6 Simulação

6.1 Introdução

Para a comparação dos dois sistemas de produção submarina, um utilizando separador e outro com bomba multifásica, será utilizado o software de simulação de escoamento Pipesim (SCHLUMBERGER, 2010). A Figura 6-1 abaixo ilustra os dois modelos analisados.

O cenário será analisado a partir da sucção do sistema submarino, seja ele o separador ou a bomba multifásica. Os dados de entrada podem representar a vazão de um ou mais poços de produção que passaram por um manifold e a partir deste ponto continuam escoando por uma única linha de produção.

Figura 6-1: Ilustração do modelo utilizado no trabalho através do software PipeSim.

A análise se resumirá em definir parâmetros de entrada do sistema submarino e comparar o escoamento no sistema de elevação natural, ou seja, sem incremento de pressão artificial, o escoamento do sistema de bombeamento multifásico e o sistema com separação submarina. Para fins comparativos serão verificados a vazão de óleo, a potência requerida do sistema e a energia específica (potência requerida por unidade de massa).

Por se tratar de um software profissional cujo acesso torna-se reduzido, um modelo simplificado foi desenvolvido no programa MathCad, software também profissional, porém de fácil acesso. Este programa será apresentado como ilustração deste trabalho, e torna-se uma ferramenta útil para uma estimativa simplificada de um escoamento multifásico em caso de falta de acesso a algum programa licenciado. Além do software Pipesim, o modelo simplificado também será comparado com o programa *black oil*, gerado por Alves (2005). Desta maneira o modelo simplificado será validado por duas ferramentas diferentes.

6.2 Considerações

As seguintes correlações serão consideradas para a estimativa dos parâmetros do escoamento. Todas as correlações foram retiradas de SHOHAM (2006).

Ressalta-se que foi considerada uma condição permanente e estática na entrada do sistema. Apesar de sabermos que ao longo da vida de um campo a pressão e as características do fluido produzido irão variar, seja pela queda de pressão do campo, ou a entrada de produção ou parada de algum poço. Para o escopo da análise deste trabalho, que está interessado apenas no impacto a ser provocado pela utilização de um sistema de bombeamento multifásico, ou de um sistema de separação, a utilização de valores constantes para as características de entrada do escoamento foi considerada satisfatória.

Parâmetro	Correlação
Razão de solubilidade do óleo	Standing
Fator volume de formação	Standing
Viscosidade do óleo	Beggs & Robinson
Viscosidade de água	Wan Wigen
Viscosidade do gás	Lee et al
Densidade do gás dissolvido	Katz
Pressão de saturação	Standing
Fator de compressibilidade do gás (Z)	Beggs & Brill
Tensão interfacial	Baker & Swerdloff
Pressão crítica do gás	Brown
Temperatura crítica do gás	Brown
Compressibilidade de óleo	Vazques

Tabela 6-1-Relação das correlações utilizadas neste trabalho

A correlação de Beggs & Brill será utilizada para a simulação do escoamento horizontal e escoamento com ângulos até 70°. A correlação de Hagedorn & Brown estará presente no modelo simplificado elaborado em Mathcad, porém, não será utilizada na análise de sensibilidade.

Para a análise de sensibilidade as condições de campo que serão avaliadas são:

- Densidade do óleo;
- Densidade do gás;
- Razão gás óleo;
- BSW (base sediment and water);
- Pressão de sucção.

A pressão de sucção depende do campo onde o fluido está sendo produzido e do índice de produtividade deste campo. Porém neste trabalho esta pressão não será relacionada a algum campo e será apenas variada para representar campos de baixa a alta pressão. A diferença da pressão de sucção também representa o posicionamento do sistema submarino. A baixa pressão, por exemplo, ilustra um sistema mais distante da cabeça do poço, enquanto o sistema de alta pressão representa a proximidade da cabeça do poço.

Após variar estes parâmetros dentro do simulador algumas conclusões poderão ser obtidas sobre os métodos de produção escolhidos.

6.3 Modelo computacional

Os seguintes dados serão considerados como dados de entrada do programa. É importante ressaltar que apesar dos dados utilizados não representarem um sistema específico têm uma representatividade quanto a sua ocorrência bastante forte no cenário de produção no mar.

Dados de entrada:

- Pressão e temperatura na entrada do sistema de elevação artificial;
- BSW;
- RGL;
- Grau API;
- Densidade do gás;
- Configuração do duto (diâmetro e espessura) e ângulo de inclinação;
- Temperatura externa;
- Condutividade térmica e
- Calor específico.

Após a definição dos dados de entrada as correlações neste texto serão utilizadas para o cálculo do perfil de escoamento do duto.

A Tabela 6-2 abaixo define o limite estudado de cada parâmetro de entrada. A Tabela 6-3 define os parâmetros construtivos do duto em estudo. A Tabela 6-4 define os limitantes do sistema de bombeamento multifásico e do separador submarino.

