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Abstract 
 

Velmovitsky, Pedro Elkind; Lucena, Carlos José Pereira de (Advisor). iBot: 
An Agent-based Software Framework for Creating Domain 
Conversational Agents, 2018. 70p. Dissertação de Mestrado - Departamento 
de Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

Chatbots are computer programs that interact with users using natural 

language. Since its inception, the technology has advanced greatly and cloud-based 

platforms from big companies allow developers to create intelligent and efficient 

chatbots. However, there are not many development approaches to the main 

modules of a chatbot that are flexible enough to allow the creation of different 

chatbots for each domain, while maintaining a robust dialogue control in the 

application. There have been some works that try to develop a more flexible 

approach, each of them with their own advantages and disadvantages. One of the 

most notable advantages is the use of multi-agent systems to distribute and perform 

the tasks performed by the chatbot. In this context, this work proposes a general and 

flexible architecture based on multi-agent systems for building chatbots in any 

domain chosen by the developer, with dialogue control in the application. This 

architecture uses an adaptation of the information state approach, also using 

software agents, to perform dialogue management. To validate the proposed 

architecture, an user scenario involving the implementation of 4 proof of concept 

chatbots is analyzed discussed. 

 

 
 
 
 
 
 
 
 
 
 
Keywords 
         Chatbots; Multiagent Systems; Dialogue Manager; Information State; 
Conversational Agents  
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Resumo 

Velmovitsky, Pedro Elkind; Lucena, Carlos José Pereira de. iBot: um 
Framework baseado em Agentes para Criar Agentes Conversacionais em 
Diferentes Domínios. Rio de Janeiro, 2018. 70p. Dissertação de Mestrado - 
Departamento de Informática, Pontifícia Universidade Católica do Rio de 
Janeiro. 

Chatbots são programas de computador que interagem com usuários 

utilizando linguagem natural. Desde sua origem, a tecnologia avançou 

significantemente e aplicações baseadas na nuvem de grandes empresas permitiram 

que desenvolvedores criassem chatbots inteligentes e eficientes. No entanto, não há 

muitas abordagens de desenvolvimento aos principais módulos de um chatbot que 

são flexíveis o suficiente para permitir a criação de chatbots diferentes para cada 

domínio, mantendo um robusto controle de diálogo na aplicação. Existem trabalhos 

que tentam desenvolver uma abordagem mais flexível, cada um com suas vantagens 

e desvantagens. Uma das vantagens mais notáveis é o uso de sistemas multiagentes 

para distribuir e realizar tarefas feitas por chatbots. Nesse contexto, este trabalho 

propõe um framework geral e flexível baseado em sistemas multiagentes para 

construir chatbots em um domínio escolhido pelo desenvolvedor, com controle de 

diálogo na aplicação. Esta solução usa uma adaptação da abordagem de estado da 

informação, e agentes de software, para gestão do diálogo. Para validar a arquitetura 

proposta, um cenário de uso com 4 chatbots de prova de conceito são analisados e 

discutidos. 

Palavras-chave 
       Chatbots; Sistemas Multi-agentes; Gestão de Diálogo; Estado da Informação; 
Agentes Conversacionais  
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1 Introduction 

A chatbot can be defined as a human-computer dialogue system (CAHN, 

2017) or, in other words, a computer program that interacts with users using natural 

language (WOUNDERBERG, 2014) (GATTI de BAYSER & CAVALIN, 2017). 

The concept of a chatbot can be first attributed to Alan Turing, who wrote his 

seminal work about machine intelligence and thinking in 1950 (TURING, 1950). 

In fact, it was a chatbot program, called ELIZA, that first passed a version of the 

Turing Test in 1966 by simulating the behavior of a Rogerian psychologist 

(WOUNDERBERG, 2014). With advances in natural language understanding 

(NLU) and machine learning (ML) techniques chatbot technology has evolved 

since those days (APPEL, 2018), as evidenced by a surge in the development of 

increasingly intelligent software in research and in business. 

The adoption of the technology by the public has also increased, in part 

through the use and popularity of smartphone based chatbots, such as Siri and 

Google Now — as well as products such as Amazon's Alexa — and in part due to 

the launch of chatbot hosting platforms by Facebook, Slack, Skype, Telegram, 

among others (CAHN, 2017).  

However, even though there have been great advancements in NLU, as 

evidences by cloud-based solutions such as DialogFlow (“Dialogflow – Basics”, 

2018) and IBM Watson (WHITE, 2018), applications are still far from perfect, as 

most of them generate good results in specific domains; a general model for 

interpreting each and every utterance, independent of context, is still unattainable. 

Therefore, to deliver the best experience for the user, developers must consider 

building their chatbots using an efficient architectural solution that ensures the best 

solution for their domains. 

With this, considering the complexity and interaction of the different 

components involved in building a chatbot, a promising approach is the use of 

multi-agent systems (MAS) in their development, especially in performing different 

tasks. 
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While there has been a lot of research integrating dialogue systems and 

chatbot architecture with multi-agent systems, most of these architectures usually 

deal with one specific domain, or few correlated domains, with some works trying 

to increase the domains handled by distributing tasks to specific agents. However, 

an emerging challenge comes considering these works are not flexible enough to 

allow for the development of chatbots in different domains, or do not provide a 

robust dialogue control throughout the application. 

In response to this challenge, we present an agent-based Software Framework 

for Creating Domain Conversational Agents (iBot). It is a general and flexible 

framework based on multi-agent systems, which will facilitate building chatbots in 

any domain chosen by the developer, with dialogue control in the application. This 

approach aims at providing new resources for the developer creating domain 

conversational agents. As such, more human characteristics can be considered in 

order to improve the deliberation process. By using this framework, it is possible to 

build chatbots that: (i) distribute specific tasks to software agents, increasing the 

system’s intelligence and (ii) use the information state approach to dialogue 

management, thus allowing modularity, reuse and dialogue control. 

 

1.1 Problem and Proposed Solution  

There are several works which present the main architecture and modules of 

chatbots (WOUNDERBERG, 2014), (CAHN, 2017), (BUCKLEY & 

BENZMÜLLER, 2005). However, there are not many development approaches to 

these modules that are flexible enough to allow the creation of different chatbots 

for each domain — it is important to note that here the word “domain” is referring 

to the specific tasks that the agent is trying to accomplish; for instance, a tourist 

information service agent, may perform tasks related to obtaining information about 

buses or about the weather —, while maintaining a robust dialogue control. 

There have been some works that try to develop a more flexible approach, 

most notably (HO, NGUYEN & WOBCKE, 2006), which proposes a centralized 

architecture in which a coordinator mediates communication between the user and 

task agents, and (LEE, LIN & WANG, 1999) proposes a decentralized model that 

the dialogue flow is controlled by each task agent. These models consider the use 

of agent technologies to implement the tasks that must be performed by the chatbot, 
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providing greater flexibility. However, it is difficult to develop robust different 

domain chatbots using these approaches, mainly due to difficulties in adding new 

tasks and maintaining dialogue control throughout the application, respectively (the 

related work will be expanded upon in Chapter 3). 

With this, it was noted a need to develop a general approach for the 

development of chatbots, focusing on flexibility. Therefore, the proposed solution 

presented in this work has the goal of providing a general framework, called iBot, 

for the development of different chatbots. The Core Architecture of the framework 

does not make any assumptions about which platform or programming language 

the developer must use, but rather provides a blueprint for developers to create 

chatbots in different domains, while maintaining a level of dialogue control in the 

application. This Architecture can be implemented in a number of ways, generating 

different instantiations of the iBot framework that best suit the developer’s needs. 

To validate the iBot framework, a user scenario involving the implementation 

of 4 proof of concept chatbots using its Core Architecture is discussed. For this 

validation, the programming language Swift was used, and the chatbots were 

developed for iOS platforms. 

 

1.2 Expected Contributions  

 This section describes the main expected contributions of the work: 

- Literature Overview of the concepts and state-of-the-art involved in 

building chatbots, in order to examine the problem and allow the 

development of the solution; 

- Development of the Core Architecture of the iBot framework; 

- Extension of iBot for validation, through the analysis of an user scenario 

involving the implementation of 4 proof of concept chatbots in iOS using 

the framework. 

-  

1.3 Research Questions  

The main research question is: 

- (RQ) How chatbots for different domains can be developed, while 

maintaining dialogue control in the application? 
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Sub-questions are: 

- (RQs1) How does a chatbot work? 

- (RQs2) What are the main elements that compose a chatbot? 

- (RQs3) What are the available approaches to manage a dialogue? 

- (RQs4) What are the advantages and disadvantages of each approach? 

- (RQs5) How does one use the information state approach with the goal of 

maximum reuse? 

- (RQs6) Does the proposed solution allow for the development of chatbots 

for different tasks? 

- (RQs7) Does the proposed solution allow dialogue control in the 

application? 

 

The first five sub-questions will be answered by reviewing literature, 

specially presented in Chapter 2, while the last two sub-questions will be 

answered through the development and validation of chatbots using the 

proposed framework. 

