

Renzo Cayo Mancilla

Vibrações Não Lineares e Estabilidade de Barras Esbeltas de Seção Aberta

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

> Orientador: Prof. Paulo Batista Gonçalves Co-orientador: Prof. Eulher Chaves Carvalho

Rio de Janeiro Junho de 2014

Renzo Cayo Mancilla

Vibrações Não Lineares e Estabilidade de Barras Esbeltas de Seção Aberta

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Paulo Batista Gonçalves Orientador Departamento em Engenharia Civil – PUC-Rio

Prof. Eulher Chaves Carvalho Co-orientador Instituto Federal de Educação, Ciência e Tecnologia de Goiás

> **Prof^a. Deane Mesquita Roehl** Departamento em Engenharia Civil – PUC-Rio

Prof. Raul Rosas e Silva Departamento em Engenharia Civil – PUC-Rio

> Prof. Ney Roitman Universidade Federal do Rio de Janeiro

> > Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 27 Junho de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Renzo Cayo Mancilla

Graduou-se em Engenharia Civil na Universidade Nacional San Antonio Abad del Cusco, UNSAAC (Cusco - Peru), em Janeiro de 2007. Ingressou em março de 2012 no curso de Mestrado em Engenharia Civil da Pontifícia Universidade Católica de Rio de Janeiro (PUC-Rio), na área de Estruturas. Já desenvolveu trabalhos na área de projetos de estruturas e, mais recentemente, na área de dinâmica das estruturas, abrangendo nesta última os temas de estabilidade e dinâmica de colunas e vigas com seções não simétricas.

Ficha Catalográfica

Renzo Cayo Mancilla.

Vibrações Não Lineares e Estabilidade de Barras Esbeltas de Seção Aberta/ Renzo Cayo Mancilla; orientadores: Paulo Batista Gonçalves, Eulher Chaves Carvalho. – 2014.

135 f. il. (color.); 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2014.

Inclui bibliografia

1. Engenharia Civil – Teses. 2. Acoplamento flexotorção. 3. Perfis de seção aberta. 4. Vibrações não lineares. 5. Instabilidade I. Gonçalves, Paulo Batista. II. Carvalho, Eulher Chaves. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 1112048/CA

Dedico a: Meus Pais Mateo e Asunta

Agradecimentos

A Deus pelas oportunidades que colocou na minha vida, ao minha família pelo amor, educação e exemplo que me oferecem todos os dias.

Ao professor Paulo Batista Gonçalves, quem soube transmitir com paciência e dedicação cada passo da orientação e tornou-se um símbolo como profissional e amigo.

Ao meu Co-orientador, Professor Eulher Chaves Carvalho, pela orientação e esclarecimento de muitas dúvidas que ajudaram no desenvolvimento da dissertação.

Aos professores que participaram da comissão examinadora.

A instituição PUC-Rio.

Aos professores e funcionários do Departamento de Engenharia Civil.

Aos amigos (as) que fiz na PUC-Rio.

Ao CNPq e CAPES.

Resumo

Renzo Cayo Mancilla; Gonçalves, Paulo Batista (Orientador); Carvalho, Eulher Chaves (Co-orientador), **Vibrações Não Lineares e Estabilidade de Barras Esbeltas de Seção Aberta**. Rio de Janeiro, 2014. 135p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Em virtude de sua eficiência, elementos estruturais de paredes finas com seções abertas são comuns em estruturas de aço, sendo secção em I, L, C e T usuais na prática de engenharia. A maior parte das vigas de parede fina tem uma boa resistência à flexão em relação ao eixo principal de inércia, mas uma baixa rigidez à flexão em relação ao eixo de menor inércia e uma baixa rigidez em torção. É por isso que estes elementos apresentam em geral uma instabilidade que leva a um acoplamento de flexo-torção. Muitas destas estruturas trabalham em um regime não linear e uma formulação não linear que leve em conta grandes deslocamentos e os acoplamentos inerentes é necessária. Neste trabalho um modelo não linear para vigas de seção aberta e paredes finas, considerando grandes deslocamentos, os efeitos de encurtamento e acoplamentos em flexão e torção é adotado. Inicialmente um estudo das frequências naturais, das cargas críticas e da relação frequência-carga axial é apresentado para diversos perfis. Com base nestes resultados, faz-se um estudo detalhado do comportamento dinâmico não linear destes perfis destacando o efeito do acoplamento não linear na região de ressonância e sua influência na estabilidade dinâmica da estrutura. Para isto são usadas diversas ferramentas de dinâmica não linear, tais como diagramas de bifurcação, respostas no tempo e plano de fase e bacias de atração. Os resultados mostram que a consideração dos acoplamentos não lineares é essencial para se avaliar o nível de segurança destas estruturas.

