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Abstract 

Santos, Iuri Martins; Pêssoa, Luciana de Souza (Advisor); Hamacher, 

Silvio (Co-Advisor). Mathematical Programming Models and Local 

Search Algorithms for the Offshore Rig Scheduling Problem. Rio de 

Janeiro, 2018. 134p. Dissertação de Mestrado - Departamento de 

Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.  

The offshore exploration & production (E&P) of Oil & Gas involves 

several complex and important operations and relies, mostly, in the use of rigs, a 

scarce and costly resource that oil companies need to properly plan and schedule. 

In the literature, this decision is called the Rig Scheduling Problem (RSP). 

However, there is not any study related to offshore wells and drilling activities with 

realistic objective functions. Aiming to fulfill this gap, this dissertation studies a rig 

scheduling problem of a real offshore company and proposes a matheuristic 

approach to determine a rigs fleet and schedule that minimizes the budget. Two 

mathematical models – one for rigs fleet minimization and another one that 

minimizes the rigs budget – and several heuristics – using local search (LS) and 

variable neighborhood descent (VND) algorithms with three neighborhood 

structures and also constructive methods – were developed and tested in two 

instances based on real data of the studied company. In the small instance, the 

programming model found slightly better solutions than the heuristic, despite 

requiring more computational effort. Nevertheless, in the large instance, the 

mathematical programming solutions present large gaps (over 11%) and an elevated 

computational time (at least 12 hours), while the heuristics can find similar (or even 

better) solutions in a shorter time (minutes), having 70 of 156 heuristics 

outperformed the mathematical models. Last, the matheuristic combination of the 

simplest mathematical model with the heuristics has found the best known solutions 

(BKS) of the large instance with a moderate computational effort. 

Keywords  

        Rig scheduling problem; offshore wells; matheuristics; local search; 

variable neighborhood descent; oil & gas. 
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Resumo 

Santos, Iuri Martins; Pêssoa, Luciana de Souza; Hamacher, Silvio. 

Modelos de programação matemática e algoritmos de busca local para 

o problema de programação de sondas marítimas. Rio de Janeiro, 2018. 

134p. Dissertação de Mestrado - Departamento de Engenharia Industrial, 

Pontifícia Universidade Católica do Rio de Janeiro.  

A exploração e produção (E&P) offshore de óleo e gás envolve várias 

operações complexas e importantes, como perfuração, avaliação, completação e 

manutenção de poços. A maioria dessas tarefas requer o uso de sondas, um recurso 

custoso e escasso que as companhias de petróleo precisam planejar e programar 

corretamente. Na literatura, este problema é chamado de Programação de Sondas. 

Todavia, existem poucos estudos relacionados aos poços marítimos e às atividades 

de perfuração e nenhum destes com funções objetivo e restrições realistas, como 

orçamento. Por isso, muitas empresas de petróleo têm fortes dificuldades no 

planejamento das sondas, resultando em grandes custos para elas. 

Com o objetivo de preencher essa lacuna, esta dissertação estuda um problema de 

programação de sondas em uma empresa petroleira e propõe um método híbrido 

para determinar a frota de sondas e seu cronograma, que minimize o orçamento da 

empresa. Dois modelos de programação matemática – um para minimização das 

sondas e outro para minimizar seu orçamento com variações da unidade de tempo 

utilizada (dia ou semana) – e várias heurísticas – usando algoritmos de busca local 

e variable neighborhood descent (VND) com três estruturas de vizinhança e duas 

estratégias de busca (first e best improvemment) e métodos construtivos- foram 

desenvolvidos e testados em duas instâncias (uma pequena e uma grande), baseadas 

em dados reais da empresa do caso de estudo. As três estruturas de vizinhanças são 

baseadas em movimentos de insert, uma delas não permite alterar as datas de 

alocação das tarefas na solução inicial, outra permite adiar tarefas e a última as 

posterga. 

Os resultados indicaram a dificuldade no desempenho dos modelos matemáticos 

nas grandes instâncias e uma forte capacidade das heurísticas para encontrar 
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soluções similares com muito menos esforço computacional. Na instância pequena, 

o modelo exato para minimizar o orçamento encontrou soluções um pouco 

melhores que a heurística (diferença de entre 0,4% e 5,6%), embora necessitando 

de mais esforço computacional, principalmente os modelos com unidades de tempo 

em dias. Porém, na instância maior, as soluções da programação matemática 

possuíram altos gap (mais de 11%) e altos tempos computacionais (pelo menos 12 

horas), tendo o modelo matemático mais completo sido incapaz de encontrar 

soluções inteiras viáveis ou limites inferiores depois de mais de um dia rodando. 

Enquanto isso, as heurísticas foram capazes de encontrar soluções similares ou até 

melhores (desvios de -6% e 14% em relação a melhor solução exata) em um tempo 

muito menor, tendo 70 das 156 heurísticas desenvolvidas superado os modelos 

matemáticos. Além disso, os melhores resultados heurísticos foram utilizando 

algoritmos de variable neighborhood descent (VND) com estruturas de vizinhanças 

que realizavam movimentos de insert de tarefas em sondas existentes ou novas e 

permitiam postergar ou adiantar as tarefas das sondas. A abordagem hibrida foi 

comparada também com uma abordagem puramente heurística, tendo a primeira 

obtido melhores resultados. 

Por fim, os resultados demonstram que o método híbrido proposto combinando o 

modelo matemático que minimiza o número de sondas com as heurísticas de busca 

local é uma ferramenta de suporte a decisão rápida e prática, com potencial para 

reduzir milhões de dólares para as empresas petroleiras do mercado offshore, com 

capacidade para encontrar cronogramas próximos da solução ótima com pouco 

esforço computacional, mesmo em instâncias grandes onde a maioria dos métodos 

exatos é muito complexa e lenta. 

 

 

Palavras-chave 

        Programação de sondas; poços marítimos de petróleo; matheuristics; 

busca local; variable neighborhood descent; óleo & gás. 

  

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

Table of Contents 

1 Introduction .................................................................................................... 16 

 

2 Oil & Gas Production Chain .......................................................................... 19 

2.1. Exploration & Production of Oil & Gas ...................................................... 20 

2.2. Construction of Offshore Wells ................................................................... 22 

 

3 Rig Scheduling Problem (RSP) ...................................................................... 24 

3.1. Literature Review ......................................................................................... 25 

 

4 Problem Statement ......................................................................................... 43 

4.1. Assumptions ................................................................................................. 46 

4.2. Mathematical models ................................................................................... 49 

4.2.1. Model 1 – Minimum rigs fleet size ............................................................ 51 

4.2.2. Model 2 – Minimum rigs budget ............................................................... 53 

 

5 Local Search Algorithm ................................................................................. 58 

5.1. Neighborhood Structures ............................................................................. 60 

5.1.1. Insert with fixed dates ................................................................................ 61 

5.1.2. Insert with dates anticipation ..................................................................... 63 

5.1.3. Insert with dates postponement ................................................................. 66 

5.2. Search Strategies .......................................................................................... 68 

5.3. Variable Neighborhood Descent .................................................................. 70 

5.4. Acceptance Criterion .................................................................................... 72 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

5.5. Stop Criterion ............................................................................................... 72 

5.6.  Constructive Heuristic ................................................................................. 72 

 

6 Computational Experiments ........................................................................... 75 

6.1. Small instance (instance01) ......................................................................... 75 

6.1.1. Mathematical Programming ...................................................................... 76 

6.1.2. Constructive Heuristic ............................................................................... 79 

6.1.3. Local Search .............................................................................................. 80 

6.2. Large Instance (instance02) ......................................................................... 82 

6.2.1. Mathematical Programming ...................................................................... 83 

6.2.2. Constructive Heuristic ............................................................................... 86 

6.2.3. Local Search .............................................................................................. 87 

6.3. Matheuristic Results ..................................................................................... 89 

 

7 Conclusion and future research ...................................................................... 94 

 

8 References ...................................................................................................... 99 

 

Appendix I: Neighborhood Structure Algorithms ............................................... 108 

Appendix II: Instances Description ..................................................................... 112 

Appendix III: Mathematical Models Solutions ................................................... 120 

Appendix IV: Heuristic Results ........................................................................... 122 

Appendix V: Solution analysis ............................................................................ 129 

Appendix VI: Matheuristics Solutions ................................................................ 133 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

List of Algorithms 

Algorithm 1. Basic Local Search Heuristic……………………………………….59 

Algorithm 2. Variable Neighborhood Descent…………………………………...70 

Algorithm 3. Insert with fixed dates in an existing rig neighborhood search…….108 

Algorithm 4. Insert with fixed dates in a new rig neighborhood search……..….109 

Algorithm 5. Insert with dates anticipation neighborhood search……..……......109 

Algorithm 6. Insert with dates postponement neighborhood search…..…….….110 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

List of Charts 

Chart 1. Operations research publications applied to rig scheduling .................... 25 

Chart 2. Analysis of rig scheduling publications ................................................... 42 

Chart 3. Pareto frontier chart for the parametrization results. ............................... 90 

Chart 4. Progression for the best local searches, results for instance01 on the 

left and results for instance02 on the right .......................................................... 129 

Chart 5. Budget for the solutions found by the VND #114 using instance 02 .... 132 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

List of Figures 

Figure 1. Oil & Gas Supply Chain ........................................................................ 20 

Figure 2. Framework for the E&P phase ............................................................... 20 

Figure 3. Examples of oil rigs, from left to right: fixed rigs, semisubmersibles 

rig, jackup rigs and drillships ................................................................................ 22 

Figure 4. Fictional Rig Schedule for precedence rules illustration ....................... 46 

Figure 5. Fictional Rig Schedule for budget formula illustration ......................... 48 

Figure 6. Procedure of the budget minimization mathematical ............................ 50 

Figure 7. Initial solution for movement examples ................................................. 61 

Figure 8. Insert with fixed dates in an existing rig move example ........................ 62 

Figure 9. Insert with fixed dates in a new rig move example ................................ 62 

Figure 10. Insert in with dates anticipation before move example ....................... 64 

Figure 11. Insert from with dates anticipation before move example................... 64 

Figure 12. Insert in with dates anticipation after movement example .................. 65 

Figure 13. Insert from with dates anticipation after move example ..................... 65 

Figure 14. Insert in with dates postponement before move example .................... 66 

Figure 15. Insert from with dates postponement before move example ................ 67 

Figure 16. Insert in with dates postponement after move example ....................... 67 

Figure 17. Insert from with dates postponement after move example .................. 68 

Figure 18. Local search strategies examples ......................................................... 69 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

Figure 19. Flowchart for the heuristic Constructive1 ............................................ 73 

Figure 20. Flowchart for the heuristic Constructive2 ............................................ 74 

Figure 21. Mathematical model 1 in days result for instance 01 ......................... 120 

Figure 22. Mathematical model 2 in days results for instance 01 ....................... 120 

Figure 23. Mathematical model 2 in weeks results for instance 01 .................... 120 

Figure 24. Mathematical model 1 in days results for instance 02 ....................... 121 

Figure 25. Mathematical model 2 in weeks results for instance 02 .................... 121 

Figure 26. Results for the first iteration of the VND #114 using instance 01 ..... 130 

Figure 27. Results for the 2nd iteration of the VND #114 using instance 01 ..... 131 

Figure 28. Results for the third iteration of the VND #114 using instance ......... 131 

Figure 29. Matheuristic result for instance 01 using Model 1 in day .................. 133 

Figure 30. Matheuristic result for instance 01 using Model 2 in days ................ 133 

Figure 31. Matheuristic result for instance 01 using Model 2 in weeks .............. 133 

Figure 32. Matheuristic result for instance 02 using Model 1 in days ................ 134 

Figure 33. Matheuristic result for instance 02 using Model 2 in weeks .............. 134 

  

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

List of Tables 

Table 1. Summary with Rig Scheduling publications and classifications ............. 38 

Table 2. Successor’s Lists for the Fictional Rig Schedule in Figure 4 .................. 47 

Table 3. Sets for Model 1 ...................................................................................... 51 

Table 4. Parameters for Model 1 ........................................................................... 51 

Table 5. Variables for Model 1 .............................................................................. 51 

Table 6. Sets for Model 2 ...................................................................................... 53 

Table 7. Parameters for Model 2 ........................................................................... 53 

Table 8. Variables for Model 2 .............................................................................. 54 

Table 9. Mathematical models sizes for instance01 .............................................. 77 

Table 10. Mathematical models results for instance01 ......................................... 78 

Table 11. Constructive heuristics results for small instance 01 ............................ 79 

Table 12. Mean results for each neighborhood structure in instance01 ................ 81 

Table 13. Mathematical models size for instance02 ............................................. 84 

Table 14. Mathematical models results for instance02 ......................................... 85 

Table 15. Constructive heuristics results for small instance 01 ............................ 86 

Table 16. Mean results for each neighborhood structures ..................................... 88 

Table 17. Matheuristics results for instance 01 and 02 ......................................... 91 

Table 18. Constructive heuristic with local search results .................................... 92 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

 
 

Table 19. Average results for best heuristic and matheuristic methods ................ 93 

Table 20. Description of the Small Instance ....................................................... 112 

Table 21. Description of the Large Instance. ...................................................... 114 

Table 22. Heuristic results for instances 01 and 02 ............................................. 122 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

1  
Introduction 

The Oil & Gas sector plays an important role in the world and influences 

severely in the development and the economy of countries. BP (2017a) estimated 

that Oil & Gas companies have produced more than 57.4% of the global primary 

energy consumption in 2016. In addition, according to BP (2017b), oil and gas will 

remain as world’s dominant fuels in 2035, supplying 55.1% of world’s energy. Plus, 

petroleum is not only an energy resource, but also a major raw material for 

industries, such as fertilizers, plastic, road construction and pharmaceutical 

(Devold, 2013). 

Nonetheless, the petroleum is a non-renewable resource found beneath the 

Earth’s surface and, to satisfy the its demands, companies are exploiting oil and gas 

from increasingly deeper and difficult locations, such as deep-water and ultra-deep-

water wells (Nummi, 2017; Manning, 2016). As a result, the Exploration and 

Production (E&P) of Oil & Gas involves several complex, expensive and risky 

operations, especially in offshore oilfields (Suslick & Schiozer, 2004). 

One of most critical phases of the E&P is the construction and 

development of wells, which relies mainly in the operation of rigs. Rigs are a costly 

and scarce resource, whose daily rate can vary between US$ 50,000 and US$ 

700,000, depending on the rigs type, market and its operational specifications 

(Kaiser & Snyder, 2013; Osmudsen et al., 2010; IHS Markit, 2017). Companies 

hire rigs to perform several important activities in the wells, such as drilling, 

evaluation, completion and workover. An underestimated rigs fleet can result in oil 

production delays and opportunities losses that affect the wells profitability. On the 

other hand, an oversized fleet may lead to idleness costs of over 1 billion Reais 

(R$), about three hundred million dollars, as mentioned by Pamploma (2016). 

Consequently, these fleets of rigs require to be properly planned and scheduled to 

ensure that the right rigs will be available in the right place at the right time with 

the lowest cost possible.  
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However this decision making process, called as Rig Scheduling Problem, 

is an extremely hard problem, not only due to the variety and the quantity of 

activities, but also as a result of the uncertainties related to geological concepts 

(structure, reservoir seal and hydrocarbon charge), economic evaluations (costs, 

probability of finding and producing economically viable reservoirs, technology 

and oil price), the development and production (infrastructure, production schedule, 

quality of oil and operational costs and reservoir characteristic) (Suslick et al., 

2009). In the offshore rig scheduling problem, the risks are even higher as the tasks 

are harder and the environmental conditions are subject to variable conditions such 

as weather and waves. All of these uncertainties add complexity to the scheduling 

problem, that is already naturally hard, and, consequently, escalate the need of 

decision support tools to assist in the planning and scheduling of rigs, minimizing 

risks and costs. 

According to Reid et al. (2016), as a result of the complexity of the 

problem, most offshore companies failed to meet the delivery, budgetary and 

performance expectations. They also failed in hitting production targets and those 

that achieved the results state longer deliveries times and higher budgets. Due to 

the importance of this problem and industry, there has been a vast number of 

researches aiming to help those companies in their decision making process. Most 

of the studies of the rig scheduling problem focus on sub-problems for onshore 

wells and workover rigs. Only a few researches address issues for offshore drilling 

or completion rigs. The ones that approach the problem are either too superficial or 

unpractical for real application. In addition, almost none have objective functions 

that consider realistic budget parameters. 

Aiming to fill this gap, this dissertation approaches a real rig scheduling 

problem in a major multinational of the Oil & Gas sector. The company of this case 

study is immersed in such environment full of uncertainties and high investments. 

In order to perform several of the E&P activities, the company needs to contract a 

large number of rigs, being a major player in the contract drilling rig market. 

The studied Rig Scheduling Problem involves the sizing and scheduling in 

a medium plan horizon of a homogeneous fleet of offshore rigs, accountable for 

drilling, evaluation and completion activities in a Brazilian deep-water basin. In 
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order to tackle this problem, this dissertation proposes the combination of 

mathematical models and heuristics in a matheuristical approach, hybrid algorithm 

that mix exact methods and heuristics (Raidl & Puchinger, 2008), to efficiently find 

a schedule that minimizes the rigs budget. The proposed mathematical models use 

mixed integer linear programming techniques while the heuristics use local search 

variable neighborhood search algorithms with movements specially adapted for this 

problem. The methods were tested in two instances based on real life scenarios, a 

small and a large one, representing two very different cases of the study company. 

Constructive heuristics and a purely exact method were also proposed and tested 

and they are compared with the matheuristic methods. 

The presented problem and solution methods are important not only to the 

study company, but also the literature. The study company urgently needs a tool to 

support its rig scheduling problem, considering the company’s special constraints 

and objective function, to be used in a medium term planning horizon and capable 

of finding strong solutions in an appropriate time. On the other hand, the current 

state of art of the literature lacks solution models considering realistic objective 

function and parameters for offshore rig scheduling problems. Therefore, the results 

of this study represents gains to the literature and to oil companies. 

The dissertation is divided in eight sections, considering the current 

introductory section. Section 2 briefly describes the Oil & Gas production chain 

and its Exploration & Production phase, linking these subjects with the construction 

of offshore wells and the rig scheduling problem. Section 3 presents the Rig 

Scheduling Problem and performs a deep literature review in the issue. Later, 

Section 3 defines the study problem, its assumptions and presents the mathematical 

models. Then, Section 4 proposes the local search and constructive algorithms, 

describing the possible neighborhood structures, search strategies and others 

heuristics characteristics. After that, Section 6 presents the two instances used to 

test the methods and analyzes the computational experiments for the exact methods 

and the local search and constructive algorithms. Finally, Section 7 contains the 

final considerations of the study and proposes futures researches to be performed. 
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2  
Oil & Gas Production Chain 

In this section, we describe the Oil & Gas Production Chain and its 

divisions, focusing in the field development, one of the most important phases at 

the Exploration & Production (E&P) and a key stage for the production success. 

First, we briefly describe the main three Oil and Gas segments. Follow, we detail 

the upstream. Then, the E&P stages are presented. Finally, the process that includes 

the use of drilling rigs is exposed. 

The Oil and Gas Chain is a horizontal supply chain commonly divided in 

two strands: upstream and downstream. The former is accountable for activities of 

exploration and production of the raw material (oil and natural gas). The latter is 

related with transportation, storage, commercialization, refine and the distribution 

of the oil and its products to the final consumer (Pelizaro, 2008; Ferreira Filho & 

Hamacher, 2015). Lately, others authors have been defining the stream in three 

segments: upstream, midstream and downstream. According to Ferreira Filho & 

Hamacher (2015), the upstream is the exploration and production of oil and gas, the 

midstream is responsible for the refine, transportation and importation of crude oil 

and natural gas, and the downstream is only the distribution and resale of oil 

products. Another classification for the oil and gas systems is proposed by Devold 

(2013), which divides it in: exploration (prospecting, seismic and drilling activities 

before the wells development); upstream (production and stabilization of oil and 

natural gas); midstream (gas treatment and oil and natural gas transportation); 

downstream (stage that process oil and natural gas into it products and distribute 

and sale it to final costumers); petrochemical (production of chemical products 

using hydrocarbons). These three different classifications are illustrated in Figure 

1. In this work, we will use the classification from Ferreira Filho & Hamacher 

(2015) that divides the chain in upstream, midstream and downstream. Next, we 

focus in the upstream part, also known as Exploration & Production (E&P), of 

oilfields. 
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Figure 1 - Oil & Gas Supply Chain 

(Source: the author; Ferreira Filho & Hamacher, 2015). 

2.1.  
Exploration & Production of Oil & Gas 

Exploring and producing hydrocarbons is a highly difficult and risk 

business, especially in the offshore sector (Suslick & Schiozer, 2004). Because of 

that, careful planning and tools to support decision-making are required (Shakhsi-

Niaei et al., 2013). However, in order to achieve those accomplishments, it is 

important to understand the E&P phase properly. Therefore, in this section, we 

present the Exploration & Production of oil and gas, which goes from the discovery 

of oil fields to theirs abandonments, as described in Figure 2: 

 
Figure 2 - Framework for the E&P phase (Source: Santos et al., 2017). 

As shown in Figure 2, the E&P can take many years and it is a key part of 

the process to the company profitability. It can be separated in five main phases 

(Baker, 1996; IFP School, 2015; Pereira, 2005): 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



21 
 

 
 

I. Discovery phase, which is the mapping and geological processes that 

identify possible oil fields; 

II. Evaluation phase, when the possible presence of hydrocarbons is 

confirmed, or not, and evaluated through exploration wells drillers; 

III. Development phase, responsible for important production activities and 

decisions, such as number of wells and if the well will be drilled or 

completed; 

IV. Production phase, accountable for the oil production, can be extended 

through decades and has many different successive operations to increase 

productivity, to correct oil flow loss and to solve mechanical failures; 

V. Abandonment phase, when the hydrocarbon production rate becomes 

economically invaluable and the reservoir is abandoned. 

During these phases, wells are designed, constructed, operated and 

abandoned. Wells can be classified as injectors or producers. The firsts pump gas 

or water in the reservoir to maximize oil productions, while the seconds produce oil 

or natural gas. As explained before, a well life cycle can take years or decades with 

many complex and expensive operations and can be separated into four main stages 

(Offshore Center Danmark, 2010; IOM3, 2015): 

i. Design or Planning phase, when decisions such as well objectives and 

schedules are made. Equipments and contracts are usually ordered and 

placed in stage. 

ii. Construction phase, accountable for activities after the wells design, such 

as drilling, testing, completion and commission of a well. 

iii. Operation phase, after the completion, the well starts its operations, during 

which operations of workover (activities that temporally stop wells 

operation for downhole surveillance, improvement in wells performance 

and repair of failures) can be required. 

iv. Abandonment phase, when the reservoir becomes uneconomic, the wells 

are closed after removing the wellhead and installing downhole cement 

plugs. 

As pointed earlier, some of the main resources used in the exploration of 

oil and gas are the rigs. These structures are used in critical activities such as 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



22 
 

 
 

Evaluation, Drilling, Completion and Workover. They are high complexity and 

expensive ships used to explore wells. There is a variety of oil rigs, each one with 

a purpose. The main offshore rigs, as illustrated in Figure 3, are: fixed rigs (oil 

platform used up to 300 meters water profundity); semisubmersibles rigs (floating 

platforms used up to 2,000 meters water profundity); jackup rigs (platform with 

elevating legs used up to 150 meters) and drillships (floating platforms constructed 

in a vessel hull used up to 2,000 meter water profundity) (Petrobras, 2014; IHS 

Markit, 2017). 

 

Figure 3. Examples of oil rigs, from left to right: fixed rigs, semisubmersibles rig, 

jackup rigs and drillships (Source: Petrobras, 2014). 

Offshore oil rigs are used mainly in the development and production 

phases and in the construction and operation of well. Follow, we describe the 

building of offshore wells. 

2.2.  
Construction of Offshore Wells 

According to Culver (1998), the wells construction is one of most 

expensive and important phases of the Exploration and Production of Wells. As 

explained before, it can be divided mainly in Drilling and Completion activities. 

Both of them require the use of oil rigs. 

In drilling, the well is created using an oil rig that rotates a drill bit. Follow, 

a steel pipe is placed inside the drilled hole and secured with cement, providing 
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structural integrity and isolating the high pressures zones from the surface and from 

each other (Offshore Center Danmark, 2010). 

The completion operations are started after the drilling with the purpose of 

“complete” the well, preparing it to produce oil or natural gas. There are two types 

of completions: cased-hole and open hole. In the first, perforations are made in the 

casing that pass through the reservoir, proving flow passages for the oil to pass to 

the production well. The second consists of just running the casing into the reservoir 

and leaving the end of the pipe open (Offshore Center Danmark, 2010). 

These operations require offshore rigs and are subject to an environment 

full of uncertainties. Plus, the rigs must perform a variety of others complex tasks 

with scarce resources and an extensive horizon plan (Suslick et al., 2009). Because 

of it, planning and scheduling of theirs tasks became key factor to success (Reid et 

al., 2016). 

 In the next section, we will describe the Rig Scheduling Problem.
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3  
Rig Scheduling Problem (RSP) 

The Rig Scheduling Problem (RSP) considers a set of wells, which have 

activities to be executed, and a set of resources available to perform these activities. 

The goal is to provide a minimum cost schedule to accomplish such activities while 

taking into account a complex list of operating and engineering constraints, the time 

window of activities, the rigs’ availability and the predefined order to perform these 

activities. Therefore, a delay in one activity can affect all schedule and, 

consequently, increase the expenses planned (Bassi et al., 2012). 

The problems can be classified according to the oilfield: offshore and 

onshore. Usually, offshore fields are merge in environment with more complex, 

expensive and risky operations. 

Another possible classification is by the use or not of routing techniques, 

dividing the problems in: Scheduling, when there is no need to consider the routes 

made by the rigs, usually when the distance between wells is despicable; Routing 

and Scheduling, when the distances are considerable and rigs transportations results 

in significant costs, requiring the rigs to be not only scheduled but also routed. 

Other common classification divides the problem according to the types of 

activities considered: workover, drilling and completion. Some publications focus 

in only one activity and others take into account more than one. Some researches 

approach the general field development problem, such as Well Activity Scheduling, 

where rigs activities and others offshore equipments, such as Pipe Layer Support 

Vessels (PLSVs), need to be scheduled. 

Last, the studies might also be classified by fleet of rigs and the wells: 

homogeneous and heterogeneous. In the former, all rigs and wells have the same 

characteristics and any rig can attend a well and perform any activity. The latter 

considers that not all rigs and wells are equal and a sub-set of rig can only be 

scheduled to a particularly set of wells or activities. Next, we perform a literature 
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review in the Rig Scheduling Problem with the purpose of understanding the state 

of art and identifying gaps in the literature. 

3.1.  
Literature Review 

The use of Operations Research applied to Oil Rigs Scheduling dates back 

to over 50 years, to a time when Aronofsky & Williams (1962) addressed the 

economic planning and scheduling of oil production, proposing two different linear 

models. One model for scheduling oil production under a fixed rig and drilling 

schedule, and the other to schedule rigs and drilling operations under a pre-defined 

production curve. Both models aimed to maximize cumulative cash flow. Few years 

later, Barnes et al. (1977) investigated the workover rigs scheduling problem and 

proposed two approximate techniques. At that time, these models used to require a 

huge computational effort, disabling any practical application for the problems as 

explained by Pittman (1985). The problem discussion was only restarted in the 90’s, 

as shown in Chart 1: 

 
Chart 1. Operations research publications applied to rig scheduling  

(Source: the author). 

With the improvement in computational complexity capacity and 

optimization methods, de Andrade Filho (1994) restarted the rigs scheduling 

problem discussion. He proposed the use of simulation through Eclipse reservoir 

simulator and polytope search to optimize the schedule of oil fields development 
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projects, deciding development main dates plus the drilling rigs allocation and 

schedules. 

Also in the 90’s, Hasle et al. (1996), Eagle (1996), Iyer et al. (1998), Currie 

et al. (1997a) and Currie et al. (1997b) issued the rigs scheduling problem. Hasle et 

al. (1996) used the Constraint Reasoning (CR) method for the Well Activity 

Scheduling (WAS) problem, where resources such as drilling rigs and wireline 

cranes need to be appointed for several activities, mainly drilling, completation, 

perforation and logging. Eagle (1996) used Simulated Annealing (SA) to schedule 

drilling rigs and maximize the net presented value (NPV) in a multi-period horizon. 

Iyer et al. (1998) proposed a multi-period mixed integer linear programming 

(MILP) model with Branch & Bound technique to design and schedule an offshore 

oil field also aiming to maximize net present value. Their model aimed to decide 

the number, location and capacities of the platforms, the number and location of 

wells, the schedules for well and platforms installations, the scheduling of drilling 

rigs on well platforms and the oil production rate over the time horizon. Last, Currie 

et al. (1997a) and Currie et al. (1997b) presented a simplified mixed integer 

programming (MIP) model for the redevelopment and reservoir management of 

wells, deciding the projects, wells and drilling rigs to be used in a yearly basis. After 

these papers were published, the interest in rig scheduling models and algorithms 

raised. 