 

1.4 Organization  

The dissertation is organized as follows: 

- Chapter 2 describes the concepts of software agents and chatbots; 

- Chapter 3 details the related work;  

- Chapter 4 describes the proposed solution; 

- Chapter 5 expands upon the proof of concept for validating the 

solution and describes its implementation; 

- Chapter 6 presents some conclusions and future work. 
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2 Background 

This Chapter describes the main characteristics of software agents and the 

BDI model. In addition, also providing background on chatbots’ early history and 

implementation, chatbot architecture and the concepts of speech acts as defined in 

the Theory of Language. 

It will start by providing an overview of multi-agent systems and the 

modelling of the behavior of software agents using the BDI model. Then, it will 

describe the beginnings of chatbots and dialogue systems, followed by a description 

of the architecture of chatbots and dialogue systems, as well as providing a detailed 

view of ADMP, an Agent-based Dialogue Management Platform. Finally, it will 

introduce the concepts of speech acts. 

 

2.1 Software Agents 

Software agents are reactive systems that exhibit some degree of autonomy 

in achieving a goal: an agent is capable of independent action in unpredictable and 

changing environments, without the need of direct human intervention. The system 

is called an "agent" because it is action oriented: an agent should actively pursue its 

goals and tasks, independently reasoning about the best way to do so. Therefore, 

agents can adapt to current circumstances, dynamically changing their behavior to 

fully achieve its desires and intentions.  

An agent is not usually found alone in a system; in fact, individual agents 

interact with each other, collaborating to perform complex tasks and achieve their 

respective objectives. This constitutes a multi-agent system (MAS).  

Multi-agent systems increase modularity and diminish the complexity of 

software engineering problems, by providing a modelling of systems as a set of 

entities/organizations who interact between themselves and with other entities to 

achieve their goals and objects.  

Among the main characteristics of a software agent, we can cite:  
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• Autonomy: agents must act without direct human intervention, according 

to its reasoning; 

• Reactivity: agents perceive their environment and respond to changes in it; 

• Pro-activeness: agents should be opportunist and goal-oriented, looking to 

execute actions when applicable to their goals; 

• Social: agents are capable of interacting with other agents, when 

appropriate, in order to achieve their goals. 

 

2.1.1 The BDI Model 

There are many ways to model the reasoning and behavior of agents. The 

most popular and researched approach is the BDI (Belief-Desire-Intention) model. 

To talk about this model, according to (BORDINI, HÜBNER & WOOLDRIDGE, 

2007), we need to address the idea that we can talk about computer programs as if 

they had a “mental state”. Thus, when we talk about a belief−desire−intention 

system, we are talking about computer programs with computational analogues of 

beliefs, desires and intentions. These are described below: 

Beliefs: are information the agent has about the environment. This 

information, however, is something the agent believes in but it may not be 

necessarily true. As an example, an agent may perceive from its environment the 

fact that it is raining.  However, the rain may stop before the next reasoning cycle 

of the agent – in this case, his belief is outdated and incorrect. 

Desires: are the possible states of affairs that the agent might like to 

accomplish. That does not mean, however, that the agent will act upon it – it is a 

potential influencer of the agent’s actions. 

Intentions: are the state of affairs that the agent has decided to act upon. In 

other words, intentions can be considered as a selected option between the potential 

set of options/desires that the agent has decided to pursue. 

These are the key data structures of the BDI model. The decision-making 

approach used by the agent, therefore, is practical reasoning: the agent weighs 

conflicting information for and against the available options, according to its beliefs 

and desires. The result of this deliberation is the adoption of intentions, which in 

turn will lead to the execution of actions.  
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2.2 History and Early Chatbots 

Chatbots are computer program that interacts with users using natural 

language (WOUNDERBERG, 2014) (GATTI de BAYSER & CAVALIN, 2017). 

This sub-chapter discusses the origins of the concept, history and techniques 

involved in the first chatbots, and the state-of-the-art for current chatbot 

technologies. 

 

2.2.1 Alan Turing and the Imitation Game 

In 1950, Alan Turing published his seminal work about machine intelligence 

and thinking (TURING, 1950). To answer the question of whether machines can 

think Turing proposed a test which he called the "imitation game" — nowadays 

known as the Turing Test — in which an interrogator asked questions to a human 

and to a machine, aiming to identify which of the two is the machine. If the 

interrogator is unable to do so, it is established that the machine can think. By 

proposing a machine that can dialogue with humans in natural language, Turing 

was creating the very concept of a chatbot.  

 

2.2.2 ELIZA 

In 1966, researchers at the MIT created ELIZA, the first chatbot to pass a 

version of the Turing Test. ELIZA (WEIZENBAUM, 1976) (WOUNDERBERG, 

2014) simulated a Rogerian psychologist whose goal was to make people reflect 

about their current situation by using techniques to keep the patient talking. Patients 

could not tell that they were talking to a program, to the surprise of ELIZA's creator, 

Joseph Weizenbaum. 

ELIZA was able to carry on conversations such as:  

Patient: Men are all alike. 

ELIZA: IN WHAT WAY 

Patient: They’re always bugging us about something or other. 

ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE 

Patient: Well, my boyfriend made me come here. 

ELIZA: YOUR BOYFRIEND MADE YOU COME HERE 

Patient: He says I’m depressed much of the time. 
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ELIZA: I AM SORRY TO HEAR YOU ARE DEPRESSED 

Patient: It’s true. I am unhappy. 

ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE 

UNHAPPY 

Patient: I need some help, that much seems certain. 

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP 

Patient: Perhaps I could learn to get along with my mother. 

ELIZA: TELL ME MORE ABOUT YOUR FAMILY 

To perform this dialogue, ELIZA used simple pattern matching and 

substitution techniques to process the input and produce an appropriate output. 

Some examples are as follows (WOUNDERBERG, 2014): 

* you are (depressed|sad)  * => I AM SORRY TO HEAR YOU ARE \1 

* all * => IN WHAT WAY 

* always * => CAN YOU THINK OF A SPECIFIC EXAMPLE 

 

Outside of the realm of Rogerian therapy, ELIZA also performed well. In one 

case, a business executive tried to contact a programmer via teletype but, 

unbeknownst to him, got ELIZA instead. The dialogue went on for a while, until 

the executive phoned the programmer asking him why he was being "snotty" 

(WOUNDERBERG, 2014). This can also be considered an example of ELIZA 

passing a somewhat modified version of the Turing Test, since the executive did 

not realize he was talking to a machine — even though he was not trying to 

distinguish between a computer and a human, like in the Turing Test. 

 

2.2.3 PARRY 

In 1972, the psychiatrist Kenneth Colby created PARRY (SHIEBER, 1994) 

(WOUNDERBERG, 2014). Although this chatbot works similarly to ELIZA, using 

pattern matching techniques to produce a suitable output, PARRY had the goal of 

simulating a paranoid schizophrenic. Implementing a crude model of behavior and 

a conversational strategy, it was more advanced than its predecessor. Colby 

described it as "ELIZA with an attitude". PARRY also passed a variation of the 

Turing Test, in which psychiatrists were given transcripts of dialogues with 

PARRY and transcripts with actual paranoid schizophrenic patients, and were asked 
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to decide which one was simulated. The psychiatrists did no better than random 

guessing in this test (SHIEBER, 1994). 

The following is an example of a dialogue with PARRY (WOUNDERBERG, 

2014). 

Psychiatrist: Good afternoon. My name is Doctor Jones.  

PARRY: Pleased to meet you. 

Psychiatrist: How are you? 

PARRY: All right I guess. 

Psychiatrist: Could you tell me your name?  

PARRY: Pat Smith 

Psychiatrist: How old are you? 

PARRY: 28. 

Psychiatrist: I thought you might have some problems.  

PARRY: I’ve been upset lately. 

Psychiatrist: By what? 

PARRY: People get on my nerves sometimes.  

Psychiatrist: Tell me more. 

PARRY: Do you know anything about bookies? 

Psychiatrist: No. What about bookies? 

PARRY: A bookie didn’t pay me once.  

Psychiatrist: When did this happen? 

PARRY: A couple of months ago. 

PARRY and Eliza actually met several times, most notably at the ICCC 1972 

conference in Washington, DC. An interesting demonstration followed, and a part 

of the dialogue between them is listed below (“RFC 439 - PARRY encounters the 

DOCTOR”, 2018): 

ELIZA: Good Evening. Tell me your problems. Please terminate input with a 

period or a question mark.       

PARRY: People get on my nerves sometimes. 

ELIZA: I am not sure I understand you fully. 

PARRY: You should pay more attention. 

ELIZA: Suppose you should pay more attention. 

PARRY: You’re entitled to your own opinion. 

ELIZA: What makes you think I am entitled to my own opinion? 
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PARRY: It bothers me just to be around people in general. 

ELIZA: Please go on. 

PARRY: I went to the track at Bay Meadows a while back. 

ELIZA: What does that suggest to you? 

PARRY: I went to the races. 

ELIZA: What else would you like to discuss? 

PARRY: Horseracing interests me. 

 

2.2.4 ALICE 

ALICE is a chatbot created in 1995 by Dr. Richard Wallace. It has won the 

Loebner Contest — an annual competition to identify the most "human" computer 

and to award $100.000,00 for the first program that passes an unrestricted Turing 

Test — in 2000, 2001 and 2004. 

