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Abstract

García Guzmán, Yuneisy Esthela; Caiado de Lamare, Rodrigo (Ad-
visor).Direction Finding Techniques Based on Compressive
Sensing and Multiple Candidates. Rio de Janeiro, 2018. 69p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Direction of arrival (DoA) estimation is a key area of sensor array
processing which is encountered in a broad range of important engineering
applications. This fact together with the development of the Compressed
Sensing (CS) area in the last years are the principal motivation of this the-
sis. In this dissertation, a formulation of the source localization problem
as a sparse signal representation problem is presented and several sparse
recovery algorithms are derived and investigated for solving the current
problem. The proposed algorithms are based on the incorporation of the
prior information about the sparse signal in the estimation process. In the
first part, we focus on the development of two Bayesian greedy algorithms
which are principally based on the iterative hard thresholding (IHT) algo-
rithm. Due to the inferior performance of the conventional DoA estimation
algorithm in scenarios with correlated sources, we pay special attention to
the performance of the proposed algorithms under this condition. In the
second part, the optimization problem using a `1 penalty is introduced and
a Bayesian algorithm for solving the basis pursuit denoising problem is pre-
sented.Simulation results shows that Bayesian estimators which take into
account the prior knowledge of the signal distribution outperform and im-
prove substantially the performance of the non-Bayesian estimators.

Keywords
Sensor array signal processing; Compressed Sensing (CS); Direction of

Arrival estimation (DoA); sparse recovery; Iterative Hard Thresholding (IHT)
algorithm.
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Resumo

García Guzmán, Yuneisy Esthela; Caiado de Lamare, Rodrigo.
Técnicas de Estimação de Direção Baseadas em Sensoria-
mento Compressivo e Múltiplos Candidatos. Rio de Janeiro,
2018. 69p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A estimação de direção de chegada (DoA) é uma importante área de
processamento de arranjos de sensores que é encontrada em uma ampla
gama de aplicações de engenharia. Este fato, juntamente com o desenvolvi-
mento da área de Compressed Sensing (CS) nos últimos anos, são a principal
motivação desta dissertação. Nesta dissertação, é apresentada uma formula-
ção do problema de estimação de direção de chegada como um problema de
representação esparsa da sinal e vários algoritmos de recuperação esparsa
são derivados e investigados para resolver o problema atual. Os algorit-
mos propostos são baseados na incorporação da informação prévia sobre
o sinal esparso no processo de estimativa. Na primeira parte, nos concen-
tramos no desenvolvimento de dois algoritmos Bayesianos , que se baseiam
principalmente no algoritmo iterative hard thresholding (IHT). Devido ao
desempenho inferior dos algoritmos convencionais de estimação de chegada
em cenários com fontes correlacionadas, nós prestamos atenção especial ao
desempenho dos algoritmos propostos nesta condição. Na segunda parte, o
problema de otimização baseados na minimização da norma `1 é apresen-
tado e um algoritmo bayesiano é proposto para resolver o problema chamado
basis pursuit denoising (BPDN). Os resultados da simulação mostram que
os estimadores Bayesianos superam os estimadores não Bayesianos e que
a incorporação do conhecimento prévio da distribuição do sinal melhorou
substancialmente o desempenho dos algoritmos.

Palavras-chave
Processamento de Arranjos de Sinais; Compressed Sensing (CS); Es-

timação de Direção de Chegada (DoA); recuperação esparsa; Iterative Hard
Thresholding (IHT) algorithm.
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translated measurement matrix null space. (c) Visualization of the
`1 minimization that finds the sparse point-of-contact ŝ with high
probability thanks to the pointiness of the `1 ball [27]. 29

2.7 Formulation of DoA estimation as a sparse signal recovery problem. 31
2.8 Block diagram of the steps of the `1-SVD [1]. 38

3.1 RMSE vs. SNR for M=13, N=2 48
3.2 RMSE vs. SNR for M=15, N=2 48
3.3 RMSE vs. SNR for M=8, N=5 49
3.4 RMSE vs. SNR for M=13, N=2 for 3 sources 50
3.5 RMSE vs. SNR for M=25, N=2 50
3.6 RMSE vs. M for N = 2 51
3.7 RMSE vs. SNR for correlated sources with ρ = 0.8 52

4.1 RMSE vs. SNR for M = 13 and N = 2 60
4.2 RMSE vs. SNR for M = 8 and N = 2 60
4.3 RMSE vs. SNR for M = 10 and N = 10 62
4.4 RMSE vs. SNR for M = 10 and N = 2 62

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



List of tables

2.1 Computational Complexity [12] 39

3.1 Computational Complexity of the proposed algorithms 46

4.1 Running Times in seconds 61

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



List of Abreviations

BHT – Bayesian Hard Thresholding
BPDN – Basis Pursuit Denoising
B-BPDN–Bayesian Basis Pursuit Denoising
CMV – Constrained Minimum Variance
CS – Compressed Sensing
CRB – Cramer- Rao Bound
DoA – Direction of Arrival
ESPRIT – Estimation of Signal Parameters via Rotational Invariance Techniques
EVD- Eigen Value Decomposition
FBSS – Forward-Backward Spatial Smoothing
FPC – Fixed Point Continuation
FISTA – Fast Iterative Soft-thresholding
HTP – Hard Thresholding Pursuit
IHT – Iterative Hard Thresholding
LASSO-Least Absolute Shrinkage and Selection Operator
MAP – Maximum a posteriori estimator
MCN – Matrix Variate Complex Normal
ML – Maximum Likelihood
MMV – Multiple Measurement Vector
MUSIC – Multiple Signal Classification
MVDR – Minimum Variance Distortionless Response
NESTA – Nesterov’s Smoothing Techniques
NP-hard – Non-deterministic Polynomial time
OMP – Orthogonal Matching Pursuit
RIP – Restricted Isometry Property
RMC-IHT – Randomized Multiple Candidate Iterative Hard Thresholding
RMSE – Root Mean Square Error
SMV – Single Measurement Vector
SNR – Signal-to-noise ratio
SPGL1 – Spectral Projected Gradient
SOC – Second Order Cone programming
SS – Spatial Smoothing
SVD – Singular Value Decomposition

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



The only limit to the height of your achieve-
ments is the reach of your dreams and your
willingness to work hard for them

Michelle Obama

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



1
Introduction

Sensor array signal processing is an active area of research in the broad
field of signal processing and focuses on the problem of estimating signal pa-
rameters from data collected by an array of sensors. It is a key element in
many applications such as sonar, radar, exploration seismology, radio astron-
omy, seismology, machine condition monitoring and wireless communications.

One of the most relevant topics within array signal processing is direction
of arrival estimation (DoA) or direction finding, which has as objective to
determine the direction of a given signal that propagates over space and
impinges on an antenna array. To this end, the spatial separation of multiple
sensor elements is exploited to obtain the location of the energy-radiating
source.

Another area that has also recently gained significant attraction in the
signal processing community is Compressed Sensing (CS) which goes against
the common knowledge in data acquisition and allows the representation of
the compressible signals at a rate significantly below to Nyquist rate.

This fact has motivated the development of several approaches which
casting the source localization problem as a sparse representation problem
based on the principles of CS. In this thesis we analyze the problem of direction
of arrival estimation from this perspective and proposed some algorithms for
solving the sparse recovery problem.

1.1
Motivation

Many practical applications require that the estimates of the locations
be not only accurate under ideal conditions, but also robust to factors such
as measurement noise, limitations in the amount of data, correlation of the
sources, and modeling errors. It is also desired that the spectra have narrow
peaks, low sidelobes, and the ability to achieve superresolution [1].

Conventional DoA estimation techniques show lack of resolution under
some conditions as short data records, low signal-to-noise (SNR) scenarios,
correlated sources and others. Motivated by this fact, in the last years a new
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Chapter 1. Introduction 14

approach to DoA estimation based on sparse signal representation has been
introduced which achieves superresolution by exploiting sparsity.

As result of the development of this new framework based on sparse
representation, the development of signal reconstruction algorithms has also
evolved rapidly in the last years. Several research works have been concentrated
on the design of recovery algorithms that obeys some important properties such
as high speed, low storage requirements, ease of implementation, flexibility, and
good recovery performance.

1.2
Dissertation Outline

This master thesis is organized as follows.
Chapter 2
In this chapter we formulate the problem of source localization using

an array of sensors. We describe several existing source localization methods.
We explain some of the limitations of existing techniques thus motivating the
need for the source localization framework. We also introduce the basic ideas
about the CS theory and present an overview about the most effective recovery
algorithms described in the literature.

Chapter3
In this chapter we propose two Bayesian greedy algorithms called

randomized multiple candidate iterative hard thresholding (RMC-IHT) and
Bayesian iterative hard thresholding (BHT). Different to the deterministic al-
gorithms, the proposed techniques take into account the prior knowledge about
the sparse signal in the estimation process. The performance of the developed
algorithms is numerically evaluated and compared with some widely-used al-
gorithm.

Chapter4
A novel Bayesian algorithm for solving the sparse recovery problem

based on `1-regularization is presented in this chapter. Bayesian basis pursuit
denoising (B-BPDN) uses the prior knowledge of the sparse signal for reducing
the complexity of the basis pursuit denoising problem. We numerically evaluate
signal recovery performance of the B-BPDN.

Chapter 5
In this chapter, conclusions of this work are presented and future direc-

tions for this research topic are discussed.
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PUC-Rio - Certificação Digital Nº 1613336/CA



Chapter 1. Introduction 15

1.3
Contributions

The main contributions of this thesis are:

– A brief review about the signal model for DoA estimation and its
formulation as a sparse representation problem based on CS are presented
in Chapter 2.

– Several existing theoretical results regarding the measurement system
and the recovery algorithms in compressed sensing are reviewed in
Chapter 2.

– A general Bayesian framework for sparse recovery algorithms, that
exploits the a priori knowledge of the sparse signal have been proposed.
As consequence two Bayesian algorithms applied to the direction finding
problem, RMC-IHT and BHT, are developed. The derivation of the
maximum a posteriori (MAP) estimator of the sparse signal and the
Bayesian hard thresholding operator is explained in details. A version
of the RMC-IHT algorithm for the case of correlated sources is also
presented. Simulations results show the effectiveness of the proposed
techniques fundamentally in scenarios with low values of SNR and a
limited number of snapshots.

– A Bayesian approach to the basis pursuit denoising problem is presented
in Chapter 4. The proposed B-BPDN algorithm uses the prior knowledge
of the sparse signal for reducing the space of search in the `1 minimiza-
tion problem. Some analysis of the computational complexity is also pre-
sented. Simulation results show that the proposed algorithm achieves a
better performance than the standard recovery reconstruction algorithms
and also reduce the computational complexity.

– The benefits of using a sparse regularization framework for directional of
arrival estimation are illustrated. These include robustness to SNR, to
limited number of samples and to correlated sources.

1.4
List of Publications

Some of the results in this dissertation have been published.
Conference Paper:

– Y. García, R. C. de Lamare and M. Haardt “Randomized Multiple
Candidate Iterative Hard Thresholding algorithm for Direction of Arrival
Estimation”, 22nd International ITG Workshop on Smart Antennas
(WSA 2018), Bochum, Germany, 2018.
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2
Direction of Arrival (DoA) Estimation and Compressed Sens-
ing (CS)

The problem of estimating the wavenumber or angle of arrival of a
planewave (or multiple plane waves) is commonly referred to as the direction
finding (DF), source localization or direction of arrival (DOA) estimation
problem [2]. It is a topic of broad interest in a variety of fields including wireless
communications, radar, sonar and seismic systems, electronic surveillance,
medical imaging and treatment, seismology and radio astronomy.