Between 2000 and 2006, several papers about the Workover Rig 

Scheduling Problem were published. Paiva et al. (2000) proposed a Simulated 

Annealing (SA) algorithm for workover rigs scheduling and routing problem 

aiming to minimize total cost, including rigs expenses and losses in oil production 

due to the waiting time. The heuristic was based on a previously one from Paiva 

(1997). Gouvêa et al. (2002) proposed two evolutionary metaheuristics (a memetic 

algorithm and a transgenetic algorithm) for the same problem, having the second 

one consistently achieved better solutions. 

Aloise et al. (2002) tested the use of Ant Colony heuristics combined with 

Path-Relinking to the Workover Rig Routing and Scheduling Problem. The authors 

tested different variations of the ant colony system with path relinking against other 

methods (also combined with path relinking), such as Genetic Algorithm (GA) and 
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Greedy Randomized Adaptive Search Procedure (GRASP). The Ant Colony 

Systems with path relinking had the best solutions in the majority of the analyzed 

instances. In addition, the use of path relinking applied to the ant colony heuristic 

assisted to reduce the computational time compared to the heuristic without it. Maia 

et al. (2002) developed a simplified Tabu Search-based heuristic for the problem 

and compared its results with those from Aloise et al. (2002). The basic Tabu Search 

found results similar to those obtained by others heuristics with path relinking. 

Accioly et al. (2002) used a constraint satisfaction problem (CSP or constraint 

programming) to the well activity scheduling with limited resources. Their 

approach schedule activities such as drilling, completion, workover and pipe lines 

connections aiming to maximize oil production and respect several constraints, 

including environmental rules, priorities, precedents, wells and rigs/ships 

characteristics. To explore the solution space, the authors used different search 

heuristics enabling the use of optimization solvers. 

One year later, Rocha et al. (2003) presented a Variable Neighborhood 

Search (VNS) to the workover rig scheduling and routing problem. The authors 

tested three VNS variations and the best results found were obtained with a 

Cooperative Parallel Variable Neighborhood Search with path-relinking (CPVNS-

path relinking) metaheuristic. The proposed heuristic selects a random 

neighborhood between nine different movements mixing swap and insert. The 

results found in this paper seem to be auspicious, but no comparison with the current 

state of art was presented, precluding us to compare it with the previous heuristics. 

After modelling the WRRSP as a binary linear model, Costa & Ferreira 

Filho (2004) were able to use simple and intuitive heuristic designed specifically 

for the problem, named as Maximum Priority Three-Criteria Heuristic (MPTCH) 

or, in Portuguese, Heurística de Máxima Prioridade Tricritério (HMPT). The 

algorithm simplicity allowed it to be easily implemented in simulations, sensibility 

analysis and others decision support tools. However, Costa & Ferreira Filho (2005) 

tested the MPTCH heuristic against another intuitive and simple heuristic, 

referenced as Dynamical Assemble Heuristic (DAH) or, in Portuguese, Heurística 

de Montagem Dinâmica (HMD). The DAH heuristic outperformed the first method 

in all 300 examples tested and has proved to be a better algorithm that could be 

applied to small and large instances. These two methods, a Greedy Randomized 
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Adaptive Search Procedure (GRASP) heuristic and 300 real-life instances are also 

presented in the master thesis of Costa (2005). The GRASP method was 

implemented using a local search algorithm that tests all the instants of times in 

which tasks can begin without changing their execution orders. These three works 

and their examples have become a reference in the Workover Rig Scheduling 

Problem. 

Trindade & Ochi (2004) proposed six variations of Greedy Randomized 

Adaptive Search Procedure (GRASP) and used the path relinking on them to 

improve their results. The authors performed several tests to analyze the heuristic 

behavior in different scenarios and its sensibility to the parameters variations. The 

authors proved the importance of using the appropriate local search method and 

found out that the GRASP model showed high robustness in the experiments. Later, 

Trindade & Ochi (2005) adapted the model to a hybrid GRASP with Path-

Relinking, achieving even better results. 

Follow, Aloise et al. (2006) used a Variable Neighborhood Search (VNS) 

heuristic to the Workover Rig Routing and Scheduling Problem. However, unlike 

the previous works, the authors considered a fleet of heterogeneous workover rigs, 

where rigs might differ in type and perform different levels of maintenance 

according to it. The VNS algorithm used several combinations of successive swap 

and insert movements, changing wells in a particular rig or different rigs or even 

entire rigs schedules. The heuristic was tested in real-life instances, where the 

average estimated savings were of approximately US$ 107,000 per 15 days. The 

projected annual savings were of over 2.5 million dollars. As a result, the heuristic 

was implemented in the Brazilian oil company (PETROBRAS) responsible for the 

real-life instances. 

Meanwhile, a Genetic Algorithm (GA) was proposed by Alves & Ferreira 

Filho (2006) to the Workover Rigs Scheduling Problem with a homogeneous fleet 

and negligible travel times between wells. In 90% of the small instances, the 

heuristic was able to find solutions with GAP from the lower bound of under than 

0.1%. For large problems, the metaheuristic was evaluated against Maximum 

Priority Three-Criteria Heuristic (MPTCH) and Dynamical Assemble Heuristic 

(DAH) from, respectively, Costa & Ferreira Filho (2004) and Costa & Ferreira 
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Filho (2005). In these scenarios, the GA method showed competitive results with 

minimum time.  

Also in 2006, another Genetic Algorithm was developed by Vasconcellos 

& Ferreira Filho (2006) for the Resource Constraint Project Scheduling Problem 

(RCPSP) of an offshore oil field development. The model dealt with different 

activity scheduling decisions, each one needing a particular resource. Some 

activities needed oilrigs, such as well drilling and completion, and others demanded 

Pipe Layer Support Vessels. The method provided a powerful, practical and ease 

support decision tool to be used in the RCPSP. 

Later, Oliveira et al. (2007) proposed a Scatter Search metaheuristic to the 

Workover Rig Routing and Scheduling Problem. The algorithm was compared 

against a GRASP heuristic and a Dynamical Assemble Heuristic (DAH), both 

previously developed by Costa (2005). The Scatter Search achieved better results 

than the GRASP heuristic in all instances and similar solutions to the ones found 

on DAH. To improve the GRASP with path relinking heuristic performance, Neves 

& Ochi (2007) presented an enhanced GRASP with Adaptive Memory Procedures 

(GRASP+AM). The inclusion of this learning procedure successfully powered up 

GRASP’s efficiency. Others heuristics were introduced in Neves (2007)’s master 

thesis, such as Tabu Search and Iterated Local Search. 

As noticed, just few of the studies above address the general Rig 

Scheduling Problem. Most researches were made focusing in the Workover Rig 

Scheduling Problem (WRSP) for onshore wells. However, since 2007, there has 

been an increase in publications applied to other rigs activity and offshore. First, 

Litvak et al. (2007) developed a procedure for British Petroleum’s Top-Down 

Reservoir Modeling (TDRM) methodology using enhanced Genetic Algorithms to 

the offshore oil field development that included decisions such as drilling and 

completion rigs schedule for an available homogenous rigs fleet. Irgens & Lavenue 

(2007) and Irgens et al. (2008) target the drilling rig scheduling problem of a 

heterogeneous fleet. The authors developed two applications that provides real-time 

visualization and aims to maximize oil production and to minimize transportation 

costs through a special Stocastic Local Search. The algorithm used was designed 
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for operational environments and provides fast and good solutions for real 

instances, but usually does not find optimal values. 

Another Genetic Algorithm variation was proposed by Onwunalu et al. 

(2008). The authors enhanced the optimization model proposed by Litvak et al. 

(2007) through statistical proxies’ procedures that use clustering-based techniques 

to build a statistical correlation between objective function and attributes, lowering 

the execution time. 

Also in that year, Lasrado (2008) developed an application and a 

methodology for the workover rig scheduling problem using an adaptation of the 

reservoir simulation technique proposed years before by de Andrade Filho (1994). 

The application generates schedules and aims to minimize the rigs travelling 

distance and the number of rigs used, reducing transportation and contract costs. 

However, the methodology is manual and does not use optimization tools. 

Falex (2009) proposed a Genetic Algorithm to the drilling rig scheduling 

problem of a heterogeneous rigs fleet aiming to minimize the total cost, sum of rigs 

contracts and production loss costs associated with the delay, in terms of present 

value. Gonçalves (2009) has also used the Genetic Algorithm metaheuristic for the 

drilling rig routing scheduling problem. Yet, the author took advantage of the ease 

of genetic algorithm modeling and introduced complex constraints, such as 

environmental and regulatory laws, and rigs displacement costs. The proposed 

model maximize the well’s Expected Monetary Value (EMV), which is the sum of 

the products of the net present values and theirs probabilities of occurrence. 

Back to the workover rig scheduling problem, Douro & Lorenzoni (2009) 

tested a Genetic Algorithm using the 2-opt improvement technique for 

homogeneous rigs fleet. The method used a heuristic based in the MPTCH 

technique from Costa & Ferreira Filho (2004) to find good initial solutions. The 

researchers compared their results with the MPTCH and others heuristics from the 

literature, such as DAH, GRASP and GA, respectively, from Costa & Ferreira Filho 

(2004), Costa (2005) and Alves & Ferreira Filho (2006). The proposed 

metaheuristic found better solutions outperforming the previous algorithms 

MPTCH, DAH and GRASP. Furthermore, the number of best solutions found in 
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the algorithm was highly superior from the quantity found in the GA of Alves & 

Ferreira Filho (2006), enhancing the superiority of the suggested method. 

Pacheco et al. (2009) also addressed the workover rig scheduling problem 

and implemented a heuristic called as Bubble Swap (BS) to minimize the oil 

production loss associated with the well’s maintenance. The proposed Bubble Swap 

is an improvement heuristic that starts with a preliminary solution constructed by 

the Maximum Priority Three-Criteria Heuristic (MPTCH) from Costa & Ferreira 

Filho (2004) and searches for better solutions swapping wells from identical or 

different rigs and through bubble sorts. When compared with other methods, for 

instance GA (Alves & Ferreira Filho, 2006), MPTCH (Costa & Ferrreira Filho, 

2004), DAH (Costa & Ferrreira Filho, 2005) and Scatter Search (Oliveira et al., 

2007), the Bubble Swap quickly found competitive solutions in the small instances 

and became a superior algorithm as the instances size increased. 

Focusing in the Workover Rig Routing and Scheduling issue, Pacheco et 

al. (2010; 2012) propose a hybrid GRASP with Path-Relinking based in the GRASP 

from Costa (2005). After enabling the construction phase to use infeasible solutions, 

using the local search movement from Aloise et al. (2006) and introducing the path-

relinking in the heuristic, the model became a reliable method, obtaining betters 

solutions than the ones from Costa (2005), Costa & Ferreira Filho (2005), Oliveira 

et al. (2007), Douro & Lorenzoni (2009) and Pacheco et al. (2009). 

With the goal of achieving better solutions for the WRRSP, Lorenzoni & 

Polycarpo (2010) enhanced the Scatter Search (SS) method from Oliveira et al. 

(2007), using the MPTCH of Costa & Ferreira Filho (2004) as the solution 

generator for theirs heuristic. As result, the SS found 11 new best solutions and 

showed to be as powerful as the GA-2opt metaheuristic. 

The rigs operation schedule is highly associated with their resources 

planning. Aiming to help this particular problem, Mazzini et al. (2010) propose a 

Mixed Integer Linear Programming (MILP) model that decides the rigs equipments 

and the drilling/completion rigs schedules, respecting rigs planned itinerary. The 

introduced model aims to minimize the sum of the resources contracts costs and the 

costs associated with the rigs tardiness and, according to the authors, it can generate 

millions dollars in annual savings. 
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Al Gharbi (2011) address the Drilling Rig Routing Scheduling Problem 

for onshore wells and a homogeneous rigs fleet. The author analyzed several 

constructive heuristics using the Dijkstra Algorithm with different objectives to be 

minimized, such as travel distance between wells, total distance, number of 

operation days and total cost (sum of moving and operation costs). After studying 

these scenarios, the author developed a heuristic mixing the characteristics with the 

best fit to a real case problem aiming to minimize the total costs. When compared 

with the case company’s current process, the algorithm resulted in a higher number 

of operation days, but with 30% and 11.5% of improvement in total moved distance 

and total cost, respectively. 

Aiming to find optimal or near-optimal solutions on the most difficult 

instances of the Workover Rig Routing and Scheduling Problem, Ribeiro et al. 

(2011) propose a simple (yet robust) Simulated Annealing-based heuristic. They 

propose a new algorithm, based on the one from Mauri & Lorena (2009) (used in 

the dial-a-ride problem), to generate the initial solution and apply the SA iterative 

improvement method using three different neighborhood: Re-order well, Re-

allocate well and Swap wells. The first swaps wells from the same rig, the second 

choose reallocate (insert) the well in others rigs and the last one swap wells from 

different rigs. During each iteration, the heuristic randomly chooses a neighborhood 

strategy and generates a strong diversity with small and simple changes. In 

consequence, the algorithm produces powerful and fast solutions and beats most 

heuristics. The authors compared their results with other heuristics previously used, 

such as DAH, GRASP, SS, BS and GA-2opt – respectively from Costa & Ferrreira 

Filho (2005), Costa (2005), Oliveira et al. (2007), Pacheco et al. (2009) and Douro 

& Lorenzoni (2009) –, and the proposed Simulated Annealing outperformed all of 

the above methods. 

Pacheco (2011) presented three heuristics – a Bubble Swap, a GRASP with 

path-relinking and a Memetic Algorithm (MA) – to minimize oil production losses 

when scheduling a fleet of homogeneous workover rigs on onshore wells. The 

author compared these methods with the SA heuristic from Ribeiro et al. (2011). 

For the instances analyzed, the Memetic Algorithm and the Simulated Annealing 

heuristic were consistently superiors than the others algorithms, with the second 

one outran the first. 
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In the next year, Ribeiro et al. (2012a) published an article applying three 

different heuristics to the Workover Rig Routing and Scheduling Problem with a 

homogeneous fleet and comparing their performance. The three proposed algorithm 

were: an Iterated Local Search (ILS) from Neves (2007), a Clustering Search (CS) 

and an Adaptive Large Neighborhood Search (ALNS). According to the authors, 

both CS heuristic and ALNS heuristic showed superior results than the ones found 

by the ILS, with the ALNS outperforming the other two methods. Meanwhile, 

Ribeiro et al. (2012b) tried to find exact solutions to an even harder issue, the 

WRRSP with a heterogeneous fleet. The authors proposed a Branch-Price-and-Cut 

(BPC) optimization algorithm – based on techniques such as Tabu Search (TS), 

column generator, ng-path-relaxation and subset-row inequalities –, enabling to 

solve practical and real-life examples with up to two hundreds wells and ten rigs. 

The presented BPC method found 50 new optimal solutions for the benchmark 

instances. 

Three models and hybrid methods to workover rig problem were proposed 

by Duhamel et al. (2012) for different perspectives. The first was based on Aloise 

et al. (2006) workover rig scheduling MILP model. The authors reduced the number 

of variables and constraints and developed several improvements, such as allowing 

the wells to remain unattended and introducing inequalities to strengthen the 

formulation. The second was an open vehicle routing problem (OVRP) strategy for 

the WRRSP, with lifted constraints and better bounds. The last was a set-covering 

(C) formulation, obtained through a Dantzig-Wolfe decomposition of the second 

model. This C model was enhanced using column generations with GRASP and 

VND heuristics. All three proposed models aim to minimize the total production 

loss, associated with wells maintenance stop, under a homogeneous fleet of onshore 

rigs. When compared, all models were capable on finding optimal or near solution 

in small instances. However, the set-covering formulation has shown good and fast 

performance even in larger instances with between 30 and 60 wells, discovering 

solutions with gaps of just 0.1%. 

A new approach for the Workover Rig Scheduling Problem was proposed 

by Bassi et al. (2012). The authors used simulation–optimization techniques, i.e., a 

GRASP metaheuristic with simulation, to minimize total oil production loss 

considering a heterogeneous fleet of offshore oil rigs and expressive travel times 
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between wells. First, a simulation phase, based on processing modeling, produces 

random samples of wells’ service times and oil potentials. Then, the optimization 

algorithms (a simple constructive greedy heuristic and a GRASP model) find near 

optimal rigs schedules. Those two steps are repeated for several times and, last, a 

significant number of solutions are generated by simulation-optimization. The 

authors tested the model for several instances and different rigs fleet sizes. The 

analysis of the expected costs associated with the oil loss and rigs expenses unveiled 

an important trade-off between fleet size and total oil loss. On one hand, a larger 

number of rigs results in better performance measures (makespan, queue size and 

wells waiting time), but on the other hand increases the operating costs. Bassi et al. 

(2012) also proposed two matrices: a Well-Rig matrix and a Well-Order matrix. 

The former was used to determine well’s probability of being scheduled in a 

particular rig and to flag the favorable allocations, enhancing the rig and wells 

analysis and revealing clustering trends between well and rigs according to theirs 

initial location. The latter determines the rig’s chance of supporting a well in each 

queue position. The authors also provide a deep literature review on the WRSP with 

rich discussions, being a recommended reading for the Workover Rig Scheduling 

Problem. 

From the oil field management perspective, Serra et al. (2012a; 2012b) 

proposed a Constraint Programming (CP) model to the offshore resource 

scheduling problem, where major assets, such as heterogeneous fleet of oil rigs and 

pipe layer support vessels, are scheduled aiming to maximize the oil production. 

Their model was based on a previously model presented by Serra et al. (2011), with 

few differences to tackle complex scenarios. 

Two years later, others studies about the Workover Rig Scheduling 

Problem were published, such as in Ribeiro et al. (2014), Marques et al. (2014) and 

Bissoli (2014). Ribeiro et al. (2014) present and compare heuristics in the 

scheduling and routing of a limited heterogeneous onshore workover rigs fleet, 

aiming to minimize the oil production loss. The four heuristics analyzed were a 

Variable Neighborhood Search – from Aloise et al. (2006) –, a Branch-Price-and-

Cut – extension of Ribeiro et al. (2012a) –, an Adaptive Large Neighborhood 

Search – adapted from Ribeiro et al. (2012a) – and a Hybrid Genetic Algorithm. 

All models consider realistic premises and constraints. For instance, each well have 
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a particular loss rate, need a specific maintenance service and may not be attended. 

When compared, the BPC, the ALNS and the HGA results were consistently 

superior to the VNS heuristics, with deviations of more than 9% from the other 

methods. The BPC algorithm was able to find good solutions faster than the 

alternative methods, but their qualities are inferior than the ALNS and the genetic 

algorithm, methods that took more computational time. The HGA was the only 

method that found all the best solutions and usually outperformed the ALNS when 

compared over the time. The authors also made sensitivity analysis to detect 

performance changes due to the algorithms calibration. 

Marques et al. (2014) presented a decision support system that uses a 

mixed integer linear programming model to size and schedule a homogeneous fleet 

of offshore workover rigs aiming to minimize the total number of rigs and to 

maximize their utilization. The authors used an objective function with weighted 

terms that forces the model to select rigs according to a priority list and to minimize 

their idleness. The proposed model was tested in three different scenarios and 

delivered exceptional results. 

Bissoli (2014) addressed the Workover Rig Routing and Scheduling 

Problem using an Adaptive Large Neighborhood Search (ALNS) with a bi-

objective function to minimize the oil production loss and the number of onshore 

rigs and so, according to the author, minimizing the rigs costs and total costs. This 

assumption is a simplification; in reality, a minimum fleet does not mean that costs 

associated with the chartering processes are minimized. The proposed ALNS was 

based in a previous one from Ribeito et al. (2012a) and was implemented in two 

models: one that considers a heterogeneous fleet and other that takes a 

homogeneous fleet into account. The authors also analyze the average deviation of 

0.78% to the exact solutions found by a BPC algorithm from Ribeiro et al. (2012b) 

and the trade-off between oil production loss and rigs chartering costs. 

Monemi et al. (2015) addressed the Workover Rig Scheduling Problem 

with a heterogeneous fleet. The authors proposed a new MILP model, based on arc-

time-indexed formulations and two solution techniques: Branch-Price-and-Cut and 

hyper-heuristic. The former explores the new formulation and takes advantage of 

its dual decomposable efficiency in the Dantzig-Wolfe decomposition. The latter 
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uses low-level heuristics (a set of constructive, improvement, perturbation and 

reconstructive heuristics) with a learning mechanism to find solution inside the 

heuristic space. According to the authors, the hyper-heuristic approach was able to 

find optimal or near optimal solutions for any instance with just a few seconds. 

Furthermore, the approximation method found solutions for larger instances, where 

the exact algorithm failed. 

Another Mixed Integer Programming method was later proposed by Silva 

et al. (2016), this time applied to the Rig Routing and Scheduling Problem with a 

heterogeneous fleet of offshore oil rigs. The proposed model aims to minimize the 

oil production loss and the rigs’ utilization costs, considering different activities, 

such as drilling, completion and workover, as well as other realistic assumptions, 

including non-linear routing and scheduling constraints. According to the authors, 

a branch-and-bound technique was used to solve a small instance based on a real 

scenario. After analyzing the proposed model, we noticed that the non-linear 

constraints could be easily eliminated using disjunctive programming. Once Silva 

et al. (2016) did not explained how they managed the non-linear constraints, it is 

possible that the computational effort required to solve the problem can be reduced 

using such linear programming formulation tricks, enabling the model to be applied 

to larger instances. 

Peréz et al. (2016) proposed a decomposed reformulation of the binary 

linear model from Costa & Ferreira Filho (2004) for the Workover Rig Scheduling 

Problem with a homogeneous fleet of onshore oil rigs. The presented model had 

less variables and constraints and was tested in the benchmarks instances from 

Costa (2005). The decomposed mathematical model not only found new exact 

solutions for large instances with 125 wells and 10 rigs, but also outperformed 

others methods, such as GA-2opt (Douro & Lorenzoni, 2009), Memetic Algorithm 

(Pacheco, 2011) and Simulated Annealing (Ribeiro et al., 2011), with better 

solutions and lower computational times. The authors also point the importance of 

testing such models in offshore wells. Bissoli et al. (2016) performed an extensive 

literature review on the Workover Rig Routing and Scheduling Problem, analyzing 

its drivers and trends. According to the authors, the current trends are to 

approximate the problem with the real life scenarios through new objective 
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functions, mathematical formulations and solutions methods and dynamic and 

stochastic approaches. 

In the same year, Flager (2016) addressed the Drilling Rig Scheduling 

Problem of onshore oil wells with a heterogeneous oil rigs fleet and proposed a 

multi-objective Genetic Algorithm with Monte Carlo Simulation aiming to, 

simultaneously, maximize the oil production rate and minimize the production cost. 

A framework of the proposed model and a description of its inputs and decisions 

are presented, but the author does not explain the algorithm or mathematical model 

used, making difficult a deeper analysis in the technique used. It is important to 

notice that the results found in the paper refer to a realistic and large instance with 

237 wells. However, as there was a lack of details in models performance and 

specifications and no comparison with another model was presented, we cannot 

conclude about its benefits. 

Last, Carilho & Villas Boas (2016) presented a decision support system 

(DSS) for rigs scheduling that uses a MILP model to simultaneously maximize the 

allocation of activities in rigs already contracted and minimize the fleet of rigs to 

be contracted. In order to reduce the complexity of the model, the authors decided 

to represent the tasks in a block structure and to use a time horizon in weeks. The 

DSS proposed also provides scenarios analysis with multiple indicators and reports. 

Besides, it was successfully implemented in a major Brazilian operator that needs 

to plan dozens of rigs and hundreds of wells in a time horizon of 15 years. 

According to the authors, the model managed to reduce in half the number of 

contracted rigs and eliminated several inconsistences from the manual approach 

that was used before by the company. 

We summarize all rigs scheduling publications presented in this review in 

Table 1. The papers are classified according to authors, year of publication, type of 

oil field (offshore/onshore), rig activity type (drilling/completion/workover), 

activities types (single/multiple), problem definition, technique used (heuristic, 

mathematical programming, simulation, etc.), optimization direction 

(maximize/minimize) and objective function (net present value, oil production, oil 

production loss, makespan, etc.). 

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



38 
 

 
 

Table 1. Summary with Rig Scheduling publications and classifications 

(Source: the author). 

Authors Year 
Oil 

field 

Rig 

Activity 

Activities 

Types 
Rigs Fleet 

Problem 

Definition 
Technique 

Optimization 

Direction 

Objective 

Function 

Aronofsky & 

Williams 

1962 

 

Under-

ground 
Drilling Single Homogeneous 

Drilling Rig 

Scheduling 

Parametric 

Linear 

Programming 

(PLP) 

Maximize 

Discounted 

Cumulative 

Cash Flow 

Barnes et al. 1977 Any Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

Approximate 

Techniques 
Minimize 

Oil 

Production 

Loss 

De Andrade 

Filho 
1994 Offshore Drilling Single Homogeneous 

Oil Field 

Development 

and Drilling 

Rig 

Scheduling 

Polytope 

Search + 

Reservoir 

Simulation 

Maximize Cash Flow 

Hasle et al. 1996 Offshore 

Drilling 

and 

Completion 

Multiple Homogeneous 

Well 

Activity 

Scheduling 

Constraint 

Reasoning 

(CR) 

Minimize Makespan 

Eagle 1996 Onshore Drilling Single Homogeneous 
Drilling Rig 

Scheduling 

Simulated 

Annealing 

(SA) 

Maximize 
Net Present 

Value (NPV) 

Paiva 1997 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Simulated 

Annealing 

(SA) 

Minimize 

Total Costs = 

Transportation 

Costs + 

Production 

Loss 

Currie et al. 
1997a 

1997b 
Offshore Drilling Single Homogeneous 

Oil Field 

Development 

and Drilling 

Rig 

Scheduling 

Mixed Integer 

Linear 

Programming 

(MILP) 

Maximize NPV 

Iyer et al. 1998 Offshore Drilling Single Homogeneous 

Oil Field 

Development 

and Drilling 

Rig 

Scheduling 

MILP + 

Branch and 

Bound 

Maximize NPV 

Paiva et al. 2000 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Simulated 

Annealing 

(SA) 

Minimize 

Total Costs = 

Transportation 

Costs + Oil 

Production 

Loss 

Gouvêa et 

al. 
2002 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Evolutionary 

Algorithms 

(Memetic + 

Transgenic) 

Minimize 

Oil 

Production 

Loss 

Aloise et al. 2002 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Ant Colony + 

Path-

Relinking 

Minimize 

Oil 

Production 

Loss 

Maia et al. 2002 Onshore Workover Multiple Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Tabu Search Minimize 

Oil 

Production 

Loss 

Accioly et 

al. 
2002 Offshore 

Drilling, 

Completion 

and 

Workover 

Multiple Heterogeneous 

Well 

Activity 

Scheduling 

Constraint 

Programming 

Minimize / 

Maximize 

Makespan / 

Oil 

Production 

Rocha et al. 2003 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Cooperative 

Parallel 

Variable 

Neighborhood 

Search 

(CPVNS) 

with Path-

Relinking 

Minimize 

Oil 

Production 

Loss 

Costa & 

Ferreira 

Filho 

2004 Onshore Workover 
 

Single 
Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Maximum 

Priority 

Three-Criteria 

Heuristic 

(MPTCH) 

Minimize 

Oil 

Production 

Loss 

Trindade & 

Ochi 
2004 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Greedy 

Randomized 

Adaptive 

Search 

Procedure 

(GRASP) 

with Path-

Relinking 

Minimize 

Oil 

Production 

Loss 
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Authors Year 
Oil 

field 

Rig 

Activity 

Activities 

Types 
Rigs Fleet 

Problem 

Definition 
Technique 

Optimization 

Direction 

Objective 

Function 

Costa & 

Ferreira 

Filho 

2005 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Dynamical 

Assemble 

Heuristic 

(DAH) 

Minimize 

Oil 

Production 

Loss 

Trindade & 

Ochi 
2005 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Hybrid 

GRASP with 

Path-

Relinking 

Minimize 

Oil 

Production 

Loss 

Costa 2005 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

MPTCH, 

DAH and 

GRASP 

Minimize 

Oil 

Production 

Loss 

Aloise et al. 2006 Onshore Workover Multiple Heterogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Variable 

Neighborhood 

Search (VNS) 

Minimize 

Oil 

Production 

Loss 

Alves & 

Ferreira 

Filho 

2006 Onshore Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

Genetic 

Algorithm 

(GA) 

Minimize 

Oil 

Production 

Loss 

Vasconcellos 

& Ferreira 

Filho 

2006 Offshore 

Drilling 

and 

Completion 

Multiple Heterogeneous 

Well 

Activity 

Scheduling 

Genetic 

Algorithm 

(GA) 

Minimize Make-span 

Oliveira et 

al. 
2007 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Scatter Search Minimize 

Oil 

Production 

Loss 

Neves 2007 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Iterated Local 

Search (ILS) 

and Tabu 

Search 

Minimize 

Oil 

Production 

Loss 

Neves & 

Ochi 
2007 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

GRASP with 

Adaptive 

Memory 

Procedures 

Minimize 

Oil 

Production 

Loss 

Litvak et al. 2007 Offshore 

Drilling 

and 

Completion 

Multiple Homogeneous 

Oil Field 

Development 

and Drilling 

Rig Schedule 

Genetic 

Algorithm 

(GA) 

