

Bruno Fontes Rodrigues

Análise De Processamento Submarino na Produção De Óleo e Gás: as Novas Perspectivas sem o Uso de Plataformas

Dissertação de Mestrado

Dissertação apresentada ao programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Carlos Valois Maciel Braga

Rio de Janeiro Novembro de 2011

Bruno Fontes Rodrigues

Análise De Processamento Submarino na Produção De Óleo e Gás: as Novas Perspectivas sem o Uso de Plataformas

Dissertação apresentada ao programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica. Aprovado pela comissão examinadora abaixo assinada.

> Prof. Carlos Valois Maciel Braga Orientador Departamento de Engenharia Mecânica da PUC-Rio

> > Prof. Iberê Nascentes Alves Petróleo Brasileiro S.A. – Petrobras/E&P

Prof. Sidney Stuckenbruck Olympus Software Científico e Engenharia

Prof. Marcos Sebastião P. Gomes Departamento de Engenharia Mecânica da PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico PUC-Rio

Rio de Janeiro, 22 de Novembro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do orientador e do autor.

Bruno Fontes Rodrigues

Graduou-se em Engenharia Mecânica na UFRJ em 2003. Concluiu Engenharia Econômica na UFRJ em 2004 e Engenharia de Petróleo na PUC-Rio em 2005. Participou de diversos congressos e hoje atua como engenheiro de dutos rígidos na empresa Technip.

Ficha Catalográfica

Rodrigues, Bruno Fontes

Análise de processamento submarino na produção de óleo e gás: as novas perspectivas sem o uso de plataformas / Bruno Fontes Rodrigues ; orientador: Carlos Valois Maciel Braga. – 2011.

149 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011. Inclui bibliografia

PUC-Rio - Certificação Digital Nº 0812200/CA

CDD: 621

Agradecimentos

Ao meu orientador Carlos Valois por ter aceitado o desafio deste projeto, pela confiança, estimulo, orientação e pela ajuda primordial na obtenção da bolsa de isenção.

À PUC-Rio pela concessão da bolsa de isenção, sem a qual a realização do curso não seria possível.

À funcionaria Rosely Ribeiro por toda ajuda nas situações burocráticas.

À todos os professores do curso de Mestrado de engenharia Mecânica da PUC-Rio que transmitiram algum conhecimento, entre eles, Carlos Valois, Marcelo Dreux, Luis Fernando Azevedo, Sidney Stuckenbruck, Fabio Braga, José Luiz Freire, Geraldo Spinelli, Arthur Braga e Rogério Espósito.

Aos professores do curso de pós graduação de Petróleo do CCE, PUC-Rio, Iberê Alves e Brenno Romano Motta Filho, pelo ensinamento, tempo disponibilizado e as dicas transmitidas.

Ao professor de pós graduação da UFRJ Elísio Caetano pelo tempo disponibilizado e ensinamentos transmitidos.

À minha esposa pelo apoio incondicional e compreensão nos momentos de dificuldade durante este período de estudo.

Aos meus pais pelo carinho e apoio sem os quais não estaria aqui.

Ao amigo Rodrigo Klim Gomes, pela companhia ao longo do curso e apoio nos momentos de desabafos e ansiedades.

À empresa Intecsea por ter permitido a execução deste mestrado durante expediente de trabalho.

A empresa Technip pela liberação do acesso ao software Pipesim sem o qual a realização deste trabalho não seria possível.