With the field of applications involving DOA estimation constantly
expanding, numerous direction finding techniques have been devised over the
past few decades. The most well-known parameter estimation strategies can be
classified into three main categories, namely conventional, subspace-based, and
maximum likelihood (ML) methods. These techniques successively steer the
main beam in all possible look directions and measure the output power, which
is recorded in the form of a pseudo spectrum over the angle range. The largest
peaks in the pseudo spectrum are associated with the DOA estimates [3].

The most prominent approach within the conventional algorithms is
Capon’s method [4] based on the constrained minimum variance (CMV)
criterion. It minimizes the power induced by interfering signals and noise while
keeping the gain towards the look direction fixed.

The class of subspace-based methods exploits the spectral decomposition
of the covariance matrix for achieving high resolution. Among the most
important techniques are the multiple signal classification (MUSIC) [5], its
extension Root-MUSIC [6], the estimation of signal parameters via rotational
invariance techniques (ESPRIT) [7] and others [8–11].

ML-type methods are based on a parametric approach. They effectively
exploit the underlying data model, resulting in sufficiently high accuracy that
is superior to that of conventional and subspace-based methods. However, the
efficiency is at the expense of the computational intensity as a multidimensional
search is required [3].

In the last years a new method for acquisition of sparse signals and
reconstruction from compressed measurements has been introduced, namely
Compressed Sensing (CS). The discovery and further development of CS has
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motivated the introduction of a new approach to DoA in [1] by formulating the
source localization problem as a sparse representation problem. Hence, several
sparse recovery algorithms have been developed in the literature for solving this
problem such as iterative hard thresholding (IHT) [13,14], orthogonal matching
pursuit (OMP) [15], basis pursuit denoising (BPDN) [16] and others.

2.1
Notation

The following notation will be used in this thesis. The complex-conjugate
transpose will be denoted by (.)H , the transpose by (.)T and the pseudo-inverse
matrix by (.)†. The operator supp(.) is defined as the set index of the non-zero
elements of (.).

The `p norms are define for p ∈ [1,∞] as

‖x‖p =

(∑n
i−1 |xi|p)

1
p , p ∈ [0,∞),

maxi=1,2,...n |xi|, p =∞.
(2-1)

Figure 2.1: Unit spheres in R
2 for the `p norms with p = 1, 2,∞, and the

quasinorm with p = 1
2 [17].

The Figure 2.1 shows the unit sphere induced by each of these norms in
R

2.
The `0 norm is denoted as ‖x‖0 := |supp(x)|, where supp(x) =

{i : xi 6= 0} denotes the support of x and |supp(x)|, the cardinality of supp(x)
[17].

For the multiple measurement vectors (MMV) model, the row support
of the matrix X is defined to be equal to the index set of the non-zero rows of
X. This is equal to the union of the supports of all the columns of X, i.e.,

rsupp(X) =
q⋃
j=1

supp(xj), (2-2)

where xij denotes the element in the i-th row and j-th column of X [18].
The `0 norm of the rowsparse X is defined to be equal to the cardinality

of its row support:
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‖X‖0 = |rsupp(X)|. (2-3)
The Frobenius norm is defined as [19]:

‖X‖F =
√

Tr(XHX) = ‖vec(X)‖ ,

where vec(X) is a vector formed by stacking the columns of X on top of each
other and the mixed `p,q norm of S with rows si, i = 1, 2, . . . , P , is defined
as [12]:

‖S‖p,0 =
∥∥∥∥[∥∥∥s1

∥∥∥
p
,
∥∥∥s2
∥∥∥
p
, . . . ,

∥∥∥sP ∥∥∥
p

]∥∥∥∥
q
. (2-4)

The spark(A) of a given matrix A is defined as the smallest number of
columns of A that are linearly dependent [17]. The HK(.) operator sets all but
the K largest in magnitude elements of (.) to 0. Moreover, for any matrix X,
X(i) denotes the i-th row of X and XI represents the submatrix of X obtained
by selecting the columns of X indexed by the set I. Columns vectors and
matrices are denoted by bold lowercase and uppercase letters, respectively.

2.2
Signal Model

Before we describe the most important methods for direction finding, it
is necessary to present a mathematical model for the problem.

Let us assume that K uncorrelated narrowband zero mean signals
uk(t), k = 1, 2, . . . , K from far-field sources impinge on a uniform linear array
(ULA) of M (M > K) sensor elements with inter-element spacing of half a
wavelength (d = λ/2) from directions θk ∈ [−90◦, 90◦) corresponding to the
spatial frequency µk = −π sin θk. At time instant t, t = 1, 2, . . . , N , where N is
the total number of available snapshots, the received signal at the mth sensor
can be expressed as:

x(t) = A(θ)u(t) + n(t), (2-5)
where u(t) = [u1(t), . . . , uK(t)]T ∈ C

K represents the zero-mean source data
vector and the entries of noise vector n(t) ∈ CM are assumed to be i.i.d, zero
mean complex Gaussian distribution with variance σ2

n . The Vandermonde
matrix A(θ) = [a(θ1), . . . , a(θK)] ∈ C

M×K , known as the array manifold,
contains the array steering vectors a(θk) corresponding to the kth source, which
can be expressed as:

a(θk) = [1, ej2π dλ sin θk , . . . , ej2π(M−1) d
λ

sin θk ]T . (2-6)
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Equation (2-5) can be expressed for the case of multiple snapshots or
multiple measurement vectors (MMV) as,

X = AU + N. (2-7)

2.3
The Cramer-Rao Bound (CRB)

In estimation theory, the Cramer-Rao Bound (CRB) [2] provides a bound
on the covariance matrix of any unbiased estimate of θ. We denote the
covariance matrix of the estimation errors by C(θ). Then,

C(θ) ∆= E[(θ̂ − θ)(θ̂ − θ)T ]. (2-8)
The multiple-parameter CRB states that

C(θ) ≥ CCR(θ) ∆= J−1, (2-9)
for any unbiased estimate of θ. The matrix inequality means that C(θ) −
CCR(θ) is a non-negative definite matrix. The J matrix is commonly referred
as the Fisher’s information matrix (or FIM) [2].

The comparison with the CRB has become an important ingredient of
the analysis of any source localization method for array processing. When an
estimator meets the CRB, it is called efficient. Many of the existing estimators
of source location are biased, but they have the property of asymptotic
unbiasedness, as either the number of snapshots or the number of sensors
or both approach infinity [20]. For a review of the derivation of the CRB for
source localization refer to [21] and Appendix A.

2.4
Classical and Parametric methods for direction finding

In this section, we describe several classical methods for direction finding,
which include Capon’s method and the maximum likelihood (ML) method.

2.4.1
Optimal beamforming: Capon’s method (MVDR)

The Minimum Variance Distortionless Response Estimator (MVDR) [4],
also known as Capon, is a spectral estimation method which uses the MVDR
beamforming solution to obtain the angles of arrival. It attempts to minimize
the variance due to noise, while keeping the gain in the direction of the steering
vector equal to unity [20]:
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wCAP (θ) = arg min
w

E(wHxxHw) s.t. Re[wHa(θ)] = 1. (2-10)

The solution of this optimization problem can be shown to have the
following form:

wCAP (θ) = R−1
xx a(θ)

a(θ)HR−1
xx a(θ) , (2-11)

where Rxx = E[x(t)x(t)H ] is the covariance matrix of the array output x(t).
Then the Capon method applies the beamformer wCAP (θ) to the received

data and computes the mean power of the array by:

PCAP (θ) = E[||wCAP (θ)Hx(t)||22]

= wCAP (θ)HRxxwCAP (θ) = 1
a(θ)HR−1

xx a(θ)
(2-12)

and after that it finds the peaks of PCAP (θ) which ones correspond to the
DoAs.

Although the implementation of this technique is simple, it suffers from
a lack of angular resolution and requires a large number of sensors to achieve
a higher resolution.

2.4.2
Maximum Likelihood techniques (ML)

Maximum Likelihood (ML) methods belong to the class of parametric
methods. In contrast to the method described above, the spectrum is not
computed, but instead parameters of the model are estimated. A variety of
methods resides under the ML header. One notable classification is in the
assumed form of the signal. When signals are modeled as deterministic, the
method is called Deterministic ML (DML), when the signals are modeled as
Gaussian, the method is called Stochastic ML (SML) [20]. Noise is usually
modeled as stationary Gaussian. For deterministic maximum likelihood, the
objective is to find θ,u(t) and σ2, to maximize the likelihood function:

LDML(θ,u(t), σ2) = ΠT
t=1(πσ2)−Mexp(−‖x(t)−A(θ)u(t)‖2

2 /σ
2), (2-13)

where θ is the vector of sources localizations. The log-likelihood is [20]:

lDML(θ,u(t), σ2) = −2M log σ + 1
σ2T

T∑
t=1

(−‖x(t)−A(θ)u(t)‖2
2), (2-14)
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Fortunately, it is not necessary to optimize over all the parameters, θ,
u(t) and σ2 simultaneously, since once θ is known, we can use A(θ) to get
explicit values for the other parameters:

σ̂2 = 1
M

tr
{

Π⊥A(θ)Rxx

}
and û(t) = A(θ)†x(t), (2-15)

where Π⊥A(θ) is the projection matrix onto the orthogonal complement of the
range space of A(θ).

The remaining unknown, the locations of the sources, can be found by
minimizing the following cost function [20]:

θ̂DML = arg min
θ

T∑
t=1

∥∥∥Π⊥A(θ)x(t)
∥∥∥2

2
= arg min

θ
tr
{

Π⊥A(θ)Rxx

}
(2-16)

The computational complexity of ML is considerably higher than the
others DoA estimation methods. The benefits of ML family of methods is the
ability to resolve coherent signals, ability to handle single snapshot scenarios,
and better statistical properties. A major problem with the ML-family of
methods is the need for a very accurate starting point for the optimization
procedure; otherwise the solution may converge to a local extremum [20].

2.5
Subspace methods

In this section, we describe several subspaces-based methods for direction
finding, which include multiple signal classification (MUSIC) and estimation
of signal parameters via rotational invariance techniques (ESPRIT).

2.5.1
Multiple Signal Classification (MUSIC)

The MUSIC method [5,21] is the most prominent member of the family
of eigen-expansion based direction finding techniques. The underlying idea is
to separate the eigenspace of the covariance matrix of sensor outputs into the
signal and noise components using the knowledge about the covariance matrix
of the noise [20].

MUSIC makes the assumption that the noise in each channel is uncor-
related making the noise correlation matrix diagonal and the sensor output
correlation matrix admits the following decomposition:
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Rxx = A(θ)RuuA(θ)H = UΛUH

= UsΛsUH
s + UnΛnUH

n

= UsΛsUH
s + σ2UnUH

n

(2-17)

where U ∈ C
M×M is a unitary matrix containing the eigenvector of the

covariance matrix Rxx ∈ C
M×M , and Λ ∈ C

M×M is the diagonal matrix
containing the eigenvalues of Rxx.

