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Abstract

Tiecher, Ricardo Fernando Paes; Parise, José Alberto dos Reis;
Motta, Samuel Yana. Modeling of New Commercial Refri-
geration Systems Operating with Low-GWP Fluids. Rio de
Janeiro, 2014. 219p. Dissertação de Mestrado — Departamento de
Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

Comparison of new and conventional commercial refrigeration systems,

operating with typical and alternative refrigerants, was performed. First,

thermodynamic models for the pumped CO2 and the CO2 booster cycles

were developed. The COP and the annual energy consumption of these novel

designs were compared to those of the traditional direct expansion system in

different geographic locations, to take into account year-round climate data.

Refrigerant R404A, CO2 and new low-GWP non-azeotropic blends were

considered as working fluids in this analysis. Second, a component-based

lumped parameter model to simulate the steady-state operation of a multi-

compressor multi-evaporator direct expansion system was developed. The

modeling effort considered a multizone approach for the tube-and-fin heat

exchangers, as well as addressing enhanced internal surfaces and different

fin patterns. Predicted results were compared with experimental data, and

a life cycle climate performance (LCCP) analysis was performed to compare

the environmental impact of new low-GWP refrigerants.

Keywords
commercial refrigeration. simulation. pumped CO2. CO2 booster.

energy consumption. low-GWP fluids. environmental impact. LCCP.
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Resumo

Tiecher, Ricardo Fernando Paes; Parise, José Alberto dos Reis;
Motta, Samuel Yana. Modelagem de Novos Sistemas de Re-
frigeração Comerciais Operando com Fluidos de Baixo
GWP. Rio de Janeiro, 2014. 219p. Dissertação de Mestrado —
Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Configurações novas e tradicionais de sistemas de refrigeração comerciais

foram comparadas considerando sua operação com fluidos refrigerantes al-

ternativos. Primeiramente, desenvolveram-se modelos termodinâmicos para

o ciclo transcŕıtico de dois estágios com refrigerante CO2 (CO2 booster) e

para o sistema indireto com CO2 bifásico operando como fluido secundário

(pumped CO2). Tais tecnologias foram, em seguida, comparadas com o ciclo

de expansão direta (DX) por meio do COP e do consumo anual de ener-

gia. Nessa análise, R404A, CO2, e misturas não-azeotrópicas de baixo GWP

foram utilizados como fluidos refrigerantes. Em segundo lugar, desenvolveu-

se modelo de parâmetros concentrados para simular a operação em regime

permanente do sistema de expansão direta com múltiplos compressores e

evaporadores. O método multizona foi utilizado na modelagem dos trocado-

res de calor tubo-e-aleta, com a consideração de diferentes tipos de aletas e

superf́ıcies internas para os tubos. Resultados da simulação foram compara-

dos com dados experimentais e, em seguida, calculou-se o impacto ambiental

do sistema operando com diferentes refrigerantes de baixo GWP, por meio

da metodologia LCCP.

Palavras–chave
refrigeração comercial. simulação. sistema secundário. CO2

transcŕıtico. consumo de energia. fluidos com baixo GWP. impacto

ambiental. LCCP.
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Aff — minimum free-flow frontal area [m2]

Afin — one microfin sectional area [m2]

Arh — refrigerant-side heat transfer area per unit of number of parallel circuits
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Appendix A [kPa]
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COP — coefficient of performance [-]

d — depth of the heat exchanger [m]

D — diameter of tubes [m]

Dc — fin collar outside diameter [m]

Dh — hydraulic diameter [m]

D∗
rf — adjusted inside (refrigerant-side) diameter of tubes for microfins [m]

DBD
PUC-Rio - Certificação Digital Nº 1221629/CA



Contents 17
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equipment and fluids embodied energy [kg CO2/kg rf]
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mrf — refrigerant mass or charge [kg]

ṁ — mass flow rate [kg/s]

M — molecular weight [amu]

n — number of years of lifetime in LCCP calculation [years]

Ncirc — number of equivalent, parallel refrigerant circuits [circuits]

Nf — number of fins [fins]

NT — number of tubes in the direction of air-flow (horizontally) [tubes]

Ntot — total number of refrigerant tubes [tubes]
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NTU — number of transfer units [-]

Nu — Nusselt number [-]

P — pressure [kPa]

Pinit — average pressure initialization value, Appendix A [kPa]

Pred — reduced pressure [-]

Pr — Prandtl number [-]

q — heat flux [kW/m2]

Q̇ — heat exchange rate [kW]

r — ratio of cooling loads [-]

R — thermal resistance [°C/kW]
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Re — Reynolds number [-]

Re∗ — superficial Reynolds number [-]

Rx — parameter considered in the determination of the heat transfer coeffi-
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s — specific entropy [kJ/kg°C]

sca — Cavallini constant applied in the determination of the refrigerant two-

phase heat transfer coefficient in the evaporator [-]
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scb — convective boiling two-phase multiplier applied in the determination of

the refrigerant two-phase heat transfer coefficient in the evaporator [-]

snb — nucleate boiling supression factor applied in the determination of the

refrigerant two-phase heat transfer coefficient in the evaporator [-]

