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Abstract

Cortez Brito Leite Póvoa, Rogério; Lustoza de Souza,
Patricia (Advisor); Araujo Cautiero Horta, Bruno (Co-Advisor).
Development of unimodal and multimodal optimization algorithms
based on multi-gene genetic programming. Rio de Janeiro, 2018.
188p. Tese de doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.
Genetic programming techniques allow flexibility in the optimization

process, making it possible to use them in different areas of knowledge and
providing new ways for specialists to advance in their areas more quickly
and more accurately. Parameter mapping approach is a numerical optimization
method that uses genetic programming to find an appropriate mapping scheme
among initial guesses to optimal parameters for a system. Although this
approach yields good results for problems with trivial solutions, the use of
large equations/trees may be required to make this mapping appropriate for
more complex systems. In order to increase the flexibility and applicability
of the method to systems of different levels of complexity, this thesis
introduces a generalization by thus using multi-gene genetic programming
to perform a multivariate mapping, avoiding large complex structures. Three
sets of benchmark functions, varying in complexity and dimensionality, were
considered. Statistical analyses carried out suggest that this new method is more
flexible and performs better on average, considering challenging benchmark
functions of increasing dimensionality. This thesis also presents an improvement
of this new method for multimodal numerical optimization. This second
algorithm uses some niching techniques based on the clearing procedure to
maintain the population diversity. A multimodal benchmark set with different
characteristics and difficulty levels to evaluate this new algorithm is used.
Statistical analysis suggested that this new multimodal method using multi-
gene genetic programming can be used for problems that requires more than
a single solution. As a way of testing real-world problems for these methods,
one application in nanotechnology is proposed in this thesis: the structural
optimization of quantum well infrared photodetector from a desired energy. The
results present new structures better than those known in the literature with
improvement of 59.09%.

Keywords
Numerical Optimization; Multimodal Optimization; Evolutionary

Computation; Genetic Programming; Multi-Gene Genetic Programming.
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Resumo

Cortez Brito Leite Póvoa, Rogério; Lustoza de Souza, Patricia;
Araujo Cautiero Horta, Bruno. Desenvolvimento de algoritmos de
otimização unimodal e multimodal com base em programação
genética multigênica. Rio de Janeiro, 2018. 188p. Tese de Doutorado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

As técnicas de programação genética permitem flexibilidade no processo de
otimização, possibilitando sua aplicação em diferentes áreas do conhecimento
e fornecendo novas maneiras para que especialistas avancem em suas áreas
com mais rapidez. Parameter mapping approach é um método de otimização
numérica que utiliza a programação genética para mapear valores iniciais
em parâmetros ótimos para um sistema. Embora esta abordagem produza
bons resultados para problemas com soluções triviais, o uso de grandes
equações/árvores pode ser necessário para tornar este mapeamento apropriado
em sistemas mais complexos. A fim de aumentar a flexibilidade e aplicabilidade
do método a sistemas de diferentes níveis de complexidade, este trabalho
introduz uma generalização utilizando a programação genética multigênica, para
realizar um mapeamento multivariado, evitando grandes estruturas complexas.
Foram considerados três conjuntos de funções de benchmark, variando em
complexidade e dimensionalidade. Análises estatísticas foram realizadas,
sugerindo que este novo método é mais flexível e mais eficiente (em média),
considerando funções de benchmark complexas e de grande dimensionalidade.
Esta tese também apresenta uma abordagem do novo algoritmo para otimização
numérica multimodal. Este segundo algoritmo utiliza algumas técnicas de
niching, baseadas no procedimento chamado de clearing, para manter a
diversidade da população. Um conjunto benchmark de funções multimodais,
com diferentes características e níveis de dificuldade, foi utilizado para avaliar
esse novo algoritmo. A análise estatística sugeriu que esse novo método
multimodal, que também utiliza programação genética multigênica, pode ser
aplicado para problemas que requerem mais do que uma única solução. Como
forma de testar esses métodos em problemas do mundo real, uma aplicação em
nanotecnologia é proposta nesta tese: a otimização estrutural de fotodetectores
de infravermelho de poços quânticos a partir de uma energia desejada. Os
resultados apresentam novas estruturas melhores do que as conhecidas na
literatura (melhoria de 59,09%).

Palavras-chave
Otimização Numérica; Otimização Multimodal; Computação

Evolucionária; Programação Genética; Programação Genética Multigênica.
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1
Introduction

Optimization is the process of minimizing or maximizing a function with
one or more variables in a given domain with its set of constraints on variables.
There are several optimization algorithms applied in the most diverse areas as
mathematics, chemistry, physics, engineering, medicine and economics (Tan, 2017,
Ellefsen, 2017, Myszkowski, 2018, Jain, 2018) and they can belong to two classes:
deterministic or stochastic.

Deterministic algorithms are those that given a set of input parameters and
the same initial conditions will always produce the same output. The conjugate
gradient (Fletcher, 1964) and Newton-Raphson (Ben-Israel, 1966) algorithms are
classic examples of deterministic algorithms. Deterministic algorithms are well
known and can be applied to various problems. However, they are not the
best choice for all problems. For example, there is no detrministic algorithm to
solve NP-complete problems in polynominal time (Garey, 1979, Aaronson, 2005,
Leyton-Brown, 2014) and this kind of problem can be easily solved by stochastic
methods (SMs) that make use of randomness in generating solutions and use so-
called random number generators.

Stochastic methods (SMs) (Hannah, 2014) refers to a collection of
optimization methods that make uses of the randomness. Given the same set of input
parameters to a SM, this randomness causes that different outputs are obtained. This
implies that the behavior of the SM can only be known by the probability. Metrics
such as mean and standard deviations of several simulations are commonly used
to validate the methods. SMs are usually faster in locating a global optimum when
compared to deterministic methods for two types of functions:(i) black-box; and (ii)
extremely ill-behaved (Liberti, 2005).

Genetic programming (GP) (Koza, 1992) is a SM, from computational
intelligence, able to create computer programs or mathematical models
automatically. Commonly applied for symbolic regression (Liu, 2016),
classification (Espejo, 2010) and search based software engineering (Harman, 2013,
Harman, 2014, Langdon, 2015, Langdon, 2017, Yeboah-Antwi, 2017), GP
have few studies in the field of numerical optimization. However, there are
promising GP optimization methods: (i) cartesian genetic programming (CGP)
(Walker, 2007, Miller, 2013); (ii) embedded cartesian genetic programming
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(ECGP) (Walker, 2007); (iii) parameter mapping approach (PMA) (Pujol, 2008);
(iv) optimization by genetic programming (OGP) (Koshiyama, 2013); and (v)
multimodal genetic programming (MMGP) (Yoshida, 2017).

Although these optimization algorithms based on GP are promising, few
analyzes have been performed on them, using few functions of benchmark and
having no applications in real problems (with the exception of OGP that has
an application in the optimization of parameters of a spiking neural network
for clustering problems (Silva, 2014)). This thesis proposes to carry out the first
systematic study using unimodal and multimodal benchmarks and with a real
application in optimization by GP.

Computational intelligence provides a variety of nature-inspired techniques
employed in the development of intelligent systems. The combination of such
techniques with computational nanotechnology is likely to deeply accelerate
the development of nanotechnology applications. This area is called intelligent
computational nanotechnology (Vilela Neto, 2012). Among the benefits brought by
techniques of this area are: (i) automatic design of nanodevices, optimizing the
structure, composition and other parameters; (ii) virtual experiments, predicting
characteristics of experiments not yet performed; and (iii) optimization of
parameters employed in molecular simulators and in the design of more efficient
simulation processes. For instance, the optimization of quantum well infrared
photodetectors (QWIPs) is an application that are considered in the present thesis.

The operation of a photodetector is triggered with the incidence of light that
excites an electron and this electron is collected generating current. An experiment
with a photodetector (more specifically the photoelectric effect (Einstein, 1905))
is behind one of the thoughts that revolutionized physics: the quantization of
light in energy packets (Clauser, 1974). Photon detectors closely depend on the
band structure of the material. By controlling the photodetector materials and
their thicknesses, it is possible to manipulate the band structure and control the
electronic states. Control of the extended states is a promising step in the search
for photodetectors that operate at higher temperatures by reducing the dark current,
whereas the electronic confinement above the barrier is intended to increase the
selectivity range of the photodetectors (Penello, 2013). The manufacture of a QWIP
(Levine, 1993) begins with the theoretical analysis. In 2013, Penello (Penello, 2013)
developed an easy-to-use computational program that calculates the states of the
heterostructure. With this program, it is possible to calculate the energy levels of
the structures, the wave functions, the oscillator strengths between the levels and
the absorption spectrum. Using this software it is possible to apply computational
intelligence algorithms to control and optimize the photodetector materials and their
thicknesses.
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1.1
Motivation

PMA and OGP are optimization methods that use GP to map initial
parameters into optimal input parameters for an objective function. In 2013,
Koshiyama (Koshiyama, 2013) shows a potential of OGP for certain benchmark
functions without the need of specify the domain of those functions. This advantage
allows the use of OGP in problems that the domain is not known. However the
behavior of this algorithm is little known and an analysis of the representation of
its individuals and other benchmark functions is necessary. It is also interesting to
apply GP to real problems with one (unimodal) or more (multimodal) solutions as
a way to validate and improve the use of this technique in optimization problems.

1.2
Objectives

The objective of this research is to know the effects and behavior of OGP
and from this method to develop new numerical optimization algorithms that are
flexible enough to be applied to real problems with one (unimodal optimization) or
more optimal solutions (multimodal optimization – MMO).

1.3
Contributions

According to the objectives presented above, this thesis focused on the
development of optimization methods from OGP. The contributions provided by
this work are listed below:

– Multi-Gene Parameter Mapping Approach (MG-PMA): parameter
mapping approach (PMA) (Pujol, 2008) is a numerical optimization method
that uses GP to find a mapping among initial guesses to optimal parameters
for a system. Although this method yields good results for problems with
trivial solutions, the use of a large tree/equation may be required to make
this mapping appropriate for more complex systems. In order to increase
the flexibility and applicability of the method to systems of different levels
of complexity, this thesis introduced MG-PMA, a generalization using
multi-gene genetic programming (MGGP) (Hinchliffe, 1996) to perform a
multivariate mapping, avoiding large complex structures.

– MG-PMA with Feedback: this method aims not only at mapping initial fixed
guesses but also at adapting these initial guesses dynamically. For complex
problems, MG-PMA with feedback try to avoid getting stuck in a local
minimum (or maximum) due to the generation of a new mapping scheme
from a new set of parameters.
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– Niching MG-PMA: a new method using multi-gene genetic programming to
multimodal numerical optimization. The new algorithm uses some niching
techniques based on the clearing procedure to maintain the population
diversity, in order to perform a multivariate mapping among initial guesses
to optimal parameters for a system. Statistical analysis suggested that this
new multimodal method using multi-gene genetic programming can be used
for problems that requires more than a single solution.

– High-Level Crossover Operators: two new multigenic crossover operators
for MGGP, and its variations, inspired by genetic algorithms (GAs)
(Holland, 1975) operators – high-level single-point crossover and high-level
uniform crossover.

– Domain Constraint with Periodic Boundary Conditions: a new
normalization technique to follow domain constraints based on the periodic
boundary conditions (PBC) used by the molecular modelling (Leach, 2001).
This normalization can be applied to other optimization algorithms such
as GA, particle swarm optimization (PSO) (Eberhart, 1995) and differential
evolution (DE) (Storn, 1995)).

– Structural Optimization of QWIPs: Through trial and error, guided by
previous knowledge, specialists try to reproduce experimental results or
design new QWIPs with certain energies, which ended up being monotonous
and time-consuming. Applying MG-PMA to control and optimize the
photodetector thickness, it is possible to find desired structures and tests new
ideas in the area.

1.4
Work Description

This research was done as follows:

– Bibliographic research regarding the topics: evolutionary computation
(EC) and stochastic optimization algorithms such as GA; GP; differential
evolution (DE); evolutionary programming (EP); evolution strategies (ES);
ant colony optimization (ACO); and particle swarm optimization (PSO).

– In-depth bibliographic research on GP: MGGP, linear genetic
programming (LGP), grammatical evolution (GE), parallel distributed
genetic programming (PDGP) and PMA.

– In-depth bibliographic research on niching methods for MMO: MMO,
niching methods, clearing procedure and real-world applications.

– Implementation of the methods: MG-PMA; MG-PMA with feedback; and
Niching MG-PMA.
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– Tests and analysis: MG-PMA (varying: number of trees, tree depths,
tournament size and crossover operators for multigenic individuals), MG-
PMA with feedback, Niching MG-PMA (varying: crossover operators for
multigenic individuals, local optimization frequency and feedback frequency)
and comparisons of the proposed methods with established methods.

– Application of MG-PMA: structural optimization of QWIPs and comparison
with GA, PSO and covariance matrix adaptation evolution strategy (CMA-
ES) (Hansen, 2001, Hansen, 2006).

1.5
Work Organization

This thesis is organized as follows:
The next Chapter presents theoretical foundations necessary for

understanding this work, which will consider subjects as EC, GP, MGGP, the
area of the optimization by genetic programming, MMO, niching methods and
recent applications in the MMO area. Chapter 2 also presents two new multigenic
crossover operators for MGGP and its variations.

Chapter 3 presents the methods developed in this thesis (MG-PMA, MG-
PMA with feedback and Niching MG-PMA) and the domain constraint with PBC.

Chapter 4 presents the analysis performed with MG-PMA: (i) the benchmark-
based sensibility analysis and its results of the number of trees as well as the
variations of the tree depth, allowing the creation of simple or more complex
solutions; (ii) an approach to increase the dynamics of MG-PMA and the results
of the comparison with MG-PMA; (iii) an analysis varying the tournament size and
the types of crossover operators for multigenic individuals; and (iv) a comparison
of the MG-PMA with established methods.

Chapter 5 presents the analysis performed with Niching MG-PMA:(i)
crossover operator for multigenic individuals; (ii) local optimization frequency;
(iii) feedback frequency; and (iv) comparison with well-established multimodal
methods.

