

José Roberto Silvestre

Modelagem de problemas de acoplamento fluído-mecânico em meios geológicos fraturados usando elementos finitos enriquecidos

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

> Orientador: Prof. Eurípedes do Amaral Vargas Jr. Co-orientador: Prof. Luiz Eloy Vaz

> > Rio de Janeiro Setembro de 2012

José Roberto Silvestre

Modelagem de problemas de acoplamento fluído-mecânico em meios geológicos fraturados usando elementos finitos enriquecidos

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada:

> Prof. Eurípedes do Amaral Vargas Júnior Orientador Pontifícia Universidade Católica do Rio de Janeiro

> > Prof. Luiz Eloy Vaz

Co-Orientador Universidade Federal Fluminense

Prof. Luiz Fernando Campos Ramos Martha Pontifícia Universidade Católica do Rio de Janeiro

Prof^a. Elisa Dominguez Sotelino Pontifícia Universidade Católica do Rio de Janeiro

Prof. Leonardo José do Nascimento Guimarães Universidade Federal de Pernambuco

Prof. Márcio Arab Murad Laboratório Nacional de Computação Científica

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 24 de setembro de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

José Roberto Silvestre

Graduou-se em Engenharia Civil pela UFJF em 2001 e, obteve o mestrado pela PUC-Rio em 2004. Pós-graduado em Engenharia de Petróleo pela PUC-Rio em 2006.

Ficha Catalográfica

Silvestre, José Roberto

Modelagem de problemas de acoplamento fluídomecânico em meios geológicos fraturados usando elementos finitos enriquecidos / José Roberto Silvestre; orientador: Eurípedes do Amaral Vargas Jr. ; coorientador: Luiz Eloy Vaz. – 2012.

255 f.: il. (color.); 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Acoplamento fluídomecânico. 3. Reservatório fraturado. 4. Elemento finito enriquecido. 5. Descontinuidade do tipo forte. 6. X-FEM. I. Vargas Junior, Eurípedes do Amaral. II. Vaz, Luiz Eloy. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

Agradecimentos

Aos meus orientadores Eurípedes Vargas e Luís Eloy. Após inúmeras dissertações e teses concluídas, é surpreendente ver o ânimo que ainda conduz as pesquisas. A parceria entre eles foi fundamental para o desenvolvimento desta tese.

À PUC-Rio e à Petrobrás, pelo auxílio concedido, sem os quais este trabalho não poderia ter sido realizado.

Aos meus pais, Luiz e Ana, pelo apoio, incentivo e ensinamento. A cada dia, vejo a sorte que tive por serem meus pais.

À minha família pelos momentos que vivi, não só pelos bons momentos, mas pelos difíceis também, pois eles são parte do meu crescimento como pessoa.

À minha namorada, Antônia, pelo apoio, companheirismo, bom humor e por compreender a minha ausência em diversas ocasiões.

Aos amigos e colegas de trabalho do CENPES, em especial, ao Sérgio Murilo, Antonio Claudio, Armando Prestes, Karen Camila, Marcos Alcure, Araken, Andrea Borges, Erick, Francisco Henriques, Clemente, Paulo Dore, Marcos Dantas, Edmir, Rafael, Marcus Soares e Rodrigo (Barra) do grupo de Mecânica de Rochas do qual tive a oportunidade de participar. Expresso minha gratidão ao Sérgio Murilo, Antonio Claudio e Armando Prestes pelo estímulo, aprendizado, confiança, amizade e momentos inesquecíveis, por vezes hilários, vivenciados.

A todos os amigos e colegas de PUC, principalmente a André Muller, Christiano Faria, Diego Orlando, Frederico Martins, Joabson, Pasquetti, Thiago Pecin, Diego Pecin, Magnus Meira, Wagner, Walter Menezes, João Pantoja, João Krause, Paul, Patrício Pires, Rafael Gerard, Janaína Barreto, Jackeline e Thaís.

