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Abstract

Estrada Domech, Guillermo; Feitosa, Raul Queiroz (Advisor);
Costa, Gilson Alexandre Ostwald Pedro (Co-Advisor). An Asses-
sment of Presentation Attack Detection Methods for Face
Recognition Systems. Rio de Janeiro, 2018. 84p. Dissertação de
mestrado – Departamento de Engenharia Elétrica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

The vulnerabilities of Face Recognition Systems (FRS) to Presenta-
tion Attacks (PA) have been recently recognized by the biometric commu-
nity, but there is still a lack of generalized software-based facial Presenta-
tion Attack Detection (PAD) techniques that perform robustly in realis-
tic authentication scenarios. The main objective of this dissertation is to
analyze, evaluate and compare some of the most relevant, state-of-the-art
feature-based methods for facial PAD in a variety of conditions, considering
three of the facial spoofing databases publicly available 3DMAD, REPLAY-
MOBILE and OULU-NPU. In the current work, PAD methods based on
LBP-RGB, BSIF-RGB and IQM hand-crafted texture descriptors were in-
vestigated. Additionally, a Convolutional Autoencoder (CAE), a learned
feature descriptor, was also implemented and evaluated. Furthermore, one-
class and two-class classification approaches were implemented and evalua-
ted. The experiments conducted in this work were designed to measure the
performance of different PAD schemes in two conditions, namely: (i) intra-
database and (ii) inter-database (or cross-database). The results revealed
the effectiveness of the features learned by CAE in two-class classification
PAD schemes provide, in general, the best performance in intra-database
evaluation protocols. The results also indicate that PAD schemes based on
one-class classification approach are not inferior as compared to their two-
class counterpart in the inter-database evaluations.

Keywords
Presentation Attack Detection; Countermeasure; Antispoofing

System; Face Recognition System
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Resumo

Estrada Domech, Guillermo; Feitosa, Raul Queiroz; Costa, Gilson
Alexandre Ostwald Pedro. Avaliação de métodos de Detecção
de Fraude em Sistemas de Reconhecimiento Facial. Rio de
Janeiro, 2018. 84p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

As vulnerabilidades dos Sistemas de Reconhecimento Facial (FRS)
aos Ataques de Apresentação (PA) foram recentemente reconhecidas pela
comunidade biométrica, mas ainda existe a falta de técnicas faciais de
Detecção de Ataque de Apresentação (PAD) baseadas em software que
apresentam desempenho robusto em cenários de autenticação realistas. O
objetivo principal desta dissertação é analisar, avaliar e comparar alguns
dos métodos baseados em atributos do estado-da-arte para PAD facial
em uma variedade de condições, considerando três dos bancos de dados
de fraude facial publicamente disponíveis 3DMAD, REPLAY-MOBILE
e OULU-NPU. No presente trabalho, os métodos de PAD baseados em
descritores de texturas LBP-RGB, BSIF-RGB e IQM foram investigados.
Ademais, um Autoencoder Convolucional (CAE), um descritor de atributos
aprendidos, também foi implementado e avaliado. Também, abordagens
de classificação de uma e duas classes foram implementadas e avaliadas.
Os experimentos realizados neste trabalho foram concebidos para medir
o desempenho de diferentes esquemas de PAD em duas condições: (i)
intra-banco de dados e (ii) inter-banco de dados. Os resultados revelaram
que a eficácia dos atributos aprendidos pelo CAE em esquemas de PAD
baseados na abordagem de classificação de duas classes fornece, em geral,
o melhor desempenho em protocolos de avaliação intra-banco de dados.
Os resultados também indicam que os esquemas de PAD baseados na
abordagem de classificação de uma classe não são inferiores em comparação
às suas contrapartes de duas classes nas avaliações inter-banco de dados.

Palavras-chave
Detecção de Fraude; Contramedida; Sistema Anti-fraude; Sistema

de Reconhecimento Facial
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1
INTRODUCTION

1.1
Overview

In modern society, the relevance of biometrics recognition systems has
been reinforced by the need for the reliable identification of individuals in
real-time in many applications, which include forensics, computer security,
physical and logical access control and e-commerce, among others [1]. Tradi-
tionally, knowledge-based (e.g., passwords or PINs) and token-based (e.g., ID
cards or physical keys) mechanisms have been extensively used for identifying
individuals and user credentials [2]. However, these mechanisms have showed
to be insufficient because they can be easily lost, stolen, shared or manipulated
thereby compromising intended security. Moreover, these methods cannot pro-
vide crucial functions such as non-repudiation, or multiple instances detection
[3].

With the proliferation of web-based services (e.g., online banking, credit
card transactions) and surrounded by networks with constant information
flow, we have adopted a computerized life that relies on extensive use of
smartphones, social media, and cloud computing. Hence, it has become vital to
deploy more reliable identification systems that can provide higher degrees of
security and stronger authentication schemes. With the advent of biometrics,
it is now possible to establish an identity based on "who you are" rather than
by "what you possess", such as a physical key, or "what you remember", such
as a PIN. Biometric recognition offers a natural and reliable solution to certain
aspects of identity management, since it recognizes individuals based on their
biological and behavioral characteristics which do not normally change over
time (e.g., face, fingerprint, palmprint, iris, palm/finger vein, and voice). In the
biometric literature, these characteristics are referred to as traits, indicators,
identifiers or modalities [1].

Being intrinsically linked to the user, biometric traits can be safely argued
to have the unique advantage to truly verify that a person is in fact who he
claims to be. In this regard, face biometric offers some advantages: it is natural,
easy to use, less human-invasive, non-intrusive data and employs low-cost
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Chapter 1. INTRODUCTION 17

sensors [4]. Specially, in the context of border control, face recognition has the
obvious advantage that the comparison can be conducted with visual evidence
in a case of a false-negative decision by the system. In spite of the widespread
use of face recognition systems as an alternative solution for conventional
identification methods, recent works have revealed its vulnerability to spoofing
attacks [5].

Identity theft is an issue that hinders the general adoption of biometrics
as an actual form of identification in high-security applications [6]. In contrast
to traditional security means, face biometric information is widely available and
extremely easy to sample. We cannot claim them to be secret, once our facial
images can be captured by surveillance cameras, in a non-intrusive manner at a
long distances, or disclosed voluntarily to be shared on social media platforms.
Users should not realize that their biometric samples can be dishonestly used.
In this new scenario, attackers hack authentication procedures by capturing
and replicating facial image samples. These factors have stimulated various
researchers to address the challenges of Presentation Attack Detection (PAD),
also referred to as antispoofing countermeasures, for facial biometric systems.

It has been suggested in the past the use of multimodal biometrics
systems in order to increase authentication security [7]. However, it has been
shown in [8] that a multimodal system based on traditional fusion schemes
(i.e. Likelihood Ratio (LLR) or weighted sums), can be intrinsically less secure
than unimodal ones by spoofing only one of the biometrics (e.g., face trait).
Therefore, each biometric trait needs to be taken care of by its own specialized
countermeasures.

Today, no matter what security measures are in place, there is no system
completely spoof-proof [6]. The identification of counterfeits is a challenging
task, especially, in face verification applications. Therefore, face spoofing (or
presentation attack) concern should be well solved with high priority before
face recognition systems could be widely applied in our daily life as replacement
of traditional methods of person authentication in unsupervised environments.

1.2
Motivation

In recent years, a large variety of research in the field of the Presentation
Attack Detection (PAD) has been reported in the literature [9–12]. Among the
antispoofing techniques available, feature-level methods (usually denoted in the
literature as software-based methods) for addressing facial presentation attacks
at sensor level have received much attention of the biometric community.
This is mostly because these approaches are known to be cost-effective, easy
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Chapter 1. INTRODUCTION 18

to integrate with existing face recognition systems and do not require user
cooperation, neither specialized hardware [4].

Face recognition systems, in particular, are known to respond weakly to
presentation attacks for a long time [13] and are easily spoofed using one of
three categories of counterfeits [14]: (1) a photograph, (2) a video or (3) a
3D model of the enrolled person’s face. A considerable number of face PAD
approaches have been studied in previous works, and recently proposed meth-
ods have achieved good performances over different databases and challenges.
In this regard, handcrafted-based techniques, such as Image Quality Measure-
ment (IQM) [14], Binarized Statistical Image Features (BSIF), Local Binary
Patterns (LBP) [15], among others, have been widely applied in antispoofing
methods. Additionaly, over the past few years, Deep Neural Networks (DNNs)
have demonstrated great successes in image representation [16, 17] and has
achieved impressive results on face recognition in unconstrained environments
[18]. This has motivated some of the latest works to employ a variety of archi-
tectures based on Convolutional Neural Network (CNN), Autoencoders (AE),
among others; obtaining comparable accuracies and even outperforming pre-
viously reported, state-of-the-art methods [19–24].

Another aspect worth mentioning is the availability of large-scale pub-
lic datasets that contains a variety of spoofing data. Currently, there are
twelve face presentation attack databases that comprise most attacking sce-
narios, namely: NUAA Impostor Database [25], Yale-Recaptured Database
[26], Print-Attack Database [27], Replay Video Attack Database [9], CASIA
FAS Database [28], MSU-MFSD Database [29], GUC Light Field Face Arti-
fact Database [30], 3D Mask Attack Database [31], MSU-MFD Database [32],
REPLAY-MOBILE Database [33], MS-Face Database [34] and OULU-NPU
Face Presentation Attack Database [35].

Finally, the diversity of spoofing attacks, including new, and previously
unknown biometric artifacts based on novel technologies makes PAD an
extremely challenging issue. Traditionally, antispoofing solutions have been
developed by formulating the detection problem as a conventional two-class
discrimination task (i.e., bonafide versus attack presentation), however, some
researchers have reported that face PAD systems using such approaches have
failed to generalize across both different datasets and unseen presentation
attacks [12, 36].

Even though recently new formulations have been proposed to address
the generalization issue, including one-class classification and domain adapta-
tion approaches, a general solution is yet to be found.
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PUC-Rio - Certificação Digital Nº 1621982/CA



Chapter 1. INTRODUCTION 19

1.3
Objectives

The general objective of this dissertation is to compare some of the
most relevant state-of-the-art methods for facial Presentation Attack Detection
(PAD) in different publicly available facial spoofing databases.
Furthermore, this research pursues the following specific objectives:

1. Evaluate facial PAD techniques based on the combination of handcrafted
and learned features, with four classifiers.

2. Develop and evaluate Convolutional Autoencoder (CAE) learned fea-
tures, and compare them to some of the most relevant state-of-the-art
features, in the context of facial PAD.

3. Analyze the performance of the one-class and two-class classification
approaches in different facial PAD schemes.

4. Evaluate the performance of the implemented facial PAD techniques
considering intra-database and inter-database evaluation protocols.

1.4
Organization of the dissertation

The following parts of this work are structured as follows:

1. Chapter 2 presents the fundamental concepts of the Face Recognition
Systems (FRSs) and an overview of their vulnerable points with respect
to spoofing attacks. In this chapter some of the most relevant Presenta-
tion Attack Detection (PAD) methods for FRSs reported are introduced,
with special focus on software-based approaches.

2. Chapter 3 reviews the theoretical background of the existing facial PAD
methods assessed in this study.

3. Chapter 4 details the algorithms involved in each stage of workflow for
the implemented face PAD methods.

4. In Chapter 5, after giving a brief description of the databases used, the
intra and inter-database evaluation experiments are described, followed
by a discussion about the obtained results.

5. Chapter 6 presents the final conclusions and discusses the future direc-
tions that could be followed for the extension of this research.
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2
RELATED WORKS

This chapter introduces the fundamental concepts of Face Recognition
Systems (FRS) and its main vulnerable points to different kind of attacks.
In addition, some of the most relevant works related to Presentation Attack
Detection (PAD) techniques are presented, with emphasis on software-based
methods.