Palavras-chave

Acoplamento flexo-torção; perfis de seção aberta; vibrações não lineares; instabilidade.

Abstrac

Renzo Cayo Mancilla; Gonçalves, Paulo Batista (Advisor); Carvalho, Eulher Chaves (Co-advisor), **Nonlinear Vibrations and Stability of Slender Bars with Open Cross-Section.** Rio de Janeiro, 2014. 135p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Due to its efficiency, thin-walled structural elements with open sections, such as I, L, C and Z profiles, are common in steel structures, being usual in engineering applications. Most thin-walled beams have a good flexural strength around of the principal axis of inertia, but a low one around the axis of lower inertia as well as low torsional stiffness. That is why these elements, generally, show instabilities that lead to flexural torsional coupling. Many of these structures do not work in a linear range and a non-linear formulation that takes into account large displacements and associated couplings is required. This dissertation presents a nonlinear model for extensional beams with thin-walled open section, considering large displacements, and flexural-torsional couplings. Initially a study of the natural frequencies, critical load and axial load vs. frequency relation is presented for different profile kinds. Based on these results, a detailed study of the dynamic behavior of non-linear profiles is made, highlighting the effect of non-linear coupling in the resonance region and its influence on the dynamic stability of the structure. For this, various tools of nonlinear dynamics are used, such as bifurcation diagrams, time histories and phase-space portraits and basins of attraction. The results show that the consideration of non-linear couplings is essential to availed the safety level of these structures.

Keywords

Flexural-torsional coupling; bars with open cross-sections; nonlinear vibrations; instabilities.

Sumário

1. INTRODUÇÃO	20
1.1. Considerações gerais.	20
1.2. Breve histórico bibliográfico.	24
1.3. Objetivos.	26
1.4. Escopo.	27
2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDE	
DELGADA	28
2.1. Perfis de seção aberta e paredes delgadas.	28
2.2. Centro de Cisalhamento de uma seção transversal.	29
2.2.1. Centro de cisalhamento para seções com dois eixos de simetria.	30
2.2.2. Centro de cisalhamento para seções com um eixo de simetria.	31
2.2.3. Centro de cisalhamento para seções transversais assimétricas.	33
2.3. Área Setorial.	38
 2.4. Torção de perfis de seção aberta e paredes delgadas. 	40
3. FORMULAÇÃO MATEMÁTICA PARA ANÁLISE NÃO LINEAR	42
3.1. Elementos de seção transversal aberta de parede delgada.	42
3.2. Campo de deslocamentos.	43
3.3. Campo de deformações.	45
3.4. Formulação variacional.	46
3.4.1. Variação da energia interna de deformação.	46
3.4.2. Variação do trabalho das cargas externas.	49
3.4.3. Variação da energia cinética.	50
3.5. Relações constitutivas.	51
3.6. Equações de movimento.	53
4. FREQUÊNCIAS NATURAIS E CARGAS CRÍTICAS	55
4.1. Aplicação do método de Galerkin.	55
4.2. Linearização das equações de movimento.	57
4.3. Frequências naturais e cargas críticas axiais da viga.	57

