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Prof. Marco Serpa Molinaro
Departamento de Informática — PUC-Rio
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Abstract

Pereira, Felipe de Albuquerque Mello; Laber, Eduardo Sany (advisor).
A Framework for Generating Binary Splits in Decision Trees.
Rio de Janeiro, 2018. 55p. Dissertação de Mestrado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

In this dissertation we propose a framework for designing splitting criteria

for handling multi-valued nominal attributes for decision trees. Criteria derived

from our framework can be implemented to run in polynomial time in the

number of classes and values, with theoretical guarantee of producing a split

that is close to the optimal one. We also present an experimental study, using

real datasets, where the running time and accuracy of the methods obtained

from the framework are evaluated.

Keywords
Decision Trees; Max-cut Problem; Approximation Algorithms;
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Resumo

Pereira, Felipe de Albuquerque Mello; Laber, Eduardo Sany. Um
Framework para Geração de Splits Binários em Árvores de
Decisão. Rio de Janeiro, 2018. 55p. Dissertação de Mestrado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Nesta dissertação é apresentado um framework para desenvolver critérios

de split para lidar com atributos nominais multi-valorados em árvores de

decisão. Critérios gerados por este framework podem ser implementados para

rodar em tempo polinomial no número de classes e valores, com garantia

teórica de produzir um split próximo do ótimo. Apresenta-se também um

estudo experimental, utilizando datasets reais, onde o tempo de execução e

acurácia de métodos oriundos do framework são avaliados.

Palavras-chave
Árvores de Decisão; Problema de Corte Máximo; Algoritmos Aproxima-

tivos;
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1
Introduction

Decision Trees and Random Forests are among the most popular models

for classification tasks. Decision Trees, specially small ones, are easy to inter-

pret, while Random Forests usually yield more accurate classifications. One

of the key issues in these methods is how to select an attribute to associate

with a node of the tree/forest. An important related issue is how to split the

attribute values once one is selected.

There is a number of papers discussing aspects related to attribute

selection, such as: how to design criteria to evaluate the quality of different

types of attributes; whether binary or multi-way splits shall be used; and how

to remove bias from splitting criteria. For recent surveys on this topic we refer

to Goethals & Rokach (2005), Loh (2014) and Barros et al. (2015).

Many criteria, with different properties, have been proposed to evaluate

the quality of different types of attributes, including continuous and categorical

ones. Among the most popular criteria, we have the Gini Gain and the

Information Gain (Breiman et al. (1984), Quinlan (2014)).

Despite the large body of work, we believe there are still questions to be

answered. One of them is to how to properly handle nominal attributes that

may assume a large number of values. Before explaining the reason behind

our statement, we would like to remark that this kind of attribute appears

naturally in some applications (e.g.: states of a country or letters from some

alphabet). In addition, they may arise as the result of aggregating attributes

that have few distinct values with the goal of capturing possible correlation

between them, as pointed out by Chou (1991). As an example, consider 5

binary attributes (e.g. medical tests) and a target binary variable that has

large probability of being positive if at least 3 out of the 5 binary tests are

positives. By aggregating the 5 binary variables we obtain a new attribute

with 25 = 32 values that captures this relation. If we used the 5 attributes

separately we would need 5 levels in the tree to be able to capture the relation

between them and the target class, thus incurring a large fragmentation of the

set of samples.

To properly face multi-valued nominal attributes we have to deal with

the computational time required to compute good splits. Our contribution,
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A Framework for Generating Binary Splits in Decision Trees 12

explained in the next section, is related to this issue.

A brute force search to compute the best binary split requires Ω(2n)

time, where n is the number of distinct values the attribute may assume. The

computational efficiency can be improved if a n-ary split is used rather than

a binary one. However, this may lead to a severe fragmentation of the sample

space, which is not desirable: the number of samples available for each of the

children of the split node may be small and, as a consequence, the underlying

classification tasks may become significantly more difficult. When the target

variable is binary, a family of impurity measures that include both the Gini

Gain and the Information Gain can be computed efficiently, as shown in the

influential monograph by Breiman et al Breiman et al. (1984). However, when

the number of classes k is larger than 2, most, if not all, of the available

exact solutions take exponential time in (n, k). The Twoing method, also from

Breiman et al. (1984), is an interesting case since its running time isO(2min{n,k})

rather than O(2n) while being equivalent to Gini Gain when k = 2.

When both n and k are large, in the sense that an exhaustive search

does not run in a reasonable time, one can rely on heuristics to compute a

good binary split. As an example, the GUIDE algorithm Loh (2009), the last

of a series of algorithms/developments designed by Loh and its contributors,

deals with a nominal variable X as follows: if k = 2 or n ≤ 11 the Gini

Index is computed; if k ≤ 11 and n > 20 a new variable X ′ with at most k

distinct values is created according to a certain rule and an exhaustive search

is performed over it; finally, if k > 11 or n ≤ 20, X is binarized and a Linear

Discriminant Analysis (LDA) is employed. These rules reflect the difficulty in

dealing with multi-valued nominal attributes. Other interesting heuristics are

the PC and PC-ext criteria, which calculate the principal component of the

class probability vectors and uses the order given by the vector projections

in this direction to look for splits. In general, the main drawback of using

heuristics is the lack of a theoretical guarantee about their behavior.

1.1
Our Contribution

Given this scenario, in Chapter 3 we propose a framework for designing

criteria with nice theoretical properties for evaluating the quality of multi-

valued nominal attributes. In general, finding the best binary partition ac-

cording to an impurity measure has been proved to be NP-complete in Laber

et al. (2018). Nonetheless, for the criteria generated according to our frame-

work, this can be done in polynomial time in both the number of values and

classes and have a theoretical guarantee that the split obtained is close to op-
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A Framework for Generating Binary Splits in Decision Trees 13

timal. The key idea consists of formulating the problem of finding the best

binary partition for a given attribute A as the problem of finding a cut with

maximum weight in a complete graph whose nodes are associated with the val-

ues that A may assume and the edges’ weights capture the benefit of putting

values in different partitions. The motivation behind the use of the max-cut

problem is the existence of efficient algorithms with approximation guarantee.

In particular the one proposed by Goemans & Williamson (1995), giving a

0.878 approximation, and a simple greedy algorithm with 0.5-approximation,

as shown in Gonzalez (2007).

We discuss two criteria that are derived from this framework: the first one

can be seen as a natural variation of the Gini Gain, while the second criterion

uses the χ2-test to set the edges’ weights. After discussing these criteria, we

show how to extend them to handle numeric attributes.

We also present a number of experiments that suggest that one of our

criteria is competitive, in the sense that yield good decision trees, with the

Twoing method, which is – as far as we know – the only well-established

criterion with binary splits that can be optimally computed for large n when

k > 2. However, in contrast with our methods, Twoing cannot handle datasets

that also have a large number of classes, since its time complexity is exponential

in the number of classes. Some criteria based on heuristics, such as the PC-ext,

Largest Class Alone and Hypercube Cover, are also part of the comparison. In

addition, the experiments also provide evidence of the potential of aggregating

attributes for improving the accuracy of decision trees.

1.2
Related Work

Many splitting criteria have been proposed to deal with continuous and

nominal attributes. Arguably, the Gini Gain—used by CART—and entropy-

based measures—such as the Information Gain, adopted by C4.5—are among

the most popular (Goethals & Rokach (2005); Loh (2014); Barros et al. (2015)).

There has been some investigation on methods to compute the best

split efficiently (Breiman et al. (1984); Chou (1991); Burshtein et al. (1992);

Coppersmith et al. (1999)). For the 2-class problem, Breiman et al. (1984)

proved a theorem which states that an optimal binary partition, for a certain

class of splitting criteria, can be determined in linear time on n, the number of

distinct values of the attributes, after ordering. The Gini Gain belongs to this

class. Both Chou (1991); Burshtein et al. (1992); Coppersmith et al. (1999)

generalize this theorem in different directions and show necessary conditions

that are satisfied by optimal partitions for a certain class of splitting criteria.
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These conditions, though useful to restrict the set of partitions that need to be

considered, do not yield a method that is efficient (polynomial time) for large

values of n and k. These papers also present heuristics, without approximation

guarantee, to obtain good splits. Another related result is a theorem from

Coppersmith et al. (1999) that guarantees that the optimum split can be found

by separating the class probability vectors by a hyperplane. This motivated the

creation of the PC criterion, as will be shown in the next chapter. Two other

existing heuristics are the SLIQ (Mehta et al. (1996) and the FlipFlop criterion

(Nádas et al. (1991)). While they execute in polynomial time, they have no

approximation guarantee in terms of the impurity of the optimal partition.

Moreover, they usually finds worse partitions than the PC criterion, as shown

in the experiments section of Coppersmith et al. (1999). Lastly, Laber et al.

(2018) presents two heuristics that have approximation guarantees for a class

of impurity measures: the Hypercube Cover and the Largest Class Alone. The

first has exponential running time on the number of classes and is similar to the

Twoing criterion, but has an approximation guarantee of 2 for every impurity

measure as defined in the paper. The second one, Largest Class Alone, runs

in quasilinear time on the number of values and linear time on the number

of classes. This criterion has an approximation guarantee of 2 for the Gini

impurity and 3 for the Entropy impurity.

In order to properly handle nominal attributes with a large number of

values, apart from efficiently computing good splits, it is important to prevent

bias in the attribute selection. Indeed, it is widely known that many splitting

criteria have bias toward attributes with a large number of values. There are

some proposals available to cope with this issue (Dobra & Gehrke (2001); Shih

(2004); Hothorn et al. (2006)). This topic, though relevant, is not the focus of

this dissertation.

1.3
Organization

In Chapter 2 we explain how decision trees are used for classification

problems and how they are constructed. We also present the main impurity

measures and splitting criteria used in the literature, together with their

execution-time complexity.

Chapter 3 contains the framework for generating splitting criteria that

run in polynomial time. Its relation with the Max-Cut problem and its

approximation algorithms are explained and some criteria obtained from this

framework are presented.

Later, in Chapters 4 and 5, we compare the proposed criteria and see how
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they perform in practice. In Chapter 4 we explore how the many heuristics used

to find splits with optimal impurity compare among themselves. This suggests

a couple of criteria that perform better and can be used when the number of

values and classes are large. In Chapter 5 we analyze these methods on real

datasets that contain attributes with large number of values and classes. This

analysis is done using different maximum depth allowed for the decision tree,

which is allows us to see the the advantages and shortcomings of each criterion.

