

Claudio Rabe

ESTUDO EXPERIMENTAL DA INTERAÇÃO FOLHELHO-FLUIDO ATRAVÉS DE ENSAIOS DE IMERSÃO

Tese de Doutorado

Tese apresentada ao Departamento de Engenharia Civil da PUC-Rio, como parte dos requisitos para obtenção do título de Doutor em Engenharia Civil. Área de contraçãoÓGeotecnia

> Orientador: Sérgio A. B. da Fontoura Co-orientador: Franklin dos Santos Antunes

> > Rio de Janeiro Março de 2003

Claudio Rabe

Estudo Experimental da Interação Folhelho-Fluido

Através de Ensaios de Imersão

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil. Área de contraçãoÓGeotecnia. Aprovada pela Comissão Examinadora abaixo assinada.

> **Sérgio A. B. da Fontoura** Orientador Departamento de Engenharia Civil – PUC-Rio

> Franklin dos Santos Antunes Co-orientador Departamento de Engenharia Civil – PUC-Rio

> > Rosana Fátima T. Lomba CENPES – PETROBRÁS

José T. Araruna Jr. Departamento de Engenharia Civil – PUC-Rio

> Mauro Bloch CENPES – PETROBRÁS

Tácio Mauro de Campos Departamento de Engenharia Civil – PUC-Rio

Prof. Paulo Batista Gonçalves

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 27 de Março de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Claudio Rabe

Graduou-se em engenharia Civil na Universidade Federal Fluminense (UFF) em 1996. Cursou o mestrado em Engenharia Civil na Pontifícia Universidade Católica do Rio de Janeiro em 1998.

Ficha Catalográfica

Rabe, Claudio

Estudo experimental da interação folhelhofluido através de ensaios de imersão / Claudio Rabe; orientadores: Sérgio A. B. da Fontoura, Franklin dos Santos Antunes. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2003.

[23], 263 f. : il. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia civil – Teses. 2. Folhelhos. 3. Fluidos de perfuração. 4. Reatividade. 5. Ensaios de imersão. I. Fontoura, Sérgio A. B. da. II. Antunes, Franklin dos Santos. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 9824852/CA

Para os meus pais, João Rabe e Luciene Rabe, pelo amor, dedicação e paciência.

Agradecimentos

A Deus e a Jesus pelo infinito amor.

Aos meus pais e irmãos pelo amor, carinho e compreensão dedicados durante toda a minha vida.

Aos orientadores Sérgio Fontoura e Franklin Antunes pela orientação da tese.

Ao CNPq e à ANP pelo apoio financeiro.

Aos amigos e irmãos em fé cristã, com quem tive o privilegio de conviver: José Raimundo, Josué, Edson, Ewerton, Bidkar, Jorge Pastor, Shelly e Olga.

Aos amigos de doutorado Ana Cristina Sieira, Paulo Maia e Anna Paula Lougon pelos anos de convivência.

Aos professores da PUC-Rio pelos ensinamentos.

Aos colegas do laboratório de geotecnia, do laboratório de interação rocha-fluido e do GTEP pelos anos de convivência amigáveis.

Resumo

Rabe, Claudio; da Fontoura, Sérgio Augusto Barreto; Antunes, Franklin dos Santos. Estudo experimental da interação folhelho-fluido através de ensaios de imersão. Rio de Janeiro, 2003, 200p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A maioria dos problemas de instabilidade ocorre quando rochas argilosas como folhelhos são perfuradas e o fluido de perfuração interage com a rocha. A interação rocha-fluido é materializada através da troca de íons e moléculas de água entre o fluido de perfuração e a rocha, gerando como conseqüências à variação nas poropressões dentro do folhelho e a alteração na estrutura dos minerais.

O presente trabalho tem como objetivo o estudo das mudanças nas propriedades físico-químicas de amostras de folhelhos quando imersas em água e em sais orgânicos e inorgânicos. Um equipamento de imersão foi desenvolvido no qual amostras de folhelho são postas em contato com fluidos.

Os resultados eletroquímicos indicam que a imersão dos folhelhos em soluções salinas reduz, quando comparada com a água, as alterações nas propriedades mecânicas, químicas e eletroquímicas dos fluidos.

Os resultados mostram também que os folhelhos de origem offshore são mais reativos que os folhelhos originados de plataforma terrestres, devido às propriedades de seus constituintes individuais e de sua microestrutura. Quando imersos, os cloretos e os formiatos reduzem a hidratação das amostras, as mudanças no pH, as alterações nas atividades químicas dos folhelhos e dos fluidos dos poros, na capacidade de troca catiônica, na composição química da matriz da rocha e fluido dos poros, além de diminuir a desintegração superficial das amostras. A microscopia ótica, eletrônica e a espectrometria de dispersão de energia indicam a deposição dos sais nas superfícies das amostras.

Palavras-chave

Folhelhos; fluidos de perfuração; reatividade; ensaios de imersão.