2.1
Face Recognition Systems Under Spoofing Attacks: Vulnerabilities

Since the dawn of the facial biometric technologies, the possibility of
recognition subversion systems by determined adversaries has been widely
acknowledged [37], since FRS focus on maximizing the discrimination capacity
and not in determining whether the presented trait originates from a living
legitimate client.

Attacks to biometrics systems can be classified as direct and indirect [38].
Figure 1 shows a block diagram of a typical face recognition system, indicating
vulnerable points where possible attacks can occur [37].

Signal
Processing

Modify
Biometric
Sample

2

Override
Signal

Processor

3 Modify
Probe

4

Comparator

Override
Comparator

5

Decision

Modify
Comparator

Score

8

Override
Decision
Module

9

Data
Storage6

7

Override
Biometric
Database

Modify
Biometric
Reference

Presentation
Attack

at the sensor

1

Research
Scopus

Figure 1: Possible vulnerable points in a FRS (inspired by figure in [37]).

Indirect attacks require that an intruder gains access to the internals
of the biometric systems. Once inside, indirect attackers can: tamper feature
extractors or comparators (vulnerabilities represented with red arrows 3 and
5 in Figure 1); manipulate trait references (vulnerability represented with red
arrow 6 Figure 1); override the decision module to output the intended decision
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(vulnerability represented with red arrow 9 Figure 1); or exploit possible weak
points in communication channels (vulnerabilities represented with red arrows
2, 4, 7 and 8 Figure 1). On the other hand, direct attacks (vulnerability
represented with red arrow 1 Figure 1) are carried out at the sensor level and
involves presenting a face biometric artifact of the enrolled user as an input
to the sensor. An artifact is termed as an artificial object or representation
presenting a copy of biometric characteristics or synthetic biometric patterns
[37]. This kind of attack is known as a presentation attack: a presentation to
the biometric data capture subsystem with the goal of interfering with the
operation of the biometric system [37].

A Presentation Attack Instrument (PAI), according to [37], is defined as
the biometric characteristic or object used in a presentation attack. The PAIs
can be divided into two types: (i) Artificial, which involves artificial means for
generating a PAI; and (ii) Human characteristics, which involves using human
as PAI. Artificial PAIs can be classified as: (a) complete, which involves the
generation of a complete artificial PAI (e.g., a 2D face print, a video of a face,
a 3D face mask); and (b) partial, referring to the use of an artificial PAI that
can show partial biometric characteristics (e.g., a face video with sunglasses
or a partially visible face). Human characteristics PAIs can be classified as
(a) lifeless (a cadaver part); (b) altered (the mutation of faces and cosmetic
surgery); (c) non-conformant (e.g., the use of facial expression); (d) coerced
(e.g., using the face of an unconscious human); and (e) conformant (zero-effort
impostor attempts). In addition, PAI species (PAIS) can be termed as the
class of presentation attack instruments created using a common production
method and based on different biometric characteristics (e.g. printed photo
with a laser jet and a printed photo with an inkjet printer as photo print PAI
species).

Within the past few years, facial artificial PAIs have been one of the main
topics of the biometric community to address vulnerabilities of facial biometric
systems [3–5, 35, 39]. Facial PAIs can be easily generated from a photograph of
a genuine user who is enrolled in the biometric system. These type of artifacts
can be created using: (i) a printed photo with a laser jet [27, 28], (ii) a printed
photo with an inkjet printer [30], (iii) an electronic display of photograph or a
video of a face [33, 35], or (iv) a 3D facial mask [31].

2.2
Presentation Attack Detection Techniques

Vulnerabilities of FRSs to different types of the aforementioned PAIs
have posed a demand to detect and mitigate such attacks in order to improve
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both the intended security and reliable facial biometric recognition. According
to [37], a Presentation Attack Detection (PAD) method (also referred to
in the literature as a countermeasure or an antispoofing technique) can be
termed an automated determination of a presentation attack. From a general
overview, PAD techniques can be classified into two types: (i) hardware- and
(ii) software-based methods (as shows Figure 2). The state-of-the-art hardware-
based approaches can be divided into three types: sensor characteristics, blink
detection and challenge response.

PAD Techniques

Hardware based Software based

Texture
based

Static Dynamic

Frequency
based

Hybrid
methods

Sensor
Characteristics

Blink
Detection

Challenge
Response

Texture
based

Hybrid
methods

Motion
based

Figure 2: Classification of facial PAD methods (inspired by figures in [4, 38]).

2.3
Hardware-based Presentation Attack Detection Techniques

Hardware-based Sensor Characteristics PAD techniques exploit char-
acteristics of the capture subsystem used to sample the face image (or
video). Such characteristics depend on the type of sensor used to capture
the face data , for instance: measuring the variation of the focus with
a light field camera (LFC) [30]; measuring the reflectance from a near-
infrared/thermal/multispectral [34] face sensor; or measuring the reflectance
in a 3D scan. In spite such methods present good generalization, they have
moderate computational costs and usually rely on expensive sensors.

Blink Detection PAD techniques have been widely employed in liveness
detection as a typical countermeasure to spoofing [40, 41], which aims at
continuously tracking the spontaneous action of eye blinks that are performed
unconsciously by the user. Hence, they present a good effectiveness for display
and printed photo attack detection. However, they are associated to high
computation costs and are not effective for video replay attacks.
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Challenge Response PAD techniques require user cooperation, as their
aim is to detect voluntary (behavioral) or involuntary response (reflex reac-
tions) to specific (random) action requirements (challenges or external stimuli),
and then analyze the user activity in order to check whether the required ac-
tion was actually performed (response). For instance, some methods consists on
tracking the gaze of the user towards a lighting event (reflex) [41], or the head
movement following a random path determined by the system (behavioural)
[42]. Although, these techniques show reasonable generalization and good ef-
fectiveness for both printed photo and display attacks, they are not effective
for replay video attacks, they present some user inconveniences, and they also
require a high computation effort and dedicated hardware.

From a general perspective, one may prefer sensor characteristics-based
approaches (either by using spectral analysis or a LFC) over methods based
on blink detection and challenge response, as the latter techniques have higher
computational costs or require a high level of user collaboration; moreover,
their performance is limited to tackle the fairly simple photo and display
attacks. These constitute key points that have motivated recent research on
software-based techniques.

2.4
Software-based Presentation Attack Detection Techniques

Software-based schemes (also known as feature-based approaches) basi-
cally involve an algorithm that can discriminate between an attack presenta-
tion or a bonafide presentation. Recently reported works have demonstrated
the outstanding performances achieved by using them in a variety of scenar-
ios [12, 23, 36]. This aspect together with their well-known cost-effectiveness,
easy integration with existing FRSs, and the aforementioned drawbacks of
hardware-based techniques have motivated the development of a large number
of software-based PAD approaches. In general, software-based techniques can
be divided into two types (as shows Figure 2), namely: (i) static approaches,
designed to work on a single image without the need for temporal information;
and (ii) dynamic approaches, which exploit the temporal information from the
video replay presented to a face recognition system.

2.4.1
Software-based Static Face PAD Techniques

In spite of being designed to work on single face images, software-based
static PAD techniques can also be applied to video attacks by performing
the analysis in a frame-by-frame way and using fusion score techniques
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(e.g., majority voting) in a later stage to generate a final decision from
the combination of individual frame scores. Depending on the nature of the
subjacent algorithm, static PAD techniques can be further categorized into
three groups: (i) texture-based, (ii) frequency-based, and (iii) hybrid schemes.

Texture-based methods basically consist in the analysis of microtextural
patterns of face regions in an image, as it is likely that bonafide faces and fake
ones present different texture patterns because of image quality degradation
associated to recapturing process, and also because of disparities in surface
and reflectance properties. The broadly use of these algorithms have to do
with their ability to efficiently discriminate PAI characteristics such as the
presence of pigments (due to printing effects), specular reflection, and shades.
A representative example is the Local Binary Patterns (LBP) feature extrac-
tion method, extensively used to address these issues [15]. Määtä et al. [43]
addressed the print photo PAD problem by using three LBP variants: LBP u2

8,1

(operator in 8 neighborhood pixels located at the circle of radius 1 using uni-
form patterns), LBP u2

8,2 (operator in 8 neighborhood pixels located at the circle
of radius 2 using uniform patterns), and LBP u2

16,2 (operator in 16 neighborhood
pixels located at the circle of radius 2 using uniform patterns). Feature vectors
are created from the concatenation of the respective histograms, and used to
classify samples as bonafide or attack presentation. That study was success-
fully expanded by Chingovska et al. [9], which investigate the effectiveness of
the LBP and its extended versions proposed in [44], namely: transitional LBP
(tLBP), direction-coded LBP (dLBP), and modified LBP (mLBP); in the de-
tection of replay attacks. Furthermore, Erdogmus and Marcel have examined
the effectiveness of LBP and its variants to 3D mask presentation attacks [31].
More recently, Convolutional Neural Networks (CNNs) have been adopted for
face PAD schemes. Yang et al. [45] proposed the use of the AlexNet [16] for
feature extraction, and Support Vector Machines (SVM) for classification. Lu-
cena et al. [23] showed that pre-trained network based on ImageNet [46] can
be successfully transferred to face PAD scenario.

Frequency-based methods exploit the analysis of facial appearance prop-
erties by assuming that the disparities between genuine faces and artificial
material can be observed in single visual spectra images. The early study car-
ried out by Li et al. [47] describes a method based on the analysis of the 2D
Fourier spectrum for detecting face print photo attacks, by assuming that a
photograph contains fewer high-frequency components compared to bonafide
faces. However, although this method may work well for down-sampled photos,
it is likely to fail for higher-quality images. Recently, the same technique was
extended by Liu [48] to detect video replay attacks by computing Fourier spec-
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tra from the head hair instead of the face. Moreover, other frequency-based
features have been used for face PAD, such as Discrete Cosine Transforms
(DCTs) [49] and Difference of Gaussian (DoG) filters [28].

Hybrid methods basically involve the combination of various features,
such as: Image Quality Measurement (IQM) [14, 29, 50], shape and texture
[43], contextual information [51], micro-frequency information (2D Cepstrum)
with the Binarized Statistical Image Features (BSIF) descriptor [52], the
characterization of the defocus property of the captured face image [53], or
the use of client identity information [54].

Summing up, static algorithms are well-known for their outstanding
performance over several publicly available facial spoofing databases, and
for their low computational cost. Moreover, they are faster as compared
to dynamic-based approaches. The Major drawback of static approaches
(especially those based on texture analysis) is that rather high resolution input
images are required in order to extract the fine details needed for discriminating
bonafide from attack presentation samples.

2.4.2
Software-based Dynamic Face PAD Approaches

Dynamic approaches tend to model the temporal information from video
replay attacks by exploiting the relative motion frame-by-frame. The existing
state-of-the-art methods in the state-of-the-art can be further divided into
three types, namely: (i) texture-based, (ii) motion-based, and (iii) hybrid
schemes.

Texture-based methods exploit the dynamic texture change across the
captured video. A recent study carried out by Pereira et al. [55] extended
the analysis of facial microtexture patterns to the spatiotemporal domain by
applying LBP over Three Orthogonal Planes (LBP-TOP) [56] for describing
specific dynamic events, e.g., facial motion, shaking, and sudden characteristic
reflections of planar display media, which might differentiate bonafide faces
from fake ones.

The second type of dynamic methods capture the unconscious motion
cues particularly exhibited by the muscles in the face due to the movement
of the head [42], mouth [57] or eyes [58]. The use of motion vectors based on
optical flow to detect unconscious movement of the head was reported in [59].
Motion extraction based on optical flow was also employed in [60] to detect
photo attacks by assuming they present a certain measure of unnatural motion,
such as swinging and bending.

