

Eleazar Cristian Mejia Sanchez

Desenvolvimento de uma Máquina Tração-Torção de Ensaios de Fadiga para Avaliação de Modelos de Plasticidade Incremental

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA

Programa de Pós-Graduação em Engenharia Mecânica

Orientador: Prof. Marco Antonio Meggiolaro

Rio de Janeiro, Maio de 2014

Eleazar Cristian Mejia Sanchez

Desenvolvimento de uma Máquina Tração-Torção de Ensaios de Fadiga para Avaliação de Modelos de Plasticidade Incremental

Tese de Doutorado

Tese apresentada ao programa de Pós-graduação em engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Marco Antonio Meggiolaro

Volume I

Rio de Janeiro, Maio de 2014

Eleazar Cristian Mejia Sanchez

Desenvolvimento de uma Máquina Tração-Torção de Ensaios de Fadiga para Avaliação de Modelos de Plasticidade Incremental

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marco Antonio Meggiolaro Orientador Departamento de engenharia Mecânica – PUC-Rio

Prof. Jaime Tupiassú Pinho de Castro Departamento de engenharia Mecânica – PUC-Rio

Prof. Mauro Speranza Neto Departamento de engenharia Mecânica – PUC-Rio

Profa. Deane de Mesquita Roehl Departamento de Engenharia Civil – PUC-Rio

> Prof. Nestor Zouain Pereira UFRJ

> > Prof. Max Suell Dutra UFRJ

Prof. Timothy Hamilton Topper Waterloo University

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de Maio de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eleazar Cristian Mejia Sanchez

Engenheiro Mecatrônico egressado da Universidad Nacional de Ingenieria (Peru), possui mestrado em Engenharia Mecânica pela Pontifícia Universidade Católica de Rio de Janeiro (PUC-Rio) com ênfase em Automação Industrial e Robótica

Ficha Catalográfica

Mejia Sanchez, Eleazar Cristian Desenvolvimento de uma máquina tração-torção de ensaio de fadiga para avaliação de modelos de plasticidade incremental / Eleazar Cristian Mejia Sanchez; orientador: Marco Antonio Meggiolaro. 2014. v.,189 f. il.(color); 29,7 cm Tese (doutorado) – Pontifícia Universidade Católica de Rio de Janeiro, Departamento de Engenharia Mecânica, 2014. Incluí bibliografia. 1. Engenharia Mecânica - Teses. 2. Máquina de fadiga biaxial. 3. Fadiga Multiaxial. 4. Plasticidade Incremental. 5. Controle Sliding. 6. Célula de carga e torque. I. Meggiolaro, Marco Antonio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Ao senhor Jesus Cristo, meu pai Jesus Israel, minha mãe Agripina, meus irmãos Ronald e Liliana; e meus amigos.

Agradecimentos

Ao Professor Marco Antonio Meggiolaro pela paciência e orientação durante o desenvolvimento do curso de doutorado.

Aos professores Jaime Tupiassú Pinho de Castro, Timothy Topper, José Luis Freire e Ronaldo Vieira pelos contínuos ensinamentos e lições de vida.

Ao Gerardo Castillo, Marco Perez, Jorge, Marco, Leonardo, Geancarlos, Jaiminho, Mourad amigos e colegas de laboratório.

A meu irmão Ronal, pelo apoio.

A todos as amizades que fiz durante o curso.

Aos professores da PUC - Rio pelo ensino.

Ao Departamento de Engenharia Mecânica da PUC - Rio e seus funcionários, pela colaboração comigo.

A CAPES Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior pela ajuda financeira.

A FAPERJ Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro pela ajuda financeira.

A todas aquelas pessoas que de alguma outra forma participaram no desenvolvimento da tese.