4.4. Análise numérica de vários tipos de perfis.	59
4.4.1. Seção duplamente simétrica - perfil "I".	60
4.4.2. Seção monosimétrica - perfil "T".	64
4.4.3. Seção monosimétrica - perfil "C".	67
4.4.4. Seção monosimétrica - perfil "L".	70
4.4.5. Seção assimétrica - perfil "L".	73
5. ANÁLISE NÃO LINEAR	77
5.1. Equações de movimento para o perfil monosimétrico "C".	77
5.2. Vibração livre.	79
5.3. Vibração Forçada: carregamento Q _{y.}	80
5.4. Vibração forçada: carregamento Q_z aplicado no centro de	
cisalhamento.	87
5.5. Vibração forçada: carregamento Q_z aplicado no centro de gravida	de.
	101
5.6. Vibração forçada: carregamento Q_z aplicado na mesa superior do	
perfil.	109
6. CONCLUSÕES E SUGESTÕES	130
6.1. Conclusões.	130
6.2. Sugestões.	131
7. REFERÊNCIAS BIBLIOGRÁFICAS	133

Lista de figuras

Figura 1.1: Aplicação dos perfis de seção aberta e paredes delgadas n	а
engenharia estrutural.	21
Figura 1.2: Exemplos da aplicação dos perfis na engenharia estrutural.	23
Figura 2.1: Perfil de seção aberta e parede delgada.	28
Figura 2.2: Representação do esforço solicitante cortante (V) na barra.	30
Figura 2.3: Resultante das tensões de cisalhamento perfil bissimétrico.	30
Figura 2.4: Resultante das tensões de cisalhamento perfil monossimetr	ico
Т.	31
Figura 2.5: Resultante das tensões de cisalhamento perfil monossimetr	ico
"C".	33
Figura 2.6: Distribuição de tensões de cisalhamento em seção de pare	de
delgada.	34
Figura 2.7: Seção transversal aberta assimétrica genérica de parede	
delgada.	34
Figura 2.8: Representação esquemática do raio vetor r.	36
Figura 2.9: Planos de carregamento fictícios paralelos as direções $z e y$	/.38
Figura 2.10: Representação da área setorial.	39
Figura 2.11: Relação da área setorial com a geométrica.	39
Figura 2.12: Torção de perfis de seção aberta e parede delgada.	40
Figura 3.1: Elemento de seção transversal aberta. Sistema de referênc	ia e
notação.	43
Figura 3.2 : Componentes do deslocamento do centro de cisalhamento	. 43
Figura 3.3: Eixo normal e tangencial do contorno da seção.	44
Figura 3.4: Forças resultantes na seção.	48
Figura 3.5: Componentes de carga aplicada à barra.	49
Figura 3.6: Deslocamento vertical do ponto M gerado por Q_z .	50
Figura 4.1: Perfil simétrico "I" e suas dimensões características.	60
Figura 4.2: Relação carga – frequência de vibração da Seção "I".	63
Figura 4.3: Relação carga – comprimento (a) e Relação frequência	
natural – comprimento (b) da viga de Seção "I".	63
Figura 4.4: Perfil monossimétrico "T" e suas dimensões características.	64