Chapters 6 presents the applications of MG-PMA for optimization of QWIPs
comparing the results with GA, PSO and covariance matrix adaptation evolution
strategy (CMA-ES) (Hansen, 2001, Hansen, 2006) results.

Finally, Chapter 7 presents the closing remarks of this thesis and suggestions
for future works.
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2
Optimization Methods

This chapter presents algorithms classified as SMs. Section 2.1 presents the
evolutionary computation (EC) and genetic programming (GP) and multi-gene
genetic programming (MGGP) techniques. These methods are traditionally used
in problems of prediction, classification, or even the discovery of knowledge.
However, in this work, these algorithms are used as numerical optimization
methods. The field of numerical optimization by GP is also presented in this
section. Finally, Section 2.2 presents the main concepts of multimodal optimization
(MMO), niching methods (NMs), clearing and NMs for metaheuristic optimization
algorithms.

2.1
Evolutionary Computation

Evolutionary computation (EC) consists of the design and analysis of
algorithms inspired by Darwin’s natural selection principles and their variations
(Spears, 1993). In turn, the algorithms that make up the EC are called evolutionary
algorithms (EAs).

According to (Back, 1997), EC originated in the late 1950s and remained
relatively unknown to the scientific community for approximately three decades,
mainly due to the lack of efficient computers at the time, but also due to
the methodology not developed during the first surveys. During the sixties and
early seventies, three independent proposals were fundamental to modify the
image of EC that, from then on, began to be widely developed: (i) evolutionary
programming (EP), proposed by Lawrence Fogel, Alvin Owens and Michael Walsh,
whilst examining the use of simulated evolution as an approach for developing
artificial intelligence (Fogel, 1966); (ii) evolution strategies (ES), created by Ingo
Rechenberg and Hans-Paul Schwefel at the Technical University of Berlin, as
experimental optimum-parameter seeking procedures and numerical optimization
algorithms (Rechenberg, 1973, Schwefel, 1995); and (iii) genetic algorithms (GAs),
introduced by John Holland at the University of Michigan, whilst working on the
use of evolutionary techniques for adaptive systems (Holland, 1975).

These three areas were developed for about fifteen years as different
representatives of EC. It was also in the early nineties that a fourth stream
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following general ideas has emerged – Genetic Programming (GP) (Koza, 1992,
Banzhaf, 1998). The contemporary terminology denotes the entire field by EC and
considers EP, ES, GA and GP as its subareas.

As EC is based on evolutionary mechanisms found in nature, many terms
adopted by EAs are based on biology. Table 2.1 presents a brief overview of some
terminology used by EC.

Table 2.1: Terminology used by Evolutionary Computation.

Term Meaning
chromosome string of symbols
fitness function the objective function
gene basic unity of the chromosome
generation the evolutionary order of different populations
genetic operations a set of operations that the EA∗ performs on each of the chromosomes
genotype structure
individual a candidate solution
phenotype a set of parameters, an alternative solution or a decoded structure
population a set of individuals

∗ EA – Evolutionary Algorithm

The common idea behind all these techniques from EC is the same
(Eiben, 2002): given a population of individuals, the environmental pressure causes
natural selection (survival of the fittest) and thereby the fitness of the population
improves. Therefore, EA as an optimization process (maximizing or minimizing an
objective function) randomly creates a set of candidate solutions (called the initial
population) and uses the objective function as an abstract fitness measure. Based on
this fitness, some of the best candidates are selected to seed the next generation
by applying recombination (also called crossover) and/or mutation. Often these
candidates are called parents as they are used for creating new individuals (often
called children). Recombination is usually applied to two selected parents and
results in one or two children. Mutation is applied to any individual and it
means making a random alteration to the chromosome. Applying genetic operators
(recombination and mutation) leads to a set of new candidates, the offspring. The
best parents can be promoted to the next generation without any change by the
elitism concept. Thus, the new population is a combination of parents, offspring
and their mutated counterparts. This process can be iterated until a solution is found
(reaching a predefined convergence criteria) or a previously set time limit is reached.
It is possible to see that many components of such an evolutionary process are
stochastic.

According to Darwin, the emergence of new species, adapted to their
environment, is a consequence of the interaction between the survival of the fittest
mechanism and undirected variations. Variation operators must be stochastic, the
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choice on which pieces of information will be exchanged during recombination,
as well as the changes in a candidate solution during mutation, are random. On
the other hand, selection operators can be either deterministic, or stochastic. In the
latter case fitter individuals have a higher chance to be selected than less fit ones, but
typically even the weak individuals have a chance to become a parent or to survive.
The Algorithm 1 presents the general scheme of an EA.

1: Generate initial population of size p. Set number of generation, g = 0
2: repeat
3: Calculate the fitness of each member of the population
4: Select a number of parents according to quality
5: Recombine some, if not all, parents to create offspring chromosomes
6: Mutate some parents and offspring
7: Form new population from mutated parents and offspring
8: Optional: promote a number of unaltered parents from step 4 to the new population
9: Increment the number of generations g← g+1

10: until (g equals number of generations required) OR (fitness is acceptable)

Algorithm 1: General scheme of an Evolutionary Algorithm (Miller, 2011).

This algorithm does not fall in the category of generate-and-test, also known
as trial-and-error, algorithms. The fitness function represents a heuristic estimation
of solution quality and the search process is driven by the variation operators
(recombination and mutation creating new candidate solutions) and the selection
operators. EA is distinguished within the family of generate-and-test methods since
it relies on the population concept, i.e., process an entire set of candidate solutions
and by the use of recombination to mix information of two candidate solutions.
The population-based characteristic also distinguishes EA from the most common
deterministic methods. In addition, EA uses probabilistic transition rules and it does
not require additional information (e.g., derivatives) on the function to be optimized
and the constraints.

Thus, a search for solutions can take place in non-convex sets with functions
that are also non-convex and non-differentiable, being able to work simultaneously
with real, logical and integer variables. It is also worth mentioning that EAs are not
easily trapped to local minima as in the case of the usual deterministic methods.
By using an EA, these characteristics may lead to the discovery of unconventional
solutions that are not seen for being counter-intuitive. It is a paradigm that does not
require prior knowledge of a way to find the solution.

According to Cortes (Cortes, 2004), EC has been successfully used for
solving complex optimization problems. Its main obstacle is the accuracy of
the solution to be found, because the closer to the optimum solution, the more
computational power and processing time are required, especially when multimodal
functions are used.
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2.1.1
Genetic Programming

Genetic Programming (GP) is an EC technique that relies on the automatic
creation of programs or mathematical equations to solve a wide range of academic
and industrial problems (Koza, 1992, Banzhaf, 1998, Langdon, 2002, Poli, 2008,
Miller, 2011). The origins of GP, and EC, go back to the origins of EAs
(Fogel, 1998). As early as 1958, Friedberg devised an algorithm that could evaluate
the quality of a computer program, make some random changes to it and then test
it again to check for improvements, and so on (Friedberg, 1958, Friedberg, 1959).
In the eighties, some approaches used GP for solving artificial intelligence
(AI) problems (Smith, 1980, Forsyth, 1981, Cramer, 1985, Schmidhuber, 1987).
However, GP became more widely known after the publication of John Koza’s book
in 1992 (Koza, 1992).

Considering a large, but restricted set of computer programs (also known as
individuals), GP performs a search for the best individuals to solve a particular
problem, synthesizing and selecting programs based on genetic and population
operators. One of the obvious difficulties in evolving computer programs is caused
by the fact that computer programs are highly constrained and must obey a specific
grammar in order to be compiled.

Representation

Originally, the representation of computational programs used by Koza
(Koza, 1992) employed the tree data structures and it is the most commonly
used. These programs need to be run to get the corresponding candidate to a
certain problem. This tree representation addresses the three aspects of problem
representation:

– closure property (boundary conditions for the functions) – all functions must
accept as argument any value and data type that can be returned by a function
of the set of functions, or by a terminal (variables or constants) of the set of
terminals. It is also possible to define special handling routines for specific
exceptions;

– sufficiency property – the definition of the functions and terminals ends up
specifying the search space of the possible programs. This space should be
large enough to contain the desired solution. In addition, the defined functions
and terminals must be appropriate for the problem domain. However, the
larger this space, the less chance of finding the solution;

– the impossibility of maintaining syntactically incorrect and/or semantically
invalid solutions can produce problems of low population diversity.
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In 1958, John MacCarthy invented one of the oldest high-level computer
languages that is widely used by researchers of the AI community: LISP
(McCarthy, 1960). In LISP, all programs consist of expressions of lists of symbols
enclosed in parentheses. For instance, calls to functions are written as a list with the
function name first, followed by its arguments. For example, a function f that takes
four arguments would be written in LISP as (f arg1 arg2 arg3 arg4). All LISP
programs can be written in the form of data structures known as trees (Koza, 1992).

As an example, Equation 2-1 has as analytical solution ex.

dy
dx
− y = 0 (2-1)

The solution is equivalent to the Taylor power-series expansion (Equation 2-
2).

∞

∑
j=0

x j

j! (2-2)

Figure 2.1 presents an evolved expression that computes an approximate
solution (ex− 1) to Equation 2-1 in a tree representation. The corresponding LISP
expression is (SIGMA (SET-SV (* (% X J)))) (Koza, 1992).

Figure 2.1: Program tree that represents the expression (SIGMA (SET-SV (* (% X
J)))) (Koza, 1992).

The function SIGMA is a one-argument function that adds its argument to the
value stored in a register called SV. It is defined so as to increment an indexing
variable J each time it does this. The function % is a two-argument function that
implements protected division (it returns 1 if the denominator is close to zero). The
function SET-SV assigns its single argument to the register. SV and J are defined
to have initial values of 1. The program sums the successive arguments x, x2/2!,
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x3/3!, x4/4! and so on, which is an approximate solution to Equation 2-1 and equal
to ex−1.

The use of LISP ensure that GP can generate valid random trees during the
evolution process. In this representation scheme, GP terminals are represented by
input variables and constants (real or binary numbers, according to the problem)
and appear at the extreme nodes of the tree (leaves). The GP functions appear
in the internal nodes of the tree and can be arithmetic operations (“sum”,
“subtraction”, “multiplication”,“division” etc.), mathematical functions (“sine”,
“cosine”, “tangent” etc.), Boolean operations (“and”, “or”, “not” etc.), conditional
operators (“if”, “else” etc.) and iteration functions (“for”, “while” etc.), to recursion
or specific functions of the problem domain.

The synthesis of programs occurs from the sets of terminals and functions. For
the programs created by GP to be valid, it is necessary that the sets of functions and
terminals meet the closing property. This property determines that each function
must accept as its arguments any value that can be returned by any function or
terminal, ensuring that any generated tree can be evaluated correctly.

In order to apply the GP to a given problem, one must:

– determine the sets of terminals and primitive functions that are used;

– define a fitness measurement;

– establish a parameter to control an execution;

– define a method for determining the output;

– define a criterion to end an execution.

It is important to note that not all GP approaches use trees as a representation
of their individuals. There are representations in the literature such as: (i) bitstrings
(similar to programs written in machine code) used in Linear Genetic Programming
(LGP) (Banzhaf, 1993, Miller, 2011); (ii) variable-length binary-string (a set of
rules maps binary numbers into functions and terminals) used in Grammatical
Evolution (GE) (O’Neill, 2003, Miller, 2011); (iii) a stack-based computer language
used in PushGP (Spector, 2002); and (iv) graph representation (that allows more
than one path between any pair of nodes) used in parallel distributed genetic
programming (PDGP) (Poli, 1996) and in Cartesian Genetic Programming (CGP)
(Banzhaf, 1998, Miller, 2000, Miller, 2011).

Evolution Process

In this algorithm, an evaluation function is used to assess how well a program
performs a given task. For instance, in function approximation or prediction the
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evaluation can be cast through the difference between the output generated by a GP
individual and a target (error) – a well fitted individual yielding a negligible error.

The evolution process of the GP begins with the random creation of
individuals which will form the initial population. This random creation can be
done by some techniques (grow, full or ramped-half-and-half (Koza, 1992)) and the
individuals have their sizes (tree depth) limited by one parameter. Each individual of
the initial population is evaluated, and those of higher fitness are selected by some
heuristics (roulette method, tournament etc. (Poli, 2008)) for the application of
genetic operators. After the application of genetic operators, the resulting programs
pass through the stopping criterion, which can be a maximum number of generations
or the arrival at a satisfactory point of the problem. If the stopping criterion is not
attended, the programs pass to the population of the new generation and the steps
are repeated.

Genetic Operators

This Section presents some genetic operators used in GP (Koza, 1992,
Vilela Neto, 2012):

– Direct reproduction – the individual of the population is selected according to
some method based on fitness and is copied, without any change, to the next
generation (Figure 2.2);

Figure 2.2: Genetic operator of direct reproduction for GP. The individual is copied
to the next generation.

– Crossover – two individuals are selected, and a random cut-off point is chosen
from each of the parents. The resulting sub-trees are exchanged, forming new
programs for the next generation (Figure 2.3);

– Mutation – any tree edge is selected randomly. Then, this operation removes
the subtree that is at this point and inserts a new, randomly generated subtree
(Figure 2.4);
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Figure 2.3: Genetic operator of crossover for GP. The crossing between the
individuals P1 and P2 generate the individuals O1 and O2.

Figure 2.4: Genetic operator of mutation for GP. A random subtree replaces the
subtree that is below a selected point.

2.1.2
Multi-Gene Genetic Programming

Multi-gene genetic programming (MGGP) (Hinchliffe, 1996) is a
generalization of the canonical GP, in which most components are similar,
but MGGP denotes an individual as a complex tree structure, also called genes (G).
Figure 2.5 shows an example of a multigenic individual with D genes (or number
of trees).

Each tree structure can be considered as a partial solution to the problem, and
the final output results from the linear combination of them (Equation 2-3).