Us ∈ C
M×K , Un ∈ C

M×(M−K), Λs ∈ C
K×K , Λn = σ2IM−K ∈

C
(M−K)×(M−K) are the partitions of the eigenspectrum into signal plus

noise and signal subspaces. Provided that Ruu ∈ C
K×K is nonsingular,

A(θ)RuuA(θ)H has rank K. The number of sources K has to be strictly less
than the number of sensors M , for the method to work. Hence, Rxx has K
eigenvalues which are due to the combined signal plus noise subspace, and
M −K eigenvalues due to the noise subspace alone. Assuming that the noise
has a flat spectrum of σ2, K eigenvalues corresponding to the signal and noise
subspaces are larger than the remaining M −K noise eigenvalues, which are
equal to σ2. This information can be used to separate the two eigensubspaces.
Due to the orthogonality of eigensubspaces corresponding to different eigen-
values for Hermitian matrices, the noise subspace is orthogonal to the steering
vectors corresponding to the direction of propagation, thus UH

n a(θ) = 0 for
all directions from which the signals are impinging [20]. The MUSIC spectrum
is obtained by putting the squared norm of this term into the denominator,
which leads to very sharp estimates of the positions of the sources:

PMUSIC(θ) = 1
a(θ)HUnUH

n a(θ) . (2-18)

In the noiseless case the peaks of the spectrum approach infinity.

2.5.2
Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT)

Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) exploits an underlying rotational invariance among signal subspaces
induced by an array of sensors with a translational invariance structure [7].

To describe mathematically the effect of the translational invariance of
the sensor array, ESPRIT describes conveniently the array as being comprised
of two subarrays (called doublets), identical in every respect although phys-
ically displaced from each other by a know displacement of magnitud 4 [7].
Hence, the received data vector can be written as follows:
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x(t) =
 A1

A2

u(t) +
 n1(t)

n2(t)

 =
 A1

A1Φ

u(t) +
 n1(t)

n2(t)

 , (2-19)

where A1 and A2 are the steering matrix of the first and second subarrays
respectively, and Φ = diag {φk}Kk=1 ∈ CK×K is a diagonal matrix of the phase
delays between the sensor doublets for the K wavefronts and its diagonal
elements, the phase factors φk, are given by

φk = e−jω04 sin(θk)/c 1 ≤ k ≤ K, (2-20)
where c is the signal propagation velocity and ω0 is the common center
frequency [22]. The matrices A1 and A2 can be expressed for the following
relation:

A1 = J1A and A2 = J2A,

where J1 = [1M−1,0(M−1)×1] ∈ {0, 1}(M−1)×(M) and J2 = [0(M−1)×1,1M−1] ∈
{0, 1}(M−1)×(M) are selection matrices with the identity matrix 1M−1 and the
zero vector 0(M−1)×1. Then the invariance equation is given by

J1UsΦ = J2Us. (2-21)
Solving the equation in the Least Squares (LS) sense and after computing the
eigenvalues of Φ, the estimated DoAs of the K sources can be obtained as [12]

θ̂k = − arcsin
(

arg(φk)
π

)
. (2-22)

2.5.3
Limitations of current methods

ESPRIT, MUSIC and Capon’s methods present some limitations over
different conditions; when the sources are close and the SNR is low, they lose
resolution and eventually are unable to separate the sources.

Figure 2.2 depicts what happens in a scenario of lower SNR and when the
sources are close together. In plot (a) SNR is 10 dB, and separation between
the sources is 10◦, so both MUSIC and Capon’s methods are able to resolve
the two sources well. However, plot (b) shows that when SNR is decreased to
0 dB, and source separation is decreased to 5◦, neither of the two methods can
resolve the two sources, the peaks are merged for both.

Some additional limitations of these two methods include inferior per-
formance for correlated and coherent sources, and for scenarios with limited
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(a)

(b)

Figure 2.2: Limitations of MUSIC and Capon’s methods (a) SNR=10 dB,
separation between the sources is 10◦, (b) SNR=0 dB, separation between the
sources is 5◦.
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number of snapshots. These limitations are the principal reason why several re-
search efforts in the last years have concentrated on improving the performance
of existing methods.

2.5.4
Techniques for dealing with correlated source signals

As we mentioned before one of the main problems of DoA estimation is to
determine the correct DoA in the case when we have a scenario with correlated
or coherent sources because the source covariance matrix Ruu = E[u(t)u(t)H ]
becomes rank deficient and non-diagonal, so that some of its eigenvalues are
zero. As a result, the orthogonality of the noise and signal subspaces does
not hold . This means that part of the signal subspace is indistinguishable
from the noise subspace. There are some techniques with the objective of
overcoming this problem. Among the most effective techniques are spatial
smoothing (SS) and forward-backward spatial smoothing (FBSS) described
in [23, 24] and [25, 26], respectively, which are based on the preprocessing
scheme that partitions the total array of sensors into subarrays. We will explain
in the next sections the application of these techniques in detail.

2.5.4.1
Spatial Smoothing technique

Spatial Smoothing [26] is a preprocessing scheme that is applied to
circumvent the problems encountered in DoA estimation of fully correlated
signals [24]. The basic idea is to form covariance matrices from subsets of the
array, which is equivalent to partitioning the original covariance matrix. A
geometrical interpretation is shown in Figure 2.3.

ULA sensors

...

Subarray 1

...

Subarray 2

...

Subarray L

.

.

.

.

.

.

.

Figure 2.3: Spatial Smoothing subarray formation.

If there are L subarrays, each subarray is of size Msub = M − L+ 1 and
the submatrix for the lth subarray is given by:

Rl = JlRxxJTl (2-23)

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



Chapter 2. Direction of Arrival (DoA) Estimation and Compressed Sensing
(CS) 26

where the Jl ∈ CMsub×M matrix is defined by:

Jl = [0Msub×(l−1) IMsub
0Msub×(L−l)] 1 ≤ l ≤ L (2-24)

Then the partitioned matrices are used to form a smoothed matrix
RSS ∈ CMsub×Msub , which is calculated as follows:

RSS = 1
L

L∑
l=1

JlRxxJTl (2-25)

For this technique in order to solve K coherent sources, an array that
contains at least 2K elements is required [23].

2.5.4.2
Forward-Backward Spatial Smoothing (FBSS) technique

Forward-Backward Spatial Smoothing (FBSS) is an additional technique
that can be used to improve performance in the case of scenario with correlated
sources. It applies the spatial smoothing step in both directions and form the
resulting matrix RFBSS using the forward and backward covariance matrices
as follows:

RFB = 1
2(RF + RB) = 1

2(RF + ΠR∗FΠ) = 1
2(RSS + ΠR∗SSΠ), (2-26)

where Π is the exchange matrix with ones on its antidiagonal and zeros
elsewhere and R∗SS denotes the complex conjugation [23].

A geometrical interpretation of this technique is illustrated in Figure 2.4.

ULA sensors

Forward

Backward

Figure 2.4: Forward-Backward scheme.
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2.6
Direction of Arrival (DoA) estimation based on Compressed Sensing (CS)

In this section we introduce the concept of CS and we explain how CS
allows one to transform direction finding or source localization problem into a
problem of sparse signal representation.

2.6.1
Compressive Sensing (CS) theory

Compressive sensing (CS) is an exciting, rapidly growing, field that has
attracted considerable attention in signal processing, statistics, and computer
science, as well as the broader scientific community [17].

CS is a method to capture and represent compressible signals at a
rate significantly below the Nyquist rate. This method employs non-adaptive
linear projections that preserve the structure of the signal; the signal is then
reconstructed from these projections using an optimization procedure [27].

Suppose that x ∈ CN is a signal vector of size N×1, which can be written
as:

x =
N∑
i−1

siψi or x = Ψs, (2-27)

where Ψ is theN×N sparsity basis matrix and s anN×1 vector withK << N

non-zero (and large enough) entries [28]. Then, the signal x is K sparse due
to the fact that it is a linear combination of only K basis vectors; that is,
only K of the si coefficients in equation (2-27) are nonzero and (N −K) are
zero [27]. The CS theory states that x can be recovered usingM = KO(logN)
non-adaptive linear projection measurements onto an M ×N basis matrix Φ
that is incoherent with Ψ [28]. The measurement vector y can be written as

y = Φx = ΦΨs = Θs. (2-28)

s

M Nx

M 1x

F

F Y

Yy y Q

M Nx
xx

s

K-sparse

Figure 2.5: The vector of coefficients s is sparse with K = 4 and there are four
columns of Θ that corresponds to the nonzero si coefficients; the measurement
vector y is a linear combination of these columns [27].
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The matrix Φ has to be a stable measurement matrix such that the
salient information of any K-sparse or compressible signal is not damaged by
the dimensionality reduction from x ∈ R

N to y ∈ R
M(M < N). A necessary

and sufficient condition for this is that, for any vector v sharing the same K
non-zeros entries as s and for some δ > 0, the matrix Θ have to satisfy the
restricted isometry property (RIP) [27] given by

(1− δ) ≤ ‖ Θv ‖2

‖ v ‖2
≤ (1 + δ). (2-29)

A related condition referred to the incoherence, requires that the rows
{φj} of Φ cannot sparsely represent the columns {ψi} of Ψ. However, both the
RIP and incoherence can be achieved with high probability simply by selecting
Φ as a random matrix [27], e.g., Gaussian distribution.

2.6.2
Sparse recovery algorithms

There are a variety of algorithmic approaches to the problem of signal
recovery from CS measurements. These algorithms have been used in appli-
cations such as sparse approximation, statistics, geophysics, and theoretical
computer science that were developed to exploit sparsity in other contexts and
can be brought to bear on the CS recovery problem [17].

The sparse recovery algorithms must take the M measurements in the
vector y, the random measurement matrix Φ, the basis Ψ and reconstruct the
length-N signal x or, equivalently, its sparse coefficient vector s [27].

There are many s̃ that satisfy Θs̃ = y. This is because Θ(s + r) = y for
any vector r in the null space N (Θ) of Θ. Therefore, the signal reconstruction
algorithm aims to find the signal´s sparse coefficient vector in the (N −M)
translated null space H = N (Θ) + s [27].

The classical approach to this problem is to find the vector using the
smallest `2 norm by solving [27]:

ŝ = min
s̃
‖s̃‖2 s.t y = Θs̃. (2-30)

This optimization have the convenient closed-form solution ŝ =
ΘT (ΘΘT )−1y. Unfortunately, `2 minimization will almost never find the K-
sparse solution [27].

Since the `2 norm does not guarantee sparsity, it is replaced for the `0

norm and the modified optimization is given by

min
s̃
‖s̃‖0 s.t y = Θs̃. (2-31)

In this case the K-sparse signal can be recovery with high probability
using only M = K + 1 i.i.d Gaussian measurements. Unfortunately, solving
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(2-31) is both numerically unstable and Non-deterministic Polynomial (NP)
hard problem, requiring an exhaustive enumeration of all

(
P
K

)
possible locations

of the non-zero entries in s [27], making it computationally intractable. Then
the `0-norm is frequently substituted by the `1-norm, which can exactly
recovery K-sparse signal and closely approximate compressible signals with
high probability using M = cK log(P/K) [27], as follows:

ŝ = min
s̃
‖s̃‖1 s.t y = Θs̃. (2-32)

The above minimization problem is also know as basis pursuit (BP). Al-
though the `1-norm is weaker than `0-norm in ensuring sparsity, `1-regularized
optimization is a convex problem and admits efficient solution via linear pro-
gramming techniques.