Figura 4.5: Relação carga – frequência de vibração da Seção "T". 66 Figura 4.6: Relação carga – comprimento (a) e Relação frequência natural – comprimento (b) da viga de Seção "T". 67 Figura 4.7: Perfil monossimétrico "C" e suas dimensões características. 67 Figura 4.8: Relação carga – frequência de vibração da Seção "C". 69 Figura 4.9: Relação carga – comprimento (a) e Relação frequência natural – comprimento (b) da viga de Seção "C". 69 Figura 4.10: Perfil monosimétrico "L" e suas dimensões características. 70 Figura 4.11: Relação carga – frequência de vibração da Seção monosimetrica "L". 72 Figura 4.12: Relação carga – comprimento (a) e Relação freguência natural – comprimento (b) da viga de Seção monosimetrica "L". 73 Figura 4.13: Perfil assimétrico "L" e suas dimensões características. 73 Figura 5.1: Resposta no tempo e espectro de frequência para o sistema autônomo não amortecido. 79 Figura 5.2: Variação da freguência devido a não linearidade geométrica. 80 Figura 5.3: Perfil monosimétrico "C" e aplicação da força excitadora Q_v no centro de cisalhamento. 80 Figura 5.4: Diagramas de bifurcação considerando o sistema de 3GDL com frequência de excitação Ω_{ν} variando entre 92 e 112 rad/s, para um $Q_v = 1 \text{kN/m}.$ 82 Figura 5.5: Diagrama de bifurcação, resposta no tempo, plano fase e bacia de atração e espectro de frequência, para o sistema de 3GDL com $\xi = 0.32\%$. e Qy = 1kN/m. 83 Figura 5.6: Diagrama de bifurcação para a direção v_0 com $Q_v = 1$ kN/m e uma frequência de excitação Ω_{ν} variando entre 92 e 112 rad/s, para o 84 sistema com 1GDL. Figura 5.7: Diagramas de bifurcação para a direção v_0 com $\Omega_v = 90$, 100.08 e 104 rad/s, $\xi = 1,22\%$ e Qy=1 e 50 kN/m. 85 Figura 5.8: Diagrama de bifurcação para o modelo com 3 GDL e respostas no tempo, planos fase, bacia de tração e espectros de frequência para Ω_v = 100.08 rad/s, ξ = 0.32% e Q_v =1,035 kN/m. 87 Figura 5.9: Diagrama de bifurcação para a direção v_0 com Ω_v = 100.08 rad/s, $\xi = 0.32\%$ e magnitude da excitação Q_v variando entre 940 e 1060 N/m. 87

F bi ξ= F u

Figura 5.10: Perfil monosimétrico "C" e aplicação da forca excitadora.	88
Figura 5.11 : Diagramas de bifurcação variando a frequência Ω_z e a	
magnitude de excitação Q_z com ξ = 1.22% para a direção v_o , w_o e θ_o .	91
Figura 5.12: Fronteira de estabilidade no espaço de controle da carga.	
Excitação aplicada na direção Z com frequência, variando entre Ω_z = 15	5 e
300 rad/s. e <i>ξ</i> =1.22%.	92
Figura 5.13: Resposta no tempo do sistema, resposta na fase	
permanente, espaço fase e seção de Poincare para as direções v_o , w_o ,	$oldsymbol{ heta}_o$
com Ωz =100.0 rad/s e ξ =1.22% e uma magnitude de excitação Q_z =6	
kN/m.	93
Figura 5.14: Espectros de frequência na direção $v_o w_o e \theta_o$.	93
Figura 5.15 : Diagrama de bifurcação com as três seções analisadas.	94
Figura 5.16: Resposta no tempo, plano fase e seção de Poincaré para a	a
seção 1, com Ω_z =105 rad/s, Q_z = 20,053 kN/m e ξ =1.22%.	94
Figura 5.17: Resposta no tempo, plano fase e seção de Poincaré para a	a
seção 2, com Ω_z =105 rad/s, Q_z = 30 kN/m e ξ =1.22%.	95
Figura 5.18: Diagrama de bifurcação, resposta no tempo, plano fase e	
bacia de atração para o sistema, com Ω_z = 105 rad/s, Q_z = 34,5 kN/m e	$\xi =$
1.22% na direção <i>v</i> o.	96
Figura 5.19: Diagrama de bifurcação, resposta no tempo e plano fase	
para o sistema, com Ω_z = 105 rad/s, Q_z = 34,5 kN/m e ξ = 1.22% na	
direção w _o .	97
Figura 5.20: Diagrama de bifurcação, resposta no tempo e plano fase	
para o sistema, com Ω_z = 105 rad/s, Q_z = 34,5 kN/m e ξ = 1.22% na	
direção θ_o .	97
Figura 5.21: Detalhes do diagrama de bifurcações apresentado na Figu	ra
5.14 (y) para a direção v_o .	98
Figura 5.22: Diagrama de bifurcação com as duas seções.	99
Figura 5.23: Resposta no tempo, plano fase e seção de Poincaré para a	а
seção 1, com Ω_z =110 rad/s, Q_z = 21,45 kN/m e ξ =1.22%.	99
Figura 5.24: Diagrama de bifurcação, resposta no tempo, plano fase e	
bacia de atração para o sistema, com Ω_z =110 rad/s, Q_z = 21,5 kN/m e	
<i>ξ</i> =1.22%.	100
Figura 5.25: Diagramas de bifurcação variando a frequência de excitaçã	ăО
Ω_{z_i} para diferentes magnitudes de excitação Q_z nas direções v_o , $w_o e \theta_c$)
$\cos \xi = 1.22\%$.	102

