

Thiago de Souza Carnavale

Desenvolvimento de um modelo físico para a análise de efeitos de trovões em solos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Tácio Mauro Pereira de Campos Co-orientador: Antônio Roberto Martins Barboza de Oliveira

> Rio de Janeiro Julho de 2013

Thiago de Souza Carnavale

Desenvolvimento de um modelo físico para a análise de efeitos de trovões em solos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Tácio Mauro Pereira de Campos Orientador Departamento de Engenharia Civil - PUC-Rio

Antônio Roberto Barbosa de Oliveira Co-orientador Departamento de Engenharia Civil - PUC-Rio

Eurípedes Vargas do Amaral Junior Departamento de Engenharia Civil - PUC-Rio

> Fernando Antônio Medeiros Marinho Universidade de São Paulo

> > Marcelo Sousa de Assumpção

Universidade de São Paulo

Willy Alvarenga Lacerda Universidade Federal do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 05 de julho de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, da autora e do orientador.

Thiago de Souza Carnavale

Graduou-se em Geografia pela Universidade do Estado do Rio de Janeiro - UERJ em 2010. Foi bolsista do CNPq no período de 2008 a 2009. As principais áreas de interesse e linhas de pesquisa são: Mecânica dos Solos, Geotecnia Experimental, Solos não Saturados e Desastres Naturais.

Ficha catalográfica

Carnavale, Thiago de Souza

Desenvolvimento de um modelo físico para a análise de efeitos de trovões em solos / Thiago de Souza Carnavale ; orientador: Tácio Mauro Pereira de Campos ; co-orientador: Antônio Roberto Barbosa de Oliveira. – 2013.

167 f. il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Trovões em solos. 3. Modelo físico. 4. TDR's. 5. Tensiômetros. 6. Acelerômetros. 7. Desastre na Região Serrana do Estado do Rio de Janeiro. I. Campos, Tácio Mauro Pereira de. II. Oliveira, Antônio Roberto Barbosa de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

A todas as forças ocultas que me derem forças para alcançar os meus objetivos.

Aos meus pais, Ricardo Pinto Carnavale e Carmelinda de Souza Carnavale, por me fazerem quem eu sou. Muito obrigado por me ensinarem a lutar pelos meus sonhos e nunca desistir!

Ao meu irmão, Victor, pelos momentos de conversa e descontração e pelo apoio de sempre. Amo você!

À Natália Gonçalves Rodrigues, por suportar os meus muitos momentos de desespero, por trilhar o caminho junto comigo, por entender a minha ausência nos dias de luta e por fazer a nossa vida melhor a cada dia.

Ao Ricardo Avancini Fernandes, por ter escutado minhas reclamações e sempre estar por perto quando eu precisei de ajuda.

À Paula Elias Benedetti e Ricardo Froitzheim. Sem vocês o caminho seria quase impossível. Muito obrigado por fazerem parte da minha vida.

Aos meus tios, Afonso Faria e Cléa Sardinha, pelo carinho de sempre e por terem me ajudado no início dos meus estudos.

A todos os meus familiares que sempre ficaram na torcida pelo meu sucesso.

Ao meu orientador, Tácio Mauro Pereira de Campos e co-orientador, Antônio Roberto Barbosa de Oliveira, pelos conselhos, pelas discussões, dúvidas tiradas e por ensinar-me o caminho a seguir. Vocês mudaram a minha vida.

À professora Michéle Dal Toé Casagrande, por toda ajuda e carinho dispostos a mim.

Ao professor Eurípedes Vargas pelas sugestões e por todos os ensinamentos transmitidos.

À Jackeline Castañedas Huertas, por toda ajuda com a interpretação de ondas de choque.

Ao Marcelo, do Laboratório de Vibrações da PUC-Rio, pelo empréstimo do primeiro osciloscópio e por toda ajuda com os acelerômetros.

Aos membros da banca examinadora por todas as sugestões e críticas construtivas feitas a este trabalho.

Aos técnicos do Laboratório de Estruturas da PUC-Rio, José Nilson, Euclides e Evandro, pelas ideias de melhoria na concepção do equipamento e pela ajuda na construção do mesmo.

Aos técnicos do Laboratório de Geotecnia e Meio Ambiente da PUC-Rio, Amauri, Josué e Deivid, por estarem sempre dispostos a ajudar, e a engenheira Mônica pela atenção e cooperação.

Ao André Barros, pela disposição em ajudar em qualquer situação, mesmo que seja adversa.

À Rita e Fátima por terem me aguentado durante todas as idas à secretaria, sempre com muito carinho.