Resumo

Silvestre, José Roberto; Vargas Jr., Eurípedes do Amaral; Vaz, Luiz Eloy. **Modelagem de problemas de acoplamento fluído-mecânico em meios geológicos fraturados usando elementos finitos enriquecidos.** Rio de Janeiro, 2012. 255 p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Meios que apresentam descontinuidades como fraturas e falhas em um macico rochoso ou reservatórios de petróleo impõem algumas dificuldades na simulação numérica pelo Método dos Elementos Finitos. Uma dessas dificuldades é a necessidade de geração de malhas muito refinadas, principalmente na região próxima à descontinuidade, até a obtenção de uma resposta confiável do modelo, o que pode consumir um tempo significativo. Ao mesmo tempo, a discretização da descontinuidade com elementos muito pequenos, quando comparados ao restante do modelo, pode conduzir a um aumento no tempo de simulação. Neste trabalho é apresentada a formulação de um elemento finito cortado por uma descontinuidade para aplicação em problemas com acoplamento fluido-mecânico em meios saturados com um único fluido. A inserção da descontinuidade no elemento é obtida pela adição de novos termos à função de interpolação, dispensando a sua discretização. Esses termos adicionais conseguem reproduzir a mudança no campo de deslocamento e poro-pressão no elemento devido à presença da descontinuidade. A resposta do elemento é verificada através da comparação com uma solução analítica unidimensional e com exemplos simples simulados em um programa comercial.

Palavras-chave

Acoplamento fluído-mecânico; Reservatório fraturado; Elemento finito enriquecido; Descontinuidade do tipo forte; X-FEM.

Abstract

Silvestre, José Roberto; Vargas Jr, Eurípedes do Amaral (Advisor); Vaz, Luiz Eloy (Co-Advisor). **Modeling of fluid-mechanic coupled problems in fractured geological media using enriched finite elements.** Rio de Janeiro, 2012. 255 p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Media that present discontinuities as fractures and faults in a rock mass or oil reservoirs impose some difficulties in numerical simulation using standard Finite Element Method. One of these difficulties is the need for very refined mesh generation, especially in the region near the discontinuities, to obtain a reliable answer of the model, which can consume significant time. At the same time, the discretization of the discontinuity with very small elements compared to the rest of the model may lead to an increase in simulation time. This work presents the formulation of an element that is crossed by a discontinuity for use in coupling fluid-mechanical problems in single fluid saturated mediums. The insertion of the discontinuity in the element is obtained by adding new terms in the interpolation function, which eliminates its discretization. These additional terms can reproduce the change in the displacement and pore pressure field in the element due to the presence of discontinuity. The response of the element is validated by comparing it with one dimensional analytical solution and simple examples simulated in a commercial program.

Keywords

Fluid-mechanical coupled, Fractured Reservoir, Enriched finite element; Strong discontinuity; X-FEM

Sumário

1 INTRODUÇÃO	24
1.1. Descrição do problema	24
1.2. Revisão Bibliográfica	27
1.3. Objetivo	38
1.4. Organização do texto	40
2 FORMULAÇÃO MECÂNICA DE ELEMENTOS FINITOS COM	
DESCONTINUIDADE DO TIPO FORTE	42
2.1. Elemento estendido (XFEM)	42
2.2. Embedded element	52
2.3. Formulação mecânica do elemento enriquecido explicitamente	59
2.3.1. Equação de equilíbrio	60
2.3.2. Aproximação do campo de deslocamento	65
2.3.3. Discretização via Método dos Elementos Finitos	69
2.4. Quadro comparativo das formulações de elemento finito com descontinuidade	
do tipo forte	72
3 ADAPTAÇÃO DA FORMULAÇÃO MECÂNICA DO ELEMENTO	
ENRIQUECIDO EXPLICITAMENTE PARA O PROBLEMA DE FLUX) DE
FLUIDO	76
3.1. Equação de fluxo	76
3.2. Aplicação do Método de Elementos Finitos à equação de fluxo	82
3.2.1. Decomposição do campo de poro-pressão	85
3.2.2. Aproximação do campo de poro-pressão ao longo da direção tangencial à	
descontinuidade	90