Figura 5.26: Perfil monosimétrico "C" e aplicação da forca excitadora no 102 centro de gravidade. Figura 5.27: Diagramas de bifurcação variando a frequência Ω_z e a magnitude de excitação Q_z com $\xi = 1.22\%$ para a direção v_0 , $w_0 \in \theta_0$. 104 Figura 5.28: Resposta no tempo do sistema, resposta na fase permanente, espaço fase, seção de Poincaré e espectros de frequência para as componentes v_o , w_o , $\theta_o \operatorname{com} \Omega z = 100.0 \operatorname{rad/s} e \xi = 1.22\% e \operatorname{uma}$ magnitude de excitação $Q_z = 21,750$ kN/m. 106 Figura 5.29: Resposta no tempo, plano de fase e seção de Poincare para a direção v_0 , com Ω_z = 105 rad/s, Q_z = 20,024 kN/m e ξ =1.22%. 107 Figura 5.30: Resposta no tempo, plano de fase e seção de Poincare para a direção v_0 , com Ω_{z} =110 rad/s, Q_{z} = 21,503 kN/m e ξ =1.22%. 107 Figura 5.31: Fronteira de estabilidade no espaço de controle da carga. Excitação aplicada na direção Z com frequência variando entre Ω_z = 15 e 300 rad/s. e ξ = 1.22%. 108 Figura 5.32: influência da excentricidade na direção Y na fronteira de estabilidade. 109 Figura 5.33: Perfil monosimétrico "C" e aplicação da forca excitadora no 109 espaço. Figura 5.34: Diagrama de bifurcações, para a direção v_o com frequência variando entre 15 e 160 rad/s e $\xi = 1,22\%$. 111 Figura 5.35: Diagrama de bifurcações para a direção v_o , com amplitude Q_z = 20.kN e frequências variável. 112 Figura 5.36: Diagrama de bifurcações, para a direção v_o , com amplitude $Q_{z} = 7.5$ kN e frequências variável. 113 Figura 5.37: Seção v_0 versus w_0 da bacia de atração. 113 Figura 5.38: Solução estável não planar do sistema para Q_z = 7,5 kN e Ω_z = 50 rad/s.114 Figura 5.39: Diagrama de bifurcações, para a direção v_0 com $Q_z = 10$ kN. 114 Figura 5.40: Soluções estáveis identificadas quando Ω_z = 100.31 rad/s. 115 Figura 5.41: Seção da bacia de atração quando Ω_z = 100,318 rad/s. 115 Figura 5.42: Diagrama de bifurcações, para a direção v_0 com Q_z = 15 kN. 116