ST — transversal pitch [m]

T — temperature [◦C]

Tgl — temperature glide [◦C]

T ∗
v,ds — bulk refrigerant temperature at the end of the single-phase vapor

region [°C]

U — overall heat transfer coefficient [kW/m2
°C]

v — specific volume [m3/kg]

V — velocity [m/s]

V̇ — volumetric flow rate, displacement rate [m3/s]

W — air humidity ratio [-]

Ẇ — power [kW]

WT — horizontal distance between tubes (center-to-center) [m]

We — Webber number [-]

x — vapor quality [-]

xqw — average vapor quality in mass basis [-]

Greek letters

α — film heat transfer coefficient [kW/m2
°C]

αrec — recovery/recycling factor in the LCCP calculation [% rf]

α∗
tp — condensing refrigerant heat transfer coefficient before interpolation

[kW/m2
°C]

β — indirect emission factor in LCCP calculation [kg CO2/kWh]

β1 — microfin angle [°]
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β2 — helix angle of microfins [°]

β3 — microfin height [m]

β4 — number of microfins [fins]

γ — percentage of refrigerant leak per year in the LCCP calculation [% rf/year]

γ1, γ2 — parameters for the calculation of the in-tube condensation heat

transfer coefficient [-]

δ — fin thickness [m]

∆P — pressure drop [kPa]

∆Pacc — acceleration contibution to pressure drop [kPa]

∆Pfrc — friction contibution to pressure drop [kPa]

∆T — temperature difference [◦C]

ε — roughness [m]

ε — effectiveness [-]

ζ — friction factor [-]

ζsm — smooth tubes friction factor [-]

η — efficiency [-]

ηd — fin efficiency [-]

θ — corrugation angle for wavy fin, louver angle for louvered fin [°]

κh — parameter for the calculation of the dry air-side heat transfer coefficient

for a tube with lanced plate fins [-]

κs — parameter for the calculation of the dry air-side heat transfer coefficient

for a tube with lanced plate fins [-]

λ1–λ8 — parameters for the calculation of the dry air-side heat transfer

coefficient for a tube with flat, wavy, lanced or louvered plate fins [-]

µ — dynamic viscosity [kg/ms]

ξdh, ξsp, ξba — parameters for the calculation of the in-tube condensation

pressure drop, the refrigerant two-phase heat transfer coefficient in the

evaporator [-]
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ρ — density [kg/m3]

σ — surface tension [N/m]

σa — ratio between free-flow frontal area and frontal area [-]

τ1, τ2 — parameters for the calculation of the smooth tubes friction factor [-]

φS, φF1, φF2, φy, φBe — parameters for the calculation of void fraction using

the Premoli et al. model

φi, φCal, φKH — parameters for the calculation of void fraction using the

Hughmark model

ϕ — intensive property

Φ — void fraction [-]

Υ — parameter of the compressor polynomial equation

ψ — parameter for the calculation of the bulk refrigerant temperature at the

end of the single-phase vapor region [-]

Ω — parameter for the calculation of the dry air-side heat transfer coefficient

for a tube with louvered plate fins [-]

Symbols

= — error, Appendix A [°C]

℘ — tolerance, Appendix A [°C]

Subscripts

a — air, air-side, outside

amb — ambient

avg — average, mean

bub — bubble point

bv — bypass valve

Booster — CO2 Booster refrigeration system

cd — condenser
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cf — counterflow

cond — condensing

cp — compressor

crit — critical

cv — control valve

dew — dew point

dhx — downstream heat exchanger

dl — discharge line

dry — dry portion of the evaporator

ds — desuperheating, desuperheated zone

DX — Direct Expansion refrigeration system

eq — equivalent

ev — evaporator

evap — evaporating

fl — flat fin pattern

gc — gas cooler

hs — high stage

Hugh — Hughmark model for void fraction calculation

in — inlet, entrance, entering

ind — individual (compressor or evaporator)

l — subcooled region, saturated liquid

lc — lanced fin pattern

liq — liquid phase

ll — liquid line

ls — low stage

lt — low temperature
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lv — louvered fin pattern

LT — refrigeration system for low temperature application

m — moist air conditions

max — maximum

med — average, Appendix A

min — minimum

mt — medium temperature

MT — refrigeration system for medium temperature application

na — non-azeotropic refrigerant mixture (NARM)

out — outlet, exit, leaving

pf — pure fluid

pp — pump

Prem — Premoli et al. model for void fraction calculation

Pumped — Pumped CO2 refrigeration system

rec — receiver

rf — refrigerant, refrigerant-side, inside

s — isentropic

sat — saturation

sc — subcooling, subcooled zone

sf — secondary fluid

sh — superheating, superheated zone

shx — suction heat exchanger

sl — suction line

tp — two-phase region

uhx — upstream heat exchanger

v — superheated region, saturated vapor
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vap — vapor phase

vl — vapor line

vol — volumetric

wet — wetted portion of the evaporator

wv — wavy fin pattern

xd — expansion device

Superscript

+ — new or updated value
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