Lastly, in Chapter 6 we present our study conclusions.
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2
Background

2.1
Decision Trees

Decision trees are trees where each internal node is associated with an

attribute and each of the edges leading out from it are associated with a subset

of this attribute’s values. Each leaf node is associated with a class. In order to

classify a sample, we start at the root of the tree and follow the edges given

by the sample attributes’ values. Once we get to a leaf node, we have found

the class prediction for this sample.

As an example, let’s look at the Titanic Survival dataset (Kaggle (2012)).

The Figure 2.1 shows the first 10 samples from the training dataset, where we

are trying to predict the value for the Survived field.

Figure 2.1: First ten samples from the Titanic Survival dataset.

A possible decision tree is the one given in the Figure 2.2. This tree

correctly classifies all the first 10 samples. For instance, since the passanger

with Id 1 is male and older than 9.5 years, the decision tree predicts him as

someone who did not survive.

The main theme of this dissertation is how to (quickly) create such trees,

specially when we have categorical attributes with a large number of values.
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Figure 2.2: Possible decision tree for the Titanic Survival dataset.

2.2
Notation

We adopt the following notation throughout the dissertation. Let S be

a set of N samples and C = {c1, . . . , ck} be the domain of the class label.

In addition, for an attribute A, we use A(s) to denote the value taken by

attribute A on sample s; we use V = {v1, . . . , vn} to denote the set of values

taken by A; Aij to refer to the number of samples from class cj for which A

takes value vi; Ni for the number of samples with value vi for attribute A and

Sj for the number of samples from class cj. Given a partition (L,R) of the

values V of an attribute A, we use SL and SR to denote the set of samples

in S that takes values in L and R, respectively, in attribute A. Furthermore,

we let pj = Sj/N and pij = Pr[C = cj|A = vi]. We observe that, assuming a

multinomial distribution for the samples classes with value vi, the estimator

of maximum likelihood for pij is Aij/Ni.

2.2.1
A Typical Algorithm for Inducing Decision Trees

Many of the decision tree inducers follow the structure of Algorithm

1. This algorithm has a few under-specified parts, namely the stopping and

splitting criteria.

The stopping criterion is used to avoid over-fitting the decision tree.
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Algorithm 1 CreateTree(S: set of samples, List A: list of attributes inform-
ation)

if S does not meet the stopping criterion then
for attribute A in List A do
sA = split of A given by a splitting criterion using I

end for
(L,R) = sA∗ that is best among all I(sA), according to the splitting
criterion
CreateTree(L)
CreateTree(R)

end if

Stopping criteria usually involve stopping when every sample has the same

class or when the number of samples is small. Another possibility sometimes

used is to skip an attribute when a statistical test indicates its contingency

table has almost no information—i.e., it is not statistically different from a

randomly generated one—, or in the obvious case where all the samples have

the same value. Finally, the splitting criteria will be the object of our studies

in the rest of this chapter.

2.3
Impurity Measures

Breiman et al. (1984) suggests that a natural family of splitting criteria

are the ones that select splits which have the smallest impurity according to

a certaing impurity measure. Therefore we will make impurity measures our

main object of study in this section, while splitting criteria will be studied in

the Section 2.4.

First, it is important to note that most impurity calculations on a nominal

attribute are done based on what is called a contingency table. It consists of

a n × k matrix where the ij-th entry corresponds to the number of samples

that have value i and belong to class j. We will assume that every decision

tree node has the contingency table pre-calculated for all nominal attributes,

which takes O(N) time for each attribute and cannot be avoided1. Therefore,

whenever we mention the time complexity for a decision tree constructing

algorithm/criterion, this cost will not be mentioned since it does not affect

their comparison.

The only thing left is to define what we mean by an impurity measure.

Breiman et al. (1984) defines a class of impurity measures that are natural in

this context.

1The only exception is the attribute used to split the parent node, which can be calculated
in O(n× k).
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Definition 1 (Impurity Measure Function) A function φ(p) is a node

impurity function iff

1. φ : [0, 1]→ R+;

2. φ has continous second derivatires;

3. φ(0) = φ(1) = 0;

4. φ(p) = φ(1− p) (φ is symmetric);

5. φ′′(p) < 0 for p ∈ (0, 1) (φ is concave).

Definition 2 (Node Impurity Measure) A node impurity measure I is a

function I : [0, 1]k → R given by

I(p) =
k∑
j=1

φ(pj),

where φ is a node impurity function.

The node impurity measure is frequently denoted by I(S), where S is a

set of samples. This indicates the impurity measure calculated on the vector

p = (c1/N, . . . , ck/N).

Definition 3 (Split Impurity Measure) A split impurity measure is the

impurity difference between the original node and its child nodes, weighted by

the fraction of samples in each node. For a binary partition (L,R) of the values

V of an attribute,

∆I(L,R) = I(S)− pL · I(SL)− pR · I(SR)

where pL and pR are equal to the ratio of the samples in L and R, respectively.

These impurity measures have the nice property that splitting V into

(L,R) always decreases the impurity, as also shown in Breiman et al. (1984).

Theorem 4 Given an impurity measure I and any partition of values V into

(L,R), we always have

∆I(L,R) ≥ 0

Moreover, equality happens iff the contingency table in both sides have the same

frequency distribution.
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Most splitting criteria are based on choosing the split with maximum

∆I(L,R).

Another interesting result proven in Breiman et al. (1984) is that, when

there are only 2 classes, we can find the partition with best impurity in linear

time after sorting.

Theorem 5 Let I be an impurity measure and suppose we only have two

classes c1 and c2. The best partition of the values V (that is, the one with

largest ∆I(L,R)) has the form

L = {vi : pi1 ≤ v}

R = {vi : pi1 > v},

for some value v.

The result above is used by many splitting criteria, as will be mentioned

in Section 2.4.

Now let’s present the two most common impurity measures found in the

literature. Both can be used to generate binary splits and, as a consequence,

binary decision trees.

Definition 6 The Gini impurity for a set of samples S is given by

Gini(S) =
k∑
i=1

pi(1− pi) = 1−
k∑
i=1

(pi)
2 (2-1)

Definition 7 The Entropy for a set of samples S is given by

Entropy(S) =
k∑
i=1

pi log

(
1

pi

)
= −

k∑
i=1

pi log(pi) (2-2)

2.4
Splitting Criteria

In this section we recall some well-known splitting criteria.

First note that, for numeric attributes, most criteria follow the same

algorithm to choose the best split: the values are ordered and the valid splits

have the form

L = {vi : vi ≤ v}

R = {vi : vi > v}
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for some chosen value v. This is because all the reasonable splits should preserve

and use the order structure.

The criteria evaluate the impurity of these splits and chooses the one

with the smallest impurity (which is, equivalently, the one with the largest

impurity gain ∆I). Since we only have to evaluate at a single value v between

each pair of consecutive values vi and vi+1, this procedure takes O(n log n)

time. Since this is polynomial and quite fast, its complexity is largely ignored

throughout this dissertation.

2.4.1
Gini Gain

The Gini Gain, ∆G, induced by a binary partition (L,R) of the set of

values V is given by

∆G(L,R) = Gini(S)− pLGini(SL)− pRGini(SR), (2-3)

where SL = {s ∈ S|A(s) ∈ L}, SR = {s ∈ S|A(s) ∈ R}, pL = |SL|/N and

pR = |SR|/N . Therefore, the largest the Gini Gain is, the better the partition.

To generate the partition with the largest gain, one can consider all 2n

binary values’ split and select the partition with maximum Gini Gain. For the

two-class problem this optimal partition can be computed in O(n log n) time

by using Theorem 5. Since we only need to test a single value of v that is

between each pair of consecutive values vi, vi+1, the time complexity follows.

For problems with more than two classes, however, there is no efficient

procedure with theoretical approximation guarantee to compute the Gini Gain

in subexponential time in n. Heuristics and approximation algorithms are

discussed in Section 2.5.

2.4.2
Twoing

The Twoing criterion for a binary partition (L,R) of the set of values V

uses the following impurity measure, which it tries to maximize:

0.25 · pL · pR ·

(
k∑
i=1

|piL − piR|

)2

where

piL =
|{s ∈ SL : s belongs to class ci}|

|SL|
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and

piR =
|{s ∈ SR : s belongs to class ci}|

|SR|
When the Twoing criterion is used to generate binary decision trees, the

binary partition with maximum twoing shall be selected at each node.

In Breiman et al. (1984) there is a theorem that states that the optimal

partition of Twoing can be found in a different way: by considering all

possibilities of partitioning the classes into two superclasses and solving the

2-class problem with Gini impurity on each of them, picking the best partition

overall. Therefore, by using Theorem 5, the best partition can be found in

O(min{n(k + log n)2k, 2n}) time. Lastly, we shall remark that, for the two-

class problem, the Twoing criterion and the Gini Gain compute the same

binary partitions.

2.4.3
Information Gain

The Information Gain, IG, induced by a binary partition (L,R) of the

set of values V is given by

IG(L,R) = Entropy(S)− pLEntropy(SL)− pREntropy(SR), (2-4)

where SL = {s ∈ S|A(s) ∈ L}, SR = {s ∈ S|A(s) ∈ R}, pL = |SL|/N and

pR = |SR|/N . Therefore, the largest the Information Gain is, the better the

partition.

This criterion works exactly the same as the Gini Gain, but replacing the

Gini impurity by the Entropy.

A related criterion is the Gain Ratio, where the Information Gain of an

attribute is normalized by that attribute’s potential information. This is used

as a way of decreasing the bias of the k-ary Information Gain criterion towards

attributes with larger number of values. Since we are only interested in binary

splits in this dissertation, we will not go into its details.

2.4.4
χ2-criterion

The χ2 is a popular criterion that was used in Mingers (1987). It is also

the first one shown here not based on impurity measures, and it generates

k-ary (instead of binary) splits. Is is mentioned here because of its relation to

the framework that will be presented in Chapter 3.

The χ2-criterion chooses the attribute A that maximizes
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n∑
i=1

k∑
j=1

(Aij − E[Aij])
2

E[Aij]
, (2-5)

where E[Aij] = Nipj.

2.4.5
Conditional Inference Trees

Conditional Inference Trees, by Hothorn et al. (2006), is a framework for

creating criteria that are free of bias on the number of values in an attribute,

particularly relevant for attributes with larger number of values.

It works by first choosing the best attribute to split at the current node

and then evaluating all possible binary splits using any given impurity measure,

picking the best one found.

To choose the attribute in which to split, first one has to calculate the

permutation test’s conditional expectation µ ∈ Rnk and covariance Σ ∈ Rnk×nk

of every attribute2. Then, in order to compare the attributes, we need to

calculate the p-value of a univariate test statistics c calculated on µ and Σ

of every attribute. The only exact form of doing this comparison is by using

the quadratic form

cquad(t, µ,Σ) = (t− µ)Σ+(t− µ)>,

which follows an asymptotic χ2 distribution with degrees of freedom given by

the rank of Σ. Since this involves the calculation of a pseudoinverse, which

has cubic complexity on the dimension of Σ, this criterion can be very time

consuming.