Aos meus irmãos do coração, Eric Penedo, Thiago Pessoa, Alexandre Conti, Raphael Rieboldt e minhas irmãs do coração, Carla, Ingrid, Mariana, Manuella e Ivânia por toda a amizade concedida durante esses anos, por sempre darem apoio incondicional ao meio das minhas "insanidades". Vocês foram fundamentais para a realização deste trabalho.

Aos meus queridos amigos: Rafael, Gary, João, Mário, Lucianna, Thaís, Amanda, Bianca, Nathália, Roberta, Renata, Orosco, Paola, Perlita, Camyla, Alena e Lidia por todos os momentos de descontração e estudos intensos.

A todos os meus primos que mesmo espalhados pelo Brasil sempre torceram pelo meu sucesso: Aline, Ana Cláudia, Guto, Giovanna, Rodrigo, Felipe, Pedro, Marcus, Fábio, Geovani e todos os outros, obrigada pelo apoio.

A CAPES e à PUC-Rio pelos incentivos concedidos.

Ao PRONEX, pelo custeio da pesquisa.

A todos que de forma direta ou indireta contribuíram para a realização deste trabalho.

Resumo

Carnavale, Thiago de Souza; de Campos, Tácio Mauro Pereira (Orientador); de Oliveira, Antônio Roberto Martins Barboza (Coorientador). **Desenvolvimento de um modelo físico para a análise de efeitos de trovões em solos**. Rio de Janeiro, 2012, 167p. Dissertação de mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O trabalho foi motivado pela grande incidência de descargas atmosféricas no desastre ocorrido na Região Serrana do Estado do Rio de Janeiro, em 2011. No episódio foram contabilizados mais de 900 óbitos e até o presente momento, as causas dos escorregamentos ainda não foram completamente encontradas. Esta pesquisa apresenta o desenvolvimento de um modelo físico para avaliar os efeitos das ondas sonoras, oriundas dos trovões, em solos. Para o alcance do referido objetivo, foi desenvolvida uma câmara à qual um bloco indeformado de solo foi instrumentado com tensiômetros, TDR's e acelerômetros. Os materiais utilizados nos ensaios são provenientes da encosta situada nos domínios da PUC-Rio e do condomínio localizado no bairro de Conquista Nova Friburgo. Os solos foram dispostos em blocos livres ou confinados em uma caixa de compensado naval de 19 mm e a seguir os mesmo foram submetidos às ondas de sonoras replicadas da modelagem dos trovões. Os resultados abrangem o desenvolvimento de ensaios com umidades diferentes, para os dois tipos de materiais, nas condições livre e confinada, e foram satisfatórios.

Palavras-chave

Trovões em solos; modelo físico; TDR's; tensiômetros; acelerômetros; desastre na Região Serrana do Estado do Rio de Janeiro.

Abstract

Carnavale, Thiago de Souza; de Campos, Tácio Mauro Pereira (advisor); de Oliveira, Antônio Roberto Martins Barboza (coadvisor). **Development of a physical model for the analysis of thunder effects in soils.** Rio de Janeiro, 2012, 167p. Msc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The work was motivated by the high incidence of lightning in the disaster occurred in the mountainous region of the State of Rio de Janeiro in 2011. In the episode was recorded more than 900 deaths and up to the present time, the causes of landslides have not been fully met. This research presents the development of a physical model to assess the effects of sound waves coming from the thunder in soils. To achieve the above goal, we developed a camera to which an undisturbed block of soil, instrumented with tensiometers and TDR's accelerometers was tested on a table. The materials used in the tests are from hillside located in the areas of PUC-Rio and condo located in the Conquista, Nova Friburgo. Soils were willing blocks free or confined in a box of 19mm plywood and then were subjected to the sound waves replicated modeling of thunder. The results include the development of assays with different humidities for both types of materials and conditions, free and confined.

Keywords

Thunder in soils; physical model; tensiometers; TDR's; accelerometers; disaster in the mountainous region of the State of Rio de Janeiro.