Abstract

Rabe, Claudio; da Fontoura, Sérgio Augusto Barreto; Antunes, Franklin dos Santos (Advisors). Experimental study of interaction shale-fluid through immersion tests. Rio de Janeiro, 2003, 200p. Ph.D. Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Most of borehole instability problems occur when argillaceous rocks such as shales are drilled and the drilling fluid interacts with the rock. The rock-fluid interaction is materialized through the exchange of ions and water molecules between the drilling fluid and the rock, generating pore pressure variation inside the shale and changes in minerals structure.

The present work has the objective of studying the changes in the physicochemical properties of shale samples when immersed in the water, inorganic and organic salts.

Immersion equipment was developed in which shale samples are put in contact with fluid. The results show that immersion of shale samples in salt solutions reduce, when compared with de-ionized water, the changes in mechanics, chemical and electrochemical of solutions.

The results also show that the shales from offshore platform are more reactive than terrestrial basin, in function of shale's individual constituents and microstructure. When immersed, the chlorides and formates reduce the rock water content, the changes in the rock pH, water activity of shale and interstitial water, in the cation exchange capacity, in the chemical composition of rock and interstitial water e reduce the shale's loss of mass.

The results indicate that the ions presents in the rock and the fluids flow in the direction of decreasing solute concentration gradient. This result in the alteration the exchangeable bases of shales and the specific surface of clays minerals. The electronic and optic microscopy and energy dispersion spectrometry indicated a deposition of salts in the surface of samples.

Keywords

Shales; drilling fluids; reactivity; immersions tests.

Sumário

1. Introdução	24
1.1. Apresentação do problema	24
1.2. Relevância e objetivos do trabalho	25
1.3. Escopo da tese	26
O lateração felholho fluido do porturoção, revieão	20
2. Interação folhemo-huido de pendração. Tevisão	20
2.1. Introdução	28
2.2.1 Dranziadadas da sistema falhalha fluida	29
2.2.1. Propriedades dos sistema folheirio-fiuldo	29
2.2.2. Propriedades dos argilominerais	29
2.2.2.1. Capacidade de troca cationica e anionica	29
2.2.2. Fiorada de expansão dos argitorninerais	১ । ১১
2.2.3. Forças governantes	33 25
2.2.3.1. Conceitos de osmose, difusão e memorana	35
2.2.4. Atividade química do forneino, adsorção e potencial químico	41
2.2.5. Membranas nao-ideais	42
2.2.6. Conileridade	43
2.2.6. Capitalidade	44
2.2.7. Flessad de expansad	43
2.3. Estudos laboratoriais	47
2.3.1. Medição da alividade química dos fomeinos	41 50
2.3.2. Medição da unusão	50
2.3.3. Medição da resistência	55
2.3.4. Medição da pressão de expansão e osmose	50
2.3.5. Miculização do interação recho fluido	09 61
2.3.0. Visualização da interação locita-induo	01
2.4. Apresentação da metodologia dilizada para o estudo experimental da interação	62
	64
	04
3.Caracterização dos folhelhos	66
3.1. Introdução	66
3.2. Propriedades e classificações	67
3.2.1. Definição e origem	67
3.2.2. Composição e localização	69
3.2.3. Classificações	70
3.2.3.1. Quanto a suas propriedades geológico-geotécnicas	70

3.2.3.2. Quanto ao comportamento frente à perfuração	71
3.3. Caracterização dos folhelhos ensaiados	75
3.3.1. Origem	76
3.3.2. Descrição dos constituintes individuais	77
3.3.2.1. Análise granulométrica	77
3.3.2.2. Índices físicos	78
3.3.2.3. Composição e distribuição mineralógica	79
3.3.2.4. Teor de matéria orgânica, carbonatos e sulfatos	83
3.3.2.5. Alumínio e sílica amorfa	84
3.3.2.6. Composição do fluido dos poros	85
3.3.2.7. Capacidade de troca catiônica e superfície específica	86
3.3.2.8. Potencial hidrogeniônico (pH), condutividade elétrica e salinidade	89
3.3.2.9. Atividade química dos folhelhos e dos fluidos dos poros	90
3.3.3. Descrição da microestrutura do folhelho	93
3.3.3.1. Propriedades texturais	93
3.3.3.1.1. Apreciação táctil-visual	93
3.3.3.1.2. Microscopia ótica	95
3.3.3.1.3. Microscopia eletrônica de varredura (MEV)	98
3.3.3.2. Descrição do espaço vazio dos folhelhos	104
3.3.3.2.1. Preparação das amostras	105
3.3.3.2.2. Equipamento utilizado e procedimento de ensaio	106
3.3.3.2.3. Resultados dos ensaios	106
3.3.3.2.4. Distribuição dos diâmetros dos poros	107
3.3.3.2.5. Porosidade interconectada	110
3.3.3.2.6. Densidade dos grãos	111
3.3.3.2.7. Sucção	111
3.3.3.2.8. Superfície específica dos poros interconectados	113
3.4. Conclusões	114
3.5. Considerações finais	116
4.Caracterização dos fluidos	118
4.1. Introdução	118
4.2. Definição	119
4.3. Classificação dos fluidos	120
4.4. Soluções salinas ensaiadas	123
4.4.1. Revisão sobre as propriedades dos fluidos ensaiados	124
4.4.1.1. Cloretos	124
4.4.1.1.1. Cloreto de potássio (KCI)	125
4.4.1.1.2. Cloreto de sódio (NaCl)	127
4.4.1.1.3. Cloreto de cálcio (CaCl ₂)	129