Finally, hybrid methods involve the analysis of both motion- and texture-
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based features, by exploiting scenic cues for determining whether a display
device is present in the observed scene. Yan et al. [61] introduced the use of
multiple scenic clues to address video replay attacks to FRSs. Furhermore,
Anjos et al. [62] used context-based motion extraction to differentiate the
face from the background. Shao et al. [63] proposed the use of deep convo-
lutional dynamic texture, coupled with a channel-discriminability constraint
to distinguish different subtle facial motion patterns between bonafide faces
and 3D masks. Feng et al. [64] presented a pre-trained layer-wise Sparse Au-
toencoder (SAE) that fuses features such as shearlet-based image quality, face
motion, and scene motion clues to discriminate between genuine faces and 3D
masks. More recently, the ability of Long Short-Term Memory (LSTM) units
to find long relations in input sequences has been combined with Convolutional
Neural Networks (CNNs) to address the facial PAD issue, showing significant
performance improvement when compared to the basic CNN architecture or
hand-crafted features [65]. Liu et al. [66] proposed a network architecture that
combines a CNN and Recurrent Neural Network (RNN) to estimate the depth
of face images and Remote Photoplethysmography (rPPG) signals of face video
to discriminate between real and fake faces.

Generally, dynamic-based PAD approaches achieve very competitive
performance. However, they cannot be used in FRSs where only a single face
image of the user is available (e.g., passport related applications). Moreover,
even in scenarios where video data has been recorded (e.g., surveillance
applications), it is not rare to find that only a very few non-consecutive frames
are suitable for facial analysis, which also limits their final use and accuracy.
These aspects have motivated current research to assess the performance of
some of the most relevant software-based static PAD techniques reported in
the literature, which will be detailed in the next chapter.
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3
THEORETICAL FOUNDATIONS

This chapter introduces the main theoretical foundations of the algo-
rithms implemented and evaluated in the current study. The general structure
of the PAD system adopted in this research is presented, as well as the algo-
rithms used in each one of its subsystems.

3.1
General Workflow of Face Presentation Attack Detection Schemes

Presentation Attack Detection (PAD) usually involves the steps shown
in Figure 3, which are similar to those of a biometric recognition process.

Feature
Extraction Artifact

Bonafide
ClassificationPreprocessing

cropped

images

extracted

features

raw data

Data
Capturing scores

Face Presentation Attack Detection (PAD) Scheme

Figure 3: Typical workflow of Presentation Attack Detection.

Firstly, the face image is acquired by the data capture subsystem using
a sensor (typically, a camera). The captured image is preprocessed in order
to prepare for the following steps. Subsequently, feature extraction is carried
out on the preprocessed image. Finally, a classifier is trained to discriminate
between bonafide and artifact presentation.

In the next sections, each step of the PAD workflow will be described.
Additionally, the fundamentals of the respective algorithms will be explained.

3.2
Preprocessing

Generally, biometric measurements are noisy and contain redundant in-
formation that is not necessary for the analysis (e.g., facial images containing
non-face background information). The aim of the data preprocessing stage
is to clean up the raw facial biometric data so that it is in the best possible
state to make recognition or PAD easier. For instance, this stage includes face
cropping from the background, photometrical enhancement (face normaliza-
tion alignment), among others.
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3.3
Feature Extraction

Although the preprocessing step produces cleaner biometric data, the
resulting data is usually very large and still contains a lot of redundant
information. The feature extraction stage involves extracting features that are
necessary for recognizing an individual or to discriminate between bonafide or
artifact presentation. It is important that reader notes that prior to feature
extraction, some algorithms (e.g., deep learning based feature extraction
methods) require a training stage (to help the extractor to learn which features
to extract) that uses training data provided by a face spoofing database.

3.3.1
Local Binary Patterns (LBP)

Originally designed for texture description, Local Binary Patterns (LBP)
operator assigns a label to every pixel of an image by thresholding the 3 × 3
neighborhood of each pixel with the center pixel value and considering the
result as a binary number (as shows equation 3-2). Then, the histogram of the
labels can be used as a texture descriptor [15]. This technique was extended
by Ojala et al. [67] in order to be able to deal with textures at different scales,
by defining the local neighborhood as a set of points evenly spaced on a circle
centered at the pixel to be labeled allows any radius R and number of sampling
points P .

LBPP,R(xc, yc) =
P∑
n=1

δ(rn − rc)× 2n−1 (3-1)

where

δ(x) =

1, if x >= 0

0, otherwise
(3-2)

rc and rn,∀n =
{
1, 2, ..., P

}
denote the intensity values of the central pixel

(xc, yc) and its P neighborhood pixels located at the circle of radius R(R > 0),
respectively.

The occurrences of the different binary patterns are collected into a
histogram to represent the image texture information. Thus, the authors
proposed another extension to the original operator as so-called uniform
patterns. LBP pattern is defined as uniform if its binary code contains at
most two transitions from 0 to 1 or from 1 to 0. For example 01110000 (2
transitions) and 00000000 (0 transitions) are uniform patterns. In the literature
a common notation for the LPB operator is: LBP u2

P,R which indicates applying
the operator in a (P,R) neighborhood, using only uniform patterns (u2). Figure
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4 shows an example of the LBP operator for a neighborhood 8 pixels located
at the circle of radius 1.

3x3 (8, 1)

Normalized Image

Circular
Neighborhood

Figure 4: The basic LBP u2
8,1 operator in a neighborhood 8 pixels located at the

circle of radius 1, modified from [68].

3.3.2
Binarized Statistical Image Features (BSIF)

Similar to the LBP, the idea of the Binarized Statistical Image Features
(BSIF) is to represent each pixel as a binary code obtained by performing a
convolution operation between the 2D images and a set of filters [69]. The
number of the used filters determines the length of the binary code. Thus,
given an image patch X of size l × l pixels and a linear filter Wi of the same
size, the filter response si is obtained as follows

si =
∑
u,v

Wi(u, v)X(u, v) (3-3)

where u and v denote the row and column of the image patch and Wi,
i =

{
1, 2, ..., n

}
denote the linear filters. The combined filter response is turn

binarized to obtain the binary string (Equation 3-4)

bi =

1, if si > 0.

0, otherwise.
(3-4)

In order to obtain a statistically meaningful representation of the image
data and efficient encoding using simple element-wise quantization, the fixed
set linear filters are learned from a set of image patches by maximizing the
statistical independence of the filter responses using independent component
analysis (ICA). We refer to [69] for further details on BSIF.
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Figure 5 shows how is performed the BSIF feature extraction using image
patches and linear filter of 9×9 size. In the figure, the symbol ”∗” denotes the
convolution operation of the image patch with each of the eight linear filters.

9x9

Normalized Image

=
Combined

Filter Responses
85 99 21

54 54 86
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57 54 85

12 54 99

13 86 21

85 99 21

54 54 86
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54 54 86
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54 54 86
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57 12 13

57 54 85

12 54 99
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57 54 85

12 54 99
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*

8 Linear Filters
of 9x9 size

Image Patch
of 9x9 size

Figure 5: Flow diagram of the BSIF feature extraction using image patches
and linear filter of 9× 9 size.

3.3.3
Image Quality Measurement (IQM)

Image Quality Assessment (IQA), also referred as Image Quality Mea-
surement (IQM), was first employed by Galbally et al. [14, 50] as a liveness
detection method, based on the assumption that a recaptured image has dif-
ferent quality than a real sample, acquired in the normal operation scenario for
which the sensor was designed. Expected quality differences between bonafide
and fake samples may include: degree of sharpness, color and luminance levels,
local artifacts, amount of information found in both types of images (entropy),
structural distortions or natural appearance [50]. For instance, face images cap-
tured from a mobile device will probably be over- or under-exposed.

Motivated by this different-quality hypothesis, the authors proposed a
system that uses a novel parameterization of 25 objective IQMs [50], which
provides a quantitative score that describes the level of distortion of the
input image. Two types of IQMs are present in the 25-feature set used as
discriminative characteristics: Full-Reference and No-Reference.

Full-Reference IQMs (FR-IQMs) rely on the availability of an ideal
undistorted reference image against which the quality of a test sample is
compared. Since in the case of spoofing attack detection there is no access
to such a sample, the authors simulate it by filtering the input image with
a low-pass Gaussian kernel (σ = 0.5 and size 3 × 3). The first 21 features
based on FR-IQMs used in [50] comprise error sensitivity measures, structural
similarity measures and information theoretic measures.
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No-Reference IQMs (NR-IQMs) (also referred as blind IQMs), unlike FR-
IQMs, try to assess the visual quality of images in the absence of a reference
by using pre-trained statistical models [70]. Depending on the images used
to train this model and on the a priori knowledge required, the methods
are coarsely divided into one of three groups: distortion-specific approaches,
training-based approaches and natural scene statistic approaches. The first 21
FR-IQMs computed in [50] were concatenated with 4 NR-IQMs to created
the final 25 image quality feature vector. A general flow diagram of the IQM
feature extraction is presented in Figure 6.

Full-Reference
IQA

No-Reference
IQA

Normalized

Facial Image

Gaussian Filtering

(3x3; σ = 0.5)

I

Î

I

25 IQA
Features

Figure 6: Flow diagram of the IQM feature extraction.

3.3.4
Image Distortion Analysis (IDA)

Image Distortion Analysis (IDA) was proposed by Wen et al. [29]
for addressing the face spoofing detection issue. Based on the analysis of
Dichromatic Reflection Model (DRM), the authors assume that the major
distortions in a face spoof image include: (i) specular reflection from the
printed paper surface or a display screen; (ii) image blurriness due to camera
defocus; (iii) image chromaticity and contrast distortion due to imperfect color
rendering of a printer or display screen; and (iv) color diversity distortion due
to limited color resolution of the printer or the display.

Firstly, the specular reflection component is separated from the input
face image or video frame by assuming that the illumination is (i) from a
single source, (ii) of an uniform color, and (iii) not over-saturated. After
computing the specular reflection component image, the specularity intensity
distribution is represented with three-dimensional features: (i) specular pixel
percentage, (ii) mean intensity of specular pixels, and (iii) variance of specular
pixel intensities.
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The blurriness features are computed based on two methods: (i) the
difference between the original input image and its blurred version, and (ii) the
average edge width in the input image. Both methods output a non-reference
(without a clear image as a reference) blurriness score between 0 and 1.

Since the absolute color distribution is dependent on illumination and
camera variations, the authors proposed invariant features to detect abnormal
chromaticity in spoof faces. Chromatic moment features are extracted by com-
puting the mean, deviation, and skewness of each channel from the normalized
facial image after converting from the RGB space into the HSV (Hue, Satura-
tion, and Value) space. Besides these three features, the percentages of pixels
in the minimal and maximal histogram bins of each channel are used as two
additional features. So the dimensionality of the chromatic moment feature
vector is 15.

According to the authors, differences between bonafide and spoof faces
can be established based on the color diversity. Color diversity features are
extracted measuring the image color diversity by first performing a color
quantization (with 32 steps in the red, green and blue channels, respectively)
on the normalized face image1. Two measurements are then joined from the
color distribution: (i) the histogram bin counts of the top 100 most frequently
appearing colors, and (ii) the number of distinct colors appearing in the
normalized face image. The dimensionality of the color diversity feature vector
is 101.

Finally, the above four types of feature (specular reflection, blurriness,
chromatic moment, and color diversity) are concatenated together, resulting
in an IDA feature vector with 121 dimensions, extracted from the facial region
containing only image distortion information. A general flow diagram of the
IDA feature extraction is presented in Figure 7.

1Usually, the face image normalization is part of the preprocessing step performed by
PAD techniques or Face Recognition Systems (FRSs), which will be detailed in Chapter 4.
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Figure 7: Flow diagram of the IDA feature extraction.

3.3.5
Autoencoders (AEs)

Basically, an auto-encoder is an unsupervised neural network that creates
a compact data representation from which the original data can be accurately
reconstructed. It usually has two parts: an encoder and a decoder [71], often
implemented by a single hidden layer network (as shows Figure 8).