Figure 2.6 shows the geometry representation of the compressed sensing
problem in R3. (In practice N,M,K >> 3.)

(a) (b) (c)

Figure 2.6: (a) The subspaces containing two sparse vectors in R3 lie close to
the coordinate axes. (b) Visualization of the `2 minimization that finds the non-
sparse point-of-contact ŝ between the `2 ball and the translated measurement
matrix null space. (c) Visualization of the `1 minimization that finds the sparse
point-of-contact ŝ with high probability thanks to the pointiness of the `1
ball [27].

In many applications, it is desirable to trade off exact congruence of
Θs and y in exchange for a sparser s. In these cases, a more appropriate
formulation is basis pursuit denoising (BPDN) [29], this involves solving the
following problem:

min
s̃

1
2 ‖y−Θs̃‖2

2 + λ ‖s̃‖1 (2-33)
BPDN, closely related to least absolute shrinkage and selection operator

(LASSO) regression is simply least-squares minimization with an `1-regularized
to penalize complex solutions. The regularization parameter establishes the
cost of complexity relative to the least-squares error 1

2 ‖y−Θs̃‖2
2 [29].
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However, CS is often synonymous with `1-based optimization [17] there
are other approaches to the sparse recovery problem such as the Greedy
algorithms. The concept of "greedy" implies strategies that, at each step,
make a “hard” decision usually based upon some locally optimal optimization
criterion [17].

2.7
Signal Model for direction finding using CS approach

DoA estimation using CS consists of formulating the source localization
problem as a sparse representation problem through the introduction of an
overcomplete representation matrix A in terms of all possible angles of interest
[1].

Let θ = [θ1, . . . , θn], n = 1, 2, . . . , P , be a sampling grid of all source
locations of interest where P is equal to the number of potential sources
which must be much greater than the number of sources K or even the
number of sensors M , then the signal field can be represented by a vector
s(t) = [s1(t), . . . , sn(t)]T ∈ CP whose nth element is equal to uk(t) if the kth
source comes from direction θn and zero otherwise [1], as described by

sn(t) =

uk(t) if θn = θk,

0 otherwise.
(2-34)

The measurement model for one snapshot or a single measurement vector
(SMV) x(t) = [x1(t), . . . , xM(t)]T ∈ CM at the time t can be written as:

x(t) = As(t) + n(t), (2-35)
where the matrix A = [a(θ1), a(θ2), . . . , a(θP )] ∈ CM×P contains the steering
vectors corresponding to each potential source localization as its columns.

Note that the matrices A(θ) in equation (2-5) and A in (2-35) have
different dimensions. The first one correspond to the steering matrix and the
second is the measurement matrix using in the sparse representation.
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Figure 2.7: Formulation of DoA estimation as a sparse signal recovery problem.

This representation allows to exchange the problem of parameter esti-
mation of θ for the sparse recovery problem of obtaining a K-sparse estimate
ŝ(t) = [ŝ1(t), . . . , ŝP (t)]T ∈ CP for the true K-sparse vector s(t) from the mea-
surements x(t) with the array steering matrix A as the measurement matrix
where finally the non-zero indices of ŝ(t) determine the estimates θ̂k of the
DoAs of the K sources.

The model in 2-35 can be extended to the MMV model as

X = AS + N, (2-36)

where the matrix of measurements is X = [x(t1), . . . ,x(tN)] ∈ C
M×N , the

signal matrix is S = [s(t1), . . . , s(tN)] ∈ C
P×N and the noise matrix is

N = [n(t1), ...,n(tN)] ∈ C
M×N . In this case the signal matrix S is row K-

sparse and its non-zero rows indices correspond to the DoAs of the K sources.

2.7.1
Recovery guarantees under the MMV model

We assume that a row K-sparse matrix S is measured with a measure-
ment matrix A to produce the observed matrix X, i.e., X = AS. Then it is
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guaranteed that one can recover S from X exactly if and only if [18]

spark(A) > 2K + 1− rank(S). (2-37)
For a matrix A ∈ RM×N , every set of M + 1 columns of A is guaranteed

to have linearly dependent columns. On the other hand, one needs to take
at least two column vectors to form a linearly dependent set. Therefore,
2 ≤ spark(A) ≤ M + 1. The definition of the spark of a matrix draws some
parallels to the definition of the rank of a matrix, i.e., spark is the cardinality of
the smallest set of linearly dependent columns whereas rank is the cardinality
of the largest set of linearly independent columns. While rank of a matrix can
be computed efficiently, computing spark of a matrix is NP-Hard [18].

Since S has only K non-zero rows, we have 1 ≤ rank(S) ≤ K. Then from
signal recovery perspective it is desired that A has maximum possible spark.
Replacing spark(A) in (2-37) with its maximum possible value, we get

M > 2K − rank(S). (2-38)
When rank(S) = 1 this would result in the condition M ≥ 2K + 1 and

in the best case, when rank(S) = K, we have

M ≥ K + 1,

i.e., the minimum number of measurements required for the MMV model is
K + 1.

2.8
Sparse recovery algorithms applied to DoA estimation

We briefly review in this section some of sparse recovery algorithms
applied to the source localization problem.

2.8.1
Greedy Algorithms

The sparse recovery algorithms based on `1-minimization are an effective
methodology which, under certain conditions, can result in an exact signal
recovery. In addition, `1-minimization also has very good performance guaran-
tees which make it a reliable tool for sparse signal recovery but one drawback
of the methods based on `1-minimization is their higher computational cost in
large-scale problems. Therefore, algorithms that scale up better and are similar
in performance in comparison to the convex optimization methods are needed,
this fact motivated the development of the greedy algorithms. These algorithms
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make significant savings in computation by performing locally optimal greedy
iterations. Some of these methods also have certain performance guarantees
that are somewhat similar to the guarantees for `1-minimization [18].

Greedy algorithms rely on iterative approximations of the signal coeffi-
cients and support, either by iteratively identifying the support of the signal
until a convergence criterion is met, or alternatively by obtaining an improved
estimate of the sparse signal at each iteration that attempts to account for the
mismatch to the measured data [17]. The greedy algorithms reviewed in this
chapter recover the unknown sparse vector in a non-Bayesian framework, i.e.,
the sparse vector is treated as a fixed unknown and no prior assumption is
made about the probability distribution of the sparse vector.

2.8.1.1
Iterative Hard Thresholding (IHT)

The iterative hard thresholding (IHT) algorithm [13] solves the sparse
recovery problem presented above as an optimization problem which is formu-
lated as

Ŝ = arg min
S̃∈CP×N

‖ AS̃−X ‖2
F s.t. ‖ S̃ ‖p,0≤ K, (2-39)

where the constraint ensures that the estimate Ŝ is row K-sparse.
Each iteration of IHT consists of two steps, a gradient descent step and a

hard thresholding step [12]. In the first step the consistency-enforcing objective
is reduced by computing the gradient descent step described by

Ši+1 = Ŝi + µAH(X−AŜi), (2-40)
where µ is the step size. The second step is to apply the hard thresholding
operator HK(.) to the resulting matrix Ši+1, which sets all but the K rows
with the largest l2 norm to 0T to get the new estimate Ŝi+1 = HK(Ši+1).
This step ensures that the constraint is fulfilled [12]. Then the indices of the
non-zero rows of Ŝi, i.e., Γ = rsupp(Ŝi) ⊆ R

K finally determine the estimated
angles θ̂k for the DoAs of the K sources.

IHT also has a normalized variant called normalized iterative hard
thresholding (NIHT) where the fixed step size µ is replaced by a near-optimal
step size µi that maximally reduces the error at each iteration [30] described
by,

µi+1 = GH
ΓiGΓi

GH
ΓiAH

ΓiAΓiGΓi
= ‖GΓi‖2

F

‖AΓiGΓi‖2
F

. (2-41)

NIHT determines the step size µ adaptively, so then it becomes scale-
independent and as a consequence guarantees convergence to a local minimum
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of the cost function, whatever the operator norm of A, while still retaining its
performance guarantees if a restricted isometry property holds [30].

The IHT and NIHT algorithms are described in Algorithm 1.

Algorithm 1: IHT /NIHT
1 Input: X,A, K, µ,R0 = X,θ = [θ1, . . . , θP ]
2 Initialization: Ŝ0 = 0, i = 0
3 while stopping criterion is not met do
4 if IHT then
5 µi+1 = µ
6 else if NIHT then

7 µi+1 = ‖AH
Γi

Ri
Γi‖

2

F

‖AΓi (A
H
Γi

Ri
Γi

)‖2

F

8 end
9 end

10 Ŝi+1 = HK(Ŝi + µi+1AHRi)
11 Ri+1 = X−AŜi+1

12 i = i+ 1
13 end
14 Γ =rsupp(Ŝi)
15 Output: DoAs: [θ̂1, . . . , θ̂K ] = θ(Γ)
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2.8.1.2
Hard Thresholding Pursuit (HTP)

The hard thresholding pursuit (HTP) similar to IHT update the previous
approximation Ŝi by taking a step of predefined, fixed length µ in the steepest
descent direction AHRi. A new proxy for the support set, Γi, is then obtained
by selecting the rows of with greatest row-`2-norms. The two algorithms differ
in how the support proxy is utilized: IHT employs a hard thresholding operator
which restricts the approximation to the rows indexed by while HTP projects
the measurements onto the support set as follows [14]:

Ŝi+1 = arg min
{
‖X−AZ‖F : rsupp(Z) ⊆ Γi+1

}
. (2-42)

The HTP algorithm and its normalized version are described in Algo-
rithm 2, where DetectSupport(Z, k) is a subroutine identifying the index set
of the rows of Z with the k largest row-`2-norms [14].

Algorithm 2: HTP /NHTP
1 Input: X,A, K, µ,R0 = X,θ = [θ1, . . . , θP ]
2 Initialization: Ŝ0 = 0, i = 0
3 while stopping criterion is not met do
4 if HTP then
5 µi+1 = µ
6 else if NHTP then

7 µi+1 = ‖AH
Γi

Ri
Γi‖

2

F

‖AΓi (A
H
Γi

Ri
Γi

)‖2

F

8 end
9 end

10 Ŝi+1 = Ŝi + µi+1AHRi

11 Γi+1 = DetectSupport(Ŝi+1, k)
12 Ŝi+1 = arg min {‖X−AZ‖F : rsupp(Z) ⊆ Γi+1}
13 Ri+1 = X−AŜi+1

14 i = i+ 1
15 end
16 Γ =rsupp(Ŝi)
17 Output: DoAs: [θ̂1, . . . , θ̂K ] = θ(Γ)
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2.8.1.3
Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP) is a commonly used algorithm for
recovery signals due to its low complexity and simple implementation [31].
OMP chooses at each iteration i a new atom index j by solving the following
optimization problem [32]:

j = arg min
j∈Ω−Γi

∥∥∥〈Aj,Ri〉
∥∥∥

2
. (2-43)

where R = X−AS.
After that it generates an optimal atom set Γi+1 = Γi∪{j} with |Γi+1| = i

and obtains the best (i+ 1)-term approximation Ŝi+1
(Γi+1) over Γi+1 by the least-

squares (LS) minimization as follows [32]:

Ŝi+1
(Γi+1) = arg min

rsupp(Z)⊆Γi+1
‖X−AΓi+1Z‖F . (2-44)

This minimization can simply be performed by standard LS techniques,
i.e. Ŝi+1

(Γi+1) = A†Γi+1X [31]. The pseudocode of OMP is described in Algorithm
3

Algorithm 3: OMP
1 Input: X,A, K,R0 = X,θ = [θ1, . . . , θP ]
2 Initialization: Ŝ0 = 0,Γ0 = ∅, i = 0
3 while i ≤ K do
4 j = arg minj∈[1,...,P ] ‖〈Aj,Ri〉‖2
5 Γi+1 = Γi ∪ {j}
6 Ŝi+1

(Γi+1) = arg minrsupp(Z)⊆Γi+1 ‖X−AΓi+1Z‖F
7 Ŝi+1

(Γ̄i+1) = 0
8 Ri+1 = X−AŜi+1

9 i = i+ 1
10 end
11 Γ =rsupp(Ŝi)
12 Output: DoAs: [θ̂1, . . . , θ̂K ] = θ(Γ)
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2.8.2
Signal recovery via `1 minimization

Since the `0 minimization problem is a NP hard problem, several recovery
algorithms have introduced the convex relaxation to the `1 norm for translating
the optimization problem into a more tractable problem. Moreover, with the
development of fast methods of linear programming in the eighties, the idea of
convex relaxation became truly promising.