Resumo

Rodrigues, Fontes Bruno; Braga, Carlos Valois Maciel. Análise De Processamento Submarino na Produção De Óleo e Gás: as Novas Perspectivas sem o Uso de Plataformas. Rio de Janeiro, 2011, 149p. Dissertação de Mestrado, Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O petróleo tem importância inegável nos tempos atuais. Junto com outros combustíveis fósseis, representa uma considerável parcela da matriz energética da sociedade. Porém esta é uma fonte de energia não renovável. Por isso a medida que o petróleo é produzido em regiões de fácil acesso, sua fonte vai se esgotando e criando a necessidade de se explorar em regiões cada vez mais inóspitas. Diante deste cenário o processamento submarino na produção de óleo e gás tem grande relevância ao permitir a produção de petróleo em regiões onde não seria possível a produção sem esta opção. O objetivo deste trabalho é comparar 2 sistemas de processamento submarino, um com bomba multifásica e outro com separador submarino, visando identificar as oportunidades de aplicação para cada sistema e o estado da arte atual de cada tecnologia. O grande salto do processamento submarino será um futuro de produção sem o uso de plataformas. Cenário este que já se observa nos dias de hoje em alguns campos de gás. O campo de gás foi o primeiro a apresentar a possibilidade de produção sem o uso de plataforma por possuir energia suficiente para escoar por distâncias maiores sem necessidade de incremento artificial de pressão. Porém com o avanço da tecnologia da bomba e dos separadores submarinos, o futuro indica a aplicação deste processo também em campos de óleo. Este trabalho disponibiliza uma ferramenta simplificada para análise de escoamento multifásico de fácil acesso que permite o cálculo sem a necessidade de softwares avançados e de difícil acesso. Apesar de ser uma ferramenta simplificada é de grande utilidade para cálculos rápidos sem necessidade de detalhamento.

Palavras chave

Bomba multifásica; separador submarino; processamento óleo/gás submarino; poço à terra.

Abstract

Rodrigues, Fontes Bruno; Braga, Carlos Valois Maciel (Advisor). **Oil and Gas Subsea Processing Analysis: new Perspectives without the use of Plataforms**. Rio de Janeiro, 2011, 149p. MSc Dissertation, Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Oil has undeniable importance in modern times. Along with other fossil fuels, represents a considerable portion of the energy matrix of society. However this is non-renewable energy source. As the oil is been produced in areas of easy access, its source is being exhausting and creating the need to explore in inhospitable regions. Looking to this scenario subsea processing of oil and gas has great importance to allow oil production in regions where the production would not be possible without this option. The objective of this study is to compare two subsea processing systems, one with a multiphase pump and other with a separator and a monophase pump, identify opportunities of each system and the current state of the art of each technology. The leap of subsea processing will be a future of production systems without the use of platforms. This scenario already being felt today in some gas fields. The gas field was the first to present the possibility of production without the use of the platform due to the fact that gas fields has enough energy to flow over large distances without the need of artificial lifting. However, with the advancement in pump technology and subsea separators, the future indicates the application of this procedure also in oil fields. This paper provides a simplified calculation tool for multiphase flow of easy access that allows the calculation without the need of advanced commercial software. Despite being a simplified tool is useful for quick calculations.

Keywords

Multiphase pump; subsea separator; subsea oil/gas processes; subsea to shore.

Sumário

1	Int	rodução	17
	1.1	A origem do petróleo	18
	1.2	O petróleo na América do Norte	19
	1.3	O petróleo no Brasil	20
2	Re	evisão bibliográfica	23
3	Вс	omba multifásica	25
	3.1	Bomba monofásica BCS (Bomba centrífuga submersa)	25
	3.2	Bomba multifásica	26
	3.3	Bomba rotodinâmica	26
	3.4	Bomba volumétrica	28
	3.5	Dimensionamento de um sistema multifásico	
4	Se	parador	32
	4.1	Dimensionamento de um sistema de separação	
	4.2	Cenário atual	
5	Ga	arantia de escoamento	38
	5.1	Depósitos orgânicos	
	5.2	Depósitos inorgânicos	
	5.3	Casos e solução de garantia de escoamento	40
6	Si	mulação	41
	6.1	Introdução	41
	6.2	Considerações	42
	6.3	Modelo computacional	44
	6.4	Razão de solubilidade	47
	6.5	Fator volume de formação	48
	6.6	Viscosidade	49
	6.7	Massa específica	50
	6.8	Pressão de saturação	50
	6.9	Fator de compressibilidade do gás	51
	6.10	Tensão superficial	52
	6.11	Compressibilidade de óleo	52
	6.12	Potência elétrica	52
	6.13	Temperatura	53
7	Re	esultados	55
	7.1	Validação modelo simplificado	55