This method, although very complicated and quite slow, is employed by

the data mining community when accuracy counts for more than time spent

training3. Thus this criterion will be used in our experiments in Chapter 5 to

compare the different accuracies obtained when changing the splitting criterion

used to choose the attribute’s values split.

2.5
Heuristics for Splitting Decision Tree Nodes

As seen in the previous section, calculating the optimal binary split takes

exponential time in the number of values or classes. Therefore many heuristics

2Since the formulae are very complicated and will not be used throughout this disserta-
tion, they are ommited. The interested reader can obtain them in the section 3 of Hothorn
et al. (2006).

3Since this method does not have any bias when choosing which attribute to split, the
accuracy of these trees tend to be higher than the trees obtained by biased criteria.
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were created to construct decision trees in this situation. Some of the most

used ones as well as some recent ones proposed by Laber et al. (2018) are listed

below. All of them work with any impurity measure (e.g.: Gini or Entropy),

but some of them work best with just one of them. When this is the case, it

will be mentioned.

2.5.1
PC and PC-ext

These heuristics are based on the Principal Component of the contin-

gency table and were presented in Coppersmith et al. (1999). They are based

on a theorem that states that the optimal partition of values can be found

by separating the class probability vectors π(v) by a hyperplane, where the

vector v denotes the row associated with the value v in the contingency table

and π(v) = v/‖v‖1.

Theorem 8 Hyperplanes lemma Let I be an impurity measure. If (L,R) is

an optimal partition for the values V then there is a vector d ∈ Rk such that

d · π(v) < 0,∀v ∈ L

d · π(v) > 0,∀v ∈ R

where π(v) = v/‖v‖1.

In other words, in order to find the optimal partition we just need to

choose the right hyperplane. This motivates the PC criterion, which look at

the hyperplanes in Rk whose normal vector is the principal direction of the

attribute’s normalized contingency table.

In more details, one first calculates the class probability distribution of

every value, which is done by normalizing the contingency table rows to meas-

ure 1 in the sum norm. Then the values are grouped into “supervalues” where

all values in the same supervalue have the same class probability distribution.

Now the first principal component of these supervalues’ contingency table is

calculated. One then calculates the inner product of each class probability vec-

tor of the supervalues with the principal component and sort the supervalues

by it. Denote by v1, . . . , vn∗ the n∗ supervalues sorted in this manner and de-

note by p the first principal component. We then calculate the impurity gain

of all the supervalues’ splits of the form

L = {vi|vi · p ≤ t}

R = {vi|vi · p > t}
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where t is a chosen threshold. Once we find the supervalues split with the

largest impurity gain among them, we choose it and translate the supervalues

into original values to obtain a valid partition.

PC-ext is a simple extension of this algorithm, where instead of only

testing the supervalues splits given by the equations above, we also test

the splits given by exchanging the last supervalue on the left with the first

supervalue on the right (where first and last are given by the order after

calculating the inner product).

These procedures require O(k3) operations to find the principal compon-

ent and O(n) impurity calculations and inner products in the class probability

space.

2.5.2
SLIQ and SLIQ-ext

SLIQ was presented in Mehta et al. (1996) and it’s a very simple greedy

heuristic. Given an attribute, one starts with all the values going to the left

split, and none on the right split. We then choose a value to go from the left

to the right split. This value is the one that, when changing from the left to

the right sides, decreases the impurity (increases the impurity gain) the most.

This is repeated until there is no way of moving a value from the left to the

right and decreasing the impurity.

SLIQ-ext is a simple extension, where we keep changing values from the

left to the right until the left side is empty (that is, we move from the left to

the right even if that increases the impurity). Once again the value to move

is chosen in a greedy fashion. SLIQ-ext returns the values’ split seen that had

the lowest impurity.

Since Coppersmith et al. (1999) has experimental results that shows that

PC obtains better partitions than SLIQ in general, we will not use this criterion

in our experimental studies.

2.5.3
FlipFlop

The FlipFlop criterion, proposed in Nádas et al. (1991), uses the super-

class trick from Twoing iteratively in the classes and values, until it converges

to a solution.

Similarly to the SLIQ criterion, FlipFlop obtains worse results than PC

in practice, as shown in Coppersmith et al. (1999). Thus, we will not use this

criterion in our experimental studies. It is just mentioned here for completeness.
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2.5.4
Hypercube Cover

The Hypercube cover criterion works exactly the same as the Twoing

criterion except when it comes to the split impurity calculation. Instead of

calculating the impurity based on the two superclasses, Hypercube Cover

calculates it using the original k classes. This guarantees, for instance, that

the split impurity, when measured with respect to the original classes, is never

worse than that of Twoing. This method was first suggested in Laber et al.

(2018), together with its approximation guarantee of 2 for both the Gini and

Entropy impurities.

2.5.5
Largest Class Alone

This is a heuristic that, when using the Gini impurity, has an approx-

imation guarantee of 2 compared with the optimal partition found by Gini

Gain.

First one calculates the most frequent class and group the other classes

in a single superclass. One then applies the Gini Gain criterion on this two-

class problem. Since calculating the class frequencies can be done using the

contingency table, this heuristic takes O(N + nk + n log n) time in total.

It can also be used with the Information Gain impurity, instead of Gini

Gain, but its approximation guarantee increases to 3. These bounds are all

proved in Laber et al. (2018).

2.5.6
List Scheduling

This heuristic is very similarly to Largest Class Alone. First one calculates

the frequency of every class. Then, one groups the classes into 2 superclasses

as balanced as possible in terms of number of samples. Lastly the Information

Gain criterion is applied on this two-class problem.

Since finding the most balanced partition is NP-complete, we settle for

a List Scheduling algorithm to find a partition with a 4/3-approximation

guarantee to the optimal one. Since calculating the class frequencies can be

done using the contingency table and the List Scheduling algorithm is linear

in the number of classes, this takes O(N + nk + n log n) time in total.

This criterion is based on a result proved in Laber et al. (2018) which

states that, for the entropy impurity, the best form of grouping classes into

superclasses is by balancing them the most.
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3
Framework for Generating Splitting Criteria for Multi-valued
Attributes

First we recall some definitions and results for the Max-Cut problem.

These definitions will be used in the following section, when we define our

framework.

3.1
The Maximum Weighted Cut Problem

We recall some definitions from graph theory. A cut X in a weighted

graph G = (V,E) is a subset of vertices of V . The weight of a cut X, denoted

here by w(X), is the sum of the weights of the edges that have one endpoint

in X and the other one in V −X.

The problem of computing the cut X∗ with maximum weight in a graph

with non-negative weights is NP-Hard. However, there are good approxim-

ation algorithms available. A remarkable one is the randomized algorithm

proposed in Goemans & Williamson (1995) that relies on a formulation of

the max-cut problem via semidefinite programming (SDP). This algorithm,

denoted throughout this dissertation by GW, returns a cut X that satisfies

E[w(X)] ≥ 0.878w(X∗). It involves solving an SDP on the graph weights mat-

rix, calculating the Cholesky decomposition of it and then generating a random

partition of the values based on the inner product of the decomposition column

vectors with a randomly generated vector on the sphere of dimension n. As

solving such an SDP takes O(n4) arithmetic operations (see Navascues et al.

(2009)) and calculating the Cholesky decomposition takes O(n3) operations,

the time complexity is high but polynomial.

Another possibility to solve the Max-Cut problem is by using the

GreedyCut algorithm, presented in Algorithm 2. It obtains a cut X such that

w(X) ≥ 0.5w(X∗), as proved in Sahni & Gonzalez (1976). The algorithm starts

with two empty sets X and X ′. Then, it scans the nodes and assigns each of

them to the set that provides the maximum improvement on the weight of

the current cut (ties are broken arbitrarily). Is it easy to see that the time

complexity of this greedy algorithm is O(n2).

The solutions obtained by both GW and GreedyCut can be improved
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Algorithm 2 GreedyCut(V : set of nodes)

X ← ∅;X ′ ← ∅
for j = 1, .., n do

If ∑
v∈X

w(vi, v) >
∑

v∈X′−V

w(vi, v)

add vi to X ′ Else add vi to X
end for
Return X and X ′

Algorithm 3 LocalSearch(X, X ′): set of nodes

label : loop start
for i = 1, ..., n do

if switching vi’s side improves cut weight then
switch vi and update cut weight, X, X ′

goto loop start
end if

end for
for pair (vi, vj) ∈ X ×X ′ do

if switching vi and vj improves cut weight then
switch vi and vj, update cut weight, X, X ′

goto loop start
end if

end for
Return X, X ′

via a local search. In its simplest version, it moves a node from one group to

the other while some improvement on the cut weight is possible. Although this

algorithm is not polynomial in the worst case, it has polynomial behavior in

the smoothed analysis framework (see Angel et al. (2017)). In addition, it is

always possible to set a limit on the number of moves or only consider moves

that improve the cut by more than a certain threshold ε. A more refined version

allows exchanging a pair of nodes as long as the weight of the cut is improved.

In our experiments this is the version we use, as presented in Algorithm 3.

3.2
A Framework for Generating Splitting Criteria

In this section we explain our approach to building binary splitting

criteria for multi-valued nominal attributes.

Let A be a nominal attribute that takes values in the domain V =

{v1, . . . , vn}. Our framework to produce a splitting criterion I consists of three

steps:

1. Create a complete graph G = (V,E) with n vertexes.
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2. Assign a non-negative weight wij to the edge that connects vi to vj. This

value shall reflect the benefit of putting vi and vj in different partitions.

Different definitions of wij yield to different criteria, as we explain further.

3. Ideally, the value of the criterion I for attribute A is the weight of the cut

with maximum weight in G. However, this is not a reasonable possibility

for large n since, as mentioned before, the problem of computing the

cut X∗ with maximum weight in a graph with non-negative weights is

NP-Hard. Thus, the value of criterion I is given by the weight of the

cut obtained by some algorithm, with approximation guarantee, for the

maximum cut problem in G.

What distinguishes the criteria generated by our framework is how the

weights of the edges are set and what method is employed to compute the cut

on graph G. Here, we discuss two ways to set the weights: the first one yields

to a criterion that are related with the Gini Gain, while the second is built

upon some given splitting criterion that works well for binary attributes.

3.2.1
The Squared Gini Criterion

Here, we discuss how to set the weights so that we obtain a criterion that

can be seen as a variation of the Gini Gain discussed in Section 6.