2.8.2.1
`1-Singular value decomposition algorithm (`1-SVD)

The `1-singular value decomposition (`1-SVD) algorithm, introduced by
Malioutov, Çetin and Willsky [1], is a tractable approach to use a large number
of time samples coherently. To reduce the computational complexity and the
sensetivity to noise, `1-SVD use the SVD of the observed data matrix X. The
idea is to decompose the data matrix into signal and noise subspaces and keep
the signal subspace [1].

Mathematically, this translates into the following representation. Take
the SVD:

X = ULV. (2-45)
Keep a reduced M × K dimensional matrix XSV , which contains most

of the signal power XSV = ULDK = XVDK where Dk = [IK0]. Here, IK
identity matrix, and 0 is a K × (N − K) matrix of zeros. In addition, let
SSV = SVDK and NSV = NVDK , to obtain which yields [1],

XSV = ASSV + NSV . (2-46)
For typical situations where the number of sources is small and the

number of time samples may be in the order of hundreds, this reduction in
complexity is very substantial [1].

The matrix S is parameterized temporally and spatially, but spar-
sity only has to be enforced in space since the signal s(t) in not gener-
ally sparse in time [1]. To accommodate this issue, `1-SVD first computes
the `2-norm of all time-samples of a particular spatial index of s, i.e.,
s

(l2)
i = ‖[si(t1), si(t2), . . . , si(tN)]‖2, and penalizing the `1-norm of s(l2) =

[s(l2)
1 , . . . , s

(l2)
P ]. Then , the minimization problem becomes

min ‖XSV −ASSV ‖2
F + λ

∥∥∥s(l2)
∥∥∥

1
, (2-47)

where the optimization is performed over S; s(l2) is a function of S and the
optimization problem is solved using second-order cone (SOC) programming
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framework by an interior point implementation. The block diagram of the steps
of the `1-SVD algorithm is illustrated in Figure 2.8.

Figure 2.8: Block diagram of the steps of the `1-SVD [1].

2.8.2.2
Basis Pursuit Denoising (BPDN)

The `1-norm optimization problem is a convex problem that can be
conveniently reduced to a linear problem known as basis pursuit denoising
(BPDN) [27]. In the BPDN problem, the row K-sparse signal matrix S can be
recovered by

Ŝ = arg min
S̃∈CP×N

∥∥∥S̃∥∥∥
2,1
s.t
∥∥∥AS̃−X

∥∥∥2

F
≤ β, (2-48)

where the objective of the optimization problem ensures that the estimate
Ŝ is row sparse while the constraint forces it to be consistent with the
measurements of X [12]. The parameter β has to be chosen according to the
statistics of the noise. When these are not known the choice of this parameter
is a difficult question which is the main drawback of this algorithm.

The BPDN problem can be solved using several methods as spectral
projected gradient (SPGL1) [33], fixed point continuation method (FPC) [34],
fast iterative soft-thresholding algorithm (FISTA) [35], `1 regularized least
squares [36], in-crowd algorithms [29], Nesterov’s smoothing techniques with
continuation (NESTA) [37] and others.

2.9
Computational Complexity

In practical applications, not only the DoA estimation performance of
the methods is important but also their computational complexity. Therefore,
the computational complexity of the subspace-based methods MUSIC and
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ESPRIT as well as the one of the CS-based methods BPDN and IHT is
analyzed in this section.

If the matrix of measurements is compressed by the `1-SVD, the DoAs can
be estimated using BPDN with a computational complexity of O(K3P 3) [1].
This is larger than the costs of subspace-based methods MUSIC and ESPRIT,
which are O(M2P + M2N) and O(M3 + M2N), respectively. MUSIC is
computationally more complex than ESPRIT due to the spectral search [12].
The computational complexity of ESPRIT is dominated by the subspace
estimation using the EVD of the covariance matrix. Each iteration of IHT
consists only of matrix additions and multiplications as well as the thresholding
operation, whose cost is O(MNP ).

If the number of snapshots N is small and the number of antenna
elements M becomes very large, the subspace estimation using the EVD of the
covariance matrix with a cost of O(M3) for the subspace-based methods and
the spectral search of MUSIC with a cost of O(M2P ) become computationally
intractable such that the computational complexity of IHT is smaller than
the one of the subspace-based methods [12]. Table 2.1 lists the computational
complexity of all considered methods.

Table 2.1: Computational Complexity [12]

Algorithm
BPDN O(K3P 3)
IHT O(MNP ) (per iteration)

MUSIC O(M2P +M2N)
ESPRIT O(M3 +M2N)
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3
Bayesian and Iterative Hard Thresholding Methods for Direc-
tion of Arrival Estimation

In the case when some prior knowledge about the distribution of the
sparse matrix is available, it would make sense to incorporate that prior knowl-
edge into the estimation process. Bayesian methods, which view the unknown
sparse matrix as random, provide a systematic framework for doing that. By
making use of Bayes’ rule, these methods update the prior knowledge about the
sparse matrix in accordance with the new evidence or observations [18]. This
chapter proposes two greedy algorithms called randomized multiple candidate
iterative hard thresholding (RMC-IHT) [38] and Bayesian hard thresholding
(BHT) which estimate the sparse matrix S in a Bayesian framework.

The RMC-IHT algorithm generates a set of potential candidates using
the iterative hard thresholding algorithm and selects the best candidate based
on the prior knowledge of the distribution of the signal and noise matrices.
It is also formulated a version of RMC-IHT for the case of correlated sources
based on the computation of an approximation of the covariance matrix at
each iteration [38].

The BHT algorithm works similar to IHT, except that instead of the
deterministic hard thresholding operator HK , it uses a Bayesian hard thresh-
olding operator Hpj which select the K atoms with highest probability than
belong to the support Γ.

3.1
Derivation of the maximum a posteriori (MAP) estimator

In order to derive the maximum a posteriori (MAP) estimator, we assume
that the elements of the noise matrix N in equation (2-36) are assumed to
be independent and identically distributed (i.i.d) complex normal random
variables with zero mean and variance σ2

n, so N has a matrix variate complex
normal (MCN) distribution, denoted as N ∼ MCNM,N(0, σ2

nIM , IN), where
IM denotes the M ×M identity matrix [19].

Let Γ denote the row support of S with known fixed cardinality K and
the total number of different possible row supports of S is

(
P
K

)
and let Ω
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denote the set of all such row supports, with cardinality |Ω|=
(
P
K

)
. It is further

assumed that, within the set Ω, Γ has uniform prior distribution, i.e.,

p(Γ) =


1
|Ω| if Γ ∈ Ω,

0 otherwise.
(3-1)

Furthermore, let S(Γ) denote theK×N matrix restricted to thoseK rows
of S that are indexed by the support set Γ. Then S ¯(Γ) = 0 by definition, where
Γ̄ is the complement of Γ. The restriction AΓ represents the sub-matrix of A
obtained by selecting the columns of A indexed by Γ. n Then the elements of
S(Γ) are assumed to be i.i.d complex normal random variables with zero mean
and known variance σ2

s , so S(Γ) ∼ MCNM,N(0, σ2
sIK , IN), with probability

density function (pdf) given by [19]

p(S(Γ)|Γ) = 1
(πσ2

s)KN
exp

(
− 1
σ2
s

‖ S(Γ) ‖2
F

)
(3-2)

Then we compute p(S(Γ)|X,Γ) using the Bayes’s rule as follows:

p(S(Γ)|X,Γ) = p(X|S(Γ),Γ)p(S(Γ)|Γ)
p(X|Γ) , (3-3)

where p(X|Γ) is a normalization constant for fixed X and Γ. Then, X|S(Γ),Γ =
AΓS(Γ) + N for a given S(Γ) is a Gaussian matrix of mean AΓS(Γ) and matrix
covariance σ2

nIM , so we obtain

p(X|S(Γ),Γ) = 1
(πσ2

n)MN
exp

(
− 1
σ2
n

‖ X−AΓS(Γ) ‖2
F

)
(3-4)

Ignoring the normalization constant p(X|Γ) and using the expressions
(3-2) and (3-4) we can rewrite (3-3) as [19]:

p(S(Γ)|X,Γ) ∝ exp
(
−
‖ S(Γ) ‖2

F

σ2
s

−
‖ X−AΓS(Γ) ‖2

F

σ2
n

)
(3-5)

Therefore, the MAP estimator of S(Γ) for a given support Γ will be equal
to [2]:

Ŝ(Γ)MAP = arg max
S(Γ)∈CK×N

p(S(Γ)|X,Γ)

= arg max
S(Γ)∈CK×N

log p(S(Γ)|X,Γ)

= arg max
S(Γ)∈CK×N

(
−
‖ S(Γ) ‖2

F

σ2
s

−
‖ X−AΓS(Γ) ‖2

F

σ2
n

) (3-6)

The above convex optimization problem can be solved by setting the
gradient of the objective function to a zero matrix and solving the resulting
set of equations which yields:
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Ŝ(Γ)MAP =
(

AH
Γ AΓ + 1

γ
IK
)−1

AH
Γ X (3-7)

where γ = σ2
s/σ

2
n.

3.2
Description of the proposed RMC-IHT algorithm

The proposed RMC-IHT algorithm is based on the principle of the
deterministic IHT algorithm, but instead of IHT which selects a support at
each iteration, RMC-IHT generates a set Υ = [Γ1,Γ2, . . . ,ΓQ] of Q potential
candidate’s supports, where each candidate is computed by the iteration given
by

Ŝ(j) = HK(Ŝ(j−1) + PAHR(j−1)) (3-8)

Γi = rsupp(Ŝ(j)) i = 1, 2, . . . , Q (3-9)
using the hard thresholding operator HK .

The criterion for determining the best candidate support is based on the
following minimization:

min
Γi∈Υ

∥∥∥X−AŜ(Γi)MAP

∥∥∥2

F
(3-10)

Note that for performing this selection it is necessary the computation
of the MAP estimator of the signal S(Γ) for each candidate support Γi as was
determined in the previous section. RMC-IHT based on the result of equation
(3-10) finally keeps the signal estimate and the residual corresponding to the
best candidate support to initialize the next iteration.