4.4.1.2. Água (H ₂ O)	130
4.4.1.3. Formiatos	131
4.4.2. Ensaios de caracterização dos fluidos	134
4.4.2.1. Preparação das soluções	134
4.4.2.2. Resultados dos ensaios	135
4.4.2.2.1. Densidade	135
4.4.2.2.2. Viscosidade	136
4.4.2.2.3. Atividade química	139
4.4.2.2.4. Propriedades eletroquímicas	140
4.4.2.2.4.1. pH	141
4.4.2.2.4.2. Eh	142
4.4.2.2.4.3. Condutividade elétrica	144
4.4.2.2.4.4. Salinidade	146
4.4.2.2.5. Composição química dos fluidos	147
4.5. Conclusões	148
4.6. Considerações finais	149
5.Metodologia e programa de ensaios	150
5.1. Introdução	150
5.2. Descrição da metodologia adotada	150
5.3. Descrição do equipamento de imersão desenvolvido	151
5.3.1. Instrumentação do equipamento	154
5.3.2. Descrição das sondas utilizadas	155
5.3.2.1. Sonda de condutividade elétrica e salinidade	155
5.3.2.2. Sonda de Eh	157
5.3.2.3.Sonda de pH	158
5.4. Vantagens do equipamento	159
5.5. Metodologia adotada para a execução dos ensaios de imersão	161
5.5.1. Calibração das sondas	161
5.5.2. Preparação dos fluidos	162
5.5.3. Preparação das amostras dos folhelhos	163
5.5.4. Montagem do equipamento, execução dos ensaios e separação dos	
materiais	165
5.6. Nomenclatura adotada para a realização dos ensaios	166
5.7. Descrição da campanha experimental	167
5.8. Descrição dos ensaios realizados após a imersão	167
5.9. Considerações finais	168
6. Análise dos resultados	171
6.1. Introdução	171

6.2. Análise dos resultados eletroquímicos obtidos durante a imersão	171
6.2.1. pH	171
6.2.2. Eh	173
6.2.3. Condutividade elétrica	173
6.2.4. Salinidade	174
6.3. Análise dos resultados químicos obtidos durante a imersão	175
6.4. Comparação dos valores de concentração obtidos por condutividade elétrica e	por
análise química	179
6.5. Propriedades dos fluidos após a imersão	180
6.5.1. Densidade das soluções	180
6.5.2. Viscosidade das soluções	182
6.5.3. Atividade química das soluções	184
6.5.4. Análise visual dos fluidos	185
6.6. Propriedades dos folhelhos após a imersão	186
6.6.1. Teor de umidade	186
6.6.2. pH	188
6.6.3. Atividade química dos folhelhos	189
6.6.4. Atividade química dos fluidos dos poros	191
6.6.5. Capacidade de troca catiônica	192
6.6.6. Composição química do fluido dos poros	194
6.6.7. Composição química das amostras	196
6.6.8. Análise visual das amostras dos folhelhos	197
6.6.9. Perda de massa dos folhelhos	199
6.6.10. Análise petrográfica dos resultados oriundos da microscopia ótica,	
microscopia eletrônica e da espectroscopia de dispersão de energia	201
6.6.10.1. Microscopia ótica	202
6.6.10.2. Microscopia eletrônica de varredura (MEV) e espectroscopia de	
dispersão de energia (EDS)	202
7. Conclusões e recomendações	204
7.1. Introdução	204
7.2. Conclusões obtidas a partir dos resultados eletroquímicos e quimicos dos fluid	os
durante a imersão	204
7.3. Conclusões sobre as propriedades dos fluidos após a imersão	206
7.4. Conclusões sobre as propriedades dos folhelhos após a imersão	207
7.5. Conclusões gerais	210
7.6. Sugestões para futuros trabalhos	211
8. Referências bibliográficas	212

Apêndice 1. Resultados eletroquímicos e químicos dos fluidos obtidos durante a	
imersão	226
A.1.1. Introdução	226
A.1.2. Valores iniciais das soluções antes da imersão	226
А.1.3. рН	227
A.1.4. Eh	230
A.1.5. Condutividade elétrica	233
A.1.6. Salinidade	235
A.1.7. Análise química dos fluidos	236
A.1.7.1. Cátions presentes na solução de H_2O	236
A.1.7.2. Cátions presentes na solução de 20% de KCl	240
A.1.7.3. Cátions presentes na solução de 20% de NaCl	243
A.1.7.4. Cátions presentes na solução de 30% de CaCl ₂	246
A.1.7.5. Cátions presentes nos formiatos	249
A.1.7.6. Ânions	253
Apêndice 2. Resultados dos ensaios físico-químicos dos fluidos	254
A.2.1. Introdução	254
A.2.2. Densidade dos fluidos	255
A.2.3. Viscosidade dos fluidos	256
A.2.4. Atividade química dos fluidos	256
A.2.5. Visualização das soluções	257
Apêndice 3. Resultados dos ensaios físico-químicos dos folhelhos	262
A.3.1. Introdução	262
A.3.2. Teor de umidade	263
A.3.3. pH das rochas	264
A.3.4. Atividade química dos folhelhos	265
A.3.5. Atividade química dos fluidos dos poros dos folhelhos	266
A.3.6. Capacidade de troca catiônica	267
A.3.7. Composição química do fluido dos poros dos folhelhos	268
A.3.8. Composição química dos folhelhos	269
A.3.9. Integridade das amostras após a imersão	271
A.3.10. Perda de massa	277
A.3.11. Microscopia ótica, eletrônica e espectroscopia de dispersão de energia	278