In fact, Lemma 9 below show that it is possible to define the weights of

the edges so that

w(SL) = Gini(S)− p2L ·Gini(SL)− p2R ·Gini(SR) (3-1)

for every partition (L,R) of V .

Note that the weight of the cut SL in the above identity is similar to the

expression for the Gini Gain given by equation (2-3). The difference is that pL

and pR are replaced with p2L and p2R, respectively. Because of the squares, this

new criterion tends to favor more balanced partitions.

For the proof of Lemma 9, recall that Aix is the number of samples of

class x that have value vi, and that C is used to denote the set of classes.

Lemma 9 For every i, j, with i 6= j and i, j ∈ {1, . . . , n}, let

wij =
2
∑

x,y∈C
x 6=y

AixAjy

N2
(3-2)

Then, for every partition (L,R) of V we have

w(SL) = Gini(S)− p2L ·Gini(SL)− p2R ·Gini(SR)
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Proof : Let Sx,L and Sy,R be the number of samples of classes x and y in

groups L and R, respectively. Moreover, let NL and NR be the number of

samples in L and R, respectively. It follows from equation (2-1) that

N2Gini(S) = N2 −
k∑
x=1

(Sx,L + Sx,R)2

N2
LGini(SL) = N2

L −
k∑
x=1

S2
x,L

and

N2
RGini(SR) = N2

R −
k∑
x=1

S2
x,L.

Since N = (NL +NR) it follows that

N2Gini(S)−N2
LGini(SL)−N2

RGini(SR) =

2NLNR − 2
∑
x∈C

Sx,LSx,R =

2
∑
x∈C

Sx,L
∑
x∈C

Sx,R − 2
∑
x∈C

Sx,LSx,R =

2
∑
x 6=y

x,y∈C

Sx,LSy,R = 2
∑
x 6=y

x,y∈C

(∑
i∈L

∑
j∈R

AixAjy

)
=

N2
∑
i∈L

∑
j∈R

wij = N2w(SL)

Dividing the first term and the last term by N2 in the above expression and,

using NL = pL ·N and NR = pR ·N , we establish the lemma. �

A practical observation is that one can define the edges without the 2/N2

term in equation 3-2 and find the same maximum cut, since this constant

appears in all edges weights.

It is worth mentioning that symmetric misclassification costs can be

easily introduced in this case. In fact, let mix(x, y) be the cost of mixing

samples from classes x and y. We can define

wij =
∑
x,y∈C
x 6=y

mix(x, y)pixpjy.

This measure favors the separation of the classes that incur a large cost in the

case they are mixed.
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Another natural question is whether the maximum weighted cut problem,

which is NP-complete in general, is not easier for the case where the weights

are set by equation 3-2. The answer is no, as proved in the theorem below.

Theorem 10 Finding the maximum weighted cut in a complete graph whose

weights are set by equation 3-2 is NP-complete.

Proof : The idea is to show a reduction from the NP-complete problem

PARTITION using the fact that, for some specific instances of our problem,

the optimal partition is the most balanced one.

Recall that, in the PARTITION problem, we are given a multiset of

integers and want to decide whether it can be partitioned into two multisets

with the same sum of elements. Consider an instance given by a multiset

U = {u1, . . . , uk} of integers. Create an instance of our decision tree problem

as follows: for each ui ∈ U add a value vi whose row in the contingency table

is given by uiei. In other words, in this instance every value has a single class

and every class appears for a single value.

Without loss of generality, we can ignore the 2/N2 factors in equation 3-

2. Hence every edge wij in the associated Squared Gini graph will have weight

equal to uiuj. Therefore any cut partitioning V into (L,R) will have value

equal to

cut(L,R) =
( ∑
i|vi∈L

ui

)
·
( ∑
i|vi∈R

ui

)
Note that this formula is maximized when the two terms are as close as

possible, i.e., the two partition sides are as balanced as possible. Thus, if we can

find a polynomial time algorithm that finds the best partition of this instance’s

values, we can solve the associated PARTITION problem in polynomial time.

This concludes the reduction. �

3.2.2
Setting weights according to other splitting criteria

Our second way of defining the weights makes use of some given splitting

criterion for binary nominal attributes. Such criterion is used to measure the

quality of separating samples with value vi from those with value vj, for each i

and j, and, thus, defining the edges’ weights. Here, we investigate the criterion

obtained by defining wij as the value of the χ2-test for the attribute A when

evaluated over the restricted dataset that contains only the samples of S with

values vi and vj:

wij =
k∑
`=1

(Ai` − E[Ai`])
2

E[Ai`]
+

k∑
`=1

(Aj` − E[Aj`])
2

E[Aj`]
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where E[Ai`] = Nip` and E[Aj`] = Njp`.

In order to reduce the bias towards attributes with many values, we

divide wij by n − 1, for every pair (i, j). We make this adjustment because

each value contributes to the weight of n− 1 edges.

We shall remark that, although not explored in this work, other criteria

such as Information Gain or Gini Index could be used, instead of the χ2-test,

to set the weights.

3.2.3
Example

Let us assume we are using the Squared Gini criterion on a dataset with

a single attribute (the marital status) and we try to predict the gender of a

sample. The contingency table and associated Squared Gini graph are given

in Figure 3.1.

As an illustration of the calculation of the edges weights, we show below

how they are done for the Single-Married edge. We number the values and

classes in the order shown in the contingency table in Figure 3.1. In particular,

Single and Married are values number 1 and 2, respectively; while Male and

Female are classes number 1 and 2 respectively. Thus

w12 =
2

N2

∑
x,y∈C
x 6=y

A1xA2y =
2

(237)2
(18 · 30 + 20 · 29) = 0.0399

Since this example is small (there are only 7 non-empty distinct cuts),

we can run through all the possible cuts and see that the one shown in red is

actually the maximum one. In larger examples we need to use approximated

algorithms such as the one mentioned before, since the number of possible cuts

grows exponentially with the number of nodes/values.

3.2.4
Handling Numeric Attributes

We observe that criteria from our framework can handle a numeric

attribute A with t distinct values v1, . . . , vt by considering it as collection of

t − 1 binary attributes, where the j-th attribute, Aj, splits the samples into

the groups {s|A(s) ≤ vj} and {s|A(s) > vj}. The split obtained by criterion

I on a numeric attribute A matches the split of the best attribute among

A1, . . . , At−1, according to I.
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Figure 3.1: Contingency table, associated Squared Gini graph and maximum
cut.
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4
Experiments on Splits with Reduced Impurity

In this chapter we compare the ability of different heuristics in finding

the values’ split with lowest impurity. We are interested in choosing what

heuristic/criterion to use when the exact ones don’t run in reasonable time. In

the next chapter the performance of the best heuristics will be compared on

real datasets against Twoing and criteria generated from our framework. Since

here we will compare the impurity of the split yielded by the different criteria,

we will not be able to include any criteria from our framework in the analysis,

since they don’t use the Gini nor the Entropy impurity measures.

Our experiments are very similar to those proposed in Coppersmith

et al. (1999) except for a few details. All experiments are Monte Carlo

simulations with 10,000 runs, each using a randomly-generated contingency

table for the given number of values n and classes k. Each table was created

by uniformly picking a number in {0, . . . , 7} for every entry. This guarantees a

substantial probability of a row/column having some zero frequencies, which is

common in practice. Differing from Coppersmith et al. (1999), if all the entries

corresponding to a value or a class are zero, we re-generate the contingency

table, otherwise the number of actual values and classes would not match

n and k. We evaluated Hypercube Cover, PC-ext, Largest Class Alone and

List Scheduling for both the Gini and Entropy impurities. Note that we don’t

evaluate Twoing because the split selected by Hypercube Cover is always purer

by construction. Moreover, it is also more natural, since we are measuring the

performance of these criteria on the k-class impurity.

Tables 4.1 and 4.2 show, for different values of n and k, the percentage

of times that each criterion found the best Gini and Entropy impurities,

respectively. Note that the percentages do not necessarily sum exactly 100%

since there were ties. In these tables we only show results for k ≤ 9 because for

larger values of k Hypercube Cover becomes non-practical due to its running

time. In addition, we do not present results for small values of n because in

this case the optimal partition can be found quickly by testing all possible

partitions, so that there is no motivation for heuristics.

In general, we observe an advantage for Hypercube Cover with both

impurities, being more clear for the Entropy, followed by PC-ext. This suggests
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n k HcC PC-ext LCA LS

12

3 97.5 91.2 42.8 42.8
5 99.3 88.0 19.1 17.8
7 99.9 86.6 11.5 10.7
9 100 85.0 8.5 8.4

25

3 78.2 76.2 26.1 26.1
5 72.7 67.6 5.7 4.7
7 51.3 47.1 1.8 1.4
9 52.0 46.9 1.0 0.9

50

3 50.5 43.7 10.7 10.7
5 49.7 46.9 2.6 1.5
7 49.3 49.2 1.1 0.5
9 50.6 48.7 0.5 0.2

Table 4.1: Percentage of times each criterion finds the smallest Gini impurity,
compared among themselves.

n k HcC PC-ext LCA LS

12

3 98.7 80.3 33.5 33.5
5 99.6 74.2 13.6 15.3
7 100 73.2 8.3 10.1
9 100 72.4 6.8 8.0

25

3 87.7 57.1 20.2 20.2
5 84.7 45.9 5.1 2.8
7 55.2 43.0 1.8 1.6
9 55.2 43.7 0.9 1.0

50

3 54.7 38.9 10.4 10.4
5 57.0 39.0 3.3 1.3
7 57.2 41.1 1.4 0.5
9 57.1 41.8 0.9 0.3

Table 4.2: Percentage of times each criterion finds the smallest Entropy
impurity, compared among themselves.

that the Largest Class Alone and List Scheduling heuristics are not competitive

with them in terms of split impurity found.

Another possible comparison between them is to see what happens

when Hypercube Cover and PC-ext find different partitions. To measure this

difference, let us define the relative excess (in percentage) of a partition P w.r.t.

a partition Q as 100 × (I(P )/I(Q) − 1). The results of this measurement are

shown in Tables 4.3 and 4.4. For the Gini impurity (Table 4.3), we can observe

that Hypercube Cover finds partitions closer to the optimal than PC-ext. This

behavior is even stronger for the Entropy impurity (Table 4.4), where both

the average and maximum relative excess of Hypercube Cover over PC-ext is

much smaller than PC-ext’s over Hypercube Cover. These numbers suggest

that the risk of finding a “bad” partition is smaller when Hypercube Cover is
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n k
HcC excess over PC-ext PC-ext excess over HcC
Average Max Average Max

12

3 0.15 0.97 0.37 2.36
5 0.06 0.22 0.14 0.98
7 0.02 0.05 0.08 0.49
9 — — 0.05 0.36

25

3 0.14 0.83 0.24 1.72
5 0.05 0.29 0.1 0.84
7 0.32 1.84 0.32 1.62
9 0.19 1.06 0.2 1.16

50

3 1.35 7.27 1.37 8.66
5 0.39 2.02 0.38 2.1
7 0.19 0.95 0.18 1.11
9 0.11 0.62 0.11 0.53

Table 4.3: Relative excess impurity, in percentage, for experiments where Hy-
percube Cover and PC-ext found different partitions using the Gini impurity.

used, specially for the Entropy impurity.