Sumário

1 Introdução	34
Objetivos	36
Apresentação	37
2 Revisão bibliográfica	38
2.1.Condições de contorno	38
2.1.1.Atmosfera	38
2.1.2.Pressão atmosférica	40
2.1.3.Circulação atmosférica e ventos	42
2.1.4.Nuvens de tempestade	45
2.1.5.Zona de Convergência do Atlântico Sul (ZCAS)	50
2.1.6.Interligação dos fenômenos climáticos-meteorológicos	51
2.2.Relâmpagos	53
2.2.1.Os raios e o solo	55
2.2.2.Trovões	58
3 Materiais	74
3.1.Câmara instrumentada	74
3.2.Som	76
3.3.Amplificadores e mesa de som	77
3.4.Cabos e conectores	77
3.5.Auto falantes	78
3.6.TDR PICO 32 - IMKO	78
3.7.SM USB IMKO	81
3.8.Software (PICO Config)	81
3.9.Tensiômetros	82
3.10.Sistema de Aquisição de Dados	83
3.11.Acelerômetros	84
3.12.Osciloscópio	86
3.13.Audacity – Construindo as formas de ondas	87

4 Metodologia	88
4.1.Cracterização das ondas sonoras	88
4.2.Caracterização geográfica	91
4.3.Caracterização física	94
4.3.1.Índices físicos	94
4.3.2.Curva granulométrica	95
4.3.3.Limite de Atterberg	96
4.3.4.Classificação do solo - SUCS	97
4.3.5.Curva característica	98
5 Apresentação e discussão dos resultados	111
6 Conclusões e sugestões para pesquisas futuras	138
Bibliografia	140
Anexos	146

Lista de figuras

Figura 1: Localização geográfica da Região Serrana do Estado do Rio de Janeiro	34
Figura 2: Precipitações máximas diárias por ano hidrológico (Medeiros & Barros, 2011)	35
Figura 3: Localização das estações meteorológicas e/ou pluviômetros (Medeiros & Barros, 2011)	35
Figura 4: Características da atmosfera (Mendonça & Danni- Oliveira, 2007)	39
Figura 5: Composição química da atmosfera (Strahler, 1971 apud Mendonça & Danni-Oliveira, 2007)	40
Figura 6: Exemplo de isóbaras concêntricas (Marinha do Brasil, 2006)	41
Figura 7: Esquema de circulação de Zonas de Alta e Baixa Pressão	42
Figura 8: Modelo de circulação meridional da atmosfera, possibilitando observar as áreas de altas e baixas pressões (Varejão-Silva, 2006)	43
Figura 9: Distribuição dos domínios climáticos do Brasil e seus principais subtítulos (Mendonça & Danni-Oliveira, 2007)	43
Figura 10: Torre de Cumulus – Fase de desenvolvimento vertical.	47
Figura 11: Instabilidade convectiva (antes de entrar em contato com a corrente de ar superior)	47
Figura 12: Formato de bigorna (confeccionado pela corrente de ar superior)	47
Figura 13: Estágio de Dissipação	48

Figura 14: Análise sinótica da ZCAS do dia 12/01/2011- Adaptado de (Pinheiro et al., 2011)	50
Figura 15: Densidade de relâmpagos entre os anos de 1998 e 2012 (Fonte: NASA, 2012)	53
Figura 16: Densidade de raios nos estados do Sudeste e parte do Sul e Centro-oeste (Fonte: ELAT, 2012)	54
Figura 17: Mapa de curvas isoceráunicas do Brasil (Fonte NBR 5419:2005)	54
Figura 18: Relação entre a altitude e o número total de relâmpagos entre os anos de 1988 e 1996 - Gomes (2002)	55
Figura 19: Relação entre numero médio de relâmpagos negativos e os solos afloramento rochoso (AFR), aluviais (ALU), cambissolo (CAM), glei húmico (GLEI), latossolo ferrífero (LFE), latossolo vermelho-amarelo (LVA), latossolo vermelho-escuro (LVE), latossolo roxo (LRO), latossolo una (LUN), litossolo (LIT), podzólico vermelho-amarelo (PVA), podzólico vermelho-escuro (PVE) e represa (REP), entre os anos de 1988 e 1996 Gomes (2002)	56
Figura 20: Exemplos de fulguritos (Fonte: Google Imagens)	57
Figura 21: Modelo quasilinear de um raio onde cada ponto do canal emite uma onda de pressão	60
Figura 22: Geometria da fonte de distribuição acústica	62
Figura 23: Onda N assumida, produzida por um curto segmento dz de uma fonte na distância r'	62
Figura 24: Intervalos aos quais a variável t' são pertinentes para valores da equação 9	64