Maximize 

Economic 

Indicators / 

Oil and Gas 

Recovery 

Irgens & 

Lavenue 
2007 Offshore Drilling Single Heterogeneous 

Drilling Rig 

Scheduling 

Stochastic 

Local Search 

Maximize / 

Minimize 

Oil 

Production / 

Transportation 

Costs 

Irgens et al. 2008 Offshore Drilling Single Heterogeneous 
Drilling Rig 

Scheduling 

Stochastic 

Local Search 

Maximize / 

Minimize 

Oil 

Production / 

Transportation 

Costs 

Onwunalu et 

al. 
2008 Offshore Drilling Multiple Homogeneous 

Drilling Rig 

Scheduling 

GA with 

statistical 

proxies 

Maximize NPV 

Lasrado 2008 Offshore Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

Reservoir 

Simulation 
Minimize 

Distance 

Traveled and 

Number of 

Rigs 

Falex 2009 Offshore Drilling Multiple Heterogeneous 
Drilling Rig 

Scheduling 

Reservoir 

Simulation 
Minimize 

Net Present 

Loss (NPL) 

Gonçalves 2009 Offshore Drilling Multiple Heterogeneous 

Drilling Rig 

Routing and 

Scheduling 

Genetic 

Algorithm 

(GA) 

Maximize 

Expected 

Monetary 

Value (EMV) 

Douro & 

Lorenzoni 
2009 Onshore Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

Genetic 

Algorithm 

with 2-opt 

(GA-2opt) 

Minimize 

 

Oil 

Production 

Loss 

Pacheco et 

al. 
2009 Onshore Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

Bubble Swap Minimize 

 

Oil 

Production 

Loss 

Mazzini et 

al. 
2010 Offshore 

Drilling 

and 

Completion 

Multiple Heterogeneous 

Rigs 

Equipment 

Scheduling 

Mixed Integer 

Linear 

Programming 

(MILP) 

Minimize 

Equipment’s 

Charter and 

Rigs 

Tardiness 

Costs 

Pacheco et 

al. 
2010 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Hybrid 

GRASP with 

Path-

Relinking 

Minimize 

Oil 

Production 

Loss 

Lorenzoni & 

Polycarpo 
2010 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Scatter Search Minimize 

Oil 

Production 

Loss 

Al Gharbi 2011 Onshore Drilling Single Homogeneous 

Drilling Rig 

Routing and 

Scheduling 

Constructive 

Heuristics 

with Dijkstra 

Algorithm 

Minimize 

Total Costs = 

Moving and 

Operation 

Costs 
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Authors Year 
Oil 

field 

Rig 

Activity 

Activities 

Types 
Rigs Fleet 

Problem 

Definition 
Technique 

Optimization 

Direction 

Objective 

Function 

Ribeiro et al. 2011 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Simulated 

Annealing 

(SA) 

Minimize 

Oil 

Production 

Loss 

Pacheco 2011 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Bubble Swap 

(BS), GRASP 

with Path-

relinking and 

Memetic 

Algorithm 

(MA) 

Minimize 

Oil 

Production 

Loss 

Ribeiro et al. 2012a Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Iterated Local 

Search (ILS), 

Clustering 

Search (CS) 

and Adaptive 

Large 

Neighborhood 

Search 

(ALNS) 

Minimize 

Oil 

Production 

Loss 

Ribeiro et al. 2012b Onshore Workover Multiple Heterogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Branch-Price-

and-Cut 
Minimize 

Oil 

Production 

Loss 

Duhamel et 

al. 
2012 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Column 

Generation, 

MILP and 

heuristics 

Minimize 

Oil 

Production 

Loss 

Pacheco et 

al. 
2012 Onshore Workover Single Homogeneous 

Workover 

Rig Routing 

and 

Scheduling 

Hybrid 

GRASP with 

Path-

Relinking 

Minimize 

Oil 

Production 

Loss 

Gupta & 

Grossmann 
2012 Offshore Drilling Single - 

Oil Field 

Development 

and Well 

Drilling 

Scheduling 

Multi-period 

Nonconvex 

Mixed Integer 

Non Linear 

Programming 

(MINLP) 

Maximize 
Net Present 

Value (NPV) 

Neves et al. 2012 Offshore 

Drilling 

and 

Completion 

Multiple - 
Rig Schedule 

Feasibility 
- - - 

Serra et al. 
2012a 

2012b 
Offshore 

Drilling, 

Completion 

and 

Workover 

Multiple Heterogeneous 

Oil Field 

Development 

and Well 

Drilling 

Schedule 

Offshore 

Resource 

Scheduling 

Problem 

Constraint 

Programming 
Maximize 

Oil 

Production 

Bassi et al. 2012 Offshore Workover Multiple Heterogeneous 

Workover 

Rig 

Scheduling 

Simulation-

Optimization 

(w/ GRASP) 

Minimize 

Oil 

Production 

Loss 

Ribeiro et al. 2014 Onshore Workover Multiple Heterogeneous 

Workover 

Rig Routing 

and 

Scheduling 

VNS, Branch-

Price-and-

Cut, Adaptive 

Large 

Neighborhood 

Search and 

Hybrid-GA 

Minimize 

Oil 

Production 

Loss 

Marques et 

al. 
2014 Offshore Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

MILP Minimize 
Number of 

Rigs 

Bissoli 2014 Onshore Workover Multiple 

Homogeneous 

/ 

Heterogeneous 

Workover 

Rig Routing 

and 

Scheduling 

MILP and 

ALNS 
Minimize 

Oil 

Production 

Loss and Rigs 

Costs 

Monemi et 

al. 
2015 Onshore Workover Multiple Heterogeneous 

Workover 

Rig 

Scheduling 

MILP, 

Branch-Price-

and-Cut and 

Hyper-

Heuristic 

Minimize 

Oil 

Production 

Loss 

Silva et al. 2016 Offshore 

Drilling, 

Completion 

and 

Workover 

Multiple Heterogeneous 

Rig Routing 

and 

Scheduling 

MIP Minimize 

Oil 

Production 

Loss and 

Rig’s Costs 

Peréz et al. 2016 Onshore Workover Single Homogeneous 

Workover 

Rig 

Scheduling 

Binary Linear 

Programming 
Minimize 

Oil 

Production 

Loss 

Bissoli et al. 2016 Onshore Workover - - 

Workover 

Rig 

Scheduling 

- - - 
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Authors Year 
Oil 

field 

Rig 

Activity 

Activities 

Types 
Rigs Fleet 

Problem 

Definition 
Technique 

Optimization 

Direction 

Objective 

Function 

Flager 2016 Onshore Drilling Multiple Heterogeneous 
Drilling Rig 

Scheduling 

Multi-

objective GA 

and Monte 

Carlo 

Simulation 

Maximize / 

Minimize 

Production 

Rate / 

Production 

Cost 

Carilho & 

Villas Boas 
2016 Offshore 

Drilling 

and 

Completion 

Multiple Heterogeneous 
Rig 

Scheduling 
MILP Minimize 

Number of 

Rig 

After this literature review, it is clear that there are some tendencies in 

papers about the Rig Scheduling Problems. The first publications were in the 60’s 

and 70’s and refer to drilling rigs scheduling problem in an oil field development 

perspective. However, only in the second half of the 90’s, the discussions started to 

gain the deserved attention. Some new mathematical models were proposed, but 

they were still unpractical for real instances, leaving the use of heuristics as an 

alternative approach for exact algorithms. 

From 2000 to 2011 there was a boom in the researches, proposing new and 

more efficient heuristics for the issue and most of them focusing on workover rigs. 

The improvement in the heuristics performance allowed to approach more realistic 

scenarios, such as heterogeneous fleet of rigs and multiple types of activities to be 

planned. Beyond 2012, the publications started to propose matheuristics (hybrid 

methods combining mathematical programming and metaheuristics). 

Chart 2 resumes some statistics that can be taken from Table 1. The vast 

majority of the papers found in this review approached problems of Workover Rigs. 

Further, most publication are for onshore oil field planning. There is also a balance 

between models or heuristics for “Routing + Scheduling” and “Scheduling” oil rigs, 

even though there are more works focusing only in scheduling. Last, most 

researches propose heuristics to solve their problems. Aiming to fill some of the 

literature’s gap, we propose a mathematical model and a heuristic to the Drilling 

and Completion Rig Scheduling Problem of a homogeneous fleet of offshore oil 

rigs. Furthermore, we consider a realistic objective function that minimizes the 

schedule’s budget, taking into account multiple factors. In the next section, we 

describe the problem tackled in our research with more details. 
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Chart 2. Analysis of rig scheduling publications (Source: the author). 
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4  
Problem Statement 

In Section 3, we have presented a literature review of the rig scheduling 

problem, its importance and its needs. This Section presents the company studied 

and defines the problem in its perspective. 

Offshore companies perform several complex, risky and expensive 

operations in the Exploration and Production (E&P) of Oil & Gas. The company of 

this case study, a major multinational of the energy sector, is immersed in such 

environment full of uncertainties and high investments. In order to perform several 

E&P activities, the company needs to contract a large number of oil rigs, being one 

of the major players in the contract drilling rig market (Kaiser & Snyder, 2013). A 

daily rig rate vary between US$ 50,000 to US$ 700,000, depending on the rigs type, 

market and its operational specifications ((Kaiser & Snyder, 2013; Osmudsen et al., 

2010; IHS Markit, 2017). 

Consequently, rigs are a scarce and costly resource contracted by the 

studied company that requires to be properly scheduled. An underestimated rigs 

fleet can result in oil production delays and opportunities losses that affect the wells 

profitability. On the other hand, an oversized fleet may lead to idleness costs of over 

1 billion Reais (R$), about three hundred million dollars, as mentioned by 

Pamploma (2016). 

Additionally, a vast number of its operations are performed in deep and 

ultra-deep water. Most of those operations are performed by contracted offshore 

rigs and they are key activities for the wells development. Such operations can be 

separated in the four groups: 

 Drilling: After the appraisal, a well is drilled using an oil rig that 

rotates a drill bit. Follow, a steel pipe is placed inside the drilled 

hole and secured with cement, providing structural integrity and 

isolating the high pressures zones from the surface and from each 

other. 
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 Evaluation: Before completing a well, formation evaluation and 

logging tests are performed to establish the size and value of the 

Oil & Gas reserves in order to find out if the reservoir is 

economically feasible to develop. 

 Completion (well): After drilling the well and before beginning its 

production, the well requires to be “completed”. There are two 

types of completions: cased-hole and open hole. In the first type, 

perforations are made in the casing that pass through the reservoir, 

proving flow passages for the oil to pass to the well production. 

The second consists of just running the casing into the reservoir 

and leaving the end of the pipe open. 

 Workover (well): A completed well requires regular maintenance 

to correct, maintain and improve productivity. These remedial 

operations can be a replacement of the tubing, a cleanup or new 

completions, new perforations and various other maintenance 

works such as the installation of gas lift mandrels, new packing, 

etc. 

The first three groups of activities are part of the wells development phase. 

Therefore, the studied company plans these tasks before the others in a medium 

term horizon. On the other hand, the workover operations occur in the production 

phase of a well, after its construction. These activities, usually executed by 

workover rigs, are harder to be predicted in advance, as they depend on the outcome 

of the first schedule. Consequently, they are scheduled separately, later than the 

others. 

Due to this planning structure, the authors decided to consider scenarios 

with drilling, evaluation and completion activities only. However, it is important to 

remark that the proposed solution method could be easily applied to scenarios with 

workover activities, possibly without any change in its rules, and that both 

approaches are rare in the literature, as seen in Section 3. Nonetheless, even when 

focusing exclusively in the wells development phase, scheduling rigs is still hard 

due to the quantity, value, complexity (multiple precedence rules and time windows 

to consider for each activity) and variety of tasks and uncertainties – related to 

geological concepts (structure, reservoir seal and hydrocarbon charge), economic 
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evaluations (costs, probability of finding and producing economically viable 

reservoirs, technology and oil price) and development and production 

(infrastructure, production schedule, quality of oil and operational costs and 

reservoir characteristic) (Suslick et al., 2009). Because of this situation, many Oil 

& Gas companies fail to meet the delivery, budget and performance targets (Reid 

et al., 2016). Obviously, the use of decision support systems (DSS) is a crucial 

ingredient to obtain competitive advantages, especially for big companies and for 

the rig scheduling problem. 

Undoubtedly, there has been a vast number of researches aiming to help 

energy enterprises in their decision making process (Tarhan et al., 2009) and many 

of these studies were focusing in the rig scheduling and routing problems, as 

presented in Section 3 of this dissertation. However, most of these papers focus in 

simplified problems with onshore wells and single activities types, solving it either 

with exact algorithms or with heuristics. Just a few papers tackle problems that are 

more complex (offshore wells, heterogeneous rigs or multiple types of activities) 

and those that do it, hardly use realistic objective functions with a budgetary 

perspective, usually reducing the cost by just minimizing the rigs fleet size (Bissoli, 

2014). 

As most multinationals, the studied company has unique budgets formulas 

and contract rules. The studied company’s rig scheduling is not an exception, rigs 

rates might depend on the time – usually trending to lower in the future (as the 

company gains more time to negotiate prices) – and according to the rig’s 

characteristics (type, water depth, special equipment’s used, etc.) and rigs contracts 

can have minimal durations as well as availability windows. 

For these reasons, the company needs a tool to solve the rig scheduling 

problem, considering theirs special constraints and objective function, to be used in 

a medium term planning horizon and capable of finding strong solutions in an 

appropriate time. To tackle this problem, aiming not only to fulfill the company 

needs but also to fill the literature gaps, the authors propose the use of matheuristics, 

hybrid algorithms that combine exact methods and heuristics (Raidl & Puchinger, 

2008), presented later in Section 5. Next, the company’s case study is presented in 

Section 4.1, which describes the problem and its assumptions. Subsequently, 
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Section 4.2 defines the problem with a mathematical model. Last, Section 4.3 

presents the instances used in the problem. 

4.1.  
Assumptions 

The purpose of the rig scheduling problem is to schedule a set of tasks to 

a fleet of rigs with the goal to minimize the company’s budget, respecting some 

precedence rules and strict release and due dates. In this study, each task represent 

a set of rigs activities that need to be performed in a well of the Brazilian offshore 

basin. Each rig activity belongs to a group (drilling, evaluation or completion). In 

addition, each task has a fixed duration (identical for all rigs and tasks sequences) 

and a time window (with strict release and due dates), determined by the company’s 

production plan, and is associated to an offshore well and a project. A project can 

have more than one tasks scheduled simultaneously. On the other hand, it is 

forbidden that more than one tasks are assigned to the same well at a given instant 

of time. In the same way, there cannot be simultaneously tasks in a rig. 

 
Figure 4. Fictional Rig Schedule for precedence rules illustration  

(Source: the author). 

The precedence rules are subjected to the wells’ precedence, i.e., the 

precedence’s relationships between tasks related to the same well, regardless of the 

rig they are originally allocated in the planning schedule. Considering the rig 

schedule example of Figure 4 as the original planning of the company, task #1 and 

task #2 are both associated with the well #1 and, as a result, task #1 must precedes 

task #2, even though they are in different rigs. Applying these precedence rules for 

the others tasks would lead to the successor’s lists in Table 2. 

Rig 1 4 | B 5 | B 10 | D 16 | F

Rig 2

Drilling

Rig 3 13 | E Evaluation

Completion

1 2 3 4 5 6 7 8 9 10 11 12 13

Fictional Rig Schedule: Precedence Rules Example

11 | D Id | Well

Description:

Activities Groups:

Horizon 

(months)

1 | A

3 | B

8 | D

2 | A

9 | D

15 | F

12 | E

7 | C

14 | E

6 | C
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Table 2. Successor’s Lists for the Fictional Rig Schedule in Figure 4 

(Source: the author). 

Task Id Successors List 
1 2 

2 - 

3 4 and 5 

4 5 

5 - 

6 7 

7 - 

8 9, 10 and 11 

9 10 and 11 

10 11 

11 - 

12 13 and 14 

13 14 

14 - 

15 16 

16 - 

Furthermore, the rigs have identical characteristics, any rig can perform 

any task and an activity has the same duration for all rigs. However, a rig can only 

have one task assigned per day. 

Another particularity of this case study is related to studied company’s 

budget, the objective function represents the rigs’ costs. When hiring an offshore 

rig, the studied company has to pay three taxes to the charterer. The first is a contract 

charge that is paid in the first year of the contract, usually counted from the start 

date of the first task. The others two elements represent the hire payed daily for the 

rig availability and use. This daily rate value depends if an oil rig is used or not in 

a particular day. In one hand, the hire just for the rig’s availability is called as “daily 

idleness rate”. On the other hand, when a rig is rented and used, the hire is called as 

“daily use rate”. The rigs contract is considered to start at the first day of the first 

task assigned to the contracted rig. The contract has a duration length of at least 2 

years, or 730 days, and considers any idleness day after rigs start. As a result, the 

rig scheduler operator can choose to contract a new rig to the fleet or even to 

withdrawn (remove) an existent rig of the fleet. Assign a new rig to the fleet allows 

more availability time for the tasks, but might increase costs. On the contrary, 

removing a rig of the fleet removes flexibility, but can reduce costs as any rig has a 

contract cost associated with it and must serve the fleet for at least 2 years, counted 

from the beginning of the first task assigned to it and considering any idleness time 

after the start. Figure 5 illustrates an example of a rig schedule budget. 
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Figure 5. Fictional Rig Schedule for budget formula illustration  

(Source: the author). 

In the schedule example of Figure 5, there are three rigs being contracted 

for a three years planning horizon. The first rig is programed to be used from day 

15 to day 824 without any idleness time between tasks, which results in a contract 

of 810 days. The second rig is set to operate from day 7 to day 646, resulting in 640 

operational days. However, the rigs’ contracts must have at least two years (730 

days), which leads to an idleness time for the rented rig at the end of its contract. 

The third rig has several tasks scheduled between day 31 and day 1150. Due to the 

tasks strict time windows constraint and the precedence rules, the third rig ended 

up needing a contract of 1120 days with 215 idleness days and 905 activity days. 

Most scheduling problems can be represented according to Graham 

notation, proposed by Graham et al. (1979), that describes such problems using a 

three-field classification ∝ | 𝛽 | 𝛾, where the field ∝ represents the machine 

environment, the 𝛽 field describes the processing characteristics and its constraints 

and the field 𝛾 expresses the objective function to be optimized. Through the 

Graham notation for scheduling problems and the framework proposed by Pinedo 

(2008), this rig scheduling problem can be represented as a 𝑃𝑚| �̅�𝑗�̅�𝑗𝑝𝑟𝑒𝑐 | 𝑛𝑜𝑛𝑟𝑒𝑔 

scheduling problem. This is, the scheduling of identical machines in parallel with 

strict release and due dates, as well as precedence rules, whose objective is to 

minimize the budget, a non-regular objective function equal to the weighted sum of 

idleness time, number of machines and activities durations. By non-regular 

objective function, we refer to a schedule in which the solution can be improved by 

delaying some task towards the end, i.e., it is possible to obtain better solutions by 
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deteriorating a part of current solution. According to Dell’Amico et al. (2008), the 

scheduling of parallel machines is to program a set {1, 2, . . 𝑛} of 𝑛 jobs, each having 

an associated processing time 𝑝𝑗 (where 𝑗 = 1, 2. . 𝑛) and a set {1, 2. . 𝑚} parallel 

identical machines that can process at most one job at a time. In the studied problem, 

the machines represent the oil rigs contracted by the studied company and the jobs 

are the activities or tasks performed by these offshore rigs. Each job (task or 

activity) has a specific duration in days (a processing time 𝑝𝑗), a strict time window 

to be allocated, respecting its strict release date (�̅�𝑗) and strict due dates (�̅�𝑗). 

In addition, each task is associated with a well and a project and must 

respect some precedence constraints in chains, where a task can have one or more 

successor and one or more predecessor. These precedence rules are calculated 

according to the projects and the wells as explained in Figure 4 and Table 2. Last, 

following Carilho & Villas Boas (2016) approach, some tasks are planned together 

according to their wells, project and time windows, forming blocks of tasks that 

must be performed in sequence without preemption or breaks. As a result, it is 

possible to reduce the size of the problem to a set {1, 2, . . 𝑛′} of 𝑛′ jobs, each one 

representing a block (group) of tasks, which are used as input data to the 

mathematical models, grouping tasks with similar characteristics and reducing the 

model’s computational complexity. Following these assumptions, the next section 

proposes the mathematical models procedures for the studied problem. 

4.2.  
Mathematical models 

As seen in the last section, the company’s rig scheduling problem can be 

understood as a scheduling problem of parallel identical machines with precedence 

rules, strict release and due dates aiming to minimize a non-regular objective 

function representing the company’s budget. The literature review from Section 3.1 

has shown a vast number of publication tackling similar problems. For this study, 

we compared our problem with others scheduling formulations found in the 

literature from disjunctive programming to integer and binary programming 

models. The best-fitted formulation was through binary integer linear programming 

based on models from Peréz et al. (2016), Marques et al. (2014) and Carilho & 
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Villas Boas (2016). The first presented an efficient binary mathematical model. The 

second has similar constraints and characteristics. The third used a block structure 

that reduces the problem’s complexity and has similar characteristics. 

The proposed formulation is divided in two mathematical models with 

different object function and variables that share common solutions’ space search. 

The first model minimizes the number of oil rigs disregarding its costs. This 

solution determines the minimal number of rigs needed for scheduling the entire set 

of tasks and serves as an initial upper bound for subsequent procedures. Then, a 

mathematical model for rigs budget minimization is looped using the minimum 

number of rigs found in the earlier model as an initial solution and appending a new 

rig into the fleet at each iteration. The loop procedure stops when the rigs costs rises 

after adding a rig. This approach was used to avoid non-linear and disjunctive 

programming approaches that would require high computational effort. Figure 6 

illustrates a framework of these procedures and Sections 4.2.1 and 4.2.2 detail these 

two mathematical models used for minimization of the rig scheduling’s budget. 

 
Figure 6. Procedure of the budget minimization mathematical 

(Source: the author). 

It is important to notice that the Model 2 can be used without any input 

delimitating the size of the set of rigs to m equal to the number of wells tasks n. 

However, this approach has a great chance of impacting severally in the 

computational effort required by the model in real life instances. The mathematical 

procedure described in Figure 6 aims to provide a solution method alternative with 

lower computational effort. 
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4.2.1.  
Model 1 – Minimum rigs fleet size 

This Section presents the first model used to find an initial viable solution 

for the studied problem with the minimum rigs fleet size needed to schedule the set 

of tasks, describing its sets, parameters, variables, objective function and 

constraints according to the machine scheduling notations. 

Sets: 

Table 3. Sets for Model 1 (Source: the author). 

Set Index Name Description 

𝐽 𝑗, 𝑗′ Tasks A set {1, … , 𝑛} of wells tasks. 

𝑀 𝑖 Rigs 
A set {1, … , 𝑚} representing the rigs available for hiring, 

where 𝑚 = max
𝑡≥0

∑ 1𝑗|𝑟�̅�≤𝑡≤𝑑�̅�
. 

𝐻 𝑡, 𝑡’ Time A set of time periods in the planning horizon {1, … , ℎ}. 

Parameters: 

Table 4. Parameters for Model 1 (Source: the author). 

Parameter Name Description 

𝑝𝑗 Processing time Processing time of task 𝑗 in any rig. 

𝑟�̅� Strict release date Minimum period when task 𝑗 can start. 

𝑑�̅� Strict due date Maximum period when task 𝑗 can finish. 

𝑝𝑟𝑒𝑐𝑗,𝑗′  
Precedence 

Relationship 

Binary parameter that defines the 

precedence between tasks 𝑗 and 𝑗′. Equal 

to 1 if task 𝑗 precedes 𝑗′ (𝑗′ can only start 

after 𝑗’ finish) and 0, otherwise. 

Variables: 

Table 5. Variables for Model 1 (Source: the author). 

Variables Name Description Type 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 Task start Variable that measures the period in 

which a task 𝑗 starts. 

Integer 

𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 Task 

allocation 

Binary variable indicating the start of an 

task 𝑗 in rig 𝑖 at period 𝑡. Equal to 1 if 

true and 0, otherwise. 

Binary 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 Rig usage Binary variable that indicates if a rig 𝑖 is 

used or not. Equal to 1 if true and 0, 

otherwise. 

Binary 

The number of rigs available for hiring in this model is determined by 

largest intersection of tasks availability windows, which is the maximum possible 

number of rigs need for scheduling all tasks. Two variables are used to define when 

a task is performed. The first (task start, 𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗) stores the start of the task 𝑗 

and belongs to the non-negative integer domain. The second (task 
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allocation, 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡) relates the period 𝑡 when task 𝑗 starts and the rig 𝑖 in which 

it is allocated, this variable is binary and is created only and only if period 𝑡 respects 

the activity time window interval [𝑟�̅�, 𝑑�̅�]. The last variable (rig usage, 𝑅𝑖𝑔𝑈𝑠𝑒𝑖) is 

a binary value that indicates if a rig available to be contracted is used or not. Next, 

the objective functions and the constraints used at Model 1 are presented. 

Objective Functions: 

 𝑀𝑖𝑛 ∑ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖

𝑖∈𝑀

  (1) 

Subject to: 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 = ∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∙ 𝑡

𝑡∈𝐻𝑖∈𝑀

 ∀𝑗 ∈ 𝐽 (2) 

∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡

𝑡∈𝐻𝑖∈𝑀

= 1 ∀𝑗 ∈ 𝐽 (3) 

∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡′

𝑡′∈𝐻|𝑡−𝑝𝑗+1≤𝑡′≤𝑡𝑖∈𝑀

≤ 1 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝐻 (4) 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗′ − 𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 ≥ 𝑝𝑗 ∀𝑗 ∈ 𝐽, 𝑗′ ∈ 𝐽 | 𝑝𝑟𝑒𝑐𝑗,𝑗′ = 1 (5) 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ≥ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡

𝑡∈𝐻

 ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐽 (6) 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ≤ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖−1 ∀𝑖 ∈ 𝑀|𝑖 > 1, |𝑀| > 1 (7) 

          𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∈ {0,1} ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝐻 |𝑟�̅� ≤ 𝑡 ≤ 𝑑�̅� − 𝑝𝑗 + 1 (8) 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 ∈ ℤ≥0 ∀𝑗 ∈ 𝐽 (9) 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 (10) 

 

The objective function for rigs minimization is shown in equation (1), 

which minimize the number of rigs used and, consequently, reduces the idleness. 

The expression from (1) is subject to constraints (2), (3), (4), (5), (6), (7), (8), (9) 

and (10). Constraint (2) defines the period in which a task starts and connects 

variables 𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 and 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡. Constraint (3) forces the model to execute 

all tasks once and in only one rig. Constraint (4) is related with the task processing 

time and forces that while a task is being executed in a rig, there will not be any 

other task scheduled to that same rig. Constraint (5) assures that tasks respect theirs 

precedence relationships. Constraint (6) determines that a rig hired only if it is used 
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and vice versa, connecting variables 𝑅𝑖𝑔𝑈𝑠𝑒𝑖 and 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡. Constraint (7) is a 

symmetry breaking constraint that causes the model to generate rigs in an ascending 

order from one to the total number of rigs used. Last, constraints (8), (9) and (10) 

define the variables universe domain. In the mathematical procedure described in 

Figure 6, the solution generated by this model is given as initial solution to Model 

2 (warm start), which is described in the next section.  

4.2.2.  
Model 2 – Minimum rigs budget 

As mentioned earlier in Section 4.2, Model 2 is used to find a schedule 

with minimal budget using a pre-determined fleet of available rigs. This section 

describes this mathematical model by its sets, parameters, variables, objective 

function and constraints, following the machines scheduling notations. 

Sets: 

Table 6. Sets for Model 2 (Source: the author). 

Set Index Name Description 

𝐽 𝑗, 𝑗′ Tasks A set {1, … , 𝑛} of wells tasks. 

𝑀 𝑖 Rigs 

A set {1, … , 𝑚} representing the available fleet of rigs, 

where m can be given by the solution from Model 1 or by 

largest intersection of tasks time windows (when no initial 

solution is given). 

𝐻 𝑡, 𝑡’ Time A set for the time periods in the planning horizon {1, … , ℎ} 

Parameters: 

Table 7. Parameters for Model 2 (Source: the author). 

Parameter Name Description 

𝑝𝑗 Processing time Processing time of task 𝑗 in any rig. 

𝑟�̅� Strict release date Minimum period when task 𝑗 can start. 

𝑑�̅� Strict due date Maximum period when task 𝑗 can finish. 

𝑝𝑟𝑒𝑐𝑗,𝑗′  
Precedence 

Relationship 

Binary parameter that defines the 

precedence between tasks 𝑗 and 𝑗′. Equal 

to 1 if task 𝑗 precedes 𝑗′ (𝑗′ can only start 

after 𝑗’ finish) and 0, otherwise. 

𝑐𝑜𝑠𝑡𝑖𝑑𝑙𝑒 Idleness rate 
Cost value charged for each period of rig 

idleness. 

𝑐𝑜𝑠𝑡𝑜𝑝𝑒𝑟 Operational rate 
Cost value charged for each period of rig 

operation, rig utilization. 