ALICE was inspired by ELIZA, and uses an XML Schema called AIML 

(Artificial Intelligence Markup Language) for specifying patterns and responses 

(WOUNDERBERG, 2014). For example: 

<category> 

<pattern>WHAT IS YOUR ∗</pattern> <template>Guess!</template> 

</category>  

This pattern matches inputs such as "What is your name?" or "What is your 

favorite movie".  

Among several interesting features in AIML, such as the use of variables and 

the capability of maintaining context, is recursion. For example:  

<category> 

<pattern>DO YOU KNOW WHAT ∗ IS</pattern>  

<template><srai>WHAT IS <star/></srai></template>    

</category>  

In this case, the phrase "Do you know what Computer Science is?" will 

redirect to the category "What is Computer Science", and to the appropriate 

response. 
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2.2.5 Current chatbot technologies 

Nowadays, chatbot technology has become very popular due to its integration 

in smartphones and smart devices (WEINBERGER, 2017). Examples of modern 

chatbots are Siri, embedded in Apple's iOS-based devices; Google Now, in Android 

devices; Amazon's Echo and Alexa; and Microsoft Cortana (GATTI de BAYSER 

& CAVALIN, 2017). These bots take advantage of advanced natural language 

understanding and machine learning techniques to generate responses based on 

analysis of web search results. Other modern chatbots use Statistical Machine 

Translation techniques to "translate" input into output responses. 

Big players in the technology market, such as Google, Microsoft and IBM, 

have launched cloud-based platforms — such as Google Cloud, Microsoft Azure 

and IBM Cloud, respectively — allowing access for developers to their services 

and solutions. Several of these deal with machine learning training problems, 

including natural language processing – such as DialogFlow, Google's platform for 

processing natural language utterances and developing intelligent conversational 

agents.  

Some applications, such as Facebook, Slack, Skype, Telegram, among others, 

allow chatbots to be hosted and deployed. Facebook Messenger, for example, had 

34.000 developers on its platform and was hosting 30.000 bots in the end of 2016 

(CAHN, 2017).  

This allows chatbots developers to have great efficacy and efficiency in 

developing and deploying intelligent chatbot applications for specific domains and 

releasing them in different platforms. Figure 1 shows some examples of current 

chatbots and platforms available. 
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Figure 1: Current chatbots and platforms 

 

2.3 Chatbot Architecture 

This sub-chapter answers the research sub-questions #RQs1: How does a 

chatbot work? and #RQs2: What are the main elements that compose a chatbot? 

Building a chatbot requires several components, some of them specific to the 

domain and tasks being handled. These chatbots systems usually have common 

modules. However, there are different approaches to how they should be developed 

and implemented, the concepts remain the same.  

This section introduces these concepts involved in creating a chatbot dialogue 

system. 

 

2.3.1 Natural Language Understanding (NLU) 

The first step when a user produces an utterance is receiving and processing 

it. If the utterance is spoken, a Speech Recognition module will identify the spoken 

words, producing an unstructured representation of them (CAHN, 2017). If the 

dialogue system's input format is text only, a Speech-To-Text conversion is not 

needed.  

The unstructured text — whether a result of direct user input in case of 

text-only interfaces or output from a Speech Recognition module — is then fed into 

the Natural Language Understanding module. This component receives the text and 
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outputs a semantic representation of its content, that can be read and understood by 

the Dialogue Manager component.  

There are several approaches in implementing NLU. One common way is 

using a frame-slot semantics, based on a semantic grammar, where input sentences 

by the user contain information that fill the appropriate slot. Another way is 

recognizing Dialogue Acts, which represent the function of a text/sentence. Table 

1 depicts examples of Dialogue Act Recognition (CAHN, 2017). Machine learning 

techniques can be used to perform this classification, such as decision trees and 

neural networks.  

Dialogue Acts are usually specific to a certain domain. So, instead of asking 

the general function of an utterance (whether the sentence is a question or a 

statement, for example), it can be interesting to discover what is the user's intention 

behind said utterance — for instance, the user may want to book a flight or schedule 

an appointment.  

Dialogue Acts which are domain-specific are called intents (CAHN, 2017). 

Intent Identification is a very popular approach in cloud-based platforms for Natural 

Language Understanding, such as DialogFlow or Microsoft Azure. 

Table 1: Dialogue Act Recognition Example 

Speaker Dialogue Act English 

A Conventional-opening Hallo!? 

B 
B 
B 

Conventional-opening 
Statement 
Question 

Hi Peter! 
It's me, Michael. 
How are you? 

A 
A 
A 

Conventional-opening 
Statement 
Question 

Hello Michael! 
Very well. 
And you? 

B Statement I'm well too. 

 

2.3.2 Dialogue Manager 

This section answers the research sub-questions #RQs3: “What are the 

available approaches to manage a dialogue?”; #RQs4: “What are the advantages 

and disadvantages of each approach?”, and #RQs5: “How does one use the 

information state approach with the goal of maximum reuse?”. 
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The Dialogue Manager is the central component of a chatbot. It is responsible 

for controlling the state and flow of the conversation, storing discourse context and 

managing the different components in the architecture. There are several distinct 

approaches to implementing a Dialogue Manager (WOUNDERBERG, 2014), such 

as finite-state based systems, frame-based systems, agent-based systems and 

plan-based systems. A different approach to dialogue management, called the 

information-state approach, generalizes the previous approaches by viewing 

dialogue management in terms of information state updates.  

 
Finite-state based systems 
 

In finite-state based dialogue managers the dialogue is specified as a set of 

states, with transitions denoting several paths through a graph (WOUNDERBERG, 

2014). State Transition Networks, which there is branching of paths, Hierarchical 

State Networks, which dialogue fragments can be reused, such as subroutines in a 

software, and Augmented Transition Networks, which includes storing and 

retrieving of information based on the user input — can be used to increase the 

efficacy of this approach (BICKMORE & GIORGINO, 2006). Figure 2 shows an 

example of a linear finite-state dialogue, while Figure 3 shows a Hierarchical State 

Network, with branching and use of subroutines — the square boxes in the Figure 

3 (BICKMORE & GIORGINO, 2006). 

 

 
Figure 2: Linear Dialogue Script 

 
Figure 3: Hierarchical State Transition Network Dialogue Model 
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Frame-based systems 
 

Frame-based systems work as a frame-slot procedure. The system asks 

questions to the user, filling the necessary slots of information to perform a task. 

The dialogue flow is not fixed, as in finite-state based systems, but depends on the 

content and order of the user input. In fact, frame-based systems can behave such 

as finite-based systems. See the following example:  

 
System: What is your destination? 

User: London 

System: What day do you want to travel? 

User: Friday 

 

In this case, where each slot is filled one at a time, the behavior of the system 

is similar to a finite-based approach. Now, let's suppose the following dialogue: 

 

System: What is your destination? 

User: London on Friday around 10 in the morning. 

System: I have the following connection… 

 

In this dialogue, the system receives all the information at once and fill the 

slots. If no more information is necessary, the system can perform the task of 

finding a flight according to the user's parameters. 

 

Plan-based systems 
 

This approach is based on the principle that humans who communicate have 

underlying intentions, related to achieving a goal; user input is seen, in this 

approach, as speech acts (WOUNDERBERG, 2014). For more information on 

speech acts, see Session 2.5. 

In the plan-based approach, the system should be able to reason and infer 

about the user's goal during the dialogue. Inferring a goal is necessary because what 

the user says may not be directly related to his intent — this phenomenon is known 

in Theory of Language as indirect speech acts (BICKMORE & GIORGINO, 2006). 
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For example, a speaker may say to the listener "It's very hot in here", so that the 

listener opens the window.  

So, plan-based systems assume that each act is part of the plan, and its 

objective is to infer the user's goals and perform specific tasks to achieve it. (HO, 

NGUYEN & WOBCKE, 2006) implements an architecture involving plan-based 

systems, executed by a software agent. 

 

Agent-based systems 
 

In these systems, a conversation is seen as an interaction between two agents, 

each one being capable of reasoning about its own actions and beliefs, and about 

the actions and beliefs of the other agents participating in the dialogue.  

It is important to note that the word "agent", in this case, means modelling the 

participants as autonomous entities capable of reasoning about its own behavior and 

that of others, not the technology involved in multi-agent systems. 

This approach is more suitable for mixed initiative dialogue, allowing both 

the user and the system to take control of the dialogue and introduce new topics. 

 

Information State based systems 
 

The term information state is used to define information about the 

conversation that is stored by the system. More specifically, (LARSSON & 

TRAUM, 2003) defines the information state of a dialogue as the information 

necessary to distinguish it from other dialogues, representing the cumulative 

additions from previous utterances and motivating the selection of future action.  

This approach proposes a unifying view of dialogue management, in which 

independent dialogue theories can be implemented and evaluated in a reusable 

foundation. Similar names for information state are "conversational score", 

"discourse context" or "mental state". 

The Information State approach provides a method for specifying a theory of 

dialogue (BUCKLEY & BENZMÜLLER, 2005), which consists of: 

 
• An information state; 

• Representations for the information state; 

• Dialogue moves; 
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• Update rules; 

• Update strategy. 