3.2.2.1. Poro-pressão na descontinuidade como variável interpolada	90
3.2.2.2. Poro-pressão na descontinuidade como grau de liberdade independente	93
4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO	
FLUIDO-MECÂNICO	98
4.1. Equação de equilíbrio	99
4.2. Equação de fluxo	103
4.3. Aplicação do Método de Elementos Finitos às equações de equilíbrio e fluxo de	
fluido	108
5 EXEMPLOS	113
5.1. Introdução	113
5.2. Coluna de arenito unidimensional submetido a um carregamento de compressão	
e fluxo descendente	115
5.2.1. Regime permanente	116
5.2.2. Regime transiente	123
5.3. Comparação do elemento enriquecido com o programa ABAQUS	127
5.3.1. Coluna de arenito submetida a um carregamento mecânico de compressão	127
5.3.2. Fluxo de fluido em uma coluna de arenito com uma descontinuidade inserida	137
5.3.2.1. Regime permanente	138
5.3.2.2. Regime transiente	145
5.3.3. Coluna de arenito submetida a um fluxo de fluido em uma condição de acoplam	iento
fluido-mecânico	151
5.3.3.1. Regime de fluxo permanente	152
5.3.3.2. Regime de fluxo transiente	164
5.4. Aplicação do elemento enriquecido em um modelo de reservatório	
bidimensional	170
5.4.1. Fluxo de fluido através de um reservatório com uma falha pré-existente	170
5.4.1.1. Falha selante	171
5.4.1.2. Falha condutora	177
5.4.2. Acoplamento fluido-mecânico em um reservatório com uma falha pré-existente	· 187

198

6.1. Conclusões	198
6.2. Sugestões	203
7 REFERENCIAS BIBLIOGRÁFICAS	204
APÊNDICE – A ESTUDO DE REFINAMENTO	209
A.1. Carregamento mecânico em uma coluna de arenito	209
A.2. Fluxo de fluido descendente uma coluna de arenito	215
APÊNDICE – B FUNÇÃO DE INTERPOLAÇÃO N ^β	226
B.1. Função de interpolação N $^{\beta}$ para um elemento unidimensional	226
B.2. Função de interpolação N ^{β} para o elemento CST	230
APÊNDICE – C SOLUÇÃO ANALÍTICA PARA UMA COLUNA DE ARENI	то
UNIDIMENSIONAL COM UMA DESCONTINUIDADE INSERIDA	235
C.1. Solução analítica para a poro-pressão ao longo da coluna unidimensional	237
C.2. Solução analítica para o deslocamento ao longo da coluna unidimensional	
devido à ação da força prescrita Fs	240
C.3. Solução analítica para o deslocamento ao longo da coluna unidimensional	
devido à ação do fluxo prescrito q	245
C.4. Resumo das soluções analíticas para uma coluna de arenito unidimensional com	
uma descontinuidade inserida	248
APÊNDICE – D RELAÇÃO ENTRE OS PARÂMETROS DOS ELEMENTOS	
CPE4P E <i>COHESIVE</i> COM AS PROPRIEDADES FÍSICAS DE UMA	
DESCONTINUIDADE	252