𝑐𝑜𝑠𝑡ℎ𝑖𝑟𝑒 Hiring cost 
Cost value charged for hiring a rig for any 

extend of time. 
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Parameter Name Description 

𝑟𝑖𝑔𝑚𝑖𝑛 
Contract 

minimum length 

Contract minimum length required to hire 

a rig (2 years or 730 days). 

Variables: 

Table 8. Variables for Model 2 (Source: the author). 

Variables Name Description Type 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 Task start Variable that measures the period in 

which an activity 𝑗 starts. 

Integer 

𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 Task 

allocation 

Binary variable indicating the start of an 

task 𝑗 in rig 𝑖 at period 𝑡. Equal to 1 if 

true and 0, otherwise. 

Binary 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 Rig usage Binary variable that indicates if a rig 𝑖 is 

used or not. Equal to 1 if true and 0, 

otherwise. 

Binary 

𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 Rig start Binary variable indicating if rig 𝑖 starts 

at period 𝑡. Equal to 1 if true and 0, 

otherwise. 

Binary 

𝑅𝑖𝑔𝐸𝑛𝑑𝑖 Rig end Variable that measures the period in 

which a rig 𝑖 operation ends. 

Integer 

Besides variables 𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗, 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 and 𝑅𝑖𝑔𝑈𝑠𝑒𝑖, the second 

model for rig scheduling budget minimization uses two others variables: 𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 

and 𝑅𝑖𝑔𝐸𝑛𝑑𝑖, both used to store rigs information. The first (rig start, 𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡) is 

a binary variable that marks the period 𝑡 when rig 𝑖 starts. The second stores the 

end of the rigs contract 𝑗 and belongs to the non-negative integer domain. The other 

variables (𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗, 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 and 𝑅𝑖𝑔𝑈𝑠𝑒𝑖) are the same of Model 

1. 𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 stores the start of the task 𝑗 and belongs to the non-negative integer 

domain. 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 relates the period 𝑡 when task 𝑗 starts and the rig 𝑖 in which 

it is allocated, this variable is binary and is created only if period 𝑡 respects the task 

time window interval [𝑟�̅�, 𝑑�̅�]. Last, 𝑅𝑖𝑔𝑈𝑠𝑒𝑖 contains a binary variable that indicates 

if a rig available for contracting is used or not. 

Rigs Budget Objective Function 

𝑀𝑖𝑛

𝑐𝑜𝑠𝑡ℎ𝑖𝑟𝑒 ∙ ∑ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖

𝑖∈𝑀

+

𝑐𝑜𝑠𝑡𝑜𝑝𝑒𝑟 ∙ ∑ ∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∙ 𝑝𝑗

𝑡∈𝐻𝑗∈𝐽𝑖∈𝑀

+

𝑐𝑜𝑠𝑡𝑖𝑑𝑙𝑒 ∙ ∑ [𝑅𝑖𝑔𝐸𝑛𝑑𝑖 − ∑ (𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 ∙ 𝑡 − ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∙ 𝑝𝑗

𝑗∈𝐽

)

𝑡∈𝐻

+ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖]

𝑖∈𝑀

 (11a) 
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As mentioned in Section 4.1, the rigs budget can be divided in three 

segments and, consequently, the objective function from Model 2, described by 

equation (11a), is the sum of three costs. The first term refers to the sum of the rigs 

hiring costs (a fixed charged payed when contracting an oil rig, 𝑐𝑜𝑠𝑡ℎ𝑖𝑟𝑒). The other 

two terms represent variable costs subjected to the rigs utilization and the length of 

the contract. One term calculates the total operational costs, the sum of a rate 

charged for each day of utilization of a rig (𝑐𝑜𝑠𝑡𝑜𝑝𝑒𝑟). The other is accountable for 

idleness costs, the sum of the rigs idleness time multiplied by a rate charged for 

having a rig availability contract (𝑐𝑜𝑠𝑡𝑖𝑑𝑙𝑒). 

However, as all tasks must be schedule and the rigs fleet is considered to 

be homogeneous, the sum of the tasks processing times will be fixed for any 

solution of a particular instance. Consequently, the equation (11a) can be simplified 

to just the sum of the idleness rate and the rig hiring cost, disregarding the daily use 

rate that relies only on the duration of the tasks and does not depend on the number 

of rigs available. Follow, we present the resulting objective function and its 

constraints: 

𝑀𝑖𝑛

𝑐𝑜𝑠𝑡ℎ𝑖𝑟𝑒 ∙ ∑ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖

𝑖∈𝑀

+

𝑐𝑜𝑠𝑡𝑖𝑑𝑙𝑒 ∙ ∑ [𝑅𝑖𝑔𝐸𝑛𝑑𝑖 − ∑ (𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 ∙ 𝑡 − ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∙ 𝑝𝑗

𝑗∈𝐽

)

𝑡∈𝐻

+ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖]

𝑖∈𝑀

 (11b) 

Subject to: 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 = ∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∙ 𝑡

𝑡∈𝐻𝑖∈𝑀

 ∀𝑗 ∈ 𝐽 (2) 

∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡

𝑡∈𝐻𝑖∈𝑀

= 1 ∀𝑗 ∈ 𝐽 (3) 

∑ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡′

𝑡′∈𝐻|𝑡−𝑝𝑗+1≤𝑡′≤𝑡𝑖∈𝑀

≤ 1 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝐻 (4) 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗′ − 𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 ≥ 𝑝𝑗 ∀𝑗 ∈ 𝐽, 𝑗′ ∈ 𝐽 |𝑆𝑒𝑞𝑗,𝑗′ = 1 (5) 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ≥ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡

𝑡∈𝐻

 ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐽 (6) 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ≤ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖−1 ∀𝑖 ∈ 𝑀|𝑖 > 1, |𝑀| > 1 (7) 

𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 ≤ 1 − ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡′          

𝑡′∈𝐻|𝑡′<𝑡

 ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝐻 (12) 
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𝑅𝑖𝑔𝐸𝑛𝑑𝑖 ≥ ∑ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡(𝑡 + 𝑝𝑗 − 1)

𝑡∈𝐻

 ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐽 (13) 

𝑅𝑖𝑔𝐸𝑛𝑑𝑖 + 𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ≥ ∑ (𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 ∙ 𝑡 + ∑ 𝑝𝑗 ∙ 𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡

𝑗∈𝐽

)

𝑡∈𝐻

 ∀𝑖 ∈ 𝑀 (14) 

𝑅𝑖𝑔𝐸𝑛𝑑𝑖 − ∑ 𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 ∙ 𝑡

𝑡∈𝐻

+ 1 ≥ 𝑟𝑖𝑔𝑚𝑖𝑛 ∙ 𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ∀𝑖 ∈ 𝑀 (15) 

∑ 𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡

𝑡∈𝐻

= 𝑅𝑖𝑔𝑈𝑠𝑒𝑖  ∀𝑖 ∈ 𝑀 (16) 

                       𝑇𝑎𝑠𝑘𝐴𝑙𝑙𝑜𝑖,𝑗,𝑡 ∈ {0,1} ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝐻 |𝑟�̅� ≤ 𝑡 ≤ 𝑑�̅� − 𝑝𝑗 + 1 (8) 

𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑗 ∈ ℤ≥0 ∀𝑗 ∈ 𝐽 (9) 

𝑅𝑖𝑔𝑈𝑠𝑒𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 (10) 

𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝐻 (17) 

𝑅𝑖𝑔𝐸𝑛𝑑𝑖 ∈ ℤ≥0 ∀𝑖 ∈ 𝑀 (18) 

 

The objective functions (11a) and (11b) are subject to sixteen constraints: 

(2-10) and (12-18). Constraints (2-10) are the same of Model 1. The new constraints 

in the model are applied for rigs budget calculation. Constraint (12) calculates the 

period 𝑡 in which a rig 𝑖 starts its first task assigned, defined by variable 𝑅𝑖𝑔𝐴𝑙𝑙𝑜𝑖,𝑡. 

Constraints (13), (14) and (15) are related with the end of rig contract. Constraint 

(13) imposes that rig 𝑖 contract end date must be later than any task execution finish 

allocated in that rig. Constraint (14) assures that the time window between the rigs 

𝑖 contract start and finish is long enough to perform all the tasks assigned to the rig. 

Constraint (15) forces that hired rig 𝑖 contract length is at least equal to the minimal 

hiring duration. Constraint (16) obligates that a rig task can only begin in one period 

and if there is a contract start, the rig must be hired. Last, constraints (17) and (18) 

are for the definition of variables domain. 

To summarize, these constraints assure the solution from Model 2 to 

respect the assumptions of the studied rig scheduling described in Section 4.1, and 

allow to calculate many of the variables used in the budget objective function. In 

theory, it is possible to execute just the Model 2 in one run without executing Model 

1. However, the constraints and variables need to calculate the rigs budget are 

complex and tend to increase the computational effort. Therefore, a mathematical 

programming procedure described earlier in Figure 6 was developed to tackle this 

problem. In this procedure, the Model 2 uses the initial solution provided by the 
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Model 1 as a warm start and finds a rig schedule with minimum budget through a 

loop procedure presented previously in Figure 6. Nonetheless, this process can still 

result in a large computational effort in large instances. Another alternative 

approach is the use of heuristics such as local search algorithms or matheuristics, 

when combining exact and approximation techniques. In the next section, we 

present and describe a Local Search heuristic that can be used to efficiently improve 

initial solutions such as those provided by Model 1 in a matheuristic approach and 

a constructive algorithm that perhaps can be used as initial solution generator. 
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5  
Local Search Algorithm 

As mentioned earlier, the studied rig scheduling problem has several 

constraints and parameters that rise its complexity and size and turn the problem 

hard to solve with exact algorithms. A procedure using two mathematical models 

was shown in Section 4.2. However, the model that minimizes the budget (Model 

2) requires great computational effort, even when using relaxed assumptions (such 

as time horizon in weeks, tasks in block structure and homogeneous fleet of rigs). 

Heuristic techniques become an alternative, since they are able to generate 

solutions close to the optimal with realistic assumptions. It is also possible to 

combine heuristics with mathematical programming algorithms, generating the so-

called “matheuristic”. Matheuristics can be classified in two types: collaborative 

combinations of exact algorithms and heuristics, and; integrative combinations. The 

first group refers to methods where the algorithms exchange information, but are 

not part of each other, being executed sequentially, intertwined or in parallel. The 

second group represents combinations in a master-slave relationship, where one 

algorithm is a subordinate embedded component of the other (Raidl & Puchinger, 

2008). 

A possible matheuristic approach consists in using local search heuristics, 

which are iterative algorithms that search for better solutions moving from one 

solution 𝑆 to another solution 𝑆’ according to some neighborhood structures. 

Aiming to provide an efficient method for the issue, this section proposes a local 

search heuristic to be used within a matheuristic procedure of collaborative 

combination with sequential execution. 

According to Talbi (2009), local search algorithm is one of the oldest and 

simplest metaheuristic methods. In short, this heuristic receives an initial solution 

𝑆0 – in our case, an initial solution from a mathematical model – and improves it 

through several small modifications. At each iteration, the local search tries to find 

possible improvements in the current solution exploring similar solutions (neighbor 
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solutions) through small movements, selecting the neighbor solution according to a 

strategy. When a stop criterion (no improvements, time or number of iterations) is 

reached, the algorithm stops and returns the best solution found. Algorithm 1 

illustrates the steps of the basic local search used in this problem. 

Algorithm 1. Basic Local Search Heuristic 

1: 𝑠0 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(′𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒𝑙′); 

2: 𝑠, 𝑠∗ ← 𝑠0; 

3: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ← 𝐷𝑒𝑓𝑖𝑛𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(); 

4: repeat: 

5:  𝑠∗ ← 𝑠; 

6:  𝑁(𝑠) ←GenerateNeighborhood(𝑠); 

7:  𝑠 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑁(𝑠), 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦); 

8: until 𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠, 𝑠∗); 

  9: return 𝑠∗; 

In other words, the heuristic, in this study, first receives an initial solution 

from a mathematical model (Step 1) and stores it as the current and best solutions 

(Step 2). Also, the heuristic needs to define a neighbor selection strategy, i.e., the 

approach used to select a new current solution between a set of neighbor solutions 

(Step 3). Then, the algorithm enters in a loop searching for better neighbor solutions 

(Steps 4 to 8). At each iteration of this loop, the method stores the current solution 

as the best solution found so far (Step 5), generates a set of neighbor solutions 𝑁(𝑠) 

(Step 6) and selects a solution 𝑠 in this set 𝑁(𝑠) according to a pre-defined strategy 

(Step 7), which will be explained later. A neighborhood represents a set of possible 

solutions that can be found performing some small pre-defined movements 

(changes) from the current solution. Finally, if a stopping criterion is reached (Step 

8), which can be the lack of better solutions, the execution time or the number of 

iterations, the heuristic returns the best solution found in the search procedure (Step 

9). It is expected that this simple approach allow making fast improvements in a 

solution with just a few computational effort. Next, further details on the 

neighborhood movements, neighbor selection strategies and the stop criterion are 

presented. 
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5.1.  
Neighborhood Structures 

As explained earlier, the local search algorithm is an iterative method that 

starts with an initial solution and iteratively explores neighbor solutions searching 

for better solutions. This neighborhood structure is defined by a set of solutions that 

can be found after performing some neighborhood movements at the current 

solution. In essence, these neighborhood movements represent some small 

systematic changes in a solution that leads it to a different one, yet similar. 

As seen in the literature review from Section 3.1, the most common 

neighborhood structures for rig scheduling and machine scheduling problems apply 

insert and swap movements. Basically, the first one removes a task from a position 

and inserts it in another place, while the other move swaps the position of two 

different tasks. Obviously, a swap movement can be executed with two consecutive 

insert moves. There is also a particular case of swap movements where the tasks 

switched are adjacent in the schedule order, which is classified as an interchange 

move (Dong et al., 2009). 

In this rig scheduling problem, a solution is defined not only by the order 

of the tasks in the rigs (machines) but also by the date in which they are scheduled. 

Therefore, these classical movements require some modifications. The author tested 

a series of movements and defined three core neighborhood moves based on the 

typical insert movement: 

 Insert with fixed dates: this type of movements removes a set of 

tasks from a position in a rig and inserts them at the end of another 

existing rig or in a new rig, while keeping the same start time of 

each task being moved. 

 Insert with dates anticipation: differently of the previous 

movement, these movements will try to anticipate a set of task in a 

rig and then insert these tasks in another rig (an existing one or 

even a new one) or insert a block of tasks of another rig in the end 

of this rig whose tasks were anticipated. These approaches are 

defined in the setup of the movement. 

 Insert with dates postponement: similar to the second movements, 

these movements will try to postpone a block of task in a rig and 
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then insert these postponed tasks in another rig (an existing one or 

even a new one) or insert a set of tasks of another rig in the end of 

this rig whose tasks were postponed. These approaches are defined 

in the setup of the movement. 

Next, we specify and illustrate the mechanism of these movements, 

considering the fictional rig schedule example of Figure 7 as an initial solution for 

the movements’ illustration, with 47 tasks allocated in three rigs. 

 
Figure 7. Initial solution for movement examples (Source: the author). 

5.1.1.  
Insert with fixed dates 

As mentioned earlier, the insert with fixed dates movements remove a set 

of tasks from a position in a rig and inserts them at the end of another existing rig 

or in a new rig, adding and removing a rig from the fleet if necessary, eliminating 

or reducing idleness by increasing or reducing the number of rigs, while 

maintaining dates of activities without overlapping.. This movement can be 

inserting tasks in an existing rig or in a new rig. 

The first type, insert with fixed dates in an existing rig, shifts activities 

from the end of a rig to the end of another rig already hired, aiming to minimize the 

budget without changing the tasks allocation dates or overlapping activities. An 

example of this movement is illustrated in Figure 8 using the initial solution from 

Figure 7, in which the heuristic selected tasks #13, #14, #15 and #16f from rig #0, 

and reallocates them at the end of rig #1. As the previous tasks in rig 1 were closer 

from the block’s start date, the insert with fixed dates in an existing rig movement 

was able to reduce the idleness cost of the schedule without changing the tasks date. 

It is important to notice that, aside from when the block of tasks moved are 
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accountable for an entire rig schedule, the insert with fixed dates in an existing rig 

movement does not have impact on the hiring costs and its main purpose is to reduce 

the idleness costs. 

 
Figure 8. Insert with fixed dates in an existing rig move example  

(Source: the author). 

The second type of movement, insert with fixed dates in a new rig, 

reallocate activities from the end of a rig to a new rig, also seeking to minimize the 

budget and without changing the allocated dates of the activities. On the contrary 

of the previous move, this movement raises the fleet size, using the trade-off 

between the idle time cost and the hiring cost. An example of this movement is 

illustrated in Figure 9. 

 
Figure 9. Insert with fixed dates in a new rig move example (Source: the author). 

In the example of Figure 9, the heuristic also selects tasks #13, #14, #15 

and #16 (that were scheduled in the end of rig 0), but reallocates this set of tasks in 

the new rig 3. Due to long idleness period between the block’s start date and the 

previous tasks at rig 0, the insert with fixed dates in a new rig could reduce the 

idleness cost of the schedule, in spite of the cost of hiring a new rig to the fleet. 

Different from the Figure 8, where the hiring cost remained constant, in the current 
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example, the addition of a new rig into the fleet resulted in a raise on the hiring cost, 

but cause of the idle time reduction the movement reduced the rigs budget.  

Finally, these two previous insert with fixed dates neighborhood structures 

can also be combined together in a double search for each current solution. This 

approach will be called by insert with fixed dates (existing+new rig). 

5.1.2.  
Insert with dates anticipation 

The insert with dates anticipation movements is divided in two successive 

and optional steps: anticipation and insert. The first refers to the anticipation of 

some tasks in a rig, which can be from the start to some position in the rigs 

allocation list (anticipation before) or from this position to the end (anticipation 

after). The second involves the insertion of some tasks from the anticipated rig to 

the end of another rig, an existing one or new one, (insert from) or the insertion of 

some others tasks from the end of another rig in the end of the anticipated rig (insert 

in). Different from the previous movement (insert with fixed dates), this movement 

allows changing in the anticipation step, which enable new insertions and to find 

more solutions. Next, we describe some examples of these movements. 

The first example is an insert in with dates anticipation before, which 

searches new solutions anticipating blocks of activities from the start of a rig to 

some position (the anticipation before step) and then inserting or not a set of tasks 

from end of another rig in its end (the insert in step). Figure 10 illustrates an 

example of this movement, where, in the anticipation before step, task #17 is 

anticipated and then, in the insert in step, some blocks of tasks from rig 0 (composed 

by tasks #13, #14, #15 and #16) are inserted in the end of rig 1. It is also important 

to state that this movement only reduces the fleet of rig, never adding rigs. 
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Figure 10. Insert in with dates anticipation before move example 

(Source: the author). 

The second example is an insert from with dates anticipation before, which 

after searching new solutions anticipating blocks of activities from the start of a rig 

to some position (the anticipation before step), this movement tries to insert a set 

of tasks from end of this rig to another existing rig, or even a new rig if necessary 

(the insert from step). Figure 11 presents an example of this movement. In the 

anticipation before step, the first sixteen positions of the rig 0 (tasks #1 to #16) are 

anticipated and then, in the insert from step, some tasks from rig 0 (tasks #13, #12, 

#13, #14, #15 and #16) are inserted in a new rig 3. This movement allows adding 

new rigs to the fleet if needed – always analyzing the trade-off between the idleness 

costs and the hiring costs. 

 
Figure 11. Insert from with dates anticipation before move example  

(Source: the author). 

The third example is an insert in with dates anticipation after, which 

searches new solutions anticipating blocks of activities from some position of a 

position to its end (the anticipation after step) and then inserting or not a set of tasks 

from end of another rig in its end (the insert in step). Figure 12 illustrates an 
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example of this movement. In the step anticipation after, tasks between the start of 

the rig 1 and its end (#17 to #30) are anticipated and then, in the insert in step, some 

tasks from rig 0 (tasks #13 to #16) are inserted in the end of rig 1. Just the previous 

example movement, this movements does not adds new rigs to the fleet and can 

only reduce the fleet of rigs. 

 
Figure 12. Insert in with dates anticipation after movement example  

(Source: the author). 

The insert from with dates anticipation after movement has same first step 

from the previous move (anticipation after). But, after searching new solutions 

anticipating blocks of activities from the 𝑖𝑡ℎ position of rig to its end (the 

anticipation after step), this movement tries to insert a set of tasks from end of this 

rig to another existing rig, or even in a new rig if necessary (the insert from step). 

Figure 13 exemplifies this movement. In the anticipation after step, the last eleven 

positions of the rig 0 (tasks #6 to #16) are anticipated and then, in the insert from 

step, some tasks from rig 0 (#13 to #16) are inserted into the end of rig 1. This 

movement can adds new rigs into the fleet, if necessary. 

 
Figure 13. Insert from with dates anticipation after move example  

(Source: the author). 
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5.1.3.  
Insert with dates postponement 

Last, the insert with dates postponement movements is very similar with 

the previous neighborhood structure type, but instead of anticipating tasks, it delays 

them with the goal of finding new and better insert movements and it is divided in 

two successional and optional steps: postponement and insert. The first refers to the 

postponement of some tasks in a rig, which can be from the start of a rig to some 

position (postponement before) or from this position to end (postponement after). 

The second involves the insertion of some tasks from the current rig to the end of 

another rig, an existing one or new one, (insert from) or the insertion of some others 

tasks from the end of another rig in the end of the current rig (insert in). Next, we 

briefly describe some examples considering the initial solution from Figure 7. 

The first example is an insert in with dates postponement before, which 

searches new solutions delaying blocks of activities from the start of a rig to some 

position (the postponement before step) and then inserting or not a set of tasks from 

the end of another rig in its end (the insert in step). Figure 14 illustrates an example 

of this movement. In the postponement before step, the first tasks from rig 1 (#17 

to #30) are delayed and then, in the insert in step, the last tasks from rig 0 (#13 to 

#16) are inserted in the end of rig 1. 

 
Figure 14. Insert in with dates postponement before move example  

(Source: the author). 

The second example is an insert from with dates postponement before, 

which is similar to the insert in with dates postponement before movement since 

both have the same first step (postponement before). However, after searching new 

solutions delaying blocks of activities from the start of a rig to some position (the 

postponement before step), this move tries to insert a set of tasks from the end of 
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this rig to another existing rig, or even a new rig if necessary (the insert from step). 

Figure 15 illustrates this movement. In the postponement before step, the algorithm 

tries to delay the first tasks from rig 0, but task #5 due date does not allow it. Then, 

in the insert from step, some tasks from rig 0 (#13-16) are inserted in a new rig 3. 

 
Figure 15. Insert from with dates postponement before move example  

(Source: the author). 

The third example is an insert in with dates postponement after, which 

searches new solutions delaying blocks of activities from some position of a rig to 

its end (the postponement after step) and then inserting or not a set of tasks from 

the end of another rig in its end (the insert in step), and is shown in Figure 16. In 

the step postponement after, tasks #17 to #30 are delayed and then, in the insert in 

step, tasks #13 to #16 are inserted in the end of rig 1. 

 
Figure 16. Insert in with dates postponement after move example  

(Source: the author). 

Last, the insert from with dates postponement after movement has the 

same first step from the previous move, but, after delaying some tasks of a rig, this 

move tries to insert a set of tasks from the end of this rig to an existing or new rig 

(the insert from step), as illustrated in Figure 17 example. In the postponement after 
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step, the tasks #13 to #16 are slightly delayed and then, in the insert from step, these 

tasks are inserted into the end of a new rig 4. 

 
Figure 17. Insert from with dates postponement after move example  

(Source: the author). 

In general, both the insert with dates postponement move and the insert 

with dates anticipation movement try to change the tasks allocation dates in the rig 

and, as result, generating new insert neighbors that wouldn’t be available in a simple 

insert with fixed dates neighborhood structure. 

5.2.  
Search Strategies 

As mentioned earlier, each neighborhood structure can have multiple 

neighbor solutions that pass in an acceptance criterion (which will be defined later 

in Section 5.4). Therefore, it is important to define a search strategy to be applied 

in the selection of a better neighbor. In this local search algorithm, two main 

strategies, illustrated in Figure 18, are applied: 

 First improvement: in this strategy, the first improving neighbor 

that pass in the acceptance criterion is chosen to replace the current 

solution. Consequently, it is a cyclic exploration search and, only 

in the worst-case scenarios, all neighbor solutions are analyzed. 

The left graph of Figure 18 illustrates an example of the first 

improvement strategy in which the search visits solution 1 and, as 

it has a better cost; it is selected to be the new current solution. 

Then, in the second neighborhood, solutions 1.1 and 1.2 are visited 
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and the latter is chosen. Finally, as no improvements are found in 

the third neighborhood (solutions 1.2.1 and 1.2.2), the current 

solution is accepted as the best solution found. 

 Best improvement: this strategy, also known as steepest descent, 

exhaustively explores the entire neighborhood, and selects (if 

possible, i.e., if there is any solution that passes the acceptance 

criterion) the neighbor that improves the most the objective 

function. In the example of Figure 18, the local search analyzes all 

the solutions in the first neighborhood (nodes 1, 2 and 3) and 

selects the second node as current solution. In the next 

neighborhood, solutions 2.1, 2.2. and 2.3 are visited, the best 

solution (2.3) is chosen and is selected to be the best solution as 

there is no improvement in the third neighborhood (2.3.1). 

 
Figure 18. Local search strategies examples (Source: the author). 

Usually, the first improvement strategy tends to achieves strong results 

faster and efficiently, even though the best improvement approach is more likely to 

find better solutions in a much longer computational time. However, both methods 

present similar results and it depends on the problem. Aiming to achieve better 

results, some combinations of these local search strategies were also tested: 

 Best-First: In this strategy, the local search algorithm changes the 

neighbor selection strategy at each iteration, starting with the best 

improvement and, then, changing to first improvement, iteratively. 
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 First-Best: In this strategy, the local search algorithm changes the 

neighbor selection strategy at each iteration, starting with the first 

improvement and, then, changing to best improvement, iteratively. 

 Random: In this strategy, the local search algorithm changes the 

neighbor selection strategy at each iteration, randomly selecting the 

search strategy (choosing between first or best improvement). 

5.3.  
Variable Neighborhood Descent 

Although the local search algorithms are easy and simple to be 

implemented and able to give good solutions very quickly, they will frequently 

converge toward local optimal solutions, so their qualities strongly depends on the 

quality of the initial solution (Talbi, 2009). There are several ways to escape from 

the local search optimums. One particular method, Variable Neighborhood Descent 

(VND), explores solutions in more than one type of neighborhood, diversifying the 

range of solutions found (Talbi, 2009). Aiming to improve the local search, a 

variable neighborhood descent approach, shown in Algorithm 2, was also tested. 

Algorithm 2. Variable Neighborhood Descent 

1: 𝑠0 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(′𝑀𝑎𝑡ℎ𝑀𝑜𝑑𝑒𝑙′); //current solution// 

 2: 𝑁𝑙 ← {1, … , 𝑙𝑚𝑎𝑥}; //define a set of neighborhood structures// 

 3: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(); 

 4: repeat: 

5:  for each 𝑙 in 𝑁𝑙  do: 

6:   𝑁(𝑠) ←GenerateNeighborhood(𝑠, 𝑙); 

7:   𝑠 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑁(𝑠), 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦); 

8:  endfor; 

          9: until 𝑠𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠); 

          10: return 𝑠; 

In short, this local search variation receives an initial solution from the 

mathematical models, which is stored as the current (𝑠0), line 1. Then, a set of 𝑙𝑚𝑎𝑥 

neighborhood structures types (line 2) and the selection strategy (line 3) are defined. 

The algorithm recursively searches for better solutions until a stop criterion is met 

(loop from line 4 to 9). At each iteration of this loop, the algorithm generates a set 

of neighbor solutions (line 6) and selects a new current solution (line 7) according 
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to a search strategy (line 7) for each neighborhood structure of the set 𝑁𝑙 (loop 

between line 5 and 8). Last, the final solution is returned (line 10). 

We separate the variable neighborhood descent algorithm tested is two 

basic types of neighborhood structures: VND insert with fixed dates and VND insert 

with dates change. 

The former are those variable neighborhood descent algorithms that adopt 

neighborhood structures of insert with fixed dates: 

 VND insert fixed (new rig-existing): For each iteration of the VND, 

there is an Insert with fixed dates in a new rig followed by an insert 

with fixed dates in an existing rig. 

 VND insert fixed (existing rig-new): For each iteration of the VND, 

there is an Insert with fixed dates in an existing rig followed by an 

insert with fixed dates in a new rig. 

 VND insert fixed (random): At each iteration, the local search 

selects one randomly insert with fixed dates (in a new rig or in an 

existing rig) to be used as neighborhood structure. 

The latter represents variable neighborhood descent methods using 

neighborhood structures of insert with dates anticipation or insert with dates 

postponement and can be divided in: 

 VND insert dates (anticipation-postponement): For each iteration 

of the VND there is one fixed insert with dates anticipation 

followed by another fixed insert with dates postponement. 

 VND insert dates random (anticipation-postponement): For each 

iteration of the VND there is one random Insert with dates 

anticipation rig followed by another random insert with dates 

postponement. 

 VND insert dates random: At each iteration, the local search select 

one randomly insert with dates anticipation/postponement to be 

used as neighborhood structure. 
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5.4.  
Acceptance Criterion 

As mentioned earlier, during the local search in a neighborhood structure, 

several solutions are found, some might be better or worse than the current solution. 