The encoder, denoted as f , maps the input data x ∈ Rd, to a compact
representation z ∈ Rk through the activations of the k neurons in the hidden
layer, whereby k < d. The function f has the form:

h = f(x) = s(Wx+ β) (3-5)
where W ∈ Rk×d is the matrix containing the learned coefficients of the non-
linear transformation, β ∈ Rk denotes the bias vector and s(·) is the so-called
"element-wise activation function", which is usually a non-linear function, such
as the sigmoid or the hyperbolic tangent.

The decoder, denoted as g, aims at mapping the representation z back
to the input x, formally:

x̂ = g(z) = s(Ŵz + β̂) (3-6)
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where Ŵ is usually constrained to be equal to W T and β̂ ∈ Rd the reconstruc-
tion bias. The parameters W,β, Ŵ and β̂ are determined by minimizing the
loss function:

[W,β, Ŵ , β̂] = min
W,β,Ŵ ,β̂

N∑
i=1
‖xi − g(f(xi))‖2

2 (3-7)

where xi corresponds to the ith out of N training samples. equation 3-7 can be
solved by gradient descent methods.
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Figure 8: Autoencoder’s architecture, example case for input data x.

3.3.6
Convolutional Neural Networks (CNNs)

The Convolutional Neural Networks (CNNs, or ConvNets) is one of the
most notable discriminative deep learning approaches where multiple layers are
trained in a robust manner [72]. Briefly, the training of the network consists of
two stages, namely: (i) forward stage and (ii) backward stage. The main goal
of the first stage is to represent the input image with the current parameters
(weights and bias) in each layer. Then the loss cost is computed with the
ground truth labels by using the prediction output. In the second stage, the
gradients of each parameter are calculated with chain rules from the loss cost.
The network learning can be stopped after completing sufficient iterations of
the forward and backward stages [73].
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A typical CNN is composed by many layers with hierarchy including
layers for feature representations (or feature maps) whose convolutional layers
alternate with pooling layers, followed by some fully connected layers (as shows
Figure 9).

Figure 9: An overview of a typical CNN architecture.

Convolutional layer utilizes various kernels to convolve the whole image
as well as the intermediate feature maps, generating various feature maps.
The value of each unit in a feature map is the result of convolution operation
between the learned filter and the local region of the image, called receptive
field. This is evaluated by a nonlinear activation function:

y
(l)
j = s(

∑
i=1

wij ∗ x(l−1)
i + bj) (3-8)

where y(l) is the jth output for the lth convolution layer Cl; s(·) is a nonlinear
function like sigmoid, tanh and Rectified Linear Unit (ReLU). The symbol ∗
represents a discrete convolution operator and bj is a bias. Note that each filter
wij can connect to all or a portion of feature maps in the previous layer.

Pooling layer follows the convolutional layers in order to reduce the
dimensions of feature maps and network parameters. For example, given a
8 × 8 feature map, the output map is reduced to 4 × 4 dimensions, with a
pooling strategy which has size 2×2 and stride 2. The pooling layer reduces the
spatial resolution of the feature map, thus providing some level of distortion
invariance, because their computations take neighboring pixels into account
[74]. Although, average pooling and max pooling are the most commonly used
strategies, alternatives such as stochastic pooling [75], Spatial Pyramid Pooling
(SPP) [76] and def-pooling [77].

Fully-connected layer is usually located following the last pooling layer
in the network, as seen in Figure 9. The main goal of the fully-connected layer
is to convert the 2D feature maps into a 1D feature vector, for further feature
representation. It enables to feed forward the neural network into a vector
with a pre-defined length. It is possible to either feed forward the vector into a
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certain number categories for image classification [16] or to take it as a feature
vector for subsequent processing.

Due to the large number of parameters introduced in the deep archi-
tectures a commom problem that can occur during training is overfitting. In
addition to the stochastic pooling mentioned above, which can be used to ad-
dress the overfitting issue, some regularization techniques have been proposed
in order to improve the training performance.

For instance, the dropout technique [78] prevents complex co-adaptations
on the training data and enhance the generalization ability by randomly
omitting a percentage of the feature detector (or neurons) during each training
phase. Furthermore, the data augmentation technique has been used when
CNN is applied to visual object recognition in order to generate additional
samples, without introducing extra labeling costs (e.g., image translations,
reflections or even modifications of the intensities of the RGB channels in
training images) [16].

On the other hand, the transfer learning technique [79] can be used to
apply previously learned knowledge of a relevant visual recognition problem to
a new, desired task domain. Depending on the size and similarity between the
pre-training database and the new dataset, transfer learning can be applied
in two different approaches: (i) by fine-tuning the pre-trained network weights
using the new dataset via backpropagation, or (ii) by directly utilizing the
learned weights in the desired problem to extract and later classify features
[79].

3.3.7
Convolutional Autoencoder (CAE)

Fully connected AEs and its variants2 (Sparse Autoencoder, Denoising
Autoencoder, etc.) ignore the 2D image structure. This is not only a problem
when dealing with realistically sized inputs but also introduces redundancy
in the parameters, forcing each feature to be global (i.e., to span the entire
visual field) [81]. CAEs address the filter definition task by letting the model
learn the optimal filters that minimize the reconstruction error. Once these
filters have been learned, they can be applied to any input in order to extract
features. These features, then, can be used to do any task that requires a
compact representation of the input, like classification.

The main characteristic of CAE is that this kind of model shares weights
among all locations in the input, preserving spatial locality [73]. In comparison
to CNNs, they are trained only to learn filters able to extract features that

2More details about Deep Learning-based achitectures can be found in [73, 80].
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can be used to reconstruct the input. For a mono-channel input x the latent
representation of the kth feature map is given by

h(k) = s(x ∗W k + βk) (3-9)
where s(·) is an activation function (sigmoid, tanh, etc.), * denote the 2D
convolution operation and the bias is broadcasted to the whole map. The
reconstruction is obtained by

y = s(
∑
k∈H

hk ∗ Ŵ k + c) (3-10)

where there is one bias c per input channel; H identifies the group of
latent feature maps; Ŵ identifies the flip operation over both dimensions of
the weights. The parameters are optimized, minimizing an appropriate cost
function over the training set (similar procedure as aforementioned for AE
section). A typical CAE architecture is presented in Figure 10.

Figure 10: Typical Convolutional Autoencoder (CAE) architecture.

In CAE models, deconvolutional layers (also known upsampling layers)
are often used during the reconstruction process (or decode stage). In the
encoding stage of a CAE model, the data goes through several convolutional
and pooling layers resulting in the feature maps with smaller sizes. This process
is followed by a decoding stage that reconstructs the input data making use of
deconvolution operations. In practice, the deconvolution operation implements
a transposed convolution operator and can be seen as a convolutional layer with
backward and forward passes inverted [82]. The transpose convolution relocates
the activations of the previous layer in the upsampled grid and performs a
convolution for end-to-end learning by backpropagation from the pixelwise
loss. Figure 11 shows the transpose of convolving a 3 × 3 kernel over a 5 × 5
input padded with a 1× 1 border of zeros (known as zero-padding operation)
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using 2 × 2 strides, which it is equivalent to convolving a 3 × 3 kernel over a
3×3 input (with one zero inserted between inputs) padded with a 1×1 border
of zeros using unit strides.

Figure 11: Principles of the transposed convolution (deconvolution or upsam-
pling) operation (taken from [82]).

3.4
Classification

This stage involves the comparison between the features extracted by the
PAD algorithm with a stored PAD criteria [37]. These criteria may be common
for all subjects or specific to each subject. For instance, when involuntary
reactions, physiological functions, voluntary reactions or subject behaviours
are used to detect presentation attacks, the presentation-attack criteria may
be common for all subjects if they are measured roughly, while the criteria may
be specific to each subject if they are measured precisely. Generally, this stage
requires a classifier training which produces a score for each probe sample.
Then, the provided score will be used to discriminate between bonafide and
artifact presentation.

3.4.1
Support Vector Machine (SVM)

Originally proposed by Vapnik [83, 84], Support Vector Machines (SVMs)
are a popular set of supervised learning methods for classification, regression,
and distribution estimation (also known as outliers detection). (so-called
functional margin). As the feature space may have a high dimension (which
results in very expensive to compute), it is common to apply a kernel function
K(xi,xj) ≡ φ(xi)Tφ(xj), that can be evaluated efficiently. The most used
kernel functions include:

– linear: K(xi,xj) = xiTxj

– polynomial: K(xi,xj) = (γxiTxj + r)d, γ > 0

– Radial Basis Function (RBF): K(xi,xj) = exp(−γ ‖ xi − xj ‖2), γ > 0

DBD
PUC-Rio - Certificação Digital Nº 1621982/CA



Chapter 3. THEORETICAL FOUNDATIONS 39

– sigmoid: K(xi,xj) = tanh(γxiTxj + r)

During the training process, γ, d and r represent the kernel parameters
to be learned.

3.4.2
C-Support Vector Classification (C-SVC)

C-Support Vector Classification (C-SVC) is one of the formulations
of SVM applied to two-class or multi-class classification task. In two-class
classification, given a training vector xi ∈ Rn, ∀i =

{
1, 2, ..., l

}
, where x ∈ Rn,

y ∈
{
1,−1

}
and l represents the number of support vectors, a SVM classifier

is constructed from the sums of kernel functions of the form:

min
w,b,ξ

1
2wTw + C

l∑
i=1

ξi (3-11)

subject to yi(wTφ(xi) + b) ≤ 1− ξi,
ξi ≥ 0

where the training vectors xi are mapped into a higher dimensional space by
the function φ, in order to find a linear separating hyperplane with the maximal
margin in this higher dimensional space. C > 1 is the penalty parameter of
the error term.

An important fact is the use of kernel functions which, depending on its
nature, allows SVMs to construct hyperplanes that correspond to a nonlinear
decision function in input space. The nonlinear decision function can take the
form:

S(x) =
l∑

i=1
αiyiK(xi,x) + b (3-12)

where αi (Lagrange multiplier associated with the ith support vector), yi (the
corresponding classification label class, i.e., in the particular case of face PAD
issue, yi = +1 if x belongs to a bonafide presentation and yi = −1 if x belongs
to the fake presentation) and b (learned constant), represent the kernel function
parameters.

Schölkopf et al. [85] introduced the ν-Support Vector Classification
(ν-SVC) as a reparameterization of the C-SVC formulation. The proposed
formulation introduces a new parameter ν, which controls the number of
support vectors and training errors. The parameter ν ∈ (0, 1] has an upper
bound on the fraction of training errors and a lower bound on the fraction of
support vectors.
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3.4.3
Distribution Estimation (one-class SVM)

Several applications require being able to decide whether a new observa-
tion belongs to the same distribution as existing observations (referred to as an
inlier), or should be considered as different (referred as an outlier). These out-
liers in the data can be caused by errors in the measurement of feature values,
resulting in an exceptionally large or small feature value in comparison with
other training objects. Instead of modeling the density of data, however, this
approach aims to find a smooth boundary enclosing a region of high density.
In order to address this issue, two approaches have been proposed by using
SVMs.

The method proposed by Schölkopf et al. [86] tries to find a hyperplane
that separates all but a fixed fraction ν of the training data from the origin, at
the same time maximizing the distance (margin) of the hyperplane from the
origin. Then, if further observations lay within the frontier-delimited subspace,
they are considered as coming from the same population than the initial
observations. Otherwise, if they lay outside the frontier, we can say that they
are abnormal This approach is used for detecting anomalies in new observations
by assuming that training data is not polluted by outliers. In this regard, one
of the kernel usually chosen for this approach is the Radial Basis Function
(RBF).