Resumo

Mejia Sanchez, Eleazar Cristian; Meggiolaro, Marco Antonio. **Desenvolvimento de uma Máquina Tração-Torção de Ensaio de Fadiga para Avaliação de Modelos de Plasticidade Incremental.** Rio de Janeiro, 2014. 189p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A avaliação experimental de modelos de plasticidade incremental e a predição da vida à fadiga sobre cargas combinadas requer o uso de máquinas de testes multiaxiais. Neste trabalho é desenvolvida uma máquina tração-torção (MTT) para avaliar modelos de plasticidade incremental. Este sistema eletromecânico utiliza como atuadores principais dois motores de corrente contínua conectados a caixas de redução para gerar os carregamentos de tração axial e/ou torção. O projeto da MTT compreende a análise de sua integridade estrutural, seu dimensionamento, e o cálculo da vida à fadiga de seus principais componentes; o projeto e desenvolvimento de uma célula tração-torção (LTC - load torque cell); o desenvolvimento e implementação das técnicas de controle; e finalmente sua construção e avaliação. Uma técnica de controle PID por modos deslizantes (PID *Sliding Mode control*) foi especialmente desenvolvida para esta máquina, consistindo em aplicar um sinal de controle descontínuo que força o sistema a deslizar ao longo de uma superfície de convergência. Esta técnica de controle tem a capacidade de controlar continuamente a força axial e/ou o torque aplicado ao corpo de prova de maneira independente, o que permite gerar histórias de cargas não-proporcionais. Os métodos de controle são implementados em uma plataforma computacional em tempo real CompactRio. Deste modo, é possível gerar uma máquina de ensaios de fadiga multiaxial compacta, de fácil manuseio, que não precise de um sistema de controle complexo, e a um baixo custo. A máquina traçãotorção foi projetada para atender a uma ampla gama de ensaios de fadiga multiaxial, com uma capacidade de força axial máxima de ± 200 kN e torque máximo de ± 1300 N.m. O desempenho da MTT foi avaliado experimentalmente através de ensaios de plasticidade incremental. Para tanto, foram usados corpos de prova de tração-torção para medir seus comportamentos sobre cargas multiaxiais. Ensaios de encruamento não-proporcional, ratcheting (fluência cíclica) multiaxial e ratcheting uniaxial

foram realizados em corpos de prova de aço inox 316, aço 1020, alumínio 7075 e alumínio 6063 na MTT, assim como em uma máquina Instron de 100 kN. Um simulador de plasticidade incremental para carregamentos de tração-torção foi desenvolvido, incorporando o modelo de encruamento cinemático não-linear de Jiang-Sehitoglu, e o modelo incremental de encruamento não-proporcional de Tanaka. Os parâmetros do material foram calibrados a partir de ensaios experimentais, permitindo que as simulações fossem capazes de prever o comportamento do material sobre diferentes histórias de carregamento, assim como as taxas de encruamento não-proporcional e de ratcheting. Os experimentos e simulações confirmaram tanto a adequabilidade da MTT desenvolvida, quanto do simulador de plasticidade incremental implementado, baseado nos modelos não-lineares de Jiang-Sehitoglu e Tanaka.

Palavras-chave

Máquina tração-torção de fadiga; Fadiga multiaxial; Plasticidade incremental; Controle por modos deslizantes; Célula de carga e torque.

Abstract

Mejia Sanchez, Eleazar Cristian; Marco Antonio Meggiolaro (Advisor). **Development of a Tension-Torsion Fatigue Testing Machine to evaluate incremental plasticity models**, Rio de Janeiro, 2014. 189p. These of Doctor - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The experimental evaluation of incremental plasticity models and fatigue life prediction under combined loads requires the use of multiaxial testing machines. In this work, an axial-torsion machine (MTT) was developed to evaluate incremental plasticity models. This electromechanical system uses as a main actuators two DC motors connected to gearboxes to generate the axial and/or torsion loads. The design of axial-torsion machine comprises the analysis of its structural integrity, its dimensioning and fatigue life prediction its major components; the design and development of a load torque cell - LTC; the development and implementation of control techniques, and finally, its construction and its performance evaluation. A PID Sliding Model control technique has been specially developed for this machine, which consists in applying a discontinuous control signal that forces the system to slide along a surface convergence. This control technique has the ability to control the axial force and/or torsion applied to specimen test in an independent manner, which allows to generate a non-proportional loading histories. The control methods are implemented on a computing platform in real time CompactRio. Thus, it's possible to developed a compact multiaxial fatigue testing machine, easy to handle, which does not require a complex control system, and at a low cost. The tensiontorsion machine was designed to meet a wide range of multiaxial fatigue tests, with a maximum capacity of axial force of ± 200 kN and torque of ± 1300 N.m. The MTT performance was evaluated experimentally by incremental plasticity testing. For this purpose, tensile / torsion specimens were used to measure their behavior under multiaxial loads. Testing of non-proportional hardening, multiaxial ratcheting and uniaxial ratcheting (cyclic creep) were performed on specimens of 316 stainless steel, 1020 steel, 7075 aluminum and 6351T6 aluminum in the MTT, as well as a Instron Machine of \pm 100 kN. A simulator of incremental plasticity to tensile-torsion loads has been developed, incorporating the non-linear kinematic hardening model of Jiang-Sehitoglu, and non-proportional hardening model of Tanaka. The material parameters were calibrated using experimental tests, allowing