7.2	Variação diâmetro interno	59
7.3	Variação RGL (Razão gás/líquido)	60
7.4	Variação API	64
7.5	Variação <i>watercut</i>	68
7.6	Variação densidade do gás	72
7.7	Análise comparativa	75
8 C	onclusões e recomendações	79
8.1	Análise de sensibilidade	79
8.2	Conclusão final	
8.3	Recomendações	
9 R	eferências bibliográficas	84
Apên	dice A – Escoamento Monofásico	86
A. ⁻	1 Teorema de transporte de Reynolds	
A.2	2 Conservação de massa	87
A.:	3 Conservação quantidade de movimento	
A.4	4 Conservação de energia	
Apên	dice B - Introdução ao escoamento multifásico .	91
B.1 I	ntrodução	91
B.2 F	Produção submarina	
B.3 E	Escoamento multifásico: definições	
В.:	3.1 Vazão mássica (kg/s)	
В.:	3.2 Vazão volumétrica (m3/s)	
В.:	3.3 Holdup líquido	
В.:	3.4 Velocidade superficial (m/s)	100
В.:	3.5 Velocidade da mistura (m/s)	100
В.:	3.6 Fluxo de massa (kg/m2.s)	100
В.:	3.7 Velocidade real (m/s)	101
В.:	3.8 Velocidade relativa (m/s)	101
В.:	3.9 Velocidade de deslizamento (m/s)	101
В.:	3.10 Concentração de massa	101
В.:	3.11 Fração de massa	102
В.:	3.12 Propriedade da mistura	102
В.:	3.13 Propriedade do líquido	102
В.:	3.14 Razão de solubilidade	102
В.:	3.15 Fator volume de formação	103
В.:	3.16 RGO e RGL	103

Apêndice C: Escoamento multifásico: cálculo105		
C.1 Introdução		
C.2 Cálculo queda de pressão		
C3. Modelo computacional		
Modelo homogêneo		
Beggs & Brill		
Hagedorn & Brown	118	
Apêndice D – Modelo escoamento multifásico		

Lista de Figuras

Figura 1-1: Início da exploração em 1901 em Summerland – California	20
Figura 1-2: Evolução das plataformas	21
Figura 1-3: Ilustração de um campo de produção sem plataforma - Snohvit	22
Figura 3-1: Ilustração externa de uma bomba tipo hélico axial (Fabricante	
FRAMO)	28
Figura 3-2: Ilustração interna de uma bomba tipo hélico axial	28
Figura 3-3: Ilustração de uma bomba tipo duplo-parafuso (Fabricante	
Leistritz)	29
Figura 4-1: Ilustração interna de um separador tipo VASPS (Vertical annular	
separation and pumping system)	33
Figura 4-2: Ilustração do head assembly de um separador tipo VASPS	
(Vertical annular separation and pumping system)	34
Figura 4-3: Ilustração do separador tipo Caisson (Projeto Shell e FMC-	
Parque das Conchas)	35
Figura 6-1: Ilustração do modelo utilizado no trabalho através do software	
PipeSim	41
Figura 6-2: Ilustração de bombas monofásicas atuais em relação a potência,	
vazão e eficiência	46
Figura 6-3: Ilustração de bombas multifásicas atuais em relação a potência,	
vazão e eficiência	47
Figura 7-1: Comparativos de resultado entre os modelos deste trabalho pata	
fim de validação do modelo MathCad	55
Figura 7-2: Ilustração da página de dados de entrada do modelo gerado em	
Mathcad	57
Figura 7-3: Gráfico da variação da vazão de óleo x API, variando diâmetro	
interno do duto para bomba, separador e elevação natural	59
Figura 7-4: Gráfico da variação da potência requerida x API, variando	
diâmetro interno do duto para bomba, separador e elevação natural	60
Figura 7-5: Gráfico da variação da energia específica x RGL, pressão de	
entrada =150bar	61
Figura 7-6: Gráfico da variação da energia específica x RGL, pressão de	
entrada =75bar	61
Figura 7-7: Gráfico da variação da energia específica x RGL, pressão de	
entrada= 25bar	62