3.4.4
Gaussian Mixture Model (GMM)

A Gaussian mixture model (GMM) is a probabilistic model for density
estimation, which assumes the feature vectors follow a Gaussian distribution
[87, 88]. Generally, the GMM parameters are estimated from training data
using the iterative Expectation-Maximization (EM) algorithm [89], which can
guarantee monotonic convergence to the set of optimal parameters (in the
Maximum-Likelihood sense). A Gaussian Mixture Model can be expressed as
a weighted sum given K component densities (or mixtures) [88],

p(x|λ) =
K∑
k=1

%kN (x|µk, ξk) (3-13)

where x ∈ Rd is an input data vector (e.g., feature vector), %k are the mixture
weights that satisfies ∑K

k=1 %k = 1 and N (x|µk, ξk) represents the component
Gaussian densities, which can be formulated for a d-variate Gaussian function
as follows,

N (x|µk, ξk) = 1
(2π)d/2|ξk|1/2 e

− 1
2 ( ~xk− ~µk)T ξ−1

k
( ~xk− ~µk) (3-14)
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with mean vector µk ∈ Rd and covariance matrix ξk ∈ Rd×d. From the K
mixtures, a GMM can be parameterized by the mean vectors, covariance
matrices and mixture weights as follows,

λ
{
%k, µk, ξk

}
, ∀k =

{
1, 2, ..., K

}
(3-15)

3.4.5
Anomaly Detection (one-class GMM)

Basically, the task of clustering consist in assigning a number of points,
x1,x2, ...,xN , into K groups or clusters. In the last years, GMMs became one
of the most popular clustering algorithms [88]. This approach is employed
under the assumption that the points, which belong to the same cluster, are
distributed according to the same Gaussian distribution of unknown mean
and covariance matrix. Each mixture component defines a different cluster.
To accomplish this task, the EM algorithm is run over the available data
points to provide, after convergence, the posterior probabilities p(k|xn), k =
1, 2, ..., K, n = 1, 2, ..., N , with k corresponding to a cluster and n to a data
point. Each point can be assigned to a cluster k as follows,

assign xn to cluster k = argmin
i
p(i|xn)∀i =

{
1, 2, ..., K

}
.

The one-class GMM approach can be trained with a dataset contain-
ing only real samples (i.e., samples belonging to the target class, in our case
bonafide presentations) following the procedure described above. If the com-
puted probability is below a threshold, the sample is considered a fake presenta-
tion, therefore, probability means that is not probable that a given presentation
is genuine.

3.4.6
Logistic Regression (LR)

In Bayesian classification, the assignment of a pattern to a class is per-
formed based on the posterior probabilities, P (Ci|x). These posteriors are esti-
mated via the respective conditional Probabilities Density Functions (PDFs).
However, an alternative way to directly model the posterior probabilities is
using the Logistic Regression (LR) method. In the two-class LR case, the ratio
of posteriors is formulated as,

ln P (C1|x)
P (C2|x) = wTx. (3-16)

Taking into account that P (C1|x)+P (C2|x) = 1, the posterior probabil-
ity of class C1 can be written as a logistic sigmoid acting on a linear function
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of the feature vector w, so that:

P (C1|x) = σ(wTx) (3-17)
with P (C2|x) = 1 − P (C2|x) and σ(·) representing the logistic sigmoid or
sigmoid link function defined by

σ(wTx) = 1
1− e(−wTx) (3-18)

−6 −4 −2 0 2 4 6

0.5

1

wTx

σ(wTx)

Figure 12: Plot of the logistic sigmoid function σ(·) defined in equation 3-18.

For a set training samples (xn, yn), with n = 1, 2, ..., N, yn =
{
0, 1

}
, the

parameter vector, w, can be estimated via the Maximum Likelihood (ML)
method. The likelihood function can be formulated as

P (y1, ..., yN ; w) =
N∏
n=1

(σ(wTxn))yn(1− σ(wTx))1−yn (3-19)

Usually, an error function can be defined by taking the negative logarithm
of the likelihood (log-likelihood), which give the cross entropy error function
in the form:

L(w) = −
N∑
n=1

[yn ln σn(wTxn) + (1− yn) ln (1− σn(wTxn))] (3-20)

It is worth noting that ML can exhibit severe overfitting for data sets that
are linearly separable. This arises because the maximum likelihood solution
occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTx = 0
(see Figure 12), separates the two classes and the magnitude of w goes to
infinity. To deal with this issue, it is common to include a penalty term (||w||2)
in the respective cost function, redefined in the form:
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L(w) = −
N∑
n=1

[yn ln σn(wTxn) + (1− yn) ln (1− σn(wTxn))] + λ

2 ||w||
2 (3-21)

where λ is a new hyperparameter added to control the regularization strength.

DBD
PUC-Rio - Certificação Digital Nº 1621982/CA



4
METHODS

This chapter describes the steps involved in the methodology followed to
accomplish the three goals of this work. At firstly, implementation details of
the workflow adopted will be discussed, by focusing on the settings of the PAD
methods that will be evaluated in Chapter 5.

4.1
Evaluation Methodology

The PAD techniques evaluated in the current study are composed of
three main steps, namely: (i) preprocessing, (ii) feature extraction, and (iii)
classification. Figure 13 shows the workflow adopted for all the PAD techniques
considered in this work. The PAD methods were implemented with the Facial
Presentation Attack Detection Library1. This software package is provided
by Bob2 [90], a free signal-processing and machine learning toolbox originally
developed by the Biometrics group at IDIAP Research Institute, Switzerland.
The toolbox is written in Python and C++ and is designed to be efficient
and reduce development time. It is composed of a reasonably large number
of methods for image, audio and video processing, machine learning, pattern
recognition, and a lot more task-specific packages.

Feature
Extraction Artifact

Bonafide
ClassificationPreprocessing

cropped

images

extracted

features

raw video

frame data

Database
scores

Face Presentation Attack Detection (PAD) Scheme

Bon
afi

de

Arti
fa

ct

x2

x1

Figure 13: Workflow adopted for all the PAD methods evaluated in this work.

The communication between any two steps in the PAD workflow is file-
based by using a binary Hierarchical Data Format (HDF5) interface version 5.

1Implements tools for spoofing or presentation attack detection in face biometrics.
2Bob is a free signal-processing and machine learning toolbox repository.

https://gitlab.idiap.ch/bob/bob.pad.face
https://gitlab.idiap.ch/bob/bob
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The exception is the classification step, which uses score files in text format.
As the implementation of some of the descriptors (features) used in the PAD
methods are not available in the Bob Framework, implementations provided
by authors were used.

Implementation details of each stage of the workflow will be given in the
next sections, as well as the settings of the PAD methods that will be assessed
in the experiments reported in the Chapter 5.

4.1.1
Preprocessing

Basically, the same preprocessing step was carried out for all evaluated
PAD techniques in order to assess them under equal conditions. Since the
biometric samples provided by most of facial PA databases considered in this
study are videos, the preprocessing stage involved the extraction of faces on
a frame-by-frame basis from the annotations defining the facial region. The
frames with a face smaller than 50× 50 pixels were discarded. Similar to prior
works [12, 14, 31, 35], the cropped images are the then normalized to the
identical size of 64× 64 pixels.

Figure 14 shows some facial images from the three sessions in which the
3DMAD database was collected after the preprocessing stage. The first two
rows represent bonafide accesses (from top to down sessions 1 and 2 in which
data was collected, respectively), and the third row represents mask attacks
(session 3).

Figure 14: Facial images from 3DMAD Database after the preprocessing stage.
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4.1.2
Feature Extraction

In the current work, Local Binary Patterns (LBP), Binarized Statistical
Image Features (BSIF) and Image Quality Measurement (IQM) hand-crafted
texture descriptors were used as input of the classification step. Additionally,
a Convolutional Autoencoder (CAE), a learned feature descriptor, was also
implemented, and used as input to the classification step. All feature descrip-
tors were computed from facial images in RGB color space delivered by the
preprocessing step.

The LBP feature considered in this work was obtained by a LBP u2
8,1

operator. LBP features for all pixels in the image were computed, and from
those values a single histogram was produced (per-image calculated features).

Contrary to the approach of dividing the image into blocks and calculat-
ing LBP histograms for each of the blocks separately to form a final feature
vector by their concatenation (per-block computed features), which is a com-
mon procedure for facial recognition, the LBP variant used in this work (per-
image calculated features) has been successfully applied to address the face
PAD issue [9, 12, 35, 91, 92], achieving better performance than the per-block
approach.

Considering the total number of bins in the histogram per channel of
the RGB image, the number of dimensions of the feature vector is 177 =
(59 bins in the histogram) × (3 channels). In this work, a modified version
of the code3 publicly provided by Boulkenafet et al. [91, 92] was used for
extracting LBP features.

The image quality based technique assessed in this work uses a feature
vector obtained from the concatenation of the IQMs introduced in [50] and the
IDA-based features proposed in [29]. Note that Galbally et al. [50] proposed
25 quality measures in their paper. However, Bob framework only implements
18 of the features (listed in Table 1) described in the paper. Additionally,
the image distortion-based features (specularity, image-blur, color-diversity)
proposed by Wen et al. [29] were computed to obtain a 121-D feature vector.
The IQM-based PAD implemented in this study uses a combination of those
two sets of features, which results in a 139-D feature vector.

In the BSIF based PAD scheme, the feature vectors were obtained using
eight filters of size 7 × 7. In a way similar to [91, 92], in the experiments
reported in section 5.3, the set of filters provided by the authors of [69], which
were learned from a set of natural image patches, were used. The final number
of dimensions of the feature vector is 768. In this work, a modified version of

3LBP implementation is publicly available at Boulkenafet’s repository.

https://github.com/zboulkenafet/Face-anti-spoofing-based-on-color-texture-analysis
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the code4 provided by Boulkenafet et al. [91, 92] was used for extracting BSIF
features.

Table 1: Image quality measures adopted in [50]. (FR denotes Full-Reference-
based approaches while NR stands for no-reference approaches).

Attribute Approach Name
1 FR Mean Squared Error (MSE)
2 FR Peak Signal to Noise Ratio (PSNR)
3 FR Average Difference (AD)
4 FR Structural Content (SC)
5 FR Normalized Cross-Correlation (NK)
6 FR Max. Difference (MD)
7 FR Laplacian MSE (LMSE)
8 FR Normalized Absolute Error (NAE)
9 FR Signal to Noise Ratio (SNR)
10 FR R-Averaged MD (RAMD)
11 FR Mean Angle Similarity (MAS)
12 FR Mean Angle Magnitude Similarity (MAMS)
13 FR Spectral Magnitude Error (SME)
14 FR Gradient Magnitude Error (GME)
15 FR Gradient Phase Error (GPE)
16 FR Structural Similarity Index (SSIM)
17 FR Visual Information Fidelity (VIF)
18 NR High-Low Frequency Index (HLFI)

The CAE5 architecture adopted in this work was implemented with
the Keras Library [93] and Tensorflow as backend [94]. The architecture is
summarized in Table 2.

The CAE was composed of 9 convolution operations (4 in the encode
and 5 in the decode), 3 max-pooling (in the encode) and 3 up-sampling (in
the decode). For each convolution operation a ReLU activation function was
used, and zero padding was applied to obtain the same dimensions in the
output feature maps. A dropout regularization strategy of 50 % was used to
address the overfitting issue, and the Adadelta optimizer [95] was used in the
training procedure. The loss function was based on the Mean Squared Error
(MSE). Finally, the trained model was used as a feature extractor, and a 4096-
dimensional feature vector was obtained by reshaping the 8 × 8 × 64 feature
map of the third max pooling operation in the encoding stage of the model.

4BSIF implementation is publicly available at Boulkenafet’s repository.
5CAE code available under request at PUC-Rio Computer Vision Laboratory (LVC)

website.

https://github.com/zboulkenafet/Face-anti-spoofing-based-on-color-texture-analysis
http://www.lvc.ele.puc-rio.br/projects/Face_PAD/home.html
http://www.lvc.ele.puc-rio.br/projects/Face_PAD/home.html
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Table 2: The structure of CAE implemented in this study. The input and
output sizes are described in (rows× cols×#filters). The kernel is specified
as rows× cols×#filters, stride.