In order to determine if a new neighbor solution can be used as the new current 

solution, before defining the search strategy, it is important to define an acceptance 

criterion for taking new neighbor solutions. In this study, the algorithm was 

implemented to accept changing of neighbor only if the proposed solution reduces 

the rigs budget or if reduces the number of rigs without enhancing the total costs. 

5.5.  
Stop Criterion 

Regardless of the neighborhood structure or search strategy chosen, the 

algorithm relies on a stop criterion to determine when to interrupt its procedures. 

The proposed heuristic supports different stop criterions: maximum execution time, 

maximum iterations numbers or lack of neighbor solutions that pass in acceptance 

criterion (i.e., that improves the current solution). These stop criterions (with the 

exception of the lack of neighbor solutions) are provided by the user before the 

execution of the program and can be used simultaneously. Once a stop criterion is 

match, the algorithm stops the search for new solutions. 

5.6.  
Constructive Heuristic 

Any local search algorithm needs to receive an initial solution. In this 

study, this solution can be provided by any of the mathematical models described 

in Section 4.2 or by an alternative constructive algorithm. Two constructive greedy 

heuristics were developed for this problem: Constructive1 and Constructive2. The 

first tries to build a feasible solution with a low number of rigs, without analyzing 

the schedule budget. The second method also tries to build a feasible solution, but 

at each iteration the algorithm analyzes the partial cost of the solution looking 

forward to generate a schedule with a relatively low budget. 
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The heuristic Constructive1 can be described in three steps, as shown in 

Figure 19. Step 1 sorts the tasks in an insertion queue list. Step 2 inserts the tasks 

according to their position in the sorted list. In Step 2.1, for each existing rig, the 

greedy algorithm tries to insert the new tasks in the earliest position as possible after 

the last task in that rig. If the solution is feasible, it skips to Step 2.3. Otherwise, it 

goes to Step 2.2, in which there is none available rig that allows a viable insertion 

of that tasks. Therefore, in this step, the algorithm assigns a new rig into the fleet 

and inserts the tasks in it as soon as possible. In Step 2.3, the algorithm checks if 

there are new rigs to be inserted from the sorted list, if this condition is true, it 

returns to Step 2.1, but if there is none insertion to be made, Step 2 is finalized and 

Step 3 returns the final solution. 

 
Figure 19. Flowchart for the heuristic Constructive1 (Source: the author). 

Just as the first heuristic, the Constructive2 has three steps, as shown in 

Figure 20. The Step 1 is identical with the previously algorithm, sorting the tasks 

in an insertion queue list. The main difference is in the Step 2, in which the 

algorithm tries not only to find a feasible solution but iteratively analyzes the 

solution cost. In Step 2.1, the new tasks from the list are tested in each existing rig, 

verifying if it is possible to insert them in the earliest insertion possible after the last 

task in that rig. Case positive, the algorithm stores the budget function. Regardless 
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of the previous step, the algorithm inserts the tasks as soon as possible in a new rig 

and stores the solution cost in Step 2.2. Then, in Step 2.3, the algorithm selects the 

viable solution of that iteration with the lowest cost. Additionally,  in Step 2.4, the 

algorithm verifies if there are others tasks from the list to be scheduled, returning 

to step 2.1 if true or finishing Step 2 otherwise. Last, in Step 3, the algorithm returns 

the final solution. 

 
Figure 20. Flowchart for the heuristic Constructive2 (Source: the author). 

Both methods make use of an insertion list, which can be sorted according 

by the following criterions, in sorting order: 

 Sort1: least predecessors; lower 𝑟�̅�; lower 𝑑�̅�; higher 𝑝𝑗; lower Id. 

 Sort2: most successors; lower 𝑟�̅�; lower 𝑑�̅�; higher 𝑝𝑗; lower Id. 

 Sort3: lower 𝑟�̅�; lower 𝑑�̅�; most successors; higher 𝑝𝑗; lower Id. 

 Sort4: lower 𝑟�̅� + 𝑝𝑗; lower 𝑑�̅�; higher 𝑝𝑗; lower 𝑟�̅�; most successors; 

lower Id. 

Others sort criteria were also tested, but due to the precedence rules and 

strict time windows of the tasks, they presented a great difficult to find feasible 

solutions and, therefore, were omitted of this study. 
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6  
Computational Experiments 

In this section, a matheuristic combining the mathematical models, from 

Section 4.2, and the local search algorithms, from Section 5, is developed and 

evaluated. A constructive heuristic is also tested as a possible alternative initial 

solution generator method. All the computational experiments presented in this 

study were executed in a Microsoft Windows 7 (v6.1.7601) machine of 64-bits with 

Intel® Core™ i7-5960x CPU @ 3.00GHz processors and a 64GB-RAM memory. 

The mathematical models were implemented using AIMMS® (v3.14) optimization 

modelling software and executed using CPLEX® (v12.6) optimization solver. The 

heuristic were developed using C++ computational language in a Microsoft Visual 

Studio® with full optimization (/Ox). Two instances, a small (Instance01) and a 

larger one (Instance02), were generated based on real life data and are used in these 

tests. To protect the studied company data, as some information are confidential 

and sensitive, the parameters were demeaned. The dates were transformed to a daily 

count from a random origin date. The tasks, wells and blocks were coded to a 

meaningless id. Last, the costs values were converted to a fictional monetary unit 

(𝑚. 𝑢.). The section divides the results according to the instance. Section 6.1 refers 

to the small instance’s computational experiments, and Section 6.2 to those using 

the large instance. Both sections start with a brief instance’s description, followed 

by the mathematical models and constructive results and ended with the local search 

stages results. Last, Section 6.3 analyzes the matheuristics results considering both 

instances, comparing this approach with a purely heuristic one. 

6.1.  
Small instance (instance01) 

The first instance represents data from a real-life scenario of an important 

operational block in the Brazilian pre-salt basin of the company studied. Hence, this 

instance is accountable for a 10-year-old planning horizon with 163 tasks from 4 
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different projects and from 62 distinct wells. These activities refer to 2 different 

groups of tasks: completion and drilling. Hence, there are 3 types of drilling 

considered in this instance. However, as mentioned in Section 4.1, the rigs fleet is 

considered to be homogeneous and, therefore, there is no distinction between the 

rigs as long as they respect the precedence relationships and the release/ due dates. 

Following Carrilho & Villas Boas (2016) block structuring approach, the 

163 activities of the problem were aggregated in bigger tasks (blocks) according to 

theirs wells and time windows, which resulted in only 62 tasks to be scheduled. 

Each block represents a subset of activities that must always be scheduled together 

without any type of preemption or break. Further information about the activities 

(their id, well, block, processing time, time window and precedence relationship) is 

described in Appendix II. Despite being an instance based on a real life scenario, 

the number of tasks is relatively reduced comparing with others cases. Therefore, it 

is a small instance and will be used to verify the capacity of the heuristics to improve 

solutions from the mathematical models. First, we analyze the results from the 

linear programming. Then, a greedy constructive heuristic is examined. Last, the 

local search is tested using an initial solution obtained by the math models.  

6.1.1.  
Mathematical Programming 

Earlier in Section 4.2, two mathematical models were developed to solve 

the Rig Scheduling Problem of the studied company: Model 1 minimizes the 

number of rigs and Model 2 minimizes the rigs costs. To avoid nonlinear 

programming, a procedure described in Figure 6 (Section 4.2) using Models 1 and 

2 was created to find a schedule that minimizes the budget. In this mathematical 

programming procedure, the solution from Model 1 serves as initial solution for the 

Model 2, which iteratively adds rigs to fleet and determines the fleet size and its 

schedule that minimizes the rigs budget As one of the budget functions elements is 

the rigs’ contracts costs, the Model 1 finds a solution with minimal contract costs 

and, due to the tasks short time windows and their precedence constraints, this 

solution tends to be a tight schedule and a good initial solution for any method that 

aims to reduce the rigs budget. In order to satisfy the particularities of studied rig 

scheduling problem, the proposed mathematical models contain a large number of 
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complex constraints, variables and parameters, and require an exhaustive 

computational effort. Therefore, aiming to reduce the model complexity, some 

variations and combinations of the mathematical models were implemented and 

tested, changing the time units (weeks or days) or the mathematical model executed. 

Table 9 details the models size for the current instance01, in which results 

#3 and #6 refer to the budget minimization procedure, while results #1 and #4 

represent the solutions founds by the Model 1 and results #2 and #5 are obtained 

running the Model 2 to minimize the budget without receiving an initial solution 

from Model 1. Results #1, #2 and #3 uses the time horizon in days and results #3, 

#4 and #5 are in weeks. It is important to notice that the tasks processing times 

might slightly change when approximating their durations from days to weeks and, 

therefore, the mathematical models might analyze slightly different solutions 

spaces. The computational times presented in Table 9 used a stop criterion using 

the executing time and gap. In Model 1 the solver is interrupted if: the gap is zero 

and the solver time is lower than 300 seconds; the gap is lower than 2% and the 

solver time lower than 900 seconds; the gap and the solver time are, respectively, 

lower than 5% and 1800 seconds, or the solution is feasible and the time more than 

1,800 seconds. The Model 2  solving is stopped if: the gap is zero and the solver 

time is lower than 300 seconds; the gap is lower than 3% and the solver time lower 

than 1,800 seconds; the gap and the solver time are, respectively, lower than 5% 

and 3,600 seconds, or the solution is feasible and the time greater than 14,400 

seconds. In addition, the computational times with asterisk mean that the solver was 

interrupted before the stop criterion due to lack of computer memory. 

Table 9. Mathematical models sizes for instance01 (Source: the author). 

# Mathematical models 
Time 

unit 

Small instance (instance01) 

Constraints Variables 
Nonzero 

coefficients 

Computational 

time 

1 Model 1 (min. rigs) Day 59,553 41,483 3,690,456 136 

2 Model 2 (min. budget) Day  184,856 2,877,489 489,464,541 21,217* 

3 
Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 

Day 316,271 33,545 43,061,177 26,468* 

4 Model 1 (min. rigs) Week 8,595 6,052 102,039 7 

5 Model 2 (min. budget) Week 538,873 113,985 103,686,278 137,547 

6 
Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 

Week 45,482 4,920 980,737 28,892 
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Table 9 results emphasize the rig scheduling problem’s complexity and 

evidence the difference in size between the two models. Clearly, the mathematical 

model minimizing the rigs budget is much larger than the one minimizing the 

number of rigs. As a result, the computational effort required to solve Model 2 is a 

lot bigger. The mathematical procedure using Model 1 as initial solution and set 

limiter to Model 2 was able to reduce the budget model size, but it was still much 

bigger than the Model 1. Hence, the mathematical models using time units in week 

are much smaller than the same model considering the horizon periods in weeks, 

which also affects the executing time. The option closest to the real problem would 

be to execute the mathematical models minimizing the rigs budget with the periods 

in days, which are the realistic parameters. However, as noticed, these model 

(results #2 and #3) are extremely complex and requires a huge computational effort, 

having finished with the computer memory before its stop criterion, even for this 

small instance. Next, Table 10 details the solutions found by these models. As 

mentioned earlier, the objective functions of Model 1 and Model 2 are different, the 

first minimizes the fleet of rigs and the second minimizes the rigs budget. Also, the 

mathematical models in weeks approximate the tasks durations and time windows 

and, as a result, the real budget of the schedule (in days) might differ from the 

objective function found by the model in weeks. Further details on the solutions 

found by the mathematical models are presented in Appendix III. 

Table 10. Mathematical models results for instance01 (Source: the author). 

# Mathematical models 
Time 

unit 

Small instance (instance01) 

Rigs 

Fleet 

Budget 

in days 
(𝑢. 𝑚.× 106) 

Objective 

Function 
**

(𝑢. 𝑚.× 106) 

Lower 

Bound 
**

(𝑢. 𝑚.× 106) 

GAP 

(%) 

1 Model 1 (min. rigs) Day 4 1,108.6 10 10 0.00 

2 Model 2 (min. budget) Day - - - - - 

3 
Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 
Day 4 1,028.4 1,028.4** 974.0** 5.29* 

4 Model 1 (min. rigs) Week 4 1,108.9 10 10 0.00 

5 Model 2 (min. budget) Week 5 1030.1  1,034.9 974.0 5.88 

6 
Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 
Week 4 1,029.1 1,032.4** 980.6** 5.02 

It is important to notice that the Model 2 alone in days (results #2) was 

stopped due to lack of memory and did not found feasible solutions or even a lower 

bound. Hence, the solution quality was directly related to the model’s complexity, 

i.e., models of larger size have found better solutions than the simpler models, but 
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required more computational effort. As expected, the models using time units in 

days are capable of finding better solutions than the models in weeks, but, clearly, 

these gains in costs are too low to compensate the computational effort. Therefore, 

if the decision maker needs a solution in a practical time, it is better to use the model 

in weeks. The results also show that even though the Model 1 does not find good 

solutions as the Model 2, it is able to find a schedule with the same rigs fleet and 

just around 7-8% worse with little computational effort. It is evident that the Model 

1 is the appropriate method to generate solutions for the heuristics tests. As budget 

solutions are very similar between Model 1 in weeks and Model 1 in days, the local 

search experiments in the next section will be performed with the fastest model, 

i.e., the Model 1 in weeks. Last, the mathematical procedure using Model 1 and 

Model 2 was able to reduce the computational effort required by the model and, as 

a result, allow to find better solutions than the Model 2 alone in a much smaller 

time. Next, the constructive heuristic results are presented for this instance. 

6.1.2.  
Constructive Heuristic 

Earlier in Section 5.6, two constructive heuristic algorithms were 

described as an alternative initial solution generator method. These two greedy 

methods were tested in the current instance varying the sorting criteria, also 

presented in Section 5.6. These results of the constructive methods are presented in 

Table 11, which shows, the budget function, the computational time and the 

deviation from the best known solutions, found by the mathematical models in 

Table 10. 

Table 11. Constructive heuristics results for small instance 01 (Source: authors). 

Small instance 01 

 
𝐵𝐾𝑆: 

𝑚. 𝑢. 1,028.4 × 106 

 

Constructive Heuristic Results 

Type 
Sorting 

Criter. 
Budget 

(𝑚. 𝑢.× 106) 
Comp. time 

(sec.) 
Dev. from BKS 

(%) 

1 

1 1,515.6 0.003 32.1 

2 1,558.6 0.001 34.0 

3 1,181.9 0.001 13.0 

4 1,151.8 0.001 10.7 

2 

1 1,657.6 0.201 38.0 

2  1,687.2 0.204 39.0 

3 1,161.0 0.137 11.4 

4 1,132,4 0.144 9.2 
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Analyzing Table 11 it is possible to observe that the constructive heuristics 

require an extremely low computational time and that the quality of the solutions 

generated relies mainly in the sorting criterion used. Clearly, there is a superiority 

between the sorting criteria 3 and 4 (which use the indicators based on the release 

date as the first sorting criterion) compared with criteria 1 and 2 (that are based in 

the precedence relationships).  On the other hand, it is hard to notice a performance 

difference between the constructive heuristic 1 and 2, in some sorting criteria the 

first heuristic has found better results and in others cases, the second algorithm was 

superior to the first one. Despite the low computational efforts, only half of the 

greedy heuristics tested were able to create valuable solutions, with a relatively low 

cost benefit, finding solution with around 10% deviation from the BKS in an 

insignificant time. Next, the local search from Section 5 are compared with the 

mathematical models in the current instance. 

6.1.3.  
Local Search 

 Earlier in Section 5, several local search possibilities were mentioned. 

Aiming to determine the heuristic capacity and compare them with the results found 

by mathematical models, a variety of tests was carried out with the proposed 

algorithm – using different neighborhood structures and search strategies and using 

as stop criterion the lack of improvement in neighbor solutions, i.e., interrupting the 

search when no better solution was found in the chosen neighborhood. Overall, 156 

variations of the heuristic were tested for the current instance using the results #4 

from Table 10 as an initial solution. These results are fully discriminated in the 

Appendix IV (which numerate the methods) and summarized in Table 12, 

considering the results #3 from Table 10 as the best known solution. 

Analyzing the results of the neighborhood structures, it is clear that, 

regardless of the neighborhood structure chosen, the heuristic was able to reduce 

millions of dollars, improving between 2.1% and 6.9% the initial solution received 

from the mathematical model 1 in weeks. Besides, in this instance, all the local 

search tested have a relatively low deviation from the best known solution found 

by Model 1+Model 2 in days, with deviation varying from 0.36% to 5.61%. 

Furthermore, the computational effort required by the algorithm to obtain strong 
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solutions is much smaller than the one needed by the mathematical models 

minimizing the rigs budget. While these models need at least 7 hours, the heuristics 

are able to achieve very similar solutions in just a few minutes. 

Table 12. Mean results for each neighborhood structure in instance01 

(Source: the author). 

Group Heuristic Neighborhood 

Instance01 
(Initial Solution: 𝑢𝑚 1,108.9 × 106) 

(BKS, Best Known Solution: 𝑢𝑚 1,028.4 × 106) 

Avg. 

Budget 
(𝑢. 𝑚.× 106) 

Dev. from 
BKS (%) 

Avg. time (sec.) 

Insert 

with 
Fixed 

Dates 

LS 

Existing Rig 1,086.1 5.61 0.11 

New Rig 1,073.5 4.39 0.16 

New Rig + Existing 1,072.2 4.26 0.33 

VND 

Existing – Rig 1,069.9 4.04 0.42 

New Rig – Existing 1,069.9 4.04 0.39 

Random 1,069.9 4.04 0.42 

Insert 

with 
Dates 

Change 

LS 

Anticipation (After-From) 1,045.2 1.63 27.92 

Anticipation (After-In) 1,051.5 2.25 14.29 

Anticipation (Before-From) 1,059.4 3.01 37.35 

Anticipation (Before-In) 1,084.3 5.44 27.75 

Postponement (After-From) 1,072.1 4.25 29.97 

Postponement (After-In) 1,084.2 5.43 15.41 

Postponement (Before-From) 1,071.4 4.18 33.09 

Postponement (Before-In) 1,084.0 5.41 23.35 

VND 

Anticipation 

(After-From) 

Postponement 

(After-From) 
1,046.6 1.77 40.06 

Anticipation 

(After-From) 

Postponement 

(After-In) 
1,043.1 1.43 47.96 

Anticipation 
(After-From) 

Postponement 
(Before-From) 

1,034.9 0.64 81.37 

Anticipation 

(After-From) 

Postponement 

(Before-In) 
1,032.1 0.36 77.94 

Anticipation 
(After-In) 

Postponement 
(After-From) 

1,042.3 1.36 40.54 

Anticipation 

(After-In) 

Postponement 

(After-In) 
1,051.5 2.25 23.20 

Anticipation 
(After-In) 

Postponement 
(Before-From) 

1,033.6 0.51 55.95 

Anticipation 

(After-In) 

Postponement 

(Before-In) 
1,032.1 0.36 49.04 

Anticipation 
(Before-From) 

Postponement 
(After-From) 

1,059.4 3.01 56.47 

Anticipation 

(Before-From) 

Postponement 

(After-In) 
1,051.5 2.25 83.73 

Anticipation 
(Before-From) 

Postponement 
(Before-From) 

1,038.3 0.97 104.64 

Anticipation 

(Before-From) 

Postponement 

(Before-In) 
1,032.1 0.36 111.19 

Anticipation 
(Before-In) 

Postponement 
(After-From) 

1,069.4 3.99 70.25 

Anticipation 

(Before-In) 

Postponement 

(After-In) 
1,084.3 5.44 38.24 

Anticipation 
(Before-In) 

Postponement 
(Before-From) 

1,051.9 2.29 70.32 

Anticipation 

(Before-In) 

Postponement 

(Before-In) 
1,049.0 2.01 63.74 

Random 1,049.1 2.02 34.82 

Random (Anticipation-Postponement) 1,037.1 0.85 66.02 

It is also possible to verify some performance differences for each heuristic 

group. For instance, the Insert with fixed dates neighborhood structures seem to find 
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fast solutions practically with no computational effort, especially the VND heuristic 

that had slightly better improvements than the simpler local search approach. Still, 

these solutions had a significant deviation from the best and, therefore, this group 

is only recommended to be used, for example, in genetic algorithms and simulators 

where the computational effort must be as lower as possible. On the other hand, the 

heuristics groups using the Insert with dates change neighborhood structures can 

find stronger solutions, despite usually needing more computational effort. It is also 

possible to observe differences between the local search and the VND algorithms 

for this neighborhood structure. The first could find some better solutions than the 

fixed dates, but not always and with a much larger computational efforts. The best 

results seem to be in the VND heuristics using the Insert with dates change, which 

were able to find, in minutes, solutions with less than one percent of deviation to 

the best known solutions. Nonetheless, it is very difficult to compare the heuristics 

in a deeper level or even to decide the neighborhood structure that best fit to the 

problem just by analyzing the results from Table 12. Further tests are needed in a 

larger instance, which will be performed in the next section. 

6.2. Large Instance (instance02) 

In the earlier section, the heuristics and mathematical models were tested 

in a small instance, in which the heuristic proved to be extremely powerful and 

efficient, capable of find solutions similar from the exact methods with much less 

computational effort. This capacity is strongly need in larger and complex instances 

where the linear programming models are unable to find good solution with a 

practical executing time. Therefore, the current section presents a larger instance to 

be used in test with the mathematical models (Section 6.2.1), the greedy algorithm 

(Section 6.2.2) and the local searches (Section 6.2.3). 

Just as the first instance, the second instance was generated using data from 

real-life scenarios of the company studied over a 10-year-old planning horizon. 

However, this instance is a much larger one and considers multiple operational 

blocks of the Brazilian pre-salt basin. Therefore, this instance is accountable for 

326 tasks from 23 different projects and from one hundred seventy-three distinct 

wells. Overall, these activities refer to three different groups of tasks: completion, 
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drilling and evaluation. Hence, there are four types of completion and three types 

of drilling considered in this instance. However, equally as in the previous instance, 

the rigs fleet is consider to be homogeneous and, therefore, there is no distinction 

between the rigs and tasks as long as they respect the precedence relationships, the 

release dates and the due dates. The 326 activities of the problem were aggregated 

in larger tasks (blocks) according to its wells and times windows, which resulted in 

186 blocks to be scheduled. Each block represents a subset of activities that must 

always be scheduled together without any type of preemption or break. Further 

activities information (id, well, block, processing time, time window and 

precedence relationship) are described in Appendix II. This aggregation of tasks 

reduces the problem’s size and enables the application of exact methods. 

6.2.1.  
Mathematical Programming 

As mentioned earlier, the proposed mathematical model contains a 

complex and large number of constraints, variables and parameters. Consequently, 

the mathematical model requires extensive computational effort. The matheuristic 

approach explained in Section 5 combines the use of mathematical programming 

tools and heuristic algorithms, being a possible alternative to reduce the problem 

complexity. Nonetheless, it is still important to use the correct mathematical 

models. In addition, in order to obtain a proper evaluation of the heuristics 

performance, the results need to be compared with a pure exact approach. 

Just as in the small instances, several variations and combinations of the 

mathematical models were implemented and tested, varying the time periods 

(weekly or daily) or the mathematical model executed. Table 13 details the models 

sizes for the current instance02, in which results #3 and #6 refer to the budget 

minimization procedure using mathematical models 1 and 2, results #1 and #4 

represent the solutions founds by model 1 and results #2 and #5 use the model 2 

alone. Results #1, #2 and #3 refer tp the time horizon in days and results #4, #5 and 

#6 are in weeks. It is important to notice that the tasks processing times might 

slightly change when approximating their durations from days to weeks and, 

therefore, the mathematical models can analyze slightly different solutions spaces.  
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Table 13. Mathematical models size for instance02 (Source: the author). 

# Mathematical models 
Time 

unit 

Large instance (instance02) 

Constraints Variables 
Nonzero 

coefficients 

Computational 

time 

1 Model 1 (min. rigs) Day 250,122 271,632 17,446,630 10,701 

2 Model 2 (min. budget) Day - - - -* 

3 
Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 

Day 3,463,387 185,004 490,183,931 101,857* 

4 Model 1 (min. rigs) Week 36,074 40,071 557,105 395 

5 Model 2 (min. budget) Week 451,203 487,816 26,367,197 21.217* 

6  
Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 

Week 639,435 35,552 14,230,037 57,278 

The computational times presented in Table 13 were using a stop criterion 

according to the executing time and the gap. In Model 1 the solver is interrupted if: 

the gap was zero and the solver time was lower than 300 seconds; the gap was lower 

than 2% and the solver time lower than 900 seconds; the gap and the solver time 

were, respectively, lower than 5% and 1800 seconds, or the solution was feasible 

and the time more than 1,800 seconds. As to the Model 2’s solver, it is stopped if: 

the gap was zero and the solver time was lower than 300 seconds; the gap was lower 

than 3% and the solver time lower than 1,800 seconds; the gap and the solver time 

were, respectively, lower than 5% and 3,600 seconds, or the solution was feasible 

and the time more than 14,400 seconds. In addition, the computational times with 

asterisk mean that the solver was interrupted before the stop criterion due to lack of 

computer memory. In the case of the Model 2 alone in days, the solver was unable 

to run due to the problem size that was too big even for the pre-solver execution. 

Again, the sizes differences between the models variations are evident. Just as in 

the small instance, the mathematical model minimizing the rigs budget is much 

bigger than the one minimizing the number of rigs and, consequently, the 

computational effort required to solve Model 2 is higher. Also like in the previous 

scenario, the mathematical models using time units in week are much smaller than 

the same model considering the horizon periods in weeks, needing more executing 

time. Due to the instance size, the model 2 in days had to be interrupted before its 

stop criterion as after more than one day was unable to find bound and new viable 

solutions, exhausting the computer’s memory. 

Next, Table 14 details the solutions found by these models at the current 

instance. As mentioned earlier, the objective functions of the Model 1 and Model 2 
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are different, the first minimizes the fleet of rigs and the second minimizes the rigs 

budget. Also, the mathematical models in weeks approximate the tasks durations 

and windows and as a result the real budget of the schedule (in days) might differ 

from the objective function found by the model in weeks. Due to size of the 

problem, the model was unable to save solution found by the Model 2 in weeks 

(results #5) and calculate the budget function in days. Further details on the 

solutions found by the mathematical models are presented in Appendix III, which 

describes the schedules found in each result. 

Table 14. Mathematical models results for instance02 (Source: the author). 

# Mathematical models 
Time 

unit 

Large instance (instance02) 

Rigs 

Fleet 

Budget 

in days 
(𝑚𝑢 × 106) 

Model’s 

Objective 
**(𝑚𝑢 × 106) 

Lower 

Bound 
**(𝑚𝑢 × 106) 

GAP 

(%) 

1 Model 1 (min. rigs) Day 7 2,164.6 28 3.7 86.66 

2 Model 2 (min. budget) Day - - - - - 

3 

Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 

Day 7 2,164.6* - - - 

4 Model 1 (min. rigs) Week 7 2,153.9 28 28 0.00 

5 Model 2 (min. budget) Week - - 14,225.1** 1,554.5** 89.07 

6 

Model 1 (min. rigs) 

→ 

Model 2 (min. budget) 

Week 8 1,741.9 1,751.2** 1,554.5** 11.23 

In this larger instance, the performance difference between the models has 

gotten worse. As a result, the Model 2 that minimizes the budget using the periods 

in days was unable to find any integer solution (results #3), even in the procedure 

with Model 1 and 2 (results #2), in which Model 2 receives an initial solution from 

Model 1 (results #1), it was unable to improve it. Also, due to the models’ sizes, all 

the mathematical models using daily time unit have had difficulties to find integer 

solutions and to close theirs gaps and, therefore, they were outperformed by the 

models in weeks. Hence, it is important to notice that the number of rigs in the fleet 

is very similar in both Model 1 and Model 2, as shown in results #1, #4 and #6. 

However, the difference in the objective function is more than a billion of dollars, 

which might justify the computational effort required to obtain Model 2 results. 

Last, the experiments emphasize the necessity of an alternative method to the 

mathematical programming for the studied problem. In the small instance the 

mathematical models were able to provide strong solutions in a relatively short 
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time, but when using larger instances, the models are not able to find good solutions 

and require a very large amount of computational effort. 

In conclusion, the goal of this study is to propose a practical and efficient 

matheuristic method for solving the company’s rig scheduling problem. Therefore, 

both the matheuristic and the mathematical model used need to be the efficient as 

possible. In order to fulfill this requirement, the most suitable mathematical model 

is the rigs fleet minimization model using time units in weeks. Nonetheless, there 

is the possibility to use the constructive heuristic to generate faster initial solutions. 

Next, more tests are performed aiming to determine the best approaches for this 

problem. 

6.2.2.  
Constructive Heuristic 

In the small instance, Section 6.2, two constructive heuristics combined 

with four tasks sorting structures were tested. In those experiments, some of these 

greedy heuristics were able to find relatively good solutions in an insignificant 

computational time. However, when compared with the mathematical models in 

these small instances, the linear programming computational time was still 

relatively low enough to justify its use and the solution quality improvement. This 

situation might not be true in the large instance such as the current one. Therefore, 

computational experiments with the two constructive algorithms were performed 

on the large instance and their results are shown in Table 15. 