Figura 5.43: Soluções estáveis identificadas para $Q_z = 15$ kN. 117

Figura 5.44: Seção da bacia de atração para Ω_z = 100,234 rad/s e Q_z = 15
kN. 118
Figura 5.45: Diagrama de bifurcações, para a direção v_o com Q_z = 12,5
kN. 118
Figura 5.46: Seção da bacia de atração quando Ω_z = 95 rad/s e Q_z = 10
kN. 119
Figura 5.47: Detalhes do diagrama de bifurcações apresentado na Figura
5.41(a). 120
Figura 5.48: Detalhes do diagrama de bifurcações apresentado na Figura
5.30(n) 120
Figura 5.49: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 16,89$ kN. 121
Figura 5.50: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 17$ kN. 122
Figura 5.51: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 17,08$ kN. 123
Figura 5.52: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 17,225$ kN. 124
Figura 5.53: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 17,23$ kN. 124
Figura 5.54: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 17,235$ kN. 125
Figura 5.55: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $Q_z = 17,244$ kN. 126
Figura 5.56: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando Ω_z = 137,80 rad/s. 127
Figura 5.57: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $\Omega_z = 139,80$ rad/s. 128
Figura 5.58: Projeções da resposta no tempo, plano de fase e mapa de
Poincaré, considerando $\Omega_z = 142,03$ rad/s. 129

Lista de tabelas

Tabela 4.1: Propriedades geométricas da seção "l".	60
Tabela 4.2: Frequências naturais (rad/s) e modos de vibração da seção	С
"[".	61
Tabela 4.3: Cargas de modos de bifurcação da seção "I".	62
Tabela 4.4: Propriedades geométricas da Seção "T".	64
Tabela 4.5: Modos de vibração da seção "T".	65
Tabela 4.6: Modos de Flambagem da seção "T".	66
Tabela 4.7: Propriedades geométricas da Seção "C".	68
Tabela 4.8: Frequências naturais e modos de vibração da seção "C".	68
Tabela 4.9: Cargas e modos de bifurcação da seção "C".	69
Tabela 4.10: Propriedades geométricas da Seção monosimétrica "L".	70
Tabela 4.11: Propriedades geométricas principais da Seção	
monosimétrica "L".	71
Tabela 4.12: Frequências naturais e modos de vibração da seção	
monosimétrica "L".	72
Tabela 4.13: Cargas e modos de bifurcação da seção monosimétrica "l	L".
	72
Tabela 4.14: Propriedades geométricas da Seção assimétrica "L".	74
Tabela 4.15: Propriedades geométricas principais da seção assimétrica	а
"L".	74
Tabela 4.16: Modos de vibração da seção assimétrica "L".	75
Tabela 4.17: Modos de Flambagem da seção assimétrica L.	75

Lista de símbolos

X, Y, Z	-Eixos principais
L	-Comprimento do elemento.
St	-Perímetro da seção.
t	-Espessura da seção.
V , V_y , V_z	-Esforços cortantes.
Т	-Momento de torção
τ, τ1, τ2	-Tensão de cisalhamento.
A	-Área da seção transversal.
F, F_v	-Resultante da força externa.
G	-Centro de gravidade.
С	-Centro de cisalhamento.
"I","T","C","L"	-Seções do perfil.
0	-Ponto acima da linha média da seção.
M_o	-Momento com respeito ao ponto o.
M_s	-Momento estático.
Ι	-Momento de inércia.
s1, s2	-Pontos da coordenada curvilínea.
d	-Distância de C ao ponto o.
XY, XZ	-Planos paralelos.
M_c	-Momento no centro de cisalhamento.
r	-Raio vetor.
ds	-Diferencial de comprimento.
T_t	-Momento torsor devido à torção.
T_e	-Momento torsor devido ao empenamento.
B_{ω}	-Bi momento.
E	-Módulo de Young.
G	-Módulo de distorção.
v	-Coeficiente de Poisson.