Figura 25: Resultados da integração, propostos por Wright & Medendorp	65
Figura 26: Metade da forma de onda calculada por Wright e Medendorp (1967)	66
Figura 27: Fonte completa de fonte em linha e de uma onda WM – Fonte: Matsuyama et al. (2007)	66
Figura 28: Imagem de um clap modelado por Sag Woo Lee em 2009, com 1660 segmentos de 3m	67
Figura 29: Imagem da forma de onda obtida do clap (situada a 500m ao norte do ponto de observação do raio) modelado por Lee (2009), com 1660 segmentos de 3m	67
Figura 30: Imagem de um rumble com várias estruturas de raios, modelado por Lee (2009), aos quais foram utilizados 7435 segmentos de 5m	68
Figura 31: Imagem da forma de onda (situada a 500m ao norte do ponto de observação do raio) obtida do rumble modelado por Lee (2009), com 7435 segmentos de 5m	68
Figura 32: Imagem da forma de onda (situada a 1000m ao leste do ponto de observação do raio) obtida do rumble modelado por Lee (2009), com 7435 segmentos de 5m	68
Figura 33: Imagem da forma de onda (situada a 2000m ao leste do ponto de observação do raio) obtida do rumble modelado por Lee (2009), com 7435 segmentos de 5m	68
Figura 34: Imagem de um rumble com várias estruturas de raios, modelado por Lee (2009), aos quais foram utilizados 8472 segmentos de 5m	69

Figura 35: Imagem da forma de onda (situada a 500m ao leste do ponto de observação do raio) obtida do rumble modelado	
por Lee (2009), com 8472 segmentos de 5m	69
Figura 36: Representação do elemento de solo não saturado (adaptado de Fredlund e Morgenstern, 1977)	72
Figura 37: Esquema da câmara instrumentada	74
Figura 38: Etapa de construção da mesa com tampo articulado (a) e primeira disposição da mesma na área de ensaios (b)	75
Figura 39: Disposição da mesa e das caixas de som e amplificadores	75
Figura 40: Construção da câmara (a) e disposição inicial da mesa e das caixas de som (b)	75
Figura 41: Aplicação do revestimento de espuma acústica (a) e disposição final da mesa e das caixas (b)	76
Figura 42: Visão oblíqua da câmara com o apêndice para alocar os amplificadores e instrumentos de aquisição de dados	76
Figura 43: Amplificadores e mesa de som	77
Figura 44: Conectores do tipo Speakon, utilizados para ligar os autofalantes aos amplificadores de potência.	77
Figura 45: Caixas de grave (imagem superior) e de médio grave (inferior)	78
Figura 46: Dimensões do TDR PICO 32 – IMKO	78
Figura 47: Calibrações de fábrica para os TDR's PICO 32 – IMKO	80
Figura 48: Curvas de calibração para diferentes tipos de solos	80
Figura 49:Módulo de conversão de dados IMKO SM USB	81

Figura 50: interface inicial do software Pico-Config, com o número	
de registro do sensor e a janela do Balance Basic.	81
Figura 51: Interface de aquisição de dados do software Pico-Config	82
Figura 52: Detalhes e informações do tensiômetros T5X	83
Figura 53: DL2e Data Logger, fabricado pela Delta-T Instruments	83
Figura 54: Condicionador de voltagem TV-Batt	84
Figura 55: Painel controle do software Ecoutil mostrando o nome do programa que está sendo executado, o status e os detalhes de início e fim do processo de aquisição assim como os detalhes dos sensores programados e habilitados para a execução dos ensaios	84
Figura 56: Esquema do acelerômetro de cisalhamento em delta (Brüel & Kjaer, 1987)	85
Figura 57: Imagem do acelerômetro de cisalhamento em delta (Brüel & Kjaer, 1987)	85
Figura 58: Carta de calibração dos acelerômetros	86
Figura 59: Osciloscópio Agilent, modelo MSO-X 2024A	86
Figura 60: Construção do Clap através do uso do software Audacity	87
Figura 61: Imagem de um clap modelado por Sag Woo Lee em 2008, com 1660 segmentos de 3m	88
Figura 62: Forma de onda replicada utilizando o software Audacity, da onda obtida através da modelagem do clap (situada a 500m ao norte do ponto de observação do raio)	
desenvolvida por Lee (2008), com 1660 segmentos de 3m	88