Lista de figuras

Figura 1 – Fluxo osmótico e difusivo através de uma membrana semipermeável não ic	leal
(Hawkes & McLellan, 2000)	34
Figura 2 - Cenários típicos para a invasão de água e solutos em folhelhos (Hawkes e	
McLellan, 2000)	41
Figura 3 – Transporte de água através de uma formação que se comporta como uma	
membrana semipermeável sob condições de poço (Hawkes e McLellan, 2000)	43
Figura 4 - Relação entre a pressão de expansão e o espaço entre as folhas das argila	as
(Low, 1987)	47
Figura 5 – Desenvolvimento de um equipamento de medição da atividade química de	
folhelhos através de um higrômetro (Chenevert, 1990)	49
Figura 6 – Esquema da célula medidora de atividade sob condição de poço (Fonseca	е
Chenevert, 1998)	49
Figura 7 – Esquema da célula de difusão (Lomba, 1998)	51
Figura 8 – Coeficientes de difusão medidos através de traçadores com o folhelho de	
Speeton (Lomba, 1998)	52
Figura 9 – Desenho da célula de difusão para folhelhos (Muniz <i>et al.,</i> 2002)	53
Figura 10 – Desenho esquemático do circuito de poropressões (Muniz et al., 2002)	54
Figura 11 – Seção transversal da célula DSC (Hawkes e McLellan, 2000)	55
Figura 12 - Representação esquemática da célula de simulação de poço. Perfuração	е
circulação do fluido são realizados sob tensão (Santarelli e Carminatti, 1995)	55
Figura 13 – Resistência do folhelho Speeton após a sua exposição a fluidos base água	а
(Chenevert e Pernot, 1998)	56
Figura 14 – Variação da resistência à compressão axial do folhelho Pierre em função d	do
teor de umidade (Hale <i>et al.</i> , 1992)	57
Figura 15 – Efeito da atividade química e do nível de tensões na direção de fluxo em	
ensaios com o folhelho Speeton (OGS,1996)	59
Figura 16 – Esquema simplificado do ensaio de dispersão em célula rotativa	
(Perez,1997)	60
Figura 17 - Influência do tipo de fluido e teor de umidade nos ensaios de hot-rolling co	m
as amostras de folhelho do Mar do Norte (Forsans e Schmitt, 1994)	60
Figura 18 – Influência do teor de umidade e do tipo de solução nos resultados dos	
ensaios de hot-rolling, para as amostras do folhelho A (Perez, 1997)	61
Figura 19 – Resultado da imersão do folhelho A em água (Perez,1997)	62
Figura 20 – Resultados do ensaio de imersão (Santos, 1996)	63
Figura 21–(a) Processo de compactação e (b) cimentação (de Blij e Muller, 1996)	68
Figura 22 - Mapa de localização dos folhelhos sub-compactados (Mouchet e Mitchell,	
1990)	69