Lista de Figuras

Figura 1-1: Falhas em um reservatório: (a) trapa estrutural, (b) falha condutora
de fluxo25
Figura 1-2: Elementos para representação de junta: (a) Goodman, (b)
Zienkiewicz (Jing, 2003)28
Figura 1-3: Tipos de descontinuidade: (a) fraca, (b) forte29
Figura 1-4: Posicionamento do grau de liberdade de salto (ponto de colocação):
(a) elemento CST, (b) elemento bilinear
Figura 2-1: Corpo cortado por uma fratura43
Figura 2-2 - Nós enriquecidos pelas funções heaviside (H') e crack tip (F') em
uma malha cortada por uma fratura (Moës et al, 1999)44
Figura 2-3: Esboço do salto de deslocamento para o elemento bilinear: (a)
função heaviside, (b) salto $uoldsymbol{eta}$ associado ao nó local 445
Figura 2-4: Sistema de coordenada polar na ponta da fratura46
Figura 2-5: Esboço da função crack tip (Belytschko et al, 2001)47
Figura 2-6: Elementos de transição (Mohammadi, 2008)47
Figura 2-7 - Corpo cortado parcialmente por uma superfície (Manzoli e Shing,
2006)
Figura 2-8: Decomposição do campo de deslocamento (Manzoli e Shing, 2006)
Figura 2-9: Corpo parcialmente seccionado por uma superfície60
Figura 2-10: Divisão do domínio Ω nos subdomínios $\Omega +$ e $\Omega \text{-}$ 63
Figura 2-11: Malha interceptada por uma descontinuidade66
Figura 2-12: a) subdomínios do elemento CST, b) salto de deslocamento68
Figura 2-13: Esboço da função de interpolação $N\beta$ para o elemento CST68
Figure 2.1: Echano de fluxe: a) como cortado por uma deconstinuidado h)
Figura 3-1. Esboço de fluxo. a) corpo contado por uma descontinuidade, b)
ampliação da descontinuidade
ampliação da descontinuidade 77 Figura 3-2: Volume infinitesimal de meio poroso
 Figura 3-1. Esboço de fluxo. a) corpo corrado por uma descontinuidade, b) ampliação da descontinuidade
 Figura 3-1. Esboço de fluxo. a) corpo corrado por uma descontinuidade, b) ampliação da descontinuidade
 Figura 3-1. Esboço de fluxo. a) corpo cortado por uma descontinuidade, b) ampliação da descontinuidade

Figura 3-5: Elementos de transição: a) elemento triangular, b) elemento
retangular96
Figura 4-1: Meio poroso parcialmente seccionado por uma descontinuidade99
Figura 4-2: Orientação de um infinitésimo da descontinuidade em relação ao
sistema de eixo global101
Figura 5-1: Esboço da geometria, carregamento e condições de contorno da
coluna de arenito unidimensional para o regime de fluxo permanente 116
Figura 5-2: Malhas geradas pelo GiD e ABAQUS-CAE117
Figura 5-3: Curva de poro-pressão ao longo da coluna de arenito118
Figura 5-4: Curva de deslocamento ao longo da coluna de arenito ao final da
aplicação do fluxo descendente119
Figura 5-5: Curvas de deslocamento ao longo da coluna de arenito devido à
ação separada do carregamento mecânico e do fluxo de fluido obtido pelo
elemento cohesive
Figura 5-6: Curvas de deslocamento obtidas pelos elementos cohesive e
enriquecido com 3 nós (termo de acoplamento na descontinuidade ausente)
ao longo da coluna unidimensional122
Figura 5-7: Esboço da geometria, carregamento e condições de contorno da
coluna de arenito para o regime de fluxo transiente
Figura 5-8: Curva de poro-pressão ao longo da coluna de arenito para o tempo
17475 s
Figura 5-9: Curvas de deslocamento ao longo da coluna de arenito para o
carregamento mecânico e fluxo descendente separadamente no tempo
17475 s: a) elemento enriquecido com 3 nós, b) elemento CPE4P
Figura 5-10: Curva de deslocamento no topo da coluna ao longo do tempo126
Figura 5-11: Coluna de arenito submetida a um carregamento de compressão: a)
coluna 1a, b) coluna 2a128
Figura 5-12: Malhas geradas: (a) GiD para a coluna 1a, (b) ABAQUS-CAE para a
coluna 1a, (c) GiD para a coluna 2a, (d) ABAQUS-CAE para a coluna 2a129
Figura 5-13: Posições onde foram lidas as respostas de deslocamento no
modelo numérico130
Figura 5-14: Curvas de deslocamento nas direções x e y ao longo das posições
1, 2 e 3 obtidas pelos elementos cohesive e enriquecido (com 3 nós) para a
coluna 1a
Figura 5-15: Curvas de deslocamento nas direções x e y ao longo das posições
1, 2 e 3 obtidas pelos elementos cohesive e enriquecido (com 3 nós) para a
coluna 2a