the simulations to predict the material behavior under different load histories, as well as rates of non-proportional hardening and ratcheting. The experiments and simulations confirmed both the suitability of the developed MTT, as well as the simulator of incremental plasticity implemented, based on non-linear models of Jiang-Sehitoglu and Tanaka.

Keywords

Tension-Torsion fatigue machine; Multiaxial fatigue; Incremental plasticity; Sliding control; Load torque cell.

Sumário

1. Introdução	21
1.1. Objetivo	21
1.2. Considerações iniciais	21
1.3. Motivação	22
1.4. Revisão bibliográfica	23
1.5. Conteúdo da tese	28
2 Fundamentos de Plasticidade Incremental	30
2.1. Introdução	30
2.2. Algoritmos de plasticidade incremental	30
2.2.1. Tensor de tensão e deformação	31
2.2.2. Redução de ordem do espaço de tensão e deformação	34
2.2.3. Incremento de deformação plástica equivalente e deformação	
plástica total	38
2.2.4. Função de escoamento e regra de fluxo	39
2.2.5. Regra do fluxo plástico no espaço desviatório 5D	40
2.3. Modelos de plasticidade incremental	43
2.3.1. Encruamento cinemático	44
2.3.2. Encruamento isotrópico	45
2.3.3. Encruamento não-proporcional	46
2.3.4. Fluência cíclica ou Ratcheting	49
	- 1
3 Simulador de Plasticidade Incremental	54
3.1. Introdução	54
3.2. Encruamento isotrópico incremental	54
3.2.1. Encruamento isotrópico baseado em deformação plana	54
3.3. Encruamento Não Proporcional Incremental	56
3.3.1. Modelo Generalizado de Tanaka	56
3.4. Modelo de encruamento cinemático múltiplas-superfícies	57
3.4.1. Representação de múltiplas-superfícies	58

3.4.2. Regras da translação das superfícies	61
3.4.3. Descrição do algoritmo	62
4. Projeto Estrutural e Modelagem da Máquina Tração-Torção	67
4.1. Introdução	67
4.2. Projeto da MTT (biaxial)	67
4.2.1. Descrição geral da MTT	67
4.2.2. Modelo simplificado da MTT	69
5 Projeto e Integração dos Atuadores e Transdutores da MTT	71
5.1. Introdução	71
5.2. Desenvolvimento da célula de carga e torque	71
5.2.1 Projeto estrutural da LTC	71
5.2.2 Configuração e conexão dos extensômetros	80
5.2.3 Fabricação da LTC	85
5.3 Calibração dos transdutores da MTT	85
5.3.1 Calibração da célula de carga e torque	86
5.3.2 Calibração do LVDT- linear	88
5.3.3 Calibração do LVDT- rotação	89
5.4. Desenvolvimento do sistema experimental MTT	90
5.4.1. Conexões elétricas da MTT	91
5.4.2. Módulo de controle compactRio	92
5.4.3 Software desenvolvido em LabVIEW	94
	01
6. Sistema de Controle	95
6.1. Introdução	95
6.2. Controle PID	96
6.2.1. Controle proporcional (P)	97
6.2.2. Controle integral (I)	97
6.2.3. Controle derivativo (D)	98
6.2.4. Saída do controlador u(k)	99
6.3. Controle por modos deslizantes " sliding mode control - SMC"	100
6.3.1. Superfície de deslizamento	100
6.3.2. Lei de controle	102

