4 A Ferramenta Computacional

Para pôr em prática o Modelo Inteligente de Avaliação da Qualidade de Água e da Qualidade Biótica — MIAQR-PALADINES programou-se uma ferramenta computacional utilizando a linguagem de programação C# em conjunto com o software Microsoft Visual Studio e Microsoft Excel.

No início, a ferramenta computacional foi esquematizada como um aplicativo único, capaz que receber e armazenar variáveis de entrada, conjuntos de regras e limites dos conjuntos de cada metodologia de cálculo. Porém, a ideia foi desestimada por motivo da complexidade e futura dificuldade na inclusão das regras na ferramenta por parte dos especialistas. A interfase gráfica desta primeira versão é exibida na Figura 40.

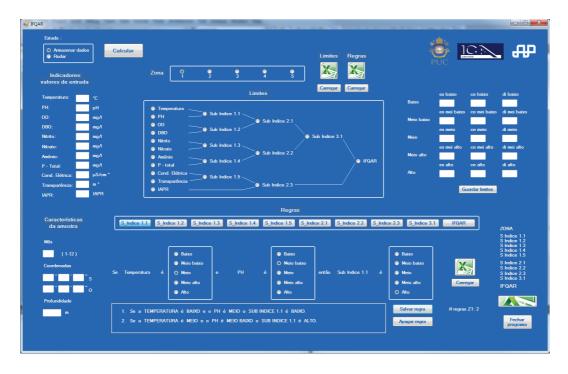


Figura 40. Primeira versão da ferramenta computacional

Levando em consideração a simplicidade, na hora de armazenar a informação, a ferramenta foi finalmente desenvolvida como um aplicativo *Windows* de fácil utilização sincronizado com um arquivo de *Excel* com nome "base.exlsx". Para facilitar o uso do aplicativo, a configuração, o controle de processos e a apresentação de resultados da ferramenta estão focalizados no aplicativo, enquanto a base de dados, informação necessária para o funcionamento da ferramenta (valores das variáveis de entrada, profundidade da amostra, coordenadas geográficas da amostra, bases de regras e funções de pertinência de cada metodologia, e dados de temperatura vs. profundidade da coluna d'água no local) está concentrada no arquivo *Excel*. De acordo com a descrição do modelo do subcapítulo 3.3, para determinar a metodologia de cálculo, o aplicativo importa e logo depois analisa toda a informação necessária do arquivo *Excel* antes de proceder com o cálculo dos subíndices e índices.

4.1.1. Aplicativo

A interface gráfica completa do aplicativo é apresentada na Figura 41.

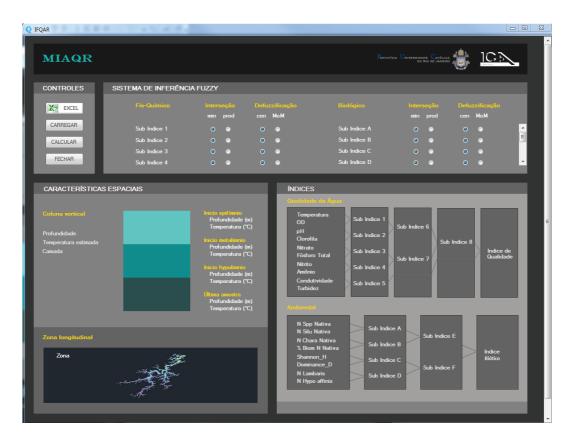


Figura 41. Interface gráfica do aplicativo

A interface está organizada em quatro subdivisões: Controles, Sistema de Inferência Fuzzy, Características Espaciais e Índices, desde onde se pode controlar, supervisar e visualizar o estado do reservatório e os resultados dos subíndices e índices finais.

4.1.1.1. Controles

A subdivisão *Controles* engloba os únicos quatro botões de comando do aplicativo. O botão excel abre o arquivo *Excel* com a base de dados que alimentará o programa, o botão *carregar* carrega os dados desde o arquivo *Excel*, o botão *calcular* inicia o cálculo dos subíndices e índices finais utilizando a metodologia de cálculo escolhida pelo programa e o botão *fechar* fecha o aplicativo. A Figura 42 apresenta mais claramente os quatro botões da zona *CONTROLES*.

