same 
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response at		� = 0. Recalling Eq. (3.35), Onur and Cinar (2017a) sandface-

temperature solution (blue curve) is an imposed boundary condition to solve the 

transient problem. 

The wellbore solution proposed by Onur et al. (2017) (yellow curve) presents 

deviations at early and intermediate times due to the approximation of the 

term	�� ��⁄ . This is a consequence of using the sandface-temperature boundary 

condition to solve the steady-state problem, not making it available for the transient 

problem. The impacts of this assumption along the wellbore will be discussed in 

Case 2.2. 

Hasan et al. (2005) adopt the same simplification and, in addition, the 

reservoir is assumed isothermal, therefore no temperature changes occur at  � = 0 (pink curve). 

The buildup-sandface response has been assessed in Example 1 and will not 

be addressed in this case. 

 

Case 2.2 (zg = 100 m) 

First, the proposed analytical wellbore-temperature solution will be compared 

to the non-isothermal simulator response. Then, a comparison with the solutions 

proposed by Hasan et al. (2005) and Onur et al. (2017) will be performed. 

Figure 5.8 presents the drawdown and the buildup curves at a gauge placed 

100 meters above the producing horizon in a production casing. In addition, the 

blue and green curves are the drawdown- and buildup-sandface temperatures, 

respectively. 

  

(a) (b) 

Figure 5.8: Case 2.2 – (a) Drawdown; (b) Buildup 
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In Figure 5.8 (a), there is an interesting transition in the drawdown behavior 

at 0.2 hours, when the proposed analytical solution (black curve) and the simulated 

response (red curve) present a change in the heating profile. When the well is 

opened to flow, the fluid below the gauge starts flowing upwards, heating the gauge 

by a simple process of fluid elevation, i.e., a deeper and warmer fluid continuously 

reaches the gauge over time. This heating mechanism dominates gauge-temperature 

changes until the fluid originally at sandface reaches the gauge depth, suddenly 

ceasing the process of heating by vertical lifting. At this moment, there is no longer 

any fluid from deeper horizons to keep the mechanism active. From this point on, 

gauge-temperature changes are governed by Joule-Thomson heating effects (both 

in the wellbore and reservoir), and by the heat loss to surroundings caused by radial 

diffusion. 

The proposed analytical solution is able to accurately describe the heating 

caused by the fluid elevation process. In Eqs. (3.42) and (3.43), when the Heaviside 

Step functions are “turned on”, the lifting effect ceases and the heating behavior 

suffers the change depicted in Figure 5.8 (a). 

Figure 5.8 (b) presents the buildup period that follows the drawdown in 

Figure 5.8 (a). The wellbore temperature at late times approaches the constant value 

of the Earth temperature at the gauge location. The intermediate-time mismatch 

stems from the neglect of axial conduction effects along the wellbore. Nonetheless, 

the overall behavior has been successfully reproduced. 

The drawdown thermal-storage coefficient was set to 0.3 and the value for 

the buildup period was set to 0.0. 

The analytical modeling of transient-temperature changes due to vertical fluid 

elevation is one of the main contributions of this work. This effect has been 

successfully assessed because the transient wellbore energy-balance equation was 

treated as a true partial-differential equation, and not simplified to an  

ordinary-differential equation. 

As mentioned before, the solutions proposed by Hasan et al. (2005) and Onur 

et al. (2017) adopted a simplification for the wellbore-temperature gradient	�� ��⁄ . 

Figure 5.9 compares the proposed analytical solution in this work to these two other 

analytical solutions at � = 100 m. 
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Figure 5.9: Drawdown Solutions 

 

In Figure 5.9, the solutions proposed by Hasan et al. (2005) (pink curve) and 

Onur et al. (2017) (yellow curve) do not provide a good match with the  

non-isothermal simulator at intermediate times. The mismatch is rooted in the 

assumption of using the steady-state �� ��⁄  to solve the transient flow problem. 

Hasan et al. (2005) also noted the impacts of this simplification in their work when 

translating pressures within the wellbore. 

The solution proposed by Hasan et al. (2005) also does not present a good 

match at late times, due to the assumption of an isothermal reservoir in their work. 

As expected, at late times the solution proposed by Onur et al. (2017) (yellow curve) 

converges to the non-isothermal simulator response, when the system is closer to a  

steady-state condition. 

Regarding thermal-storage coefficients, Hasan et al. (2005) and Onur et al. 

(2017) solutions were computed with a null value. Higher values provided curves 

further apart from the non-isothermal simulator response. 
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Case 2.3 (zg = 137.5 m) 

Case 2.3 presents the first analysis of flow in a cased tubing (see Figure 5.6). 

  

(a) (b) 

Figure 5.10: Case 2.3 – (a) Drawdown; (b) Buildup 

 

In Figure 5.10 (a), the change in the heating profile due to fluid elevation 

described in Case 2.2 happens twice. The first change (0.02 h) is due to the elevation 

of the fluid originally at the bottom of the tubing string. The second change (0.25 

h) is caused by the elevation of the fluid originally at sandface. The event happens 

twice because there is a change in pipe area, yielding two different flowing 

velocities for the same volumetric rate. 

The additional heating in the simulated curve (Figure 5.10 (a)) may be caused 

by some sort of numerical effect or due to viscous dissipation effects. Nevertheless, 

the deviation is small, 5% considering the temperature change in the 48-hour 

drawdown period. 

As for the buildup period in Figure 5.10 (b), the match is good and the minor 

deviations are due to the lack of an axial diffusion model. 

In this case, both casing and tubing thermal-storage coefficients were set to 

0.3 for the drawdown period, and buildup coefficients were 0.2. 

To the best of the author’s knowledge, the analytical modeling of a coupled 

reservoir/casing/tubing thermal system has not yet been addressed in Literature. 

This is another contribution of this work. 

 

Case 2.4 (zg = 287.5 m) 

Case 2.4 presents the flow in a cased tubing at a different gauge location. All 

previous observations and conclusions apply to this case, including the description 

of the fluid elevation phenomenon. 
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(a) (b) 

Figure 5.11: Case 2.4 – (a) Drawdown; (b) Buildup 

 

In Figure 5.11 (a), as expected, the farther the distance from the bottom of the 

tubing string, the longer it takes for the first change in the heating profile to happen. 

At this depth, it occurred at approximately 0.1 hours. For the same reason, the 

second change also occurred further in time. 

In this case, both casing and tubing thermal-storage coefficients were set to 

0.2 for the drawdown period, and buildup coefficients were 0.0. 

The next case investigates an even farther location from the producing 

horizon. 

 

Case 2.5 (zg = 512.5 m) 

Case 2.5 presents the flow in a cased tubing at a location 512.5 m above the 

producing horizon. Like in the previous cases, the same observations and 

conclusions apply here. 

  

(a) (b) 

Figure 5.12: Case 2.5 – (a) Drawdown; (b) Buildup 
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In Figure 5.12 (a), both heating-profile changes occurred further in time when 

compared to the previous case. The drawdown thermal-storage coefficients were 

set to 0.0 and 0.2 for the production casing and the tubing, respectively. The buildup 

coefficients were 0.0. 

The proposed analytical model successfully reproduced the non-isothermal 

simulator temperature response for drawdown and buildup tests at different depths, 

in both casing and tubing strings. 

A discussion on the validity of the solutions will be addressed at the end of 

this chapter. 

 

5.3. 
Validation of Analytical Solutions for Thermal Impacts on Wellbore 
Pressure 

The non-isothermal simulator finite wellbore model does not account for 

change in tubing length. Therefore, this section verifies the constant pipe-length 

solutions. The variable pipe-length solutions are examined in the next chapter, 

where impacts on interpretation results are addressed. 

Example 3 evaluates the cased-tubing solution and the expressions for Δ0i� 

and Δ�ijµ, given by Eqs. (4.16), (4.33) and (4.50), respectively. Analyses will be 

performed  by comparing the solutions to the non-isothermal simulator response.  

This section adopts a null value for the parameters ��� and	��8 and all 

analyses are performed by assessing the buildup periods. 

 

5.3.1. 
Validation of Cased-Tubing Solution 

In this example, the effective oil flow capacity (kh) is 450,000 mD.m. The 

simulated test sequence comprises 24 hours of production at a constant downhole 

rate of 1400 m³/d followed by a 48-hour buildup. 

The buildup pressure computed from the analytical solution will be compared 

to the non-isothermal simulator response along the wellbore. The schematic gauge 

location is presented as follows: 
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Figure 5.13: Gauge Location in Example 3 

 

Figure 5.14 presents the wellbore-temperature changes for the six gauges 

placed inside the tubing string. 

 

Figure 5.14: Wellbore-Temperature Changes in Example 3 

 

As mentioned before, the proposed analytical solution does not account for a 

friction model, therefore the non-isothermal simulator drawdown temperatures are 

slightly higher. Nonetheless, this effect entails minor effects on buildup temperature 

changes. 

Recalling Eq. (4.16), the buildup-sandface pressure Δ'�� for Example 3 is 

given by the infinite-acting homogeneous reservoir line sink solution in absence of 

skin and WBS effects. Besides, it will be adopted the log approximation of Ei(−@). 
Δ'��(Δ0) = 12�(�	�I���ℎ �ln e 0�Δ00� + Δ0g + ln u 4����MI�
8*�T v�. (5.6)
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Case 3.1: Buildup at zg = 0 m 

Case 3.1 (� = 0) comprises the buildup-sandface pressure response. 

  

(a) (b) 

Figure 5.15: Case 3.1 – (a) Log-Log Plot; (b) Horner Plot 

 

Figure 5.15 (a) presents the log-log plot and Figure 5.15 (b) shows the Horner 

plot. The dashed lines in both plots represent the isothermal infinite-acting radial 

flow regime (IARF). WBS effects and/or numerical effects are evident in the non-

isothermal simulator data (red curves), ceasing at 0.05 hours of shut-in time. 

Results for this case indicate that buildup sandface-pressure solutions under 

non-isothermal flow are well represented by the corresponding isothermal-flow 

solutions, a condition also observed by Onur and Cinar (2017a).  

Case 3.1 is the base case for this example. All deviations from the dashed 

lines in the following analyses are due to thermal effects. All plots present the same 

pressure scale, in order to allow easy comparisons among the cases. 

 

Case 3.2: Buildup at zg = 137.5 m 

  

(a) (b) 

Figure 5.16: Case 3.2 – (a) Log-Log Plot; (b) Horner Plot 
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As mentioned before, the proposed analytical solution does not account for a 

friction model. The effect on pressure is an additional pressure drop, which is 

evident in the simulated pressure-change curve. Friction losses do not influence the 

buildup derivative shape and cause no impact to flow diagnosis. 

Apart from friction loss and early-time effects, the proposed analytical 

solution presents a good match with the non-isothermal simulator in both plots.  

Impacts on reservoir characterization due to deviations from the  

IARF dashed line will be addressed in Chapter 6. 

 

Case 3.3: Buildup at zg = 162.5 m 

  

(a) (b) 

Figure 5.17: Case 3.3 – (a) Log-Log Plot; (b) Horner Plot 

 

As expected, thermal effects provided a stronger deviation from the 

isothermal response. The derivative reached a lower value than in the previous case 

and the friction loss effect was greater.  