Parâmetro		Valor	Unidade	
Pressão de sucção		25 a 150	Bar	
Temperatura de sucção		80	С	
BSW		0 a 60	%	
RGL		50 a 150	m ³ /m ³	
API		16 a 45	grau API	
Densidade de gás		0,6 a 0,90	-	
Temperatura externa		4	С	
Condutividade térmica	óleo	0,165	BTU/ºF.lbm	
	água	4,2 a 5,7	J/°C.kg	
	gás	0,4	BTU/ºF.lbm	
Calor específico	óleo	0,13	W/m.K	
	água	0,54 a 0,685	W/m.K	
	aço	43	W/mºC	

Tabela 6-2- Dados de entrada utilizados no trabalho para os parâmetros do fluido

Tabela 6-3- Dados de entrada utilizados no trabalho para os parâmetros do duto

Parâmetro	Valor	Unidade
Ângulo de inclinação	5	graus
Comprimento horizontal	1.000 a 30.000	m
Diâmetro interno	9	in
Espessura	0,5	in

Dorâmetre	Valor		Linidada	
Farameno	Bomba multifásica	Separador	Unidade	
Fração máxima de gás	90	100	%	
Diferencial de pressão	50	100	Bar	
Pressão de entrada	150	150	Bar	
Energia	1600	2500	HP	
Eficiência	35	50	%	

Tabela 6-4- Restrições do sistema consideradas neste trabalho

A Figura 6-2 apresenta características de algumas bombas monofásicas atualmente no mercado para fins de comparação com os dados utilizados neste projeto. Estes dados foram retirados de catálogos de fornecedores como Reda e Centrilift. Pode-se perceber que a eficiência de 50% e uma potência máxima de 2500 estão dentro dos parâmetros das bombas atualmente no mercado.

Figura 6-2: Ilustração de bombas monofásicas atuais em relação a potência, vazão e eficiência

Figura 6-3: Ilustração de bombas multifásicas atuais em relação a potência, vazão e eficiência

Para o cálculo do perfil de escoamento, alguns parâmetros precisam ser definidos. Estes parâmetros dependem dos dados de entrada apresentados nas tabelas acima e são definidos através de correlações como as citadas na Tabela 6-1. Estas correlações foram todas inseridas no modelo elaborado nesta tese e apresentado em apêndice. Os tópicos abaixo descrevem as correlações e cálculos utilizados no modelo aqui elaborado.

6.4 Razão de solubilidade

A Razão de solubilidade do óleo será estimada através da correlação de Standing (SHOHAM, 2006) definida a seguir que baseou-se em 105 pressões determinadas experimentalmente a partir de amostras de reservatórios na área da Califórnia.

A correlação é definida pela seguinte equação:

$$R_{s} = \rho_{g\dot{a}s/std} \cdot \left(\frac{P}{18} \cdot \frac{10^{0.0125 \cdot API}}{10^{0.00091 \cdot T}}\right)^{\frac{1}{0.83}}$$
(6-1)

onde,

P = pressão expressa em psia

T= temperatura expressa em °FAPI= grau API do óleoρ_{gás/std}= densidade de todo gás produzido nas condições padrão

6.5 Fator volume de formação

Para a estimativa do fator volume de formação do óleo foi considerado a correlação de Standing (SHOHAM, 2006), onde:

$$B_{o} = 0,972 + 0,000147 \cdot \left[R_{s} \cdot \left(\frac{\rho_{gas/std}}{\rho_{oleo}} \right)^{0,5} + 1,25 \cdot T \right]^{1,175}$$
(6-2)

Onde,

Р	= pressão expressa em psia
Т	= temperatura expressa em °F
API	= grau API do óleo
ρ _{gás/std}	 densidade de todo gás produzido nas condições padrão
ρ _{óleo}	= densidade do óleo em determinada pressão e temperatura
Rs	= razão de solubilidade

Para a estimativa do fator volume de formação da água também foi considerado a correlação de Standing onde:

$$B_{w} = 1 + 0,00012 \cdot [T - 60] + 0,00001 \cdot (T - 60)^{2} - P \cdot 0,0000033$$
(6-3)

Para a estimativa do fator volume de formação do gás, foi considerado a própria definição (razão entre o volume de gás a uma determinada pressão e temperatura e o volume de gás a pressão e temperatura padrão). Assim:

$$B_{G} = \frac{\rho_{P\&T}}{\rho_{padrão}} = \frac{P_{T}|_{padrão}}{P_{T}|_{padrão}} \cdot Z$$
(6-4)

Z é o fator de compressibilidade que é utilizado para corrigir o modelo de gás ideal e "transformá-lo" em gás real. Para a estimativa do fator de compressibilidade foi considerado a correlação de Brown (SHOHAM, 2006).