Figura 7-8: Gráfico da pressão de saturação e percentual de gás livre x
RGL, pressão de entrada=150bar63
Figura 7-9: Gráfico da pressão de saturação e percentual de gás livre x
RGL, pressão de entrada =75bar63
Figura 7-10: Gráfico da pressão de saturação e percentual de gás livre x
RGL, pressão de entrada = 25bar64
Figura 7-11: Gráfico da variação da energia específica x API, pressão de
entrada=150bar65
Figura 7-12: Gráfico da variação da energia específica x API, pressão de
entrada=75bar66
Figura 7-13: Gráfico da variação da energia específica x API, pressão de
entrada =25bar
Figura 7-14: Gráfico da variação da pressão de saturação e percentual de
gás livre x API, pressão de entrada=150bar67
Figura 7-15: Gráfico da variação da pressão de saturação e percentual de
gás livre x API, pressão de entrada = 25bar68
Figura 7-16: Gráfico da variação da energia específica x watercut, pressão
de entrada = 150bar69
Figura 7-17: Gráfico da variação da energia específica x watercut, pressão
de entrada=75bar69
Figura 7-18: Gráfico da variação da energia específica x watercut, pressão
de entrada = 25bar70
Figura 7-19: Gráfico da variação da pressão de saturação e percentual de
gás x <i>watercut</i> , pressão de entrada = 150bar71
Figura 7-20: Gráfico da variação dad pressão de saturação e percentual de
gás x <i>watercut</i> , pressão de entrada = 25bar71
Figura 7-21: Grafico da variação da energia específica x densidade do gas,
Figura 7-21: Grafico da variação da energia específica x densidade do gas,pressão de entrada = 150bar
Figura 7-21: Grafico da variação da energia específica x densidade do gas, pressão de entrada = 150bar
Figura 7-21: Grafico da variação da energia específica x densidade do gas, pressão de entrada = 150bar
Figura 7-21: Gráfico da variação da energia específica x densidade do gas, pressão de entrada = 150bar
Figura 7-21: Gráfico da variação da energia específica x densidade do gas, pressão de entrada = 150bar
Figura 7-21: Gráfico da variação da energia específica x densidade do gas, pressão de entrada = 150bar
Figura 7-21: Gráfico da variação da energia específica x densidade do gas, pressão de entrada = 150bar
Figura 7-21: Gráfico da variação da energia específica x densidade do gas, pressão de entrada = 150bar

Figura 7-26: Gráfico comparativo da região de pressão e energia específica
onde bomba multifásica e separador são mais eficientes observando a
variação do RGL75
Figura 7-27: Gráfico comparativo da região de pressão e energia específica
onde bomba multifásica e separador são mais eficientes observando a
variação do API76
Figura 7-28: Gráfico comparativo da região de pressão e energia específica
onde bomba multifásica e separador são mais eficientes observando a
variação do <i>watercut</i> 77
Figura 7-29: Gráfico comparativo da região de pressão e energia específica
onde bomba multifásica e separador são mais eficientes observando a
variação do densidade do gás78
Figura B-1: Diagrama de fases típico de um hidrocarboneto92
Figura B-2: Diagrama de fases para um modelo tipo <i>black oil</i>
Figura B-3: Padrão de escoamento em um duto horizontal95
Figura B-4: Padrão de escoamento em um duto vertical95
Figura B-5: Evolução dos volumes de gás, óleo e água em função da
pressão e temperatura104
Figura C-1: Ilustração escoamento em dutos106
Figura C-2: Fator de correção do holdup líquido para a correlação de
Hagedorn & Brown119
Figura C-3: Fator de correção do <i>holdup</i> líquido para correlação de
Hagedorn & Brown120