The proposed analytical solution presents a good match in both plots, being 

able to reproduce the deviation from the IARF dashed lines with great accuracy. 
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Case 3.4: Buildup at zg = 187.5 m 

  

(a) (b) 

Figure 5.18: Case 3.4 – (a) Log-Log Plot; (b) Horner Plot 

 

There is a good match in both plots and all conclusions previously discussed 

apply to this case. As expected, the derivative reached lower values and the friction 

loss was stronger. 

 

Case 3.5: Buildup at zg = 212.5 m 

  

(a) (b) 

Figure 5.19: Case 3.5 – (a) Log-Log Plot; (b) Horner Plot 

 

In Figure 5.19 (a), the derivative valley reached the value of 0.01 kgf/cm² and 

will continue to reach even lower values in the cases to come. As expected, the 

friction loss continues to grow stronger with depth. 

Again, the proposed analytical solution provides a good match with the 

simulator in both plots. 

The evolution of derivative valleys in the last cases makes it clear the concept 

of the Time of Maximum Impact on Pressure Δ0i�, addressed in Chapter 4. It is 

easy to see a pattern in the derivative curves, where there is time when data are most 
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impacted by thermal effects, represented by the inflections. At the end of this 

example, the expression for Δ0i� will be evaluated, as well as the expression for 

the maximum gauge distance	Δ�ijµ. 

 

Case 3.6: Buildup at zg = 237.5 m 

  

(a) (b) 

Figure 5.20: Case 3.6 – (a) Log-Log Plot; (b) Horner Plot 

 

In this case, the analytical solution derivative presents minor deviations from 

the non-isothermal simulator data. The mismatch is mainly caused by the lack of a 

wellbore axial diffusion model. Nevertheless, the match is still good in both plots. 

 

Case 3.7: Buildup at zg = 262.5 m 

  

(a) (b) 

Figure 5.21: Case 3.7 – (a) Log-Log Plot; (b) Horner Plot 

 

All previous conclusions apply to this case. As mentioned before, the lack of 

an axial diffusion model is responsible for minor deviations. That apart, the match 

is good in both plots. 

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100

P
re

s
s
u
re

 C
h
a
n
g
e
 a

n
d
 D

e
ri
v
a
ti
ve

 (
kg

f/
c
m

²)

Shut-in Time (hours)

IARF Isothermal Response

Non-Isothermal Simulator @ 237.5m

BU Wellbore Analytical Solution @ 237.5m (this work)

499.50

499.60

499.70

499.80

499.90

500.00

500.10

0 1 2 3 4 5 6

P
re

s
s
u
re

 (
kg

f/
c
m

²)
Superposition Time Function

IARF Isothermal Response

Non-Isothermal Simulator @ 237.5m

BU Wellbore Analytical Solution @ 237.5m (this work)

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100

P
re

s
s
u
re

 C
h
a
n
g
e
 a

n
d
 D

e
ri
v
a
ti
ve

 (
kg

f/
c
m

²)

Shut-in Time (hours)

IARF Isothermal Response

Non-Isothermal Simulator @ 262.5m

BU Wellbore Analytical Solution @ 262.5m (this work)

499.50

499.60

499.70

499.80

499.90

500.00

500.10

0 1 2 3 4 5 6

P
re

s
s
u
re

 (
kg

f/
c
m

²)

Superposition Time Function

IARF Isothermal Response

Non-Isothermal Simulator @ 262.5m

BU Wellbore Analytical Solution @ 262.5m (this work)

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 5. Validation of Analytical Solutions 103 

The proposed analytical solution in this work was able to reproduce the  

non-isothermal simulator data with great accuracy. In addition to the cases 

presented, farther gauge locations have been assessed, also providing a good match 

with simulated data. 

The next sections evaluate the expressions for the Time of Maximum Impact 

on Pressure Δ0i�		and the maximum gauge distance from the producing 

horizon	Δ�ijµ. 

 

5.3.2. 
Validation of ÝÞßà – Time of Maximum Impact on Pressure  

The Time of Maximum Impact on Pressure		Δ0i�, given by Eq. (4.33), 

calculates when pressure derivate data are most influenced by thermal effects. 

Under the adopted assumptions, it will be shown that Δ0i� does not depend on the 

gauge distance from the producing horizon, on reservoir properties, on the 

drawdown duration nor on the rate magnitude. Hence, four analyses will be 

performed. The value of Δ0i� also does not depend on tubing length, however this 

feature cannot be tested because the non-isothermal simulator does account for 

pipe-contraction effects. 

The first analysis evaluates the response for different rates given a fixed gauge 

location. The second analysis extends the conclusions to the response of Δ0i� over 

depth. The third analysis investigates different durations for the preceding 

drawdown period. Finally, the fourth analysis presents the simulated results for 

different reservoir transmissibilities. 

All analyses make use of the same input data used for Example 3. Changes 

on parameters will be performed to verify the aforementioned statements. 

The parameter �� is 100 meters, therefore Δ0i� will be computed with casing 

properties. The analytical expression in Eq. (4.33) yields Δ0i� = 1.47 hours and it 

will be shown that all analyses provide similar values, regardless of changes in 

parameters. 

 

First Analysis – Rate Magnitude 

Given the gauge location of 187.5 m, three different downhole rates were used 

to compute the simulated data, which were 1400 m³/d, 1050 m³/d and 700 m³/d. 
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Table 5.10 presents the measured Δ0i� for each pressure derivative curve. 

Each measure is obtained simply by reading when derivative data assume the 

smallest value during the buildup period. 

Table 5.10: Time of Maximum Impact on Pressure (hours) 

Gauge 

Location (m) 

Measured ÝÞßà  

1400 m³/d 

Measured ÝÞßà 

1050 m³/d 

Measured ÝÞßà 

700 m³/d 

187.5 1.33 1.36 1.36 

 

The average value in Table 5.10 is 1.35 hours. The minor difference to the 

analytical result of 1.47 hours is due to the conditions assumed in the derivation of 

Eq. (4.33). 

Figure 5.22 presents the simulated curves log-log diagnostic plot. The red 

curves are associated to the rate of 1400 m³/d, the yellow curves to 1050 m³/d and 

the green curves to 700 m³/d. Curves are not rate-normalized. 

 

Figure 5.22: First Analysis Log-Log Plot 

 

The dashed vertical line is the average value of 1.35 hours and the blue 

vertical line is the analytical result of 1.47 hours computed from Eq. (4.33).  

As expected, the lower the drawdown rate (green curve), the more influenced 

by thermal effects are pressure data. Nonetheless, the time when the inflection 

occurs was not influenced by the rate magnitude. 
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Second Analysis – Gauge Distance from the Producing Horizon 

 The second analysis evaluates Δ0i� for six different gauge locations 

combined with three different drawdown rates, providing eighteen curves. Table 

5.11 presents the measured Δ0i� for each pressure derivative curve. 

Table 5.11: Time of Maximum Impact on Pressure (hours) 

Gauge 

Location (m) 

Measured ÝÞßà  

1400 m³/d 

Measured ÝÞßà 

1050 m³/d 

Measured ÝÞßà 

700 m³/d 

137.5 1.05 1.00 0.95 

162.5 1.24 1.18 1.30 

187.5 1.33 1.36 1.36 

212.5 1.36 1.36 1.36 

237.5 1.40 1.40 1.46 

262.5 1.30 1.30 1.33 

 

The average value in Table 5.11 is 1.28 hours. Again, simulation results are 

close to the analytical result of 1.47 hours. 

The second analysis extends the previous conclusion to different gauge 

locations. Figure 5.23 presents the log-log diagnostic plot of all eighteen curves. 

 

 

Figure 5.23: Second Analysis Log-Log Plot 
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In Figure 5.23, each color refers to a different rate and vertical lines are 

analogous to the previous plot. Though Figure 5.23 presents a dense plot, it is easy 

to verify that all inflections fall approximately at the same point in time. The 

magnitude of thermal impacts depend on gauge location and on the preceding 

drawdown rate, nonetheless the time when the inflection occurs does not depend on 

these parameters. 

 

Third Analysis – Drawdown Period Duration 

 This analysis investigates different drawdown durations. Table 5.12 presents 

the measured values of  Δ0i� for two different producing times, given the same 

downhole rate of 1400 m³/d. 

Table 5.12: Time of Maximum Impact on Pressure (hours) 

Gauge 

Location (m) 

Measured ÝÞßà  

12 h DD 

Measured ÝÞßà 

24 h DD 

137.5 1.10 1.05 

162.5 1.30 1.24 

187.5 1.36 1.33 

212.5 1.40 1.36 

237.5 1.54 1.40 

262.5 1.40 1.30 

 

The average value in Table 5.12 is 1.33 hours, and again the result of  

1.47 hours is in line with simulated data. Figure 5.24 presents the twelve simulated 

curves. 
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Figure 5.24: Third Analysis Log-Log Plot 

 

Figure 5.24 shows that the time when the inflection occurs does not depend 

on the preceding drawdown duration.  

 

Fourth Analysis – Reservoir Parameters 

 The fourth analysis investigates Δ0i� for two different transmissibilities, 

subject to a 24-hour drawdown under a rate of 1050 m³/d. Results are presented in 

Table 5.13. 

Table 5.13: Time of Maximum Impact on Pressure (hours) 

Gauge 

Location (m) 

Measured ÝÞßà  

500,000.0 mD.m/cP 

Measured ÝÞßà  

167,000.0 mD.m/cP 

137.5 1.00 0.93 

162.5 1.18 1.10 

187.5 1.36 1.36 

212.5 1.36 1.30 

237.5 1.40 1.36 

262.5 1.30 1.36 

 

The average value in this case is 1.25 hours. Figure 5.25 presents the twelve 

simulated curves. 
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Figure 5.25: Fourth Analysis Log-Log Plot 

 

Figure 5.25 shows that the time when the inflection occurs does not depend 

on reservoir parameters.  

Buildup tests performed in infinite-acting homogeneous reservoirs will 

always comprise at least one valley in the derivative curve, assuming a sufficiently 

long shut-in time. Impacts on pressure due to thermal effects depend on rate 

magnitude, producing time, gauge distance and reservoir parameters. Nonetheless, 

under the adopted assumptions, this section showed that the time when the 

inflection occurs does not depend on these parameters. It only depends on radial 

diffusion (heat loss) to surroundings and on some wellbore and fluid properties, 

such as inside-tubing radius and fluid heat capacity, as shown in Eqs. (4.33) and 

(4.34). The value of Δ0i� also does not depend on tubing length. This feature could 

not be assessed, because the non-isothermal simulator finite wellbore model does 

not account for change in pipe length. This feature will be addressed in Chapter 6. 
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hypothesis be valid. In other words, it determines the maximum distance that 

thermal effects can be neglected and conventional PTA interpretation methods can 

be applied. 

The expressions to be verified in this section are presented in Eqs. (4.50) and 

(4.52). The term dependent on tubing length ( !) has been discarded, because the 

non-isothermal simulator does not account for pipe-contraction effects. 

It will be adopted a signal-to-noise ratio (SNR) of 5.0 and the same input data 

used for Example 3. Considering a downhole rate of 1400 m³/d, the result for Δ�ijµ 

computed from Eq. (4.50) is 105 meters. Hence, it is expected the pressure response 

at this distance not to be sufficiently impacted by thermal effects, allowing the 

application of the isothermal hypothesis.  

Figure 5.26 presents the simulated curves at 0.0 m, 100.0 m and 137.5 m. 