6.6 Viscosidade

A correlação utilizada para a definição da viscosidade do óleo morto é a correlação de Beggs & Robison (SHOHAM, 2006) que define que:

$$\mu_{\textit{oleoMorto}} = 10^{\left[10^{(3,0324-0,02023\cdot API)}\right]_{T} - 1,163} - 1$$
(6-5)

A viscosidade do óleo vivo também da correlação de Beggs & Robison é igual a:

$$\mu_{\ \ \delta leo} = 10,715 \cdot \left(R_{\ \ s} + 100\right)^{-0.515} \cdot \mu_{\ \ \delta leoMorto}^{5,44 \cdot (R_{\ \ s} + 150)^{-0.338}}$$
(6-6)

Óleo vivo é definido como óleo com presença de gás. Óleo morto é definido como o óleo nas condições padrão, sem a presença de gás.

A viscosidade do gás foi determinada pela correlação de Lee et al (SHOHAM, 2006):

$$\mu_{gás} = K \cdot 10^{-4} \cdot e^{X \cdot \rho_{gás}^{T}}$$
(6-7)

onde,

$$K = \frac{(9,4+0,02 \cdot MM) \cdot T^{1,5}}{209+19 \cdot MM + T}$$
(6-8)

$$X = 3.5 + \frac{986}{T} + 0.01 \cdot MM \tag{6-9}$$

$$Y = 2,4 - 0,2 \cdot X \tag{6-10}$$

A viscosidade da água é definida pela correlação de Wan Wigen retirada de ALVES (2005):

$$\mu_{agua} = e^{1,003 - 1,479 \cdot T \cdot 10^{-2} + 1,982 \cdot 10^{-5} \cdot T^{2}}$$
(6-11)

6.7 Massa específica

A massa específica do óleo em uma determinada pressão e temperatura é determinada através do balanço de massa. De acordo com o balanço de massa, a massa total de óleo é a soma da massa de óleo morto mais a massa de gás dissolvido. Sendo assim, a massa específica do óleo pode ser definida como:

$$\rho_{oleo} = \frac{\left(\rho_{oleoSTD} + \rho_{ar} \cdot R_{s} \cdot d_{gásdis}\right)}{B_{o}}$$
(6-12)

Onde "dgásdis" denomina a densidade relativa do gás dissolvido e é definida pela correlação de Katz (SHOHAM, 2006):

$$d_{gasdis} = 0.25 + 0.02 \cdot API + 10^{-6} \cdot (0.6824 - 3.586 \cdot API) \cdot R_{s}$$
(6-13)

A massa específica do óleo nas condições padrão é um dado de entrada do sistema.

A massa específica do gás livre também é determinada pelo balanço de massa. A massa de gás livre em determinada pressão e temperatura é igual a massa total deste gás livre na condição padrão menos a massa do gás que estava dissolvido na mesma condição. Sendo assim:

$$\rho_{gaslivre} = \frac{\left(\rho_{gasSTD} \cdot RGO - \rho_{gasdis} \cdot R_{s}\right)}{\left(RGO - R_{s}\right) \cdot B_{g}}$$
(6-14)

6.8 Pressão de saturação

A pressão de saturação será estimada através da correlação de Standing da seguinte forma:

. . .

$$P_{saturação} = \frac{\left(\frac{RGO}{\rho_{gás}}\right)^{0,83}}{\frac{1}{18} \cdot \frac{10^{0,0125 \cdot API}}{10^{0,00091 \cdot T}}}$$
(6-15)

6.9 Fator de compressibilidade do gás

O fator de compressibilidade do gás Z é o fator de correção de um modelo de gás ideal em um modelo real. Para a determinação do fator de compressibilidade Z, a temperatura e a pressão crítica precisam ser definidas.

A temperatura e a pressão crítica, definem o estado onde pressão e temperatura do líquido e do vapor saturado são idênticas e não há tensão superficial entre as fases.

A temperatura e a pressão crítica podem ser definidas através da correlação de Brown (SHOHAM, 2006):

$$P_{critico} = 708,75 - 57,5 \cdot \rho_{gaslivre}$$
(6-16)

$$T_{crítico} = 169 + 314 \cdot \rho_{gáslivre}$$
(6-17)

Estes valores definem a pressão e a temperatura reduzida:

$$P_{red} = \frac{P}{P_{critico}}$$
(6-18)

$$T_{red} = \frac{T}{T_{critico}}$$
(6-19)

Desta forma, o fator de compressibilidade pode ser definido pela correlação de Beggs & Brill (SHOHAM, 2006):

$$Z = A + \frac{1 - A}{e^{B}} + C \cdot P_{red}^{D}$$
(6-20)