The main steps of RMC-IHT are described in Algorithm 4, where Γ∗ is
the best support selected among the Q candidates in the current iteration.
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Algorithm 4: RMC-IHT
1 Input: X,A, K, µ,θ = [θ1, ...., θP ], γ, Q,
2 Initialization:
3 Ŝ(0) = 0, ii = 0,Γ =supp(HK(AHX)),
4 R(0) = X,P =diag([pi]) =diag([1/‖ ai ‖2

2]),
5 Γ1 = Γ
6 while the stopping criterion is not met do
7 for j ← 2 to Q do
8 Ŝ(j) = HK(Ŝ(j−1) + PAHR(j−1))
9 Γi =rsupp(Ŝ(j))

10 R(j) = X−AHŜ(j)

11 end
12 for i← 1 to Q do
13 Ŝ(Γi) = (AH

ΓiAΓi + 1
γ
IK)−1AH

ΓiX
14 Ŝ(Γ̄i) = 0
15 Γ∗ = minΓi∈Υ

∥∥∥X−AŜΓi

∥∥∥2

F

16 end
17 keep Γ∗ as the first candidate for the next iteration
18 keep the signal estimate ŜΓ∗ and the to corresponding residual

to initialize the next iteration
19 ii = ii+ 1
20 end
21 Output: DoAs: [θ̂1, . . . , θ̂K ] = θ(Γ∗)

3.3
RMC-IHT for scenarios with correlated sources

As we mentioned before one of the limitations of the conventional DoA
estimation algorithms is their inferior performance for scenarios with correlated
sources. Due to the illness of the covariance matrix of the signal, the principal
techniques based on subspaces methods fail. For this reason, we present in this
section a version of RMC-IHT for overcoming this limitation.

In the case of a scenario with correlated sources the covariance matrix
of the signal becomes non diagonal. Then we can no longer assume that it is
equal to σ2

sIK . Taking into account this consideration, the MAP estimator of
S(Γ) is now given by

Ŝ(Γ)MAP =
(

1
σ2
n

AH
Γ AΓ + Ks

)−1 1
σ2
n

AH
Γ X (3-11)

when the covariance matrix of the signal is given by

Ks = Rs = E[S(Γ)SH(Γ)], (3-12)
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and the mean of the signals is equal to zero resulting in equivalent covariance
and correlation matrices.

In this case, we need some approximation of the correlation matrix of
S(Γ) for computing equation (3-11). Then we propose to obtain the K-term
approximation S(Γ) over Γ by a least-squares (LS) minimization as follows:

S(Γ) = arg min
rsupp(Z)⊆Γ

‖X−AΓZ‖2
F . (3-13)

This minimization can be simply be performed by standard LS tech-
niques, i.e. S(Γ) = A†ΓX [31]. Substituting the obtained approximation of S(Γ)

in (3-12) we have the following result:

Rs = E[S(Γ)SH(Γ)] = E[A†ΓXXH(A†Γ)H ] = A†ΓRxx(A†Γ)H . (3-14)

We finally obtain an approximation of the correlation matrix of the signal
as a function of the measurement matrix AΓ and the correlation matrix of
the received matrix X. Therefore, substituting the equation (3-14) in equation
(3-11) we obtain the MAP estimator for the case of the scenario with correlated
sources:

Ŝ(Γ)MAP =
(

1
σ2
n

AH
Γ AΓ + A†ΓRxx(A†Γ)H

)−1 1
σ2
n

AH
Γ X. (3-15)

3.4
Derivation of the Bayesian hard thresholding operator

Based on the results presented in the previous section, we have that for
a fixed X and all Γ ∈ Ω, both p(X) and p(Γ) are constant. Therefore, from
Bayes’ rule we can conclude that p(Γ|X) ∝ p(X|Γ). Moreover, we have [18]

p(X|Γ) =
∫

S(Γ)∈CK×N
p(X,S(Γ)|Γ)dS(Γ) ∝

∫
exp

−
∥∥∥vec(S(Γ))

∥∥∥2

σ2
s

−

∥∥∥vec(X−AΓS(Γ))
∥∥∥2

σ2
n

 dS(Γ)

(3-16)

where the integration is over S(Γ) ∈ CK×N . Since vec(X−AΓS(Γ)) = vec(X)−
(IN ⊗AΓ)vec(S(Γ)), where ⊗ denotes the Kronecker product, the integral in
(3-16) simplifies to

p(X|Γ) ∝ pΓ = exp
(
vec(AH

Γ X)HP−1
Γ vec(AH

Γ X)
σ4
n

+ log(det(P−1
Γ ))

)
, (3-17)

where PΓ = 1
σ2
n
IN ⊗AH

Γ AΓ + 1
σ2
s
IKN [19, 39].
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Then based on the previous results suppose that the row sparsity of S is
one, i.e., |Γ| = K = 1. This implies that Ω = {1, 2, . . . P}, and

PΓ={j} = (cj/σ2
s)IN for j ∈ Ω, (3-18)

where cj = 1 + γ ‖Aj‖2. Furthermore, p(Γ = {j}|X) ∝ pΓ={j} = pj is given
by [19]

pj = exp

 γ

σ2
n

∥∥∥XHAj

∥∥∥2

cj
−N log cj

 . (3-19)

Note that pj corresponds to the conditional probability that given a
observed matrix X the jth atom belong to the support Γ.

Then the Bayesian hard operator Hpj(.) is defined as the operator that
sets all the values of a given matrix to zero except the K rows with the highest
conditional probability pj.

3.5
Description of the proposed BHT algorithm

The proposed BHT algorithm is similar to IHT. Each iteration of BHT
consists of three steps: a gradient descent step, the computation of the
conditional probability pj of each j atom and a Bayesian hard thresholding
step.

In the first step the consistency-enforcing objective is reduced by com-
puting the gradient descent step described by

Ši+1 = Ŝi + µAH(X−AŜi), (3-20)
where µ is the step size. The second step consists of the computation of
the conditional probability pj of each atoms using the result obtained in
equation (3-19) and the last step is to apply the Bayesian hard thresholding
operator Hpj(.) to the resulting matrix Ši+1. In this way, BHT exploits the
prior knowledge of the distribution of the signal and noise for keeping at each
iteration only the K rows of S that corresponds to the K atoms with the
highest probability that belong to the support Γ.

The BHT algorithm is summarized in Algorithm 5

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



Chapter 3. Bayesian and Iterative Hard Thresholding Methods for Direction of
Arrival Estimation 46

Algorithm 5: BHT
1 Input: X,A, K, µ,R0 = X,γ, σ2

n, θ = [θ1, ...., θP ]
2 Initialization: Ŝ0 = 0, i = 0
3 while stopping criterion is not met do
4 Ši+1 = Ŝi + µAHRi

5 compute the conditional probability pj of each atoms as
6 for j ← 1 to P do
7 cj = 1 + γ ‖Aj‖2

8 pj = exp
{

γ
σ2
n

‖RHAj‖2

cj
−N log cj

}
9 end

10 Ŝi+1 = Hpj(Ši+1)
11 Ri+1 = X−AŜi+1

12 i = i+ 1
13 end
14 Γ =rsupp(Ŝi)
15 Output:
16 DoAs: [θ̂1, . . . , θ̂K ] = θ(Γ)

3.6
Computational Complexity

In this section we provide an analysis of the algorithmic complexity of
RMC-IHT and BHT algorithms.

In the case of RMC-IHT algorithm, the generation of the Q potential
candidate supports is based on IHT algorithm for this reason consists of
matrix additions and multiplications whose cost is O(MPN) at each iteration.
The computation of the MAP estimator of the sparse signal for a given
candidate consists of matrix multiplications, additions and the inversion of
a matrix of size K × K, hence its computational cost is approximately
O(K2M +K3 +K2N).

The BHT algorithm as was described before is a modification of the IHT
algorithm that includes one more step that consist of the computation of the
conditional probability pj for each atom whose cost is O(PMN). Table 3.1 list
the computational complexity of the proposed algorithms.

Table 3.1: Computational Complexity of the proposed algorithms

Algorithm Computational Complexity
RMC-IHT O(QPMN +Q(K2M +K3 +K2N))

BHT O(2PMN) (per iteration)
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3.7
Simulations Results

In this section several simulations were carried out to evaluate the
proposed algorithms and compare them with conventional directional of arrival
estimation algorithms.

Simulation results have been obtained by using a sampling grid of P=
1024 angles and θi = arcsin( 2

P
(i− 1)− 1) corresponding to the equally spaced

spatial frequencies. The measurement noise samples are drawn from an i.i.d
complex normal random process with zero mean and variance σ2

n [12]. The
SNR in dB is defined as:

SNR = 10 log10

(
Kσ2

s

σ2
n

)
dB. (3-21)

The DoA estimation performance is measured in terms of the Root Mean
Square Error (RMSE) between the DoAs θk of the sources k = 1, 2, . . . , K and
their estimates θ̂r,k in R=100 Monte Carlo runs r = 1, 2, . . . , R.

RMSEθ =

√√√√( 1
RK

) R∑
r=1

K∑
k=1
|θ̂k,r − θk)|2. (3-22)

It is important to mention that the simulation results are concentrated in
the scenarios where the conventional techniques show a inferior performance,
i.e. low values of SNR, a limited number of available snapshots and correlated
sources. We also considered antennas array with around 8 to 30 elements and
that the noise and the sources are uncorrelated.

Figure ?? represents a scenario with K=2 sources which are assumed
uncorrelated complex normal random variables with zero mean and variance
σ2
s =1 and located at the angles θ1 = 4.93◦ and θ2 = 10.01◦ [12], the RMSE is

plotted over the SNR with the number of antenna elements M = 13 for N = 2
and the size of the set of candidates is set to 4. The number of iteration of IHT
algorithm is setting to 10. In addition to the RMSE of the considered DoAs
estimation methods, we also show the deterministic Cramér-Rao Lower Bound
(CRB) [21].

As it can be noticed the proposed algorithms BHT and RMC-IHT show
a better performance than the conventional IHT and the subspaces-based
methods MUSIC and ESPRIT. RMC-IHT have a performance similar to
OMP algorithm and BHT achieves the best performance among them. Both
algorithms are able to estimate the DoAs with a lower RMSE and a small
number of snapshots.

Figure 3.2 depicts a scenario with M = 15 and N = 2 and the rest of
the parameters are keeping as before. Note that RMC-IHT can exploit better
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Figure 3.1: RMSE vs. SNR for M=13, N=2

the availability of a larger number of antenna elements than OMP. BHT, as
before, shows the best performance.
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Figure 3.2: RMSE vs. SNR for M=15, N=2
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Figure 3.3 represents a scenario with M = 8 antenna elements, N = 5
and the other parameters are keeping as before, can be notice that with the
increase of the number of available snapshots the performance of ESPRIT
improves significantly such as it is able to outperform RMC-IHT and OMP
algorithms. While the RMSE of BHT decreases to 2◦ approximately.
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Figure 3.3: RMSE vs. SNR for M=8, N=5

Figure 3.4 depicts the same scenario with M = 13 and N = 2 but in this
case with three sources which are located at the angles θ1 = 4.93◦, θ2 = 10.01◦

and θ3 = 14.9403◦ and we can appreciate that the performance gap between
RMC-IHT and OMP increases when the number of sources to be identified
increases.