Table 15. Constructive heuristics results for small instance 01 (Source: authors) 

Large instance 02 

 
𝐵𝐾𝑆: 

𝑚. 𝑢. 1,741.9 × 106 

 

Constructive Heuristic Results 

Type 
Sorting 

Criter. 
Budget 

(𝑚. 𝑢.× 106) 
Comp. time 

(sec.) 
Dev. from BKS 

(%) 

1 

1 2,968.0 0.005 41.3 

2 3,070.8 0.003 43.3 

3 2,169.5 0.002 19.7 

4 2,139.8 0.002 18.6 

2 

1 3,064.0 1.039 43.1 

2 2,836.7 0.904 38.6 

3 1,949.3 1.115 10.6 

4 1,923.9 1.311 9.5 
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Just as in small instance, the quality of the solutions relies mainly in the 

sorting criteria used, where the best constructive results are with sorting criterion 3 

and 4, and the computational effort continues to be almost insignificant. Even 

though, it may be hard to notice a performance difference between the constructive 

heuristic 1 and 2, when comparing the these heuristics while using the best sorting 

criterion (3 and 4), it is possible to observe that the combination of the sorting 

criterion 3 or 4 with the constructive heuristic 2 is clearly superior than the others 

greedy algorithms, with a relatively low computational effort for a solution with 

just 10 percent deviation to the BKS. 

Nevertheless, despite the low computational time, only half of the greedy 

heuristics tested were able to create valuable solutions, with a relatively low cost 

benefit. Next, the local search from Section 5 are compared with the mathematical 

models in the current instance. 

6.2.3.  
Local Search 

As mentioned earlier, the mathematical models have great difficult in 

solving large instances such as the current one. Aiming to provide an alternative 

method to replace the exact approaches and support oil and gas companies in theirs 

rig scheduling problem, several local search algorithms were developed and 

presented in Section 3. These algorithms were tested in a small instance and have 

achieved powerful results in Section 6.2, which encourages to test them in a larger 

instance. The current instance is a very large scenario where mathematical models 

tend to require a lot of computational effort to find solutions, as seen in Section 

6.2.1. Consequently, the heuristics are probably the only viable and practicable 

method available for this problem. 

In order to verify this, a variety of tests in 156 variations of the heuristic 

was carried out with the proposed algorithm – using different neighborhood 

structures and search strategies and using as stop criterion the lack of improvement 

in neighbor solutions – with the results #4 from Table 14 as an initial solution and 

the results #6 as best known solution. These results are fully discriminated in the 

Appendix IV (which numerate the methods) and summarized in Table 16. 
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Table 16. Mean results for each neighborhood structures (Source: the author). 

Group Heuristic Neighborhood Structure 

Instance02 
(Initial Solution: 𝑚𝑢 2,153.9 × 106) 

(BKS, Best Known Solution: 𝑚𝑢 1,741.9 × 106
) 

Avg. Budget 
(𝑚𝑢 × 106) 

Dev. from 
BKS (%) 

Avg. time (sec.) 

Insert 
with 

Fixed 

Dates 

LS 

Existing Rig 1,923.1  10.4 2.68 

New Rig 1,953.7 12.2 0.54 

New Rig + Existing 1,811.8 4.0 8.20 

VND 

Existing – Rig 1,808.9 3.8 7.43 

New Rig – Existing 1,827.2 4.9 8.94 

Random 1,808.9 3.8 7.41 

Insert 

with 

Dates 
Change 

LS 

Anticipation (After-From) 1,757.3 0.9 449.14 

Anticipation (After-In) 1,827.0 4.9 155.10 

Anticipation (Before-From) 1,760.8 1.1 471.10 

Anticipation (Before-In) 1,748.9 0.4 247.81 

Postponement (After-From) 1,805.0 3.6 487.87 

Postponement (After-In) 1,916.2 10.0 235.87 

Postponement (Before-From) 1,813.2 4.1 572.92 

Postponement (Before-In) 1,917.2 10.1 192.48 

VND 

Anticipation 

(After-From) 

Postponement 

(After-From) 
1,691.0 -2.9 1,241.18 

Anticipation 
(After-From) 

Postponement 
(After-In) 

1,769.6 1.6 577.80 

Anticipation 

(After-From) 

Postponement 

(Before-From) 
1,691.1 -2.9 1,489.75 

Anticipation 
(After-From) 

Postponement 
(Before-In) 

1,706.1 -2.1 1,431.97 

Anticipation 

(After-In) 

Postponement 

(After-From) 
1,685.3 -3.2 864.70 

Anticipation 
(After-In) 

Postponement 
(After-In) 

1,826.9 4.9 215.17 

Anticipation 

(After-In) 

Postponement 

(Before-From) 
1,697.5 -2.6 1,161.08 

Anticipation 
(After-In) 

Postponement 
(Before-In) 

1,810.8 4.0 673.09 

Anticipation 

(Before-From) 

Postponement 

(After-From) 
1,665.2 -4.4 1,646.01 

Anticipation 
(Before-From) 

Postponement 
(After-In) 

1,737.0 -0.3 979.74 

Anticipation 

(Before-From) 

Postponement 

(Before-From) 
1,664.0 -4.5 1,924.12 

Anticipation 
(Before-From) 

Postponement 
(Before-In) 

1,682.2 -3.4 1,591.55 

Anticipation 

(Before-In) 

Postponement 

(After-From) 
1,690.4 -3.0 855.07 

Anticipation 
(Before-In) 

Postponement 
(After-In) 

1,748.3 0.4 375.33 

Anticipation 

(Before-In) 

Postponement 

(Before-From) 
1,671.3 -4.1 1,277.02 

Anticipation 

(Before-In) 

Postponement 

(Before-In) 
1,725.0 -1.0 853.02 

Random 1,744.4 0.1 395.17 

Random (Anticipation-Postponement) 1,678.1 -3.7 1,144.95 

Analyzing the average local search results for each neighborhood structure 

it is clearly that the heuristic was able to reduce millions of dollars, regardless of 

the neighborhood structure chosen. Even so, it is possible to separate observe 

different performance in each heuristic group. The local searches using insert with 

fixed dates neighborhood structures were extremely fast, finding new solutions with 

almost none computational effort. However, despite the improvement of the initial 

solution, the deviation to the BKS were usually very high. When using the VNDs 
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with the previously neighborhood structure, this deviation is much lower and 

requires a similar computational effort. Basically, the heuristic groups using the 

insert with fixed dates neighborhood structures seem to find fast solutions 

practically with no computational effort, especially the VND heuristic that had 

better improvements than the simple local search heuristics. Just as in the small 

instance, these groups are recommendable to be used in genetic algorithm and 

simulations where it is important to find solutions fast. 

On the other hand, the heuristics groups using the insert with dates change 

neighborhood structures can find stronger solutions, despite needing much more 

computational effort. It is also possible to observe performance difference between 

the two neighborhood structures anticipation and postponement of the local 

searches using insert with dates change. Usually, the local searches using only 

anticipation movements had better results with less computational effort, finding 

solutions very similar to the BKS of model 2 with a low computational effort. 

Meanwhile, the local searches using only postponement had much more difficult to 

find strong solutions, requiring a lot more executing time to find worse solutions. 

The best results seem to be in the VND heuristics using the insert with dates change, 

these heuristics performed exhaustive local searches that were able to obtain new 

better solutions, lower than the best known solutions, with a computational effort 

satisfactory and much smaller than the one need for the mathematical models. Next, 

more tests are performed aiming to select the best matheuristic approaches, 

analyzing its performance on both instances. 

6.3. Matheuristic Results 

In the last sections, the heuristics and mathematical models were tested in 

a small and in a large instance. In both instance, the heuristic performance was 

extremely satisfactory, especially the VND heuristics with the insert with dates 

change neighborhood structure that have outperformed the mathematical models in 

the large instance. Still, it is very difficult to decide which heuristic to be used in 

the matheuristic just by analyzing these last results or if the use a constructive 

algorithm in place of the mathematical programming as an initial solution generator 

for the local search methods would be a better approach. Therefore, this section 
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tests the heuristics and models in a matheuristic perspective. First, a Pareto frontier 

chart (Chart 3) was generate for the mean between instances 01 and 02 results 

presented in the Appendix IV, in which the results are also numbered and each point 

in Chart 3 refers to a result numbered in the Appendix IV. The Pareto frontier chart 

allows to analyze the trade-off between different objectives diving the solutions in 

two groups: the Pareto frontier set, solutions that are not outperformed by another 

solutions, and not-Pareto frontier set, solutions that are outperformed by another 

solutions (Lotov & Miettinen, 2008). 

 
Chart 3. Pareto frontier chart for the parametrization results (Source: the author). 

Our goal is to reduce the costs, i.e., to improve the objective function, with 

minimal computational effort, resulting in a set of just 14 approaches that aren’t 

outperformed by any the solutions found by any other heuristic, as shown in Chart 

3. For the studied problem, where the budget is in scale of billions, a slight reduction 

in the objective function results in great gain for the company. With this in mind, it 
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is possible to say that solution found by the method #114, the VND using insert with 

dates change Anticipation(After–In)–Postponement(After–From) neighborhood 

structure with best-improvement search strategy, has the best trade-off between 

executing time and cost reduction. Several others tests were performed in the 

instances 01 and 02 aiming to verify the best fitted heuristics and are presented in 

the Appendix V, which also analyzes the performance of the selected VND. 

In order to verify the matheuristic approach and to compare it with the 

linear programming models, the selected heuristic (VND #114) was tested in 

instances 01 and 02 using the initial solutions from the mathematical models were 

able to find one (presented in Section 6.1.1. and 6.2.1.). These results are shown in 

Table 17. The final schedules are also presented in Appendix VI. 

Table 17. Matheuristics results for instance 01 and 02 (Source: the author). 

Instance 

Mathematical programming Matheuristic using VND #114 

Math. 

Models 
Budget 

(𝑚𝑢 × 106) 

Comp. 

time 
(sec.) 

Improve 
(%) 

Total 

time 
(sec.) 

Final budget 

solution 
(𝑚𝑢 × 106) 

Dev. 

from 

BKS(%) 

Small instance 01 
Best Known Solution: 
1,028.4 × 106 m.u. 

1 
(days) 

1,108.6 136 6.9 163 1,032.1 0.4 

1 → 2 

(days) 
1,028.4 26,468 0.0 26,486 1,028.4 0.0 

1 
(weeks) 

1,108.9 7 6.7 36 1,034.2 0.6 

2 

(weeks) 
1,030.1 137,547 0.0 137,547 1,030.1 0.2 

1 → 2 
(weeks) 

1,029.2 28,892 0.0 28,910 1,029.2 0.1 

Large instance 02 
Best Known Solution: 
$1,593.5 × 106 m.u 

1 

(days) 
2,164.6 10,701 26.4 10,957 1,593.5 0.0 

1 → 2 

(days) 
2,164.6 101,857 26.4 102,113 1,593.5 0.0 

1 

(weeks) 
2,153.9 395 22.6 1,060 1,668.2 4.5 

1 → 2 

(weeks) 
1,741.9 57,278 3.9 57,686 1,674.1 4.8 

The results from Table 17 support the capacity of the matheuristics to find 

schedules with a low budget. In addition, the best known solutions for the instance 

01 was found through the matheuristic procedures. Different from the others 

combinations, the procedure mixing the mathematical model 1 with the local search 

algorithm proved to be an efficient method, finding near optimal solutions with 

seconds or minutes, depending on the instance’s size. Even though, the best results 

were using the mathematical models in days, the small budget difference between 

the exact models in days and in weeks does not compensate the computational effort 

necessary for executing the mathematical model in days. It is possible to observe 

that the local search was able to improve solutions far away from optimal, but, when 
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using an initial solution extremely near from the optimal, it has shown a slight 

difficult of leaving the local optimum and improve it. 

Another possibility is to use initial solutions provided by the constructive 

heuristics as input to the local search instead of the mathematical model. This purely 

heuristic approach was also tested using the greedy algorithms described in Section 

5.6 and the selected VND #114. The initial solutions were taken from the results in 

Table 11 and Table 15, while the best known solutions (BKS) are the best results 

from Table 17. Bellow, Table 18 presents the results of the combination the 

constructive heuristics and variable neighborhood descent #114. 

Table 18. Constructive heuristic with local search results (Source: the author). 

Instance 

Constructive Heuristic Results after the VND #114 

Const. 

Heur. 

Sort. 

Criterion 
Budget 

(𝑚𝑢 × 106) 

Comp. 

time 
(sec.) 

Improve 

(%) 

Total 

time 
(sec.) 

Final budget 
solution 

(𝑚𝑢 × 106) 

Dev. 

from 
BKS(%) 

Small instance01 
Best known solution: 

1,028.4 × 106m.u. 

1 

1 1,515.6 0.003 19.3 116.7 1,223.9 16.0 

2 1,558.6 0.001 19.0 98.7 1,262.6 18.5 

3 1,181.9 0.001 8.1 61.6 1,085.9 5.3 

4 1,151.8 0.001 6.8 69.4 1,073.0 4.2 

2 

1 1,657.6 0.201 25.9 145.4 1,228.4 16.3 

2 1,687.2 0.204 27.5 105.7 1,224.0 16.0 

3 1,161.0 0.137 6.4 69.8 1,086.7 5.4 

4 1,132,4 0.144 7.3 72.6 1,049.6 2.0 

Large instance02 
Best known solution: 
1,593.5 × 106m.u. 

1 

1 2,968.0 0.005 29.7 767.1 2,085.5 23.6 

2 3,070.8 0.003 35.1 964.9 1,991.7 20.0 

3 2,169.5 0.002 17.6 1,007.2 1,786.9 10.8 

4 2,139.8 0.002 16.1 620.2 1,796.3 11.3 

2 

1 3,064.0 1.039 24.3 1,016.9 2,319.7 31.3 

2 2,836.7 0.904 25.9 796.7 2,103.3 24.2 

3 1,949.3 1.115 7.9 561.6 1,795.4 11.2 

4 1,923.9 1.311 6.1 1,094.2 1,807.5 11.8 

Analyzing the results from Table 18, it is clear that the combination of the 

greedy constructive heuristics with the local search is a viable possibility to 

generate reliable and efficient solutions, if the proper heuristic and sorting criteria 

was selected. The best results were obtained with the sorting criteria 4 and, usually 

with the constructive algorithm 2. Thus, when combining the constructive heuristic 

and the local search, the quality of the final solution strongly relies in the quality of 

the initial solution provided by the greedy algorithm. Regardless the constructive 

method used, the computation effort seems to be very similar and low, needing 

around 2 minutes in the small instance and 10 minutes in large one. However, 

despite the extremely low computational effort, the solutions quality found by the 

combination of these two heuristics are still a bit far away from the best solutions. 

In the small instance the matheuristic combination of the Model 1 in weeks with 
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the VND outperforms the purely heuristic approach, as much as in time or in 

solution quality. This situation is repeated in the large instance, in which the 

constructive and the local search can provide faster solutions, but with quality still 

poor if compared with the ones found by the  matheuristic and, therefore, does not 

justify using it instead of the matheuristic. Next, Table 19 compares the overall 

results of the hybrid and purely heuristic methods, analyzing just best results of 

each one. 

Table 19. Average results for best heuristic and matheuristic methods 

(Source: the author). 

Instance 
Constructive Heuristic + VND #114 

Method 
Final budget solution 

(𝑚𝑢 × 106) 

Dev. from BKS 
(%) 

Time 
(sec.) 

Small instance01 
Best known solution: 

1,028.4 × 106m.u. 

Constructive (Sort. 3 or 4) + 

VND 
1,073.8 4.2 68.35 

Matheuristic 

(Model 1 +VND) 
1,033.2 0.5 99.5 

Large instance02 
Best known solution: 
1,593.5 × 106m.u. 

Constructive (Sort. 3 or 4) + 

VND 
1,796.5 11.3 820.8 

Matheuristic 
(Model 1 +VND) 

1,630.9 2.3 6,008.5 

Even though the use of the constructive as initial solution requires less 

computational effort, the solutions are still extremely far from the best known 

solutions, with average deviation of 4.2% in the small instance and over 10% in the 

large instance. It is possible to obtain much better solutions using the linear 

programing models as initial solution, with deviation of 0.5% in the small instance 

and 2.3% in the large instance and just a little bit more of executing time. 

Therefore, the recommended solution method is the matheuristic using the 

mathematical model 1 (weeks) with the variable neighborhood descent #114. This 

combination is capable of efficiently finding strong solutions with a very low 

computational time, needing just some seconds (small instances) or minutes (large 

instances). As the rigs costs sum up billions of dollars, the proposed matheuristic 

approach has potential to reduce millions (or even billions) of dollars for the studied 

company, which will result in an important competitive advantage.

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



 
 

7  
Conclusion and future research 

The Oil & Gas companies are extremely important to the nation’s 

development and economy, being the supplier for most of the world’s energy and 

for several industries. One of the most critical, complex, expensive and risky phases 

in their production chain is the Exploration & Production of Oil & Gas, which relies 

mainly in the operations of rigs. However, the rigs are a scarce and costly resource. 

Furthermore, the rigs must perform several tasks, such as drilling, evaluation, 

completion and workover, immersed in an environment full of uncertainties, 

especially in offshore wells. Therefore, these companies require to properly plan 

and schedule theirs fleet of rigs to ensure that the right rigs will be available in the 

right place at the right time with the lowest cost possible. Due to its importance, the 

problem of determining the rigs schedule, known as Rig Scheduling Problem, has 

received a lot of attention in the literature. 

Nonetheless, as seen in the literature review from Section 3.1, most of 

these researches focus on less complex problems for planning workover tasks in 

onshore wells. Few studies apply to others important tasks such as drilling and 

completion and none of them consider realistic functions and constraints to be 

applied in real companies. Aiming to fill this gap in the literature and support 

companies in their decision making process, this dissertation has approached a real 

rig scheduling problem in a major multinational of the Oil & Gas sector that needs 

to contract a large number of oil rigs to perform several of the offshore E&P 

activities, such as drilling, evaluation and completion. 

In short, this case study is an offshore rig scheduling problem in which the 

goal is to find an optimal rigs fleet size and schedule that minimizes the company’s 

budget (a cost function that takes into account the rigs fleet size, idleness and its 

use) considering some precedence constraints, time windows and others 

particularity of the studied company. This problem can be represented as a 

𝑃𝑚| �̅�𝑗�̅�𝑗𝑝𝑟𝑒𝑐 | 𝑛𝑜𝑛𝑟𝑒𝑔 scheduling problem, i.e., the scheduling of identical 
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machines in parallel with strict release and due dates, as well as precedence rules, 

whose objective is to minimize the budget, a non-regular objective function equal 

to the weighted sum of idleness time, number of machines and activities durations. 

For the purpose of solving this problem, two mathematical models – 

Model 1 (that minimizes the rigs fleet) and Model 2 (that minimizes the rigs budget) 

– and some local search algorithms were formulated. The proposed solution method 

was to apply the combination of the mathematical models with the heuristics in a 

matheuristic algorithm, a new approach for the rig scheduling problem. A purely 

exact approach was also tested, but the results suggest a large difficult of using it in 

practical and large instances. 

In order to deal with the complexity of the problem, the mathematical 

models were tested with two possible time horizon unit: days and weeks. The 

mathematical models using days represented the real schedule and, therefore, they 

required much more computational effort, as verified in the computational 

experiments. On the other hand, the models in weeks were a representation of an 

approximate and relaxed scenario and, as a result, they required much less executing 

time. In the small instance, the computational complexity was not enough to 

comprise the results and, consequently, the models in days achieved better results 

than the models in weeks. However, in the larger instance, the model in days needed 

much more computational effort and resulted in worse solutions and weaker 

bounds. Also to reduce the problem’s complexity, a mathematical modeling 

procedure was developed combining Model 1 and Model 2 aiming to reduce the 

search space of the problem. After the computational experiments, this 

mathematical programing procedure using the Model 1 to provide an initial solution 

for Model 2 allowed to reduce the problem complexity if compared of the use of 

the budget minimization model 2 purely, but it has still presented a difficult in large 

instances and using daily time units. 

When comparing the results from the mathematical model 1 alone and the 

procedure involving the mathematical model 1 and 2, the mathematical model 1 

required much less computational effort and as it minimizes the rigs fleet size, it 

minimizes the sum of the rigs contracts, which is an element of the budget function. 

Furthermore, the model tries to fit the maximum of tasks in the minimal fleet of 
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rigs. As a result, the mathematical model 1 is able to find relatively good solutions 

in a short executing time and can generate strong initial solution for others methods. 

In contrast, the procedure for the mathematical model 2 requires much more 

computational effort and, in large instances, might not find feasible solutions due 

to the computer memory. 

Several local searches were developed based on three different 

neighborhood structures of insert movement: insert with fixed dates, insert with 

dates anticipation and insert with dates postponement. The first movement type 

removes a set of tasks from a position in a rig and inserts them at the end of another 

existing rig or in a new rig, while keeping the same start time of each task being 

moved. The second tries to anticipate a set of task in a rig and then insert these tasks 

in another rig (an existing one or even a new one) or insert a block of tasks of 

another rig in the end of this rig whose tasks were anticipated. And the last one tries 

to postpone a block of task in a rig and then insert these postponed tasks in another 

rig (an existing one or even a new one) or insert a set of tasks of another rig in the 

end of this rig whose tasks were postponed. Variations of these movements 

changing their settings, search strategies and combining multiple methods in a 

variable neighborhood descent search were generated. A total of 156 variations of 

local search heuristics was tested for two instances using an initial solution from 

the mathematical model 1 with times horizon periods in weeks. All the developed 

algorithms succeeded to reduce the budget in millions of dollars, having most of 

them outperformed the mathematical models 1 and 2 in the large instance. 

 After a Pareto frontier analysis and the evaluation of budget progression 

through the executing time, the variable neighborhood search (VND) #114 that uses 

insert with dates change Anticipation(After–In)–Postponement(After–From) 

neighborhood structures with best-improvement search strategy was selected due to 

its great potential to efficiently improve the budget, having obtained powerful 

results for the two instance. This VND searches solutions in two neighborhood 

structures, one of insert with dates anticipation and other of insert with dates 

postponement, movements that together allow the search to perform unique 

schedules. 
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In addition, the proposed local search #114 was combined with the others 

mathematical models to verify the most suitable matheuristic approach to the 

problem. These results supported the capacity of the matheuristics to find schedules 

with a low budget. Once again, the mathematical models using daily time units 

found better results but needed much more computational effort. In the larger 

instances, the best-known solution were found by the matheuristics. The 

combination of mathematical model 1 minimizing the rigs fleet with the VND 

minimizing the budget resulted in an efficient method, finding near optimal 

solutions in a relatively low execution time, especially using the mathematical 

model #1 with the time unit in weeks. Due to its high performance and low 

complexity, this matheuristic using the mathematical model 1 in weeks to find an 

initial solution for the variable neighborhood search #114 is suggested for this rig 

scheduling problem as it is capable of finding strong solutions with a very low 

computational time, needing just some seconds (small instances) or minutes (large 

instances). 

Some constructive greedy algorithms were also developed as an alternative 

method to generate initial solutions for the local search instead of the mathematical 

models and tested with the proposed variable neighborhood descent #114. Despite 

the extremely low computational efforts, the solution quality were still far away 

from those found by those using the matheuristic. Therefore, results indicate that 

this purely heuristic approach is not preferable to the proposed matheuristic method. 

In short, the proposed matheuristic is a fast and realistic decision support 

tool that has potential to reduce millions (or even billions) of dollars for oil & gas 

companies, capable of find near optimal schedules with few computational efforts 

even for large instances where most exact methods are too complex and slow. 

The success of the proposed matheuristic release new opportunities for 

futures applications of matheuristics and metaheuristics in rig scheduling problems. 

More computational experiments are required in others instances in order to 

determine the patterns in the different heuristics tested in this study. In addition, it 

is possible to test others more advanced algorithms in the heuristic stage, such as 

Variable Neighborhood Search (VNS), Iterated Local Search (ILS), Iterated Greedy 

Search (IGS), Tabu Search (TS) and Genetic Algorithms (GA). Another possibility 
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is to try others neighborhood structures, constructive heuristics and local search 

variations to enhance the methods tested here. 

The complexity of the problem forces to consider relaxed assumptions for 

the problem and hinders the effectiveness of the mathematical models. The 

matheuristic approach has emerged to fulfill this gap. Nonetheless, its results relies 

on the quality of the initial solution of the mathematical model. This dissertation 

results proved that the matheuristics results using the exact models in days were 

slightly better than the other models in weeks, but the computational effort was too 

much to justify its use. Therefore, the application of advantages linear programming 

techniques to reduce the mathematical models complexity trends to generates great 

gains for future researches. 

The reduction of the problem’s complexity through advanced 

mathematical programming or metaheuristics allows approaching more realistic 

scenarios and rig scheduling problems. Currently, there is a demand for new 

formulations considering heterogeneous fleets of rigs, machine eligibility, fleets 

availability constraints and variable costs over the planning horizon. 

Furthermore, as the Oil & Gas companies are immersed in an environment 

full of risks, there is the need of rig scheduling models taking into account the 

uncertainties in tasks processing time, rigs rates, wells productions and tasks release 

dates. 
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Appendix I: Neighborhood Structure Algorithms 

The procedure to search for these neighbor solutions using the insert with 

fixed dates in an existing rig movement is simplified in Algorithm 3. 

Algorithm 3. Insert with fixed dates in an existing rig neighborhood search 

1: 𝑠, 𝑠∗ ← 𝑠0; //current solution// 

2: for each 𝑖 in 𝑀 do: 

3:  for each 𝑖′ in 𝑀\{𝑖} do: 

4:   for each 𝑗 in 𝑏𝑙𝑜𝑐𝑘𝑠𝑅𝑖𝑔(𝑖) do: 

5:    𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 ← 𝑖. 𝑔𝑒𝑡𝑇𝑎𝑠𝑘𝑠𝐹𝑟𝑜𝑚(𝑗); 

6:    𝑖′. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑇𝑎𝑠𝑘𝑠(𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡); 

7:    if 𝑣𝑖𝑎𝑏𝑙𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑠) then: 

8:     𝑠∗ ← 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠); 

9:    endif; 

          10:    𝑠 ← 𝑠0; 

          11:   endfor; 

          12:  endfor; 

          13: endfor; 

                      14: return 𝑠∗;      

In order to help the understanding of this neighborhood structure, some 

steps were simplified, or even omitted, in Algorithm 3. When searching solutions 

in the insert with fixed dates in an existing rig neighborhood, the heuristic tests for 

each machine (rig) 𝑖 (loop from line 2 to 13) if there is another machine 𝑖′ (loop 

from line 3 to 12) in which some block of tasks (composed by any block of activity 

from 𝑗 to end of the machine 𝑖 list – loop from line 4 to 11) could be reallocated in 

the end of the other machine 𝑖′ (line 6), respecting the constraints of the rig 

scheduling problem (line 7) and without changing any allocation date. Any viable 

solution found is tested using an acceptance criterion (line 8) that selects the new 

neighbor solution to be used as current solution (line 14). In short, this 

neighborhood is composed by any viable solution moving a set of tasks from the 

end of a rig to another rig’s end keeping the same allocation dates. 

Next, the main steps of the procedure to search for neighbor solutions 

using the insert with fixed dates in a new rig movement are illustrated in Algorithm 

4. 
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Algorithm 4. Insert with fixed dates in a new rig neighborhood search 

1: 𝑠, 𝑠∗ ← 𝑠0; //current solution// 

2: for each 𝑖 in 𝑀 do: 

3:  for each 𝑗 in 𝑏𝑙𝑜𝑐𝑘𝑠𝑅𝑖𝑔(𝑖) do: 

4:   𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 ← 𝑖. 𝑔𝑒𝑡𝑇𝑎𝑠𝑘𝑠𝐹𝑟𝑜𝑚(𝑗); 

5:   𝑀 ← 𝑀 ∪ 𝑖′; //adds a new rig into the fleet// 

6:   𝑖′. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑇𝑎𝑠𝑘𝑠(𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡); 

7:   𝑠∗ ← 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠); 

8:   𝑠 ← 𝑠0; 

9:  endfor; 

          10: endfor; 

          11: return 𝑠∗;  

In the insert with fixed dates in a new rig neighborhood structure, the 

heuristic tests for each machine (rig) 𝑖 (loop from line 2 to 10) the impact on the 

objective function after moving any set of scheduled tasks (loop from line 3 to 9) 

to a new rig. In these loops, such blocks are composed by all the tasks from block 𝑗 

in the end of the machine 𝑖 list (line 4). A new rig 𝑖′ is added to the fleet at line 5 

and the tasks selected (𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡) are reallocated in 𝑖′ (line 6), without changing 

any allocation date. As this new rig was initially empty, there is no need to check 

the viability of the solution, differently from the previous method. All the neighbor 

solutions found are tested using an acceptance criterion (line 7) that selects the new 

neighbor solution to be used as current solution (line 11). In short, this 

neighborhood is composed by any solution moving a set of tasks from the end of a 

rig to a new rig maintaining the same allocation dates. As to insert with dates 

anticipation movement, they can be described in two stages: anticipation (after or 

before) followed by insert (in or from). Algorithm 5 presents the neighborhood 

search using any type of insert with dates anticipation movement. 