6.3.3. O fenômeno de vibração "Chattering"	102
6.4. Aplicação da técnica de SMC na MTT	103
6.5. Resultados experimentais das técnicas de controle	105
7. Resultados Experimentais	116
7.1. Introdução	116
7.2. Resultados experimentais do modelo de fluência cíclica	
(ratcheting)	116
7.2.1. Determinação das propriedades do aço 1020 e alumínio 63	51T6116
7.2.2. Fluência cíclica (<i>Ratcheting</i>) uniaxial	120
7.2.3. Fluência cíclica (<i>Ratcheting</i>) multiaxial	128
7.3. Resultados experimentais do modelo de encruamento não	
proporcional	133
7.3.1. Determinação das propriedades do material	133
7.3.2. Levantamento de propriedades Al-7075 e aço inox 316	133
7.3.3. Encruamento não proporcional do Al-7075	139
7.3.4. Encruamento não-proporcional Aço Inox-316	144
8 . Conclusões e Trabalhos Futuros	158
8.1. Conclusões	158
8.2. Trabalhos Futuros	160
Referências Bibliográficas	161
Apêndice A	169
A.1 Determinação da força e momento da MTT	169
A.2 Analise da rigidez axial e torsional da MTT (biaxial)	171
A.2.1 Calculo da rigidez axial	171
A.2.2 Cálculo da rigidez torsional	180
A.3 Rigidez axial do modelo simplificado da MTT no Ansys.	185

Lista de figuras

Figura 1.1. Ensaio de Fadiga	22
Figura 1.2 Máquina Instron 8802TT para ensaios de fadiga multiaxial [17]	26
Figura 1.3 Máquina MTS tração torção modelo 370.02 [19]	26
Figura 2.1 A superfície de escoamento de Mises no plano $ \sigma_x - \sigma_y $	
com o vetor normal e a regra de fluxo plástico	39
Figura 2.2 Superfície de escoamento de Mises no espaço de tensão	
desviatório 6D e 5D, onde ilustra-se o vetor normal \overline{n} e a regra de fluxo	41
Figura 2.3 Encruamento cinemático	44
Figura 2.4 Encruamento isotrópico para um material que encrua	45
Figura 2.5 Efeito da carga cíclica NP sobre o encruamento NP, e laços	
de histerese proporcional e NP causado pela mesma gama $\Delta \varepsilon$ num	
aço AISI 304	47
Figura 2.7 Ratcheting uniaxial para um material submetido a uma história	
de tensões desequilibrada entre $\sigma_{max} > S_{Yc} e - S_{Yc}$.	50
Figura 2.8 Ratcheting uniaxial para um material submetido a uma história	
de tensões desequilibradas com (a) alta e (b) baixa amplitude de deformação	51
Figura 3.1. (a) Superfície de escoamento, encruamento e falha no sub	
espaço $\sigma_x x \tau_{xy} \sqrt{3}$ de E _{5s} e (b) raios correspondentes r _i e o módulo de	
plasticidade generalizado Ci	59
Figura 3.2 Superfície de escoamento, encruamento e falha no sub	
espaço desviatório $S_1 \times S_2$ para $M = 3$, apresentando o vetor de translação	
da superfície de escoamento $\overline{\alpha}$ '	60
Figura 3.3 Configurações (a) sem encruamento e (b) saturado das	
superfícies consecutivas i e i+1	61
Figura 4.1 Modelo Inicial da Máquina Tração Torção	68
Figura 4.2 Modelo simplificado da MTT	69
Figura 5.1 Seção circular oca da estrutura da LTC	72
Figura 5.2 Estado de tensões típico através do Círculo de Mohr	72
Figura 5.3 Estado de deformações típicos, através do Círculo de Mohr	74