 
The information state, as mentioned, is the description of the state of the 

discourse and its participants. It stores dialogue level knowledge, such as questions 

and answers, beliefs of the user, beliefs of the system, the last utterance and who 

performed it, among others. 

For each aspect of the dialogue context that is modelled, a representation must 

be chosen. This representation can range from simple structures such as a list or a 

string, to more complex representations such as an attribute-value matrix.  

Dialogue moves provide an extension from the notion of speech acts to 

include aspects of the relationship of the speech act to the rest of the dialogue. When 

a dialogue move is performed, its content may result in a change being made to the 

state of the dialogue. 

As the dialogue progresses, the information state must be updated to reflect 

the consequences/effects that actions of the participants have on the dialogue 

context. In order to perform these updates, update rules are implemented to be fired 

in reaction to observed dialogue moves. These rules are specified by precondition 

rules and effects: preconditions define which information state is active at a time, 

and effect rules indicate the changes that must occur to achieve the new information 

state. Update rules may also have side conditions, allowing external functions to be 

called within the rule to calculate the transition.  

To control how updates are made, an update strategy must be declared. This 

strategy is an algorithm which decides the update rules that should be fired at a 

given time, such as selecting the first applicable rule. 

(BUCKLEY & BENZMÜLLER, 2005) and (BUCKLEY & BENZMÜLLER, 

2006) implement a dialogue manager that uses the information state approach 

together with the software agent paradigm: each precondition rule is associated with 

an agent, that evaluates if the rule is applicable at a certain time and performs the 

necessary transition calculations. An update agent, controlling the update strategy, 

is responsible for checking the available transitions and selecting one to become the 

next information state. This architecture, called the Agent-based Dialogue 

Management Platform (ADMP), is expanded in Chapter 2.4. 
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2.3.3 Task Manager 

The term Task Manager is used generically here to indicate the component 

responsible for actually performing the necessary tasks requested by the user, such 

as booking a flight or retrieving information about the weather.  

 

2.3.4 Natural Language Generation 

The Natural Language Generation component gets a meaning representation 

of what to say from the Dialogue Manager and conveys this in natural language to 

the user, whether in speech or text. ELIZA's AIML schema is an example of this 

module, using a template-based approach. Nowadays there are more advanced 

techniques for Natural Language Generation, including using Statistical Machine 

Translation techniques to generate responses (CAHN, 2017). 

If the dialogue system is implemented with spoken dialogue as output, a 

Text-To-Speech component is necessary to take the generated text and transform it 

into synthetic speech. A common method of implementing Text-To-Speech is 

concatenating prerecorded speech together, forming utterances 

(WOUNDERBERG, 2014). 

 

2.4 Speech Acts 

 A speech act is a term created by language philosophers denoting the sense 

in which utterances do not just provide meaning, but they also perform action 

(LEVINSON, 2016). By talking, a person is performing intentional goal-directed 

speech acts. 

In other words, speech act theory does not subscribe to the Aristotelian view 

that sentences and propositions are either true or false. John Austin was one of the 

first philosophers to break this notion by working out that "an utterance in a 

dialogue is a kind of action being performed by the speaker" (WOUNDERBERG, 

2014). For example, when the proper authority utters "I name this ship the Titanic", 

the state of the world changes: the name of the ship is, from now on, Titanic. 

Therefore, this speech act, in a sense, is no different from any other action. Austin 

called these kind of speech acts performatives: acts which incite action, changing 
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one's reality. In contrast, a constantive is defined by Austin as an utterance which 

merely describes a situation. 

In terms of the composition of speech acts, Austin claimed that any utterance 

can be divided into three parts:  

Locutionary act: the act of saying something; the actual utterance of the 

sentence. It includes a phonetic act, involving the production of noises; a phatic act, 

involving the production of words specific to a certain vocabulary and grammar; 

and a rhetic act, involving the product of the phatic act with a context or reference 

(TRAUM, 1999). 

Illocutionary act: acts performing in saying something, for example asking 

or answering a question and giving information. 

Perlocutionary act: acts performed by saying something. It is related to 

intentions by the speaker that influence the hearer's thoughts, feelings and actions. 

Persuasion, surprise and deterrence are examples of a perlocutionary act. 

Indirect speech acts, as mentioned in sub-chapter 2.3.2, are also defined by 

Austin.  

John Searle, another philosopher of language, extends Austin's work, 

particularly in relation to illocutionary acts. He classifies these acts into 5 categories 

(WOUNDERBERG, 2014): 

Assertives: commit the speaker to something being true; related to the beliefs 

of the speaker. Examples are suggesting, boasting, concluding, among others. 

Directives: attempts by the speaker to convince the listener of doing 

something; related to the desires of the speaker. Examples are asking, ordering, 

requesting, advising, among others. 

Comissives: commit the speaker to future action; related to the intentions of 

the speaker. Examples are promising, vowing, betting, among others. 

Expressives: express the internal state of the speaker. Examples are thanking, 

apologizing, welcoming, among others. 

Declaratives: bring about a different state of the world, such as the Titanic 

example mentioned previously. 

There are many reasons to consider these theories on language and utterances 

while developing dialogue systems. They can be very useful, for example, in AI 

models. However, more interesting correlations appear when we consider 

multi-agent systems.  
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Software agents are, by definition, action-oriented instead of knowledge-

oriented: agents must decide on the best course of action available at the time, even 

if their knowledge is incomplete. Since speech acts define talking as performing an 

action, conceptually there is a great correlation between these theories and 

conversational agents. 

Practically, these correlations become even greater. KQML (Knowledge 

Query and Manipulation Language), which proposes to be a universal 

communication language for agents, is based on Austin's performatives. (TRAUM, 

1999)	offers a consolidation of the use of speech act in AI models, as well as an 

interesting discussion on the validity and formalization of this theory in multi-agent 

communication.  

Furthermore, the first 3 types of illocutionary acts described by Searle, 

namely assertives, directives and comissives, are also related to beliefs, desires and 

intentions, the key data structures of the BDI model. In fact, (GATTI de BAYSER 

& CAVALIN, 2017) states that “if speaking consists in making one's intentions to 

make a certain speech act explicit, then speaking may be seen as a communication 

of intentions” and that in BDI “an intentional action is a function to accomplish a 

desired goal and is based on the belief that the course of action will satisfy a desire”. 

So, in the context of dialogue an intent is a goal expressed in an utterance, and by 

recognizing the intent a chatbot can choose the correct dialogue flow for responding 

to it – in fact, this is the approach used for the proof of concept chatbots, described 

in Chapter 5, which use DialogFlow to obtain information about the utterance’s 

intent.  

Although a philosophical discussion on the validity of speech act theory in 

dialogue systems is not on the scope of this work, one cannot deny the attractiveness 

of speech acts in multi-agent systems, since it allows "an agent theorist or designer 

to place agent communication within the same general framework as agent action" 

(TRAUM, 1999).	 Therefore, even though this work will deal with a chatbot 

architecture based on multi-agent systems and not with the structure of dialogues, 

it is interesting to keep speech act theory concepts in mind when developing 

dialogue systems. 
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3  
Related Work 

This Chapter describes the works that helped during the conceptualization of 

the problem and the creation of the proposed solution. In sub-chapter 3.1, an 

agent-based dialogue management platform (ADMP) using the Information State 

approach will be described. This platform is used in iBot to perform dialogue 

management. Sub-chapters 3.2 and 3.3 describe works that helped to conceptualize 

and contextualize iBot, analyzing the different approaches used in these works to 

create distributed architectures with MAS, it was possible to develop a generic 

framework for the development of different domain chatbots. Lastly, sub-chapter 

3.4 presents works that provided an invaluable literature overview of the main 

concepts of conversational agents.  

 

3.1 (BUCKLEY & BENZMÜLLER, 2005) and (BUCKLEY & 
BENZMÜLLER, 2006): An Agent-based Dialogue Management 
Platform - ADMP 

One popular approach to design autonomous agent systems is using a 

blackboard mechanism, which is a global data store for sharing information. This 

approach is used, for example, in the Open Agent Architecture (COHEN, et al., 

1994). In it, agents can communicate which each other directly or read and write 

events on the blackboard (such as their goals, or task specialties). One disadvantage 

of this method, however, is that because the model is highly distributed and the 

control flow depends largely on the interactions between agents, it is difficult to 

guarantee robust behavior and dialogue control. 

(BUCKLEY & BENZMÜLLER, 2005) and (BUCKLEY & BENZMÜLLER, 

2006) implement and instantiate the Dialogue Manager using ADMP (Agent-based 

Dialogue Management Platform), an architecture which uses a society of software 

agents to compute and control update rules and information state transitions by 

using a blackboard. Because it provides a meta-level to reason about heuristics, 
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ADMP provides better control of the dialogue. Figure 4 shows the ADMP 

architecture.  

 
Figure 4: The Architecture of ADMP 

On the left is the Information State, the central data structure of the system. It 

is made up of slots, which store a value. These slots are read by software agents, 

called Update Rule Agents (URA). Each of these agents, in turn, are associated with 

an update rule, which have in its preconditions a subset of the set of slots in the 

information state. When the update rule agent observes that its preconditions hold, 

it computes the information state update encoded in the rule and writes the result to 

the update blackboard.  