Ŷi = β0 +
D

∑
d=1

βdGd (2-3)

Ŷi is the resulting output of any individual of the population, β0 is the linear
coefficient (or intercept), βd are linear coefficient and Gd (where d = 1, 2, 3, ...,
D, and D is the number of trees) are outputs of each decoded equation in the
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Figure 2.5: Example of a multigenic individual.

individual. The βd of this method can be estimated by least squares, considering
that the calculation of the error εi = Yi− Ŷi is feasible. From this error metric, it is
possible to evaluate the overall quality of the individual. It is easy to see that when
D = 1, the MGGP is reduced to the solution obtained by a classical GP.

Genetic Operators

Regarding the genetic operators, the mutation operation in the MGGP is
similar to that performed in the classical GP. In the case of the crossover operation,
it is necessary to distinguish the level at which the operation is performed as it is
possible to apply this operation at the low and at the high level. Figure 2.6 shows
an example of low-level crossover for multigenic individuals with four equations
(D = 4). This operator manipulates the structures (terminals and functions) of the
equations present in the individuals. In this example the operator exchanges random
structures of individual 1 with random structures of individual 2.

Figure 2.6: Example of a low-level crossover for multigenic individuals with four
equations.

Figure 2.7 shows an example of mutation procedure for a multigenic
individual with four equations (D= 4). This operator also manipulates the structures
(terminals and functions) of the equations present in an individual. In this example
the operator changes a random part of an equation of individual 1 by a random
element in this equation.
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Figure 2.7: Example of a mutation for multigenic individuals with four equations..

Figures 2.6 and 2.8 show the two levels of a MGGP individual: low and high.
The low level is characterized by the presence of four functions, arranged in tree
structures. The high level represents the outputs of each function, similarly to a GA
chromosome. A closer look at Figures 2.6 and 2.7 reveals that the results achieved
by the two operations are quite similar, although the operations are conceptually
different.

Figure 2.8: Example of a high-level crossover. In this example, the operator
exchanges two randomly selected functions (genes) of the individual 1 with two
functions of the individual 2 (these functions are highlighted by red arrows). The
functions that were not selected, arrows in blue, are concatenated to thereafter
receive the genes of another individual.

Crossover can also be performed at the high level (Figure 2.8). In this case, the
operation consists of selecting random functions (genes) from one individual to be
exchanged by functions (genes) also randomly selected from another individual.
The new individuals will be formed by the genes that were not exchanged, as
well as the genes that came from another individual. This high-level crossover
was provided by MGGP GPTIPS 2 library (Searson, 2015). In comparison to the
low-level crossover, it is clear that the high-level crossover implies changes in the
macro level of the individual, whereas the low-level changes occurs in micro level.
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Therefore, any changes in the high level tends to affect more an individual fitness
than changes perpetrated on its low level.

The first version of the MGGP GPTIPS library (Searson, 2010) provides
another high-level croosover operator, referred in this thesis of high-level two-point
crossover. This operator selects two different individuals for the crossover and two
random cut-off points are determined so that the first and third part of an individual
is combined with the second part of the other (Figure 2.9).

Figure 2.9: Example of a high-level two-point crossover. In this example, the
operator combines two parts of the individual 1 with the second part of the
individual 2, and the first part of the individual 2 with the second part of the
individual 1.

New High-Level Crossover Operators

This section introduces two new multigenic crossover operators: (i) high-level
single-point crossover; and (ii) high-level uniform crossover. These operators were
created in this thesis from two GA crossover operators already well established in
the literature (Kora, 2017). The high-level single-point crossover can be seen as an
analogy to GA single-point crossover. This operator selects two different individuals
for the crossover and a random cut-off point is determined so that the first part of an
individual is combined with the second part of the other (Figure 2.10).

High-level uniform crossover can be seen as an analogy to GA uniform
crossover. This operator selects two different individuals for the crossover and
random genes from one individual are exchanged by random genes from the other
individual (Figure 2.11).

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Chapter 2. Optimization Methods 42

Figure 2.10: Example of a high-level single-point crossover. In this example, the
operator combines a first part of the individual 1 with the second part of the
individual 2, and the first part of the individual 2 with the second part of the
individual 1.

Figure 2.11: Example of a high-level uniform crossover. In this example, the
operator exchanges two randomly selected functions (genes) of the individual 1 with
two functions of the individual 2 (these functions are highlighted by red arrows).

2.1.3
Optimization by Genetic Programming

The importance of applying GP in the field of numerical optimization
is the several applications in areas such as Machine Learning, Electrical
Circuits and Financial Mathematics (Changra, 2009). In 2007, Walker and
Miller used the cartesian genetic programming (CGP) and a extended form
of CGP called Embedded CGP (ECGP) to solve real-valued optimization
problems (Walker, 2007). The following year, Pujol and Poli introduced the
parameter mapping approach (PMA) (Pujol, 2008), using the canonical GP.
In 2013, Miller and Mohid proposed a new CGP approach to real-valued
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optimization (Miller, 2013). In 2017, Yoshida, Harada and Thawonmas proposed a
multimodal genetic programming using the canonical GP, called multimodal genetic
programming (MMGP) (Yoshida, 2017).

In view of further improving GP-based optimization algorithms, the present
work introduces a generalization of the PMA method. From this point on, the
generalization of PMA introduced in the present work will be referred to as multi-
gene parameter mapping approach (MG-PMA). Preliminary studies with early
implementations of the multi-gene approach to PMA were performed.

The results were compared to those obtained by GA, PSO, DE and PMA
(Koshiyama, 2013) and applied to optimize the parameters of a spiking neural
network for clustering problems (Silva, 2014). There in, the method was referred
to as optimization by genetic programming (OGP). However, since it was in fact
a generalization of PMA, the acronym MG-PMA seems more appropriate as it
acknowledges the previous PMA method. This thesis recommends the usage of
OGP for referring to the emerging field of GP-based optimization methods.

In this work, MG-PMA was implemented with improvements and fixes code
using the latest version of GPTIPS library (GPTIPS 2 (Searson, 2015)) with the
aim of improving the original algorithm (Koshiyama, 2013). Chapter 3 presents the
main MG-PMA concepts as well as two new methods developed in this thesis based
on this algorithm: (i) multi-gene parameter mapping approach with feedback (MG-
PMA with feedback); and (ii) niching multi-gene parameter mapping approach
(Niching MG-PMA). Figure 2.12 shows the ramifications of the OGP area.

Figure 2.12: OGP area and its ramifications. The algorithms presented in this thesis
are highlighted in green: (i) MG-PMA; (ii) MG-PMA with feedback; and (iii)
Niching MG-PMA.
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Parameter Mapping Approach

Parameter mapping approach (PMA) (Pujol, 2008) is an method based in GP
to solve parameter optimization and tuning (POT) problems, where the maximum
performance of a system is sought from the setting of the system parameters. POT
methods are used to perform the tuning or the optimization of these parameters,
being necessary at least one initial set of parameter values to start with. These
methods then produce a set of adapted parameter values (see Figure 2.13).

Figure 2.13: Transformation performed by typical POT method. (Pujol, 2008)

In PMA, a population of GP programs represents a set of possible mapping
functions that transforms initial parameter values into adapted ones. These adapted
values are submitted to an objective (evaluation) function, resulting in a value
that defines the quality of the solution. GP iteratively improves such functions by
mapping initial parameters until (sub)optimal values are found.

The variables of these mapping functions are represented by the initial
parameters. As variables of a mathematical function can assume more than one
value, the representation of these parameters can not be only an array as in
Figure 2.13. The initial parameters are represented in the PMA by an matrix of
n rows and m columns (where n is the dimensionality of the objective function
and m is a user-configured number at the beginning of the optimization). Each
mapping function, generated by GP, uses a random column as its variables and
its constants are made available by GP constants. Usually random numbers are
used as initial input values at generation zero, and remain unaltered during the
evolutionary process. Figure 2.14 illustrates this process. Results found by Pujol
and Poli (Pujol, 2008) suggested that PMA is as effective as well established
methods in the literature such as GA (Holland, 1975), PSO (Eberhart, 1995) and
DE (Storn, 1995).
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Figure 2.14: Schematic representation of the PMA procedure. The aim of PMA is to
find a program that maps the initial parameter values (xic) into the optimal parameter
values (x∗i ) for a given system (c is a column of initial parameter values, selected by
each tree/program). The current best candidate parameters correspond to adapted
values from the mapping of the initial parameters. The fitness value indicates how
well a program performs this mapping. As GP, PMA also utilizes random numbers
as constants in its individuals. During the evolution process, the initial parameter
values, the GP-constants and the objective function are always the same (static)
while PMA functions, candidates parameters values and the corresponding fitness
values change (dynamic).

2.2
Multimodal Optimization

Multimodal optimization (MMO) aims finding multiple optimal and sub-
optimal solutions in the search space in a single run (Deb, 2012). In the real-world,
many problems have more than one satisfactory solution and, for some of them, it
may be necessary to locate all global optima and/or some local optima. In other
cases, finding more than one solution may improve knowledge about the problem
or alternative solutions.

Methods developed especially for solving MMO problems are known as
niching methods (NMs) and are predominantly population-based optimization
methods such as evolutionary and swarm intelligence algorithms (Preuss, 2015).
Sometimes “multimodal optimization” also refers to seeking a single optimum on
a multimodal fitness landscape. To make this clearer denomination, NMs refer
to “multi-solution” methods according to the work of Li, Epitropakis, Deb and
Engelbrecht (Li, 2016).
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2.2.1
Niching Methods

The first NMs appeared more than thirty years ago (De Jong, 1975,
Goldberg, 1987) and currently several researches are being conducted
applying them in several areas such as Engineering (Luh, 2011, Islam, 2017),
Electromagnetics (Sareni, 1998), Medicine (Delibasis, 2010), Pharmaceutics
(Kruisselbrink, 2009), Management (Pérez, 2012, Pérez, 2016) and Games
(Preuss, 2012).

Making a parallel between the areas of ecology and MMO (Glibovets, 2013),
while a niche is a complex of specific living conditions or a subset of environmental
resources in the first area, the term niche is used in the second area to name the
subspace search space. Similarly, while in ecology species are a part of the set
of all possible individuals, in MMO species represent the set of individuals with
similar characteristics. Figure 2.15 shows the clustering tendency of the distributed
individuals in the immediate vicinity of the global optima during the simulation
run of a niching method (DE/nrand/1 – a DE method with a mutation strategy that
incorporate spatial information about the neighborhood of each potencial solution
and exhibit a niching formation (Epitropakis, 2011)) on the Shubert 2D function, at
the 0th, 50th and 100th generations (Li, 2016).

Figure 2.15: Snapshots of a simulation run of DE/nrand/1 of the Shubert 2D
function, at the 0th, 50th and 100th generations. The graph to the right shows
the fitness landscape with multiple pairs of clustered global peaks (optima) of the
Shubert 2D function. (Li, 2016)
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NMs are generally designed to solve MMO problems. A typical MMO
problem can be expressed as:

Given a search domain χ , and an objective function f that maps elements of χ

into a real domain ℜ, assuming maximization of f ( #»x ), where #»x ∈ χ and #»x is
a n-dimensional vector (x1, ..., xn). In MMO an NM aims to locate as many as
possible #»x ∗ ∈ χ (not just a single #»x ∗) such that f ( #»x ∗)≥ f ( #»x ), ∀ #»x ∈ χ . The
mapped f values in the immediate vicinity of an #»x ∗ should be all lower than
f ( #»x ∗), which maximize the possible function response. In contrast to local
optima, which although they are surrounded in their immediate vicinity by
inferior solutions, the fitness values of local optima do not exceed the highest
possible value (Fieldsend, 2014, Li, 2016).

Relaxing the MMO definition, it is possible to allow locating global optimal
solutions, as well as “sufficiently” good sub-optimal solutions (Liu, 2016).

There are many NMs such as fitness sharing (Goldberg, 1987), crowding
methods (De Jong, 1975, Mahfoud, 1992), derating (Beasley, 1993), restricted
tournament selection (Harik, 1995), parallelization (Bessaou, 2000), clustering
(Yin, 1993), stretching and deflation (Parsopoulos, 2001, Parsopoulos, 2004),
speciation (Li, 2002) and clearing (Petrowski, 1996).

2.2.2
Clearing

Pétrowski proposed the clearing procedure (Petrowski, 1996) for GAs
inspired by the principle of sharing of limited resources (Holland, 1975) within
subpopulations of individuals characterized by some similarities. This procedure
only supplies the resources to the best individuals of each subpopulation and it is
naturally adapted to elitist strategies.

Algorithm 2 presents a simplified version of the clearing procedure.
Considering a maximization problem, the current population P, with n individuals,
is sorted by decreasing fitness values of individuals. Thus, the first individual
is selected as a dominant individual, also called a winner, of a subpopulation
associated with a current niche. All other individuals of P that have dissimilarity
less than a certain threshold Sigma (the clearing radius) with respect to the winner,
belong to this same subpopulation. This measure of dissimilarity, used to identify
whether or not individuals belong to the same subpopulation, could be the Hamming
distance for binary coded genotypes, the Euclidian distance for “real coded”
genotypes or it could be defined at the phenotype level (Petrowski, 1996). The best
individual of P who is not in this subpopulation becomes the winner in the next
subpopulation. The next subpopulations are formed in the same way as the first
subpopulation with the other individuals of the P.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Chapter 2. Optimization Methods 48

Input : Sigma and Kappa
SortFitness(P);
for i← 1 to n do

if Fitness(P[i]) > 0 then
nbWinners← 1;
for j← (i+1) to n do

if Fitness(P[ j]) > 0 AND Distance(P[i],P[ j]) < Sigma then
if nbWinners < Kappa then

nbWinners← nbWinners+1;
else

Fitness(P[ j])← 0;
end

end
end

end
end

Algorithm 2: A simplified scheme of the clearing procedure (Petrowski, 1996).

All available resources in each niche are assigned to its dominant individual,
this is done by preserving the fitness of the winners and resetting the fitness of the
others to zero. The winners are then copied from the population, and placed on a list
of winners, and the optimization process continues with the selection and genetic
(e.g., crossover and mutation) operations. The clearing procedure is applied in the
same way with the new populations. Thus, the list of all the winners is produced
after a certain number of steps.