Figura 5.4 Deformações da LTC analisadas no Ansys.	76
Figura 5.5 Esquema geral da LTC	76
Figura 5.6 a) Perfil melhorado do entalhe b) Comparação de K_t do	
perfil com r constante, e melhorado	77
Figura 5.7 Cálculo do fator de concentração de tensão no entalhe melhorado	77
Figura 5.8 Ponte de Wheatstone	80
Figura 5.9 Seção central da LTC	82
Figura 5.10 Conexão dos extensômetros na LTC, como célula de carga	83
Figura 5.11 Conexão dos extensômetros na LTC como célula de carga	84
Figura 5.12 Conexão dos extensômetros na LTC	85
Figura 5.13 Sistema de calibração da célula de carga	86
Figura 5.14 Curva de Calibração da LTC - célula de carga	87
Figura 5.15 Curva de Calibração da LTC - célula de torque	87
Figura 5.16 Sistema de calibração do LVDT Linear DT-100A	88
Figura 5.17 Calibração do LVDT Linear DT-100A	88
Figura 5.18 Calibração do LVDT Linear DT-100A para rotação	89
Figura 5.19 Calibração do LVDT rotação DT-100A	90
Figura 5.20 MTT desenvolvida no Laboratório de Fadiga - PUC-Rio	91
Figura 5.21 Esquema de conexões elétricas e do sistema de controle	91
Figura 5.22 Controlador cRIO-9004	92
Figura 5.23 Arquitetura interna do módulo FPGA	93
Figura 5.24 a) módulo NI-9263 e b) módulo NI-9237	94
Figura 5.25 Interação dos ambientes de programação do controlador	94
Figura 6.1 Sistema de controle em malha fechada	95
Figura 6.2 Resposta ao degrau do sistema	96
Figura 6.3 Diagrama de Blocos de um controlador PID	99
Figura 6.4 Superfície de deslizamento (Adaptado de Slotine e Li, 1991)	101
Figura 6.5 O fenômeno de Chattering (Adaptado de Slotine e Li, 1991)	103
Figura 6.6 Esquema do controle de força da MTT	103
Figura 6.7 Esquema geral do sistema de controle da MTT	105
Figura 6.8 Controle por modos deslizantes para um carregamento	
tração de \pm 30 kN	105
Figura 6.9 Interface de controle no ambiente <i>RealTime</i>	106

Figura 6.10 Controle por modos deslizantes para um	
carregamento de \pm 50 kN	107
Figura 6.11 Controle de torque por modos deslizantes para	
torque de \pm 71,6 N.m	108
Figura 6.12 Controle <i>PID sliding</i> para um torque solicitado de \pm 71,6 N.m	108
Figura 6.13 Controle <i>PID sliding</i> para um torque solicitado de \pm 140 N.m	109
Figura 6.14 Controle de força (± 20 kN) e do torque	
desejado (\pm 71,6 N.m) 90° fora de fase	111
Figura 6.15 a) Tensão normal σ e cisalhante $\tau\sqrt{3}$ b) Gráfico σ_x e	
$\tau_{xy}.\sqrt{3}$ 90° for ade fase	112
Figura 6.16 Controle de força (± 50 kN) e do torque desejado (± 189 N.m)	
90° fora de fase	114
Figura 7.10 a) Tensão normal $\sigma = 107$ MPa e cisalhante	
$\tau\sqrt{3} = 107$ MPa b) Gráfico σ e $\tau\sqrt{3}$ 90° fora de fase	115
Figura 7.1 Curva $\sigma_x x \varepsilon_x$ (a) Alumínio 6351T6 e (b) Aço 1020	117
Figura 7.2 Ajuste do coeficiente H e do expoente h do Al-6351T6	118
Figura 7.3 Curva monotônica do Al-6351T6	118
Figura 7.4 Curva monotônica do Aço 1020	119
Figura 7.5 Laço estabilizado, sob o controle de deformação de $\Delta \varepsilon = \pm 2 \%$.	120
Figura 7.6 Condição inicial para o ensaio de ratcheting uniaxial	121
Figura 7.7 Comportamento de fluência cíclica (ratcheting) do aço 1020.	122
Figura 7.8 Laços de histerese gerados por ratcheting uniaxial em aço 1020.	122
Figura 7.9 Deformação de ratcheting acumulada do aço 1020.	123
Figura 7.10 Taxa de deformação de ratcheting do aço 1020.	124
Figura 7.11 Laço de histerese estabilizado do Alumínio 6351T6	124
Figura 7.12 Condição inicial para o ensaio de ratcheting uniaxial do	
Al-6351T6	125
Figura 7.13 Ensaio de ratcheting uniaxial Al-6351T6 com $\sigma_a = 261$ MPa.	126
Figura 7.14 Deformação de ratcheting acumulada para o Al-6351T6	126
Figura 7.15 Taxa de deformação de ratcheting para $\sigma_a = 261$ MPa	127
Figura 7.16 Ensaio de ratcheting uniaxial do Al-6351T6 com $\sigma_a = 285$ MPa	127