In Figure 4, The Update Agent (UA) that surveys the update blackboard. After 

a timeout, or some other stimulus, it chooses the heuristically preferred IS Update, 

executes it, and resets the system for a new turn. 

In order to make the repeated checking of the values in the information state 

slots by the agents more efficient, time stamping is applied to represent when a slot 

was last updated. Each slot has a timestamp, which is set to 0 when the slot is 

created. Whenever a slot is updated, its timestamp is incremented by 1, allowing 

the agents to determine whether the value contained in the slot has changed since 

the last time it was observed: if an agent observes that the timestamp changed, it 

knows that an update has been made on the slot, which leads the agent to test the 

preconditions of the rule. If the preconditions are satisfied, side conditions are 

executed (such as calling an external system), and finally the effects are evaluated 

and the new information state computed. Figure 5 depicts the execution loop of an 

Update Rule Agent. 
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Figure 5: Execution of an Update Rule Agent 

It is important to note that the agents run concurrently, so that many agents 

may be simultaneously computing results or may have made calls to external 

systems —	 it is up to the update agent to determine which computed new 

information state to use. 

The proposed solution presented in Chapter 4 uses ADMP to perform 

dialogue management based on the information state approach. ADMP was chosen 

for the solution because it is based on the information state approach, thus allowing 

the implementation and evaluation of different theories of dialogue. Also, it does 

not constraint types and values in the slots of the information state, leaving the 

decision of what to model in the dialogue, i.e., which information will be important 

in the context of the domain, to the developer. This is particularly important 

considering that the proposed architecture needs to be flexible enough to allow for 

the development of applications in different domains. Each of these domains, in 

turn, may need different information to be modelled in the information state, and 

ADMP provides this flexibility. Finally, ADMP uses multi-agent technology to 

implement the information state approach. Since the proposed architecture uses 

software agents to increase modularity, in order to better perform complex tasks, 

the use of a multi-agent system in dialogue management provides an interesting 

complement and a nice fit. 
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3.2 (HO, NGUYEN & WOBCKE, 2006) – Smart Personal Assistant 
for E-Mail and Calendar Tasks 

(HO, NGUYEN & WOBCKE, 2006) discusses the architectural aspects of a 

Smart Personal Assistant (SPA) system to help users with e-mail and calendar 

tasks. In this model, a special Coordinator agent mediates communication between 

the user and specialist task agents, responsible for handling e-mail and calendar 

tasks. Figure 6 depicts the overall architecture of this SPA. 

 
Figure 6: Architecture of SPA 

The Coordinator, is responsible for both dialogue modelling and 

coordination. It is implemented as a BDI agent that uses plans to coordinate the 

action of the individual assistants and for encoding the system’s dialogue model. 

This dialogue model is based on the theory of speech acts by Searle, where it is 

assumed that each utterance has a main speech act, known as a conversational act 

in this context. The conversational acts interpreted by the system are shown in Table 

2. 

Table 2: Conversational Act Descriptions in SPA 

Conversational Act Act Description 

Request ask the addressee to perform a domain task 

Respond describe the result to the hearer 

Clarify ask the addressee to clarify ambiguities 

Greet express the speaker's greetings/feelings 

Confirm clarify ambiguities by expressing 
agreement/disagreement 

Ack express an acknowledgement 
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To interpret each conversational act in an utterance and coordinate with the 

task specific agents, the coordinator is specified with a set of plans divided into four 

groups: conversational act determination and domain task classification, intention 

identification, task processing and response generation. Figure 7 presents the 

Coordinator Agent and when each plan is activated – shown in the Figure in the 

dotted boxes. 

 

Figure 7: Coordinator Agent Plans 

While this SPA architecture is interesting for two reasons. First, by  

delegating the tasks performed by the system to specific agents, who have complete 

autonomy in achieving their goals, it diminishes the complexity of the system and 

can increase the domains handled by it. Also, by centralizing dialogue and 

coordination in the Coordinator agent, it maintains a robust dialogue control of the 

application. It is important to note, however, that the SPA architecture  also has its 

shortcomings; mainly, every change in the system will require the creation of more 

plans in the agent’s knowledge base. 

First, not all plans can be reused; only domain independent plans related to 

the dialogue model can be reused in different domains. Regarding the 

domain-related plans, the Coordinator needs to know everything about the task 

agents, including their capabilities, beforehand, in order to call these agents through 

plans in the Coordinator’s database. Therefore, adding new abilities to these agents 

includes generating new plans for the Coordinator.  
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Also, adding new agents that may perform other tasks may be extremely 

difficult, requiring a remodeling of the plans for coordinating each agent in the 

Coordinator; therefore, augmenting the system's capability of handling more 

domains may not be a trivial task.  

Lastly, if we want to increase or change the system’s dialogue model, to 

include more conversational acts for instance, more plans will also be created. So, 

for each change in the system, the Coordinator becomes bigger and more complex. 

Analyzing the advantages and disadvantages mentioned above, the proposed 

solution presented in the next chapter hopes to maintain the centralized aspect of 

the SPA architecture by implementing a centralized and complex Dialogue 

Manager component based on ADMP and the information-state approach – as 

opposed to the plan-based Coordinator. By doing so, the proposed solution 

maintains a centralized structure for obtaining dialogue control while implementing 

a Dialogue Manager that can be easily altered or modified with the addition of new 

agents or dialogue models. Regarding dialogue models, if developers want to add 

new speech acts to the system, or use a different dialogue theory altogether, in terms 

of the information state this means only the remodeling of its slots to retrieve the 

relevant information in the dialogue – while a plan-based system would require the 

creation of new set of plans. Moreover, the task agents in the system, as will be 

explained in Chapter 4, will be called as side conditions of the update rules in 

ADMP, like any other module in the system – the difference being that the agents 

have the intelligence and autonomy to pursue their own goals using the MAS 

paradigm. So, to include a new task agent in the system, developers will only need 

to add new update rules and agents to the system to execute this rule, instead of 

writing new plans in the Coordinator. 

 

3.3 (LEE, LIN & WANG, 1999) – Decentralized Model and Agent 
Society 

Another interesting decentralized architecture is presented in (LEE, LIN and 

WANG, 1999). This paper first describes a centralized model for multi-agent and 

multi-domain spoken dialogue systems, as shown in Figure 8, which illustrates a 

tour information dialogue system. 
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Figure 8: Centralized model for tour information service 

In this model, the broker agent understands the user's request, sends queries 

to each agent according to the user's intent, gets the answer and generates a response 

to the user. While this model may be effective for single-turn dialogue, it is not very 

effective when considering multi-turn: the broker agent must be extremely 

complicated, switching the dialogue smoothly between different domains, and 

storing the dialogue state and knowledge. Therefore, adding new domains will be 

complicated in this architecture, increasing the complexity of the broker agent. 

To solve these inefficiencies, the work proposes a different architecture in 

which the dialogue state and knowledge, as well as the control flow of the dialogue, 

are stored in each of the task agents, called here Spoken Dialogue Agents (SDA), 

when they are “activated”. Figure 9 shows this system. 

 

 
Figure 9: Agent society for spoken dialogue tour information service 

In this architecture a domain switching protocol is implemented, where the 

Facilitator, deciding that the user's utterance is from a different domain (using 

Graph Search for the different domains), switches from the current SDA to the SDA 

that can handle the utterance. When this switch occurs, the State Dependent Data 
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(SDD), mainly the dialogue state and history, is transferred to the new agent, who 

has complete responsibility regarding its tasks and its dialogue. 

The architecture proposed in (LEE, LIN & WANG, 1999) has many 

advantages. First, it is relatively simple to add new and correlated domains to the 

system, since each agent is responsible for the conversation flow in their turn, 

performing their tasks and having access to the SDD. Also, the user is not aware of 

the switch between agents, since the UIA (User Interface Agent) provides one 

uniform interface for communication.  

However, the main disadvantage of this architecture is that it gives up 

completely any kind of centralized dialogue control. Suppose we are implementing 

a dialogue system in a critical domain, such as healthcare; some control of the 

information obtained by the system through its interaction with the user must be 

centralized in a component, in order to guarantee that all information required for a 

task is collected, with quality, by the system. 

While (LEE, LIN & WANG, 1999) focuses on multi-domain applications, 

and this work’s goal is to develop a framework for chatbots in different general 

domains, it still provides some valuable lessons and insights. First, the idea of 

distributing tasks to specialist agents, also present in the SPA architecture from the 

previous section, is very attractive.  

Moreover, one of the goals of the proposed solution is to maintain dialogue 

control in the application, something that does not happen in the decentralized 

model mentioned above. Therefore, the iBot framework presented in the next 

chapter presents a more centralized architecture, which minimizes the 

disadvantages of the centralized tour information service of Figure 8 by developing 

a more complex dialogue management component, based on ADMP and the 

information state approach, instead of using a single agent to perform all 

coordination, interpretation and interaction functions. In fact, the proposed 

solution’s design is very similar to the model in Figure 9, except for the inclusion 

of the Dialogue Manager and for the specialist task agents, which do not have the 

autonomy to actually perform dialogues in iBot. Another difference is that dialogue 

level knowledge is stored in the Dialogue Manager, instead of being transferred by 

SDA. We hope that by combining the best of the two models we can achieve an 

interesting solution for developing chatbots in different domains, while maintaining 

dialogue control. 
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3.4 Other Works	

(WOUNDERBERG, 2014), (CAHN, 2017) and (BUCKLEY & 

BENZMÜLLER, 2005) provide a literature overview both of the basic concepts 

and the state-of-the-art, of building dialogue systems. They also present a general 

architecture for these systems, as mentioned in Chapter 2.3.  