Figura 23 – Ensaio de condutividade elétrica	90
Figura 24 – a) Equipamento desenvolvido para a medição das atividades químicas a)	dos
folhelhos e b) das solução simuladora do fluido dos poros	92
Figura 25 – Folhelho A – Coloração cinza escuro, com textura fina e homogênea	94
Figura 26 – Folhelho B – coloração marron, textura fina e homogênea e com a preser	nça
de conchas e de um grande fóssil	94
Figura 27 – Folhelho B-S – (a) Textura fina e homogênea, (b) presença de pirita	95
Figura 28 – Folhelho V – Textura fina e homogênea, com a presença de microfósseis	95
Figura 29 – Lâmina delgada do folhelho A. Material de textura fina e relativamente	
uniforme (da Fontoura <i>et al.</i> , 2002a)	96
Figura 30 – Lâmina delgada do folhelho B. Presença de quartzo, calcita, caulinita, ilita	аe
pirita (da Fontoura <i>et al.</i> , 2002b)	97
Figura 31 – Lâmina delgada do folhelho N. Textura fina e homogênea, com a presenç	ça
de pirita e microfósseis (da Fontoura <i>et al.</i> , 1999)	97
Figura 32 – Lâmina delgada do Folhelho V. Material de textura fina e não homogênea	à
com a presença de grandes fósseis (da Fontoura <i>et al.</i> , 1998)	98
Figura 33 – MEV do folhelho A. Presença de: a) microfósseis e b) pirita autigênica	
(Perez, 1997)	99
Figura 34 – MEV do folhelho B. a) Caulinita numa matriz de calcita e b) microfósseis	
cobertos por calcita (da Fontoura <i>et al.</i> , 1999)	99
Figura 35 – EDS do ponto 1 no folhelho B. Constatação da presença de caulinita e pi	rita
(da Fontoura <i>et al.</i> , 1999) (da Fontoura <i>et al.</i> , 1999)	100
Figura 36 – MEV do Folhelho B-S. Presença de (a) caulinita, pirita, clorita e microfós	seis
e (b) caulinita e clorita.	100
Figura 37 – EDS do Folhelho B-S. Constatação da presença da calcita e da caulinita	101
Figura 38 – MEV do Folhelho C. (a) Estrutura fina e homogênea e (b) presença de	
quartzo, caulinita e pirita (da Fontoura <i>et al.</i> , 1999)	101
Figura 39 – MEV do Folhelho N. Cristais de pirita preenchendo o interior de um	
microfóssil (da Fontoura <i>et al.</i> , 1999)	102
Figura 40 – MEV do Folhelho N ampliado 1500 vezes. Constatação da presença de	
folhas de argilominerais (pontos 1 e 2) (da Fontoura <i>et al.</i> , 1999)	102
Figura 41 – EDS do ponto 1 na amostra do Folhelho N. Possível presença de esmect	ita e
da pirita (da Fontoura <i>et al.</i> , 1999)	103
Figura 42 – EDS do ponto 2 na amostra do Folhelho N. Possivelmente esmectita e pi	rita
(da Fontoura <i>et al.</i> , 1999)	103
Figura 43 – SEM do Folhelho V. Presença da caulinita e pirita	103
Figura 44 – EDS do folhelho V, realizado na região demarcada na Figura 43.	
Constatação (da Fontoura <i>et al.</i> , 1999)	104
Figura 45 – Curvas de distribuição diferencial dos poros (Rabe e da Fontoura, 2002)	108

Figura 46 – Distribuição acumulativa dos diâmetros dos poros (Rabe e da Fontoura,	
2002)	108
Figura 47 – Curvas de sucção dos folhelhos obtidas pela porosimetria	112
Figura 48 – Classificação dos fluidos de perfuração (Economids <i>et al.</i> , 1996)	121
Figura 49 – Resultado da poro-pressão do folhelho Pierre tipo I a 65ºC, transmitida p	ela
solução saturada de KCI e por uma solução simuladora dos fluidos dos poros. (van C)ort,
1994)	126
Figura 50 - Estrutura cúbica da estrutura do cloreto de sódio (Sienko e Plane, 1961)	128
Figura 51 - Relação entre o espaçamento basal das esmectitas e a concentração de)
NaCl (Slade <i>et al.</i> , 1991)	128
Figura 52 – Arranjo das moléculas H_2O no gelo (Ohlweiler, 1972)	130
Figura 53 – Efeito da adsorção de água na densidade das amostras do folhelho D	
(Chenevert, 1969)	131
Figura 54 - Efeito da contaminação na viscosidade plástica por sólidos em três fluido	os de
perfuração (Howard, 1995)	132
Figura 55 – Potencial de biodegradação do KCOOH e NaCOOH (Downs, 1993)	133
Figura 56 – Densidade dos cloretos a 20ºC	136
Figura 57 – Densidade dos formiatos a 20ºC	136
Figura 58 – Viscosímetro 1082 no interior do banho térmico com glicerina a 50°C	137
Figura 59 – Banho utilizado para a realização dos ensaios de viscosidade	137
Figura 60 – Viscosidade dos cloretos a 50ºC	138
Figura 61 – Viscosidade dos formiatos a 50ºC	138
Figura 62 – Atividade dos cloretos a 20ºC	139
Figura 63 – Atividade dos formiatos a 20ºC	140
Figura 64 – pH dos cloretos a 50ºC	141
Figura 65 – pH dos formiatos a 50ºC	142
Figura 66 – Eh dos cloretos a 50ºC	143
Figura 67 – Eh dos formiatos a 50ºC	143
Figura 68 – Condutividade elétrica dos cloretos a 50°C	144
Figura 69 – Condutividade elétrica dos formiatos a 50°C	145
Figura 70 – Salinidade dos cloretos a 50ºC	146
Figura 71 – Salinidade dos formiatos a 50ºC	147
Figura 72 – Metodologia adotada para a avaliação da interação folhelho-fluido	151
Figura 73 – Foto do equipamento de imersão desenvolvido (Rabe et al, 2002a)	152
Figura 74 – Desenho esquemático do equipamento de imersão desenvolvido	152
Figura 75 –(a) Manta aquecedora/agitadora e (b) redutor de potência	153
Figura 76 – Leitora dos dados eletroquímicos	154
Figura 77 – Principio físico da condutividade elétrica	156
Figura 78 – Efeito indesejável da polarização em um eletrodo	157