Figura 7.17 Deformação de ratcheting uniaxial acumulada	128
Figura 7.18 Taxa de incremento da deformação de ratcheting	128
Figura 7.19 Corpo de prova Tubular ratcheting multiaxial	129
Figura 7.20 Determinação das propriedades do Alumínio 6351Tx	129
Figura 7.21 Deformação cisalhante gerada pelo Torçor cíclico	130
Figura 7.22 Comportamento da deformação axial - Ratcheting multiaxial	130
Figura 7.23 Incremento da deformação axial para	
$\sigma_x = 430$ MPa e T = 10 N.m	131
Figura 7.24 Deformação cisalhante gerado pelo T = ± 20 N.m	131
Figura 7.25 Incremento da deformação axial para $T = 20$ N.m	132
Figura 7.26 Incremento da deformação axial para	
$\sigma_x = 430$ MPa e T = 20 N.m	132
Figura 7.27 Ajuste dos parâmetros de encruamento cíclico do Al-7075	134
Figura 7.28 Curva $\sigma x \varepsilon$ cíclica do Al-7075 ajustando os bicos dos laços.	134
Figura 7.29 Laços estabilizados do Alumínio 7075.	135
Figura 7.30 Determinação dos parâmetros $E \in v$ do alumínio 7075.	136
Figura 7.31 Ajuste dos parâmetros de encruamento cíclico do	
Aço Inox 316.	136
Figura 7.32 Curva $\sigma x \varepsilon$ cíclica do Aço inox-316 ajustando os	
bicos dos laços.	137
Figura 7.33 Laços estabilizados do Aço inox 316.	138
Figura 7.34 Determinação dos parâmetros $E \in v$ do aço Inox-316.	139
Figura 7.35 Forma e dimensões do corpo de prova - ensaio	
não proporcional.	140
Figura 7.36 Ensaio EN do Al-7075 com $\varepsilon_x = 0,2 \%$ a) laço histerese	
σ_x vs ε_x , b) laço histerese τ_{xy} vs γ_{xy} , c) trajetória das tensões	
σ_x vs τ_{xy} . $\sqrt{3}$, d) trajetória de deformação ε_x vs γ_{xy} / $\sqrt{3}$.	141
Figura 7.37 Ensaio EN do Al-7075 com $\varepsilon_x = 0,4 \%$, a) laço histerese	
σ_x vs ε_x , b) laço histerese τ_{xy} vs γ_{xy} , c) trajetória das tensões	
σ_x vs τ_{xy} . $\sqrt{3}$, d) trajetória de deformação ε_x vs γ_{xy} / $\sqrt{3}$.	143
Figura 7.38 Trajetória de deformação ε_x vs $\gamma_{xy} / \sqrt{3}$ no ensaio NP	