(WOUNDERBERG, 2014), in particular, implements a Dialogue Manager 

using the information state approach in TrindiKit, a Prolog toolkit, coupled with 

pattern matching and substitution techniques. This Dialogue Manager is used in an 

application consisting of a statistics tutor. 

These works, by presenting and analyzing the history, main concepts, 

methods and components involved in creating state of the art dialogue systems, 

were of great help. In particular, their description of the interaction between the 

main components involved in building chatbots, as described in Chapter 2, served 

as a great introduction to the subject and increased the author’s understanding of 

the necessary efforts and concepts to actually construct dialogue systems. Because 

of this, they provided invaluable references to this work.   
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4  iBot Framework: An Agent-based Software 

Framework For Creating Domain Chatbots  

This Chapter described the proposed solution to the problem described in 

sub-chapter 1.1: iBot, an agent-based software framework for creating domain 

chatbots while maintaining dialogue control in the application.  

Combining the advantages of the related works mentioned in Chapter 3 while 

diminishing the disadvantages, the proposed solution uses ADMP and the 

information-state approach to create a complex and centralized Dialogue Manager 

component that can be easily expanded and modified to store dialogue level 

knowledge. By distributing tasks to software agents to increase modularity in the 

system, the proposed solution facilitates the creation of chatbots in different 

domains that have a robust dialogue control in the application. 

In sub-chapter 4.1, the Core Architecture of iBot is described. As mentioned 

in Chapter 1, this Architecture does not make any assumptions about which 

platform or programming language the developer must use, providing a blueprint 

for developers to create chatbots. This Architecture can be implemented in a 

number of ways, generating different instantiations of the iBot framework that best 

suit the developer’s needs. Sub-chapter 4.2 describes how to extend the Core 

Architecture for instantiation of the framework. 

 

4.1 The Core Architecture of iBot 

Examining the previous concepts and architectures it is clear that distributing 

complex tasks in an agent society, which can autonomously realize specific tasks, 

can increase modularity and the overall power of the system by allowing more 

domains to be handled. Also, some control in the dialogue is desirable, guaranteeing 

quality in the information and robustness of behavior.  

Therefore, we propose a software framework for building chatbots. This 

framework allows the creation of intelligent chatbots that are able to perform 

complex tasks and maintain dialogue control while being flexible enough to allow 
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the development of software in different domains. Figure 10 depicts the Core 

Architecture of the iBot framework. 

 

Figure 10: iBot ‘s Core Architecture 

The user interacts with the application through a GUI, or the User Interface 

Agent. The application may deal with different correlated domains, such as the tour 

information service mentioned in the previous Chapter, then, the GUI will allow 

the user to seamlessly switch between different applications (HO, NGUYEN & 

WOBCKE, 2006). The architecture also accounts for Natural Language Interpreter 

and Generator components, to process the user's input according to the goals of the 

system and generate output. 

On the center of the architecture is the Dialogue Management component, 

which is based on the information state approach implemented in ADMP, as 

explained in sub-chapter 3.1. ADMP, by distributing the management of the 

dialogue using software agents to complement the information state approach, make 

for a modular and relatively simple Dialogue Manager — for instance, in contrast 

to the plan-based Coordinator in (LEE, LIN & WANG, 1999) presented in sub-

chapter 3.3. 

By using the optional Persona module, developers may want to establish a 

persona in their program. For instance, (WALLIS, 2005) implements Eugene the 

Cuttlefish, a conversational agent that is vain and likes to be paid compliments 

about his colors; he may blush or get angry, and even withdraw for the conversation. 

In order to implement personalities like Eugene's, the Persona component can make 

alterations to the beliefs of the update agent in ADMP, altering its behavior.  
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The Task Agent Society represents a multi-agent system with software agents 

capable of performing the tasks in the domain. To implement a tour information 

service, for example, agents responsible for obtaining information about hotels, 

buses or the weather would be part of this society. They would also be able to access 

internal or external in order to accomplish their goals. 

In a dialogue using this architecture, the user communicates with the GUI. The user 

input is passed to the Dialogue Management component, updating the information 

state. According to update rules, this component calls the Natural Language 

Interpretation module, which processes the input and extracts the relevant 

information from it, updating the relevant slots in the information state. These 

updates trigger the firing of new update rules, which may lead to other modules or 

components being called in turn. For example, if a slot in the information state 

stores the user's intention, and this is recognized as being "Obtain Bus Information", 

the update rule related to this slot will fire, and the necessary tasks accomplished. 

Those tasks may be to call the agent in the Task Agent Society responsible for 

obtaining information about buses. Once this information is returned, the update 

rule agent will place it on the blackboard, and the update agent will select it as the 

next dialogue move to be performed. The Natural Language Generator, then, 

generates a natural language output to provide the information that the user 

requested. 

 

4.2 Extending iBot 

It is important to note that the Core Architecture is not executable. To create 

an application using iBot, developers need to extend its main components to 

instantiate the framework. Therefore, they will need to do the following: 

(i) Natural Language Interpreter: to extend the Natural Language 

Interpreter component, developers have several alternatives. They 

may use their own personalized techniques, such as adapting the 

classic pattern matching/substitution technique described in Chapter 

2, or use a number of cloud-based solutions, such as Microsoft Azure, 

Google’s DialogFlow and IBM Watson, which allows the training of 

Machine Learning models with samples of utterances expected in the 

dialogue. Also, its assumed that this component encapsulates a 
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speech-to-text converter, if the input accepts spoken utterances. The 

next chapter will present how the proof of concept chatbots extend 

this component using DialogFlow. 

(ii) GUI: the GUI, or User Interface Agent, can be extended in a number 

of ways, representing the interface for communicating with the user. 

If the chatbot is in a multi-modal application, then the GUI may be a 

number of screens, such as computer or mobile screens. The next 

chapter will detail how the proof of concept chatbots use the screen 

from a mobile device, such as an iPhone, to communicate with the 

user in the application. 

(iii) Natural Language Generator: to extend this module, developers 

may use a number of techniques. The responses may be hardcoded in 

the code – which is the approach used by the proof of concept chatbots 

– or be generated by more advanced methods, such as Statistical 

Machine Translation (CAHN, 2017). 

(iv) Dialogue Management: this is the most critical component of iBot, 

together with the Task Agent Society. To extend this model, the only 

compulsory condition is to instantiate the elements in ADMP, 

meaning the Update Rule Agents, the Update Agents and the 

Information State and its Updates. The developer may choose the IDE 

to create MAS that best suit him, and create and store the Information 

State according to the system’s requirements. While ADMP purposely 

does not require that the Information State is in one format, it does 

provide some basic rules, which can be seen at (BUCKLEY & 

BENZMÜLLER, 2005). The next chapter describes how the proof of 

concept chatbots implement the agents and Information State in 

ADMP using Swift, the IDE XCode and the iMobile framework for 

developing multi-agent systems in iOS (MIRANDA & LUCENA, 

2017). While the proof of concept chatbots does not require them to 

have a persona, developers may also extend this module, for example 

by creating new beliefs for the agents in ADMP or in the Task Agent 

Society. The authors in (ALVES, VIANA & LUCENA, 2018) present 

personality traits by adapting the BDI model for normative multi-

agent systems. 
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(v) Task Agent Society: to extend the Task Agent Society module, 

developers must create software agents to perform the tasks necessary 

for the chatbot in the application. These agents are to be called by the 

Update Rule Agents as side conditions in the Update Rules. The next 

chapter describes the creation of the Task Agent Society using 

iMobile. 
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5  User Scenario 

This Chapter presents the user scenario for the validation of the iBot 

framework with the implementation of 4 proof of concept chatbots for iOS 

platforms.  

It starts by describing the scenario and the chatbots, detailing the 

implementation details and results of each chatbot in the following sub-sections, 

and concludes with a discussion about the use and validation of iBot in the creation 

of the proof of concepts. 

 

5.1 Description 

This work has been developed jointly with LES PUC-RJ - Laboratório de 

Engenharia de Software PUC-RJ (Laboratory of Software Engineering PUC-RJ), 

which in turn has partnerships with IDOR - Instituto D’Or de Pesquisa e Ensino 

(Institute D’Or of Research and Teaching), a non-profit organization whose goal is 

to promote technological advancement in the healthcare area. 

One of these partnerships proposes the creation of a mobile app to stimulate 

scientific dissemination. Most specifically, the app has three main stakeholders: 

listeners, researchers and institutions. Researchers and institutions use the app to 

find each other and organize scientific events — for example, a university may wish 

to create an event about astronomy, while astronomers may want to share their 

knowledge with the public; so, they use the app to connect and create the event. 

Listeners, on the other hand, attend the events that they are interested in. 