Figura 5-16: Curvas de deslocamento nas direções x e y ao longo das posições 1, 2 e 3 obtidas pelos elementos cohesive e enriquecido (com 5 nós) para a Figura 5-17: Curvas de deslocamento nas direções x e y ao longo das posições 1, 2 e 3 obtidas pelos elementos CPE4 e enriquecido (com 3 nós) para a Figura 5-18: Mapas de deslocamento na direção y da coluna 2a: (a) enriquecido Figura 5-19: Coluna de arenito submetida a um fluxo prescrito: a) coluna 1b, b) Figura 5-20: Malhas geradas: a) GiD para a coluna 1b, b) ABAQUS-CAE para a coluna 1b, c) GiD para a coluna 2b, d) ABAQUS-CAE para a coluna 2b.. 140 Figura 5-21: Curvas de poro-pressão para a coluna 1b: (a) elemento enriquecido (com 3 nós), (b) elemento cohesive141 Figura 5-22: Curvas de poro-pressão para a coluna 2b: a) enriquecido com 3 nós, b) enriquecido com 5 nós143 Figura 5-23: Curvas de poro-pressão obtidas pelos elementos cohesive e enriquecido com 3 nós para a coluna 2b.....144 Figura 5-24: Coluna de arenito submetida a um processo de drenagem 146 Figura 5-25: Curvas de poro-pressão obtidas pelo elemento enriquecido para o caso I: a) 3 nós, b) 5 nós......147 Figura 5-26: Curvas de poro-pressão obtidas pelo elemento enriquecido para o caso II: (a) 3 nós, (b) 5 nós148 Figura 5-27: Curva de poro-pressão ao longo do tempo na base da coluna: (a) caso I, (b) caso II.....150 Figura 5-28: Coluna de arenito submetida a um fluxo prescrito: a) coluna 1a, b) Figura 5-29: Malhas geradas: a) GiD para a coluna 1a, b) ABAQUS-CAE para a coluna 1a, c) GiD para a coluna 2a, d) ABAQUS-CAE para a coluna 2^a. . 154 Figura 5-30 – Curvas de poro-pressão obtidas pelos elementos CPE4P e enriquecido (com 3 nós): (a) coluna 1a, (b) coluna 2a......155 Figura 5-31: Curvas de deslocamento na direção x obtidas pelos elementos CPE4P e enriquecido (com 3 nós): a) coluna 1a, b) coluna 2a......156 Figura 5-32: Curvas de deslocamento na direção y obtidas pelos elementos CPE4P e enriquecido (com 3 nós): a) coluna 1a, b) coluna 2a......158 Figura 5-33: Curvas de poro-pressão obtidas pelos elementos cohesive e enriquecido para a coluna 2a160

Figura 5-34: Curvas de deslocamento obtidas pelos elementos cohesive e enriquecido para a coluna 2a: a) direção x, b) direção y161 Figura 5-35: Curvas de deslocamento obtidas pelos elementos cohesive e enriquecido (com 3 nós e sem o termo de acoplamento na descontinuidade): (a) direção x, (b) direção y.....162 Figura 5-36: Coluna de arenito submetida a um fluxo em regime transiente: (a) coluna 1a, (b) coluna 2a......165 Figura 5-37: Curvas de poro-pressão em três instantes de tempo: (a) coluna 1a, Figura 5-38: Curvas de deslocamento na direção x em três instantes de tempo: a) coluna 1a, b) coluna 2a......168 Figura 5-39: Curvas de deslocamento na direção y em três instantes de tempo: a) coluna 1a, b) coluna 2a......169 Figura 5-41 - Malhas geradas para o exemplo de reservatório: a) GiD, b) Figura 5-42: Curvas de poro-pressão previstas pelo elemento enriquecido ao longo da posição A: a) 3 nós, b) 5 nós174 Figura 5-43: Mapa de vetor unitário de fluxo para o reservatório com uma falha selante obtido pelo elemento enriquecido com 3 nós para o tempo de 133 Figura 5-44: Mapas de poro-pressão para o reservatório com uma falha selante para o tempo de 133 dias: (a) elemento enriquecido com 3 nós, (b) elemento CPE4P......177 Figura 5-45: Curvas de poro-pressão previstas pelo elemento enriquecido ao longo da posição A: a) 3 nós, b) 5 nós178 Figura 5-46: Mapa de vetor unitário de fluxo para o reservatório com uma falha condutora obtida pelo elemento enriquecido com 3 nós para o tempo de 48 Figura 5-48: Curvas de poro-pressão previstas pelo elemento enriquecido ao longo da posição (B): a) 3 nós, b) 5 nós.....183 Figura 5-49: Mapas de poro-pressão do reservatório com uma falha condutora para o tempo de 15 dias: (a) elemento enriquecido com 3 nós, (b) elemento