Layer size-in size-out kernel parameters

conv2d_1 (64, 64, 3) (64, 64, 8) 5× 5× 8, 1 608
conv2d_2 (64, 64, 8) (64, 64, 16) 5× 5× 16, 1 3216
pooling2d_1 (64, 64, 8) (32, 32, 16) 2× 2× 16, 2 0
conv2d_3 (32, 32, 16) (32, 32, 32) 5× 5× 32, 1 12832
pooling2d_2 (32, 32, 32) (16, 16, 32) 2× 2× 16, 2 0
conv2d_4 (16, 16, 32) (16, 16, 64) 1× 1× 64, 1 2112
pooling2d_3 (16, 16, 64) (8, 8, 64) 2× 2× 16, 2 0
up_sampling2d_1 (8, 8, 64) (16, 16, 64) 2× 2× 64, 2 0
conv2d_5 (16, 16, 64) (16, 16, 64) 5× 5× 64, 1 102464
up_sampling2d_2 (16, 16, 64) (32, 32, 64) 2× 2× 64, 2 0
conv2d_6 (32, 32, 64) (32, 32, 32) 3× 3× 32, 1 18464
up_sampling2d_3 (32, 32, 32) (64, 64, 32) 2× 2× 32, 2 0
conv2d_7 (64, 64, 64) (64, 64, 16) 3× 3× 16, 1 4624
conv2d_8 (32, 32, 64) (64, 64, 8) 1× 1× 8, 1 136
conv2d_9 (64, 64, 8) (64, 64, 3) 1× 1× 3, 1 27

Total 144483

4.1.3
Classification

Most studies in the field of face PAD consider the task as a two-class
classification problem. In this case, the two-class classifier was trained to
predict the class of the input samples as bonafide or artifact. Some recent
studies are, however, based on one-class classification,such as the works by
Arashloo et al. [36] and Nikisins et al. [12]. In these works, the one-class
classifiers are trained solely on bonafide samples either to model the probability
density of data or to find a smooth boundary enclosing a region of high density.

In the current work, both one-class and two-class approaches are investi-
gated. Support Vector Machine (SVM) and Logistic Regression (LR) are used
in the two-class classification approach, while one-class GMM and one-class
SVM models are employed in the one-class approach. A list of the classifica-
tion schemes evaluated in the experiments is shown in Table 3, in which the
top rows correspond to the two-class approach, whereas the bottom rows refer
to the one-class approach. The implementation of the four classifiers were done
with the Bob Framework [90].

In the case of the one-class classifiers, one-class GMM corresponds to a
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generative model [36], while one-class SVM is regarded as a discriminative
model [36]. The output score of the one-class GMM is a log-likelihood,
whereas the output of the one-class SVM is a confidence score, similar to
that obtained with the LIBSVM [96]. In fact, Bob’s SVM implementation is
based on LIBSVM and offers different options such as kernel type, multiclass
classification and cross-validation. In our experiments, we used the RBF kernel
function because it can handle the case when the relation between class labels
and attributes is nonlinear; it has fewer hyperparameters than the polynomial
kernel.

Table 3: Presentation Attack Detection (PAD) schemes assessed in the current
work.

Attribute Name
LR+IQM The Logistic Regression classifier trained using the IQM features.
SVM2+IQM The two-class SVM classifier trained using the IQM features.
LR+LBP The Logistic Regression classifier trained using the LBP features.
SVM2+LBP The two-class SVM classifier trained using the LBP features.
LR+BSIF The Logistic Regression classifier trained using the BSIF features.
SVM2+BSIF The two-class SVM classifier trained using the BSIF features.
LR+CAE The Logistic Regression classifier trained using the CAE features.
SVM2+CAE The two-class SVM classifier trained using the CAE features.

SVM1+IQM The one-class SVM classifier trained using the IQM features.
GMM1+IQM The one-class GMM classifier trained using the IQM features.
SVM1+LBP The one-class SVM classifier trained using the LBP features.
GMM1+LBP The one-class GMM classifier trained using the LBP features.
SVM1+BSIF The one-class SVM classifier trained using the BSIF features.
GMM1+BSIF The one-class GMM classifier trained using the BSIF features.
SVM1+CAE The one-class SVM classifier trained using the CAE features.
GMM1+CAE The one-class GMM classifier trained using the CAE features.

The one-class GMM is set with 50 gaussians, as preliminary experiments
demonstrated that working with more components brought no significant gain
in performance, which is consistent with what was reported in [12]. The one-
class classifiers were trained using only bonafide samples of the training set.

The two-class classifiers, LR and two-class SVM, are set as reported in
[12]. Bob’s LR implementation permits to set the regularization constant (C),
which was set to C = 1 in the experiments. The RBF kernel was selected for
the two-class SVM. For both classifiers, the output score is a probability of a
sample being a bonafide class. These two classifiers were trained using both
bonafide and artifact samples of the training set.
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It is worth to mention that for all SVM-based PAD schemes, the penalty
parameter C and kernel parameters values were determined through cross-
validation. Then, the best parameters were used in the training with the whole
training set.
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5
EXPERIMENTAL ANALYSIS

This chapter describes the experiments conducted to evaluate the face
Presentation Attack Detection (PAD) methods investigated in this study.
Section 5.1 describes the publicly available databases used in the experiments,
which represent the heterogeneity of the type of attacks considered in each of
the evaluation protocols. Section 5.2 describes the metrics used for performance
assessment. Finally, Section 5.3 describes the experimental settings and the
results of the experiments.

5.1
Face Spoofing Databases

This section gives a brief overview of the databases used in the experi-
ments performed to evaluate the face PAD methods proposed.

5.1.1
3D Mask-Attack DB (3DMAD)

The 3D MASK-ATTACK DB (3DMAD) [31], constitutes the first public
database that considers mask attacks, it provides 2D data, in addition to depth
information.

The database is publicly available at the IDIAP Research Institute
website1 and it is composed of genuine and attack access attempts of 17
different users recorded by the Microsoft Kinect sensor. This sensor provides
both regular 2D RGB data (8-bit) and depth data (11-bit), with a resolution of
640 × 480 pixels, at 30 frames per second. Overall, the dataset is composed of:
255 color videos with 300 frames (170 real sequences and 85 mask attacks), and
the same number of 2.5D sequences2 with the corresponding depth information.
In Figure 15, the first two sessions (first two columns) are bonafide samples,
while the third session (third column) represents a 3D mask attack.

1Available link to download the 3D MASK-ATTACK DB at IDIAP website.
2Erdogmus and Marcel in [31] refer to depth data as 2.5D sequences (or depth maps),

which are grayscale images which contain information relating to the distance of the surfaces
of 3D objects from a viewpoint.

https://www.idiap.ch/dataset/3dmad
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Figure 15: Example color (top row) and depth (bottom row) images from three
different sessions for a particular subject in 3DMAD [31].

The database was captured in three different sessions: two real-access
sessions held two weeks apart, and a third session that represents a mask
attack. In each video, the eye-positions are manually labelled for every 1st,
61st, 121st, 181st, 241st and 300th frames and they are linearly interpolated
for the remaining frames. Masks (as seen in Figure 16) were manufactured
using the service provided by "ThatsMyFace.com", which only requires a
frontal and two profile pictures of each person to generate a 3D mask. The
diversity provided by the database allows broad flexibility to conduct research
on the face presentation attack issue by considering 2D and 3D face PAD
approaches and their fusion. Table 4 summarize the main statistcs of the
3DMAD database.

Figure 16: Seventeen facial Presentation Attack Instruments (PAIs) from
3DMAD [31].
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Table 4: Summary of the main statistics of 3DMAD database.

Number of clients 17
Number of videos 255
Bonafide videos 170
PA videos 85
Video resolution 640× 480 pixels
Types of attacks 3D masks
Distribution of videos per class

Sets Number of clients Bonafide Attacks Total
Training 7 70 35 105
Development 5 50 25 75
Evaluation 5 50 25 75

5.1.2
REPLAY-MOBILE Database

The REPLAY-MOBILE face Presentation Attack Database was intro-
duced by Costa-Pazo et al. [33] and is publicly available at the IDIAP Research
Institute website3.

This dataset contains 10 seconds long HD (720× 1280) resolution videos
corresponding to 40 identities. The samples were recorded using two mobile
devices, namely: (i) an iPad Mini 2 tablet and (ii) an LG-G4 smartphone. The
bonafide videos accesses were collected under five different lighting conditions
(controlled, adverse, direct, lateral and diffuse). Figure 17 shows samples from
bonafide accesses captured on a smartphone (top row), samples captured on a
tablet (bottom row) and video frames in controlled, adverse, direct, lateral, and
diffuse scenarios (represented in the columns from left to right, respectively).

In addition, to produce the attacks, high-resolution photos and videos
from each subject were taken under conditions similar to those in their
authentication sessions (lighton and lightoff ). To generate the PAIs a Nikon
Coolpix P520 camera was used to capture high-resolution images (18 Mpixel)
for photo-based attacks, whereas video-based attacks were recorded by using
the back camera of the LG-G4 smartphone, which records 1080p FullHD video
clips.

3Available link to download the REPLAY-MOBILE face Presentation Attack Database
at IDIAP website.

https://www.idiap.ch/dataset/replay-mobile
https://www.idiap.ch/dataset/replay-mobile
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Figure 17: Examples of bonafide accesses in different scenarios provided by
REPLAY-MOBILE [33].

PAs represented in this database have been constructed using two PAIs:
matte-paper for print attacks and matte screen monitor for digital-replay
attacks. For each PAI, two kinds of attacks have been recorded: one where
the user holds the recording device in hand, and the second where the
recording device is stably supported on a stand. Thus, four kinds of attacks
are represented in the database. Figure 18 shows samples of attack accesses
captured on a smartphone (top row), samples captured on a tablet (bottom
row) and examples of mattescreen-lighton, mattescreen-lightoff, print-lighton,
and print-lightoff (represented in the columns from left to right, respectively).
Table 5 summarize the main statistcs of the REPLAY-MOBILE database.

Figure 18: Samples of the different presentations attack instruments (PAIs)
available in REPLAY-MOBILE [33].
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Table 5: Summary of the main statistics of REPLAY-MOBILE database.

Number of clients 40
Number of videos 1030
Bonafide videos 390
PA videos 640
Video resolution 720× 1280 pixels
Print attacks A4 prints
Replay attacks PC matte-screen
Distribution of videos per class

Sets Number of clients Bonafide Attacks Total
Training 12 120 192 312
Development 16 160 256 416
Evaluation 12 110 192 302

5.1.3
OULU-NPU Face Presentation Attack Database

Published in 2017, OULU-NPU4 face presentation attack database [35]
consists of 4,950 bonafide accesses and artifact face videos corresponding to
the 55 subjects.

The samples were recorded using the front cameras of six mobile devices
(Samsung Galaxy S6 edge, HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie,
Sony XPERIA C5 Ultra Dual, and OPPO N3). Some frame examples of a
subject are shown in Figure 19. This figure, from left to right, shows examples
of samples acquired using Samsung, HTC, MEIZU, ASUS, Sony, and OPPO,
respectively.

Figure 19: Sample images showing the image quality of the different camera
devices for a user in OULU-NPU [35].

The bonafide and artifact videos clips were collected in three sessions
with different illumination conditions (Session 1, Session 2 and Session 3).

In order to simulate realistic mobile authentication scenarios, the video
length was limited to five seconds and the subjects were asked to hold the

4Available link to download OULU-NPU database.

https://sites.google.com/site/oulunpudatabase/
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mobile device like they were being authenticated but without deviating too
much from their natural posture in normal device usage. The artifact species
considered in the OULU-NPU database were print and video-replay. These
types of PAIs were created using two printers (high resolution photos printed
on A3 glossy paper using a Canon imagePRESS C6011 (Printer 1) and a Canon
PIXMA iX6550 (Printer 2)) and two display devices (high-resolution videos
replayed on a 19” Dell UltraSharp 1905FP display with 1280×1024 resolution
(Display 1) and an early 2015 Macbook 13” laptop with Retina display of
2560×1600 resolution (Display 2)). Table 6 summarize the main statistcs of
the OULU-NPU database.