Figura 63: Rumble com várias estruturas de raios, modelado por Lee (2008), aos quais foram utilizados 7435 segmentos de	
5m	89
Figura 64: Forma de onda replicada utilizando o software Audacity, da onda obtida através da modelagem do clap (situada a 500m ao norte do ponto de observação do raio) desenvolvida por Lee (2008), com 7435 segmentos de 5m	89
Figura 65: Forma de onda replicada utilizando o software Audacity, da onda obtida através da modelagem do rumble (situada a 1000m ao leste do ponto de observação do raio) desenvolvida por Lee (2008), com 7435 segmentos de 5m	89
Figura 66: Forma de onda replicada utilizando o software Audacity, da onda obtida através da modelagem do rumble (situada a 2000m ao leste do ponto de observação do raio) desenvolvida por Lee (2008), com 7435 segmentos de 5m	89
Figura 67: Rumble com várias estruturas de raios, modelado por Lee (2008), aos quais foram utilizados 8472 segmentos de 5m	90
Figura 68: Forma de onda replicada utilizando o software Audacity, da onda obtida através da modelagem do rumble (situada a 500m ao leste do ponto de observação do raio) desenvolvida por Lee (2008), com 8472 segmentos de 5m	90
Figura 69: Formas de ondas replicadas, sobrepostas, utilizando o software Audacity	90
Figura 70: Imagem de satélite, proveniente do Google Earth, da área situada na PUC-Rio	91
Figura 71: Imagem de satélite, proveniente do Google Earth, da área situada no Condomínio de Conquista - Nova Friburgo.	91

Figura 72: Curva granulométrica do solo proveniente da PUC-Rio	96
Figura 73: Curva granulométrica do solo situado no condomínio de Conquista – Nova Friburgo	96
Figura 74: Moldagem em campo, dos anéis da curva característica, do solo proveniente da PUC-Rio	98
Figura 75: Moldagem em campo, dos anéis da curva característica, do solo proveniente do condomínio situado no bairro Prainha, no município de Nova Friburgo	98
Figura 76: Comportamento bimodal (Feuerharmel et al., 2005)	99
Figura 77: Curva caraterística do colúvio situado na PUC-Rio. Relação entre o grau de saturação e a sucção mátrica	99
Figura 78: Curva caraterística do colúvio situado na PUC-Rio. Relação entre a umidade volumétrica e a sucção mátrica	99
Figura 79: Curva caraterística do Solo Residual Maduro situado no condomínio do bairro Prainha – Nova Friburgo. Relação entre o grau de saturação e a sucção mátrica.	100
Figura 80: Curva caraterística do Solo Residual Maduro situado no condomínio do bairro Prainha – Nova Friburgo. Relação entre umidade volumétrica e a sucção mátrica.	100
Figura 81: Resultados dos testes efetuados nos tensiômetros inseridos na proteção preenchida com água deaerada	101
Figura 82: Resultados dos testes efetuados nos tensiômetros em contato apenas com o filete d'água	101
Figura 83: Detalhe dos materiais empregados para a execução da calibração dos TDR's	102

Figura 84: Relação entre a medida padrão de umidade volumétrica	
de umidade do colúvio proveniente da PUC-Rio	103
Figura 85: Equação de calibração dos TDR's para o solo coluvionar da PUC-Rio	103
Figura 86: Relação entre a umidade volumétrica e o pd do colúvio proveniente da PUC-Rio	103
Figura 87: Relação entre a medida padrão de umidade volumétrica e a úmida volumétrica calculada para os diferentes teores de umidade do solo residual maduro, proveniente do condomínio situado em Conquista – Nova Friburgo	104
Figura 88: Equação de calibração dos TDR's para o solo residual maduro, proveniente do condomínio situado em Conquista - Nova Friburgo	104
Figura 89: Relação entre a umidade volumétrica e o pd do condomínio situado em Conquista – Nova Friburgo	104
Figura 90: Relação entre as diferentes compactações e as quantidades de água adicionadas (a.1, a.2 – 0ml), (b.1, b.2 – 500ml) e (c.1, c.2 – 1000ml)	105
Figura 91: Resultados dos testes efetuados nos acelerômetros, a partir da emissão do clap (a) e das ondas sobrepostas (b)	106
Figura 92: Retirada dos blocos do solo proveniente da PUC-Rio para execução dos ensaios	107
Figura 93: Retirada dos blocos do solo proveniente do condomínio situado no bairro Prainha – Nova Friburgo	107
Figura 94: Execução dos furos com furadeira em baixa rotação (a) e disposição dos furos na lateral da amostra confinada (b)	108