 

Figure 5.26: Log-Log Plot 

 

The green curve is the sandface pressure and the yellow curve is the response 

at 100.0 m, not sufficiently impacted by thermal effects. The red curve (137.5 m) 

shows a deviation from the sandface response and interpretation results may be 

compromised if the isothermal hypothesis is applied. Gauges placed farther present 

even deeper derivative valleys, as shown in the previous section. 

The result of 105 meters for Δ�ijµ successfully predicted this condition. It is 

noteworthy to state that the simplified solution in Eq. (4.52) resulted in a maximum 

distance of 113 meters. 
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5.4. 
Discussion on the Validity of the Model Solutions 

The proposed solutions assume single-phase flow of a slightly compressible 

fluid, where the fluid mass density in the wellbore is a function of temperature. 

Other fluid properties are treated as constants at their values computed at initial 

conditions. Consequently, the analytical solutions are not applicable under 

multiphase flow. 

Regarding wellbore configuration, solutions are designed to address the 

general case of a cased tubing completion. The model encompasses the resistance 

to heat flow offered by the fluid inside the tubing, tubing wall, fluids in the annulus, 

casing wall and cement. Moreover, additional resistances may be included, e.g., the 

resistance to heat flow caused by an intermediate casing. Yet, the model does not 

account for viscous dissipation effects, therefore the additional heating caused by 

these effects cannot be described. Besides, the model neglects axial conduction 

effects. 

The aim of this study is to investigate transient temperature and pressure 

measurements made within the wellbore at a given gauge depth in the context of 

transient testing in oil wells. That is to say, only single-phase-liquid flow occurs, 

producing and shut-in times are in the order of hours and flow rates range from 

hundreds to few thousands of m³/d. Under these conditions, the proposed analytical 

solutions were able to reproduce the non-isothermal simulator data with great 

accuracy. Therefore, the use of the proposed model for this investigation should be 

acceptable. 

The next chapter investigates thermal impacts on PTA results, where 

interpretation models are used to fit thermal-distorted data. 
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6 
Impacts on PTA Interpretation – Synthetic Case Studies 

This chapter evaluates impacts on PTA interpretations due to neglecting 

thermal effects in well tests under a non-isothermal condition. Chapter 5 verified 

the analytical solutions derived in this work by comparing them to the rigorous 

response of a commercial non-isothermal simulator, hence the simulator response 

will not be assessed in the case studies to be appraised.  

Case Study 1 investigates possible interpretation models for two curves 

presented in Example 3. Besides, the additional effect of pipe contraction is 

addressed. 

Case Study 2 reproduces a typical drill stem test (DST). It will be shown that 

a different wellbore configuration can cause a time-shift in the inflection of the 

pressure derivative curve. Additional analyses are performed to evaluate the 

sensitivity to the isobaric-thermal-expansion coefficient (#�) and to the preceding 

drawdown rate. 

 Case Study 3 investigates the necessary conditions for the occurrence of 

more than one inflection in pressure derivative curves. Additional analyses 

regarding the sensitivity to thermal-storage coefficients are also provided. 

Both constant and variable pipe-length configurations will be examined. The 

wellbore completions will be described in details in the following sections, since 

each case study comprises a different configuration.  

The conceptual model of an infinite-acting homogeneous reservoir with 

uniform thickness is adopted in all case studies, differing only in the effective oil 

flow capacity (kh). The schematic reservoir model is presented in Figure 6.1. 
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(a) (b) 

Figure 6.1: (a) Infinite-Acting Reservoir; (b) Homogeneous Matrix 

 

The dashed contour in Figure 6.1 (a) indicates the absence of reservoir 

boundaries and Figure 6.1 (b) illustrates the homogeneous matrix. 

The main objective of the case studies is to show how thermal-distorted data 

can affect interpretation results. 

 

6.1. 
Synthetic Case Study 1  

This case study makes use of the same input data used in Example 3. The 

simulated test sequence comprises 24 hours of production at a constant downhole 

rate of 1400 m³/d followed by a 48-hour buildup. Two gauges have been placed in 

the tubing string (Figure 6.2): 

 

Figure 6.2: Case Study 1 – Wellbore/Reservoir System 
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As mentioned in Chapter 3, perforations are assumed to be a point source. 

Therefore, the location of � = 0	at the top of the completed interval in Figure 6.2 is 

merely schematic. The field case study in Chapter 7 provides an approach to cope 

with finite intervals. 

First, the case study will evaluate the impact on interpretation results under 

the constant pipe-length configuration. Then, the variable length configuration will 

be addressed. 

 

6.1.1. 
Case Study 1: Constant Pipe-Length Configuration 

The interpreted data in this section are the same data presented in  

Figure 5.16 (a) and Figure 5.18 (a). Regarding the plot size, from this point on all 

log-log diagnostic plots present symmetrical axes. Like in Example 3, all deviations 

from the IARF isothermal dashed line are due to thermal effects.  

 

Gauge 1: 137.5 m 

 

Figure 6.3: Case Study 1 (137.5 m) – Gauge Data and Interpretation Model 

 

Figure 6.3 presents the thermal-distorted gauge data in yellow and the adopted 

interpretation model (black curve) used to fit the data. 
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The adopted model has the following parameters: 

• Homogeneous matrix; 

• Radial Composite Reservoir: 450,000 mD.m near the wellbore, 

followed by an increase in permeability yielding 750,000 mD.m at a 

distance of 230 meters from the well; 

• Presence of a flow barrier 800 meters away from the well. 

 

Figure 6.4 illustrates the resulting interpretation model. 

 

Figure 6.4: Case Study 1 (137.5 m) – Schematic Interpretation Model 

 

Impacts on a development plan could imply a change in the injector/producer 

strategy, in order to avoid the unreal flow barrier 800 m from the well, represented 

by the thick vertical line in Figure 6.4. The light brown color represents the near-

wellbore region and the dark brown color refers to the false increased permeability. 

Indeed, PTA interpretations carry an implicit non-uniqueness, i.e., this is one 

of the possible solutions that match well with the thermal-distorted data in Figure 

6.3. Nevertheless, the applied model is one of the simplest models that provides a 

good match. Other possible models would bring additional false heterogeneities. 

 

 

 

 

 

Flow Barrier 

(Distance: 800m)

kh = 750,000 mD.m

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 6. Impacts on PTA Interpretation – Synthetic Case Studies 115 

Gauge 2: 187.5 m 

 

Figure 6.5: Case Study 1 (187.5 m) – Gauge Data and Interpretation Model 

 

As expected, in this case the derivative valley reaches a deeper value. The 

model used to fit the data has the following parameters: 

• Homogeneous matrix; 

• Radial Composite Reservoir: 450,000.0 mD.m near the wellbore, 

followed by an increase in permeability yielding 1,215,000.0 mD.m 

at a distance of 220 meters from the well; 

• Presence of perpendicular faults 700 m and 4000 m meters away from 

the well. 

 

Figure 6.6 illustrates the resulting interpretation model. 

 

Figure 6.6: Case Study 1 (187.5 m) – Schematic Interpretation Model 
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In this case, the interpretation model is even more distant from reality. Instead 

of an infinite-acting reservoir, the interpreter found two perpendicular flow barriers, 

where the dark brown color refers to the false increase in permeability. 

Due to the aforementioned non-uniqueness feature, the same data in this case 

could be interpreted with a different model. In Figure 6.7, the double-porosity 

model (Warren and Root, 1963) is used. 

 

Gauge 2: 187.5 m (double-porosity model) 

 

Figure 6.7: Case Study 1 (187.5 m) – Gauge Data and Double-Porosity Model 

 

The double-porosity model in Figure 6.7 also provides a good match. Figure 

6.8 presents the heterogeneous fracture/matrix system assumed in double-porosity 

models. 

 

Figure 6.8: Heterogeneous Double-Porosity System (adapted from Warren and 

Root, 1963)  
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The system presented in Figure 6.8 completely fails to describe the real matrix 

system presented in Figure 6.1 (b), which is perfectly homogeneous. 

The double-porosity model divides the pore space into a matrix of lower 

transmissibility and a medium composed by fractures with high permeability. The 

model assumes that fluid flows to the wellbore through fractures and the matrix 

only feeds the fracture network. 

The model accounts for two additional parameters, omega and lambda. 

Omega is the storativity ratio, which is the fraction of the pore volume occupied by 

the fractures to the total interconnected pore volume. Lambda is the interporosity 

flow coefficient, which models the ability of the matrix to feed the fractures. 

Regarding pressure derivative data, the double-porosity response is similar to 

the resulting thermal impacted data of an infinite-acting homogeneous medium. It 

comprises a valley in the derivative, which intensity is a function of omega and the 

transition time is a function of lambda. 

The double-porosity model in Figure 6.7 yields an omega of 0.18, indicating 

that 18% of the volume is contained within fractures. The value of lambda depends 

on the system geometry and on the ratio of matrix permeability to fracture network 

permeability. The model in Figure 6.7 resulted in a lambda of 5.5E-8, which entails 

a rather low matrix permeability. 

Instead of a homogeneous high permeability reservoir, the interpretation 

resulted in a fracture dominated system, with a low matrix permeability. Impacts 

on waterflooding strategy could be severe, since breakthrough calculations would 

yield results distant from reality. Moreover, reserves estimates would also suffer a 

negative impact. 

 

6.1.2. 
Case Study 1: Variable Pipe-Length Configuration 

This section investigates additional impacts caused by tubing contraction 

during buildup, considering the packer in Figure 6.2 not to be a fixed point. It 

considers a tubing linear thermal expansion coefficient (;<�=) of 1.3E-5 K-1 and a 

free tubing length ( !) of 1000 meters to expand/contract affecting both gauges. 
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The analytical expression for change in tubing length is given by Eq. (4.21). 

At the end of the 48-hour buildup, the total tubing contraction was approximately 

0.21 m. The transient tubing contraction Δ (Δ0) is presented in Figure 6.9. 

 

Figure 6.9: Case Study 1 – Transient Tubing Contraction 

 

The transient change in pipe length is used in Eq. (4.20) to compute the 

transient impact on pressure due to tubing contraction	Δ'��¨8m�:, Δ0n. 

The next analyses show the additional tubing contraction effect on pressure 

derivative data. The blue curves are the complete solution, comprising the pipe-

contraction effect. 

 

Gauge 1: 137.5 m 

 

Figure 6.10: Case Study 1 (137.5 m) – Constant and Variable Pipe-Length 

Solutions 
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In Figure 6.10, the blue curve presents a deeper valley, further away from the 

IARF dashed line. Resulting impacts on the interpretation model presented in 

Figure 6.3 would entail a higher outer permeability and closer flow barriers. 

 

Gauge 2: 187.5 m 

 

Figure 6.11: Case Study 1 (187.5 m) – Constant and Variable Pipe-Length 

Solutions 

 

Like in the previous case, the pipe-contraction effect would indicate 

additional heterogeneities in the interpretation model, represented by the deeper 

derivative valley in the blue curve.  

 

6.2. 
Synthetic Case Study 2  

Case Study 2 investigates potential impacts on pressure derivative data caused 

by typical DST wellbore configurations. The adopted test string has an ID of 2.25”, 

an OD of 5” and a length of 1300 meters. Moreover, the annular fluid is brine. 

Additional analyses regarding sensitivity to the isobaric-thermal-expansion 

coefficient (#�) and drawdown rate magnitude are also addressed. 
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Some test strings are designed with gauge adapters placed below expansion 

joints, hence their locations are fixed. Conversely, some test strings may account 

for packers that compensate for string movement (Sidorova et al., 2014). Therefore, 

both constant and variable pipe-length solutions will be assessed. 