Figura 79 – Sondas utilizadas para instrumentar o equipamento de imersão: (a)	
condutividade elétrica, (b) Eh e (c) pH	159
Figura 80 – Execução do ensaio de calibração da sonda de condutividade elétrica	162
Figura 81 -(a) Amostras do folhelho da Noruega armazenadas em recipientes plástic	os,
preservadas em óleo mineral e (b) testemunho do folhelho da Venezuela	163
Figura 82 –(a) Amostras de folhelho no interior de um becker e (b) amostra do folhelh	0
sendo moldada em câmara úmida	164
Figura 83 –(a) Visualização das sondas, da rolha de vidro esmerilhada e da base do	
condensador após a montagem no equipamento de imersão e (b) amostras de folhell	าด
imersas em solução no interior do balão de fundo redondo	165
Figura 84 – Esquema dos ensaios realizados após a imersão	169
Figura 85 – Variação da concentração de cátions em água	176
Figura 86 – Variação de cloretos e sulfatos em água	176
Figura 87 – Variação da concentração de cátions em solução de 20% NaCl	177
Figura 88 – Variação da concentração de cátions em solução de 20% KCI	177
Figura 89 – Variação da concentração de cátions em solução de 30% $CaCl_2$	178
Figura 90 – Variação da concentração de cátions nos fluidos orgânicos, realizados	
através da imersão do Folhelho B-S nestes fluidos	178
Figura 91 - Variação da densidade dos fluidos em função do tipo de folhelho e fluido	
utilizado na imersão	181
Figura 92 – Variação da densidade da solução de formiato de sódio em função da	
concentração	182
Figura 93 - Variação da viscosidade dos fluidos em função do tipo de folhelho e fluido	o de
imersão	182
Figura 94 – Variação da viscosidade da solução de formiato de sódio em função da	
concentração	183
Figura 95 - Variação da atividade química dos fluidos após os ensaios de imersão co	om o
Folhelho B-S	184
Figura 96 – Variação do teor de umidade dos folhelhos em função dos ensaios de	
imersão	187
Figura 97 – Variação do pH dos folhelhos em função dos ensaios de imersão	188
Figura 98 – Variação da atividade química dos folhelhos após a imersão	190
Figura 99 – Variação da atividade química dos fluidos dos poros dos folhelhos após a	ì
imersão	191
Figura 100 – Variação da quantidade de material disperso dos folhelhos em solução	200
Figura 101 - Variação da quantidade de material disperso dos folhelhos em solução d	de
NaCOOH	201
Figura 102 – pH da água durante os ensaios de imersão	228
Figura 103 – pH do cloreto de potássio durante a imersão	228
Figura 104 – pH do cloreto de sódio durante a imersão	229

Figura 105 – pH do cloreto de cálcio durante a imersão	229
Figura 106 – pH dos sais orgânicos durante a imersão	230
Figura 107 – Eh da água durante a imersão	230
Figura 108 – Eh do cloreto de potássio durante a imersão	231
Figura 109 – Eh do cloreto de sódio durante a imersão	231
Figura 110 – Eh do cloreto de cálcio durante a imersão	232
Figura 111 – Eh dos sais orgânicos durante a imersão	232
Figura 112 – Condutividade elétrica da água durante a imersão	233
Figura 113 – Condutividade elétrica do cloreto de potássio durante a imersão	233
Figura 114 – Condutividade elétrica do cloreto de sódio durante a imersão	234
Figura 115 – Condutividade elétrica do cloreto de cálcio durante a imersão	234
Figura 116 – Condutividade elétrica dos sais orgânicos durante a imersão	235
Figura 117 – Resultados da salinidade da água durante a imersão	235
Figura 118 – Variação de sódio em água durante a imersão	236
Figura 119 – Variação de potássio em água durante a imersão	236
Figura 120 – Variação de cálcio em água durante a imersão	237
Figura 121 – Variação de magnésio em água durante a imersão	237
Figura 122 – Variação de silício em água durante a imersão	238
Figura 123 – Variação de ferro em água durante a imersão	238
Figura 124 – Variação de alumínio em água durante a imersão	239
Figura 125 – Variação de estrôncio em água durante a imersão	239
Figura 126 – Variação de bário em água durante a imersão	240
Figura 127 – Variação de sódio em 20% KCI durante a imersão	240
Figura 128 – Variação de potássio em 20% KCI durante a imersão	241
Figura 129 – Variação de cálcio em 20% KCI durante a imersão	241
Figura 130 – Variação de magnésio em 20% KCI durante a imersão	242
Figura 131 – Variação de estrôncio em 20% KCI durante a imersão	242
Figura 132 – Variação de bário em 20% KCl durante a imersão	243
Figura 133 – Variação de sódio em 20% de NaCl durante a imersão	243
Figura 134 – Variação de potássio em 20% NaCl durante a imersão	244
Figura 135 – Variação de cálcio em 20% NaCl durante a imersão	244
Figura 136 – Variação de magnésio em 20% NaCl durante a imersão	245
Figura 137 – Variação de estrôncio em 20% NaCl durante a imersão	245
Figura 138 – Variação de bário em 20% NaCl durante a imersão	246
Figura 139 – Variação de sódio em 30% de CaCl $_2$ durante a imersão	246
Figura 140 – Variação de potássio em 30% de $CaCl_2$ durante a imersão	247
Figura 141 – Variação de cálcio em 30% de CaCl ₂ durante a imersão	247
Figura 142 – Variação de magnésio em 30% de CaCl ₂ durante a imersão	248
Figura 143 – Variação de estrôncio em 30% de CaCl ₂ durante a imersão	248
Figura 144 – Variação de bário em 30% de CaCl ₂ durante a imersão	249