Algorithm 5. Insert with dates anticipation neighborhood search 

1: 𝑠, 𝑠∗ ← 𝑠0; //current solution receives initial solution// 

 2: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(); 

 3: for each 𝑖 in 𝑀 do: 

4:  for each 𝑗 in 𝑏𝑙𝑜𝑐𝑘𝑠𝑅𝑖𝑔(𝑖) do: 

5:   𝑖. 𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑒𝑝(𝑗); 

6:   𝑠. 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑡𝑒𝑝(𝑖, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦); 

7:   𝑠∗ ← 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠); 

8:   𝑠 ← 𝑠0; 

9:  endfor; 

          10: endfor; 

          11: return 𝑠∗;  
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In Algorithm 5, the heuristic tests for each machine (rig) 𝑖 (loop from line 

3 to 10) the impact on the objective function after performing an anticipation of 

tasks in the machine 𝑖 followed by a instertion movement according to a block of 

task 𝑗 from rig 𝑖 (loop from line 4 to 9). As mentioned earlier, the anticipation step 

performed in machine 𝑖 at line 5 can be on the tasks before or after a position 𝑗 and 

is followed by the insertion of tasks in or from the machine 𝑖 (line 6). Furthermore, 

it is important to notice that the 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑡𝑒𝑝 (line 6) searches some tasks from the 

anticipated rig to be inserted in the end of another rig (insert from) or some others 

tasks from the end of another rig to be inserted in the end of the anticipated rig 

(insert in) with no obligation to perform an insert move, determined according to a 

neighbor selection strategy (line 2). If the neighbor solution satisfies an acceptance 

criterion, it is store as the new best solution so far (line 7). At the end of each 

iteration of the loop, the current solution is restored (line 8). Finally, at line 11, the 

neighborhood search returns the best overall solution found (line 11). 

Last, the insert with dates postponement movements can be described in 

two stages: postponement (after or before) followed by insert (in or from). 

Algorithm 6 presents the neighborhood search using any type of insert with dates 

postponement movement. 

Algorithm 6. Insert with dates postponement neighborhood search 

1: 𝑠, 𝑠∗ ← 𝑠0; //current solution receives initial solution// 

 2: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(); 

 3: for each 𝑖 in 𝑀 do: 

4:  for each 𝑗 in 𝑏𝑙𝑜𝑐𝑘𝑠𝑅𝑖𝑔(𝑖) do: 

5:   𝑖. 𝑝𝑜𝑠𝑡𝑝𝑜𝑛𝑒𝑚𝑒𝑛𝑡𝑆𝑡𝑒𝑝(𝑗); 

6:   𝑠. 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑡𝑒𝑝(𝑖, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦); 

7:   𝑠∗ ← 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠); 

8:   𝑠 ← 𝑠0; 

9:  endfor; 

          10: endfor; 

          11: return 𝑠∗;  

When searching solutions in the insert with dates postponement 

neighborhoods, the heuristic tests for each machine (rig) 𝑖 (loop from line 3 to 10) 

the impact on the objective function after delaying tasks in the machine 𝑖 followed 

by a instertion movement according to a block of task 𝑗 from rig 𝑖 (loop from line 

4 to 9). As mentioned earlier, the postponement step performed in machine 𝑖 at line 

5 can be on the tasks before or after a position 𝑗 and is followed by the insertion of 
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tasks in or from the machine 𝑖 (line 6). Furthermore, it is important to notice that 

the 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑡𝑒𝑝 (line 6) searches some tasks from the delayed rig to be inserted in 

the end of another rig (insert from) or some others tasks from the end of another rig 

to be inserted in the end of the delayed rig (insert in) with no obligation to perform 

an insert move, determined according to a neighbor selection strategy (line 2). If 

the neighbor solution satisfies an acceptance criterion, it is store as the new optimal 

solution (line 7). At end of each iteration of the loop, the current solution is restored 

(line 8). Finally, at line 11, the neighborhood search returns the best solution found 

(line 11). 
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Appendix II: Instances Description 

The following table contains important details about the small instance: 

Table 20. Description of the Small Instance (Source: the author). 

Task 

ID 

Block 

ID 

Well 

ID 

Project 

ID 

Processing 

Time 

Release 

Date 

Due 

Date 

Precedence 

List 

Succesors 

List 
1 9 33 3 17 8555 8751  2;3; 
2 9 33 3 82 8572 8833 1; 3; 

3 9 33 3 45 8654 8878 1;2;  

4 61 34 3 17 8778 8974  5;6; 
5 61 34 3 72 8795 9046 4; 6; 

6 61 34 3 45 8867 9091 4;5;  

7 10 35 3 17 8699 8895  8;9; 
8 10 35 3 72 8716 8967 7; 9; 

9 10 35 3 45 8788 9012 7;8;  

10 12 36 3 17 9012 9208  11;12; 
11 12 36 3 79 9029 9287 10; 12; 

12 12 36 3 46 9108 9333 10;11;  

13 55 37 3 62 7975 8216   

14 58 38 3 56 8395 8630   

15 56 39 3 17 8037 8233  16;17; 

16 56 39 3 116 8054 8349 15; 17; 
17 56 39 3 68 8170 8417 15;16;  

18 7 40 3 17 8184 8380  19;20; 

19 7 40 3 107 8201 8487 18; 20; 
20 7 40 3 67 8308 8554 18;19;  

21 8 41 3 17 8375 8571  22;23; 

22 8 41 3 96 8392 8667 21; 23; 
23 8 41 3 67 8488 8734 21;22;  

24 60 42 3 17 8599 8795  25;26; 

25 60 42 3 105 8616 8900 24; 26; 
26 60 42 3 57 8721 8957 24;25;  

27 11 43 3 17 8833 9029  28;29; 

28 11 43 3 105 8850 9134 27; 29; 
29 11 43 3 57 8955 9191 27;28;  

30 62 44 3 17 8912 9108  31;32; 

31 62 44 3 105 8929 9213 30; 32; 
32 62 44 3 57 9034 9270 30;31;  

33 23 45 4 63 8171 8413   

34 24 46 4 17 8234 8430  35;36; 

35 24 46 4 93 8251 8523 34; 36; 

36 24 46 4 55 8344 8578 34;35;  

37 39 47 4 17 8453 8649  38;39; 

38 39 47 4 93 8470 8742 37; 39; 

39 39 47 4 55 8563 8797 37;38;  

40 26 48 4 17 8564 8760  41;42; 

41 26 48 4 93 8581 8853 40; 42; 

42 26 48 4 55 8674 8908 40;41;  

43 41 49 4 17 8783 8979  44;45; 

44 41 49 4 93 8800 9072 43; 45; 

45 41 49 4 55 8893 9127 43;44;  

46 28 50 4 17 8894 9090  47;48; 

47 28 50 4 93 8911 9183 46; 48; 

48 28 50 4 55 9004 9238 46;47;  

49 42 51 4 17 8948 9144  50;51; 

50 42 51 4 93 8965 9237 49; 51; 

51 42 51 4 55 9058 9292 49;50;  

52 30 52 4 17 9224 9420  53;54; 

53 30 52 4 93 9241 9513 52; 54; 

54 30 52 4 55 9334 9568 52;53;  

55 44 53 4 17 9278 9474  56;57; 

56 44 53 4 93 9295 9567 55; 57; 

57 44 53 4 55 9388 9622 55;56;  
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Task 

ID 

Block 

ID 

Well 

ID 

Project 

ID 

Processing 

Time 

Release 

Date 

Due 

Date 

Precedence 

List 

Succesors 

List 
58 37 54 4 63 8225 8467   

59 38 55 4 17 8288 8484  60;61; 

60 38 55 4 93 8305 8577 59; 61; 

61 38 55 4 55 8398 8632 59;60;  

62 25 56 4 17 8399 8595  63;64; 

63 25 56 4 93 8416 8688 62; 64; 

64 25 56 4 55 8509 8743 62;63;  

65 27 57 4 17 8729 8925  66;67; 

66 27 57 4 93 8746 9018 65; 67; 

67 27 57 4 55 8839 9073 65;66;  

68 40 58 4 17 8618 8814  69;70; 

69 40 58 4 93 8635 8907 68; 70; 

70 40 58 4 55 8728 8962 68;69;  

71 29 59 4 17 9059 9255  72;73; 

72 29 59 4 93 9076 9348 71; 73; 

73 29 59 4 55 9169 9403 71;72;  

74 43 60 4 17 9113 9309  75;76; 

75 43 60 4 93 9130 9402 74; 76; 

76 43 60 4 55 9223 9457 74;75;  

77 1 3 1 17 7215 7411  78;79; 

78 1 3 1 62 7232 7473 77; 79; 

79 1 3 1 29 7294 7502 77;78;  

80 54 5 1 17 7754 7950  81;82; 

81 54 5 1 50 7771 8000 80; 82; 
82 54 5 1 23 7821 8023 80;81;  

83 50 6 1 53 7344 7576   

84 16 7 1 78 10148 10405  85; 
85 16 7 1 38 10226 10443 84;  

86 5 8 1 13 7696 7888  87;88; 

87 5 8 1 73 7709 7961 86; 88; 
88 5 8 1 23 7782 7984 86;87;  

89 3 9 1 14 7459 7652  90;91; 

90 3 9 1 86 7473 7738 89; 91; 
91 3 9 1 26 7559 7764 89;90;  

92 48 10 1 31 7248 7458 93;94;  

93 48 10 1 17 7160 7356  94;92; 
94 48 10 1 71 7177 7427 93; 92; 

95 53 1 1 17 7644 7840  96;97; 

96 53 1 1 70 7661 7910 95; 97; 
97 53 1 1 23 7731 7933 95;96;  

98 15 14 1 68 10042 10289  99; 

99 15 14 1 38 10110 10327 98;  

100 49 11 1 65 7279 7523   

101 52 61 1 17 7534 7730  102;103; 

102 52 61 1 58 7551 7788 101; 103; 
103 52 61 1 35 7609 7823 101;102;  

104 2 4 1 17 7323 7519  105;106; 

105 2 4 1 66 7340 7585 104; 106; 
106 2 4 1 53 7406 7638 104;105;  

107 51 12 1 17 7397 7593  108;109; 

108 51 12 1 67 7414 7660 107; 109; 

109 51 12 1 53 7481 7713 107;108;  

110 13 13 1 74 9787 10040  111; 

111 13 13 1 53 9861 10093 110;  

112 4 2 1 13 7585 7777  113;114; 

113 4 2 1 63 7598 7840 112; 114; 

114 4 2 1 35 7661 7875 112;113;  

115 14 15 1 75 9914 10168  116; 

116 14 15 1 53 9989 10221 115;  

117 18 16 2 57 7536 7772   

118 35 17 2 17 7938 8134  119;120; 

119 35 17 2 73 7955 8207 118; 120; 

120 35 17 2 45 8028 8252 118;119;  

121 32 18 2 17 7508 7704  122;123; 

122 32 18 2 75 7525 7779 121; 123; 

123 32 18 2 37 7600 7816 121;122;  

124 47 19 2 90 10286 10555  125; 

125 47 19 2 45 10376 10600 124;  

126 33 20 2 17 7637 7833  127;128; 

127 33 20 2 75 7654 7908 126; 128; 

128 33 20 2 37 7729 7945 126;127;  

129 19 21 2 52 7593 7824   

130 36 22 2 17 8073 8269  131;132; 
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131 36 22 2 73 8090 8342 130; 132; 
132 36 22 2 45 8163 8387 130;131;  

133 22 23 2 17 8029 8225  134;135; 

134 22 23 2 81 8046 8306 133; 135; 
135 22 23 2 46 8127 8352 133;134;  

136 17 62 2 17 7363 7559  137;138; 

137 17 62 2 100 7380 7659 136; 138; 
138 17 62 2 56 7480 7715 136;137;  

139 31 24 2 17 7328 7524  140;141; 

140 31 24 2 97 7345 7621 139; 141; 
141 31 24 2 66 7442 7687 139;140;  

142 34 25 2 17 7766 7962  143;144; 

143 34 25 2 97 7783 8059 142; 144; 
144 34 25 2 58 7880 8117 142;143;  

145 20 26 2 17 7645 7841  146;147; 

146 20 26 2 108 7662 7949 145; 147; 

147 20 26 2 68 7770 8017 145;146;  

148 21 27 2 17 7838 8034  149;150; 

149 21 27 2 106 7855 8140 148; 150; 
150 21 27 2 68 7961 8208 148;149;  

151 46 28 2 123 10106 10408  152; 

152 46 28 2 57 10229 10465 151;  

153 45 29 2 123 9926 10228  154; 

154 45 29 2 57 10049 10285 153;  

155 6 30 3 17 8036 8232  156;157; 

156 6 30 3 82 8053 8314 155; 157; 

157 6 30 3 49 8135 8363 155;156;  

158 57 31 3 17 8238 8434  159;160; 

159 57 31 3 90 8255 8524 158; 160; 

160 57 31 3 50 8345 8574 158;159;  

161 59 32 3 17 8451 8647  162;163; 

162 59 32 3 82 8468 8729 161; 163; 

163 59 32 3 49 8550 8778 161;162;  

As to the large instance, the next table contains important details about its 

tasks: 

Table 21 - Description of the Large Instance (Source: the author). 

Task 

ID 

Block 

ID 

Well 

ID 

Project 

ID 

Processing 

Time 

Release 

Date 

Due 

Date 

Precedence 

List 

Sucessors 

List 
1 35 58 8 31 6437 6647   

2 149 3 3 47 6036 6262   

3 149 3 3 30 6083 6292   

4 1 4 3 42 6041 6262 100;  

5 1 4 3 38 6083 6300 100;  

6 2 5 3 29 6121 6329  3; 
7 127 6 3 42 6126 6347 125;126;  

8 127 6 3 27 6168 6374 125;126;  

9 3 7 3 42 6150 6371 2;2;  

10 3 7 3 31 6192 6402 2;2;  

11 152 8 3 61 6198 6438 150;151;  

12 152 8 3 27 6259 6465 150;151;  

13 62 9 3 47 6228 6454 61;  

14 62 9 3 30 6275 6484 61;  

15 63 10 3 48 6305 6532  64; 
16 63 10 3 17 6353 6549  64; 

17 153 11 3 54 6320 6553  154;155; 

18 153 11 3 34 6374 6587  154;155; 
19 154 12 3 49 6408 6636 153; 155; 

20 154 12 3 27 6457 6663 153; 155; 

21 170 13 4 13 6025 6230 169; 171; 
22 172 13 4 55 6156 6403  173; 

23 172 13 4 39 6211 6442  173; 

24 171 14 4 75 6038 6305 169;170;  

25 171 14 4 43 6113 6348 169;170;  

26 148 15 4 63 6057 6299 146;147;  

27 148 15 4 44 6120 6343 146;147;  

28 94 16 4 81 6178 6445   

29 94 16 4 48 6259 6493   
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30 173 17 4 69 6250 6511 172;  

31 173 17 4 47 6319 6558 172;  

32 95 18 4 36 6307 6529  96; 

33 96 19 4 43 6343 6572 95;  

34 174 20 4 38 6366 6596  175; 

35 97 21 4 44 6386 6616   

36 98 22 4 73 6430 6689   

37 98 22 4 44 6503 6733   

38 99 23 4 66 6547 6799   

39 105 23 4 59 6757 6995 104;  

40 58 24 5 91 6041 6311 57;  

41 32 24 5 31 6277 6487   

42 7 25 5 62 6199 6440  8; 
43 100 25 5 32 6483 6694  1; 

44 33 26 5 25 6308 6512   

45 9 27 5 85 6350 6614  10; 

46 179 27 5 30 6482 6691 178;  

47 132 28 5 22 6390 6591 #N/A #N/A 

48 10 29 5 65 6468 6712 9;  

49 10 29 5 26 6533 6738 9;  

50 180 30 5 86 6512 6777  181; 

51 180 30 5 32 6598 6809  181; 
52 102 31 5 22 6519 6720  103; 

53 38 32 5 85 6540 6804  39; 
54 158 32 5 30 6628 6837  159; 

55 183 33 5 66 7094 7339 182;  

56 183 33 5 45 7160 7384 182;  

57 78 34 5 64 7437 7680  79; 

58 78 34 5 31 7501 7711  79; 

59 185 35 5 111 7484 7774 184;  

60 185 35 5 47 7595 7821 184;  

61 142 36 5 107 7555 7841 140;141;  

62 142 36 5 37 7662 7878 140;141;  

63 186 37 5 73 7642 7894   

64 186 37 5 42 7715 7936   

65 143 38 5 97 7699 7975  144;145; 
66 143 38 5 29 7796 8004  144;145; 

67 113 39 5 83 8028 8290 112;  

68 113 39 5 39 8111 8329 112;  

69 26 40 6 48 6045 6272  27; 

70 26 40 6 6 6093 6278  27; 

71 26 40 6 23 6099 6301  27; 
72 181 41 6 71 6994 7244 180;  

73 4 42 7 49 6050 6278  5; 

74 4 42 7 10 6099 6288  5; 
75 151 43 7 61 6113 6353 150; 152; 

76 151 43 7 24 6174 6377 150; 152; 

77 5 44 7 35 6148 6362 4;  

78 131 45 7 43 6325 6547   

79 64 45 7 34 6384 6597 63;  

80 65 46 7 47 6418 6644  66; 

81 65 46 7 12 6465 6656  66; 

82 67 47 7 46 6511 6736  68; 

83 67 47 7 16 6557 6752  68; 
84 67 47 7 12 6573 6764  68; 

85 160 48 7 62 6776 7017   

86 160 48 7 20 6838 7037   

87 166 49 7 56 7295 7532 165;165;  

88 166 49 7 28 7351 7560 165;165;  

89 141 50 7 48 7443 7671 140; 142; 
90 141 50 7 22 7491 7693 140; 142; 

91 123 51 8 92 6051 6323 122; 124; 

92 177 51 8 31 6359 6569 176;  

93 28 52 8 15 6073 6267  29; 

94 124 53 8 30 6143 6364 122;123;  

95 125 54 8 62 6173 6426  126;127; 
96 157 54 8 31 6574 6784   

97 126 55 8 30 6235 6456 125; 127; 

98 129 56 8 28 6262 6469 128; 130; 

99 34 57 8 29 6319 6527   

100 35 58 8 69 6368 6616   

101 135 59 8 17 6581 6777 134; 136; 
102 159 60 8 83 6688 6950 158;  

DBD
PUC-Rio - Certificação Digital Nº 1613052/CA



116 
 

 
 

Task 

ID 

Block 

ID 

Well 

ID 

Project 

ID 

Processing 

Time 

Release 

Date 

Due 

Date 

Precedence 

List 

Sucessors 

List 
103 159 60 8 23 6771 6973 158;  

104 140 61 8 64 7358 7601  141;142; 

105 140 61 8 25 7422 7626  141;142; 

106 144 62 8 56 7790 8025 143; 145; 
107 144 62 8 25 7846 8050 143; 145; 

108 145 63 8 56 7871 8106 143;144;  

109 145 63 8 24 7927 8130 143;144;  

110 17 64 8 47 8150 8376  18; 

111 17 64 8 18 8197 8394  18; 

112 18 65 8 46 8215 8440 17;  

113 18 65 8 27 8261 8467 17;  

114 115 66 8 46 8244 8469 114;  

115 115 66 8 18 8290 8487 114;  

116 19 67 8 55 8288 8522  20; 

117 19 67 8 23 8343 8545  20; 

118 93 68 9 71 6062 6312   

119 93 68 9 28 6133 6340   

120 155 69 9 27 6456 6662 153;154;  

121 101 70 9 27 6484 6690   

122 104 71 9 79 6646 6904  105; 

123 104 71 9 5 6725 6909  105; 

124 104 71 9 21 6730 6930  105; 
125 69 72 9 72 6669 6920  70;71; 

126 69 72 9 5 6741 6925  70;71; 
127 69 72 9 18 6746 6943  70;71; 

128 70 73 9 75 6764 7018 69; 71; 

129 70 73 9 5 6839 7023 69; 71; 
130 70 73 9 20 6844 7043 69; 71; 

131 71 74 9 78 6864 7121 69;70;  

132 71 74 9 5 6942 7126 69;70;  

133 71 74 9 20 6947 7146 69;70;  

134 162 75 9 72 6884 7135 161;  

135 162 75 9 5 6956 7140 161;  

136 162 75 9 18 6961 7158 161;  

137 72 76 9 63 6967 7209   

138 72 76 9 5 7030 7214   

139 72 76 9 13 7035 7227   

140 73 77 9 67 7048 7294  74; 

141 73 77 9 5 7115 7299  74; 
142 73 77 9 17 7120 7316  74; 

143 164 78 9 67 7122 7370 163;  

144 164 78 9 5 7189 7375 163;  

145 164 78 9 17 7194 7392 163;  

146 74 79 9 58 7137 7374 73;  

147 74 79 9 5 7195 7379 73;  

148 74 79 9 18 7200 7397 73;  

149 75 80 9 14 7218 7411  76; 

150 76 81 9 68 7232 7479 75;  

151 76 81 9 5 7300 7484 75;  

152 76 81 9 17 7305 7501 75;  

153 77 82 9 62 7322 7563   

154 77 82 9 5 7384 7568   

155 77 82 9 11 7389 7579   

156 27 83 10 29 6070 6278 26;  

157 31 84 10 30 6228 6437 30;  

158 178 85 10 83 6403 6665  179; 

159 37 85 10 36 6501 6716 36;  

160 36 86 10 30 6459 6668  37; 

161 134 87 10 75 6477 6731  135;136; 

162 134 87 10 29 6552 6760  135;136; 
163 11 88 10 73 6522 6774  12; 

164 11 88 10 33 6595 6807  12; 

165 103 89 10 80 6541 6800 102;  

166 103 89 10 20 6621 6820 102;  

167 40 90 10 50 6741 6970  41; 

168 40 90 10 19 6791 6989  41; 
169 14 91 10 84 6880 7143 13;  

170 14 91 10 30 6964 7173 13;  

171 14 91 10 16 6988 7188 13;  

172 167 92 10 65 7642 7886  168; 

173 167 92 10 24 7707 7910  168; 

174 168 93 10 65 7731 7975 167;  

175 168 93 10 17 7796 7992 167;  
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176 169 94 10 75 7813 8067  170;171; 
177 169 94 10 25 7888 8092  170;171; 

178 16 95 10 57 7927 8165 15;  

179 16 95 10 25 7984 8190 15;  

180 85 96 10 54 8081 8314  86; 

181 85 96 10 18 8135 8332  86; 

182 114 97 10 75 8153 8407  115; 
183 114 97 10 16 8228 8423  115; 

184 20 98 10 47 8366 8592 19;  

185 20 98 10 26 8413 8618 19;  

186 150 99 11 34 6079 6292  151;152; 

187 59 100 11 45 6177 6407  60; 

188 59 100 11 27 6222 6434  60; 
189 60 101 11 44 6249 6478 59;  

190 60 101 11 26 6293 6504 59;  

191 8 102 11 44 6260 6483 7;  

192 8 102 11 30 6304 6513 7;  

193 109 103 11 69 7640 7888 108;  

194 109 103 11 35 7709 7923 108;  

195 81 104 11 61 7702 7942 80;  

196 81 104 11 16 7763 7958 80;  

197 81 104 11 19 7779 7977 80;  

198 82 105 11 51 7798 8028  83;84; 

199 82 105 11 34 7849 8062  83;84; 
200 128 106 12 85 6171 6435  129;130; 

201 137 106 12 24 6658 6861  138;139; 

202 130 107 12 29 6290 6498 128;129;  

203 66 108 12 30 6489 6698 65;  

204 39 109 12 59 6628 6866 38;  

205 39 109 12 31 6687 6897 38;  

206 106 110 12 58 6810 7047  107; 

207 106 110 12 17 6868 7064  107; 

208 107 111 12 75 6885 7139 106;  

209 107 111 12 32 6960 7171 106;  

210 42 112 12 64 6972 7215  43; 

211 42 112 12 16 7036 7231  43; 
212 139 113 12 57 7121 7360 137;138;  

213 139 113 12 26 7178 7386 137;138;  

214 15 114 12 46 7857 8084  16; 
215 15 114 12 24 7903 8108  16; 

216 86 115 12 48 8153 8380 85;  

217 86 115 12 17 8201 8397 85;  

218 87 116 12 56 8218 8453  88; 

219 87 116 12 22 8274 8475  88; 

220 88 117 12 56 8296 8531 87;  

221 88 117 12 25 8352 8556 87;  

222 89 118 12 47 8377 8603  90; 

223 89 118 12 26 8424 8629  90; 
224 90 119 12 62 8450 8691 89;  

225 90 119 12 24 8512 8715 89;  

226 91 120 12 46 8536 8761  92; 

227 91 120 12 17 8582 8778  92; 

228 92 121 12 63 8599 8841 91;  

229 92 121 12 17 8662 8858 91;  

230 29 122 13 38 6110 6327 28;  

231 30 123 14 95 6142 6416  31; 

232 13 123 14 28 6852 7059  14; 
233 175 124 14 27 6256 6462 174;  

234 176 125 14 89 6283 6551  177; 

235 108 125 14 26 6992 7197  109; 
236 136 126 14 25 6630 6834 134;135;  

237 138 127 14 26 6682 6887 137; 139; 

238 12 128 14 77 6775 7031 11;  

239 41 129 14 32 6794 7005 40;  

240 161 130 14 26 6858 7063  162; 

241 163 131 14 72 6979 7230  164;164; 
242 163 131 14 32 7051 7262  164;164; 

243 182 132 14 27 7067 7273  183; 

244 165 133 14 64 7211 7456  166; 

245 165 133 14 20 7275 7476  166; 

246 110 134 14 80 7744 8003  111; 

247 110 134 14 26 7824 8029  111; 
248 111 135 14 53 7858 8090 110;  
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249 111 135 14 17 7911 8107 110;  

250 112 136 14 71 7928 8178  113; 

251 112 136 14 29 7999 8207  113; 

252 52 137 14 75 8173 8427   

253 52 137 14 17 8248 8444   

254 61 138 15 64 6144 6387  62; 

255 61 138 15 20 6208 6407  62; 
256 43 139 15 29 7159 7367 42;  

257 44 140 15 30 7188 7397   

258 45 141 15 76 7218 7473  46; 
259 45 141 15 34 7294 7507  46; 

260 46 142 15 29 7328 7536 45;  

261 47 143 15 76 7357 7612   

262 47 143 15 27 7433 7639   

263 48 144 15 51 7460 7690  49; 

264 48 144 15 18 7511 7708  49; 

265 49 145 15 68 7529 7776 48;  

266 49 145 15 27 7597 7803 48;  

267 50 146 15 25 7624 7828  51; 
268 51 147 15 51 7649 7879 50;  

269 51 147 15 25 7700 7904 50;  

270 116 148 15 73 8345 8601  117; 
271 116 148 15 27 8418 8628  117; 

272 117 149 15 50 8445 8678 116;  

273 117 149 15 17 8495 8695 116;  

274 118 150 15 66 8512 8761  119; 

275 118 150 15 27 8578 8788  119; 
276 119 151 15 73 8605 8861 118;  

277 119 151 15 17 8678 8878 118;  

278 6 152 16 39 6161 6379   

279 6 152 16 15 6200 6394   

280 184 153 16 46 7400 7625  185; 

281 184 153 16 27 7446 7652  185; 
282 80 154 16 61 7593 7833  81; 

283 80 154 16 48 7654 7881  81; 

284 83 155 16 61 7883 8123 82; 84; 
285 83 155 16 40 7944 8163 82; 84; 

286 133 156 17 51 6397 6627 131;  

287 133 156 17 13 6448 6640 131;  

288 133 156 17 10 6461 6650 131;  

289 156 157 18 56 6502 6737   

290 156 157 18 23 6558 6760   

291 68 158 19 46 6585 6810 67;  

292 68 158 19 12 6631 6822 67;  

293 68 158 19 14 6643 6836 67;  

294 79 159 20 52 7513 7744 78;  

295 79 159 20 12 7565 7756 78;  

296 79 159 20 16 7577 7772 78;  

297 84 160 20 59 7984 8222 82;83;  

298 84 160 20 28 8043 8250 82;83;  

299 146 2 2 75 8071 8325  147;148; 

300 146 2 2 67 8146 8392  147;148; 

301 147 1 1 98 8213 8490 146; 148; 

302 147 1 1 74 8311 8564 146; 148; 
303 120 161 21 108 8706 8993   

304 120 161 21 31 8814 9024   

305 121 162 21 114 8845 9138   

306 121 162 21 29 8959 9167   

307 122 163 21 70 8988 9237  123;124; 

308 122 163 21 33 9058 9270  123;124; 
309 53 164 21 99 9009 9287  54; 

310 53 164 21 23 9108 9310  54; 

311 54 165 21 78 9131 9388 53;  

312 54 165 21 32 9209 9420 53;  

313 55 166 21 90 9241 9510  56; 

314 55 166 21 48 9331 9558  56; 
315 56 167 21 83 9379 9641 55;  

316 56 167 21 23 9462 9664 55;  

317 24 168 21 76 9383 9638  25; 

318 24 168 21 34 9459 9672  25; 

319 57 169 21 63 9485 9727  58; 

320 57 169 21 25 9548 9752  58; 
321 25 170 21 103 9493 9775 24;  
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322 25 170 21 31 9596 9806 24;  

323 21 171 22 14 9233 9426  22;23; 

324 22 172 23 36 9247 9462 21; 23; 

325 23 173 23 74 9283 9536 21;22;  

326 23 173 23 26 9357 9562 21;22;  
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Appendix III: Mathematical Models Solutions 

This appendix provides the schedules found by the mathematical models. 