In order to estimate the three sources it is necessary to increase the
number of snapshots. Figure 3.5 represents the same scenario but in this case
with M = 25 antenna elements. Note that RMC-IHT achieves a RMSE of
approximately 1◦ with estimated angles: θ̂1 = 4.3686◦, θ̂2 = 10.0105◦ and
θ̂3 = 15.6364◦. In the case of BHT, the increase of the number of antenna
elements do not have a significant impact on the performance, because after
BHT achieves a RMSE of approximately 3◦ the behavior stays constant. The
principle reason of this saturation is that even with the increase of the antenna
elements the difference among the select atoms with highest probability is not
considerable.

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



Chapter 3. Bayesian and Iterative Hard Thresholding Methods for Direction of
Arrival Estimation 50

−10 −8 −6 −4 −2 0 2 4 6 8 10100

101

102

SNR (dB)

R
M

SE
θ

MUSIC
IHT
ESPRIT
OMP
RMC-IHT
BHT

Figure 3.4: RMSE vs. SNR for M=13, N=2 for 3 sources
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Figure 3.5: RMSE vs. SNR for M=25, N=2
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In Figure 3.6 the RMSE is plotted over the number of antenna elements
M for N = 2 snapshots and the other parameters are kept as before. We
can appreciate that the performance of ESPRIT is damaged due to the small
number of snapshots and increasing the number of antenna elements cannot
compensate this effect. The large performance gap between the two subspace-
based methods MUSIC and ESPRIT is due to the fact that MUSIC works
on the noise subspace whereas ESPRIT works on the signal subspace. The
dimension of the noise subspace is M − K and thus grows with increasing
number of antenna elementsM . The dimension of the signal subspace, however,
isK and thus independent of the number of antenna elementsM . If the number
of antenna elements M is very large compared to the number of sources K,
the dimension of the noise subspace is very large such that the estimation of
the noise subspace from a small number of snapshots is more robust than the
one of the signal subspace with the relatively small dimension K. This explains
why MUSIC is able to perform much better than ESPRIT in this scenario. The
performance of IHT, RMC-IHT and MUSIC is comparable and both improve
significantly with increasing the number of antenna elements and for the case
of a small number of antenna elements RMC-IHT performs better than the rest
of the algorithms. Note that the increase of the number of antennas elements
do not have a significant impact on the performance of BHT, as it is well suited
for scenarios with a moderate number of sensors and a few snapshots.
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Figure 3.6: RMSE vs. M for N = 2
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Figure 3.7 depicts a scenario with correlated sources where the correlation
coefficient ρ = 0.8, M = 10, N = 50 and the sources are assumed correlated
complex normal random variables with zero mean and variance σ2

s =1 and are
located at the angles θ1 = 4.93◦, θ2 = 9.8969◦, θ3 = 14.9403◦. The correlation
matrix of the signal in this case can be represented by

Rs =


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 (3-23)

Then for confirming the accuracy of our proposed approximation in the
case of correlated sources, we plot the RMC-IHT algorithm using the exact
value of the covariance matrix given by equation (3-23) and the approximation
that we obtain using the equation (3-14).
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Figure 3.7: RMSE vs. SNR for correlated sources with ρ = 0.8

Note that the approximation used by RMC-IHT for estimating the
covariance matrix is pretty close to the real value of the matrix, for this
reason it shows a good performance in this kind of scenarios. In the case of the
BHT algorithm, it suffers from degradation in performance due to the prior
assumptions about the signal distribution do not hold, because the derivation
obtained of the conditional probability pj is based on the assumption that the
covariance matrix of the signal is equal to σ2

sIK . Despite that it shows a better
behavior than ESPRIT, MUSIC and IHT.

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



Chapter 3. Bayesian and Iterative Hard Thresholding Methods for Direction of
Arrival Estimation 53

The simulation results reveal that the proposed CS-based algorithms
perform better than the subspaces-based methods when a small number of
snapshots is available and a scenarios of low values of SNR. Therefore, it can be
concluded that BHT algorithm is very well suited for scenarios with a moderate
number of antenna elements and RMC-IHT is advantageous for scenarios with
a large-scale antenna array. Moreover, both techniques do not require a large
number of snapshots for outperforming the conventional algorithms. For the
case of scenarios with correlated sources the version of RMC-IHT is a potential
candidate as it achieves the best performance under these conditions.
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4
Bayesian-BPDN (B-BPDN) Algorithm for Direction of Arrival
Estimation

In this chapter an algorithmic approach to the joint sparse recovery
problem based on its formulation as a basis pursuit denoising problem is
introduced. As it was mentioned before the principal disadvantages of the
algorithms based on `1 penalty is their high computational complexity and
slow convergence. As a consequence the Bayesian basis pursuit denoising (B-
BPDN) algorithm is fundamentally aimed to overcome these shortcomings.

B-BPDN is an iterative method for solving the BPDN problem that
is effective especially for large-scale sparse problems. It exploits the a priori
knowledge of the distribution of signal and noise for reducing the BPDN
problem to the subspace determined for the atoms with the highest probability
of belonging to the row support of the row K-sparse signal S.

4.1
Bayesian Basis Pursuit Denoising (B-BPDN) algorithm

The B-BPDN algorithm is fundamentally based on the idea of the
In-Crowd algorithm in [29], which is a numerical method for solving basis
pursuit denoising quickly and faster than any other algorithm for large sparse
problems. Since every time the In-Crowd algorithm reduced the optimization
problem to a subproblem in the space defined for the active set, we decided
in similar way to realize this reduction but in our case we apply a Bayesian
selection for determining the atoms that belonging to the active set at each
iteration. This selection is based on the computation of the conditional
probability pj of the atom belonging to the support of the sparse signal given
the observed vector X. The methodology for obtaining pj is the same that was
derived before in Chapter 3, see Section 3.4.

Another way of formulating the BPDN problem in equation (2-48) is
through the introduction of a `1-norm penalty term in the cost function as
follows:

min
S̃∈CP×N

1
2
∥∥∥AS̃−X

∥∥∥2

F
+ λ

∥∥∥S̃∥∥∥
2,1

(4-1)
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where λ > 0 is the regularization parameter which establishes the cost of
complexity relative to the error 1

2

∥∥∥AS̃−X
∥∥∥2

F
.

The computational complexity of solving (4-1) with a sufficiently large
P is often dominated by searching the dictionary of possible atoms for appro-
priate additions to the active set Γ [29]. Therefore, the B-BPDN algorithm is
partially insulated from the size of the global problem by consulting the dictio-
nary only rarely. Instead of performing a full search over the P possible atoms
at each iteration, the B-BPDN algorithm selects the K atoms with the highest
conditional probability pj for adding to the active set Γ and then solves the
optimization problem in (4-1) as a subproblem only on the subspace spanned
by the K selected atoms.

Note that solving the subproblem in B-BPDN corresponds to solving the
following optimization:

min
S̃∈CK×N

1
2
∥∥∥AΓS̃−X

∥∥∥2

F
+ λ

∥∥∥S̃∥∥∥
2,1

(4-2)

We used Matlab’s built-in quadprog function for the subproblem solver
in (4-2), due to the cardinality of Γ < M [29]. Prior to using this function some
conditions have to be fulfilled. First the MMV problem has to be expressed as
a SMV problem and second it is mandatory that all the values must be real.

For attending the first condition the vectorization operator is applied.
Since vec(AΓS̃ − X) = (IN ⊗ AΓ)vec(S̃) − vec(X), where ⊗ denotes the
Kronecker product, then equation (4-2) can be expressed as:

min
s̃∈CKN

1
2
∥∥∥Ãs− x

∥∥∥2

2
+ λ ‖s‖1 , (4-3)

where Ã ∈ C(MN)×(KN) = IN⊗AΓ, s ∈ CKN = vec(S̃) and x ∈ CMN = vec(X).
After that for converting all the values to real, the expression Ãs − x

can be split into real and imaginary components (given by R(.) and I(.)) as
follows [40]:  R(Ã) −I(Ã)

I(Ã) R(Ã)


︸ ︷︷ ︸

Â

 R(s)
I(s)


︸ ︷︷ ︸

ŝ

−

 R(x)
I(x)


︸ ︷︷ ︸

x̂

, (4-4)

where Â ∈ R2MN×2KN , ŝ ∈ R2KN and x̂ ∈ R2MN . Note that as a result of this
transformation the dimensions are increased.

Finally, the optimization problem in (4-3) can be formulated as follows:

min
ŝ∈R2KN

1
2
∥∥∥Âŝ− x̂

∥∥∥2

2
+ λ ‖ŝ‖1 . (4-5)

The quadprog routine in Matlab finds a minimum for a problem
specified by

min
x

1
2xTHx + fTx s.t Qx ≤ b, (4-6)
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where H,Q are matrices and f ,b are vectors. Therefore, for solving the least
squares problem in (4-5) with the help of this quadratic programming is
necessary to define first the input parameters. Hence, we rewrite the objective
function in quadratic form as:

min
ŝ

1
2
∥∥∥Âŝ− x̂

∥∥∥2

2
+ λ ‖ŝ‖1 = min

ŝ

1
2(Âŝ− x̂)T (Âŝ− x̂) + λ ‖ŝ‖1

= min
ŝ

1
2(ŝT ÂT Âŝ− ŝT ÂT x̂− x̂T Âŝ + x̂T x̂) + λ ‖ŝ‖1

= min
ŝ

1
2(ŝT ÂT Âŝ− 2ŝT ÂT x̂) + λ ‖ŝ‖1

= min
ŝ

1
2 ŝT ÂT Âŝ− ŝT ÂT x̂ + λ ‖ŝ‖1 .

Note that the term x̂T x̂ can be eliminated because it does not depend
on ŝ and since ‖ŝ‖1 is simply the sum of the absolute values of the elements of
the vector ŝ, we can write:

min
ŝ

1
2
∥∥∥Âŝ− x̂

∥∥∥2

2
+ λ ‖ŝ‖1 = min

ŝ

1
2 ŝT ÂT Âŝ− ŝT ÂT x̂ + λ

K∑
i=1
|si|. (4-7)

For combining the linear terms in (4-7) it is necessary to remove the
absolute operator, but take into account that the vector ŝ can have negative
components, the following transformation is introduced:

ŝ = ŝ+ − ŝ−, with ŝ+ ≤ 0, ŝ− ≤ 0 (4-8)
where the vector ŝ is split into the positive and negative components ŝ+ and
ŝ− respectively.

Based on (4-8), it is defined a column vector ẑ =
 ŝ+

ŝ−

 and a new

matrix Ā = [Â − Â]. Substituting these elements in equation (4-7), the
function to optimize turns into:

min
ẑ

1
2 ẑT ĀT Āẑ− ẑT ĀT x̂ + λ1T ẑ s.t Qẑ ≤ 0 (4-9)

where 1 ∈ R
4KN is a column-vector of ones, Q = −I4KN and 0 is the zero

vector. The constraint ensures that ŝ+ and ŝ− take non-negative values. Then,
equation (4-9) can be written as:

min
ẑ

1
2 ẑT ĀT Ā︸ ︷︷ ︸

H

ẑ + (λ1− ĀT x̂)T︸ ︷︷ ︸
fT

ẑ s.t Qẑ ≤ 0 (4-10)

Finally, equation (4-10) is written in quadratic form and the input
parameters of the quadratic programming can be defined as :
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H = ĀT Ā

f = λ1− ĀT x̂

Q = −I4KN

b = 0.