do alumínio 7075 para uma deformação de $\varepsilon_x = 0,2$ % e $\varepsilon_x = 0,4$ %	144
Figura 7.39 Ensaio EN do Inox-316 com $\mathcal{E}_x = 0,1 \%$, a) trajetória	
das tensões σ_x vs τ_{xy} . $\sqrt{3}$, b) laço histerese σ_x vs ε_x , c) laço histerese	
$ au_{xy}$ vs γ_{xy} , d) trajetória de deformação ε_x vs γ_{xy} / $\sqrt{3}$.	147
Figura 7.40 Ensaio EN do Inox-316 com $\mathcal{E}_x = 0,25 \%$, a) trajetória	
das tensões σ_x vs τ_{xy} . $\sqrt{3}$, b) laço histerese σ_x vs ε_x , c) laço histerese	
$ au_{xy}$ vs γ_{xy} , d) trajetória de deformação experimental ε_x vs γ_{xy} / $\sqrt{3}$,	
e) trajetória de deformação simulada ε_x vs $\gamma_{xy} / \sqrt{3}$, f) trajetória	
de deformação estabilizada, experimental e simulada.	151
Figura 7.42 Ensaio EN do Inox-316 com $\varepsilon_x = 0,31 \%$, a) trajetória	
das tensões σ_x vs τ_{xy} . $\sqrt{3}$, b) laço histerese σ_x vs ε_x , c) laço histerese	
$ au_{xy}$ vs γ_{xy} , d) trajetória de deformação experimental ε_x vs $\gamma_{xy}/\sqrt{3}$,	
e) trajetória de deformação simulada ε_x vs $\gamma_{xy} / \sqrt{3}$, f) trajetória de	
deformação estabilizada experimental e simulado.	155
Figura 7.43 Trajetória de deformação ε_x vs $\gamma_{xy} / \sqrt{3}$ no ensaio de	
encruamento NP do Aço inox-316 com $\varepsilon_x = 0,1 \%$, $\varepsilon_x = 0,25 \%$	
e $\varepsilon_x = 0,31 \%$.	156
Figura 7.44 Trajetória de deformação ε_x vs $\gamma_{xy} / \sqrt{3}$ no ensaio de	
encruamento NP do Aço inox-316 com $\varepsilon_x = 0,1 \%$, $\varepsilon_x = 0,25 \%$	
e $\varepsilon_x = 0,31 \%$	157
Figura A.1 Tensão de cisalhamento a) tubo circular e b) eixo circular	
em torção	169
Figura A.2 Corpo de prova de tubular	170
Figura A.3 Modelo simplificado da MTT	172
Figura A.4 Modelo deformado da MTT pela força trativa	172
Figura A.5 Separação das vigas e colunas da MTT submetidas à tração	173
Figura A.6 Diagrama de momentos fletores da MTT	175
Figura A 7 (a) Modelo simplificado da MTT no Etools e	

(b) deflexão da MTT, devido à carga trativa	177
Figura A.8 Simulações do modelo simplificado da MTT (a) Tensão e	
(b) deflexão da MTT, devido à carga trativa	178
Figura A.9 Deformação na direção "y" do modelo simplificado	
da MTT no Ansys	179
Figura A.10 Modelo simplificado da MTT sobre Torção	180
Figura A.11 Modelo deformado da MTT pela Torção.	181
Figura A.12 Separação das vigas e das colunas da MTT	
submetido à torção.	181
Figura A.13 Deslocamento dos extremos da MTT submetido a torção.	182
Figura A.14 Rotação da viga AB e CD da MTT submetido à torção.	182
Figura A.15 Modelo simplificado da MTT (a) Tensão e	
(b) deflexão da MTT devido ao torçor	183
Figura A.16 Deformação na direção " z " do modelo simplificado	
da MTT gerado pelo torçor no Ansys	184
Figura A.17 Tensões no modelo simplificado da MTT devido à	
carga trativa.	185
Figura A.18 Deslocamento na direção " x " do modelo simplificado	
da MTT	186
Figura A.19 Análise da falha por flambagem da MTT em	
compressão pura	186
Figura A.20 Tensões no novo modelo da MTT devido a torção pura.	187
Figura A.21 Deslocamento na direção " z " do novo modelo da MTT	188
Figura A.22 Análise da falha por flambagem da MTT em torção pura	188
Figura A.23Tensões de Mises devido a carregamento combinado	
sobre a MTT	189

Lista de tabelas

Tabela 1. Transformação direta e inversa entre o espaço 6D e 5D,	
na forma matricial	37
Tabela 2. Transformação direta e inversa entre o espaço 6D e 5D,	
na forma escalar	37
Tabela 3. Coeficiente de Encruamento NP.	48
Tabela 5. Constantes do material utilizadas para o projeto LTC	75
Tabela 5. Influência da espessura na vida à fadiga da LTC	79
Tabela 6. Sensibilidade mecânica e elétrica e faixa de forças da LTC	80
Tabela A.1 Influência do diâmetro na rigidez axial e torsional	185