Figura 95: Extensão da haste e introdução dos TDR'S	108
Figura 96: Disposição final dos sensores prontos para a execução dos ensaios	108
Figura 97: Exemplo da disposição dos instrumentos em um bloco livre de confinamento	109
Figura 98: Centro de controle. Disposição dos equipamentos de aquisição de dados	110
Figura 99: TDR – Leituras a cada 5/6 segundos a partir do WMS USB	110
Figura 100: Tensiômetros – Leituras a cada 1 segundo do logger a partir do Ecoutil	110
Figura 101: Resultados dos tensiômetros inseridos no solo proveniente do colúvio da PUC-Rio, na situação confinada, na execução da etapa 1	112
Figura 102: Resultados dos tensiômetros inseridos no solo proveniente do colúvio da PUC-Rio, na situação confinada, na execução da etapa 2	112
Figura 103: Bloco indeformado, confinado e instrumentado, do colúvio proveniente da PUC-Rio	112
Figura 104: Resultados dos tensiômetros inseridos no solo proveniente do colúvio da PUC-Rio, com a amostra livre de confinamento, na execução da etapa 1	113
Figura 105: Resultados dos tensiômetros inseridos no solo proveniente do colúvio da PUC-Rio, com a amostra livre de confinamento, na execução da etapa 2	113
Figura 106: Bloco indeformado, livre de confinamento, instrumentado, do colúvio proveniente da PUC-Rio.	113

Figura	107: Resultados dos tensiômetros inseridos no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução	114
Figura	da etapa 1 108: Resultados dos tensiômetros inseridos no solo	114
	proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 2	114
Figura	109: Bloco indeformado, confinado e instrumentado, no momento e após o ensaio do SBM proveniente do	
	condomínio situado em Conquista – Nova Friburgo	114
Figura	110: Resultados dos tensiômetros inseridos no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra livre de confinamento,	
	na execução da etapa 1	115
Figura	111: Bloco de solo logo após a ruptura.	115
Figura	112: Resultados dos tensiômetros que não foram afetados com a ruptura do solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra	
	livre de confinamento, na execução da etapa 1	116
Figura	113: Resultados dos tensiômetros inseridos no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra livre de confinamento,	
	na execução da etapa 2	116
Figura	114: Envoltória de ruptura relacionando a tensão cisalhante com a sucção mátrica do solo proveniente do colúvio da	
	PUC-Rio	118

Figura	115: Envoltória de ruptura, proveniente do ensaio de cisalhamento direto, para o solo residual maduro, oriundo de Nova Friburgo	118
Figura	116: Disposição dos resultados dos TDR's no momento da incidência das ondas de som	119
Figura	117: Resultados obtidos pelos TDR's, no colúvio proveniente da PUC-Rio, com a amostra confinada, na etapa 1	120
Figura	118: Resultados obtidos pelos TDR's, no colúvio proveniente da PUC-Rio, com a amostra confinada, na etapa 2	120
Figura	119: Resultados obtidos pelos TDR's, no colúvio proveniente da PUC-Rio, com a amostra livre de confinamento, na etapa 1	121
Figura	120: Resultados obtidos pelos TDR's, no colúvio proveniente da PUC-Rio, com a amostra livre de confinamento, na etapa 2	121
Figura	 121: Resultados obtidos pelos TDR's, no solo residual maduro proveniente do condomínio do bairro de Conquista – Nova Friburgo, com a amostra confinada, na etapa 1 	122
Figura	 122: Resultados obtidos pelos TDR's, no solo residual maduro proveniente do condomínio do bairro de Conquista – Nova Friburgo, com a amostra confinada, na etapa 2 	122
Figura	 123: Resultados obtidos pelos TDR's, no solo residual maduro proveniente do condomínio do bairro de Conquista – Nova Friburgo, com a amostra livre de confinamento, na 	
	etapa 1	123

Figura	 124: Resultados obtidos pelos TDR's, no solo residual maduro proveniente do condomínio do bairro de Conquista – Nova Friburgo, com a amostra livre de confinamento, na 	
	etapa 2	123
Figura ⁻	125: Disposição dos acelerômetros nos blocos	125
Figura	126: Resultado do acelerograma em função da força G, da amostra confinada, do colúvio proveniente da PUC-Rio, ao longo da execução do ensaio, na etapa 1	126
Figura ⁻	127: Resultado do acelerograma em função da força G, da amostra confinada, do colúvio proveniente da PUC-Rio, ao longo da execução do ensaio, na etapa 2	126
Figura	128: Resultado do acelerograma em função da força G, da amostra livre do confinamento, do colúvio proveniente da PUC-Rio, ao longo da execução do ensaio, na etapa 1	127
Figura	129: Resultado do acelerograma em função da força G, da amostra livre do confinamento, do colúvio proveniente da PUC-Rio, ao longo da execução do ensaio, na etapa 2	127
Figura ⁻	130: Resultado do acelerograma em função da força G, da amostra confinada, do SRM proveniente do condomínio localizado no bairro de Conquista – Nova Friburgo, ao longo da execução do ensaio, na etapa 1	128
Figura ⁻	131: Resultado do acelerograma em função da força G, da amostra confinada, do SRM proveniente do condomínio localizado no bairro de Conquista – Nova Friburgo, ao longo da execução do ensaio, na etapa 2	128
Figura	132: Resultado do acelerograma em função da força G, da amostra livre do confinamento, do SRM proveniente do condomínio localizado no bairro de Conquista – Nova Friburgo, ao longo da execução do ensaio, na etapa 1	129