The proposed B-BPDN algorithm is described in Algorithm 6.

Algorithm 6: B-BPDN
1 Input: X,A,θ = [θ1, ...., θP ], K, µ, , γ, σ2

n, λ,Nmax
2 Initialization:
3 Ŝ(0) = 0,R(0) = X, i = 0
4 while the stopping criterion is not met do
5 compute the conditional probability pj of each atoms as
6 for j ← 1 to P do
7 cj = 1 + γ ‖Aj‖2

8 pj = exp
{

γ
σ2
n

‖RHAj‖2

cj
−N log cj

}
9 end

10 Determine the active support Γ composed for the K atoms which
have the highest pj

11 Solve (4-1) on the subspace spanned by all the components in Γ
using the SolveQuadratic algorithm

12 Set all the rows of Ŝ to 0 except for the K rows in Γ, set these to the
solution found in the previous step(Ŝ(Γ) = S̃ and Ŝ(Γ̄) = 0 )

13 R = X−AΓŜ(Γ)
14 i = i+ 1
15 end
16 Output:
17 Ŝ = HK(Ŝi)
18 Γ = rsupp(Ŝ)
19 DoAs: [θ̂1, . . . , θ̂K ] = θ(Γ)

The SolveQuadratic algorithm is described in Algorithm 7.
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Algorithm 7: SolveQuadratic
1 Input: AΓ,X, λ
2 Ã = IN ⊗AΓ % vectorization
3 x = vec(X)
4 Split in real and imaginary part as in equation (4-4)
5 Split in positive and negative components as in equation (4-8)
6 Defined the input parameter of the quadratic programming

H = ĀT Ā, f = λ1− ÂT x̂, Q = −I4KN , b = 0
7 Using Matlab’s quadprog function for solving the optimization subproblem

\hat{z}=quadprog (H, f ,Q, b ) ;
8 Split the found solution ẑ into the positive and negative elements of ŝ
9 Transform to complex form

s=[\hat{ s } ( 1 :KN) + \hat{ s }(KN+1:end )∗1 i ] ;
10 Revert the vectorization process using Matlab’s vec2mat function

\ t i l d e {S}=vec2mat ( s ,K) ;
\ t i l d e {S}=\ t i l d e {S } ’ ;

11 Output: S̃

The B-BPDN algorithm uses a stopping criterion to terminate when the
active support Γ does not change from one iteration to the next or when the
maximum number of iterations is reached.

4.2
Computational Complexity

In this section we provide an analysis of the algorithmic complexity of
B-BPDN. Note that the proposed algorithm has an outer loop which computes
the conditional probability pj of each atom and an inner loop which solves the
optimization subproblem using quadratic programming.

– Outer Loop Complexity:

The outer loop requires a matrix multiplication of the residual R (which
is M × N) with the Aj column (which is M × 1) of the measurement
matrix A. This result in MN requiring operations. Considering that the
number of runs of the outer loop is P , it finally requires approximately
PNM operations.

– Inner Loop Complexity:

Matlab’s quadprog routine is an interior-point-convex algorithm which
attempts to follow a path that is strictly inside the constraints. It uses a
presolve module to remove redundancies, and to simplify the problem by

DBD
PUC-Rio - Certificação Digital Nº 1613336/CA



Chapter 4. Bayesian-BPDN (B-BPDN) Algorithm for Direction of Arrival
Estimation 59

solving for components that are straightforward [41]. It uses an interior
point method with complexity O(n3) [29], where n is the dimension of
the vector that it is minimized.

For this reason, the computational complexity of the subproblem solver
in the inner loop is O(64K3N3) due to the dimension of the resultant
vector ẑ after the transformations is 4KN , see equation (4-9).

Finally, the computational complexity of B-BPDN can be approximated
to O(64K3N3 + PMN). Note that if we compare this result with the
complexity of solving the BPDN problem applied others well known
techniques as SPGL1, see Table 2.1, the computational complexity of
the B-BPDN algorithm is considerably reduced for the case when the
size of the problem is greater than the number of available snapshots,
i.e., P >> N .

4.3
Simulations Results

In this section we perform several simulation experiments to test the
proposed B-BPDN.

Figure 4.1 represents a scenario with K=2 sources which are assumed
uncorrelated complex normal random variables with zero mean and variance
σ2
s =1 and located at the angles θ1 = 4.93◦ and θ2 = 10.01◦, the RMSE is

plotted over the SNR with the number of antenna elementsM = 13 for N = 2,
Nmax = 20 and λ = 2σ2

n. For evaluating the performance of B-BPDN, we
compare it with the SPGL1 algorithm whose Matlab code is available in [42],
and with others subspaces-based and greedy algorithms.

We can appreciate that the gap between the performance of the algo-
rithms is considerable and the proposed B-BPDN shows the best performance.

In another simulation example in Figure 4.2, we set M = 8, N = 2
and the number of sources is increasing to three which are located at the
angles θ1 = 4.93◦, θ2 = 10.01◦ and θ3 = 14.9403◦. We keep the values of
other parameters as before. Note that B-BPDN performs better than SPGL1
even with the decrease of number of antenna elements and the increase of the
number of sources. It is also superior to the other techniques.
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Figure 4.1: RMSE vs. SNR for M = 13 and N = 2
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Figure 4.2: RMSE vs. SNR for M = 8 and N = 2
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For evaluating the computational complexity we simulate three different
scenarios and compare the simulation times of both algorithms.

– Case 1: corresponds to a scenario of M = 15, N = 2, two sources which
are located at the angles θ1 = 4.93◦, θ2 = 10.01◦

– Case 2: corresponds to a scenario of M = 50, N = 10, two sources which
are located at the angles θ1 = 4.93◦, θ2 = 10.01◦

– Case 3: corresponds to a scenario of M = 100, N = 20, three sources
which are located at the angles θ1 = 4.93◦, θ2 = 10.01◦ and θ3 = 14.9403◦.

The SNR is set to 10 dB. Table 4.1 shows the obtained results. It can
be noticed that the complexity of B-BPDN is inferior for all the cases which
confirm that the performance of a Bayesian selection before solving the BPDN
problem reduces the computational complexity of the `1 regularized problem.
We also provide the running times of the RMC-IHT algorithm.

Table 4.1: Running Times in seconds

Case SPGL1 B-BPDN RMC-IHT
Case 1 1.5228 0.0592 0.0934
Case 2 4.2892 0.0806 0.1209
Case 3 5.9227 0.1496 0.1848

In order to see how the correlation among the sources affects the
performance of the B-BPDN algorithm, we run a simulation for a scenario with
three correlated sources which are located at the angles θ1 = 4.93◦, θ2 = 10.01◦

and θ3 = 14.9403◦. The correlation coefficient is ρ = 0.9, M = 10 and N = 10.
Figure 4.3 shows that the performance of B-BPDN is also superior to SPGL1
in this kind of scenarios.

The simulation results reveal that the proposed B-BPDN algorithm
perform better than the subspaces-based methods and SPGL1 algorithm
in scenarios with a limited number of snapshots and low values of SNR.
Moreover, the computational complexity of B-BPDN is considerably inferior
to SPGL1 for case when the size of the grid is much larger than the number of
available snapshots. Therefore, B-BPDN is advantageous for scenarios where
a exhaustive search is required, i.e. for large sampling grids.

Finally, Figure 4.4 represents a comparison among the proposed algo-
rithms in this thesis in a scenario with M = 10, N = 2 and two sources which
are located at the angles θ1 = 4.93◦ and θ2 = 10.01◦.
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Figure 4.3: RMSE vs. SNR for M = 10 and N = 10
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Figure 4.4: RMSE vs. SNR for M = 10 and N = 2
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5
Conclusions and Future Works

In this thesis we have considered the problem of direction finding using
sensor array by transforming it into the problem of sparse signal representation.
A review of the principle sparse recovery techniques based on `p penalties with
p ≤ 1 has been also presented. In the case of the `0 penalty due to the NP-hard
nature of the problem, different approaches using greedy algorithms have been
described. For optimization techniques involving `1 penalties which leads to
the convex optimization problem, we have used a formulation based on the
basis pursuit denoising problem.

In Chapter 3, two Bayesian approaches to the IHT algorithm have been
developed. The RMC-IHT algorithm generates a set of potential candidate
supports and applies a Bayesian criterion, based on the computation of the
MAP estimator of the signal, for selecting the best candidate at each iteration.
We have also developed an extension of this algorithm for the case of a scenario
with correlated sources.

The BHT which uses the conditional probability associated at each atoms
for transforming the deterministic hard thresholding operator in a Bayesian
operator. The benefits of using RMC-IHT and BHT are mainly that they
are able to estimate the DoAs with a lower RMSE than previously reported
techniques in scenarios with only a few available snapshots. RMC-IHT is
advantageous for scenarios with large-scale antenna array and only a few
snapshots and BHT is well suited for scenarios with a moderate number of
sensors and a few snapshots. Moreover, this is also noticed in the case of
correlated sources that RMC-IHT performs better than other techniques.

In Chapter 4, a novel way of incorporating prior knowledge for solving
the BPDN problem is proposed. Having knowledge of the atoms with highest
probabilities of belonging to the support of the sparse signal, the optimiza-
tion problem is reduced to the subspace determined for these atoms. As a
consequence the estimation performance of signals from unknown directions is
substantially improved and the computational complexity is reduced.

Simulation results shows that the utilization of the Bayesian algorithms
which take into account the a priori knowledge of the signal distribution provide
more accurate signal recovery than non-Bayesian algorithms.
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The proposed algorithms in this thesis can be considered for future
works in other fields of application, for example in image denoising and
beamforming problems. Moreover, the proposed Bayesian algorithms can be
extended to the cases where the sparse signal and the noise have non-Gaussian
prior distributions. This is especially important when dealing with heavy-
tailed distributions, since the estimators developed under Gaussian assumption
perform poorly in the presence of outliers.
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A
The Cramer Rao Bound

The Cramer Rao inequality establishes a lower bound on the variance
of any unbiased estimators for nonrandom unknown parameter estimation
problems. It is used to evaluate potential estimators. If an unbiased estimator
meets the CRB with an equality, that means that the task of search for a
good estimator is over, we cannot get the variance any lower (of course there
is always a possibility of considering other metrics of merit) [1].

Theorem (Cramer Rao Inequality): If an estimator θ̂(x) is unbaised
(E[θ̂(x)] = θ), then

V ar[θ̂(x)] ≥
[∂lnpx(x|θ)

∂θ

]T [
∂lnpx(x|θ)

∂θ

]−1

=
(
−E

[
∂2lnpx(x|θ)

∂2θ

])
(A-1)

where the probability px(x|θ) is assumed to be strictly positive and twice
continuously differentiable

The matrix Ix(θ) = −E
[
∂2lnpx(x|θ)

∂2θ

]
is called the expected Fisher infor-

mation matrix. It is dependent of x but varies with θ, so the bound is a function
of the unknown parameter. An estimator meeting the CRB for every value of
θ is labeled an efficient estimator. If an estimator is efficient then it is also the
minimum variance unbiased estimator [20].
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