The bottom of the test string is usually placed near the perforations. In this 

case study, the distance from the producing horizon is 40 meters and the first gauge 

is located 40 meters above, i.e., 80 meters from the producing horizon. A second 

gauge is placed farther, at a distance of 200 meters. Figure 6.12 presents a schematic 

of the wellbore/reservoir system. 

 

Figure 6.12: Case Study 2 – Wellbore/Reservoir System 

 

The effective oil flow capacity is 270,000 mD.m and all other reservoir and 

fluid input data are presented in Table 5.1, Table 5.2, Table 5.5 and Table 5.6. 

Wellbore parameters for this case study are presented in Table 6.1. 

 

 

 

 

 

 

 

 

r
rw

∞ ∞

z = 0

zc = 40 m

Gauge 1 (80.0 m)

Gauge 2 (200.0 m)

G

G

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 6. Impacts on PTA Interpretation – Synthetic Case Studies 121 

Table 6.1: Wellbore Parameters for Case Study 2 

Property Value *� (m) 0.156 H�1i (J/m/h/K) 6.833E+3 *�� (m) 0.12224 *�� (m) 0.10839 *8� (m) 0.06350 *8� (m) 0.028575 Hj¨ (J/m/h/K) 2.229E+3 

Skin Factor 0 F (degree) 90° �� (m) 40.0  ! (m) 1300 ��� (dimensionless) 0 ��8 (dimensionless) 0 

 

For simplicity, the tubing length  ! is the same for both gauges. The simulated 

test sequence comprises 24 hours of production at a constant downhole rate of 1400 

m³/d followed by a 48-hour buildup. The transient tubing contraction during the 48-

hour buildup is presented in Figure 6.13. 

 

 Figure 6.13: Case Study 2 – Transient Tubing Contraction 

 

The total contraction was 0.29 m. The contraction profile is different from 

Case Study 1 (see Figure 6.9), due to a smaller pipe ID and to a higher annular fluid 

thermal conductivity. 
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It will be adopted a signal-to-noise ratio of 4.5 to compute Δ�ijµ from  

Eq. (4.50). For the constant pipe-length configuration, the value is 150 meters, 

hence it is expected Gauge 1 (80 m) not to be impacted by thermal effects and 

Gauge 2 (200 m) to present deviations from the IARF regime. For the variable pipe-

length configuration, the value is 50 meters, therefore it is expected both gauges to 

be impacted. 

The test string is close to perforations, therefore the parameter Δ0i� has been 

computed from Eq. (4.33) with test string properties, yielding the value of  

0.168 hours. 

 

Gauge 1: 80.0 m 

 

Figure 6.14: Case Study 2 (80.0 m) – Constant and Variable Pipe-Length 

Solutions 

 

In Figure 6.14, the yellow curve is the constant pipe-length solution and the 

blue curve comprises the additional effect of pipe contraction. The dashed line is 

the IARF isothermal response.  

As predicted by the results of	Δ�ijµ, fixed gauge data are not sufficiently 

impacted by thermal effects and variable pipe-length data suffered visible 

distortions. The maximum impact occurred at 0.173 hours for the blue curve, close 

to the expected value of 0.168 hours. 

A possible interpretation model for the blue curve is presented in Figure 6.15. 
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Figure 6.15: Case Study 2 (80.0 m) – Gauge Data and Interpretation Model 

 

The interpretation model (red curve) is a double-porosity reservoir, as 

described in the previous section. Parameters include an omega of 0.50 and a 

lambda of 1.1E-6. Instead of a high permeability homogeneous reservoir,  

thermal-distorted data have led to a fractured dominated system, where 50% of 

reserves are contained within the fracture network. Moreover, the matrix presents 

low permeability. As previously discussed, these false results could provide severe 

impacts on a field development plan. 

 

Gauge 2: 200.0 m 

 

Figure 6.16: Case Study 2 (200.0 m) – Constant and Variable Pipe-Length 

Solutions 

 

As predicted by the results of	Δ�ijµ, both data sets are affected by thermal 

effects at this depth. The maximum impact occurred at 0.173 hours in both curves, 

close to the expected value of 0.168 hours. 

A possible interpretation model for the blue curve is presented in Figure 6.17. 
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Figure 6.17: Case Study 2 (200.0 m) – Gauge Data and Interpretation Model 

 

Again, the chosen interpretation model (red curve) is a double-porosity 

reservoir. In this case, parameters include an omega of 0.18 and a lambda of  

1.1E-6. Note that lambda presented the same value as in the previous case. This 

condition was expected, because Δ0i� is the same for both gauges and lambda 

models the derivative curve transition time. 

Indeed, the interpretation models presented in this section could not find 

geological support in a real field test. Recalling the purpose of this chapter, the idea 

is to show how far from reality thermal effects can lead an interpreter to yield 

invalid conclusions. 

 

Sensitivity to Isobaric-Thermal-Expansion Coefficient (ôò) 
The following analysis investigates impacts of the isobaric-thermal-

expansion coefficient (#�) on pressure derivative curves. The parameter is present 

in both thermal mass density and pipe-contraction effects, providing a minor 

influence on the latter. 

The value of 1.11E-3 K-1 has been adopted for #� in the synthetic examples 

and changes of ±	20% shall be made in order to perform this investigation.  

Figure 6.18 presents three buildup curves, all computed from the variable pipe-

length solution at 200 m, preceded by a drawdown rate of 1400 m³/d. 
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Figure 6.18: Case Study 2 (200.0 m) – Sensitivity to βo 

 

The blue curve in Figure 6.18 is equal to the one shown in Figure 6.16. As 

predicted by Eq. (4.55), the lower the coefficient	#�, the better the signal-to-noise 

ratio (SNR). Additionally, the value of	Δ0i� did not change, as expected. 

The measured SNR for each curve is presented in Table 6.2. 

Table 6.2: βo vs SNR in Case Study 2 

ôò (K-1) 
Measured 

SNR 

Computed SNR 

(Analytical Solution in Eq. (4.55)) 

8.88E-4 2.01 1.92 

1.11E-3 1.74 1.66 

1.33E-3 1.53 1.47 

 

The minor differences are due to the assumptions adopted to derive Eq. (4.55).  

 

Sensitivity to Drawdown Rate 

The last feature to be analyzed is the preceding drawdown rate. Given a gauge 

depth and a desired SNR, the minimum rate can be determined. 

Assuming that a SNR of 4.5 is good enough to allow the application of the 

isothermal hypothesis, the minimum downhole rate for the variable pipe-length 

configuration at 200 meters is 3800 m³/d, computed from Eq. (4.53). 

 Figure 6.19 shows the rate-normalized comparison between the buildup 

curves preceded by the rates of 1400 m³/d and 3800 m³/d. 
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Figure 6.19: Case Study 2 (200.0 m) – Different Downhole Rates 

 

The deviation from the isothermal IARF dashed line is smaller for the rate of 

3800 m³/d. As for tubing contraction, this condition yielded a total change in length 

of 0.31 m, similar to the 0.29 m in the previous case. 

An important conclusion can be drawn from the analysis. The change in rate 

magnitude can be used in well test design and operations to identify whether 

pressure data are impacted by thermal effects. If the buildup pressure derivative is 

not sensitive to different preceding drawdown rates, then thermal effects should not 

be relevant. 

  

6.3. 
Synthetic Case Study 3  

This case study investigates the required conditions for the occurrence of two 

valleys in the pressure derivative curve. The assumptions for deriving Eq. (4.33) 

comprise similar pipe diameters for casing and tubing, as well as similar  

thermal-storage coefficients. Under these conditions, only one inflection occurs in 

the pressure derivative curve. 

In this case study, the wellbore is designed to provide three inflections in the 

derivative curve, i.e., two valleys. The tubing ID and OD are 2.25” and 5.0”, 

respectively. As for the production casing, values are 8.535” and 9.625”, 

respectively. Moreover, thermal-storage coefficients will have different values and 

the distance from the bottom of the test string to the producing horizon is 150 

meters.  Figure 6.20 presents a schematic of the wellbore/reservoir system for Case 

Study 3. 
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Figure 6.20: Case Study 3 – Wellbore/Reservoir System 

 

The reservoir effective oil flow capacity is 450,000 mD.m and all other 

reservoir and fluid input data are presented in Table 5.1, Table 5.2, Table 5.5 and 

Table 5.6. Wellbore parameters for this case study are presented in Table 6.3. 

Table 6.3: Wellbore Parameters for Case Study 3 

Property Value *� (m) 0.156 H�1i (J/m/h/K) 6.833E+3 *�� (m) 0.12224 *�� (m) 0.10839 *8� (m) 0.06350 *8� (m) 0.028575 Hj¨ (J/m/h/K) 2.229E+3 

Skin Factor 0 F (degree) 90° �� (m) 150.0  ! (m) 1500 ��� (dimensionless) 4.0 and 12.0 ��8 (dimensionless) 0.0 – 12.0 
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The first analysis considers ��� = 4.0 and a null value for	��8. The second 

analysis investigates the sensitivity to the parameter	��8. A third analysis 

investigates the impacts of high thermal-storage coefficients. 

The simulated test sequence comprises 24 hours of production at a constant 

downhole rate of 1400 m³/d followed by a 48-hour buildup. In this case study, the 

total tubing contraction was approximately 0.50 m. 

 Like in Case Study 2, both constant and variable pipe-length solutions will 

be assessed. 

 

Analysis 1: Two-Valley Pressure Derivative Curve 

The total thermal noise is the sum of three effects: fluid mass density variation 

in casing, fluid mass density variation in tubing and tubing contraction. Figure 6.21 

shows the transient behavior of each effect and the total thermal noise. 

 

Figure 6.21: Case Study 3 – Thermal Noise Separate Effects 
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The black curve in Figure 6.21 is the total thermal noise, i.e., the sum of the 

other three curves. The measured gauge data comprise the formation signal Δ'�� 

minus the black curve (see Eq. (4.19)). The resulting derivative curve is presented 

in Figure 6.22.  

 

Figure 6.22: Constant and Variable Pipe-Length Solutions 

 

The difference between the blue and yellow curves is the intensity of the first 

valley, due to tubing contraction. Note that the third inflection (second valley) is 

the same for both solutions. 

In this case study, the concept of a single time of maximum impact on 

pressure is no longer applicable, given the presence of more than one valley in the 

pressure derivative curve. 

In Figure 6.22, the elapsed times when inflections occur can be estimated 

from Eq. (4.31). 

Table 6.4: Shut-in Times 

Inflection 
Measured Shut-in 

Time (hours) 

Computed Time (hours) 

(Analytical Solution in Eq. (4.31)) 

1 0.17 0.17 

2 1.04 1.07 

3 9.04 7.31 

 

The assumption of a constant buildup-pressure derivative with respect to ln Δ0 
is responsible for the increasing error over time. Yet, for practical purposes, the 

error is not significant, due to the logarithmic scale. 
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Double-permeability models can be used to interpret pressure derivative data 

with more than one inflection. These models comprise even more heterogeneities 

than the double-porosity model described in Case Study 1, leading to interpretations 

even further from reality. 

 

Analysis 2: Sensitivity to Thermal-Storage Coefficient  

Thermal storage represents the capacity of the wellbore to store or release 

heat and its value depends on a series of thermal, dimensional and operational 

parameters. 