Lista de Tabelas

Tabela 3-1- Dados de operação de bombas rotodinâmicas atuais	27
Tabela 3-2-Dados de operação de bombas volumétricas atuais	30
Tabela 4-1-Dados de bombas monofásicdas atuais para utilização junto ao	
separador	37
Tabela 6-1-Relação das correlações utilizadas neste trabalho	43
Tabela 6-2- Dados de entrada utilizados no trabalho para os parâmetros do	
fluido	45
Tabela 6-3- Dados de entrada utilizados no trabalho para os parâmetros do	
duto	45
Tabela 6-4- Restrições do sistema consideradas neste trabalho	46
Tabela C-1- Parâmetros utilizados na correlação de Beegs & Brill para a	
definição padrão de escoamento1	16
Tabela C-2- Coeficientes utilzados na correlação de Beggs & Brill para	
calculo de <i>holdup</i> 1	16

Nomenclatura

А	: área da seção transversal (m²)
а	: constante adimensional correlação Beggs & Brill
b	: constante adimensional correlação Beggs & Brill
BCS	: bomba centrífuga submersa
Bg	: fator volume de formação do gás
Во	: fator volume de formação do óleo
bpd	: barris por dia
BSW	: base sedimend and water
Bw	: fator volume de formação da água
С	: constante adimensional correlação Beggs & Brill
С	: concentração, constante adimensional
d	: dia, constante adimensional correlação Beggs & Brill
E	: constante adimensional correlação Beggs & Brill
E	: energia (J)
EPS	: eletrical submersible pump
F	: fator de atrito
f	: constante adimensional correlação Beggs & Brill
fc	: fração
FPSO	: floating production storage and offloading
Fr	: Froude
Ft	: pés
G	: gravidade (m/s²), constante adimensional correlação Beggs & Brill
G	: fluxo de massa (kg/m².s)
н	: hora, holdup, entalpía (J)
h	: coeficiente de troca de calor por convecção
H & B	: Hagedorn and Brown
IP	: índice de produtividade
k	: condutividade térmica
Km	:quilômetro
L	: comprimento, numero admensional de Beggs & Brill
LDHI	: flow kinetic hydrate inhibitor
Μ	: milhões
m	: metro

MEG	: monoetileno glicol
MM	: massa molecular
Ν	: número adimensional
Р	: pressão (bar)
q	: vazão (m³/d)
Q	: calor (J)
Re	: Reynold
RGL	: razão gás líquido (m³/m³)
RGO	: razão gás óleo (m³/m³)
rpm	: rotações por minuto
Rs	: razão de solubilidade
S	: perímetro (m)
SBMS	: sistema de bombeamento multifásico submarino
scf	: pés cúbicos padrão
U	: energia interna (J), coeficiente global de troca de calor
V	: volume, volts
V	: velocidade (m/s)
VASPS	: vertical annular separation and pumping system
W	: trabalho (J)
w	: vazão mássica (kg/s)
x	: fração mássica

Índices:

0	: Inclinação igual a 0 graus
D	: deslizamento, diâmetro
G	: gás
L	: Líquido
Μ	: mistura
Ns	: sem deslizamento
0	: óleo
S	: superficial
Тр	: duas fases
V	: Velocidade
W	: água

Símbolos gregos:

σ	: tensão superficial entre fases
μ	: viscosidade
E	: rugosidade
θ	: ângulo
٨	: holdup sem deslizamento
Р	: densidade
ϕ	: diâmetro
Ψ	: fator de conversão