Niches can also accept more than one winner, and the maximum number of
winners these niches can accept is called the capacity of a niche. In Algorithm 2,
Kappa is the capacity of each niche, nbWinners indicates the number of winners
of the subpopulation associated with the current niche and P can be considered
as an array of n individuals. The function SortFitness(P) sorts the population
P by decreasing fitness values of individuals, the function Fitness(P[i]) returns
the fitness value of the i-th individual of the population P and the function
Distance(P[i], R[ j]) returns the distance between the individuals i and j of
population P.

Figure 2.16 presents an example of the clearing procedure (with nbWinners =

1) for a maximization problem with eight individuals in a given generation.
Figure 2.16.a shows a table with the fitness values of the individuals ordered, where
individual 3 is the fittest and individual 5 is the least fit. In Figure 2.16.b, individual
3 is selected as a winner and center of the first niche with a pre-set clearing radius
r. The fitness value of the individuals within this niche (individuals 1 and 4) are
reset to zero. Then (Figure 2.16.c), the second best individual is selected (individual
7) as a winner and center of a new niche. As in the previous step, the fitness of
the individuals within this second niche (individuals 2 and 8) are reset to zero.
Individuals 6 and 7 are selected as winners as well as the first winners. Since there
are no individuals within the niches of these two winners, no other individual has
his fitness rest to zero. Then the optimization process continues with the selection
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Figure 2.16: Example of the clearing procedure for a maximization problem with
eight individuals in a given generation. (a) Fitness values of the individuals ordered.
(b) Individual 3 is selected as a winner and center of the first niche (clearing radius
r) and the fitness value of the individuals 1 and 4 are reset to zero. (c) Individual 7
is selected as a winner and center of a new niche and the fitness of the individuals
2 and 8 are reset to zero. Individuals 6 and 7 are selected as winners as well as the
first winners.

of individuals for the application of the genetic operators, without giving chance to
the individuals who were not selected as winners (individuals with fitness equal to
zero) to be selected.

2.2.3
Niching Methods for Metaheuristic Optimization Algorithms

The main objective of the early NMs was to preserve population diversity due
to loss of population diversity in standard EAs. Finding multiple optima was merely
a byproduct of the use of NMs (Shir, 2008) and subsequent to early reseach, the
main goal of NMs is to find multiple optimal solutions (Liu, 2016). NMs were also
developed for other metaheuristic optimization algorithms (Engelbrecht, 2002),
such as ES, PSO and DE and can be introduced to other meta-heuristics as
well, such as Artificial Immune Systems (AIS) (Forrest, 1993, de Castro, 2002),
Ant Colony Optimization (ACO) (Guntsch, 2002, Angus, 2009, Yang, 2017), and
Cultural Algorithms (CA) (Ali, 2014).

Hybrid methods combining meta-heuristics with local search are commonly
referred to as memetic algorithms (MAs) (Chen, 2011). This combination has
presented great promise for global optimization, adding the refining capacity of the
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local algorithms to the exploratory capacity of the global optimization algorithms
(Chelouah, 2003). There was also success in the attempts (Peng, 2002, Wei, 2005,
Ono, 2007, Bird, 2010) to hybridize NMs with local optimization algorithms,
increasing the distributed convergence to multiple optima.

In 2017, Yoshida, Harada and Thawonmas proposed the first GP application
for MMO, called multimodal GP (MMGP) (Yoshida, 2017) which separates the
population into several clusters based on the tree structure similarity measurement
(using the method tree structure similarity proposed by Yang (Yang, 2005)) and
optimizes each cluster. MMGP was compared with a GP without clustering in a
simple MMO problem with one global optimal solution and one local solution.
MMGP was able to find the global and the local optimal solution simultaneously,
in contrast to simple GP which was only able to find the global optimum solution
or the local optimal solution in a single trial. Although MMGP was tested only on a
simple multimodal problem, the method was able to maintain population diversity
during optimization.
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3
Multi-Gene Genetic Programming for Numerical
Optimization

3.1
Multi-Gene Parameter Mapping Approach

In PMA, the parameters to be optimized are not individually encoded, but
mapped by a single function. The method works fairly well for trivial problems,
as shown by Pujol and Poli (Pujol, 2008). For example, consider X∗i = 0 for all
i, the optimal parameters for f (.). Thus, if an individual encodes the function
PMA(xi) = xi− xi, the optimization problem is solved. However, when the set of
optimal solutions is not trivial, PMA tends to face more difficulties. Consider a
second example in which X∗i = 1+ ri, where ri is a random number generated from
a uniform distribution on the interval [−1,1]. In this case, it is more difficult to find a
PMA(Xi) function that solves the optimization problem. This is discussed in details
by Pujol and Poli (Pujol, 2008).

As described in Chapter 2, this thesis presents MG-PMA, a generalization of
the PMA method where a set of equations is responsible for certain parameters
rather than a single one responsible for all. This is achieved through MGGP.
Figure 3.1 depicts the main differences between a single tree and a multi-tree
approach. While PMA represents all parameters to be optimized by a single
function (Figure 3.1.a), MG-PMA separates the optimization problem into k parts,
where k is the number of equations of MGGP. For example, for k = 4, MG-
PMA assigns to each equation the responsibility of searching for a quarter of
the solution. Figure 3.1.b shows the function found by MG-PMA to solve a
hypothetical optimization problem. In the limiting case, when k equals the number n

of parameters to be optimized (k = n), MG-PMA sets to each parameter an equation
that receives an arbitrary value and returns it transformed by the decoded equation
in the individual. By contrast, when k = 1, MG-PMA becomes PMA. Note that, in
the limiting case (k = n), it is not mandatory to include initial parameters values
(xi j, as in Figure 2.13) in the terminal set of MGGP, but the ephemeral random
constants (ERCs) are still required. Since each function is responsible for only
one parameter of the objective function, this can be represented by a result of
arithmetical combinations of constants. In this case, MG-PMA searches a function
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of constants for each parameter.

Figure 3.1: Representation of individuals in PMA and MG-PMA. (a) PMA
represents all parameters to be optimized by a single function. (b) MG-PMA
partitions the optimization problem into k parts. In this example, for k = 4, MG-
PMA assigns to each of the four equations the responsibility of optimizing a quarter
of the problem. The optimal parameters are represented by points on the graphs.

In general, the pseudo-code of MG-PMA, for any objective function,
is described as in Algorithm 3. The SplitInitialParameters and
ApplyOperators functions used in Algorithm 3 are presented by Algorithms 4
and 5, respectively.

Data: Objective Function
Output: Optimal Parameters
- InitialParameterValues← Initialize();
- GPConstants← Initialize();
- Set parameters for MG-PMA;
- Set k ;
- t← 0 ;
- SplitInitialParameters(InitialParameters, k);
- Start Population(t);
- Fit← Evaluate(Population(t));
while Stop criterion 6= FALSE do

t← t +1;
Population(t)← Select(Population(t−1));
Population(t)← ApplyOperators(Population(t));
Fit← Evaluate(Population(t));

end

Algorithm 3: Pseudocode of MG-PMA for a generic objective function.

Algorithm 4 shows how the initial parameters are splited to the number of
trees (k) in MG-PMA. If the number of initial parameters (n) is multiple of k,
each tree is responsible for k/n consecutive parameters. For example, for k = 4
and n = 20, each tree will be responsible for mapping 5 initial parameters. If n is
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Input : Initial Parameters and Parameter k
- MaxParametersPerTree← ceil(CountRows(InitialParameters)/k);
- Parts[MaxParametersPerTree,k]← Create segments with k parts;
- NumberParametersParts[k]← All elements equal to 0;
- CountParameters← 0;
- IndexParameters← 1;
while CountParameters < CountRows(InitialParameters) do

for CurrentPart← 1 to k do
if CountParameters < CountRows(InitialParameters) then

NumberParametersParts[CurrentPart]← NumberParametersParts[CurrentPart]+1;
CountParameters←CountParameters+1;

else
break;

end
end

end
for CurrentPart← 1 to k do

for Index← 1 to NumberParametersParts[CurrentPart] do
Parts(Index,CurrentPart)← InitialParamenters(IndexParameters);
IndexParameters← IndexParameters+1;

end
end

Algorithm 4: Pseudocode of the SplitInitialParameters algorithm:
division of the initial parameters into k trees.

not a multiple of k, each tree will be responsible for mapping the initial parameters
in the most distributed way, being the first trees responsible for mapping the largest
number of parameters. For example, for k = 8 and n = 20, each of the first four
trees is responsible for mapping three consecutive initial parameters (the first tree
responsible for the initial parameters 1-3, the second tree for the parameters 4-6 and
so on), while the other four are mapping two consecutive initial parameters.

Algorithm 5 shows how the genetic operators are used.

Input : Population
Output: New Population
- NewPopulation← ApplyElitism(Population);
while Size(NewPopulation) 6= Size(Population) do

Parent1← SelectOneIndividual(Population);
Flip← Random Number Between 0 and 1;
if Flip < Mutation Probability then

NewPopulation← ApplyMutation(Parent1);
else if Flip < Sum of Mutation and Direct Reproduction Probabilities then

NewPopulation← ApplyDirectReproduction(Parent1);
else

Parent2← SelectOneIndividual(Population);
FlipCrossover← Random Number Between 0 and 1;
if FlipCrossover < High Level Crossover Probability then

NewPopulation← ApplyHighLevelCrossover(Parent1,Parent2);
else

NewPopulation← ApplyLowLevelCrossover(Parent1,Parent2);
end

end
end

Algorithm 5: Pseudocode of ApplyOperators algorithm: MG-PMA genetic
operators.
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MG-PMA starts with the initialization of the initial parameters. The initial
parameters are represented by an array with n rows and m columns, where n is
equal to the dimension of the objective function and m is determined by the user
at the beginning of the optimization1. The reason for this matrix representation for
the initial parameters is that they represent variables in the programs that are being
evolved. Then, MG-PMA specifies the population parameters (e.g., population size
and number of generations) and genetic operators (e.g., crossover rate and mutation
rate), which are commonly defined in a GP execution. Once this is established,
the user defines the number of functions encoded in an individual (represented by
the natural number k). A randomly created population, consisting of individuals
with k functions each. The individuals can select a random column from initial
parameters by simulating its variables from the mathematical equations which, in
turn, are evaluated through the objective function.

After the evaluation of the entire population, it is verified whether the stopping
criterion was satisfied. If so, then the current population is returned, otherwise
the algorithm enters in a loop that is only interrupted when the stop criterion is
reached. During the loop, three operations are performed: selection, application of
operators and evaluation. The first one chooses, based on some heuristic methods
(e.g., roulette and tournament) (Poli, 2008), the entities of the following population.
Subsequently, the crossover at low and high level, direct reproduction and mutation
operators are applied in this new population. Finally, this new population is re-
evaluated and again it is verified whether the stopping criterion is reached. If yes,
then the current population is returned, otherwise the whole process is repeated.

Since MG-PMA is a numerical optimization method that uses MGGP to
find a mapping among initial guesses to optimal parameters for a system, it is
important to emphasize that this algorithm and its variations leave the advantage
of the interpretability of the GP algorithm aside to focus on improving the accuracy
of their solutions.

3.1.1
Multi-Gene Parameter Mapping Approach with Feedback

One of the most damaging problems in overall optimization is the premature
convergence of the objective function to a local minimum (or maximum)
(Michalewicz, 1996). Several factors can cause this problem: lack of genetic
diversity, poorly adjusted control parameters, poorly established stopping criterion
and complexity of a problem for a particular optimization method. Since MG-
PMA works by mapping initial values into adapted ones, it is natural that for some
problems, this mapping may be very complex or even impossible. The MG-PMA

1In all the simulations of this thesis the value of m was equal to 100.
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Figure 3.2: Schematic representation of MG-PMA with feedback procedure. MG-
PMA with feedback is a linear combination of programs that maps the initial
parameter values (xic) into the optimal parameter values (x∗i ) for a given system
(where i varies from 1 to n and c varies from 1 to m). The current best candidate
parameters correspond to adapted values from the mapping of the parameter values.
The fitness value indicates how well a program performs this mapping. As GP, MG-
PMA with feedback also utilizes random numbers as constants in its individuals.
From time to time the parameter values are updated by those of the best candidate.
During the evolution process, the GP-constants and the object function are always
the same (static) while the parameter values, MG-PMA functions, candidates
parameters values and the corresponding fitness values change (dynamic).

approach with feedback aims not only to map initial fixed values but also at adapting
these initial values dynamically. It is then expected that it would avoid getting stuck
in a local minimum (or maximum) due to the generation of a new mapping scheme
from a new set of parameters.

This update of the initial values is made from time to time during the evolution
process, through a control parameter, or when the optimization converges to a
certain value for many generations (determined by the user also by a control
parameter). When one of these criteria is met, one column of the initial values is
replaced by the adjusted values, generated by the best individual of the current
generation. Figure 3.2 illustrates the MG-PMA with feedback process.

This replacement of the parameter values by adapted values is done from
the first column (c = 1 in Figure 3.2) to the last column (c = m in Figure 3.2).
After replacing all the columns, the MG-PMA with feedback repeats the process of
choosing to update the initial values from the first to the last column.
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3.2
Niching Multi-Gene Parameter Mapping Approach

Niching multi-gene parameter mapping approach (Niching MG-PMA) is an
MMO method that aims to explore the search space while maintaining population
diversity, using MG-PMA with feedback, clearing procedure and local optimization.

Following the concepts of the clearing procedure, Niching MG-PMA uses the
idea of dominant individuals in subpopulations. Each subpopulation is formed from
individuals that are within the clearing radius and only winners are selected for the
application of the genetic operators. In Niching MG-PMA, all individuals who are
not winners are removed from the optimization and new individuals are generated
from the winners.

Niching MG-PMA is a MA, combining global optimization with local
optimization. As explained in the previous chapter, local optimization refines the
global search. Just as the update of the initial parameters is done from time to time,
the local optimization is also done for each determined number of generations.