Figura	133: Resultado do acelerograma em função da força G, da	
	amostra livre do confinamento, do SRM proveniente do	
	condomínio localizado no bairro de Conquista – Nova	
	Friburgo, ao longo da execução do ensaio, na etapa 2	129
Figura	134:Acelerograma e espectro de frequência do acelerômetro	
	na amostra livre de confinamento, ao longo da etapa 1	132
Figura	135: Acelerograma e espectro de frequência do	
	acelerômetro inserido na direção z, no SRM proveniente do	
	condomínio do bairro Conquista – Nova Friburgo, na	
	amostra livre de confinamento, ao longo da etapa 1	132
Figura	136: Acelerograma e espectro de frequência do	
	acelerômetro inserido na direção y, no colúvio proveniente	
	da PUC-Rio, na amostra livre de confinamento, ao longo da	
	etapa 1	133
Figura	137: Acelerograma e espectro de frequência do	
-	acelerômetro inserido na direção y, no SRM proveniente do	
	condomínio do bairro Conquista – Nova Friburgo, na	
	amostra livre de confinamento, ao longo da etapa 1	133
Figura	138: Acelerograma e espectro de freguência do	
. igaia	acelerômetro inserido na direcão x, no colúvio proveniente	
	da Puc-Rio, na amostra livre de confinamento, ao longo da	
	etapa 1	134
Figura	139: Acelerograma e espectro de frequência do	
	acelerômetro inserido na direção x, no SRM proveniente do	
	condomínio do bairro Conquista – Nova Friburgo, na	
	amostra livre de confinamento, ao longo da etapa 1	134
Figura	140: Acelerograma e espectro de frequência do	

acelerômetro inserido na direção z, no colúvio proveniente

PUC-Rio - Certificação Digital Nº 1112055/CA

da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1

- Figura 141: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 135
- Figura 142: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 143: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 136
- Figura 144: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no colúvio proveniente da Puc-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 145: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1
- Figura 146: Resultados dos tensiômetros inseridos no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1
- Figura 147: Resultado do tensiômetro conectado ao canal 2, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1

135

136

146

137

137

- Figura 148: Resultado do tensiômetro conectado ao canal 3, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1 147 Figura 149: Resultado do tensiômetro conectado ao canal 4, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1 147 Figura 150: Resultado do tensiômetro conectado ao canal 5, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1 148 Figura 151: Resultado do tensiômetro conectado ao canal 6, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1 148 Figura 152: Resultado do tensiômetro conectado ao canal 7, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra confinada, na execução da etapa 1 Figura 153: Resultado do tensiômetro conectado ao canal 8, inserido no solo proveniente do condomínio situado no bairro de Conquista, em Nova Friburgo, com a amostra 149 confinada, na execução da etapa 1 Figura 154: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 150 etapa 1 Figura 155: Acelerograma e espectro de frequência do
 - acelerômetro inserido na direção z, no SRM proveniente do

condomínio do bairro Conquista - Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 150 Figura 156: Acelerograma e espectro de freguência do acelerômetro inserido na direção y, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 151 etapa 1 Figura 157: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista - Nova Friburgo, na 151 amostra livre de confinamento, ao longo da etapa 1 Figura 158: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 152 etapa 1 Figura 159: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista - Nova Friburgo, na 152 amostra livre de confinamento, ao longo da etapa 1 Figura 160: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 153 etapa 1 Figura 161: Acelerograma e espectro de freguência do acelerômetro inserido na direção z, no SRM proveniente do condomínio do bairro Conquista - Nova Friburgo, na 153 amostra livre de confinamento, ao longo da etapa 1 Figura 162: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no colúvio proveniente

da PUC-Rio, na amostra livre de confinamento, ao longo da

etapa 1

PUC-Rio - Certificação Digital Nº 1112055/CA

- Figura 163: Acelerograma e espectro de freguência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista - Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 154 Figura 164: Acelerograma e espectro de freguência do acelerômetro inserido na direção x, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 155 etapa 1 Figura 165: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista - Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 155 Figura 166: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 156 etapa 1 Figura 167: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no SRM proveniente do condomínio do bairro Conguista - Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 156 Figura 168: Acelerograma e espectro de freguência do acelerômetro inserido na direção y, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da 157 etapa 1 Figura 169: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista - Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 157
 - Figura 170: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no colúvio proveniente

da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1

- Figura 171: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 158
- Figura 172: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 173: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 159
- Figura 174: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 175: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1
- Figura 176: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 177: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1