Figure 6.23 shows curves computed from the variable pipe-length solution 

with different values for the tubing thermal storage. 

 

Figure 6.23: Sensitivity to the Thermal-Storage Coefficient 

 

The greater the tubing thermal storage, the further in time the first inflection 

occurs. The second valley remains unchanged due to the fixed value of ���. 

 Figure 6.23 illustrates how far from reality thermal distorted data can affect 

pressure transient analysis. In the derivative curves, each change in slope could be 

interpreted as an additional false heterogeneity. Interpretation results could yield a 

model with several false geological features in the reservoir, which in this case is 

homogeneous infinite-acting. 

 

Analysis 3: High Thermal-Storage Wellbores 

In cases of high thermal storage, inflections in derivative curves are pushed 

to right even further in time, not making it possible to observe the return to the 
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initial IARF line during typical well-testing times. This condition may lead to the 

false interpretation of a continuous increase in reservoir flow capacity. 

To illustrate the effect, Figure 6.24 shows the constant pipe-length solution 

curve computed with thermal-storage coefficients of 12 for both tubing and casing. 

 

Figure 6.24: High Thermal-Storage Wellbore: Constant Pipe-Length Solution and 

Interpretation Model 

 

Inflections in the yellow curve at late times could easily be mistaken for the 

well-known tidal effect. The interpretation model in Figure 6.24 accounts for a 

linear increase in reservoir thickness in one direction only, yielding a final flow 

capacity 3 times the value near the wellbore. Figure 6.25 presents a schematic of 

the interpretation model. 

 

Figure 6.25: High Thermal-Storage Wellbore – Schematic Interpretation Model 

 

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100

P
re

s
s
u
re

 C
h
a

n
g
e

 a
n
d

 D
e

ri
va

ti
ve

 (
k
g

f/
c
m

²)

Shut-in Time (hours)

 IARF Isothermal Response

 Constant Pipe-Length Analytical Solution (this work)

 Interpretation Model

h3h

r∞ ∞

Completed Interval

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 6. Impacts on PTA Interpretation – Synthetic Case Studies 132 

The high thermal-storage condition particularly occurs when a buildup test is 

preceded by a variable surface-rate history. The preceding drawdown periods 

distort the  initial condition for this problem, which is the Earth temperature at	0 =0. This is the result of temperature superposition effects. Another operational 

feature that changes the capacity of the wellbore to store or release heat is the 

additional heating caused by viscous dissipation effects. 

 

6.4. 
Discussion on Results 

Thermal impacts on far-field parameter characterization can provide an 

unrealistic improvement on permeability and the identification of inexistent flow 

barriers. Moreover, the heat loss during buildup periods can make a homogeneous 

reservoir be wrongly interpreted as a double-porosity reservoir. 

Chapter 7 presents a field case study. It will be shown that thermal-storage 

coefficients can be used to cope with viscous dissipation and temperature 

superposition effects. 
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7 
Field Case Study 

This chapter presents a field case study. A conventional DST was conducted 

in a high productivity offshore vertical well with a complete suite of surface and 

downhole measurements. Early-time pressure transient analysis resulted in a near-

wellbore effective oil transmissibility in the order of 500,000 mD.m/cP and a skin 

factor close to zero. 

The well test was conducted prior to any production in the field, consisting of 

three producing periods, each followed by a buildup period. Fluid production above 

bubblepoint occurred in all producing periods. The minimum flowing pressure at 

the furthest gauge location was 200 kgf/cm² above the bubblepoint pressure. The 

well was shut-in downhole in the first and second buildup periods. 

Shown in Figure 7.1 is the log-log diagnostic plot of the first buildup. 

 

Figure 7.1: Field Case Study - Buildup 1 at Gauge 1 Log-Log Plot 

 

In Figure 7.1, under the isothermal hypothesis, interpretation of pressure-

transient data would possibly entail strong heterogeneities on far-field reservoir 

characterization. The objective of this case study is to evaluate potential thermal 
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impacts on the measured buildup pressure data and provide the real reservoir 

characterization.  

Figure 7.2 presents the schematic of the wellbore/reservoir system, where two 

gauges at different depths are placed in the test string.  

 

Figure 7.2: Field Case Study Schematic of the Wellbore/Reservoir System 

 

Besides the test string and the production casing, the wellbore comprises an 

intermediate casing. The expression for the overall heat-transfer coefficient in  

Eq. (3.5) has been adapted to account for this additional heat-flow resistance. 

Borehole and pipe dimensions are presented in Table 7.4. 

 The annular fluid is brine and regarding the first gauge, it is placed below the 

packer, being exposed only to the formation fluid. The packer provides a fixed point 

and both gauges are located below slip joints, which compensate for pipe 

movement. Hence, measured data are not exposed to pipe contraction effects during 

the buildup period. The data displayed in Figure 7.1 were acquired at  

Gauge 1. 

A production logging tool assessed the perforations during the third 

drawdown period. Figure 7.3 presents the production logging flow profile and the 

corresponding temperature curve. 
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Figure 7.3: Field Case Study - Production Logging Flow Profile 

 

In Figure 7.3, the flow profile indicates a relevant contribution to well 

productivity from the base of the completed interval. Moreover, the wellbore 

flowing temperature is dominated by the producing zone at the top of perforations. 

Therefore, the real problem can be viewed as a point-source problem coupled with 

a finite-perforated-interval problem. As mentioned before, a finite perforated 

interval is out of the scope of this work, hence to make use of the derived solutions, 

pressure and temperature assessments have to be addressed differently.  

Pressure data recorded at the gauges are exposed to the entire wellbore-fluid 

column, including thermal impacts within the 145 m perforated interval. As for 

temperature, data must be governed by the stronger signal from top of perforations. 

Hence, temperature data will be analyzed considering the producing horizon located 

at the main producing zone (25 meters below the top of perforations in Figure 7.3)  

and pressure analyses will account for the entire completed interval, assuming the 

producing horizon to be located at the base of perforations. 
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7.1. 
Thermal Effects on PTA  

The proposed analytical solution describes transient temperature changes 

along the wellbore and computes the impacts on buildup pressure at the gauges. 

The transient thermal noise comprises the description of changes in fluid mass 

density and change in pipe length over time and depth. The result is a transient 

pressure exerted by the wellbore-fluid column between the gauges and the 

producing horizon. 

The proposed solution will be evaluated under the same operational 

conditions of the field well test. Real data will be compared to the complete 

analytical solution presented in Eq. (4.19), discarding the term	Δ'��¨8 due to the 

fixed gauge locations shown in Figure 7.2.  

The test sequence is presented in Table 7.1. 

Table 7.1: Field Case Study Flow and Shut-in Periods 

Period Duration (hours) Oil Rate (std m³/d) 

Cleanup + DD-01 24.7 850 

BU-01 24.6 0 

DD-02 9.0 820 

BU-02 9.5 0 

DD-03 (Production Logging Job) 9.3 580 

BU-03 (Shut-in at Surface) 30.7 0 

 

In Eq. (4.19), the input formation signal Δ'��(Δ0) is defined by  Δ'��(Δ0) = '��m0� + Δ0n − '��m0�n. (7.1)

The pressure difference in Eq. (7.1) must account for pressure superposition 

effects. Therefore, the final flowing pressures '�� and the buildup pressures '�� 
will be computed by use of the well-known infinite-acting radial flow variable-rate 

expression 

'�(0) = '� − � 12	�I���ℎ �(� uln 0 + ln u4��E�*�T  v + ,v
+ùm(ú − (ú��nû

úü ulnm0 − 0ú��n + ln u4��E�*�T  v + ,v�	, 
(7.2)
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where (ú is the flow step between the elapsed times 0ú�� and 0ú,  and ý is the number 

of constant step changes in flow rate. 

 The additional input data to compute the proposed analytical solution are 

presented in the following tables. 

Table 7.2: Field Case Study Fluid Properties 

Property Oil 	� (m³/std m³) 1.47 
� (cm²/kgf) 1.10E-4 I� (cP) 1.30 H� (J/m/h/K) 5.832E+2 K�� 	(kg/m³) 768.4 #� (K-1) 9.200E-4 $%�� (K/(kgf/cm²)) -3.3172E-2 N� (K/(kgf/cm²)) 2.29294E-2 
��	(J/kg/K) 2274.90 

 

In Table 7.2, some fluid properties were obtained from the PVT analysis and 

other property values were estimated by use of CMG-STARS (2017) fluid models. 

Table 7.3: Field Case Study Reservoir Properties 

Property Value (�ℎ)� (mD.m) 615,000.0 M (fraction) 0.128 
h (cm²/kgf) 3.0E-5 +� (fraction) 0.189 �� (K/m) 0.03 
�h(J/m³/K) 2.366E+6 Hh (J/m/h/K) 8.100E+3 H1 (J/m/h/K) 8.100E+3 
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Table 7.4: Field Case Study Wellbore Parameters 

Property Value *�,�þ" (m) 0.2032 *�¨8,�� (intermediate casing) (m) 0.17780 *�¨8,�� (intermediate casing) (m) 0.15718 *�,�.�" (at reservoir) (m) 0.156 *�h�í,�� (production casing) (m) 0.12224 *�h�í,�� (production casing) (m) 0.10839 *8� (m) 0.065151 *8� (m) 0.048006 H�1i (J/m/h/K) 3.060E+3 Hj¨ (J/m/h/K) 2.229E+3 

Skin Factor 0 F (degree) 90° ����� (m) 206.9 �:� (m) 208.6 �: (m) 262.8 ��� (dimensionless) 0.5 – 1.7 ��8 (dimensionless) 3.0 

 

The parameter ����� is the distance from the bottom of the test string to the 

base of perforations. 

The periods to be analyzed are BU-01 and BU-03. The first analysis addresses 

BU-01 and investigates the response of both gauges. The second analysis 

investigates different producing times and rates by comparing BU-01 to BU-03 at 

Gauge 1. All analyses and comparisons are performed in the corresponding  

rate-normalized log-log diagnostic plots. 

 

Pressure Transient Analysis 1: BU-01 Data at Gauge 1 and Gauge 2 

Analysis 1 assesses BU-01 at two different depths. Figure 7.4 presents the 

log-log diagnostic plot of Gauge 1 data (in green) and the proposed analytical 

solution (in yellow). 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



Chapter 7. Field Case Study 139 

 

Figure 7.4: Field Pressure Data (BU-01 at Gauge 1) and Analytical Solution 

 

Early-time data are not impacted by any kind of thermal effect, a condition 

systematically observed in all analytical and numerical results presented in this 

work. Therefore, the IARF isothermal line has been set at the radial plateau 

identified between 0.01 – 0.1 hours. 

In Figure 7.4, both pressure derivative curves began to drop at approximately 

0.2 hours and reached a minimum value at approximately 3 hours, when the 

inflection occurred in both curves. After that, the return of both data sets towards 

the IARF line is also in good agreement. The proposed analytical solution presents 

a good match with the field gauge data in Figure 7.4. 

The adopted value for ��� was 0.5. In this case, ��8 is not relevant to 

calculations, since the gauge is located at the bottom of the test string (see Figure 

7.2). Conversely, ��8 plays an important role for Gauge 2 data. Figure 7.5 presents 

the same buildup period at Gauge 2, placed farther from perforations. 
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Figure 7.5: Field Pressure Data (BU-01 at Gauge 2) and Analytical Solution 

 

As expected, the farther the gauge, the more impacted by thermal effects are 

the measured data.  