3.2.1
Niching MG-PMA Procedure

Algorithm 6 presents the pseudocode of the Niching MG-PMA. As
in MG-PMA, Niching MG-PMA begins with the initialization of the initial
parameters and GP constants and the configuration of the Niching MG-PMA
parameters, the number of trees (k), the frequency parameters for updating
the initial parameters ( f eedbackFrequency) and the use of local optimization
(localOptimizationFrequency).

The division of the initial parameters by the trees is done in the same way as
in MG-PMA (function SplitInitialParameters presented in Algorithm 4). The
population is initialized and the individuals are selected by function Select for
application of the genetic operators (function ApplyOperators in the Algorithm 5)
generating new individuals who are evaluated.

While the stopping criterion is not satisfied, the function Niching identifies
the winners and removes individuals that are within a distance smaller than the
clearing radius (relative to dominant individuals) from the population.

If the current generation is multiple of the localOptimizationFrequency

parameter, the function LocalOpt locally optimizes the winners. Then, the
algorithm performs the selection and the application of the genetic operators,
generating new individuals for the next population. Niching MG-PMA evaluates
these individuals and if the current generation is multiple of the f eedbackFrequency

parameter, the function Feedback updates the initial parameters. In this update, the
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best individual of the current generation replaces one of the columns of the initial
parameters.

After the stop criterion is satisfied, the function CheckSolutions searches
for optimal and sub-optimal solutions among all the winners found during the
optimization.

Data: Objective Function
Output: Multiple Optimal/Sub-Optimal Solutions
- InitialParameterValues← Initialize();
- GPConstants← Initialize();
- Set parameters for Niching MG-PMA;
- Set k, f eedbackFrequency, localOptimizationFrequency;
- t← 0 ;
- AllIndividuals← an empty vector;
- SplitInitialParameters(InitialParameters, k);
- Start Population(t);
- Fit← Evaluate(Population(t));
while Stop criterion 6= FALSE do

t← t +1;
Population(t)← Niching(Population(t−1));
if mod(t,localOptimizationFrequency) then

Population(t)← LocalOptimization(Population(t));
end
Population(t)← Select(Population(t));
AllIndividuals and Population(t)← ApplyOperators(Population(t));
Fit← Evaluate(Population(t));
if mod(t, f eedbackFrequency) then

InitialParameterValues← Feedback(Population(t));
end

end
- MultipleSolutions← CheckSolutions(AllIndividuals);

Algorithm 6: Pseudocode of Niching MG-PMA for a generic objective function.

3.3
Domain Constraint with Periodic Boundary Conditions

Metaheuristics such as GA, PSO and DE naturally follow the domain
constraints of the objective function. GP and its variations lose this control, because
the input values of the objective function are generated by computer programs. In
the PMA, Pujol and Poli use a linear transformation, Equation 3-1, that works for
the benchmarks functions tested by them (Pujol, 2008). But this transformation does
not work for every type of function, for example when one of the upper or lower
limits is equal to zero or in a periodic function with more than one solution.

ADAPT = LOWER+OUT × (UPPER−LOWER) (3-1)

where ADAPT is the adapted value of the parameter, LOWER is the lower limit of
the search range, UPPER is the upper limit of the search range and OUT is the
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output of the GP tree (Pujol, 2008).

This thesis proposes another way to normalize the outputs of the GP trees
based on the periodic boundary conditions (PBC) used by the molecular modelling
(Leach, 2001). This normalization considers that the objective function is inside a
box that is replicated in all dimensions. The values generated by the trees that are in
an image of the box are put back into the box through multiple sums or subtractions
of the box size. Equation 3-2 presents transformation for a value smaller than the
lower limit of the objective function and Equation 3-3 for a value greater than the
upper limit.

NBOX =
|OUT −LOWER|

SIZEBOX

ADAPT =UPPER− (NBOX −bNBOXc)×SIZEBOX

(3-2)

NBOX =
|OUT −UPPER|

SIZEBOX

ADAPT = LOWER+(NBOX −bNBOXc)×SIZEBOX

(3-3)

where ADAPT is the adapted value of the parameter, LOWER is the lower limit of
the search range, UPPER is the upper limit of the search range, OUT is the output
of the GP tree, NBOX is the number of boxes away from the domain and SIZEBOX is
the box size.

Equations 3-4 and 3-5 present a normalization by PBC for two individuals,
(−15,0.3) and (−3.2,107) respectively, for a two-dimensional objective function
with domain constraint equals [−5,5]2.

Individual : (−15,0.3)

OUT =−15

LOWER =−5

UPPER = 5

SIZEBOX = 10

OUT < LOWER :

NBOX =
|OUT −LOWER|

SIZEBOX
=
|−15− (−5)|

10
= 1

ADAPT =UPPER− (NBOX −bNBOXc)×SIZEBOX

ADAPT = 5− (1−b1c)×10 = 5

Individualadapted : (5,0.3)

(3-4)
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Individual : (−3.2,107.6)

OUT = 107.6

LOWER =−5

UPPER = 5

SIZEBOX = 10

OUT >UPPER :

NBOX =
|OUT −UPPER|

SIZEBOX
=
|107.6−5|

10
= 10.26

ADAPT = LOWER+(NBOX −bNBOXc)×SIZEBOX

ADAPT =−5+(10.26−b10.26c)×10 =−2.4

Individualadapted : (−3.2,−2.4)

(3-5)

Figure 3.3 shows an example of the normalization based on the PBC applied
to a dot outside of the domain constraints of a multimodal function. Figure 3.3.a
shows this dot outside the objective function domain (green dot) and in Figure 3.3.b
it is put back into the domain (black dot) from the replicated images of this function.

Figure 3.3: Example of the normalization based on the PBC applied to an output
(green dot) of a GP tree outside of the domain constraints. The linear transformation
replicates images of the box and identifies where the outside dot should be (black
dot). The domain constraints determine the size of the box.
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As the domain constraint with PBC is applied to the output value of the GP
trees, this normalization is done directly at the input values of the objective function.
Thus, the domain constraint with PBC can be used in other metaheuristic methods,
whenever the problem is a constrained optimization.
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4
Analyses of the Multigenic Approach

4.1
Analyses of Multigenic Individuals

Given the multi-gene nature of MG-PMA, this section describes the tests
performed to analyze the effects of the number of trees k and their depths d on the
optimization of different types of objective functions. The following setups were
considered in order to evaluate the effect of varying the number of trees:

– k = 1 – the case where MG-PMA reduces to PMA;

– k = n/2 – an intermediate value of k, where n is the number of parameters to
be optimized;

– k = n – the most general form of MG-PMA, where each parameter is
represented by a tree.

The maximum tree depths, d, considered were 2, 3, 5, 7 and 9, where trees
with lower depth tend to embody simpler equations than trees with larger depths.
Clearly, increasing d also increases the computational cost of optimization.

Two sets of benchmark functions were employed in the present work. First,
the same benchmark functions and criteria from Pujol and Poli work (Pujol, 2008)
were used (Table 4.1). Subsequently, the method was also tested using benchmark
functions of CEC’15 competition (Liang, 2014) (Table 4.2).

Considering the benchmark functions in Table 4.1, the search for the
minimum was interrupted when the fitness of the best individual was lower than
the convergence criterion, which where: 10−6 for functions f1- f3 and f5- f6; 10−2

for the Schwefel’s functions f8- f12; and f < v̄ for f4, where v ∈ [0,1) is a noise
term defined by a random variable with a uniform distribution, and expected value
v̄ = 0.5. The latter is the De Jong 4 function and was evaluated on a statistical basis.
Fitness was computed as | f (MG-PMAi(Xi))− v̄|, and the search was interrupted
when f < v̄ (Pujol, 2008).

Considering the experiments using the CEC’2015 benchmark functions
(Table 4.2), the search for the minimum was interrupted when the fitness of the
best individual was lower than 10−8, as established by the CEC’2015 competition
(Liang, 2014).
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Table 4.1: Benchmark functions from (Pujol, 2008). The table presents the name of
each function, the number of parameters to be optimized and the global minimum.
The Schwefel’s function was performed with different number of parameters in
order to analyze each method according to the dimensionality of the problem.

Abbreviation
Function Number of Global

Name Parameters Minimum
f1 De Jong 1 3 0
f2 De Jong 2 2 0
f3 De Jong 3 5 0
f4 De Jong 4 30 0+ v̄ ∗

f5 De Jong 5 25 0.998004
f6 Corona’s parabola 4 0
f7 Griewangk’s function 10 0
f8 Schwefel’s function 10 ≈−4,189.83
f9 Schwefel’s function 30 ≈−12,569.49
f10 Schwefel’s function 50 ≈−20,949.14
f11 Schwefel’s function 70 ≈−29,328.80
f12 Schwefel’s function 100 ≈−41,898.29

∗ v̄ ∈ [0,1) is a noise term defined by a random variable with a ∈ [0,1] uniform distribution.

Table 4.2: Benchmark functions proposed for CEC’2015 competition. The table
presents the name of each function, the number of the parameters to be optimized
and the global minimum.

Abbreviation
Function Number of Global

Name Parameters Minimum
c1 Rotated High Conditioned Elliptic Function 10 100
c2 Rotated Cigar Function 10 200
c3 Shifted and Rotated Ackley’s Function 10 300
c4 Shifted and Rotated Rastrigin’s Function 10 400
c5 Shifted and Rotated Schwefel’s Function 10 500
c6 Hybrid Function 1 (N = 3) 10 600
c7 Hybrid Function 2 (N = 4) 10 700
c8 Hybrid Function 3 (N = 5) 10 800
c9 Composition Function 1 (N = 3) 10 900
c10 Composition Function 2 (N = 3) 10 1,000
c11 Composition Function 3 (N = 5) 10 1,100
c12 Composition Function 4 (N = 5) 10 1,200
c13 Composition Function 5 (N = 5) 10 1,300
c14 Composition Function 6 (N = 7) 10 1,400
c15 Composition Function 7 (N = 10) 10 1,500

Based on the tests performed by Pujol and Poli (Pujol, 2008) and the
CEC’2015 competition (Liang, 2014), three test sets were established. The first set
consisted in the optimization of benchmark functions described in Table 4.1 and
using the MG-PMA parameters described in Table 4.3 following the parameter
values defined by Pujol and Poli (Pujol, 2008). The second set also used the
same benchmark functions described in Table 4.1 and the parameters described
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in Table 4.3, but a random shift was introduced in all input parameters for each
benchmark function. Note that, in this second test, each function f (x1, ...,xi, ...,xn)

was considered as f (x1 − r1, ...,xi − ri, ...,xn − rn) where r is an uniformly
distributed random constant in the range (−1,+1), generated at the start of each
run. As a result, the optimal values are not 0’s and 1’s, they were shifted randomly.
As performed by Pujol and Poli (Pujol, 2008), it was established one hundred
independent runs of the algorithms for each benchmark function and for both
experimental sets, with the maximum number of evaluations before time-out equal
to 2× 106. The third test set relied on the CEC’2015 competition benchmark
functions, described in Table 4.2. For this test, the population and tournament
size equal to 100 for all setups and runs (to follow the parameterization of most
benchmark functions of test sets 1 and 2). As established by the CEC’2015
competition, it was performed 51 independent runs on test set 3 for each benchmark
function and the maximum number of evaluations before time-out was 105. For
all test sets, the mathematical functions used on the MG-PMA were plus, minus,
times and protected division (for a = b/c, if c = 0 then a = 0), and the remaining
configuration of MG-PMA is described in Table 4.4.

Table 4.3: Parameters used in the test sets 1 and 2.
Benchmark Population Tournament

Function Size Size
f1 100 100
f2 50 50
f3 50 50
f4 100 100
f5 50 50
f6 200 100
f7 100 100
f8 100 100
f9 100 100
f10 100 100
f11 100 100
f12 100 100

MG-PMA was implemented in the software MATLAB R2016b
(MATLAB, 2016), using elements of GPTIPS 2 (Genetic Programming &
Symbolic Data Mining Platform for MATLAB) library of MGGP (Searson, 2015).
This library allows the use of more than one mutation operator during optimization.
As described in Table 4.4, the probability of applying the mutation operator in
the experiments was 30% (value defined through preliminary analyzes presenting
low sensitivity). From the moment at which the mutation operator was used, it
was possible to perform one of the three types of mutation (Searson, 2015) with
the following probabilities: ordinary sub-tree mutation (90%), as described in

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Chapter 4. Analyses of the Multigenic Approach 64

Table 4.4: General configuration of MG-PMA.

Parameters Values
Decimal ERC∗ rate 90%
Integer ERC∗ rate 0%

ERC∗ range [−1,+1]
Low-level crossover rate 65%

Mutation rate 30%
Direct reproduction rate 5%
High-level crossover rate 50%

Elitism rate 1%
Lexicographic pressure (Luke, 2002) Yes

∗ ERC - Ephemeral Random Constant: constants generated in a specific range by the user to constitute the trees of each
individual together with variables (from the initial parameter values to be mapped by MG-PMA).

Figure 2.7; switch an input terminal to another randomly selected input terminal
(5%); and Gaussian perturbation of a randomly selected constant (5%, with
the standard deviation of the Gaussian used equal to 10%) – the parameter
values for these three types of mutation are default values of the GPTIPS 2
library (Searson, 2015). The initial population was generated using the ramped
half-and-half method (Koza, 1992).

4.1.1
Results of Analyses of Multigenic Individuals

Test Set 1

In this section, the results for the optimization of functions f1- f12 (described
in Table 4.1) are discussed. Results are reported numerically in the Appendix A
(Tables A1-A5). For almost all cases, the number of hits on the function global
minimum is equal to 100, but for the benchmark function f2 only experiments with
k = 1 and one experiment with k = n were able to find the global minimum. Noting
that the dimension of benchmark function f2 is equal to 2, there is no experiment
with k = n/2.

In order to provide a more clear picture of the effects of varying the number k

and depth d of trees on the mean number of evaluations (MNE), graphical analysis
were performed and depicted in Figures 4.1-4.3.