h(s)	-Distância perpendicular desde o centro de
	cisalhamento até o contorno da seção.
r(s)	-Componente curvilíneo do centro de cisalhamento
	nas coordenadas de referência.
I_o	-Momento polar de inércia com relação ao centro de
	cisalhamento.
I_R	-Quarto momento de inércia com relação ao centro de
	cisalhamento.
I_t	-Constante de torção de maior ordem.
I_y	-Momento principal de inércia com relação ao eixo Y.
I_z	-Momento principal de inércia com relação ao eixo Z.
I_{ω}	-Constante de empenamento.
J	-Constante de torça-o de St Venant.
K_y	-Curvatura com relação ao eixo Y.
K_z	-Curvatura com relação ao eixo Z.
M_x	-Momento.
m_x	-Momento de torção distribuído.
$M_{ m y}$	-Momento de torção com relação ao eixo Y.
M_z	-Momento de torção com relação ao eixo Z.
M_R	-Tensão resultante de ordem superior.
M_{sv}	-Momento de torção de St. Venant.
Ν	-Carga axial.
q_{x}, q_{y}, q_{z}	-Componentes da carga distribuída nos eixos X, Y e
	Ζ.
R	-Distância de um ponto M ao centro de cisalhamento.
S	-Coordenada curvilínea.
L_a	-Função de Lagrange.
U	-Energia de deformação interna e total.
W	-Energia do trabalho das cargas externas.
Т	-Energia cinética.
и, v, w	-Componentes do deslocamento do centro de
	cisalhamento nos eixos X, Y e Z.
$u_M, v_{M,} w_M$	-Componentes do deslocamento do ponto M nos
	eixos X, Y e Z.

V _t	-Componente do deslocamento do ponto M na
	coordenada curvilínea no eixo Y.
W _t	-Componente do deslocamento do ponto M na
	coordenada curvilínea no eixo Z.
<i>x</i> , <i>y</i> , <i>z</i>	-Coordenadas principais do ponto M nos eixos X, Y e
	Ζ.
<i>Yc</i> , <i>Zc</i>	-Coordenadas principais do ponto de cisalhamento C nos eixos Y e Z.
α	-Ângulo entre o eixo Y e a tangente à coordenada
	curvilínea.
β_y, β_z	-Coeficientes de Wagner nos eixos Y e Z.
β_{ω}	-Coeficiente de Wagner.
\mathcal{E}_{xx}	-Deformação axial.
$\varepsilon_1, \varepsilon_2$	-Componentes da deformação axial.
\mathcal{E}_{xy}	-Deformação de cisalhamento no plano XY.
\mathcal{E}_{xy}	-Deformação de cisalhamento no plano XZ.
ω_s	-Coordenada setorial ou área setorial principal.
θ_x	-Ângulo de rotação no eixo X.
$v_o, w_o, heta_o$	-Amplitudes dos deslocamentos dependentes do
	tempo.
Р	-Carga axial compressiva.
e_z, e_y	-Excentricidade do carregamento Q_{z} .
P_{y}, P_{z}, P_{θ}	-Cargas de Flambagem em flexão e torção.
M_{oy}, M_{oz}	-Máximos momentos de flexão.
т	-Massa do elemento por unidade de comprimento.
[M]	-Matriz de massa.
$[K_e]$	-Matriz de rigidez linear.
$[K_G]$	-Matriz de rigidez geométrica.
{F}	-Vetor de forças externas.
λ	-Autovalores.
<i>b</i> , <i>h</i>	 Dimensões da seção transversal.
t_f, t_w	-Espessuras da seção transversal.
ω _o	-Frequência natural.
P_e	-Carga crítica de Euler.

\overline{v} , \overline{w} , $\overline{ heta}$	-Amplitudes modais.
ρ	-Densidade do material.
I _{max}	-Momento de inércia máximo.
I _{min}	-Momento de inercia mínimo.
γ	-Ângulo das coordenadas principais.
I_{yz}	-Produto de inércia.
Q_z, Q_y	-Forças laterais de excitação.
Ω_z, Ω_y	-Frequências das forças de excitação.
<i>Y0, Y2, Y4</i>	- Amplitudes dos deslocamentos v_{o} , w_{o} , θ_{o} .
<i>y1, y3, y5</i>	-Velocidades dos deslocamentos v_o , w_o , θ_o .
٤	-Amortecimento viscoso.
M_{ocr}	-Momento crítico estático.
δ	-Fator que representa o efeito de flexão.
Q _{zcr}	-Carregamento lateral crítico estático.