As mentioned before, the analytical solution does not account for a friction 

model, thus it is not able to represent the additional pressure drop due to friction 

loss. This effect is evident in the field data pressure-change curve in Figure 7.5. 

Consequently, the impact of the additional heating due to viscous dissipation has 

altered the capacity of the wellbore to store and release heat, making it necessary to 

set	��8 at the value of 3.0 to reproduce Gauge 2 data.  The value of ��� was kept at 

0.5. 

The IARF isothermal line has been set at the same plateau of Figure 7.4. Apart 

from the total skin, the proposed analytical solution match well with field data. 

Moreover, at this depth the thermal noise overcame the formation signal between 3 

and 7 hours of shut-in time, providing negative values, which cannot be plotted on 

a log-log graph paper. This harsh condition has also been reproduced by the 

proposed analytical solution. 
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Pressure Transient Analysis 2: Gauge 1 Data during BU-01 and BU-03 

The second analysis compares BU-01 to BU-03 at Gauge 1 and evaluates the 

proposed analytical solution in both periods. The differences between the two 

buildup periods are listed as follows: 

1. In BU-03, the well was shut in at surface, thus it is expected the 

wellbore storage effect to be noticeable; 

2. DD-03 and BU-03 were preceded by a series of flow and shut-in 

periods. Hence, wellbore surroundings have been heated; 

3. DD-03 was shorter than DD-01 and the production rate was 32% 

lower (see Table 7.1). Therefore, thermal impacts on BU-03 

derivative should be more evident. 

 

Shown in Figure 7.6 is a comparison of BU-01 and BU-03 at Gauge 1. 

 

Figure 7.6: Field Pressure Data (BU-01 and BU-03 at Gauge 1) 

 

As expected, the wellbore storage effect is evident in BU-03 (red curve). 

Regarding thermal impacts, it is clear that BU-03 was more influenced due to the 

lower preceding flow rate and the shorter drawdown duration. 

BU-03 minimum derivative value occurred at approximately 4 hours, further 

in time when compared to BU-01. The preceding drawdown periods have heated 

the formation adjacent to the wellbore, causing a change in the capacity of the 
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wellbore to store and release heat. Therefore, the adopted value for the casing 

thermal-storage coefficient has been updated to 1.7.  

Figure 7.7 presents the proposed analytical solution (yellow curve) compared 

to Gauge 1 data during BU-03 (green curve). 

 

Figure 7.7: Field Pressure Data (BU-03 at Gauge 1) and Analytical Solution 

 

Apart from wellbore storage effects and from the inherent noise of shutting 

in the well at surface, the analytical model successfully reproduced the field data. 

 Under the given conditions, the thermal noise overcame the formation signal 

between 3 and 9 hours of shut-in time, providing negative values. Again, the 

proposed analytical solution successfully represented this harsh condition. 

 

7.2. 
Temperature Analyses  

Analyses will be performed by comparing buildup-temperature changes, 

defined by Eq. (3.58). Figure 7.8 shows a comparison of the proposed analytical 

solution (yellow curve) and Gauge 1 data during BU-01 (green curve). 
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Figure 7.8: Field Temperature Data (BU-01 at Gauge 1) and Analytical Solution 

 

Both early- and late-time matches are good. The intermediate-time mismatch 

is caused by afterflow and axial conduction effects in the wellbore, which retard the 

cooling response. Though not shown here, an increase in the thermal-storage 

coefficient yields a better match. 

Figure 7.9 presents Gauge 2 data. 

 

Figure 7.9: Field Temperature Data (BU-01 at Gauge 2) and Analytical Solution 

 

This is indeed an expected result. The mismatch is rooted in neglecting 

viscous dissipation effects. The over-heated gauge requires more time to approach 
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the constant value of the Earth temperature at this location. The other possible 

source of error stems from the neglect of axial conduction effects along the 

wellbore. Again, although not shown here, the assumption of a high thermal-storage 

condition can provide a better match, especially with late-time data. 

Mismatches on pressure data are less dramatic than in temperature data due 

to the integration procedure used for computing the former (see Eq. (B.11)). 

Fortunately, the required integration tends to smooth temperature-distribution 

particularities along the wellbore, thus the resulting pressure data are less 

influenced by local factors. 

 

7.3. 
Field Case Study Conclusions  

In light of the foregoing, the proposed analytical model successfully 

reproduced the field data at different depths and for different preceding drawdown 

rates and durations. Moreover, analyses showed that thermal-storage coefficients 

can be used to describe two phenomena: 

• The additional heating caused by the viscous dissipation effects, as 

shown in BU-01 at Gauge 2; 

• The effect of previous producing periods, which heat the wellbore 

surroundings, as shown in BU-03 at Gauge 1. 

 

Most important, the proposed solution revealed that the reservoir is 

dominated by an infinite-acting homogeneous behavior and mitigated the risk of 

incorporating false geological heterogeneities to the interpretation model. In 

particular, a double-porosity model could have been used to interpret the data if 

thermal effects were neglected. Less drastic than interpreting thermal-distorted 

data, but also unfortunate, one could have discarded the acquired data, due to the 

apparent limited value from a test-interpretation viewpoint.  

The proposed solution provided the correct far-field reservoir 

characterization, avoiding potential impacts on the geological model and on the 

field development plan. 
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8 
Conclusions and Final Remarks 

This work provided a new coupled transient-wellbore/reservoir thermal 

analytical model, consisting of a reservoir/casing/tubing combined system. The 

analytical solutions consider flow of a slightly compressible, single-phase fluid in 

a homogeneous infinite-acting reservoir, accounting for Joule-Thomson, adiabatic 

fluid-expansion, conduction and convection effects. The wellbore fluid mass 

density is modeled as a function of temperature and the wellbore-temperature 

gradient	�� ��⁄  is not a known input to solve the transient problem. 

Analytical solutions for thermal impacts on pressure are derived from the 

temperature model. Buildup pressure solutions are obtained for different wellbore 

completions, accounting for the change in pipe length due to temperature changes.  

Though some of the derived expressions are long, they encompass an intrinsic 

simplicity in that one can compute temperatures and pressures on a spreadsheet. 

Solutions are easily adaptable by simply modifying the input parameter values. 

Both temperature and pressure analytical solutions were verified through use 

of a commercial non-isothermal simulator and impacts on PTA interpretations were 

thoroughly investigated. This work shows that thermal effects can induce an 

infinite-acting homogeneous reservoir to be wrongly interpreted as a double-

porosity system. 

A field case study was presented and the proposed analytical model 

successfully reproduced the field data of a well undergoing a drill stem test subject 

to a strong non-isothermal condition. The proposed solution avoided potential 

impacts on the geological model by providing the correct reservoir characterization, 

adding value to the field development plan. 

This work provides the means to understand and interpret well tests under 

non-isothermal conditions, where inflections may occur in pressure derivative 

curves. The proposed analytical model mitigates the risk of interpreting thermal 

impacts on pressure as geological heterogeneities. The derived solutions should also 

prove useful for designing well tests. 
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8.1. 
Contributions of This Work 

The main contributions of this work are listed as follows: 

1. A new analytical buildup sandface-temperature solution that applies 

from early to late shut-in times (Chapter 2); 

2. New drawdown and buildup analytical transient-wellbore-

temperature solutions for flow in a cased tubing (Chapter 3); 

3. A new analytical expression for the transient change in pipe length 

due to temperature changes (Chapter 4); 

4. A new analytical solution for transient thermal impacts on buildup 

pressure in a cased tubing, accounting for tubing contraction effects 

(Chapter 4); 

5. Derivation of analytical and easy to compute metrics for determining 

the farthest gauge location under a non-isothermal condition and the 

shut-in time of maximum impact on pressure (Chapter 4); 

6. Successful validation of the proposed solutions and derived metrics  

through use of a commercial non-isothermal simulator (Chapter 5); 

7. A thorough investigation of thermal impacts on PTA interpretations, 

with special attention to the misuse of double-porosity models 

(Chapter 6); 

8. Use of the proposed model to appraise a real field case study. The 

proposed solutions successfully reproduced field-test data at different 

gauge depths and for different flowing rates (Chapter 7). 

 

The derived metrics and solutions combined with the drawdown sandface-

temperature solution provided by Onur and Cinar (2017a) comprise the proposed 

coupled reservoir/casing/tubing analytical model. The proposed solutions are fully 

analytical, requiring no iterative or numerical methods to be computed. 
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8.2. 
Future Work 

This work consisted of an effort to better understand both transient 

temperature and pressure behaviors in a coupled reservoir/casing/tubing system. To 

further extend the proposed model, there are important steps that deserve attention 

for future works, such as: 

1. Friction model. The proposed analytical model does not account for 

viscous pressure drop and thermal dissipation effects. Therefore, the 

next suggested step is to include a friction model in the transient 

wellbore energy and momentum balance; 

2. Finite perforated intervals. The proposed analytical model assumes 

perforations to be a point source. Although the adopted approach in 

the field case study was successful, the modeling of a finite completed 

interval should improve accuracy of results; 

3. Skin effect. The incorporation of skin effects will better describe the 

sandface-temperature changes in cases of damaged/stimulated wells; 

4. Variable surface-rate history. The proposed analytical model was 

derived for constant-volumetric-rate drawdown and buildup tests. 

Therefore, the modeling of variable-rate production histories will 

enable the incorporation of temperature superposition effects; 

5. Wellbore-fluid-flow model. The modeling of WBS and momentum 

effects will provide important generalizations to the proposed 

solutions; 

6. Layered heterogeneous reservoirs. Layered reservoirs present 

different permeabilities over depth, therefore the modeling of  

non-uniform flow distribution along perforations shall provide a 

significant generalization to the model; 

7. Water injection wells and gas wells. The modeling of injection tests 

and gas flow will provide additional generalizations to the model; 

8. Dimensionless approach. From a dimensionless perspective, the 

primary dimensionless parameters that affect the solutions should 

arise, possibly providing new insights. 
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A 
Adopted Unit System and Conversion Factors 

Table A.1: Adopted Unit System 

Quantity Name Unit 

Absolute Temperature æ 

Adiabatic-Expansion Coefficient æ/(��[/
W) 
Area W 

Energy � 
Joule-Thomson Coefficient æ/(��[/
W) 

Length W 

Liquid Rate W�/p 

Mass �� 

Mass Density ��/W� 

Permeability WZ 

Pressure ��[/
W 

Specific Heat Capacity �/��/æ 

Time ℎ 

Thermal Conductivity �/W/ℎ/æ 

Viscosity 
� 

Volume W� 

 

Table A.2: Conversion Factors 

Constant SI Oil Field Adopted Unit System �� 1.0 0.00026374 0.0003484 � 1/2§ 141.2 19.03 �� 1.0 1/24 1/24 

�� 1.0 6,894.8 ��'+X 98,066.5 ��(��[/
W) ���� 3/2®T/§ 11,322 4,778 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



B 
Derivation of Thermal Impacts on Buildup Wellbore 
Pressure 

B.1. 
Production-Casing Solution: Constant Pipe Length 

In this particular case, the expression for Δ'�½ (the subscript 
 refers to the 

production-casing solution) is obtained by the combination of Eqs. (3.41), (3.78) 

and (4.12). 