Figures 21, 22 and 23 are the final solutions of the models using instance 01. 

 
Figure 21. Mathematical model 1 in days result for instance 01 

(Source: the author). 

 
Figure 22. Mathematical model 2 in days results for instance 01 

(Source: the author). 

 
Figure 23. Mathematical model 2 in weeks results for instance 01 

(Source: the author) 
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Meanwhile, Figures 24 and 25 are related with the linear programming 

solutions of instance 02. 

 
Figure 24. Mathematical model 1 in days results for instance 02 

(Source: the author). 

Figure 25. Mathematical model 2 in weeks results for instance 02 

(Source: the author). 
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Appendix IV: Heuristic Results 

The following table presents the results of all the heuristics tested for instances 01 and 02 using the initial solutions provided by 

mathematical model 1 in weeks: 

Table 22. Heuristic results for instances 01 and 02 (Source: the author). 

Heuristic\Instance 
Instance01 (Model 1 in Weeks) 

(Initial Objective Function: 1,108,595,557.84m.u.) 
Instance02 (Model 1 in Weeks) 

(Initial Objective Function: 2,153,921,664.30m.u) 
# Heur. Group Neighborhood Sear. Strat. O.F. (m.u.) Improvement (%) Time (sec.) O.F. (m.u.) Improvement (%) Time (sec.) 
1 LS Insert with Fixed Dates New Rig First 1,073,498,829 3.2% 0.181 1,983,145,847 7.9% 0.458 

2 LS Insert with Fixed Dates New Rig Best 1,073,498,829 3.2% 0.168 1,921,761,999 10.8% 0.732 
3 LS Insert with Fixed Dates New Rig Best-First 1,073,498,829 3.2% 0.166 1,921,761,999 10.8% 0.632 

4 LS Insert with Fixed Dates New Rig First-Best 1,073,498,829 3.2% 0.144 1,983,145,847 7.9% 0.389 

5 LS Insert with Fixed Dates New Rig Random 1,073,498,829 3.2% 0.145 1,958,592,308 9.1% 0.501 

6 LS Insert with Fixed Dates Existing Rig First 1,086,099,877 2.1% 0.127 1,922,748,946 10.7% 2.927 
7 LS Insert with Fixed Dates Existing Rig Best 1,086,099,877 2.1% 0.088 1,923,439,603 10.7% 2.924 

8 LS Insert with Fixed Dates Existing Rig Best-First 1,086,099,877 2.1% 0.153 1,922,748,946 10.7% 1.995 

9 LS Insert with Fixed Dates Existing Rig First-Best 1,086,099,877 2.1% 0.062 1,923,439,603 10.7% 2.816 
10 LS Insert with Fixed Dates Existing Rig Random 1,086,099,877 2.1% 0.104 1,922,887,077 10.7% 2.753 

11 VND Insert with Fixed Dates New Rig - Existing First 1,069,932,827 3.5% 0.433 1,843,478,284 14.4% 10.219 

12 VND Insert with Fixed Dates New Rig - Existing Best 1,069,932,827 3.5% 0.320 1,811,806,733 15.9% 7.498 
13 VND Insert with Fixed Dates New Rig - Existing Best-First 1,069,932,827 3.5% 0.368 1,808,057,453 16.1% 9.521 

14 VND Insert with Fixed Dates New Rig - Existing First-Best 1,069,932,827 3.5% 0.444 1,843,478,284 14.4% 8.892 

15 VND Insert with Fixed Dates New Rig - Existing Random 1,069,932,827 3.5% 0.391 1,829,379,017 15.1% 8.550 

16 VND Insert with Fixed Dates Existing - Rig First 1,069,932,827 3.5% 0.496 1,808,057,453 16.1% 8.455 
17 VND Insert with Fixed Dates Existing - Rig Best 1,069,932,827 3.5% 0.341 1,811,806,733 15.9% 6.762 

18 VND Insert with Fixed Dates Existing - Rig Best-First 1,069,932,827 3.5% 0.468 1,808,057,453 16.1% 6.611 

19 VND Insert with Fixed Dates Existing - Rig First-Best 1,069,932,827 3.5% 0.393 1,808,057,453 16.1% 8.097 
20 VND Insert with Fixed Dates Existing - Rig Random 1,069,932,827 3.5% 0.411 1,808,363,316 16.0% 7.249 

21 VND Insert with Fixed Dates Random First 1,069,932,827 3.5% 0.490 1,808,057,453 16.1% 8.365 
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Heuristic\Instance 
Instance01 (Model 1 in Weeks) 

(Initial Objective Function: 1,108,595,557.84m.u.) 
Instance02 (Model 1 in Weeks) 

(Initial Objective Function: 2,153,921,664.30m.u) 
# Heur. Group Neighborhood Sear. Strat. O.F. (m.u.) Improvement (%) Time (sec.) O.F. (m.u.) Improvement (%) Time (sec.) 

22 VND Insert with Fixed Dates Random Best 1,069,932,827 3.5% 0.348 1,811,806,733 15.9% 6.869 
23 VND Insert with Fixed Dates Random Best-First 1,069,932,827 3.5% 0.478 1,808,057,453 16.1% 6.465 

24 VND Insert with Fixed Dates Random First-Best 1,069,932,827 3.5% 0.375 1,808,057,453 16.1% 8.063 

25 VND Insert with Fixed Dates Random Random 1,069,932,827 3.5% 0.400 1,808,363,316 16.0% 7.273 

26 LS Insert with Fixed Dates New Rig + Existing Best 1,072,202,128 3.3% 0.334 1,811,806,733 15.9% 8.198 

58 LS Insert with Dates Change Anticipation (After-In) First 1,067,452,142 3.7% 11.038 1,834,640,863 14.8% 185.561 

59 LS Insert with Dates Change Anticipation (After-In) Best 1,034,201,947 6.7% 17.501 1,818,558,425 15.6% 150.282 

60 LS Insert with Dates Change Anticipation (After-In) Best-First 1,034,201,947 6.7% 17.880 1,818,854,421 15.6% 201.225 
61 LS Insert with Dates Change Anticipation (After-In) First-Best 1,067,452,142 3.7% 11.169 1,834,640,863 14.8% 97.408 

62 LS Insert with Dates Change Anticipation (After-In) Random 1,054,152,064 4.9% 13.843 1,828,267,087 15.1% 141.032 

63 LS Insert with Dates Change Anticipation (After-From) First 1,059,178,313 4.5% 30.237 1,794,328,928 16.7% 482.491 
64 LS Insert with Dates Change Anticipation (After-From) Best 1,034,201,947 6.7% 24.447 1,755,934,087 18.5% 356.752 

65 LS Insert with Dates Change Anticipation (After-From) Best-First 1,034,201,947 6.7% 24.450 1,755,835,421 18.5% 509.226 

66 LS Insert with Dates Change Anticipation (After-From) First-Best 1,051,961,695 5.1% 31.829 1,729,181,747 19.7% 487.739 
67 LS Insert with Dates Change Anticipation (After-From) Random 1,046,301,119 5.6% 28.637 1,751,422,273 18.7% 409.491 

68 LS Insert with Dates Change Anticipation (Before-In) First 1,084,323,902 2.2% 33.652 1,718,906,506 20.2% 439.109 

69 LS Insert with Dates Change Anticipation (Before-In) Best 1,084,323,902 2.2% 26.773 1,779,486,979 17.4% 147.802 

70 LS Insert with Dates Change Anticipation (Before-In) Best-First 1,084,323,902 2.2% 26.466 1,779,486,979 17.4% 194.812 

71 LS Insert with Dates Change Anticipation (Before-In) First-Best 1,084,323,902 2.2% 24.728 1,721,077,142 20.1% 254.681 

72 LS Insert with Dates Change Anticipation (Before-In) Random 1,084,323,902 2.2% 27.154 1,745,703,992 19.0% 202.639 

73 LS Insert with Dates Change Anticipation (Before-From) First 1,059,178,313 4.5% 64.046 1,723,670,545 20.0% 1058.205 
74 LS Insert with Dates Change Anticipation (Before-From) Best 1,059,178,313 4.5% 26.370 1,794,328,928 16.7% 263.441 

75 LS Insert with Dates Change Anticipation (Before-From) Best-First 1,059,178,313 4.5% 25.741 1,794,328,928 16.7% 317.222 

76 LS Insert with Dates Change Anticipation (Before-From) First-Best 1,059,178,313 4.5% 34.993 1,734,241,781 19.5% 386.299 
77 LS Insert with Dates Change Anticipation (Before-From) Random 1,060,153,693 4.4% 35.582 1,757,550,762 18.4% 330.313 

78 LS Insert with Dates Change Postponement (After-In) First 1,084,225,237 2.2% 13.261 1,916,237,038 11.0% 275.638 

79 LS Insert with Dates Change Postponement (After-In) Best 1,084,225,237 2.2% 17.649 1,916,237,038 11.0% 198.278 
80 LS Insert with Dates Change Postponement (After-In) Best-First 1,084,225,237 2.2% 17.689 1,916,237,038 11.0% 302.329 

81 LS Insert with Dates Change Postponement (After-In) First-Best 1,084,225,237 2.2% 13.338 1,916,237,038 11.0% 198.212 

82 LS Insert with Dates Change Postponement (After-In) Random 1,084,225,237 2.2% 15.099 1,916,237,038 11.0% 204.871 

83 LS Insert with Dates Change Postponement (After-From) First 1,072,498,123 3.3% 30.242 1,832,329,109 14.9% 527.865 
84 LS Insert with Dates Change Postponement (After-From) Best 1,071,610,136 3.4% 26.923 1,797,782,213 16.5% 453.891 

85 LS Insert with Dates Change Postponement (After-From) Best-First 1,071,610,136 3.4% 26.783 1,797,782,213 16.5% 387.782 

86 LS Insert with Dates Change Postponement (After-From) First-Best 1,072,498,123 3.3% 35.042 1,793,736,937 16.7% 575.933 
87 LS Insert with Dates Change Postponement (After-From) Random 1,072,142,928 3.3% 30.862 1,803,300,412 16.3% 493.862 

88 LS Insert with Dates Change Postponement (Before-In) First 1,084,027,907 2.2% 32.900 1,916,434,369 11.0% 350.668 

89 LS Insert with Dates Change Postponement (Before-In) Best 1,084,027,907 2.2% 17.780 1,917,618,352 11.0% 153.800 
90 LS Insert with Dates Change Postponement (Before-In) Best-First 1,084,027,907 2.2% 17.730 1,917,618,352 11.0% 205.123 

91 LS Insert with Dates Change Postponement (Before-In) First-Best 1,084,027,907 2.2% 24.723 1,916,927,695 11.0% 101.981 
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(Initial Objective Function: 1,108,595,557.84m.u.) 
Instance02 (Model 1 in Weeks) 

(Initial Objective Function: 2,153,921,664.30m.u) 
# Heur. Group Neighborhood Sear. Strat. O.F. (m.u.) Improvement (%) Time (sec.) O.F. (m.u.) Improvement (%) Time (sec.) 

92 LS Insert with Dates Change Postponement (Before-In) Random 1,084,027,907 2.2% 23.602 1,917,312,490 11.0% 150.852 

93 LS Insert with Dates Change Postponement (Before-From) First 1,071,412,806 3.4% 43.207 1,802,926,859 16.3% 1134.064 

94 LS Insert with Dates Change Postponement (Before-From) Best 1,071,412,806 3.4% 26.918 1,815,739,291 15.7% 350.341 

95 LS Insert with Dates Change Postponement (Before-From) Best-First 1,071,412,806 3.4% 26.797 1,815,739,291 15.7% 327.502 

96 LS Insert with Dates Change Postponement (Before-From) First-Best 1,071,412,806 3.4% 35.154 1,815,739,291 15.7% 595.840 

97 LS Insert with Dates Change Postponement (Before-From) Random 1,071,412,806 3.4% 33.397 1,815,995,821 15.7% 456.835 

98 VND Insert with Dates Change Random First 1,053,461,378 5.0% 36.588 1,730,104,925 19.7% 514.143 

99 VND Insert with Dates Change Random Best 1,047,924,851 5.5% 33.575 1,745,835,009 18.9% 379.469 
100 VND Insert with Dates Change Random Best-First 1,051,567,005 5.2% 30.298 1,769,034,023 17.9% 318.272 

101 VND Insert with Dates Change Random First-Best 1,047,762,771 5.5% 39.942 1,736,921,290 19.4% 394.159 

102 VND Insert with Dates Change Random Random 1,044,952,216 5.8% 33.697 1,740,199,817 19.2% 369.808 

103 VND Insert with Dates Change 
Random (Anticipation-

Postponement) 
First 1,036,567,074 6.5% 81.800 1,676,686,174 22.2% 1471.458 

104 VND Insert with Dates Change 
Random (Anticipation-

Postponement) 
Best 1,034,588,147 6.7% 55.664 1,674,703,003 22.2% 1006.117 

105 VND Insert with Dates Change 
Random (Anticipation-

Postponement) 
Best-First 1,033,047,564 6.8% 63.971 1,677,124,547 22.1% 1280.344 

106 VND Insert with Dates Change 
Random (Anticipation-

Postponement) 
First-Best 1,034,965,886 6.7% 72.375 1,673,235,730 22.3% 961.189 

107 VND Insert with Dates Change 
Random (Anticipation-

Postponement) 
Random 1,046,215,131 5.7% 56.285 1,688,630,293 21.6% 1005.645 

108 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-In) 
First 1,067,452,142 3.7% 20.020 1,834,640,863 14.8% 238.889 

109 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-In) 
Best 1,034,201,947 6.7% 26.722 1,818,558,425 15.6% 202.274 

110 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-In) 
Best-First 1,034,201,947 6.7% 26.566 1,818,558,425 15.6% 202.494 

111 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-In) 
First-Best 1,067,452,142 3.7% 19.996 1,834,640,863 14.8% 238.674 

112 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-In) 
Random 1,054,152,064 4.9% 22.674 1,828,267,087 15.1% 193.521 

113 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-From) 
First 1,052,567,740 5.1% 47.805 1,708,166,045 20.7% 1078.258 

114 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-From) 
Best 1,034,201,947 6.7% 29.470 1,668,206,612 22.6% 664.749 

115 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-From) 
Best-First 1,034,201,947 6.7% 29.263 1,686,868,400 21.7% 1003.388 

116 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-From) 
First-Best 1,052,567,740 5.1% 52.758 1,684,289,051 21.8% 819.079 
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(Initial Objective Function: 1,108,595,557.84m.u.) 
Instance02 (Model 1 in Weeks) 
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# Heur. Group Neighborhood Sear. Strat. O.F. (m.u.) Improvement (%) Time (sec.) O.F. (m.u.) Improvement (%) Time (sec.) 

117 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (After-From) 
Random 1,038,117,524 6.4% 43.396 1,679,049,925 22.0% 758.046 

118 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-In) 
First 1,032,129,977 6.9% 54.509 1,811,947,852 15.9% 991.620 

119 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-In) 
Best 1,032,129,977 6.9% 44.272 1,809,678,551 16.0% 462.662 

120 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-In) 
Best-First 1,032,129,977 6.9% 61.331 1,811,947,852 15.9% 791.646 

121 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-In) 
First-Best 1,032,129,977 6.9% 37.801 1,809,678,551 16.0% 600.127 

122 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-In) 
Random 1,032,129,977 6.9% 47.264 1,810,586,271 15.9% 519.406 

123 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-From) 
First 1,038,458,607 6.4% 61.994 1,698,990,175 21.1% 1890.072 

124 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-From) 
Best 1,032,129,977 6.9% 50.111 1,698,990,175 21.1% 617.401 

125 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-From) 
Best-First 1,032,129,977 6.9% 70.020 1,698,990,175 21.1% 1904.312 

126 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-From) 
First-Best 1,032,129,977 6.9% 43.517 1,698,990,175 21.1% 647.154 

127 VND Insert with Dates Change 
Anticipation (After-In) 

Postponement (Before-From) 
Random 1,033,395,703 6.8% 54.090 1,691,414,088 21.5% 746.466 

128 VND Insert with Dates Change 
Anticipation (After-From) 
Postponement (After-In) 

First 1,051,172,373 5.2% 71.498 1,792,651,619 16.8% 758.857 

129 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-In) 
Best 1,034,201,947 6.7% 33.271 1,755,934,087 18.5% 409.150 

130 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-In) 
Best-First 1,034,201,947 6.7% 33.649 1,755,934,087 18.5% 410.714 

131 VND Insert with Dates Change 
Anticipation (After-From) 
Postponement (After-In) 

First-Best 1,051,172,373 5.2% 58.578 1,792,651,619 16.8% 762.441 

132 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-In) 
Random 1,044,699,932 5.8% 42.825 1,750,583,619 18.7% 547.838 

133 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-From) 
First 1,059,178,313 4.5% 43.468 1,637,803,657 24.0% 2068.001 

134 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-From) 
Best 1,034,201,947 6.7% 36.721 1,718,737,281 20.2% 813.811 

135 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-From) 
Best-First 1,034,201,947 6.7% 35.976 1,718,737,281 20.2% 803.450 
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Instance02 (Model 1 in Weeks) 
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# Heur. Group Neighborhood Sear. Strat. O.F. (m.u.) Improvement (%) Time (sec.) O.F. (m.u.) Improvement (%) Time (sec.) 

136 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-From) 
First-Best 1,059,178,313 4.5% 43.666 1,692,379,602 21.4% 1419.234 

137 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (After-From) 
Random 1,046,301,119 5.6% 40.451 1,687,298,341 21.7% 1101.412 

138 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-In) 
First 1,032,129,977 6.9% 136.095 1,706,094,074 20.8% 2635.061 

139 VND Insert with Dates Change 
Anticipation (After-From) 
Postponement (Before-In) 

Best 1,032,129,977 6.9% 54.027 1,706,982,062 20.8% 779.352 

140 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-In) 
Best-First 1,032,129,977 6.9% 73.953 1,706,982,062 20.8% 1523.639 

141 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-In) 
First-Best 1,032,129,977 6.9% 59.351 1,706,094,074 20.8% 1203.307 

142 VND Insert with Dates Change 
Anticipation (After-From) 
Postponement (Before-In) 

Random 1,032,129,977 6.9% 66.275 1,704,222,245 20.9% 1018.472 

143 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-From) 
First 1,038,458,607 6.4% 120.576 1,698,990,175 21.1% 2481.049 

144 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-From) 
Best 1,032,129,977 6.9% 59.355 1,697,214,200 21.2% 796.939 

145 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-From) 
Best-First 1,032,129,977 6.9% 82.417 1,697,214,200 21.2% 1740.359 

146 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-From) 
First-Best 1,038,458,607 6.4% 70.433 1,672,660,602 22.3% 1308.533 

147 VND Insert with Dates Change 
Anticipation (After-From) 

Postponement (Before-From) 
Random 1,033,395,703 6.8% 74.085 1,689,509,848 21.6% 1121.886 

148 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-In) 
First 1,084,323,902 2.2% 42.257 1,718,906,506 20.2% 489.717 

149 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-In) 
Best 1,084,323,902 2.2% 35.516 1,779,092,318 17.4% 303.263 

150 VND Insert with Dates Change 
Anticipation (Before-In) 
Postponement (After-In) 

Best-First 1,084,323,902 2.2% 35.304 1,779,092,318 17.4% 299.904 

151 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-In) 
First-Best 1,084,323,902 2.2% 42.115 1,718,906,506 20.2% 489.970 

152 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-In) 
Random 1,084,323,902 2.2% 36.012 1,745,546,128 19.0% 293.797 

153 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-From) 
First 1,069,439,500 3.6% 70.716 1,687,939,665 21.6% 836.779 

154 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-From) 
Best 1,069,439,500 3.6% 69.971 1,725,925,793 19.9% 665.802 
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Instance02 (Model 1 in Weeks) 
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# Heur. Group Neighborhood Sear. Strat. O.F. (m.u.) Improvement (%) Time (sec.) O.F. (m.u.) Improvement (%) Time (sec.) 

155 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-From) 
Best-First 1,069,439,500 3.6% 65.950 1,669,193,265 22.5% 1047.001 

156 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-From) 
First-Best 1,069,439,500 3.6% 75.773 1,687,939,665 21.6% 917.747 

157 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (After-From) 
Random 1,069,439,500 3.6% 68.820 1,680,763,890 22.0% 808.005 

158 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-In) 
First 1,049,001,737 5.4% 76.774 1,694,240,189 21.3% 1431.657 

159 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-In) 
Best 1,049,001,737 5.4% 52.861 1,756,004,646 18.5% 455.363 

160 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-In) 
Best-First 1,049,001,737 5.4% 69.800 1,758,668,608 18.4% 851.099 

161 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-In) 
First-Best 1,049,001,737 5.4% 60.352 1,694,240,189 21.3% 898.738 

162 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-In) 
Random 1,049,001,737 5.4% 58.914 1,721,757,932 20.1% 628.247 

163 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-From) 
First 1,055,330,367 4.8% 84.655 1,660,905,382 22.9% 1994.714 

164 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-From) 
Best 1,049,001,737 5.4% 58.686 1,670,785,962 22.4% 624.902 

165 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-From) 
Best-First 1,055,330,367 4.8% 77.307 1,675,310,511 22.2% 1984.101 

166 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-From) 
First-Best 1,049,001,737 5.4% 65.515 1,673,929,198 22.3% 851.145 

167 VND Insert with Dates Change 
Anticipation (Before-In) 

Postponement (Before-From) 
Random 1,050,900,326 5.2% 65.426 1,675,351,383 22.2% 930.242 

168 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-In) 
First 1,051,172,373 5.2% 103.495 1,672,350,553 22.4% 1777.616 

169 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-In) 
Best 1,051,172,373 5.2% 68.862 1,793,934,267 16.7% 460.745 

170 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-In) 
Best-First 1,051,172,373 5.2% 66.595 1,793,934,267 16.7% 456.639 

171 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-In) 
First-Best 1,051,172,373 5.2% 105.784 1,672,251,888 22.4% 1687.281 

172 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-In) 
Random 1,052,948,348 5.0% 73.890 1,752,321,503 18.6% 516.436 

173 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-From) 
First 1,059,178,313 4.5% 77.230 1,672,547,884 22.3% 1968.807 
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Instance02 (Model 1 in Weeks) 

(Initial Objective Function: 2,153,921,664.30m.u) 
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174 VND Insert with Dates Change 
Anticipation (Before-From) 
Postponement (After-From) 

Best 1,059,178,313 4.5% 39.528 1,685,289,756 21.8% 1111.087 

175 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-From) 
Best-First 1,059,178,313 4.5% 38.951 1,644,216,900 23.7% 1629.075 

176 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (After-From) 
First-Best 1,059,178,313 4.5% 77.844 1,666,627,968 22.6% 2119.591 

177 VND Insert with Dates Change 
Anticipation (Before-From) 
Postponement (After-From) 

Random 1,060,153,693 4.4% 48.786 1,657,440,826 23.1% 1401.479 

178 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-In) 
First 1,032,129,977 6.9% 165.763 1,651,038,856 23.3% 2492.435 

179 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-In) 
Best 1,032,129,977 6.9% 68.619 1,707,376,723 20.7% 811.325 

180 VND Insert with Dates Change 
Anticipation (Before-From) 
Postponement (Before-In) 

Best-First 1,032,129,977 6.9% 130.820 1,696,918,205 21.2% 2024.452 

181 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-In) 
First-Best 1,032,129,977 6.9% 105.710 1,670,475,913 22.4% 1433.416 

182 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-In) 
Random 1,032,129,977 6.9% 85.051 1,685,357,446 21.8% 1196.122 

183 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-From) 
First 1,038,458,607 6.4% 151.056 1,651,038,856 23.3% 2761.467 

184 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-From) 
Best 1,038,458,607 6.4% 66.592 1,673,929,198 22.3% 1011.542 

185 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-From) 
Best-First 1,038,458,607 6.4% 115.749 1,661,018,101 22.9% 3318.343 

186 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-From) 
First-Best 1,038,458,607 6.4% 104.307 1,668,601,273 22.5% 1493.002 

187 VND Insert with Dates Change 
Anticipation (Before-From) 

Postponement (Before-From) 
Random 1,037,825,744 6.4% 85.509 1,665,428,468 22.7% 1036.264 
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Appendix V: Solution analysis 

As there is the possibility that others approaches achieve similar results in 

a reduced time, but requiring a longer execution time to perform a complete run, it 

is important to analyze the objective function evolution over the time for each 

approach. The heuristics methods were analyzed for each instance comparing the 

objective function evolution over the execution time. The best approaches for 

instances 01 and 02 are presented in Chart 4 (left and right sides, respectively).  

 
Chart 4. Progression for the best local searches, results for instance01 on the left 

and results for instance02 on the right (Source: the author). 

The goal is to determine a local search approach that fits well to both 

instances. For instance01, the local searches #119, a VND using insert with dates 

change Anticipation(After–In)–Postponement(Before–In) neighborhood structure 

and best-improvement search strategy, and #124, a VND using insert with dates 

change Anticipation(After–In)–Postponement(Before–From) neighborhood 

structure and best-improvement search strategy, presented the most strong results, 

outperforming the others methods. On the other hand, these local searches did not 

produced powerful results in instance02, whose bests results were obtained by the 

approaches #133, a VND using insert with dates change Anticipation(After–From)–

Postponement(After–From) with first-improvement search strategy, and #175, a 

VND using insert with dates change Anticipation(Before–From)–
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Postponement(After–From) with best-first search strategy. It is important to notice 

that the results from heuristic #133 in instance are the best known results yet found. 

Despite not being the best approach possible in each instance, the local search #114, 

a VND using insert with dates change Anticipation(After–In)–Postponement(After–

From) with best-improvement, found good results in both instances. These results 

emphasizes the conclusion of the Pareto frontier analysis, in which this variable 

neighborhood search was chosen as the most appropriated search method for the 

problem. 

Next, with the goal of understanding the selected method, we analyze the 

movements performed by the local search and theirs impacts in the objective 

function, considering the results #6 (Model 1 followed by Model 2, both with a 

horizon plan in weeks) for instances 01 and 02 as initial solutions. 

In the first instance, the VND #114 anticipates the last twenty-nine tasks 

from Rig 0, as shown in Figure 26, reducing the rig idleness costs, which results in 

an economy of 18 million fictional monetary unities. 

 
Figure 26. Results for the first iteration of the VND #114 using instance 01 

(Source: the author). 

Then, some of the last tasks from rig 0 are inserted in the end of the existing 

rig 1, as illustrated in Figure 27. Despite increasing the idleness cost in the rig 1, 

this movement radically reduces the idle cost in rig 0. Overall, the idle cost is reduce 

in more than 39 million of the fictional monetary unit. 
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Figure 27. Results for the 2nd iteration of the VND #114 using instance 01 

(Source: the author). 

Last, the tasks at the end of rig 2 are anticipated, reduce the idleness cost 

in about 17 millions 𝑢. 𝑚.. The final rig schedule presented in Figure 28 has a 

budget of only $1.034.201.947, which represents an improvement of 6.7% in the 

original objective function with same rigs fleet size. 

 
Figure 28. Results for the third iteration of the VND #114 using instance 

(Source: the author). 

When tested with a large instance such as instance 02, the variable 

neighborhood search heuristic #114 was still able to improve the initial solution 

provided by the Model 1 (weeks) after performing an exhaustive search with more 

than twenty consecutive movements. Chart 5 summarizes the objective function 

evolution over each movement iteration and shows the heuristic’s improvement of 

22.6% in the budget, after reducing the costs in almost half billion monetary unities 

and achieving a solution of 1,668,210,291 𝑢. 𝑚. . Furthermore, it is possible to 

observe the reduction on rigs idle cost as the main source of improvement. In order 

to reduce the idle time, the algorithm allocates two new rigs to the fleet respectively 

at solution 16 and 27. Later, at the solution 30, the local search eliminates one of 
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the rigs created, which initially seems to be superfluous combination of movement. 

However, moving some tasks to a temporary rig enables the heuristic to perform 

new insert movements and to interchange tasks. 

 
Chart 5. Budget for the solutions found by the VND #114 using instance 02 

(Source: the author). 

Clearly, the selected heuristic has great potential to efficient improve the 

budget, having obtained powerful results for the two instance, and it is definitely an 

appropriated local search method to be used in the matheuristic approach. 
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Appendix VI: Matheuristics Solutions 

This appendix provides the schedules found by the matheuristics using the 

VND #114. Figures 29, 30 and 31 are the final solutions for instance 01. 

 
Figure 29. Matheuristic result for instance 01 using Model 1 in day 

(Source: the author). 

 
Figure 30. Matheuristic result for instance 01 using Model 2 in days 

(Source: the author). 

 
Figure 31. Matheuristic result for instance 01 using Model 2 in weeks 

(Source: the author) 
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Meanwhile, Figures 32 and 33 are related with instance 02 solutions. 

 
Figure 32. Matheuristic result for instance 02 using Model 1 in days 

(Source: the author). 

Figure 33. Matheuristic result for instance 02 using Model 2 in weeks 

(Source: the author). 
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