Table 6: Summary of the main statistics of OULU-NPU database.

Number of clients 55
Number of videos 4950
Bonafide videos 990
PA videos 3960
Video resolution 1920× 1080 pixels
Print attacks A3 prints (using two printers)
Replay attacks PC and notebook display
Distribution of videos per class

Sets Number of clients Bonafide Attacks Total
Training 20 360 1440 1800
Development 15 270 1080 1350
Evaluation 20 360 1440 1800

5.2
Metrics

According to [97], Attack Presentation Classification Error Rate
(APCER) is defined as the proportion of attack presentations using the same
PAI species incorrectly classified as bonafide presentations at the PAD subsys-
tem in a specific scenario. Additionally, Bonafide Presentation Classification
Error Rate (BPCER) is defined as the proportion of bonafide presentations in-
correctly classified as presentation attacks at the PAD subsystem in a specific
scenario.

For a given Presentation Attack Instrument Species (PAIS), the APCER
is calculated as follows:

APCERPAIS = 1−
( 1
NPAIS

)NP AIS∑
i=1

Resi (5-1)
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where NPAIS is the number of attack presentations for the given Presentation
Attack Instrument PAI species [97]. In this regard, Resi, the classifier response,
takes the value 1 if the ith presentation is classified as an attack presentation
and a value of 0 if classified as a bonafide presentation. On the other hand,
the BPCER is computed as:

BPCERPAIS =
( 1
NBF

)NBF∑
i=1

Resi (5-2)

where NBF is the number of bonafide presentations, Resi takes the value 1
if the ith presentation is classified as an attack presentation and value 0 if
classified as a bonafide presentation.

Since both the APCER and the BPCER depend on a decision threshold
τ , the development set operates as a separate validation set for fine tuning the
system parameters and estimating the threshold value to be used on the test
set. Here, τ is defined on the development data as the intersection point of
the APCER and BPCER. This intersection point is termed as the Equal Error
Rate (EER).

To summarize the overall system performance in a single value, the Half
Total Error Rate (HTER) is used. This metric is computed as the average of the
APCER and the BPCER at the decision threshold. Finally, Receiver Operating
Characteristic (ROC) curves outline the APCER versus the BPCER on the
evaluation set.

5.3
Experiments

The evaluation protocols used in this work is similar to what is reported
in the literature [24, 45, 91]. They are designed to measure the performance of
the PAD schemes in two conditions, namely: (i) intra-database and (ii) inter-
database (or cross-database). The first evaluation protocol consists in training
and testing the PAD schemes on data from a single database, in which bonafide
and artifact accesses are acquired using the same set of sensors settings and
attacks are attempted with the same set of PAIs. Furthermore, the evaluation
is performed by computing the true and false positive detection rates on the
test data available in the dataset. The second evaluation protocol is devised to
measure the generalization capacity of the PAD scheme, which is, in this case,
trained using training samples the other spoofing database.

The next section shows the performance of the PAD schemes according
to the intra-database evaluation protocol. In the following section the general-
ization capacity of the facial PAD is assessed using the cross-database testing
protocol.
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5.3.1
Intra-Database Evaluation Protocol

The purpose of these experiments is to evaluate the performance of the
facial PAD schemes, by testing in the same database where the method is
trained.

The evaluation protocol used on the IDIAP databases (REPLAY-
MOBILE and 3DMAD) is similar to that of prior works [31, 33]. The PAD
schemes are trained using all videos available in the training set of each
database. The only difference with respect to those works, is the way of sam-
pling each video in the training set: by selecting a sample from the video frames
with a step size of 3 (i.e. every 3 frames). The same protocol was used for the
OULU-NPU database.

The results corresponding to the intra-database evaluation protocol are
presented below.

Results and Discussion

Table 7 shows the performance of the face PAD schemes for the intra-
database evaluation protocol, for each database. The performance is reported
as a measure of EER (computed on the development set) and HTER (computed
on the evaluation set) values. The best HTERs are highlighted in bold.

The results show that the utilization of features learned with the CAE
model in the respective two-class PAD schemes provide, in general, the best
detection rates. LR+CAE and SVM2+CAE outperform other schemes on the
REPLAY-MOBILE and OULU-NPU databases, with HTER values of 5.17%
and 12.11%, respectively. These results demonstrate the effectiveness of learned
feature with the CAE in the intra-database testing protocol, and reveal that
OULU-NPU database is the most challenging one.
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Table 7: The performance of the face PAD schemes for the intra-database
evaluation protocol on each database.

REPLAY-MOBILE 3DMAD OULU-NPU

Systems Dev. Test Dev. Test Dev. Test

EER HTER EER HTER EER HTER

LR

+ IQM

3.69 7.15 0.00 2.29 12.73 15.65

SVM2 2.65 5.84 2.90 1.00 9.38 12.24

SVM1 27.89 35.51 32.12 51.79 28.70 32.84

GMM1 25.17 27.48 38.09 32.72 27.99 31.92

LR

+ LBP-RGB

6.03 6.83 17.36 10.96 14.82 20.11

SVM2 2.69 7.25 19.92 12.00 14.24 15.79

SVM1 27.85 32.13 44.45 37.29 35.69 33.43

GMM1 19.96 22.85 39.40 45.46 33.81 32.75

LR

+ BSIF-RGB

9.33 5.82 0.12 0.93 11.17 18.69

SVM2 10.26 6.89 0.32 4.89 12.00 18.36

SVM1 25.30 24.96 28.28 25.87 39.35 38.25

GMM1 27.60 27.46 30.00 32.64 40.79 38.22

LR

+ CAE

2.91 5.17 13.48 7.86 8.64 14.82

SVM2 5.65 7.55 9.49 3.16 8.75 12.11

SVM1 36.49 39.69 49.08 42.29 47.22 48.93

GMM1 24.65 22.64 36.48 37.36 36.12 42.39

However, the best two-class PAD scheme based on the features learned
with the CAE (SVM1+CAE) was outperformed by the schemes based on BSIF-
RGB and IQM hand-crafted features in the 3DMAD database, which achieved
HTER values of 0.93% and 1.00%, respectively. In the case of 3DMAD, as
expected, the CAE decreased its performance owing to the influence of the
small number of training samples provided by this database.

Furthermore, the results obtained by LR+BSIF and SVM2+IQM
schemes on 3DMAD are comparable with those reported in the state-of-the-
art, and the HTER of 0.93 % achieved by LR+BSIF system outperformed the
baseline results reported in [33].

The performances of the PAD schemes based on one-class classification
approach measured in the current protocol were inferior in comparison to
their two-class counterparts, which take advantage of the number of training
samples, as the training of the schemes based on the one-class classification
approach use much less training data (bonafide accesses only).

It is worth highlighting that the best one-class PAD schemes are based
on the GMM classifier, GMM1+CAE and GMM1+IQM, which achieved
HTER values of 22.64% and 31.92% on REPLAY-MOBILE and OULU-NPU
databases, respectively. However, the SVM1+BSIF outperformed the other
one-class PAD schemes on the 3DMAD database, achieving a HTER value of
25.87%.
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To evaluate the performance of the PAD schemes more comprehensively,
the ROC curves for each database are presented. Figure 20 shows ROC curves
for PAD systems on REPLAY-MOBILE database, whereas Figure 21 and 22
correspond to the results obtained on 3DMAD and OULU-NPU databases,
respectively.
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Figure 20: ROC curves for PAD systems on REPLAY-MOBILE database.
PAD systems based on: (a) IQM, (b) LBP-RGB, (c) BSIF-RGB, and (d) CAE
features.

In the particular case of IQM features, it can be seen that the PAD
schemes based on one-class GMM classifier outperformed those based on one-
class SVM for all databases. The trend manifested by these PAD schemes on
the three databases is similar to what is reported in the literature [12], when
they are evaluated in other databases. In this regard, the ROC curves confirm
that one-class PAD schemes based on the features learned by CAE as the worse
performance obtained on the 3 databases.

From a general perspective, the results obtained here confirm that when
the PAD schemes based on one-class classification approach are restricted
to application environments in a same domain, their discrimination capacity
degrades considerably. Moreover, the use of IQM and LBP features is more
beneficial for the intra-database evaluation protocol, when those features are
combined with the one-class SVM classifier, whereas IQM and LBP features
seem to be a better option for one-class GMM.

DBD
PUC-Rio - Certificação Digital Nº 1621982/CA



Chapter 5. EXPERIMENTAL ANALYSIS 61

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on IQM features

(a)

L
S

S
G

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on BSIF-RGB features

(c)

L
S

S
G

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on CAE features

(d)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

(%
)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)
LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on IQM features

(a)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on BSIF-RGB features

(c)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on CAE features

(d)

Figure 21: ROC curves for PAD systems on 3DMAD database. PAD systems
based on: (a) IQM, (b) LBP-RGB, (c) BSIF-RGB, and (d) CAE features.

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on IQM features

(a)

L
S

S
G

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on BSIF-RGB features

(c)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on CAE features

(d)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on IQM features

(a)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on BSIF-RGB features

(c)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on CAE features

(d)

Figure 22: ROC curves for PAD systems on OULU-NPU database. PAD
systems based on: (a) IQM, (b) LBP-RGB, (c) BSIF-RGB, and (d) CAE
features.
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5.3.2
Inter-Database Evaluation Protocol

The purpose of theses experiments is to study the generalization capacity
of the facial PAD schemes, across different databases. To accomplish this aim,
we follow two strategies for the inter-database evaluation protocol, by assuming
that:

1. Training and development data from one database is available. The
models are trained and developed using samples from that database and
then evaluated using samples from the two other databases.

2. Training and development data from two databases are available. The
models are trained and developed using samples from both databases
and then evaluated on the third database.

It is worth emphasizing that regardless of the strategy followed, the two-
class schemes are trained using bonafide and artifact data, and the one-class
schemes are trained solely with bonafide accesses. The results corresponding
to the current evaluation protocol are presented in the following.

Results and Discussion

Table 8 shows the performance of the face PAD schemes for the inter-
database evaluation protocol on the REPLAY-MOBILE database. The perfor-
mance is reported as a measure of EER (computed on the development set)
and HTER (computed on the evaluation set) values. The best HTERs are
highlighted in bold.
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Table 8: The performance of the face PAD schemes for the inter-database
evaluation protocol on REPLAY-MOBILE database.

Testing REPLAY-MOBILE

Training 3DMAD OULU-NPU 3DMAD + OULU-NPU

Methods Dev. Test Dev. Test Dev. Test

EER HTER EER HTER EER HTER

LR

+ IQM

0.00 50.34 12.73 41.93 12.32 38.51

SVM2 2.09 45.53 9.38 33.93 10.09 40.59

SVM1 32.12 50.00 28.70 46.51 29.15 45.83

GMM1 38.09 50.00 27.99 49.26 41.48 47.40

LR

+ LBP-RGB

17.36 55.68 14.82 62.38 16.35 64.34

SVM2 19.92 50.91 14.24 41.61 12.48 43.05

SVM1 44.45 50.00 35.69 50.00 31.83 50.00

GMM1 39.40 50.00 33.81 49.54 30.42 49.72

LR

+ BSIF-RGB

0.12 54.40 11.17 54.55 11.67 57.50

SVM2 0.32 49.78 12.00 47.82 50.00 50.00

SVM1 28.28 50.00 39.35 50.00 33.83 50.00

GMM1 30.00 50.00 40.79 48.79 34.68 47.14

LR

+ CAE

13.48 56.05 8.64 55.69 9.60 44.00

SVM2 9.49 50.00 8.75 50.00 12.32 45.18

SVM1 49.08 50.00 47.22 50.00 42.41 50.00

GMM1 36.48 50.00 36.12 50.00 42.81 47.88

As it can be seen in Table 8, the results reveal the SVM2+IQM and
LR+IQM as the best two-class PAD schemes on the REPLAY-MOBILE
database when trained on 3DMAD database and its combination with OULU-
NPU, which achieved 42.77% and 38.51%, respectively. However, in general,
the results confirm the effectiveness of the one-class PAD schemes on the
REPLAY-MOBILE database when trained with samples from OULU-NPU
database. The best performance was obtained by GMM1+BSIF-RGB, with an
HTER value of 30.30%, followed by GMM1+LBP-RGB and SVM1+IQM with
30.41% and 32.28%, respectively. It is worth noting that the strategy of training
with samples from two databases did not ensure a significant performance
enhancement for the two-class PAD schemes, and also, it deteriorated detection
rates of their one-class counterparts.