Figura 5-50 - Mapas de poro-pressão do reservatório com uma falha condutora
para o tempo de 15 dias: a) elemento enriquecido com 5 nós, b) elemento
CPE4P
Figura 5-51: Reservatório bidimensional cortado por uma falha selante pré-
Figura 5-52: Malhas geradas para o exemplo de reservatório acontado: a) GiD
b) Abaque-CAE
Figure 5-53: Curves de poro-pressão ao longo das posições (A) e (B) para o
tempo de 50 dias
Figura 5-54: Curvas de deslocamento ao longo das posições (A) e (B) para o tempo de 50 dias
Figura 5-55: Curvas de deslocamento previstas pelos elementos CPE4P e
enriquecido com 3 nós ao longo da falha: (a) direção x, (b) direção y 192
Figura 5-56: Mapas de vetor de deslocamento obtidos pelo elemento enriquecido
com 3 nós para os tempos: a) 6 horas, b) 1 dia, c) 50 dias
Figura 5-57: Mapas de poro-pressão e vetor de fluxo unitário obtido pelo
elemento enriquecido com 3 nós para o tempo de 50 dias
Figura A-1: Esboço do exemplo de carregamento mecânico210
Figura A-2: Curvas de deslocamento na direção x ao longo da coluna de arenito
obtida pelos elementos cohesive e enriquecido com 3 nós
Figura A-3: Curvas de deslocamento na direção y ao longo da coluna de arenito
obtida pelos elementos cohesive e enriquecido com 3 nós212
Figura A-4: Esboço da geometria, fluxo e condições de contorno do exemplo de
fluxo
Figura A-5: Curvas de poro-pressão ao longo da coluna para o material I obtida
pelos elementos CPE4P e enriquecido (com 3 nós)217
Figura A-6: Curvas de poro-pressão obtidas pelos elementos CPE4P e
enriquecido (com 5 nós) para o material I218
Figura A-7: Curvas de poro-pressão ao longo da coluna obtida pelos elementos
CPE4P e enriquecido (com 3 nós) para o material II
Figura A-8: Curvas de poro-pressão ao longo da coluna obtida pelos elementos
CPE4P e enriquecido (com 5 nós) para o material II
Figura A-9: Malhas 1 a 2 geradas pelo GiD e ABAQUS-CAE
Figura A-10: Malhas 3 a 4 geradas pelo GiD e ABAQUS-CAE
Figura A-11: Malhas 5 a 6 geradas pelo GiD e ABAQUS-CAE

Figura B-1: a) deslocamento ao longo da barra, b) barra no sistema global, c)
barra no sistema local
Figura B-2: Funções de Interpolação para um elemento unidimensional: (a)
função de interpolação dos nós 1 e 2, (b) função de interpolação N eta 229
Figura B-3: a) Subdomínios do elemento CST, b) Esboço do salto de
deslocamento sobre os subdomínios Ω_1 e Ω_2
Figura B- 4: a) uso da função de interpolação do elemento CST no subdomínio
Ω_1 , b) uso da função de interpolação do elemento bilinear no subdomínio Ω_2
Figura B- 5: Vetores unitários da descontinuidade (v_d) e centroide (v_c)232
Figura B- 6: a) função N ^{β} procurada, b) função N ^{β} sem as constantes λ e c λ 233
Figura C-1: Coluna unidimensional submetida à força de superfície e fluxo
205
prescrito
Figura C-2: Esboço da coluna de arenito submetida à ação do fluxo prescrito 237