As constantes dependem da temperatura e pressão reduzida da seguinte forma:

$$A = 1,39 \cdot \sqrt{T_{red} - 0,92} - 0,36 \cdot T_{red} - 0,101$$
(6-21)

$$B = (0,62 - 0,23 \cdot T_{red}) \cdot P_{red} + \left[\frac{0,066}{T_{red} - 0,86} - 0,037\right] \cdot P_{red}^{2} + \frac{0,32 \cdot P_{red}^{6}}{10^{9(T_{red} - 1)}}$$
(6-22)

$$C = 0.132 - 0.32 \cdot \log(T_{red})$$
(6-23)

$$D = 10^{0.3106 - (0.49 T_{red}) + 0.1824 T_{red}^2}$$
(6-24)

6.10 Tensão superficial

A tensão superficial entre as diferentes fases do fluido será definida através da correlação de Baker e Swerdoff (SHOHAM, 2006):

$$\sigma$$
 = 39 - 0,2571.*API*, se a temperatura é maior do que 100 °F (6-25)

 σ = 37,5 - 0,2571.*API*, se a temperatura é menor do que 100 °F (6-26)

6.11 Compressibilidade de óleo

A compressibilidade do óleo é definida pela correlação de Vazques (SHOHAM, 2006):

$$C = \frac{5 \cdot R_s - 1,433 + 17,2 \cdot T - 1180 \cdot \rho_{gas} + 12,61 \cdot API}{P}$$
(6-27)

6.12 Potência elétrica

A potência elétrica da bomba será um limitante do modelo estudado e é estimada de acordo com a seguinte relação:

$$Pot = \frac{q_{total} (m^{3} / dia) \cdot \Delta P (bar)}{\eta} \cdot \frac{1}{36} \cdot kW$$
(6-28)

η é a eficiência da bomba. Esta eficiência varia de acordo com a vazão do sistema e com o diferencial de pressão. Em alguns sistemas apesar da maior potência requerida, obtem-se uma maior produção de óleo, onde o retorno

financeiro pode compensar essa maior potência utilizada. Para contabilizar esta produção sobre a potência requerida, um parâmetro, denominado como energia específica, será analisado. Este parâmetro é definido como a potência requerida sobre a vazão mássica definida da seguinte forma:

$$PE = \frac{Pot}{w} \left(\frac{J}{kg}\right)$$
(6-29)

6.13 Temperatura

Um dos grandes desafios para o cálculo do escoamento multifásico é o cálculo da temperatura para diversos padrões de escoamento que surgem neste tipo de fluxo. Neste trabalho a queda de temperatura será analisada de forma simplificada sem considerar os diferentes padrões de escoamento. Para isso a seguinte formula retirada de (SHOHAM, 2006) é utilizada:

$$T_{2} = T_{w} + (T_{1} - T_{w}) \cdot e^{\left(\frac{-U}{\rho \cdot q \cdot c_{p}} \cdot \Delta L\right)}$$
(6-30)

Onde U é o coeficiente global de troca de calor e cp, a capacidade térmica. As constantes utilizadas para o cálculo do coeficiente global de troca de calor e da queda de temperatura também não levam em consideração o padrão de escoamento e foram calculadas da seguinte forma:

Numero de Prandt:

$$P_r = \frac{cp_{slip} \cdot \mu_{liq}}{k_{liq}}$$
(6-31)

Sendo a capacidade térmica da mistura:

$$cp_{slip} = cp_{G} \cdot (1 - H_{L}) + cp_{L} \cdot H_{L}$$
 (6-32)

Viscosidade do líquido:

$$\mu_L = \mu_{\text{água}} \cdot f_c + \mu_{\text{óleo}} \cdot (1 - f_c)$$
(6-33)

Sendo fc definido no apêndice B como a fração de água.

Condutividade térmica do líquido:

$$k_{L} = k_{igua} \cdot f_{c} + k_{ileo} \cdot (1 - f_{c})$$
(6-34)

Após o cálculo do numero de Prandt, o numero de Nussel pode ser calculado da seguinte forma:

$$Nu = \frac{\frac{f}{2} \operatorname{Re} \cdot \operatorname{Pr}}{1.07 + 12.7 \cdot \sqrt{\frac{f}{2}} \cdot \left(\operatorname{Pr}^{\frac{2}{3}} - 1\right)}$$
(6-35)

Caso escoamento seja laminar Nussel é simplismente igual a 3.657.

O coeficiente de troca de calor por convicção é definido como:

$$h = \frac{Nu \cdot k_{\perp}}{\phi} \tag{6-36}$$

Finalmente tem-se o coeficiente global de troca de calor:

$$U = \frac{2 \cdot \pi}{\frac{1}{h \cdot \frac{\phi}{2}} + \frac{\ln(\frac{\phi_{externo}}{\phi_{int erno}})}{k}}$$
(6-37)