Figura 42. Controles do aplicativo

4.1.1.2. Sistemas de Inferência Fuzzy

Na subdivisão *Sistema de Inferência Fuzzy* pode-se configurar facilmente algumas características dos SIF de cada subíndice e índice final. Especificamente, o operador fuzzy de interseção a ser utilizado no antecedente (*min* ou *prod*) e o método de defuzzificação (*centroide de área* ou *meia dos máximos*), Figura 43.

SISTEMA DE INFERÊNCIA FUZZY						
Fis-Químico						
	min prod	cen MoM		min prod	cen MoM	
Sub Indice 1	o •	o •	Sub Indice A	o •	o •	^
Sub Indice 2	• •	o •	Sub Indice B	o •	•	Ε
Sub Indice 3	•	•	Sub Indice C	o •	OO	
Sub Indice 4	O	◎	Sub Indice D	o •	o •	T

Figura 43. Configuração dos Sistemas de Inferência Fuzzy (SIF)

4.1.1.3. Características Espaciais

A diferença das subdivisões *Controles* e *Sistema de Inferência Fuzzy*, *Características Espaciais* é uma subdivisão de visualização, e não de controle ou configuração.

Nesta zona apresenta-se a curva de estratificação térmica, temperatura vs. profundidade do reservatório e a zona horizontal onde foi coletada a amostra (*Zona de Rio* ou *Transição – Lacustre*). Do lado esquerdo apresenta-se a profundidade da amostra, a temperatura estimada nesta profundidade e a camada de estratificação térmica atribuída pela ferramenta à profundidade especificada. Do lado direito, o início e fim de cada camada com a sua respectiva temperatura estimada. A Figura 44 apresenta a zona *características espaciais* antes e depois do cálculo dos índices.

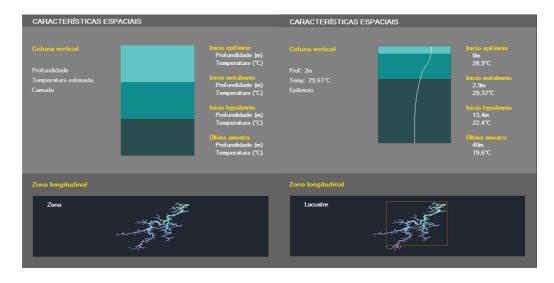


Figura 44. Características Espaciais: Curva temperatura vs. profundidade, Camadas de Estratificação Térmica e Zona Horizontal da amostra.

4.1.1.4. Índices

Na subdivisão *Índices* são apresentados finalmente o Índice de Qualidade da Água e o Índice Biótico assim como também o valor dos seus respectivos subíndices. A Figura 45 apresenta a subdivisão *Índices* antes e depois do cálculo dos índices.

Como já foi especificado na descrição do modelo, a metodologia de cálculo utilizada na avaliação dos subíndices e índices finais será escolhida pela ferramenta segundo a localização horizontal (*Zona de Rio, transição - lacustre*), e na pertença da amostra a uma das três camadas de estratificação térmica, pertença que é automaticamente calculada pela mesma ferramenta utilizando o dado de profundidade da amostra especificado no arquivo *Excel*.

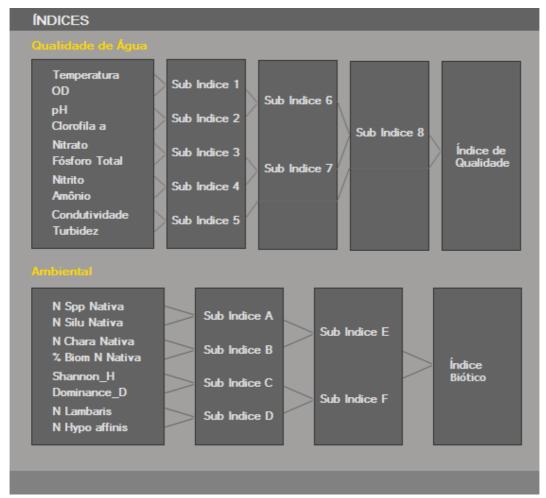


Figura 45. Zona onde são apresentados os índices finais com seus respectivos subíndices.