Figura 145 – Variação de sódio nas soluções orgânicas durante a imersão	249
Figura 146 – Variação de potássio nas soluções orgânicas durante a imersão	250
Figura 147 – Variação de cálcio nas soluções orgânicas durante a imersão	250
Figura 148 – Variação de magnésio nas soluções orgânicas durante a imersão	251
Figura 149 – Variação de estrôncio nas soluções orgânicas durante a imersão	251
Figura 150 – Variação de bário nas soluções orgânicas durante a imersão	252
Figura 151 – Variação de césio nas soluções orgânicas durante a imersão	252
Figura 152 – Variação de cloretos na água durante a imersão	253
Figura 153 – Variação de sulfatos na água durante a imersão	253
Figura 154 – Visualização das soluções de água ao final dos ensaios de imersão	257
Figura 155 – Visualização das soluções de KCI ao final dos ensaios de imersão	258
Figura 156 – Visualização das soluções de NaCl ao final dos ensaios de imersão	259
Figura 157 – Visualização das soluções de CaCl $_2$ ao final dos ensaios de imersão	260
Figura 158 – Visualização das soluções de sais orgânicos ao final dos ensaios de	
imersão com o folhelho B-S	261
Figura 159 - Visualização das amostras dos folhelhos ao final dos ensaios de imersã	io
em água de-ionizada	272
Figura 160 - Visualização das amostras dos folhelhos ao final dos ensaios de imersã	ăО
em solução de 20% NaCl	273
Figura 161 – Visualização das amostras dos folhelhos ao final dos ensaios de imersã	ăО
em solução de 20% KCl	274
Figura 162 – Visualização das amostras dos folhelhos ao final dos ensaios de imersã	ăO
em solução de 30%CaCl ₂	275
Figura 163 – Visualização das amostras do folhelho B-S ao final dos ensaios de imer	rsão
com os sais orgânicos	276
Figura 164 – Folhelho B-S após a imersão em água	278
Figura 165 – Folhelho B-S após a imersão em 20% NaCl	278
Figura 166 – Folhelho B-S após a imersão em 20% KCl	279
Figura 167 – Folhelho B-S após a imersão em 30% $CaCl_2$	279
Figura 168 – Folhelho B-S após a imersão em 20% NaCOOH	279
Figura 169 – Folhelho B-S após a imersão em 20% KCOOH	280
Figura 170 – Folhelho B-S após a imersão em 30% CsCOOH	280
Figura 171 – MEV do Folhelho B-S após a imersão em H_2O	280
Figura 172 – MEV do Folhelho B-S após a imersão em 20%NaCl	281
Figura 173 – MEV do Folhelho B-S após a imersão em 20% KCI	281
Figura 174 – MEV do Folhelho B-S após a imersão em 30% $CaCl_2$	281
Figura 175 – MEV do Folhelho B-S após a imersão em 20% NaCOOH	282
Figura 176 – MEV do Folhelho B-S após a imersão em 20% KCOOH	282
Figura 177 – MEV do Folhelho B-S após a imersão em 30% CsCOOH	282
Figura 178 – EDS do Folhelho B-S após a imersão em H ₂ O	283

Figura 179 – EDS do folhelho B-S após a imersão em NaCl	283
Figura 180 – EDS do Folhelho B-S após a imersão em 20% ${ m KCl}_2$	284
Figura 181 – EDS do Folhelho B-S após a imersão em 30% $CaCl_2$	284
Figura 182 – EDS do Folhelho B-S após a imersão em 20% NaCOOH	285
Figura 183 – EDS do folhelho B-S – após a imersão em 20% KCOOH	285
Figura 184 – EDS do Folhelho B-S após a imersão em 30% CsCOOH	285