Δ'�½m�:, Δ0n = #�&�� sin Fo ÉΔ���m�, 0�n − T�r8j½<Õ½Δ�C(!D)Êp�Cq
! , (B.1)

where the expression for Δ�C(!D) is obtained from Eq. (3.59). Hence, the expression 

for Δ'�½ can be written as  

Δ'�½m�:, Δ0n = #�&�� sin Fo ÉΔ���m�, 0�nCq
!− T�r8j½<Õ½ �Δ���m�, 0�n + Δ���(0D)�Ê p�. (B.2)

The value of Δ���(0D) is obtained by evaluating Eq. (2.56) for a small Δ0  
(1 – 5 seconds). Eq. (B.2) can be rewritten as  

Δ'�½m�:, Δ0n = #�&�� sin Fo Δ���m�, 0�n(1 − T�r8j½<Õ½)p�Cq
!

− #�&�� sin Fo Δ���(0D)T�r8j½<Õ½p�Cq
! 	. 

(B.3)

In Eq. (B.3), the second integral in the RHS can be easily solved:  

Δ'�½m�:, Δ0n = #�&�� sin F (1 − T�r8j½<Õ½)o Δ���m�, 0�np�Cq
!− �: sin F #�&��Δ���(0D)T�r8j½<Õ½ . (B.4)

As for the integral of	Δ���m�, 0�n, it can be written as 

o Δ���m�, 0�np�Cq
! = o �Â(^^,�)È� m�, 0�n + Â(^^,�)m�, 0�n� p�,Cq

!  (B.5)

where Â(^^,�)È�  and Â(^^,�) are functions defined by Eqs. (3.42) and (3.43), 

respectively.  
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The integrals in Eq. (B.5) are definite integrals and can be easily solved. Let 

the corresponding of values of 	W(^^,�)È�  and 	W(^^,�) be defined by: 

W(^^,�)È� m�:, 0�n = o Â(^^,�)È� m�, 0�np�Cq
! , (B.6)

and 

W(^^,�)m�:, 0�n = o Â(^^,�)m�, 0�np�Cq
! . (B.7)

Following the same idea as in the temperature solution, W(^^,�)È� m�:, 0�n 
depends on the boundary condition and W(^^,�)m�:, 0�n does not. 

Before solving Eqs. (B.6) and (B.7), let the following simplification be made: 

Δ��� u0� − ���v~	Δ���m0�n. (B.8)

For typical well-testing operations, this assumption is valid after a few hours 

of producing time. The solution of Eq. (B.6) is given by W(^^,�)È� m�:, 0�n =
= Δ���m0�n "� �(1 − T�j½8�<¼½)
+ Θ u0� − �:��v (T�j½8�<¼½ − T�Cq<¼½)	, 

(B.9)

where Δ���m0�n is obtained by evaluating Eq. (2.22) at * = *�	and 0 = 0�.  

As for the value of	W(^^,�)m�:, 0�n: 
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W(^^,�)m�:, 0�n =
= Ò− 12 "�� ÐΘu0� − �:��v
× T�j½8�<¼½ �Ω u�m��0� − �:n "��
+ 2�m��0� − �:n "�� − 2T�mj½8��Cqn<¼½� + 2v
+ 2P "� em��0� − �:n "� − T�mj½8��Cqn<¼½� + 1g�
− eT�j½8�<¼½ uΩ �m��0� "�n + 2��0� "� − 2Tj½8�<¼½
+ 2� + 2P "�m��0� "� − Tj½8�<¼½ + 1nvgÑÓ
+ Ö�:T�j½8�<¼½2 "� uΩ �m2 − �: "�nTj½8�<¼½ − 2��0� "�
+ �: "� − 2� + 2P "�(Tj½8�<¼½ − 1)v
. 

(B.10)

The constant pipe-length production-casing solution is given by Eq. (4.14). 

 

B.2. 
Cased-Tubing Solution: Constant Pipe Length 

In this case, the expression for the buildup-pressure difference is obtained by 

the combination of Eqs. (3.51), (3.79) and (4.12). 

Δ'�Îm�:, Δ0n = #�&�� sin Fo ÉΔ���m�, 0�n − T�r8j½<Õ½Δ�C(!D)Êp�C½
!

+ #�&�� sin Fo ÉΔ���m�, 0�n − T�r8jÎ<ÕÎΔ�C(!D)Êp�Cq
C½ , 

(B.11)

where the subscript 0 refers to the cased-tubing solution.  

The first term in the RHS of Eq. (B.11) is the solution for Δ'�½ derived in the 

previous section evaluated at	� = �� and the expression for Δ�C(!D) is obtained from 

Eq. (3.59). The expression for Δ'�Î can be written as 
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Δ'�Îm�:, Δ0n = Δ'�½(�� , Δ0)
+ #�&�� sin F o ÉΔ���m�, 0�nCq

C½− T�r8jÎ<ÕÎ �Δ���m�, 0�n + Δ���(0D)�Ê p�. (B.12)

The value of Δ���(0D) is obtained by evaluating Eq. (2.56) for a small Δ0  
(1 – 5 seconds). Eq. (B.12) can be rewritten as Δ'�Îm�:, Δ0n = Δ'�½(�� , Δ0)

+ #�&�� sin F o Δ���m�, 0�n(1 − T�r8jÎ<ÕÎ)p�Cq
C½

− #�&�� sin Fo Δ���(0D)T�r8jÎ<ÕÎCq
C½ p�. 

(B.13)

In Eq. (B.13), the second integral can be easily solved: Δ'�Îm�:, Δ0n = Δ'�½(�� , Δ0)
+ #�&�� sin F (1 − T�r8jÎ<ÕÎ)o Δ���m�, 0�np�Cq

C½− #�&�� sin F Δ���(0D)T�r8jÎ<ÕÎm�: − ��n. (B.14)

Now the solution only depends on the integral of	Δ���m�, 0�n, which can be 

written in terms of the variable �8 defined by Eq. (3.47). 

o Δ���m�, 0�np�Cq
C½ = o Δ���m�8, 0�np�8Cq�C½

! =
= o �Â(^^,8)È� m�8, 0�n + Â(^^,8)m�8, 0�n� p�8Cq�C½

! , 
(B.15)

where Â(^^,8)È�  and Â(^^,8) are functions defined by Eqs. (3.52) and (3.57), 

respectively.  

The integrals in Eq. (B.15) are definite integrals and can be easily solved. Let 

the corresponding of values of 	W(^^,8)È�  and 	W(^^,8) be defined by: 

W(^^,8)È� �m�: − ��n, 0�� = o Â(^^,8)È� m�8, 0�np�8Cq�C½
! , (B.16)

and 

W(^^,8) �m�: − ��n, 0�� = o Â(^^,8)m�8, 0�np�8Cq�C½
! . (B.17)

Following the same idea as in the temperature solution, W(^^,8)È�  depends on 

the boundary condition and W(^^,8) does not.  
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The assumption made in Eq. (B.8) will also be adopted in this case and the 

calculation of 	W(^^,8) is analogous to the production-casing result, with the 

substitution of the variable � for the variable �8 and tubing properties: W(^^,8) �m�: − ��n, 0�� =
= �− 12 "8� �Θe0� − m�: − ��n�8 g T�jÎ8�<¼Î
× �Ωeu��80� − m�: − ��n�  "8v
+ 2u��80� − m�: − ��n�  "8v − 2Tu�jÎ8��mCq�C½n�<¼Îv
+ 2g + 2P "8
× Ð��80� − m�: − ��n�  "8 − Tu�jÎ8��mCq�C½n�<¼Îv + 1Ñ�
− eT�jÎ8�<¼Î uΩ �m�80� "8n + 2�80� "8 − 2TjÎ8�<¼Î
+ 2� + 2P "8m�80� "8 − TjÎ8�<¼Î + 1nvg��
+ Öm�: − ��nT�jÎ8�<¼Î2 "8 uΩ �m2 − m�: − ��n "8nTjÎ8�<¼Î
− 2�80� "8 + m�: − ��n "8 − 2�
+ 2P "8(TjÎ8�<¼Î − 1)v
. 

(B.18)

Regarding	W(^^,8)È� , it is convenient to split the expression into the following 

sum: W(^^,8)È� �m�: − ��n, 0�� =
= w�(^^,8)È� �m�: − ��n, 0�� +w(^^,8)È� �m�: − ��n, 0��
+w�(^^,8)È� �m�: − ��n, 0�� +w�(^^,8)È� �m�: − ��n, 0��, (B.19)

where 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



 159 

w�(^^,8)È� �m�: − ��n, 0�� = o [�(^^,8)È� m�8, 0�np�8Cq�C½
! , (B.20)

w(^^,8)È� �m�: − ��n, 0�� = o [(^^,8)È� m�8, 0�np�8Cq�C½
! , (B.21)

w�(^^,8)È� �m�: − ��n, 0�� = o [�(^^,8)È� m�8, 0�np�8Cq�C½
! , (B.22)

and 

w�(^^,8)È� �m�: − ��n, 0�� = o [�(^^,8)È� m�8, 0�np�8Cq�C½
! . (B.23)

The functions [�(^^,8)È� , [(^^,8)È� , [�(^^,8)È�  and [�(^^,8)È�  are defined by Eqs. (3.53) 

through (3.56).  

The corresponding values of		w�(^^,8)È� , w(^^,8)È� , w�(^^,8)È�  and w�(^^,8)È�  are 

given by, respectively, w�(^^,8)È� �m�: − ��n, 0�� =
= �8Ω "�m�� "� − �8 "8n �Θe0� − m�: − ��n�8 − ����g
× Tm�jÎ8�<¼Î�<¼½C½n �T�mCq�C½n<¼ÎDjÎ8�<¼ÎD<¼½C½�j½e8��mCq�C½njÎ g<¼½

× e�� e0� − m�: − ��n�8 g  "� + �� − �8�� e0� − m�: − ��n�8 g  "8g
+ TjÎ<¼ÎC½j½ m−�� − �� "��� + �8 "8��n	�
− �Θ u0� − ����v Tm�jÎ8�<¼Î�<¼½C½n
× eTjÎ8�<¼ÎD<¼½C½�j½8�<¼½m��0� "� + �� − �8��0� "8n
+ TjÎ<¼ÎC½j½ m−�� − �� "��� + �8 "8��n	g��, 

(B.24)
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w(^^,8)È� �m�: − ��n, 0�� =
= Ω "�  "8m�8 "8 − �� "�n�Θe0� − m�: − ��n�8 − ����g
× Te�jÎ8�<¼Î�j½e8��mCq�C½njÎ g<¼½�<¼½C½g

×�8 "8 �− "���TjÎ<¼ÎC½j½ Dj½e8��mCq�C½njÎ g<¼½

+ TjÎe8��mCq�C½njÎ g<¼ÎDj½e8��mCq�C½njÎ g<¼½
+ m "��� − 1nTjÎe8��mCq�C½njÎ g<¼ÎDC½<¼½�
− �� "�Tj½e8��mCq�C½njÎ g<¼½

× �TjÎe8��mCq�C½njÎ g<¼Î − TjÎ<¼ÎC½j½ ��
− �Tm�jÎ8�<¼Î�j½8�<¼½�<¼½C½nΘu0� − ����v
× Ð�8 "8 e− "���TjÎ<¼ÎC½j½ Dj½8�<¼½ + TjÎ8�<¼ÎDj½8�<¼½
+ m "��� − 1nTjÎ8�<¼ÎDC½<¼½g
− �� "�Tj½8�<¼½ eTjÎ8�<¼Î − TjÎ<¼ÎC½j½ gÑ��, 