Lastly, we note that, due to Largest Class Alone and List Scheduling

running times, they might be used when both n and k are very large and

speed is an issue. When n = 200 and k = 100, using a single core, they are

almost 50 times faster than PC-ext, with the latter using 8 cores. In addition,

they could be used together with PC-ext, incurring a negligible overhead, to

guarantee that the ratio between the impurity of the partition found and the

optimal one is bounded.

Taking into account these experiments, those reported in Coppersmith et

al. (1999) and the theoretical properties of the available algorithms, Table 4.5

suggests guidelines on which criterion to use to solve the problem of finding the

binary partition of minimum impurity in practical situation. Of course small,

medium and large depend on the available hardware and the time one accepts

to wait for training/testing classification models. In the next chapter we will

analyze if this behavior is consistent with what we see in practice.
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n k
HcC excess over PC-ext PC-ext excess over HcC
Average Max Average Max

12

3 0.17 1.07 0.77 6.59
5 0.09 0.39 0.37 2.64
7 0.04 0.04 0.24 2.11
9 — — 0.18 1.42

25

3 0.14 0.81 0.5 4.26
5 0.08 0.49 0.26 2.02
7 0.53 3.23 0.58 3.12
9 0.38 2.11 0.42 2.31

50

3 1.33 7.87 1.46 7.31
5 0.5 2.69 0.58 3.07
7 0.29 1.5 0.35 1.85
9 0.21 1.2 0.25 1.25

Table 4.4: Relative excess impurity, in percentage, for experiments where
Hypercube Cover and PC-ext found different partitions using the Entropy
impurity.

n k Suggested Method
small any Exact

not small small Hypercube Cover
not small not small PC-ext

Table 4.5: Guidelines on how to solve the problem of finding the partition with
minimum impurity in practice.
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5
Experiments on Real Datasets

In this chapter we describe our experimental study on real datasets. First,

we describe the chosen datasets. Next, we discuss the Max-Cut algorithms

employed and, then, we present our results. We will compare the performance

between Twoing, Hypercube Cover, PC-ext, Largest Class Alone and some

criteria generated from our framework. We will use the Gini impurity with

them throughout this chapter. Both Hypercube Cover and PC-ext were chosen

based on the experiments results of the previous chapter, and LCA was chosen

because it is the heuristic with the best approximation guarantee for the Gini

impurity and its runtime complexity is very low.

All experiments described in the following sections were executed on

a machine with the following settings: Intel(R) Core(TM) i7-4790 CPU @

3.60GHz with 32 GB of RAM. The code was developed using Python 3.6.1

with the libraries numpy, scipy, scikit-learn and cvxpy. The project can be

accessed in github.com/felipeamp/dissertation-code.

5.1
Datasets

We employed 11 datasets in total. Eight of them are from the UCI re-

pository: Mushroom, KDD98, Adult, Nursery, Covertype, Cars, Contraceptive

and Poker (Asuncion & Newman (2007)). Two others are available in Kaggle:

San Francisco Crime and Shelter Animal Outcome SF-OpenData (2015); Aus-

tin Animal Center (2016). The last dataset was created by translating texts

from the Reuters database Asuncion & Newman (2007) into phonemes, using

the CMU pronouncing dictionary (see Weide (1998)).

We chose these datasets because they have at least 1000 samples and

they either contain multi-valued attributes or attributes that can be naturally

aggregated to produce multi-valued attributes. From the KDD98 dataset we

derived the datasets KDD98-k, for k = 2 and 9. These datasets contain only

the positive samples (people that donate money) of KDD98 and the target

attribute, Target D, is split into k classes, where the i-th class correspond to

the i-th quantile in terms of amount of money donated. For the Reuters Phon-

emes dataset, we extracted 10000 samples containing the 15 most common
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Dataset Samples k mnom mext
nom mnum

Mushroom 5644 2 22 N/A 0
Adult 30162 2 8 N/A 6
KDD98 4843 Reg 65 N/A 314

Nursery 12960 5 8 11 0
CoverType 581012 7 44 46 10

Car 1728 4 6 8 0
Contracep 1473 3 7 9 2

Poker 25010 10 10 0 0
Shelter 26711 22 5 N/A 1

S.F. Crime 878049 39 3 N/A 2
Phonemes 10000 15 3 N/A 0

Table 5.1: Information about the employed datasets after data cleaning and
attributes aggregation. Column k is the number of classes and Reg stands for
Regression; columns mnom and mext

nom are the number of nominal attributes in
the original and the extended datasets (when it exists), respectively; column
mnum is the number of numeric attributes.

phonemes as class and try to predict when they are about to happen given

the 3 preceding phonemes. This dataset is motivated by Spoken Language Re-

cognition problems, where phonotactic models are used as an important part

of the classification system, as seen in Navratil (2006). For the San Francisco

Crime dataset, we try to predict the crime category given the month, day

of the week, police department district and latitute/longitude. Lastly, for the

Shelter Animal Outcomes dataset, we converted the age into a numeric field

containing the number of days old and separated the breed into two categorical

fields, repeating the breed in both in case there was only one originally. We also

removed the AnimalID, Name and the DateTime. For this dataset we try to

predict the outcome type and subtype (concatenated into a single categorical

field). For both San Francisco Crime and Shelter Animal Outcomes datasets

we created a version of them (S.F. Crime-15 and Shelter-15), containing

only 15 classes, instead of the 39 and 22 original ones, respectively. This was

done by grouping the rarest classes into a single one.

We also created extended versions of some of the above datasets by

adding nominal attributes obtained by aggregating some of the original ones, as

we detail below. Our goals are examining the impact of multi-valued attributes

in the classification performance and also understanding how the different

splitting criteria handle them.

Table 5.2 illustrates this construction.

– Nursery-Ext. This dataset is obtained by adding three new attributes to

dataset Nursery. The first attribute has 15 distinct values and it is con-
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parents has nurs Aggregated Attribute

usual proper usual-proper
usual less proper usual-less proper
usual improper usual-improper
usual critical usual-critical
usual very crit usual-very crit

pretentious proper pretentious-proper
pretentious less proper pretentious-less proper
pretentious improper pretentious-improper
pretentious critical pretentious-critical
pretentious very crit pretentious-very crit
great pret proper great pret-proper
great pret less proper great pret-less proper
great pret improper great pret-improper
great pret critical great pret-critical
great pret very crit great pret-very crit

Table 5.2: Aggregation of attributes parents and has nurse from dataset
Nursery.

structed through the aggregation of 2 attributes from group EMPLOY,

one with 5 values and the other with 3 values. The second attribute has

72 distinct values corresponding to the aggregation of attributes from the

attributes in group STRUCT FINAN. The third attribute, with 9 distinct

values, is the combination of the attributes in group SOC HEALTH.

– Covertype-Ext. We combined 40 binary attributes related with the soil

type into a new attribute with 40 distinct values. The same approach was

employed to combine the 4 binary attributes related with the wilderness

area into a new attribute with 4 distinct values. This is an interesting

case because, apparently, the 40 (soil type) binary attributes as well as

the 4 (wilderness area) binary attributes were derived from a binarization

of two attributes, one with 40 distinct value and the other with 4 distinct

values.

– Cars-Ext. To obtain this dataset, the 2 attributes related with the

concept PRICE, buying and maint, were combined into an attribute

with 16 distinct values. Moreover, the 3 attributes related with concept

CONFORT were combined into an an attribute with 36 distinct values.

– Contraceptive-Ext. The 2 attributes related with the couple’s educa-

tion were combined into an attribute with 16 distinct values. Moreover,

the 3 attributes related with the couple’s occupations and standard of

living were aggregated into a new attribute with 32 distinct values.
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Samples with missing values were removed from the datasets. Table 5.1

provides some statistics.

5.2
Computing the Maximum Cut

The GW algorithm requires the solution of a semidefinite program (SDP),

which may be computationally expensive despite its polynomial time worst

case behavior. As an example, for an attribute with 100 distinct values, the

solution of the corresponding SDP takes on average about 2 second on our

machine. On the one hand, this is a tiny amount of time compared with that

required to perform an exhaustive search on the 2100 possible binary partitions.

On the other hand, faster alternatives are desirable, even at the cost of losing

part of the theoretical approximation guarantee.

To avoid solving a SDP, we also evaluated a procedure that first executes

the GreedyCut algorithm presented in Section 3.1 and then runs a local search

as described in the Algorithm 3 in the same section. The use of this approach

combined with the two ways of setting the edges’ weights lead to Greedy

LocalSearch SquaredGini (GLSG) and Greedy LocalSearch χ2 (GLχ2) criteria,

respectively. For attributes with 100 distinct values this approach is 60-70 times

faster than the one based on the GW algorithm.

Even though solving the SDP takes polynomial time, the GW criteria

evaluated in this chapter were too slow compared with the others. Therefore

their results won’t be shown in the following Sections except for the Section

for maximum depth 5 (Subsection 5.3.2), which were the first experiments to

be run.