The idea of the app came from the success of worldwide events such as Pint 

of Science, and research showed that the Brazilian people is interested in science 

— 61% of the interviewed declared being interested by the subject, a percentage 

larger than the one from the European Union — while they lack knowledge on the 

subject — 87% did not know the name of a Brazilian scientific institution, while 

94% does not know the name of a Brazilian scientist (“Unicamp”, 2017). 
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Considering the basis and the idea for the app, and during talks with LES and 

IDOR, four different chatbots where conceptualized, to help the user of the app: 

 

- First: Chatbot to help in the filling of login forms; 

- Second: Chatbot to help users understand about the subject being exposed 

in an event; 

- Third: Chatbot to help users find events according to their interests and to 

confirm their presence; 

- Fourth: Lastly, a chatbot comprising all functions above. 

 

The chatbots were developed for iOS using Apple’s IDE XCode and the 

programming language Swift 3.3.  

 

5.2 Extending iBot: Hot-Spots and Frozen-Spots  

Hot-Spots: to implement each of the proof of concept chatbots, it is necessary 

to instantiate the iBot framework by extending its hot-spots in the core components 

of the architecture. The hot-spots for this implementation are: (i) ADMP, including 

the Update Rule Agents; (ii) the agents in the Task Agent Society, and (iii) Natural 

Language Interpreter, implemented as a DialogFlow application for each chatbot, 

detailing the user’s expected utterances and their underlying intention.  

Regarding (i) and (ii), Figure 11 shows the extension of the ADMP and the 

Task Agent Society for each of the proof of concept chatbots. These agents will be 

expanded in the following Chapter for each chatbot. The Comprised Chatbot, 

comprises the Update Rule Agents and the Task Agent Societies of previous 

chatbots, plus an additional Update Rule Agent, as will be described sub-chapter 

5.6.  

The agents where implemented using the iMobile framework for developing 

multi-agent systems in iOS (MIRANDA & LUCENA, 2017). Therefore, extension 

points present in this framework, mainly the ones for extending the Agent and 

Behavior classed, were used. It is important to note that there are no restrictions in 

terms of the MAS creation frameworks and their respective extension points in iBot. 
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Figure 11: Extending ADMP and the Task Agent Society 

As for (iii), to interpret the user’s natural language utterances, Google Cloud’s 

Dialogflow platform was used. DialogFlow allows the training of Machine 

Learning models according to samples of user’s utterances. It also provides an iOS 

SDK, allowing the developer to make a request to DialogFlow. This request returns 

the user’s intentions and parameters embedded in the utterance. Figure 12 shows 

the NLI module. It makes a request to a DialogFlow application, created for each 

of the chatbots, in the function performQuery – declared in line 24. It also analyses 

if the intent of the user is “quit_bot”. This intent is identified when the user says 

utterances like “Goodbye” or “See you later”. In this case, the chatbot is closed in 

the app. 

Lines 38 and 39 update the Information State slots intent_list and 

DFResponse directly, without using the blackboard. This is for two reasons. First, 

it is assumed in the implementation that NLI will always be called in the beginning 

of the turn, and the following update rules will be based on the slots updated at this 

moment. Second, these slots are related to maintaining context by storing the 

dialogue’s history; therefore it makes sense that these values will always be 

updated. So, to simplify the NLI component directly updates the necessary slots.  

The respective DialogFlow applications will be detailed further in the 

following Chapters for each chatbot. 
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Figure 12: NLI Module 

Frozen-Spots: the frozen-spots for this implementation are: (i) GUI, in this 

case a screen in an Apple mobile device, such as an iPhone (ii) Natural Language 

Generation, in this case the chatbot accepts written and speech input, using native 

iOS development classes to generate natural language speech.  

All chatbots also have an Update Agent, which continually checks the 

blackboard for Information State Updates and chooses the preferred one, according 

to some heuristic. 

 

5.3 Login Chatbot 

The first proof of concept chatbot that was implemented is the login chatbot. 

This program allows users to log in the app, storing their name and email. If the 

user is a company, then it should ask for the Employer Identification Number. If 

the user is a person, then it should ask for more information, such as Social Security 

number, Interests and link to the person’s CV (if the person is a researcher).  

The Information State for the login chatbot is defined as follows:  

Non-Domain Related 

- Utterance_List; 
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- DFResponse; 

- Intent_List; 

- Next_Utterance. 

 

Domain Related 

- Name; 

- Email; 

- Id; 

- Interests; 

- cvLink; 

- User_Type; 

- Person_Type. 

 

The Utterance_List slot stores the list of utterances spoken in the dialogue, 

and who spoke it. The DFResponse slot stores the current response from 

DialogFlow, Intent_List stores the list of intents expressed in the dialogue and 

Next_Utterance store’s the system’s next utterance, sent to the GUI. The rest of the 

slots are domain related: name stores the username, email stores the user’s email, 

id stores the user’s Social Security or Employer Identification Number (depending 

on whether the user is a person or a company), Interests store the user’s interests, 

cvLink stores the link to the user’s CV, user_type stores if the user is a person or a 

company and, lastly, person_type stores if the user is a researcher, listener, or both. 

The Update Rule Agents are defined according to what intent they are 

monitoring. For example, NameAgent monitors if the current intent is 

“provideName”, and EmailAgent monitors if the current intent is “provideEmail”. 

The only URA related to a non-domain related slot is the InputAgent, which calls 

the Natural Language Interpreter when a new utterance is spoken by the user.  

Figure 13 shows these agents. Since the login chatbot does not need to perform any 

tasks outside collecting and storing user data, it does not use any other agent than 

the ones present in the ADMP architecture. 
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Figure 13: Agents in the Login Chatbot 

Figure 14 shows the code for the behavior of InputAgent. Line 10 imports  

 

Figure 14: Behavior of InputAgent 

the DialogFlow API, called ApiAI (which was the original name of the DialogFlow 

tool). In Line 22, the function action() defines the behavior of an agent. It continues 

on a loop until its precondition, defined in the function preconditionRule() in line 
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34, returns an Information State Update – defined as a tuple vector of type (String: 

Any), where the String field is the name of the slot in the information state and Any 

is the new value of the slot in the update. In this case, the only precondition is that 

the timestamp for the Utterance_List slot of the information state has changed — 

meaning that the user has made a new utterance — checked in line 35. If the 

timestamp changed, the InputAgent calls the Natural Language Interpreter (NLI) 

module in line 37.  

The other URA are similar to this agent, with the main difference being that 

they check the timestamp of the Intent_List slot and the value of the last intent to 

see if it matches the required intent. 

Figure 15 shows Dialogflow’s interface for this chatbot, with the respective 

intents. Each intent has samples of user’s utterances, providing examples of what 

the user might say in a conversation.  

 
Figure 15: Intents in the Login Chatbot 

Figure 16 shows examples of these utterances for the intent provideInterests. 
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Figure 16: User Utterances in the provideInterests intent 

The colored elements in the phrases represent entities. Dialogflow provides 

some custom utterances to identify common elements on a dialogue, such as date 

and time, and also allows developers to create their own customized entities. Figure 

17 shows the entities for the login chatbot, and Figure 18 details the entity interest, 

to identify interests expressed in the dialogue. 

 

Figure 17: Custom Entities in the Login Chatbot 
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Figure 18: Entity interests in the Login Chatbot 

Figure 19 shows the Login Chatbot for a dialogue in which a company is 

performing the login.  

 

 
Figure 19: Login Chatbot for Company 
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Figure 20 shows the dialogue in which a person is logging in. The complete 

dialogue of the login chatbot can be seen in the following link: 

https://youtu.be/BFpEnit6VOU.  

 

 
Figure 20: Login Chatbot for Person 

 

5.4 Clarification Chatbot 

Another proof of concept chatbot is the clarification chatbot: if the user wants 

to know more about the subject of an event, he can ask the chatbot to explain it. 

The chatbot can give a more detailed and longer explanation if the user is 

experienced in the subject, or a simpler explanation, with analogies, to beginner 

users (the user profile can be inferred through the use of the app).  

The Information State for the clarification chatbot is defined as follows:  

Non-Domain Related 

- Utterance_List; 
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- DFResponse; 

- Intent_List; 

- Next_Utterance. 

 

Domain Related 

- Subject. 

 

The non-domain related slots are the same as in the login chatbot. The slot 

subject stores the subject to be explained to the user.  

Similarly to the previous chatbot, the Update Rule Agents are defined 

according to what slot they are monitoring. Therefore, the only URAs in this chatbot 

are the SubjectAgent, to monitor if the intent of the user is “explainSubject” and 

what subject the user wants explained, and the InputAgent, which is the same as in 

the previous chatbot. There is also an agent in the Task Agent Society, called 

ExplainAgent. This agent, called as a side condition of the SubjectAgent, receives a 

message from it containing the subject that the user wants explained and gets 

information about the subject from a database. This information is then returned to 

the SubjectAgent. Figure 21 shows these agents. 