Figure 4.1 presents the variation of MNE as a function of d for their different
values of k. Considering functions f1, f2 and f4- f7, MG-PMA with k = 1 performs
significantly better (on average) compared to configurations with k = n/2 and k = n.
However, for functions f3 and f8- f12, the differences are more subtle, indicating that
configurations with k = n/2 and k = n become, comparatively, more effective upon
increasing complexity. Overall, results improve upon increasing d. Considering
configurations with d about 7-9 and functions of higher dimensionality ( f9- f12),
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the setup with k = n appears to be the most effective. As discussed earlier, f2 only
yielded results when k = 1, and one hit when k = n.

Figure 4.1: The mean number of evaluations (MNE) on logarithmic scale is plotted
as a function of the tree depth d for the 12 functions of test set 1. The corresponding
standard errors are represented by vertical bars. Each line color refers to a specific
number of trees k (red, k = 1; green, k = n/2; blue, k = n).

Figure 4.2 shows a box plot graphic of MNE as a function of k and
considering, for each k, an aggregation of all d values. In other words, this analysis
reveals the effect of k on MNE, irrespective of d. Considering functions f1 and
f4- f7, the configuration with k = 1 performs better on average (black dots), and
yields quantiles lower than the other configurations. Considering functions f3, f8-
f12, the differences are not obvious, although it seems that the configuration with
k = n performs better. An interesting remark on configuration with k = n/2 is that
it, almost always, approaches the results with k = n.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Chapter 4. Analyses of the Multigenic Approach 66

Figure 4.2: Box plot graphic showing the mean number of evaluations (MNE) for
the test set 1 as a function of the number of trees k considering, for each k, an
aggregation of all d values. This graphic displays the distribution of the MNE based
on the minimum, first quartile, median, third quartile and maximum values. The
average value is also represented by a black dot.
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Figure 4.3 shows a box plot graphic of MNE as a function of d and
considering, for each d, an aggregation of all k values. As opposed to the previous
analysis, this one reveals the effect of d on MNE, irrespective of k. For most
cases ( f1, f3, f5, and f8- f12), MNE decreases upon increasing d. Interestingly, for
functions f2, f4, f6 and f7, a change in d appears to have no effect on MNE.

Figure 4.3: Box plot graphic showing the mean number of the evaluations (MNE)
for the test set 1 as a function of the tree depth d considering, for each d, an
aggregation of all k values. This graphic displays the distribution of the MNE based
on the minimum, first quartile, median, third quartile and maximum values. The
average value is also represented by a black dot.

Tables 4.5 and 4.6 show the results of Aligned Friedman’s (Derrac, 2011)
and Iman-Davenport’s (Iman, 1980) tests, along with the Holm’s (Holm, 1979)
procedure based on MG-PMA performance in the test set 1 for all values of k and d

considered (Tables A1-A5). These tests were carried out using the KEEL software
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(Alcalá-Fdez, 2011). It can be seen that the average rank of MG-PMA with k = 1
and d = 9 was the lowest (43.318) of all configurations tested.

Table 4.5: Average rankings of Aligned Friedman’s and Iman-Davenport’s tests for
comparison between MG-PMAs with different values of the number of trees k and
the tree depths d for the test set 1.

i Algorithm Rank
14 MG-PMA with k = n/2 and d = 2 124.546
13 MG-PMA with k = n and d = 2 124.000
12 MG-PMA with k = n and d = 3 103.818
11 MG-PMA with k = 1 and d = 2 96.364
10 MG-PMA with k = n/2 and d = 3 95.636
9 MG-PMA with k = n/2 and d = 5 87.546
8 MG-PMA with k = n and d = 7 85.364
7 MG-PMA with k = n and d = 9 84.455
6 MG-PMA with k = n/2 and d = 7 81.318
5 MG-PMA with k = n and d = 5 80.727
4 MG-PMA with k = n/2 and d = 9 80.000
3 MG-PMA with k = 1 and d = 3 64.546
2 MG-PMA with k = 1 and d = 5 48.091
1 MG-PMA with k = 1 and d = 7 45.273
0 MG-PMA with k = 1 and d = 9 43.318

Table 4.6: Holm’s procedure for pairwise comparison between MG-PMAs with
different values of the number of trees k and the tree depths d for the test set 1.
The reference value R0 corresponds to the rank of the best algorithm (i = 0); in this
case MG-PMA with k = 1 and d = 9.

Test p-value
Aligned Friedman 0.757

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
MG-PMA with k = n/2 and d = 2 3.987 0.000 0.004 Yes
MG-PMA with k = n and d = 2 3.961 0.000 0.004 Yes
MG-PMA with k = n and d = 3 2.970 0.003 0.004 Yes
MG-PMA with k = 1 and d = 2 2.604 0.009 0.005 No
MG-PMA with k = n/2 and d = 3 2.568 0.010 0.005 No
MG-PMA with k = n/2 and d = 5 2.171 0.030 0.006 No
MG-PMA with k = n and d = 7 2.064 0.039 0.006 No
MG-PMA with k = n and d = 9 2.019 0.044 0.007 No
MG-PMA with k = n/2 and d = 7 1.865 0.062 0.008 No
MG-PMA with k = n and d = 5 1.836 0.066 0.010 No
MG-PMA with k = n/2 and d = 9 1.801 0.072 0.013 No
MG-PMA with k = 1 and d = 3 1.042 0.297 0.017 No
MG-PMA with k = 1 and d = 5 0.234 0.815 0.025 No
MG-PMA with k = 1 and d = 7 0.096 0.924 0.05 No

Typically, in most statistical analyzes, the value of 0.05 for p-value is used
as the threshold for significance (Derrac, 2011). If the p-value is less than 0.05,
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the null hypothesis that there is no difference between the configurations tested
is rejected and it is concluded that there is a significant difference between these
configurations. If the p-value is greater than 0.05, it is not possible to conclude that
there is a significant difference.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value
greater than 0.05 (p-value = 0.757), so it is not possible to conclude that there is
a significant difference and only the rank positions can be checked. As the average
rank of MG-PMA with k = 1 and d = 9 is the lowest, it was selected as the control
model for the Holm’s test. In Table 4.6, z represents the test statistic for Holm’s
test, where the ranks Ri of all models are compared to that of the control model R0,
normalized by the standard error SE. This is used to compute the p-value, which is
compared to the Holm level. If the p-value is lower than that level, the hypothesis
of equality of ranks is rejected. It can be seen that MG-PMA with k = 1 and d = 9
was ranked significantly better than MG-PMA with: (i) k = n/2 and d = 2; (ii)
k = n and d = 2; and (iii) k = n and d = 3. Nothing can be said in respect to
the comparison between MG-PMA with k = 1 and d = 9 and the other algorithms
statistically yielding better or worse results.

It is also important to note that, in general, the MG-PMA algorithms
configured with k = 1 were better in the Table 4.5 ranking than the configurations
with k = n/2 and k = n. This is due to the low complexity of the benchmark
functions of test set 1. About the tree depths, the higher the value of d the better
the position of the algorithm in the ranking.

Test Set 2

In this section, the results for the optimization of functions f1- f12 (described
in Table 4.1) in which random shifts in all parameters are applied (see Section 4.1)
are discussed. The analyses for the current test set are similar to those in test set 1,
and are reported numerically in the Appendix A (Tables A6-A10) and are depicted
in Figures 4.4-4.6. From a quick inspection of Tables A6-A10, it is possible to
observe that the number of hits on the function global minimum increases upon
increasing k, which suggests a different behavior if compared to test set 1. Note
also that, for test set 2, it was more difficult to find the global minimum for some
benchmark functions.

Figure 4.4 presents the variation of MNE as a function of d for all values of
k. Considering functions f1, f4 and f7, MG-PMA with k = n performs significantly
better compared to configurations with k = 1 and k = n/2. However, interestingly,
for function f2, hits are only seen with k = 1. Functions f3 and f8 show no clear
difference in terms of k, all of them showing a consistent decrease for increasing
values of d. Function f5 is best handled by a combination of k = 1 and d = 2, but
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besides this point, k = n seems to be the best choice for increasing values of d.
Functions f9- f12 show that, for d ≤ 5, no clear distinction between k values are
observed. However, for d > 5, experiments with k = n and k = n/2 significantly
outperform those with k = 1. Note that, for function f6, not a single hit on the
global minimum was achieved.

Figure 4.4: The mean number of evaluations (MNE) on logarithmic scale is plotted
as a function of the tree depth d for the 12 functions of test set 2. The corresponding
standard errors are represented by vertical bars. Each line color refers to a specific
number of trees k (red, k = 1; green, k = n/2; blue, k = n).

Figure 4.5 shows a box plot graphic of MNE as a function of k considering,
for each k, an aggregation of all d values. It can be seen that, regardless of functions
f1, f4 and f7, where k = n leads to significantly better results compared to k = 1 and
k = n/2, the aggregation in terms of d makes the differences more subtle.

Figure 4.6 presents a box plot graphic of MNE as a function of d considering,
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Figure 4.5: Box plot graphic showing the mean number of evaluations (MNE) for
the test set 2 as a function of the number of trees k considering, for each k, an
aggregation of all d values. This graphic displays the distribution of the MNE based
on the minimum, first quartile, median, third quartile and maximum values. The
average value is also represented by a black dot.

for each d, an aggregation of all k values. The pattern is similar to the corresponding
figure of set 1 (Figure 4.3), indicating that MNE decreases upon increasing d,
irrespective of k. This is probably due to the increase in complexity that a tree can
entail upon increasing d, enabling a better coverage of a large search space.

Functions f2 and f7 have smaller values for d = 2, indicating that this would
be the best configuration for these functions. However, this exception occurs for
these functions because not all configurations find the global minimum, especially
for d = 2, decreasing the value of the MNE (Tables A6-A10). As the value of d

increases, the number of HITS increases, improving the graph data of these two
functions and confirming the effect observed in the other functions (MNE decreases
upon increasing d, irrespective of k).

Tables A11 and A12 show the results of Aligned Friedman’s and
Iman-Davenport’s tests, along with the Holm’s procedure based on MG-PMA
performance in the test set 2 for all values of k and d considered (Tables A6-A10). It
can be seen that the average rank of MG-PMA with k = n and d = 9 was the lowest
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Figure 4.6: Box plot graphic showing the mean number of the evaluations (MNE)
for the test set 2 as a function of the tree depth d considering, for each d, an
aggregation of all k values. This graphic displays the distribution of the MNE based
on the minimum, first quartile, median, third quartile and maximum values. The
average value is also represented by a black dot.

(45.950) of all configurations tested.
Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value

greater than 0.05 (p-value = 0.839), so it is not possible to conclude that there is
a significant difference and only the rank positions can be checked. As the average
rank of MG-PMA with k = n and d = 9 is the lowest, it was selected as the control
model for the Holm’s test and it performed substantially better than MG-PMA with:
(i) k = n/2 and d = 2; (ii) k = 1 and d = 2; (iii) k = 1 and d = 3; and (iv) k = n/2
and d = 3. Nothing can be said in respect to the comparison between MG-PMA
with k = n and d = 9 and the other algorithms statistically yielding better or worse
results.

It is also important to note that, for the benchmark functions of the test set
2 the higher the values of k and d the better the position of the algorithm in the
ranking. Noting that for a test set more complex than test set 1, an approach with
MG-PMA using more trees (k > 1) results in better solutions.
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Test Set 3

Test set 3 considers the CEC’2015 benchmark functions (Liang, 2014)
(Table 4.2) as described in Section 4.1. The results regarding this set are shown
in the Appendix A (Tables A13-A17). Appendix B presents the properties of the
CEC’2015 benchmark functions and their 3-D maps for the 2-D functions available
in the problem definition for the CEC’2015 competition (Liang, 2014).

Figure 4.7 presents the variation of the mean of the best fitness values
(MBFV) as a function of d for all values of k. In general, MG-PMA with k = n have
lower average MBFV compared to other configurations. However, this difference
cannot be considered as statistically significant (note the overlap of the error bars).
The most pronounced differences occur, to a large extent, for functions c2, c10 and,
to a minor extent, for c1, c6, and c8. One can still notice the dependence upon d

(results usually improve upon increasing d), but, for certain functions (c3, c4, c5, c9,
c12, and c13), this is not observed.

Figure 4.7: The mean of the best fitness values (MBFV) on logarithmic scale is
plotted as a function of the tree depth d for the 15 functions of test set 3. The
corresponding standard errors are represented by vertical bars. Each line color refers
to a specific number of trees k (red, k = 1; green, k = n/2; blue, k = n).

Figure 4.8 shows a box plot graphic of MBFV as a function of k and
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Figure 4.8: Box plot graphic showing the mean of the best fitness values (MBFV)
for the test set 3 as a function of the number of trees k considering, for each k,
an aggregation of all d values. This graphic displays the distribution of the MBFV
based on the minimum, first quartile, median, third quartile and maximum values.
The average value is also represented by a black dot.

considering, for each k, an aggregation of all d values. The results show that the
configuration with k = n performs, on average, better compared to k = 1. This is
most evident for functions c1-c6, c7, c9-c11, c13, and c15. In most cases, the quantiles
of k = n are lower compared to k = 1. For some functions (c3-c5, c7, c9, c11, and
c12), k = n/2 was almost as good as (or even better than) k = n . These results
indicate that finding an optimal k might yield better results for certain optimization
problems.

Figure 4.9 shows a box plot graphic of MBFV as a function of d considering,
for each d, an aggregation of all k values. Similarly to the other test sets, there is a
clear trend indicating that MBFV decreases upon increasing d. This is more evident
for certain functions (c1, c3, c4, c7, c9, c10, and c15), and less evident for others (c2,
c5, c12, and c13).

Results were also aggregated according to the type (unimodal, multimodal
and hybrid; see Table 4.2) of the 15 functions considered. Overall, Figure 4.10
shows that for unimodal and multimodal functions the best configuration is k = n
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Figure 4.9: Box plot graphic showing the mean of the best fitness values (MBFV) for
the test set 3 as a function of the tree depth d considering, for each d, an aggregation
of all k values. This graphic displays the distribution of the MBFV based on the
minimum, first quartile, median, third quartile and maximum values. The average
value is also represented by a black dot.

for all tree depths considered. In the case of hybrid functions, k = n provides better
results for lower values of d. However, as d increases, the differences between
configurations in terms of k becomes subtle.