Table 9 shows the performance of the face PAD schemes for the inter-
database evaluation protocol on the 3DMAD database. The performance is
reported as a measure of EER (computed on the development set) and HTER
(computed on the evaluation set) values. The best HTERs are highlighted in
bold.
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Table 9: The performance of the face PAD schemes for the inter-database
evaluation protocol on 3DMAD database.

Testing 3DMAD

Training REPLAY-MOBILE OULU-NPU REPLAY-MOBILE + OULU-NPU

Methods Dev. Test Dev. Test Dev. Test

EER HTER EER HTER EER HTER

LR

+ IQM

3.69 41.42 12.73 14.14 15.29 43.31

SVM2 2.65 15.79 9.38 14.14 17.14 45.81

SVM1 27.89 50.00 28.70 50.00 33.65 50.00

GMM1 25.17 50.00 27.99 50.00 37.75 50.00

LR

+ LBP-RGB

6.03 57.06 14.82 40.27 19.08 68.59

SVM2 2.69 50.00 14.23 57.46 23.41 54.07

SVM1 27.85 50.00 35.69 50.00 37.34 50.00

GMM1 19.96 50.00 33.81 50.00 39.64 47.50

LR

+ BSIF-RGB

9.33 50.00 11.17 49.50 16.83 50.03

SVM2 10.26 49.68 12.00 52.01 50.00 50.00

SVM1 25.30 52.96 39.35 44.76 46.86 49.42

GMM1 27.60 45.63 40.78 46.10 55.17 21.76

LR

+ CAE

2.91 50.00 8.63 49.12 9.25 50.53

SVM2 5.65 50.00 8.75 50.00 7.77 57.72

SVM1 36.49 50.00 47.22 50.00 44.34 39.58

GMM1 24.65 50.00 36.12 50.00 49.73 74.74

The results show that the SVM2+IQM and LR+IQM obtained the
best detection rates on the 3DMAD, which considerably outperformed the
remaining PAD schemes when trained on the OULU-NPU and REPLAY-
MOBILE databases, respectively. In the particular case of IQM features, it can
be seen that the PAD schemes based on one-class GMM classifier outperforms
those based on one-class SVM for all databases. The HTER value of 3.44%
obtained by SVM2+IQM represents a one sixth of the best HTER value,
21.76%, achieved by GMM1+BSIF-RGB, which take advantage of training
with samples from the combination of REPLAY-MOBILE and OULU-NPU
databases.

Table 10 shows the performance of the face PAD schemes for the inter-
database evaluation protocol on the 3DMAD database. The performance is
reported as a measure of EER (computed on the development set) and HTER
(computed on the evaluation set) values. The best HTER are highlighted in
bold.

As it can be seen in Table 10, the best performing two-class schemes for
the OULU-NPU database when trained on REPLAY-MOBILE is LR+IQM,
with an HTER of 37.60%, whereas SVM1+LBP-RGB and GMM1+BSIF-RGB
were the best one-class schemes, both with an HTER of 40.53%. Examining
Table 10 reveals that, in general, the GMM1+BSIF scheme performs better
than the two-class schemes.
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Table 10: The performance of the face PAD schemes for the cross-database
evaluation protocol on OULU-NPU database.

Testing OULU-NPU

Training REPLAY-MOBILE 3DMAD REPLAY-MOBILE + 3DMAD

Methods Dev. Test Dev. Test Dev. Test

EER HTER EER HTER EER HTER

LR

+ IQM

3.69 44.14 0.00 49.71 5.42 49.19

SVM2 2.65 45.84 2.09 46.04 2.54 44.68

SVM1 27.89 42.39 32.12 50.00 30.95 48.10

GMM1 25.17 49.28 38.09 50.00 31.44 49.10

LR

+ LBP-RGB

6.03 57.18 17.36 50.09 9.52 53.97

SVM2 2.69 50.63 19.92 46.69 11.61 54.74

SVM1 27.85 49.17 44.45 50.00 22.84 49.92

GMM1 19.96 46.68 39.40 50.00 22.74 47.02

LR

+ BSIF-RGB

9.33 50.84 0.12 51.20 10.34 52.61

SVM2 10.26 51.07 0.32 50.40 6.66 50.84

SVM1 25.30 49.92 28.28 50.00 24.98 48.47

GMM1 27.60 44.73 30.00 50.00 38.54 43.23

LR

+ CAE

2.91 50.00 13.48 49.03 5.32 51.24

SVM2 5.65 50.00 9.49 50.00 4.16 55.52

SVM1 36.49 50.00 49.08 50.00 30.12 54.29

GMM1 24.65 50.00 36.48 50.00 27.13 49.03

The schemes trained using samples from two databases, in general,
outperformed to those trained using samples from one single database in terms
of EER, which is illustrated in the Table 10 corresponding to the cross-database
testing protocol on OULU-NPU database. In terms of HTER the opposite
occurred.

To evaluate the performance of the best PAD schemes more comprehen-
sively, the ROC curves for each training database are presented. Figure 23
shows ROC curves of the best PAD scheme on REPLAY-MOBILE database,
whereas Figure 24 and 25 correspond to the results obtained on 3DMAD and
OULU-NPU databases, respectively. The remaining ROC curves achieved in
the current testing protocol are presented in the Appendix A.
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Figure 23: ROC curves for the best PAD systems on REPLAY-MOBILE
database are shown, considering each training database: (a) 3DMAD, (b)
OULU-NPU, and (c) the combination of 3DMAD and OULU-NPU databases.
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Figure 24: ROC curves for the best PAD systems on 3DMAD database
are shown, considering each training database: (a) REPLAY-MOBILE, (b)
OULU-NPU, and (c) the combination of REPLAY-MOBILE and OULU-NPU
databases.
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Figure 25: ROC curves for the best PAD systems on OULU-NPU database
are shown, considering each training database: (a) 3DMAD, (b) REPLAY-
MOBILE, and (c) the combination of REPLAY-MOBILE and 3DMAD
databases.

According to the results obtained, inter-database anti-spoofing is far from
satisfactory. Owing to different devices, illuminations, races, etc., there are
some inevitable biases among two datasets. In this case, the inter-database
evaluation protocol can hardly obtain analogous performance as compared to
the intra-database counterpart. However, the ability of the schemes based on
one-class classifier approaches to discriminate between bonafide and artifact
attacks could be better than that of two-class approaches, as in essence one-
class classifiers aim to encapsulate the bonafide access data and any deviations
from the norm, including different samples in the new domain should be
detectable.

It can be concluded that neither the two-class systems nor the one-class
approaches perform well enough and more research should be conducted to
enhance current systems.

DBD
PUC-Rio - Certificação Digital Nº 1621982/CA



6
CONCLUSIONS AND FUTURE WORKS

In this work, we have evaluated and compared some of the most rele-
vant feature-based state-of-the-art methods for facial PAD using three facial
spoofing databases publicly available, which represent the heterogeneity of
presentation facial attacks. For this purpose, we tested sixteen different PAD
schemes, which represent the combination of four feature descriptors and two
classification approaches: one-class and two-class.

The results obtained in the experiments show that the performances of
the PAD schemes based on one-class classification, measured in application en-
vironments of the same attack domains are inferior, as expected, in comparison
to their two-class counterparts. Additionally, the experiments revealed that
PAD schemes that use the features learned by CAE in combination with the
two-class classification approach provide, in general, the best performances in
REPLAY-MOBILE and OULU-NPU databases, whereas PAD schemes based
on IQM and BSIF-RGB features descriptors can perform better in scenarios
with a limited number of training samples.

By comparing the results of the inter-database experiments, through the
ROC Curves, EER and HTER metrics for each of the evaluated PAD schemes,
we can concluded that the performance of both formulations (one-class and
two-class) was not adequate, and more research is required to enhance the
detection rates in such scenarios.

As a desirable extension of this study, it would be interesting to test other
feature descriptors, or modified versions of those evaluated here. For example,
the LBP-TOP and BSIF-TOP features which have been associated to good
accuracies when combined with one-class classification [36]. The combination
of the outputs delivered by the different PAD schemes evaluated in a final
decision provided by an ensemble it is worth exploring in future research.

Additionally, it would be interesting to examine the utilization of other
dimensions of the feature vectors learned by the CAE, as well as, the imple-
mentation of data augmentation during the training procedure of the model
to boost the performance in application environments with a limited number
of samples.
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A
ROC Curves of the Inter-Database Evaluation Protocol

Below, the Receiver Operating Characteristic (ROC) curves obtained in
the evaluation protocol are presented. ROC curves for PAD schemes the on
the testing database when trained on different databases. PAD techniques are
grouped based on the feature used.
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Figure A.1: ROC curves for PAD systems on REPLAY-MOBILE database
when trained on 3DMAD database. PAD systems based on: (a) IQM, (b)
LBP-RGB, (c) BSIF-RGB, and (d) CAE features.
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Figure A.2: ROC curves for PAD systems on REPLAY-MOBILE database
when trained on OULU-NPU database. PAD systems based on: (a) IQM, (b)
LBP-RGB, (c) BSIF-RGB, and (d) CAE features.
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Figure A.3: ROC curves for PAD systems on REPLAY-MOBILE database
when trained on the combination of 3DMAD and OULU-NPU databases.
PAD systems based on: (a) IQM, (b) LBP-RGB, (c) BSIF-RGB, and (d) CAE
features.
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Figure A.4: ROC curves for PAD systems on 3DMAD database when trained
on REPLAY-MOBILE database. PAD systems based on: (a) IQM, (b) LBP-
RGB, (c) BSIF-RGB, and (d) CAE features.
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Figure A.5: ROC curves for PAD systems on 3DMAD database when trained
on OULU-NPU database. PAD systems based on: (a) IQM, (b) LBP-RGB, (c)
BSIF-RGB, and (d) CAE features.
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Figure A.6: ROC curves for PAD systems on 3DMAD database when trained
on the combination of REPLAY-MOBILE and OULU-NPU databases. PAD
systems based on: (a) IQM, (b) LBP-RGB, (c) BSIF-RGB, and (d) CAE
features.
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Figure A.7: ROC curves for PAD systems on OULU-NPU database when
trained on REPLAY-MOBILE database. PAD systems based on: (a) IQM,
(b) LBP-RGB, (c) BSIF-RGB, and (d) CAE features.

DBD
PUC-Rio - Certificação Digital Nº 1621982/CA



Appendix A. ROC Curves of the Inter-Database Evaluation Protocol 84

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on IQM features

(a)

L
S

S
G

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on BSIF-RGB features

(c)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on CAE features

(d)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on LBP-RGB features

(b)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on LBP-RGB features

(b)

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on IQM features

(a)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

ROC Curves for PAD systems based on BSIF-RGB features

(c)
APCER (%)

B
P
C

E
R

 (
%

)

LR
SVM2

SVM1
GMM1

APCER (%)

B
P
C

E
R

 (
%

)

ROC Curves for PAD systems based on CAE features

(d)

Figure A.8: ROC curves for PAD systems on OULU-NPU database when
trained on 3DMAD database. PAD systems based on: (a) IQM, (b) LBP-RGB,
(c) BSIF-RGB, and (d) CAE features.
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Figure A.9: ROC curves for PAD systems on OULU-NPU database when
trained on the combination of REPLAY-MOBILE and 3DMAD databases.
PAD systems based on: (a) IQM, (b) LBP-RGB, (c) BSIF-RGB, and (d) CAE
features.
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