 
Figure 21: Agents in the Clarification Chatbot 

Figure 22 shows Dialogflow’s interface for this chatbot, with the respective 

intents, and Figure 23 details the custom entities. 
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Figure 22: Intents in the Clarification Chatbot 
 

 

Figure 23: Custom Entities in the Clarification Chatbot 

Figure 24 shows the dialogue in which a beginner user wants to know more 

about the subject of astronomy – in this case, the explanation is longer and more 

detailed.  
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Figure 24: Clarification Chatbot for Beginner User 

Figure 25 shows the dialogue in which an experienced user wants to know 

more about the subject of astronomy — in this case, the explanation is smaller and 

less detailed. You can see more of the dialogue in the following link: 

https://youtu.be/m46oCJTqHLs.  
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Figure 25: Clarification Chatbot for Experienced User 
 

5.5 Event Chatbot 

The event chatbot has been implemented to help users find events according 

to their interests and confirm presence in them.  

The Information State for the event chatbot is defined as follows:  

Non-Domain Related 

- Utterance_List; 

- DFResponse; 

- Intent_List; 

- Next_Utterance. 

 

Domain Related 

- Event_list. 

The non-domain related slots are the same as in the previous chatbots. The 

slot Event_List stores the list of events that satisfy the user’s queries.  

Similarly to the previous chatbots, the Update Rule Agents are defined 

according to what slot they are monitoring. So, this application has the URAs 
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FindEventAgent, to find an event according to the user’s queries, and 

SelectEventAgent, to select an event, besides the InputAgent. There is also an agent 

in the Task Agent Society, called GetEventAgent. This agent receives a message of 

the FindEventAgent containing the subject of the event that the user wants to attend 

and its start and end dates, and gets the list of events which satisfy those conditions 

in a database. This information is then returned to the FindEventAgent. Figure 26 

shows these agents. 

 
Figure 26: Agents in the Event Chatbot 

Figure 27 shows Dialogflow’s interface for this chatbot, with the respective 

intents, and Figure 28 details the custom entities. 

 

Figure 27: Intents in the Event Chatbot 
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Figure 28: Custom Entities in the Event Chatbot 

Figure 29 shows the dialogue in the event chatbot. You can see more in the 

following link: https://youtu.be/VLIlo3FneIE.  

 

Figure 29: Event Chatbot Dialogue 
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5.6 Comprised Chatbot 

Lastly, a chatbot comprising all the previous functions has been implemented. 

The Information State for the event chatbot is defined as follows:  

Non-Domain Related 

- Utterance_List; 

- DFResponse; 

- Intent_List; 

- Next_Utterance. 

 

Domain Related 

- Event_list; 

- Subject; 

- Name; 

- Email; 

- Id; 

- Interests; 

- cvLink; 

- User_Type; 

- Person_Type; 

- chatbotFunction. 

The non-domain related slots are the same as in the previous chatbots. The 

domain related slots comprise the Information State from the previous chatbots, 

plus a slot called chatbotFunction to store the chatbot’s current function: login, 

explanation or search for events.  

In the same vein, the Update Rule Agents and Task Agents are a compilation 

of the agents in the previous chatbots, plus an Update Rule Agent called 

FunctionAgent, regarding the chatbotFunction slot. Figure 30 shows these agents. 
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Figure 30: Agents in the Comprised Chatbot 

Figure 31 shows Dialogflow’s interface for this chatbot, with the respective 

intents – comprising all the intents of the previous chatbots, plus one intent to 

recognize the chatbot function. Figure 32 details the custom entities – similarly to 

the intents, they comprise the entities of the previous chatbots with an entity to 

identify the chatbot function. 
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Figure 31: Intents in the Comprised Chatbot 

 

Figure 32: Custom Entities in the Comprised Chatbot 

Figure 33 shows the dialogue in the comprised chatbot. You can see more in 

the following link: https://youtu.be/uGUbIB3ElXY. 
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Figure 33: Comprised Chatbot Dialogue 

 
5.7 Discussion 

This section answers the research questions #RQs6: “Does the proposed 

solution allow for the development of chatbots for different tasks?” and #RQs7: 

“Does the proposed solution allow dialogue control in the application?”. 

The proof of concept chatbots, created for the app being developed by LES 

and IDOR, extend the iBot framework and distribute domain tasks to agents. By 

doing so, the chatbot is able to fulfill its goals. Therefore, developers using iBot are 

able to create chatbots in different domains. 

The use of the Information State approach, underlying ADMP, also provides 

for a robust dialogue control in the application, since the Information State contains 

the necessary information to be collected by the system. The turns in the dialogue 

are controlled by updates in the Information State, allowing developers to create a 

dialogue flow according to what information has been provided by the user during 

the dialogue. Moreover, the Information State Updates are executed by the Update 
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Agent. This Update Agent provides a meta-level to reason about heuristics, adding 

another layer of dialogue control to the application. 

It is important to note that, during development, there was no need to create 

or implement new components besides the ones already present in the Core 

Architecture proposed for iBot. These components were extended, as described in 

the sub-chapters above, to instantiate chatbots using iBot. 

In terms of the Natural Language Interpeter module, created with Dialogflow 

in the implementation, it is interesting to note that with a greater number of intents, 

it becomes harder to correctly recognize what is the underlying intention by the 

user. In fact, in the comprised chatbot specially — which has the biggest number 

of intents — the system identified the wrong intent at times. In this case, a greater 

number of utterances are needed in each intent to improve recognition by 

Dialogflow. 

To create the software agents, the iMobile framework was used (MIRANDA 

& LUCENA, 2017). It provided an invaluable tool to integrate multi-agent 

technology with iOS, and since Dialogflow also provides an iOS SDK, it allowed 

the development of the entire application in XCode. It is important to note, 

however, that each agent in iMobile is a thread, and during development XCode 

crashed at times because there were a lot of different threads active at the same 

moment, and the IDE could not support them all. It is beyond the scope of this work 

to analyze if this is a limitation of the current version of XCode or iMobile, but it 

remains a limitation of the implementation nonetheless. 
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6 Conclusion and Future Work 

This Chapter presents the conclusions of the dissertation with an analysis of 

the iBot framework’s main contributions and results, as well as indicates future 

directions of work. 

 

6.1 Main Contributions 

This work presented iBot framework, which:  

(i) Allows developers to create chatbots in different domains; 

(ii) Maintains a robust dialogue control of the information in the dialogue 

of the application.  

In order to achieve these objectives, iBot combines concepts and techniques 

of software agents and multi-agent systems, to perform tasks in the application’s 

domain by distributing them to the Task Agent Society, and to perform dialogue 

management using the information state approach by using ADMP.  

To validate this framework, 4 (four) proof of concept chatbots were 

developed using iBot, to be integrated in a mobile app being developed jointly by 

LES PUC-RJ and IDOR to help stimulate scientific divulgation. These chatbots 

handle different tasks and domains and by using the information state approach, 

they are able to maintain a robust dialogue control in the application, using the 

information obtained in the dialogue by the user to control the flow of the 

conversation. 

 

6.2 Main Limitations 

Sub-chapter 5.7 describes the limitations of the iOS implementation of iBot. 

Therefore, this sub-chapter will focus on the more general limitations of the iBot 

framework at the moment of writing. First, although it purported to provide a 

blueprint for developers to create chatbots in different domains that maintained 

dialogue control in the application, the lack of a defined set of requirements and 

best practices in iBot can provide a difficulty for using the Core Architecture 

DBD
PUC-Rio - Certificação Digital Nº 1621794/CA



 
 

66 

presented in Chapter 4, since there is a great number of techniques and solutions 

for each of its main components. For example, for Natural Language Interpretation 

developers can use Microsoft Azure, Google DialogFlow, IBM Watson, among 

others, and for creating software agents they can use Jason, JADE, iMobile, among 

others.  

So, it may be difficult to use iBot as a blueprint for creating chatbots with so 

many development approaches available. While the Core Architecture of the 

framework was purposefully developed to be free of requisites in terms of 

programming languages and platforms, a set of best practices for the framework is 

essential. The next sub-chapter describes future work that will revolve around the 

development of these best practices. 

Moreover, iBot has been conceived as a general framework for the creation 

of chatbots in different domains. While the initial validation with the user scenario 

showed that the solution is pointing in the right direction, it is hard to account for 

every need and eventuality in developing chatbots. Therefore, the constant use and 

monitoring of the framework, as well as user feedback, will be used in order to keep 

improving the solution.  

 

6.3 Future Work 

Future work will revolve in two directions. First, the proof of concept 

chatbots will be improved according to specifications from IDOR in order to be 

integrated in the mobile app. Following the Chatbot Best Practices from IBM 

(CUMMINS, 2018) the conversational agents will be tested with users, since 

“supporting natural user interactions is the defining characteristic of the system”. 

Also, they will be continuously monitored and tuned according to user feedback.  

The second direction involves the continuing development and evaluation of 

iBot. In order to develop best practices for the use of the framework, establishing a 

reusable foundation for developers, a comprehensive survey of development 

technologies for chatbots and for MAS will be performed. From the results of this 

survey, similar chatbots will be developed using more technologies and different 

combinations of integrations between cloud-based natural language applications 

and IDEs for developing MAS. Then, a comparison between these conversational 

agents will be performed, using the GQM paradigm (BASILI, 1992) (BASILI & 
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ROMBACH, 1988) and software metrics, such as the Chidamber and Kemerer 

(CK) metrics (GARCIA, 2004). The results of this comparison will point to the best 

development approaches in using iBot. 
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