Tables A18 and A19 show the results of Aligned Friedman’s and
Iman-Davenport’s tests, along with the Holm’s procedure based on MG-PMA
performance in the test set 3 for all values of k and d considered (Tables A13-A17).
It can be seen that the average rank of MG-PMA with k = n/2 and d = 9 was the
lowest (82.667) of all configurations tested.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value
greater than 0.05 (p-value = 0.535), so it is not possible to conclude that there is
a significant difference and only the rank positions can be checked. As the average
rank of MG-PMA with k = n/2 and d = 9 is the lowest, it was selected as the control
model for the Holm’s test and it performed substantially better than MG-PMA with:
(i) k = 1 and d = 2; and (ii) k = 1 and d = 3. Nothing can be said in respect to the
comparison between MG-PMA with k = n/2 and d = 9 and the other algorithms
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Figure 4.10: Variation of the mean of the best fitness values (MBFV) as a function
of the tree depth d. Values were aggregated according to the nature (unimodal,
multimodal or hybrid) of each function (c1-c15) of the CEC benchmark (test set
3).

statistically yielding better or worse results.
It is also important to note that, for the benchmark functions of the test set

3 the higher the values of k and d the better the position of the algorithm in the
ranking. As in the analysis of the results of test set 2, the approaches with MG-
PMA using more trees (k > 1) results in better solutions.

4.2
MG-PMA with Feedback

Given the dynamic character of MG-PMA with feedback, this section
describes the analysis on adapting the initial values to be mapped. This new
variation was compared to MG-PMA using the same number of trees (k) shown
in the previous optimizations. These values continued to be analyzed, since for
problems of different complexities, different values of k may be more appropriate.
The tree maximum depth d considered was 7, since there is no significant difference
with d = 9 (as can be seen in Table A19), but the computational time for the former
one was significantly lower.

The tests with MG-PMA with feedback algorithm were performed using the
CEC’2015 competition benchmark functions (Table 4.2). The same parameters and
configurations (Table 4.4, maximum number of evaluations before time-out equal
to 105 and mathematical functions – plus, minus, times and protected division) of
the test set 3 were used.

4.2.1
Results of MG-PMA with Feedback

Table A22 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the performance of MG-PMA and
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MG-PMA with feedback methods (Tables A20 and A21). It can be seen that the
average rank of MG-PMA with k = n was the lowest (30.167) of all algorithms
tested and MG-PMA with k = n/2 was second (30.633).

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value less
than 0.05 (p-value = 0.025), the hypothesis that there is no difference between
the configurations tested is rejected. As the average rank of MG-PMA with k = n

is the lowest, it was selected as the control model for the Holm’s test and it was
ranked significantly better than MG-PMA with k = n/2 with feedback, and k = 1
with feedback. Nothing can be said in respect to the comparison between MG-PMA
with k = n and the other algorithms statistically yielding better or worse results.

The MG-PMA approach with feedback could be useful to avoid the evolution
process to get stuck in local minimum (or maximum) due to the generation of a new
mapping scheme. However, the comparison between this approach with k = n and
MG-PMA (without feedback) for the CEC’2015 benchmark functions didn’t find
significantly difference. Therefore, future tests should be performed to validate the
potential of this approach.

4.3
Analysis of Tournament Size and Crossover

As an attempt to further improve the settings involved in MG-PMA, this
section aims at analyzing different tournament sizes and other high-level crossover
operators. In Section 4.1, the size of the tournament used for test set 3 was equal
to the population size (100), since Pujol and Poli have used this approach in almost
all the benchmark functions tested by them (Pujol, 2008)1. As a way to increase the
probabilistic effect of the selection process, the tournament size has been changed
to 50, 25 and 2.

The high-level crossover used in Section 4.1 was provided by MGGP
GPTIPS 2 library (Searson, 2015). This section compares this operator with the
high-level two-point crossover from the first version of MGGP GPTIPS library
(Searson, 2010) and three other multigenic crossover operators: (i) restricted high-
level crossover; (ii) high-level single-point crossover; and (iii) high-level uniform
crossover.

The high-level operator available in the GPTIPS 2 library allows the crossover
between an individual and itself resulting in low genetic diversity throughout
evolution. In this way the restricted high-level crossover operator is equal to

1The original PMA uses the non-destructive headless chicken crossover (Angeline, 1997). This
operator performs the standard crossover between an individual selected from the population and a
randomly created individual. The resulting offspring is inserted in the population if it is superior to
the parent, otherwise it is discarded. This procedure is repeated a number of times equal to the size
of the population (Pujol, 2008)
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the high-level crossover operator, but does not allow the crossover between an
individual and itself. The other crossover operators were presented in Chapter 2.

The results were compared to MG-PMA using the same number of trees (k)
used in the previous simulations and the maximum tree depth d considered was
7. The change of the tournament size and the exchange of the crossover operator
were performed not considering all configurations due to the large number of
possibilities. Thus, when the tournament size was changed, the crossover operator
used was the same as that of the Section 4.1 (high-level crossover operator) and
when the crossover operator was changed, the size of the tournament used was
equal to 100.

The simulations of this section were performed using the CEC’2015
competition benchmark functions (Table 4.2). The same parameters and
configurations (Table 4.4, maximum number of evaluations before time-out equal
to 105 and mathematical functions – plus, minus, times and protected division) of
the test set 3 were used.

4.3.1
Results of Analysis of Tournament Size and Crossover

Tables A30 and A31 show the results of Aligned Friedman’s and Iman-
Davenport’s tests, along with the Holm’s procedure based on the accuracy of MG-
PMA with variations of k (Table A20), tournament size (Tables A23-A25) and
high-level crossover operators (Tables A26-A29). It can be seen that the average
rank of MG-PMA with k = n, tournament size equal to 2 and high-level crossover
operator was the lowest (100.433) of all algorithms tested and MG-PMA with
k = n/2, tournament size equal to 2 and high-level crossover operator in second
place (117.067). The tournament size equal to 2 is the best configuration since it
allows greater genetic diversity throughout the evolution.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value
greater than 0.05 (p-value = 0.925), so it is not possible to conclude that there is
a significant difference and only the rank positions can be checked. As the average
rank of MG-PMA with k = n, tournament size equal to 2 and high-level crossover
is the lowest, it was selected as the control model for the Holm’s test and it was
ranked significantly better compared to algorithms with i≥ 17 in Table A30.

4.4
Comparison with Known Methods

As observed in Section 4.1, MG-PMA performed well for the benchmark
functions of test sets 1 and 2. However on more complex functions, such as
those in test set 3, MG-PMA faced difficulty in finding the global minimum. The
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generalization settings of the PMA (MG-PMA with k = n/2 and k = n) performed
better than the PMA (MG-PMA with k = 1), a method already compared to GA,
PSO and DE (Pujol, 2008). Therefore, this section is devoted to go a step forward
and present a comparison of MG-PMA with state-of-the-art metaheuristics for
continuous optimization problems.

In order to solve the problems proposed by CEC’2015, within the rules
proposed by the competition, it was chosen to use a hybrid strategy incorporating
local minimization into global minimization. In this way, it was determined
that 4-5%2 of the maximum number of evaluations used were destined to local
minimization. Therefore the global optimization algorithm made the greatest effort
of the optimization and allowed the local minimizer to arrive as close as possible
to the global minimum. The local optimization algorithm used was quasi-Newton,
available in MATLAB through the f minunc function (MATLAB, 2016), and it was
used on all individuals of the last generation, starting with the individual of better
fitness to the one of worst fitness.

This strategy was used by MG-PMA and PSO, so that the comparison
between the methods was as fair as possible. For PSO, the maximum number
of local optimization used was 5% of the maximum number of evaluations, the
population size was equal to 100 and the number of iterations was 95, the learning
factors (weight for social and cognitive learning (Shi, 1998)) were equal to 2 and the
inertia weight was equal to 0.9. These two methods were compared with the winners
of the CEC’2015: SPS-L-SHADE-EIG (Guo, 2015), MVMO-SH (Awad, 2015),
LSHADE-ND (Sallam, 2015), DEsPA (Rueda, 2015).

The best MG-PMA configuration found was used, with k = n and tournament
size equal to 2. The maximum tree depth d considered was 7. The crossover operator
used was the same as that of the Section 4.1 (high-level crossover operator). All
15 functions of the CEC’2015 benchmark were considered (Table 4.2). The same
parameters and configurations (Table 4.4, maximum number of evaluations before
time-out equal to 105 and mathematical functions – plus, minus, times and protected

division) of the test set 3 were used.

4.4.1
Results of Comparison with Known Methods

Table 4.7 presents the MBFV of each algorithm for all benchmark functions.
The best results, among those found by the algorithms, are in bold, and it is possible
to notice that SPS-L-SHADE-EIG (the winner of the competition of CEC’2015

2The maximum number of local evaluations varies according to the number of global evaluations
performed. Whenever the direct reproduction operator is used and elitism is applied, individuals who
are passed to the following generation are not reevaluated, making the number of global evaluations
vary for each simulation.
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(Guo, 2015)) was able to find the best result in most functions. MG-PMA and PSO
obtained a lower performance than the other algorithms, but for some functions
(MG-PMA for c1 and c13; PSO for c3, c9, c13 and c15), were able to find the best
results. All numerical results of MG-PMA and PSO can be found in the Appendix
A (Tables A32 and A32).

Table 4.7: Mean of the best fitness values (MBFV) for all functions of the CEC’2015
benchmark found by SPS-L-SHADE-EIG, DEsPA, LSHADE-ND, MVNO-SH,
PSO and MG-PMA algorithms. The best results among those found by the
algorithms are in bold.

Benchmark
SPS-L-SHADE-EIG DEsPA LSHADE-ND MVMO-SH PSO MG-PMA

Function
c1 1.000e+02 1.000e+02 1.000e+02 1.000e+02 1.328e+02 1.000e+02
c2 2.000e+02 2.000e+02 2.000e+02 2.000e+02 2.017e+02 2.004e+02
c3 3.200e+02 1.970e+03 3.200e+02 3.200e+02 3.196e+02 3.200e+02
c4 4.010e+02 4.036e+02 4.030e+02 4.020e+02 4.050e+02 4.303e+02
c5 5.152e+02 5.519e+02 5.070e+02 5.118e+02 7.640e+02 9.606e+02
c6 6.000e+02 6.016e+02 6.004e+02 6.014e+02 8.103e+02 8.731e+02
c7 7.000e+02 7.003e+02 7.000e+02 7.000e+02 7.010e+02 7.015e+02
c8 8.000e+02 8.002e+02 8.003e+02 8.003e+02 9.130e+02 9.007e+02
c9 1.000e+03 1.006e+03 1.000e+03 1.000e+03 1.000e+03 1.001e+03
c10 1.217e+03 1.008e+03 1.217e+03 1.217e+03 1.444e+03 1.446e+03
c11 1.100e+03 1.195e+03 1.102e+03 1.104e+03 1.379e+03 1.369e+03
c12 1.300e+03 1.301e+03 1.301e+03 1.301e+03 1.301e+03 1.303e+03
c13 1.300e+03 1.318e+03 1.300e+03 1.300e+03 1.300e+03 1.300e+03
c14 1.500e+03 1.709e+03 4.335e+03 1.500e+03 2.793e+03 2.400e+03
c15 1.600e+03 1.705e+03 1.600e+03 1.600e+03 1.600e+03 1.602e+03

Table A34 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the accuracy PSO, SPS-L-SHADE-
EIG, DEsPA, LSHADE-ND, MVMO-SH and MG-PMA (Table 4.7). It can be
seen that the average rank of SPS-L-SHADE-EIG was the lowest (30.700) of all
algorithms tested.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value less
than 0.05 (p-value = 0.032), the hypothesis that there is no difference between the
algorithms compared is rejected. As the average rank of SPS-L-SHADE-EIG is the
lowest, it was selected as the control model for the Holm’s test and it performed
substantially better than MG-PMA and PSO. Note also that both PSO and MG-
PMA performed with very similar ranks.

Table A34 shows that the SPS-L-SHADE-EIG algorithm resulted in the best
performance for the benchmark functions of the CEC’2015. It was expected that
the winning algorithms of the competition would be better than PSO and MG-
PMA, since they were configured specifically to win the CEC’2015 (Guo, 2015,
Awad, 2015, Sallam, 2015, Rueda, 2015), in which the participants were allowed to
optimize the parameters of their proposed optimization algorithm for each problem
(Liang, 2014), while the PSO and MG-PMA are optimizers configured to solve
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general problems. In fact, as recently shown (Molina, 2017), algorithms optimized
to win a specific edition of a CEC competition usually lead to poor results in other
editions. It is interesting to note that MG-PMA performed similarly well compared
to PSO, which suggests that MG-PMA is a promising approach for highly complex
optimization problems. An important advantage of MG-PMA versus PSO is the
fact that there is no need to establish the domains of the input parameters of the
objective function for MG-PMA, while PSO is similar to a GA at the initialization
of the population of random solutions (Eberhart, 1995).
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5
Analyses of Niching MG-PMA

This chapter describes the analysis of multimodal optimization through
Niching MG-PMA. Configurations were simulated sequentially to know the
influence of the following parameters and operators: (i) high-level crossover
operator; (ii) local optimization frequency; and (iii) feedback frequency. Finally,
the best configuration was compared with two well-established algorithms.

The performance evolution of the algorithms was based on 20 benchmark
multimodal functions with different characteristics and levels of difficulty from the
2017 IEEE CEC Special Session on Niching Methods for Multimodal Optimization
(Li, 2013). Appendix D presents the properties of these benchmark multimodal
functions and their 3-D maps for the 2-D functions. Table 5.1 presents these
benchmark set.

Table 5.1: Benchmark functions proposed for 2017 IEEE CEC Special Session on
Niching Methods for Multimodal Optimization. The table presents the abbreviation
code, the name of each function, the variable ranges, the number of the parameters
to be optimized and the number of global optima.