(B.25)
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w�(^^,8)È� �m�: − ��n, 0�� =
= 1 "� "8m�8 "8 − �� "�n���

��Θe0� − m�: − ��n�8 − ����g

× Tm�jÎ8�<¼Î�<¼½C½n
��
��� "�m "�Δ���m0�n − Pn

× �TjÎe8��mCq�C½njÎ g<¼Î − TjÎ<¼ÎC½j½ �
+ �8 "8 �P −  "�Δ���m0�n� TejÎe8��mCq�C½njÎ g<¼Îg

+  "�Δ���m0�nTjÎ<¼ÎC½j½

− PTejÎe8��mCq�C½njÎ g<¼ÎDC½<¼½�j½e8��mCq�C½njÎ g<¼½g�
��
�

− �Θ u0� − ����v Tm�jÎ8�<¼Î�<¼½C½n
× ��� "�m "�Δ���m0�n − Pn eTjÎ8�<¼Î − TjÎ<¼ÎC½j½ g
+ �8 "8 Ð�P −  "�Δ���m0�n� TmjÎ8�<¼În
+  "�Δ���m0�nTjÎ<¼ÎC½j½

− PTmjÎ8�<¼ÎDC½<¼½�j½8�<¼½nÑ��
���
��, 

(B.26)

and 

 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



 162 

w�(^^,8)È� �m�: − ��n, 0�� =
= 1 "�  "8m�� "� − �8 "8n �Θu0� − �: − ���8 v
× T�jÎ8�<¼Î�j½�8��Cq�C½jÎ �<¼½ �−�8 "8 TjÎ�8��Cq�C½jÎ �<¼Î eTj½�8��Cq�C½jÎ �<¼½

− 1g m−Ω "��� + Ω + P "�n + �� "�
× Ð−m−Ω "��� + Ω + P "�nTjÎ�8��Cq�C½jÎ �<¼ÎDj½�8��Cq�C½jÎ �<¼½

− �8 u0� − �: − ���8 vΩ "8TjÎ�8��Cq�C½jÎ �<¼Î

+ Tj½�8��Cq�C½jÎ �<¼½m−Ω "��� +Ω + P "�nÑ
+ �8�� "� "8 Ð2m−Ω "��� + Ω + P "�n
× TjÎ�8��Cq�C½jÎ �<¼ÎDj½�8��Cq�C½jÎ �<¼½
+ TjÎ�8��Cq�C½jÎ �<¼Î uΩ u�8 u0� − �: − ���8 v  "8 +  "��� − 2v − P "�v
+  "� e−Tj½�8��Cq�C½jÎ �<¼½g (P − Ω��)Ñ�
− ÉT�jÎ8�<¼Î�j½8�<¼½
× u−�8 "8 TjÎ8�<¼Î(Tj½8�<¼½ − 1)m−Ω "��� + Ω + P "�n
+ �� "� �−m−Ω "��� + Ω + P "�nTjÎ8�<¼ÎDj½8�<¼½
− �80�Ω "8TjÎ8�<¼Î + Tj½8�<¼½m−Ω "��� + Ω + P "�n�
+ �8�� "� "8 �2m−Ω "��� + Ω + P "�nTjÎ8�<¼ÎDj½8�<¼½+ TjÎ8�<¼ÎmΩm�80� "8 +  "��� − 2n − P "�n
+  "�(−Tj½8�<¼½)(P − Ω��)�vÊ�. 

(B.27)
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The constant pipe-length cased-tubing solution is given by Eq. (4.16). 

 

B.3. 
Cased-Tubing Solution: Variable Pipe Length 

If the tubing string comprises expansion joints, the expression for the pressure 

exerted by the wellbore-fluid column between the gauge and the producing horizon 

during buildup is given by 

'�,jm�:, Δ0n = o &�(�, Δ0) sin F p�CqDr<(r8)
! ,	 (B.28)

where Δ (Δ0) is the change in tubing length over the shut-in time, which depends 

on temperature changes, and �: is the gauge location at the end of the flowing 

period. The subscript � refers to the adjustable gauge location. 

The expression for the fluid specific weight during buildup is given by &�(�, Δ0) = &�� − &��#�Δ���(�, Δ0) + &��#���� sin F.	 (B.29)

The combination of Eqs. (B.28) and (B.29) yields '�,jm�:, Δ0n = ��: + Δ (Δ0)� &�� sin F
− #�&�� sin F o Δ���(�, Δ0)p�CqDr<(r8)

!
+ ��: + Δ (Δ0)�2 &��#���(sinF). (B.30)

The pressure at the gauge during buildup is given by the combination of Eqs. 

(4.1) and (B.30) ':,jm�:, Δ0n = '��(Δ0) − ��: + Δ (Δ0)� sin F &��
+ #�&�� sin F o Δ���(�, Δ0)p�CqDr<(r8)

!
− ��: + Δ (Δ0)�2 &��#���(sinF). (B.31)

Eq. (B.31) is equal to Eq. (1.3) for the buildup period, where the integral of 

mass density has been converted into an integral of the wellbore-temperature 

distribution. The solution of Eq. (B.31) is the main objective of this work. 

Eq. (B.31) can be rearranged as 
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':,jm�:, Δ0n = '��(Δ0) − �:&�� sin F + #�&�� sin Fo Δ���(�, Δ0)p�Cq
!

− �:2 &��#���(sinF) − &��Δ (Δ0) sin F
+ #�&�� sin F o Δ���(�, Δ0)p�CqDr<(r8)

Cq
− �2�:Δ (Δ0) + Δ (Δ0)�2 &��#���(sin F). (B.32)

The first four terms in the RHS of Eq. (B.32) comprise the solution for the 

constant pipe-length configuration. It is interesting to note that the solution for the 

variable pipe-length configuration can be written as a function of the constant length 

solution. 

Let the impact on pressure due to the tubing contraction be defined by: Δ'��¨8m�:, Δ0n = &��Δ (Δ0) sin F
− #�&�� sin Fo Δ���(�, Δ0)p�CqDr<(r8)

Cq
+ Δ (Δ0) �2�: + Δ (Δ0)�2 &��#���(sinF). (B.33)

Then, Eq. (B.32) can be written as ':,jm�:, Δ0n = ':m�:, Δ0n − Δ'��¨8m�:, Δ0n,	 (B.34)

where ':m�:, Δ0n is the solution for the constant pipe-length configuration, given 

by Eq. (4.9). 

The expression for an adjustable gauge location in a cased tubing is obtained 

by combining Eqs. (4.8), (4.16) and (B.34): Δ':8,jm�:, Δ0n = Δ'��(Δ0) − Δ'�8m�:, Δ0n − Δ'��¨8m�:, Δ0n, (B.35)

where Δ'��(Δ0) is the sandface pressure and Δ'�Îm�:, Δ0n is the solution for the 

static-fluid pressure difference between a fixed gauge location and the producing 

horizon in a cased tubing, given by Eq. (4.17). 

Regarding Eq. (B.33), solving the integral is not an easy task due to the 

implicit relation between the upper limit and the integrand. Nevertheless, a 

reasonable simplification can be assumed, since the change in tubing length is small 

when compared to �:: �: + Δ (Δ0) ≈ �:. (B.36)

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



 165 

This assumption discards the need for iterative methods to solve the integral 

in Eq. (B.33). Therefore, the expression for Δ'��¨8 can be written as Δ'��¨8m�:, Δ0n = Δ (Δ0)m&�� sin F + &���:#���(sin F)n. (B.37)

In Eq. (B.37), the term Δ (Δ0) carries the necessary information to describe 

the transient change in pipe length and the term �: anchors the spatial location of 

the contraction. 

The next section provides an analytical expression for	Δ (Δ0). 
 

B.4. 
Change in Pipe Length: Tubing Contraction during Buildup 

Sidorova et al. (2014) provided a discrete solution for evaluating the effect of 

tubing contraction, where the wellbore is divided into discrete sections of equal 

length and the transient temperature profiles are obtained from a numerical 

simulator. 

Among other contributions, this work presents a continuous, fully analytical 

and easy to compute solution for the transient tubing contraction	Δ (Δ0). 
For a uniform heating during drawdown and a uniform cooling during 

buildup, the classical expression for change in tubing length can be written as 

(assuming negligible effect of pressure) Δ =  !;<�=Δ�jî1 , (B.38)

where  ! is the pipe length at the moment of shut-in between the gauge and a given 

fixed point, ;<�= is the tubing linear thermal expansion coefficient and Δ�jî1 is the 

average change in temperature. 

In this work, both heating and cooling effects are not uniform. Moreover, 

there is the need to describe the transient behavior, especially during the buildup 

period. In the integral form, the tubing contraction due to the cooling effect in a 

buildup period is given by  

Δ (Δ0) = ;<�=o ©���m�8, 0�n − ���(�8, Δ0)¯p�8<�
! 	, (B.39)

where ���m�8, 0�n is the wellbore-temperature distribution prior to shut-in and ���(�8, Δ0) is the temperature during buildup. The variable �8 is defined by Eq. 

(3.47). 

DBD
PUC-Rio - Certificação Digital Nº 1621761/CA



 166 

The expression in Eq. (B.39) is a continuous formulation of the discrete 

expression proposed by Sidorova et al. (2014). Furthermore, the integrand in  

Eq. (B.39) can be written in terms of the previously derived analytical solutions in 

this work, Δ��� and		Δ���: ���m�8, 0�n − ���(�8, Δ0) = Δ���m�8, 0�n − Δ���(�8, Δ0). (B.40)

Therefore, Eq. (B.39) can be rewritten as 

Δ (Δ0) = ;<�=o ©Δ���m�8, 0�n − Δ���(�8, Δ0)¯p�8<�
! 	. (B.41)

For the buildup zero-rate case, a similar integral has already been addressed 

in this work. Following the same steps used in Eqs. (B.11) through (B.14), the 

change in pipe length expressed in Eq. (B.41) can be written as 

Δ (Δ0) = ;<�= 	(1 − T�r8jÎ<ÕÎ)o Δ���m�8, 0�np�8<�
!− ;<�=Δ���(0D)T�r8jÎ<ÕÎ !. (B.42)

The definite integral in Eq. (B.42) is the same integral presented in Eq. (B.15), 

except for a different upper limit of integration. The solution of Eq. (B.42) is given 

by Δ (Δ0) = ;<�= 	(1 − T�r8jÎ<ÕÎ)× ©W(^^,8)m !, 0�n +W(^^,8)È� m !, 0�n¯− ;<�=Δ���(0D)T�r8jÎ<ÕÎ !,	 (B.43)

where the values of W(^^,8)È�  and W(^^,8) are obtained from Eqs. (B.18) and (B.19) 

by substituting the value of m�: − ��n for	 !.  

As mentioned before, the solution for Δ (Δ0) in Eq. (B.43) is fully analytical 

and continuous. Finally, the tubing contraction impact on pressure is given by the 

combination of Eqs. (B.37) and (B.43) Δ'��¨8m�:, Δ0n = m&�� sin F + &���:#���(sin F)n× Á;<�= 	(1 − T�r8jÎ<ÕÎ)©W(^^,8)m !, 0�n+W(^^,8)È� m !, 0�n¯ − ;<�=Δ���(0D)T�r8jÎ<ÕÎ !Ã	. (B.44)

The variable pipe-length cased-tubing solution is given by Eq. (4.22). 
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