158

159

160

160

161

- Figura 178: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 179: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1
- Figura 180: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 181: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1
- Figura 182: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 183: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1 164
- Figura 184: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 185: Acelerograma e espectro de frequência do acelerômetro inserido na direção z, no SRM proveniente do

162

162

163

164

163

condomínio	do	bairro	Conquista	-	Nova	Friburgo,	na		
amostra livre	e de	confina	mento, ao lo	ong	o da et	apa 1		165	5

166

166

- Figura 186: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no colúvio proveniente da PUC-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 187: Acelerograma e espectro de frequência do acelerômetro inserido na direção y, no SRM proveniente do condomínio do bairro Conquista – Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1
- Figura 188: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no colúvio proveniente da Puc-Rio, na amostra livre de confinamento, ao longo da etapa 1
- Figura 189: Acelerograma e espectro de frequência do acelerômetro inserido na direção x, no SRM proveniente do condomínio do bairro Conquista Nova Friburgo, na amostra livre de confinamento, ao longo da etapa 1

Lista de tabelas

Tabela 1: Dados estatísticos gerais sobre a incidência de raios nas			
cidades da Região Serrana do Estado do Rio de Janeiro -			
(Fonte: ELAT- Grupo de Eletricidade Atmosférica – INPE).	36		
Tabela 2: Principais expressões para a avaliação da tensão efetiva			
em solos não saturados (Adaptado de Fredlund e			
Morgenstern, 1967).	73		
Tabela 3: Equação e erro estimado para a combinação de experimentos de determinação entre a constante dielétrica			
ka e a umidade volumétrica θ (Fonte: Topp (1980)).	79		
Tabela 4: Índices físicos dos materiais ensaiados.			
Tabela 5: Resumo da Granulometria dos dois tipos de solo (valores			
em %)	95		
Tabela 6: Limites de consistência e atividade das argilas.			

Lista de símbolos e abreviações

- # diâmetro de abertura da malha da peneira
- % porcentagem
- A amplitude
- ABNT Associação Brasileira de Normas Técnicas
- AFR afloramento rochoso
- ALU aluviais
- c velocidade de propagação do som
- C Celsius
- CAM cambissolo
- CEII Campo Experimental II PUC-Rio
- Cv concentração de sedimentos
- E leste
- ELAT Grupo de Eletricidade Atmosférica INPE
- GLEI glei húmico
- Gs peso específico dos grãos
- H hexametafosfato de sódio
- la índice de atividade das argilas
- IP índice de plasticidade
- K índice de consistência
- Ka constante dielétrica
- L comprimento das hastes
- LL -limite de liquidez
- LFE latossolo ferrífero
- LIT litossolo
- LRO latossolo roxo
- LUN latossolo una
- LVE, latossolo vermelho-escuro
- MEA Massa Equatorial Atlântica
- MEC Massa Equatorial Continental
- MPA Massa Polar Atlântica
- MTA Massa Tropical Atlântica

- MTC Massa Tropical Continental
- n porosidade
- N onda de pressão
- NASA National Aeronautics and Space Administration
- NE nordeste
- Ng densidade de descargas atmosféricas
- NW noroeste
- ONU Organização das Nações Unidas
- p+ pulso parabólico positivo
- p- pulso parabólico negativo
- PVA podzólico vermelho-amarelo
- PVE- podzólico vermelho-escuro
- p(t) assinatura de pressão ou pressão de perturbação do trovão
- r raio de observação
- r' raio de observação em relação ao centro da fonte emissora
- REP represa
- RSERJ Região Serrana do Estado do Rio de Janeiro
- SUCS Sistema Unificado de Classificação de Solos
- S sul
- SE sudeste
- SW sudoeste
- t tempo
- T meio período
- Td dias de trovoadas por ano
- VLA latossolo vermelho-amarelo
- w umidade do ensaio
- W oeste
- η porosidade
- µ viscosidade absoluta
- ρd massa específica seca
- σ_{ii} tensão normal atuante no plano perpendicular à direção $\hat{\imath}$
- τ menor tempo de retardo
- θ umidade volumétrica

Por que você quer tanto isto? Porque disseram que eu não conseguiria! (Homens de Honra)