5.3
Experimental Results

We performed a number of experiments to evaluate how the proposed

methods behave with real datasets. All experiments consist of building decision

trees with a predefined maximum depth. In addition, to prevent the selection

of non-informative nominal attributes, we used a χ2-test for each attribute at

every node of the tree: if the χ2-test on the contingency table of attribute A

has p-value larger than 10% at a node ν, then A is not used in ν. Furthermore,

attributes with less than 15 samples associated with its second most frequent

value are also not considered for splitting. This helps avoid data overfitting.
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Dataset Twoing GLSG GLχ2 PC-ext HcC LCA
Adult 75.11 (0) 75.11 (0) 75.11 (0) 75.11 (0) 75.11 (0) 75.11 (0)

Mushroom 98.44 (0) 98.44 (0) 98.44 (0) 98.44 (0) 98.44 (0) 98.44 (0)
KDD98-2 83.61 (1) 83.3 (0) 83.61 (1) 83.61 (1) 83.61 (1) 83.61 (1)
KDD98-9 31.66 (0) 32.32 (5) 31.61 (0) 31.74 (2) 31.74 (2) 31.74 (2)
Nursery 66.25 (0) 66.25 (0) 66.25 (0) 66.25 (0) 66.25 (0) 66.25 (0)

Nursery-ext 66.25 (0) 66.25 (0) 66.25 (0) 66.25 (0) 66.25 (0) 66.25 (0)
Cars 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0)

Cars-ext 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0)
Contracep 43.39 (2) 42.31 (0) 42.23 (0) 43.63 (2) 43.63 (2) 43.63 (2)

Contracep-ext 42.58 (1) 44.29 (5) 42.23 (0) 43.73 (4) 43.38 (2) 43.48 (3)
CoverType 51.93 (1) 48.76 (0) 51.93 (1) 51.93 (1) 51.93 (1) 51.93 (1)

CoverType-ext 51.54 (0) 55.55 (4) 51.93 (2) 58.64 (5) 51.54 (0) 55.53 (3)
Poker 49.93 (0) 49.95 (0) 49.95 (0) 49.93 (0) 49.93 (0) 49.93 (0)

Shelter-15 48.44 (2) 35.39 (0) 40.1 (1) 48.44 (2) 48.44 (2) 48.44 (2)
S.F. Crime-15 21.61 (2) 21.24 (1) 19.98 (0) 21.58 (2) 21.58 (2) 21.58 (2)

Phonemes 22.21 (0) 22.22 (0) 22.57 (2) 23.92 (4) 23.91 (4) 23.88 (3)
Average (Sum) 55.81 (9) 55.09 (15) 55.14 (7) 56.45 (23) 55.99 (16) 56.24 (19)

Table 5.3: Average accuracy and statistical tests for decision trees with depth
at most 1 using only nominal attributes. The best accuracy for each dataset
is bold-faced.

5.3.1
Maximum Depth 1

Table 5.3 presents the results of an experiment to compare the accuracy

of Decision Trees built by our methods with those built by Twoing, Hypercube

Cover and PC-ext. In this experiment, the decision tree can have a single level

and we considered just the nominal attributes of the datasets. The motivation

for this depth is that some random forests methods, such as boosted trees, work

with very shallow depths. Each accuracy is the average of 20 stratified 3-fold

cross-validations, each generated with a different seed. The entry associated

with (D, I) has two pieces of information: the average accuracy of criterion I

on dataset D and the number of criteria with accuracy statistically lower than

that of I on dataset D. The statistical test used for criteria comparison is a

one-tailed paired t-student test with a 95% confidence level.

In general, there was a clear advantage towards PC-ext, followed closely

by LCA and, a bit more distant, by Hypercube Cover. GL Squared Gini had

statistical results similar to Hypercube Cover, but its average accuracy was

the worst overall. Twoing and GLχ2 had, in general, worse performance in the

statistical comparison, with accuracies better than that of GLSG. As expected,

the criteria created the same tree for many datasets, and this happened more

frequently when the number of classes was smaller.

Table 5.4 presents the comparison between our GL methods, Twoing,

Hypercube Cover, PC-ext and LCA in another scenario, where we use cquad,

one of the bias-free criterion proposed in Hothorn et al. (2006), to select the

attribute at each node of the tree. Then, both Twoing, Hypercube Cover, PC-

ext, LCA and our methods are used only for splitting the chosen attribute,
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Dataset CI-Twoing CI-GLSG CI-GLχ2 CI-PC-ext CI-HcC CI-LCA
Adult 75.13 (2) 75.11 (0) 75.11 (0) 75.13 (2) 75.13 (2) 75.13 (2)

Mushroom 63.88 (1) 68.03 (5) 66.5 (4) 63.72 (0) 63.88 (1) 63.88 (1)
KDD98-2 65.29 (0) 65.29 (0) 65.29 (0) 65.29 (0) 65.29 (0) 65.29 (0)
KDD98-9 25.48 (0) 25.48 (0) 25.48 (0) 25.48 (0) 25.48 (0) 25.48 (0)
Nursery 41.9 (2) 41.05 (0) 41.9 (2) 41.9 (2) 41.9 (2) 41.45 (1)

Nursery-Ext 41.9 (2) 41.05 (0) 41.9 (2) 41.9 (2) 41.9 (2) 41.45 (1)
Cars 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0)

Cars-Ext 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0) 70.02 (0)
Contracep 43.39 (2) 42.66 (1) 42.23 (0) 43.63 (2) 43.63 (2) 43.63 (2)

Contracep-Ext 43.39 (2) 42.66 (1) 42.23 (0) 43.63 (2) 43.63 (2) 43.63 (2)
CoverType 48.76 (0) 48.76 (0) 48.76 (0) 48.76 (0) 48.76 (0) 48.76 (0)

CoverType-Ext 48.76 (0) 48.76 (0) 48.76 (0) 48.76 (0) 48.76 (0) 48.76 (0)
Poker 49.93 (0) 49.93 (0) 49.93 (0) 49.93 (0) 49.93 (0) 49.93 (0)

Shelter-15 35.93 (0) 35.93 (0) 35.93 (0) 35.93 (0) 35.93 (0) 35.93 (0)
S.F. Crime-15 19.92 (0) 19.92 (0) 19.92 (0) 19.92 (0) 19.92 (0) 19.92 (0)

Phonemes 15.7 (5) 15.34 (0) 15.42 (0) 15.46 (2) 15.46 (2) 15.36 (0)
Average (Sum) 47.46 (16) 47.5 (7) 47.46 (8) 47.47 (12) 47.48 (13) 47.41 (9)

Table 5.4: Average accuracy and statistical tests for Conditional Inference trees
with depth at most 1 using only nominal attributes. The best accuracy for each
dataset is bold-faced.

which allows for a more direct comparison of their splitting ability. Since the

maximum depth is set to 1, all the criteria are splitting the same attribute.

This makes the analysis of their splitting ability more direct than with larger

depths. This experiment is very similar to the one from the previous chapter,

except now we are using real datasets.

As can be seen, they all obtained similar results. In terms of beating

other criteria, Twoing was the best criterion, followed by Hypercube Cover.

Moreover, LCA has results that were a bit worse than the others. Ignoring the

extended datasets—since no extended attribute was chosen by the conditional

inference tree and thus its results are a repetition of the datasets without

extended attributes—we note that PC-ext and the GL criteria obtained similar

results. This suggests that Twoing and Hypercube Cover are better at choosing

the best values partition, once the attribute is fixed. Nonetheless, since GLSG

had significantly better results in the Mushroom dataset, it had the best

average accuracy.

Table 5.5 shows experiments similar to those presented at Table 5.3,

but now using also the numeric attributes. This time, in terms of beating the

accuracy of other criteria, the GL methods obtained the best results, while the

others had very similar results. Curiously, in terms of average accuracy, the

results were the exact opposite, due to a worse performance in the CoverType

datasets for GL-χ2 and in the Shelter dataset for GLSG.
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Dataset Twoing GLSG GLχ2 PC-ext HcC LCA
Adult 75.11 (0) 75.11 (0) 79.55 (5) 75.11 (0) 75.11 (0) 75.11 (0)
KDD98-2 83.62 (0) 83.93 (5) 83.67 (0) 83.62 (0) 83.62 (0) 83.62 (0)
KDD98-9 32.13 (3) 32.52 (4) 32.46 (4) 31.44 (0) 31.44 (0) 31.44 (0)

Contracep 42.7 (1) 42.21 (0) 45.19 (5) 42.7 (1) 42.7 (1) 42.7 (1)
Contracep-Ext 42.7 (0) 44.29 (4) 45.19 (5) 42.68 (0) 42.59 (0) 42.59 (0)

CoverType 63.31 (2) 62 (1) 52.38 (0) 63.36 (3) 63.36 (3) 63.36 (3)
CoverType-Ext 63.31 (2) 62 (1) 52.38 (0) 63.36 (3) 63.36 (3) 63.36 (3)
Shelter-15 48.44 (2) 35.4 (0) 43.29 (1) 48.44 (2) 48.44 (2) 48.44 (2)

S.F. Crime-15 21.61 (2) 21.24 (1) 20.61 (0) 21.58 (2) 21.58 (2) 21.58 (2)
Average (Sum) 52.55 (12) 50.97 (16) 50.52 (20) 52.48 (11) 52.47 (11) 52.47 (11)

Table 5.5: Average accuracy and statistical test results for Decision Trees using
both nominal and numeric attributes.

5.3.2
Maximum Depth 5

Table 5.6 presents the results of an experiment to compare the accuracy

of Decision Trees built by our methods with those built by Twoing, Hypercube

Cover and PC-ext. In this experiment, the maximum depth was set to 5 and we

considered just the nominal attributes of the datasets. The motivation for this

depth is to produce trees that are relatively easy to interpret and, in addition,

some random forests methods such as boosting work with shallow trees.

In general, there was a clear advantage towards PC-ext and a clear dis-

advantage towards the GW-based criteria. Twoing, Hypercube Cover, Largest

Class Alone and the GL criteria had somewhat similar results. The advantage

of the GL-based criteria over the GW-based ones is likely related with the fact

that the weights of the cuts computed by the GL approach in this experiment

are, in general, larger than those obtained by the GW algorithm.

The results of Table 5.6 also provide evidence of the potential of consid-

ering aggregated attributes. The accuracy obtained for the extended versions

of datasets Nursery, Cars and CoverType are considerably higher than those

obtained for the original versions. For Contracep, the effect is not clear.

Another key aspect to discuss is the computational cost of the proposed

criteria. Table 5.7 shows the running time of each criterion in the experiment

of Table 5.6. Twoing is the fastest method when the number of classes is

small and the GL-based methods, PC-ext and LCA become competitive and

eventually the fastest ones when the number of classes gets larger. As the

number of classes increases, the GL-based methods and PC-ext become much

faster than Twoing, with the turning point being around k = 7. The running

time of Largest Class Alone is very similar to the fastest criterion on every

dataset. Also, it is much faster for the Shelter dataset, which is one of the

slowest experiments. For datasets with 15 classes our GL criteria are 15-300

times faster than Twoing, while PC-ext and LCA are 15-600 and 15-1100 times

faster, respectively. Moreover, Hypercube Cover behaves very similarly to the
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Dataset k Twoing GWSG GWχ2 GLSG GLχ2 PC-ext HcC LCA
Adult 2 2.7 88.2 41.3 3 4 2.8 3.8 3.8

Mushroom 2 0.6 8.6 6.9 0.9 1 0.7 0.9 0.7
KDD98-2 2 4 3579.3 2162 43.5 44 5.2 5.8 4.5

Contracep 3 0.1 1 0.6 0.1 0.1 0.1 0.1 0.1
Contracep-Ext 3 0.1 12.7 3.3 0.2 0.2 0.2 0.2 0.2

Cars 4 0.1 2.4 2.5 0.1 0.1 0.1 0.2 0.1
Cars-Ext 4 0.2 11.3 7.7 0.3 0.3 0.2 0.4 0.1
Nursery 5 0.8 5 4.7 1 0.9 0.9 1.2 1

Nursery-Ext 5 1.1 147.9 75.8 3.3 2.6 1.4 1.7 1.3
CoverType 7 348.5 179.2 265.4 245.2 307.8 271.4 338.5 367.3

CoverType-Ext 7 213 212.5 340.8 182.5 295.7 196.5 258.9 208.3
KDD98-9 9 132 5898.8 3410.1 97.2 73.9 14.7 297.5 6.6
Poker 10 7.4 11.2 6.4 2.2 2.1 2.5 13.3 2.6

Shelter-15 15 3599 — — 149.9 166.3 14.1 7968 3.3
S.F. Crime-15 15 638.2 605.2 823.7 40.7 40.2 41.7 1223.9 47.1

Phonemes 15 1343.3 — — 4.4 5.5 2.2 2187.4 0.7

Table 5.7: Average time in seconds of a 3-fold cross validation for building
decision trees with depth at most 5. The fastest method for each dataset is
bold faced.