Lista de tabelas

Tabela 1 - Mecanismos de transporte e fluxo de espécies moleculares associados a	cada	
tipo de força (Mody e Hale, 1993)	34	
Tabela 2 - Valores dos coeficientes de difusão dos íons à infinita diluição em água		
(Mitchell, 1992)	39	
Tabela 3 - Atividade química e índices físicos das amostras (Forsans e Schmitt, 1996	3) 50	
Tabela 4 - Permeabilidade e raio dos poros do folhelho Speeton (Lomba, 1998)	53	
Tabela 5 - Propriedades e resultados dos ensaios de difusão (Muniz et al., 2002)	54	
Tabela 6 - Pressão de expansão e eficiência de membrana com o folhelho Speeton		
(Chenevert, 1998)	58	
Tabela 7 - Teor de umidade na superfície a diferentes tempos para a avaliação da		
redistribuição de água na amostra (Santos, 1997)	63	
Tabela 8 - Classificação dos folhelhos em relação ao teor de argila (O'Brien e Chene	vert,	
1973)	71	
Tabela 9 - Classificação dos folhelhos segundo o seu comportamento frente à perfur	ação	
e ao tipo de fluido (Machado e Oliveira, 1986)	75	
Tabela 10 - Origem dos folhelhos ensaiados	76	
Tabela 11 - Resultados dos ensaios de granulometria	78	
Tabela 12 - Índices físicos dos folhelhos	79	
Tabela 13 - Composição mineralógica dos folhelhos	80	
Tabela 14 - Análises químicas dos constituintes dos folhelhos	81	
Tabela 15 - Análise semi-quantitativa dos elementos presentes nos folhelhos (Rabe e	e da	
Fontoura, 2002a)	82	
Tabela 16 - Teor de matéria orgânica, carbonato e sulfato	83	
Tabela 17 - Teor de silício e alumínio amorfo	85	
Tabela 18 - Concentração dos íons dissolvidos nos poros das amostras (mg/l)	85	
Tabela 19 - Capacidade de troca catiônica dos folhelhos (Tr=traço)	88	
Tabela 20 - Superfície específica dos folhelhos	88	
Tabela 21 - Resultados do pH, condutividade elétrica e salinidade dos folhelhos		
ensaiados	90	
Tabela 22 - Atividade química dos folhelhos (a_{sh}) e das soluções simuladoras do fluid	los	
dos poros (a _{fp})	92	
Tabela 23 - Mediana dos diâmetros dos poros e percentagem de poros menores que	•	
100Å obtidos por porosimetria	109	
Tabela 24 - Porosidade interconectada e teor de umidade obtidas por porosimetria (Rabe		
e da Fontoura, 2002a)	110	
Tabela 25 - Densidade dos grãos obtida por porosimetria	111	

Tabela 26 - Pressões negativas em função dos graus de saturação dos folhelhos	
ensaiados (Rabe e da Fontoura, 2002)	113
Tabela 27 - Superfície específica dos poros interconectados (Rabe e da Fontoura,	
2002a)	114
Tabela 28 – Potencial de reatividade dos folhelhos estudados	115
Tabela 29 - Componentes dos fluidos com base-água (Machado e Oliveira, 1986)	122
Tabela 30 - Fluidos utilizados no presente trabalho	124
Tabela 31 - Ensaio de corrosão com o CsCOOH (Howard, 1995)	133
Tabela 32 - Equações de condutividade elétrica dos fluidos ensaiados	146
Tabela 33 - Composição química dos sais utilizados	148
Tabela 34 - Nomenclatura dos folhelhos e íons analisados	166
Tabela 35 - Nomenclatura das soluções adotadas	167
Tabela 36 - Campanha experimental de ensaios de imersão	168
Tabela 37 - Variação dos valores eletroquímicos das soluções durante a imersão	172
Tabela 38 - Obtenção das concentrações iniciais e variações de concentrações durar	nte
a imersão obtidas por condutividade elétrica (CE) e por análises químicas (AQ)	179
Tabela 39 - Análise visual das soluções	185
Tabela 40 - Variação do CTC e dos íons intercambiáveis dos folhelhos após os ensaid	os
de imersão	193
Tabela 41 - Variação da concentração de sais nos poros dos folhelhos em função da	
imersão	195
Tabela 42 - Análise dos resultados dos teores dos elementos dos folhelhos	196
Tabela 43 - Alteração visual das amostras dos folhelhos	198
Tabela 44 – Soluções mais eficientes	211
Tabela 45 – Valores eletroquímicos das soluções antes da imersão	227
Tabela 46 – Variação da densidade dos fluidos em função dos ensaios de	
imersão	255
Tabela 47 – Variação da viscosidade dos fluidos em função dos ensaios de	
imersão	256
Tabela 48 – Atividade química dos fluidos em função da interação com o	
folhelho B-S	256
Tabela 49 – Teor de umidade dos folhelhos	263
Tabela 50 – pH dos folhelhos	264
Tabela 51 – Atividade química dos folhelhos	265
Tabela 52 – Atividade química dos fluidos dos poros	266
Tabela 53 – Capacidade de troca catiônica pela técnica do acetato de amônio e pela	
técnica do azul de metileno	267
Tabela 54 – Composição química dos fluidos dos poros	268
Tabela 55 – Resultados das análises químicas do folhelho A	269
Tabala FC - Daoultadaa daa anéliaan guémiana da falbalha D	269

Tabela 57 – Resultados das análises químicas do folhelho B-S	270
Tabela 58 – Resultados das análises químicas do folhelho C	270
Tabela 59 – Resultados das análises químicas do folhelho N	270
Tabela 60 – Resultados das análises químicas do folhelho V	271
Tabela 61 – Material sólido dos folhelhos dispersos nos fluidos	277

Lista de símbolos

а	Atividade química
a _{df}	Atividade química do fluido de perfuração
a _{sh}	Atividade química do folhelho
a _{fp}	Atividade química do fluido dos poros
С	Concentração
D ₅₀	Mediana dos diâmetros dos poros
е	Índice de vazios
G	Peso específico dos grãos ou partículas
n	Porosidade
Pc	Pressão de capilaridade
р	Peso
pr	Profundidade
r	Raio
S	Grau de saturação
w	Teor de umidade
Wa	Peso seco da amostra
v	Volume
Vp	Volume de poros
Δ	Variação
μ	Potencial químico
γ	Tensão interfacial entre as fases molhantes e não molhantes
θ	Ângulo de contato entre as fases molhantes e não molhantes