4.1.2. Arquivo Excel "Base"

O arquivo de *Excel* com nome "Base.xlsx" serve como repositório de toda a base de dados que a ferramenta precisa para funcionar e apresentar resultados. Dentro do arquivo de Excel deve-se especificar:

- Os valores de cada variável de entrada físico-química e biológica nas respectivas unidades.
- A profundidade da amostra em metros.
- As coordenadas geográficas da amostra em graus, minutos e segundos.
- As bases de regras e funções de pertinência de cada metodologia.
- Os dados de temperatura vs. profundidade da coluna d'água no local.

Existem células específicas para cada dado. Por exemplo, o valor de *Nitrito* da amostra está vinculado diretamente com a célula "B2" do arquivo *Excel* e é nesta célula especificamente onde ele deve ser inserido. O motivo pelo qual as células são específicas é que o aplicativo reconhece a informação depositada no arquivo *Excel* em função da sua localização. A seguir imagens do arquivo *Excel*.

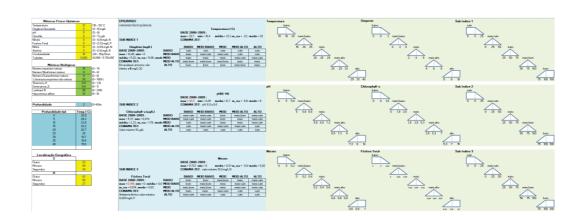


Figura 46. Vista geral da parte inicial do arquivo Excel

Métricas Físico-Químicas

Temperatura	12	(16 - 33) °C
Oxigênio Dissolvido	0	(0 - 8) mg/L
pH	5	(5 - 8)
Clorofila a	0	(0 - 7) μg/L
Nitrato	0	(0 - 0,8) mg/L N
Fosforo Total	0	(0 - 0,12) mg/L P
Nitrito	0	(0 - 0,03) mg/L N
Amônio	0	(0 - 0,4) mg/L N
Condutividade	10	(20 - 35)μS/cm
Turbidez	0,086	(0,086 - 5,78) UNT

Figura 47. Arquivo Excel – Métricas Físicas e Químicas

N/I c	tri/	300	Ri	വ	OGI	cas
IVIC		as.	v	vi	O E I	Las.

Numero especies nativas	15	(0 - 11)
Numero Siluriformes nativos	0	(0 - 4)
Numero Characiformes nativos	8	(0 - 6)
% biomassa especies não nativas	20	(0 - 100)%
Shannon_H	0,9	(0 - 1,9)
Dominance_D	0,4	(0 - 1)
Lambaris N	90	(0 - 246)
Hypostomus affinis	10	(0 - 8)

Figura 48. Arquivo Excel – Métricas Biológicas

(0-40)m

Profundidade (m)	Temp (°C)
0	28,9
5	28,2
10	28,2 23,9
15	22,2
20	20.7

25 20 30 19,7 35 19,6 40 19,6

Profundidade

Figura 49. Arquivo Excel – Profundidade vs. Temperatura

Localização Geográfica	
S	
Graus	22
Minutos	44
Segundos	28
0	
Graus	43
Minutos	55
Segundos	27

Figura 50. Arquivo Excel - Localização Geográfica

Figura 51. Arquivo Excel – Regras (Ex: Epilímnio-Temperatura)

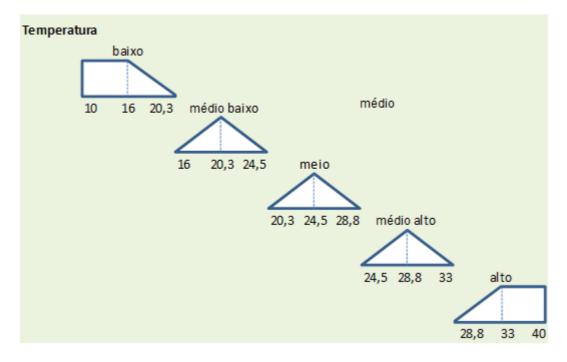


Figura 52. Arquivo Excel – Funções de Pertinência (Ex: Epilímnio-Temperatura)