Twoing criterion, but it is a bit slower because the impurity calculation with k

classes is slower than with 2 classes. Lastly, the running time for the GW-based

criteria were usually one or two orders of magnitude larger than the others.

The only clear exception was in the CoverType dataset, where the number of

samples is very large while the attributes’ number of values is much smaller.

We also ran experiments using all the classes available in both the S.F.

Crime and Shelter datasets (39 and 22, respectively). Twoing, Hypercube

Cover and the GW criteria cannot be executed in a reasonable time with that

many classes. This behavior for the Twoing criterion is not surprising, since

its running time has an exponential dependence of the number of classes k.

Nonetheless, GLSG and GLχ2 ran in approximately 100 seconds on the S.F.

Crime dataset and 300 seconds on the Shelter dataset (PC-ext ran in 75 and

32 seconds, respectively). Since the execution time for our GL criteria in this

experiment grew in an approximately linear fashion with k, it suggests that

they can also be used with datasets that have a much larger number of classes.

It is also interesting to note that the aggregated attributes usually appeared

at or near the root of the decision trees. Moreover, Largest Class Alone ran

in these datasets in 48 and 4 seconds, respectively. This illustrates how the

running time of LCA stays very low even then the number of classes is very

large. Therefore, whenever running time is the main issue for training decision

trees, one can always rely on LCA running in reasonable time.

Since the GW-criteria performe much worse in terms of execution time

and yield comparable or worse accuracy than the other criteria, they were not

used in any other experiments.

Table 5.8 presents the comparison between our GL methods, Twoing,

Hypercube Cover, PC-ext and LCA in the scenario where we use cquad to
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Dataset CI-Twoing CI-GLSG CI-GLχ2 CI-PC-ext CI-HcC CI-LCA
Adult 81.96 (3) 81.61 (1) 81.77 (2) 79.98 (0) 81.96 (3) 81.96 (3)

Mushroom 86.97 (1) 94.79 (5) 90.15 (4) 86.77 (0) 86.97 (1) 86.97 (1)
KDD98-2 81.29 (0) 82.34 (5) 81.68 (4) 81.35 (0) 81.29 (0) 81.29 (0)
KDD98-9 41.84 (0) 42 (0) 42.26 (4) 41.73 (0) 41.95 (1) 41.83 (0)
Nursery 88.48 (2) 88.3 (0) 88.47 (2) 88.48 (2) 88.48 (2) 88.09 (0)

Nursery-Ext 88.48 (2) 88.26 (0) 88.47 (2) 88.48 (2) 88.48 (2) 88.11 (0)
Cars 86.51 (2) 85.02 (0) 86.57 (2) 86.48 (2) 86.48 (2) 86.27 (1)

Cars-Ext 88.27 (2) 85.51 (0) 88.32 (2) 88.26 (2) 88.26 (2) 88.16 (1)
Contracep 43.83 (1) 44.12 (4) 43.87 (0) 43.63 (0) 43.69 (1) 43.58 (0)

Contracep-Ext 43.39 (0) 43.81 (4) 43.76 (4) 43.21 (0) 43.32 (1) 43.21 (0)
CoverType 54.1 (0) 54.1 (0) 54.1 (0) 54.1 (0) 54.1 (0) 54.1 (0)

CoverType-Ext 54.1 (0) 54.1 (0) 54.1 (0) 54.1 (0) 54.1 (0) 54.1 (0)
Poker 51.05 (4) 50.56 (0) 50.91 (1) 50.8 (1) 50.79 (1) 50.73 (1)

Shelter-15 48.03 (0) 48.03 (0) 48.22 (2) 48.22 (2) 48.2 (2) 48.29 (4)
S.F. Crime-15 21.59 (5) 20.53 (0) 21.49 (2) 21.52 (2) 21.52 (2) 21.34 (1)

Phonemes 23.12 (4) 22.52 (3) 23.8 (5) 21.3 (1) 22.11 (2) 20.4 (0)
Average (Sum) 61.44 (26) 61.6 (22) 61.75 (36) 61.15 (14) 61.36 (22) 61.15 (12)

Table 5.8: Average accuracy and statistical tests for Conditional Inference trees
with depth at most 5 using only nominal attributes. The best accuracy for each
dataset is bold-faced.

Dataset Twoing GLSG GLχ2 PC-ext HcC LCA
Adult 84.4 (2) 82.36 (0) 84.15 (1) 84.4 (2) 84.4 (2) 84.4 (2)
KDD98-2 81.89 (0) 81.92 (0) 81.93 (0) 81.9 (0) 81.89 (0) 81.89 (0)
KDD98-9 46.78 (1) 45.32 (0) 48.73 (5) 47.38 (4) 47.04 (1) 46.99 (1)

Contracep 54.39 (1) 52.85 (0) 53.99 (1) 55.11 (4) 55.04 (3) 54.95 (3)
Contracep-Ext 52.41 (0) 52.27 (0) 53.26 (2) 53.31 (4) 52.75 (1) 52.77 (0)

CoverType 70.07 (2) 68.52 (0) 69.23 (1) 70.24 (3) 70.24 (3) 70.24 (3)
CoverType-Ext 71.6 (3) 70.3 (1) 69.23 (0) 71.66 (4) 71.25 (2) 71.7 (5)
Shelter-15 54.68 (2) 51.91 (0) 54.57 (1) 54.83 (5) 54.64 (2) 54.53 (1)

S.F. Crime-15 23.52 (4) 23.18 (0) 23.58 (5) 23.49 (1) 23.49 (1) 23.49 (1)
Average (Sum) 59.97 (15) 58.74 (1) 59.85 (16) 60.26 (27) 60.08 (15) 60.11 (16)

Table 5.9: Average accuracy and statistical test results for Decision Trees using
both nominal and numeric attributes.

select the attribute at each node of the tree, followed by using the criteria

for selecting how to split the selected attribute. Once again we observed a

balance between most of the criteria, with a significant advantage towards

GL-χ2 and, perhaps surprisingly, a very poor performance by PC-ext and

LCA. This suggests that their advantage lies in comparing different attributes,

and not necessarily finding the best split. Another curious observation is that

the bias-free approach had significantly worse results for the datasets with

extended attributes.

Table 5.9 shows experiments similar to those presented at Table 5.6,

but now using also the numeric attributes. We observed a significant gain

in terms of accuracy for all datasets except for KDD98-2. Also note that

GLSG was much inferior to the other criteria. Other than that, the comparison

results were very similar to the ones found in Table 5.6, with a slight better

performance by Hypercube Cover and GL-χ2 and slightly worse by Twoing.
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Dataset Twoing GLSG GLχ2 PC-ext HcC LCA
Adult 82.52 (2) 82.38 (0) 82.43 (0) 82.51 (2) 82.52 (2) 82.52 (2)

Mushroom 100 (1) 100 (0) 99.99 (0) 100 (1) 100 (1) 100 (1)
KDD98-2 79.41 (0) 80.65 (5) 79.73 (0) 79.91 (3) 79.41 (0) 79.41 (0)
KDD98-9 38.54 (3) 37.97 (0) 39.68 (5) 38.55 (3) 37.95 (0) 38.12 (0)
Nursery 93.51 (2) 92.39 (0) 93.74 (5) 93.5 (1) 93.5 (1) 93.5 (1)

Nursery-ext 95.83 (1) 94.79 (0) 96.02 (5) 95.83 (1) 95.83 (1) 95.83 (1)
Cars 92.82 (1) 90.51 (0) 92.88 (1) 92.69 (1) 92.69 (1) 90.14 (1)

Cars-ext 96.49 (2) 90.89 (0) 94.44 (1) 96.46 (2) 96.5 (2) 96.5 (2)
Contracep 43.5 (0) 43.83 (0) 43.85 (1) 43.53 (0) 43.53 (0) 43.66 (0)

Contracep-ext 43.15 (0) 44.32 (5) 43.72 (0) 43.75 (3) 43.37 (0) 43.35 (0)
CoverType 64.09 (1) 64.59 (2) 63.61 (0) 64.66 (3) 64.66 (3) 64.66 (3)

CoverType-ext 65.08 (1) 65.08 (1) 65.05 (0) 65.08 (1) 65.08 (1) 65.08 (4)
Poker 52.24 (3) 49.88 (0) 51.83 (1) 52.09 (3) 52.09 (3) 51.97 (1)

Shelter-15 47.64 (2) 46.52 (0) 48.09 (5) 47.71 (3) 47.26 (1) 47.58 (2)
S.F. Crime-15 22.08 (2) 22.06 (0) 22.08 (1) 22.08 (2) 22.08 (1) 22.08 (1)

Phonemes 37.13 (2) 35.9 (0) 35.75 (0) 37.95 (3) 37.89 (3) 37.8 (3)
Average (Sum) 65.88 (23) 65.11 (13) 65.81 (25) 66.02 (32) 65.9 (20) 65.76 (22)

Table 5.10: Average accuracy and statistical tests for decision trees with depth
at most 16 using only nominal attributes. The best accuracy for each dataset
is bold-faced, even when multiple criteria have the same accuracy in the table
because of rounding.

5.3.3
Maximum Depth 16

In this subsection we explore the same experiments studied in the

previous one, except now the maximum depth allowed is 16. This larger depth is

common in most random forest methods, thus the importance of this analysis.