Figura D-1: Fluxo no elemento cohesive	253
--	-----

Lista de Tabelas

Tabela 2-1: Quadro comparativo dos elementos com descontinuidade do tipo
forte
Tabela 5-1 – Parâmetros da coluna de arenito unidimensional117
Tabela 5-2: Parâmetros da coluna de arenito submetida a carregamento
mecânico128
Tabela 5-3: Parâmetros da coluna de arenito submetida a um fluxo prescrito . 138
Tabela 5-4: Coeficientes de Leak off e Gap flow para o elemento cohesive 140
Tabela 5-5: Parâmetros de material para a coluna em regime de fluxo transiente
Tabela 5-6: Parâmetros da coluna de arenito submetida a um fluxo prescrito. 153
Tabela 5-7: Parâmetros da coluna de arenito submetida a um fluxo em regime
transiente
Tabela 5-8: Parâmetros de material para o reservatório com falha selante 172
Tabela 5-9: Parâmetros de material para o reservatório com falha condutora. 182
Tabela A-1: Parâmetros de material utilizados no estudo de refinamento210
Tabela A-2: Variação da resultante de deslocamento devido ao refinamento de
malha213
Tabela A-3: Valores dos deslocamentos nas direções x e y213
Tabela A-4: Variação de poro-pressão para o material I devido ao refinamento de
malha221
Tabela A-5: Variação de poro-pressão para o material II devido ao refinamento
de malha221

Símbolos

В	Matriz de deformação
Β α	Matriz de deformação associada a u^{α}
Β ^β	Matriz de deformação associada a u^{β}
Β ^ω	Matriz de deformação associada a u $^{\omega}$
B_p^{α}	Matriz gradiente relativa à componente contínua de poro-pressão
B_p^{β}	Matriz gradiente relativa à componente de salto de poro-pressão
B_p^f	Matriz gradiente relativa a poro-pressão na descontinuidade
c	Vetor de salto de deslocamento nodal
d	Vetor de deslocamento nodal
đ	Vetor de deslocamento nodal associado ao vetor $\widetilde{\boldsymbol{u}}_h$
â	Vetor de deslocamento nodal associado ao vetor $\widehat{\boldsymbol{u}}_h$
D	Matriz constitutiva do corpo
D _f	Matriz constitutiva da descontinuidade, falha ou fratura
e	Espessura da descontinuidade
F	Vetor de força global
F'	Função crack tip
F _b	Vetor força de massa
F _e	Vetor de força nodal do elemento
F _s	Vetor força de superfície

F _T	Vetor força de superfície ao longo da descontinuidade
Ϋ́Τ	Vetor força de superfície efetiva ao longo da descontinuidade
F _T ⁺	Força de superfície ao longo de $\Gamma_{\rm F}^+$
F _T	Força de superfície ao longo de $\Gamma_{\rm F}^-$
g	Gravidade
h	Carga de elevação
Н	Matriz de permeabilidade global
H'	Função heaviside
H _e	Matriz de permeabilidade do elemento
k	Tensor de permeabilidade intrínseca
K _e	Matriz de rigidez do elemento
K _f	Módulo de variação volumétrica do fluido
K _m	Matriz de rigidez global
k _n	Permeabilidade intrínseca na direção normal à descontinuidade
Ks	Módulo de variação volumétrica das partículas sólidas
k _t	Permeabilidade intrínseca na direção tangencial à descontinuidade
m	Massa ou vetor que identifica as componentes normais do vetor tensão
m _F	Vetor que identifica a componente normal no vetor força de superfície
n	Vetor normal unitário
Ν	Função de interpolação
N _n	Matriz de transformação
N ^f	Função que descreve o valor de poro-pressão na