Table 5.10 presents the results of an experiment to compare the accuracy

of Decision Trees built by our GL-methods with those built by Twoing,

Hypercube Cover, PC-ext and LCA, using just the nominal attributes of the

datasets. Once again PC-ext had the best results, but this time by a smaller

margin. This suggests the possibility that, for a larger depth, it might not have

the best results. Moreover, there was a balance between Twoing, Hypercube

Cover, LCA and GLχ2, with GLSG being significantly worse. This suggests

that GLSG loses competitiveness as the tree depth increases.

Table 5.11 presents the comparison between the different methods in the

scenario where we use cquad to select the attribute at each node of the tree,

and the criteria are used only for splitting the chosen attribute. We observed a

very strong advantage for GLχ2, followed by Twoing. Both Hypercube Cover

and GLSG are competitive among themselves, while PC-ext and LCA had the

worst results.

Table 5.12 shows the running time of each criteria when used for both

selecting and splitting purposes (the experiment of Table 5.10). When the

number of classes is small all the criteria have very similar execution time. After

running this experiments a few times, we have realized there is a variation of

about 2-3 seconds in the execution time. This explains why Hypercube Cover
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Dataset CI-Twoing CI-GLSG CI-GLχ2 CI-PC-ext CI-HcC CI-LCA
Adult 82.33 (2) 82.18 (0) 82.35 (2) 82.28 (1) 82.33 (2) 82.33 (2)

Mushroom 99.55 (1) 99.6 (1) 99.64 (4) 99.4 (0) 99.55 (1) 99.55 (1)
KDD98-2 79.92 (1) 81.53 (5) 80.65 (4) 79.72 (0) 79.92 (1) 79.92 (1)
KDD98-9 39.44 (3) 40.65 (5) 40.01 (4) 38.85 (0) 39.07 (0) 39.16 (0)
Nursery 93.55 (2) 92.22 (0) 93.56 (1) 93.55 (2) 93.55 (2) 93.54 (1)

Nursery-ext 93.64 (2) 92.32 (0) 93.65 (1) 93.64 (2) 93.64 (2) 93.63 (1)
Cars 92.74 (2) 87.19 (0) 92.92 (5) 92.67 (2) 92.67 (2) 92.35 (1)

Cars-ext 93.12 (2) 87.38 (0) 93.34 (5) 93.08 (2) 93.08 (2) 92.85 (1)
Contracep 43.82 (3) 44.05 (3) 43.81 (0) 43.59 (0) 43.6 (1) 43.57 (0)

Contracep-ext 43.21 (1) 43.78 (4) 43.72 (4) 43.07 (0) 43.12 (1) 42.92 (0)
CoverType 61.88 (0) 61.88 (0) 61.88 (0) 61.88 (0) 61.88 (0) 61.88 (0)

CoverType-ext 61.88 (0) 61.88 (0) 61.88 (0) 61.88 (0) 61.88 (0) 61.88 (0)
Poker 51.4 (5) 50.67 (0) 50.84 (1) 51.04 (1) 51.03 (1) 50.98 (1)

Shelter-15 47.66 (2) 47.32 (1) 48.14 (5) 47.82 (3) — (0) 47.74 (2)
S.F. Crime-15 22.07 (0) 22.07 (0) 22.07 (1) 22.07 (0) 22.07 (0) 22.07 (1)

Phonemes 33.91 (3) 31.26 (0) 33.32 (2) 34.08 (3) 34.77 (5) 32.62 (1)
Average (Sum) 65.01 (29) 64.12 (18) 65.11 (39) 64.91 (16) 66.14* (20) 64.81 (13)

Table 5.11: Average accuracy and statistical tests for conditional inference
trees with depth at most 16 using only nominal attributes. Any experiment
that did not finish in reasonable time is considered statistically worse than the
others. Hypercube Cover has a * mark besides its average accuracy since it is
calculated only on the experiments that finished. The best accuracy for each
dataset is bold-faced, even when multiple criteria have the same accuracy in
the table because of rounding.

is sometimes faster than Twoing.

Once again, as the number of classes increases, both PC-ext, LCA and the

GL-based methods become much faster than Twoing and Hypercube Cover,

with the turning point being once again around k = 7. Moreover, LCA is

always the fastest or very close to the fastest criterion. For datasets with 15

classes our GL criteria are 30-400 times faster than Twoing, while PC-ext and

LCA are 50-600 and 50-1950 times faster, respectively.

We also ran experiments using all the classes available in both the S.F.

Crime and Shelter datasets (39 and 22, respectively). Twoing cannot be

executed in a reasonable time with that many classes, while GLSG and GLχ2

ran in approximately 100 seconds on the S.F. Crime dataset and 300 seconds

on the Shelter dataset. PC-ext ran in 110 and 33 seconds, respectively, while

Largest Class Alone took 55 and 7 seconds, respectively. Once again, LCA

shows itself as very fast for very large number of classes, and should be the

default choice when the running time of the other criteria is prohibitive.

Table 5.13 shows experiments similar to those presented at Table 5.10,

except now it also uses the numeric attributes. We observed a significant gain

in terms of accuracy for almost all datasets. This time Twoing, Hypercube

Cover and PC-ext has the best results. LCA had a similar average accuracy,

while its results on the statistical comparison were much worse. The GL criteria

had statistical results similar to LCA, but with an inferior average accuracy.
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Dataset k Twoing GLSG GLχ2 PC-ext HcC LCA
Adult 2 4.1 4.6 5.7 4 5.8 5.4

Mushroom 2 1.7 1.5 2.3 0.6 1 0.6
KDD98-2 2 9.1 50.9 53.4 8.3 10.4 7

Contracep 3 0.2 0.2 0.2 0.1 0.1 0.1
Contracep-Ext 3 0.2 0.3 0.4 0.2 0.3 0.2

Cars 4 0.3 0.3 0.2 0.2 0.3 0.2
Cars-Ext 4 0.3 0.5 0.4 0.2 0.3 0.2
Nursery 5 4.1 3.9 3.7 1.3 1.9 1.2

Nursery-Ext 5 4.6 9.5 8.6 1.4 2.3 1.3
CoverType 7 612.7 294.7 700 472.4 668.9 649.9

CoverType-Ext 7 251.8 209.9 462.6 200.4 296.2 192.7
KDD98-9 9 434.5 256.2 243.6 23.8 442.9 11.6
Poker 10 25.2 10.8 9.2 3.8 18 3.6

Shelter-15 15 5397 181.9 191.2 18.6 7311.6 6.1
S.F. Crime-15 15 2731.2 95.9 81.8 50.5 3188.9 53.1

Phonemes 15 3894.6 9.4 11 6.3 5804.8 2

Table 5.12: Average time in seconds of a 3-fold cross validation for building
decision trees with depth at most 16. The fastest method for each dataset is
bold-faced.

Dataset Twoing GLSG GLχ2 PC-ext HcC LCA
Adult 83.25 (1) 77.34 (0) 83.21 (1) 83.28 (1) 83.25 (1) 83.25 (1)
KDD98-2 77.14 (2) 76.36 (1) 76.04 (0) 77.87 (5) 77.14 (2) 77.14 (2)
KDD98-9 38.73 (1) 37.49 (0) 43.45 (5) 39.88 (4) 38.96 (1) 38.8 (1)

Contracep 48.95 (1) 48.01 (0) 48.66 (1) 48.93 (1) 48.86 (1) 48.93 (1)
Contracep-Ext 48.82 (1) 48.15 (0) 48.6 (0) 48.52 (0) 49.31 (5) 48.97 (2)

CoverType 86.43 (4) 90.32 (5) 81.38 (0) 86.23 (1) 86.23 (1) 86.23 (1)
CoverType-Ext 88.96 (3) 92.03 (5) 82.46 (0) 88.32 (1) 89.39 (4) 88.72 (2)
Shelter-15 53.97 (4) 52 (0) 54.4 (5) 53.82 (3) 53.59 (1) 53.6 (1)

S.F. Crime-15 27.25 (5) 26.71 (0) 27.13 (1) 27.13 (1) 27.13 (1) 27.16 (3)
Average (Sum) 61.5 (22) 60.93 (11) 60.59 (13) 61.55 (17) 61.54 (17) 61.42 (14)

Table 5.13: Average accuracy and statistical test results for Decision Trees
using both nominal and numeric attributes with depth at most 16.
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6
Conclusions

In this dissertation we proposed a framework for designing splitting

criteria for handling multi-valued nominal attributes. Criteria derived from

our framework can be implemented to run in polynomial time in n and k, with

theoretical guarantee of producing a split that is close to the optimal one.

We also made an experimental study on criteria based on different heuristics,

some of them with approximation guarantees (Hypercube Cover and Largest

Class Alone), some of them without one (PC-ext). We compared their ability of

finding splits with the lowest impurity and, later, compared them with Twoing

and criteria from our framework to analyse the accuracy of trees obtained by

using them.

Experiments over 11 datasets suggest that the GLχ2 criterion, obtained

from our framework, is competitive with the well-established Twoing criterion

in terms of both accuracy and speed for datasets with a small number of

classes (k ≤ 7). It is also much faster than Twoing when the number of classes

is greater than 10, while keeping a comparable accuracy. Overall, Hypercube

Cover also had results similar to Twoing. Therefore, our methods are an

interesting alternative to deal with datasets with a large number of classes

that contain nominal attributes with a large number of different values, since

those cannot be properly handled by Twoing due to its exponential running

time dependence on the number of classes.

Even though the PC-ext criterion does not have a theoretical guarantee,

the experiments also show that it has some advantage in terms of accuracy

over the other methods, except when used in the conditional inference tree

framework. This suggests that PC-ext is very good in terms of comparing

different attributes among themselves, but not as good in finding the best

split for a given attribute. In these bias-free experiments, the GLχ2 criterion

had the best results. In terms of speed, it also has an advantage over every

other criterion, except for LCA.

Although we discovered, in Chapter 4, that the Largest Class Alone

heuristic obtains splits with worse impurity than Hypercube Cover and PC-

ext, we saw in Chapter 5 that trees created using it have competitive accuracy.

This suggests one should use it when the dataset is big enough for the training
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time to be a concern.

In practice, one should probably use PC-ext to train decision trees when

its training time is acceptable, otherwise one should switch to Largest Class

Alone. Furthermore, when using the Conditional Inference Tree framework,

the best splitting criterion to use is GL-χ2. Its running time is polynomial—in

general dominated by the framework itself—and obtains trees with the best

accuracies. This indicates that, given an attribute, it is the best at choosing

splits.

Lastly, our experiments also reinforce the potential of aggregating at-

tributes as a tool for improving the accuracy of decision trees. An interesting

topic for future research is evaluating the behavior of our criteria in boosted

tree methods. Another direction for future work is developing new methods

for automatic aggregating attributes, or improving the available ones.
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