descontinuidade

N ^α	Função de interpolação do elemento
N ^β	Função que interpola o salto
р	Poro-pressão
Р	Matriz de distribuição de salto
$\overline{\mathbf{p}}$	Componente contínua da poro-pressão
p	Salto de poro-pressão
p^h	Poro-pressão aproximada
\overline{p}^h	Aproximação da componente contínua de poro- pressão
$\ \mathbf{p}^{\mathbf{h}}\ $	Salto de poro-pressão aproximando
\mathbf{p}^{α}	Grau de liberdade de poro-pressão (componente contínua)
p ^β	Grau de liberdade de salto de poro-pressão
\overline{q}	Fluxo prescrito
Q	Vetor de fluxo global
$ar{q}_{f}^{n}$	Fluxo normal à descontinuidade
$ar{q}_f^s$	Fluxo tangencial à descontinuidade
q _n	Fluxo na direção normal à descontinuidade
r	Raio em um sistema de coordenada polar
r _{nn}	Rigidez na direção normal da descontinuidade
r _{ns}	Rigidez da descontinuidade relacionando a ação de F_{T_n} sobre u _s
r _{sn}	Rigidez da descontinuidade relacionando a ação de F_{T_s} sobre u_n
r _{ss}	Rigidez na direção tangencial da descontinuidade

S	Parâmetro de armazenamento
S _e	Matriz de armazenamento do elemento
S'	Saturação
t	Tempo
u	Vetor deslocamento
ū	Componente contínua do vetor deslocamento
û	Componente do vetor deslocamento associado ao movimento de corpo rígido
ũ	Componente do vetor deslocamento associado à deformação do corpo
u ^α	Vetor de graus de liberdade de deslocamento (componente contínua)
u ^β	Vetor de graus de liberdade de salto através da face de uma fratura ou falha
u ^ω	Vetor de graus de liberdade de salto na ponta de uma fratura
u	Vetor de salto de deslocamento
u _n	Componente normal do salto de deslocamento
u _s	Componente tangencial do salto de deslocamento
u _e	Vetor de graus de liberdade nodal de um elemento
û _h	Aproximação do deslocamento û
ũ _h	Aproximação do deslocamento ũ
u _h	Vetor deslocamento aproximado
$\overline{\mathbf{u}}^{\mathbf{h}}$	Aproximação da componente contínua de deslocamento
$\ \mathbf{u}^{\mathbf{h}}\ $	Aproximação do salto de deslocamento
v	Fluxo de fluido

Símbolos gregos

δ	Variação virtual	
ε	Tensor ou vetor deformação	
Ē	Componente contínua do vetor deformação	
ε	Componente de deformação relacionada ao salto de deslocamento	
ε _h	Aproximação do vetor de deformação	
$\tilde{\epsilon}_h$	Aproximação da componente do vetor de deformação do corpo	
$\hat{\epsilon}_h$	Aproximação da componente de deformação associada ao movimento de corpo rígido	
ε _v	Deformação volumétrica	
ф	Porosidade	
μ	Viscosidade dinâmica	
θ	Ângulo em um sistema de coordenada polar	
ρ	Massa específica	
σ	Tensor ou vetor de tensão	
σ΄	Tensor ou Vetor tensão efetiva	
σ_{Ω^+}	Vetor tensão no subdomínio Ω^+	
σ_{Ω^-}	Vetor tensão no subdomínio Ω^-	
σ_{Ω}	Tensão no corpo	
$\widetilde{\sigma}_h$	Vetor tensão relativo à deformação do corpo	
Φ	Função de interpolação do salto	

Γ _F	Superfície de descontinuidade, falha ou fratura
$\Gamma_{\rm F}^{-}$	Face da fratura no subdomínio Ω^-
$\Gamma_{\rm F}^+$	Face da fratura no subdomínio Ω^+
Γ _q	Porção do contorno onde o fluxo é prescrito
Г _р	Porção do contorno onde a poro-pressão é prescrita
Γ _s	Porção do contorno de um corpo onde a força de superfície é prescrita
Γ _u	Porção do contorno de um corpo onde o deslocamento é prescrito
Γ _v	Contorno imaginário
Ω	Domínio do corpo
Ω^+	Subdomínio positivo
Ω^{-}	Subdomínio negativo
∇	Operador diferencial

Subescrito e Superescrito

e	Elemento
S	Superfície
F	Fratura ou falha
+	Positivo
-	Negativo