Abbreviation
Function Variable Number of Number of Global

Name Ranges Parameters Optima
p1 Five-Uneven-Peak Trap [0,30] 1 2
p2 Equal Maxima [0,1] 1 5
p3 Uneven Decreasing Maxima [0,1] 1 1
p4 Himmelblau [−6,6]2 2 4

p5 Six-Hump Camel Back
[−1.9,1.9]

2 2
[−1.1,1.1]

p6 Shubert [−10,10]2 2 18
p7 Vincent [0.259,10]2 2 36
p8 Shubert [−10,10]3 3 81
p9 Vincent [0.259,10]3 3 216
p10 Modified Rastrigin - All Global Optima [0,1]2 2 12
p11 Composition Function 1 [−5,5]2 2 6
p12 Composition Function 2 [−5,5]2 2 8
p13 Composition Function 3 [−5,5]2 2 6
p14 Composition Function 3 [−5,5]3 3 6
p15 Composition Function 4 [−5,5]3 3 8
p16 Composition Function 3 [−5,5]5 5 6
p17 Composition Function 4 [−5,5]5 5 8
p18 Composition Function 3 [−5,5]10 10 6
p19 Composition Function 4 [−5,5]10 10 8
p20 Composition Function 4 [−5,5]10 20 8
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All benchmark functions are formulated as maximization problems and
the domain constraints of all benchmark functions was followed using the PBC
presented in Section 3.3. Five levels of accuracy were used as threshold values to
consider if a global optimum was found: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04,
1.0e−05}. The number of independent runs was equal to 10 for each test and
benchmark function performed, except for the comparison with the well-established
algorithms, where the number was equal to 50 (Section 5.4). Table 5.2 presents the
maximum number of evaluations before time-out for each benchmark function, as
defined in the 2017 IEEE CEC Special Session on Niching Methods for Multimodal
Optimization (Li, 2013). In addition to the internal local optimization of the winners
used in Niching MG-PMA, the same hybrid strategy of the last chapter was done,
incorporating local optimization after Niching MG-PMA optimization. In this way,
it was determined that 5% of the maximum number of evaluations used were
destined to this local optimization. The local optimization algorithm used both for
internal local optimization of Niching MG-PMA and for local optimization after
Niching MG-PMA was Interior-Point, available in MATLAB through the f mincon

function (MATLAB, 2016).
The change of the local optimization algorithm, relative to the previous

chapter, was due to the fact that this algorithm handles large, sparse problems, as
well as small dense problems and satisfies the bounds at all iterations (constraint
needed to optimize the benchmark multimodal functions 2017 IEEE CEC Special
Session on Niching Methods for Multimodal Optimization (Li, 2013)). The number
of iterations for each local optimization has been set for a maximum of 100
evaluations.

Table 5.2: Maximum number of function evaluations (MaxFEs) for each
benchmark multimodal function.

Range of functions MaxFEs
p1-p5 5.0e+04

p6,p7,p10-p13 2.0e+05
p8,p9,p14-p20 4.0e+05

The mathematical functions used in the Niching MG-PMA were plus, minus,
times and protected division. The remaining configuration parameters of Niching
MG-PMA are listed in Table 5.3.

As listed in Table 5.3, the probability of applying the mutation operator in
the experiments was 30% (value defined through preliminary analyzes presenting
low sensitivity). Three types of mutation (Searson, 2015) were employed with the
following probabilities: ordinary sub-tree mutation (5%); switch an input terminal
to another randomly selected input terminal (47.5%); and Gaussian perturbation of
a randomly selected constant (47.5%, with the standard deviation of the Gaussian
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Table 5.3: General configuration of Niching MG-PMA.

Parameters Values
maximum tree depth d 7

Decimal ERC∗ rate 90%
Integer ERC∗ rate 0%

ERC∗ range [−1,+1]
Low-level crossover rate 65%

Mutation rate 30%
Direct reproduction rate 5%
High-level crossover rate 50%

Elitism rate 1%
Lexicographic pressure (Luke, 2002) Yes

∗ ERC - Ephemeral Random Constant: constants generated in a specific range by the user to constitute the trees of each
individual together with variables (from the initial parameter values to be mapped by MG-PMA).

used equal to 10%) – the parameter values for these three mutation types were found
in preliminary tests with the same benchmark multimodal functions. The initial
population was generated using the ramped half-and-half method (Koza, 1992).

Equation 5-1 presents the calculation of the niche radius Rg, which is used
in the variable niche radius approach created in this thesis for Niching MG-PMA.
The value of Rg is changed according to population, avoiding very large or small
sizes. Different approaches can be found in the literature (Li, 2016): (i) use a single
uniform niche radius (Jelasity, 1998, Dick, 2010); (ii) use a variable niche radius
(Ursem, 1999, Bird, 2006, Gan, 2001); and (iii) avoid specifying the niche radius
(Ursem, 1999, Mahfoud, 1992).

Rg =
median(AllDistancesg)

10
(5-1)

where Rg is the niche radius of the generation g and AllDistancesg are all distances
between the individuals of the population in the generation g.

As a performance measure, this chapter uses peak ratio (PR) (Li, 2013) to
evaluate the performance of the different cases studied. PR measures the average
percentage of all known global optima found over multiple runs (Equation 5-2).

PR =

NR
∑

run=1
NPFi

NKP×NR
(5-2)

where NPFi is the number of global optima found in the end of the i-th run, NKP is
the number of known global optima and NR is the number of runs.
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5.1
High-Level Crossover Operator

This section presents an analysis of the high-level crossover operators for
the benchmark multimodal functions. The analysis covered the comparison of the
following operators: (i) high-level crossover; (ii) high-level single-point crossover;
(iii) high-level two-point crossover; and (iv) high-level uniform crossover.

For this first analysis, the local optimization and the updating of the initial
parameters by the feedback were applied to each generation (local optimization
frequency and feedback frequency parameters equal to 1).

5.1.1
Results of High-Level Crossover Operator

Figure 5.1 (Figures C1-C4 in Appendix C) depicts the results for the different
high-level crossover operators and show the PR for each benchmark function with
five level of accuracy.

Figure 5.1.a (Figure C1 in Appendix C) shows that the high-level crossover
operator was able to find all known global optima in all runs for p1-p6 and p10 for
the five level of accuracy (except in p6 with accuracy equal to 1e−05, where no
global optima was found) and almost all known global optima in all runs for p7.
Niching MG-PMA with high-level crossover was not able to find any global optima
for p16-p20. For functions p8, p9 and p11-p15, this multi-gene genetic operator was
able to find PR values between 0.1 and 0.9.

Figure 5.1.b (Figure C2 in Appendix C) shows that the high-level single-
point crossover operator was able to find all known global optima in all runs for
p1-p6 and p10 for the five level of accuracy (except in p6 with accuracy equal to
1e−05, where no global optima was found). Niching MG-PMA with high-level
single-point crossover was able to find all known global optima in almost all runs
in p7 (PR = 0.994 for 1e−01 accuracy and PR = 0.992 for the other accuracies).
Better than high-level crossover, high-level single-point crossover finds PR values
greater than zero in p16 and p17 for all accuracies, but for p18-p20 was also not able
to find any global optima too. For functions p8, p9 and p11-p15, this multi-gene
genetic operator was able to find PR values between 0.1 and 1.

Figure 5.1.c (Figure C3 in Appendix C) shows that the high-level two-point
crossover operator was able to find all known global optima in all runs for p1-p6

and p10 for all accuracies levels (except in p6 with accuracy equal to 1e−05, where
no global optima was found) and almost all known global optima in all runs in p7.
High-level two-point crossover finds PR values greater than zero for function p16

with the five level of accuracy, but for p17-p20 was not able to find any global optima
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Figure 5.1: Bar chart with peak ratio (PR) results from Niching MG-PMA using
four types of crossover operator for 20 benchmark multimodal functions (p1-p20)
with five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}. (a)
high-level crossover; (b) high-level single-point crossover; (c) high-level two-point
crossover; and (d) high-level uniform crossover.
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too. For functions p8, p9 and p11-p15, this multi-gene genetic operator was able to
find PR values between 0 and 1.

Figure 5.1.d (Figure C4 in Appendix C) shows that the high-level uniform
crossover operator was able to find all known global optima in all runs for p1-p6 and
p10 for all accuracies (except in p6 with accuracy equal to 1e−05, where no global
optima was found). Niching MG-PMA with high-level uniform crossover was able
to find all known global optima in almost all runs for function p7 within the five
level of accuracy (PR = 1.000 for 1e−01 accuracy and PR = 0.992 for the others).
Niching MG-PMA with high-level uniform crossover was not able to find any global
optima for p16-p20 (except for p16 for 1e−01 accuracy, where PR = 0.017). For
functions p8, p9 and p11-p15, this multi-gene genetic operator was able to find PR

values between 0.1 and 1.
Two facts observations can be made regardless of the high-level crossover

operator used by Niching MG-PMA for the five level of accuracy. The method: (i)
found all known global optima in all runs for functions p1-p6 and p10 (except in p6

with accuracy equal to 1e−05 where no global optima was found); and (ii) was not
able to find any global optima for functions p18-p20. It is important to note that for
1e−1 the high-level single-point crossover presented better results for benchmark
functions with higher dimensionalities (p15 and p17) that are closer to real-world
problems.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value less
than 0.05 (p-value = 0.017), the hypothesis that there is no difference between all
high-level crossover operators tested is rejected (Tables C1-C5). As the average
rank of Niching MG-PMA with high-level two-point crossover is the lowest, it was
selected as the control model for the Holm’s tests and the best operator among
the tested operators. Tables C1-C5 present the remaining results of the statistical
procedure (z-scores, p-values and Holm’s correction for the significance level).

5.2
Local Optimization Frequency

This section presents an analysis of the local optimization frequency for
Niching MG-PMA, that is the local optimization is used every i generations, with
the values considered for i equal to {1, 10, 50, 100, 150, 200}. These configurations
are identified in this section as Li (L1, L10, L50, L100, L150 and L200). The high-
level two-point and single-point crossover were used in these tests, since the two-
point was the best configuration of the statistical analysis of the previous section
and single-point obtained superior qualitative results (it was better for functions
with greater dimensionality).

For this analysis, the updating of the initial parameters by the feedback was
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applied to each generation (feedback frequency parameters equal to 1).

5.2.1
Results of Local Optimization Frequency

Figures 5.2 (L150 with high-level single-point crossover operator) and the
Appendix C (Figures C2 – L1 with high-level single-point crossover operator; C3 –
L1 with high-level two-point crossover operator; and C5-C13) present the numerical
results for local optimization frequency analysis. The different configurations of
Niching MG-PMA found all known global optima in all runs for p1-p5 and p10. For
accuracy equal to 1e−05, the method was not able to find any global optima in p6.

The Aligned Friedman’s and Iman-Davenport’s tests, along with the Holm’s
procedure based on the different values of local optimization frequency tested for
Niching MG-PMA, were performed for all five level of accuracy. The average rank
of Niching MG-PMA with high-level single-point crossover was the lowest of all
configurations tested, being that for 1e−01 accuracy it was the method using local
optimization frequency equal to 150 (Figure 5.2) and for the other accuracies the
lowest of all configurations was the method using local optimization frequency
equal to 1 (Figure C2).

Figure 5.2: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and local optimization frequency equal
to 150, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value less
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than 0.05 (p-value = 0.005), the hypothesis that there is no difference between the
configurations tested is rejected. The lowest average rank for each accuracy was
considered as control models for the Holm’s tests.

Although the configuration with local optimization frequency equals to 1 was
better classified in the rank for the 1e−02, 1e−03, 1e−04 and 1e−05 accuracies,
the configuration with local optimization frequency equals to 150 (the best ranking
for 1e−01 accuracy) obtained good results for almost all functions. In addition,
this configuration was able to find some global optima for the functions with
greater dimensionality (p16-p20), showing its potential for application in real-world
problems.

5.3
Feedback Frequency

From the Niching MG-PMA with local optimization frequency equals to 150,
and using high-level single-point crossover, this section analyzes the effect of the
feedback frequency parameter. Feedback is applied every j generations, with the
values considered for j equal to {0, 1, 10, 50, 100, 150, 200}. These configurations
are identified in this section as F j (F0 – without the feedback approach, F1, F10,
F50, F100, F150 and F200).

5.3.1
Results of Feedback Frequency

Figure 5.3 and Appendix C (Figures C14-C18) present the numerical results
for feedback frequency analysis. The different configurations of Niching MG-PMA
found all known global optima in all runs for p1-p5 and p10. For accuracy equal to
1e−05, the method was not able to find any global optima for p6.

The Aligned Friedman’s and Iman-Davenport’s tests, along with the Holm’s
procedure based on the different values of feedback frequency tested for Niching
MG-PMA, were performed for all five level of accuracy. The average rank
of Niching MG-PMA with feedback frequency of 1 was the lowest of all
configurations tested for 1e−01-1e−04 accuracies (Figure 5.2) and for 1e−05
accuracy the lowest of all configurations was the method using feedback frequency
of 10 (Figure 5.3).

Both tests (Aligned Friedman’s and Iman-Davenport’s) rejected the
hypothesis that there is no difference between the configurations tested is rejected
(p-value ≤ 0.05). The lowest average rank for each accuracy was considering
as control models for the Holm’s tests. Tables C11-C15 present the remaining
results of the statistical procedure (z-scores, p-values and Holm’s correction for
the significance level). In the first two accuracies, the use of feedback frequency
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Figure 5.3: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and feedback frequency equal to 10, for
20 benchmark multimodal functions (p1-p20) with five level of accuracy: {1.0e−01,
1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

of 1 was ranked better than the other configurations, but nothing can say about the
significant difference. For 1.0e−03 accuracy, the use of feedback frequency of 1
was better than 50. For 1.0e−04 accuracy, the feedback parameter of 1 was better
than values of 50 and 150. Finally, for the fifth accuracy the feedback parameter of
10 was better than values equal to 50 and 150.

In addition to the feedback parameter of 1 being better ranked than 10 in
the first four accuracies, it is possible to note that the feedback parameter equal
to 1 has better results for higher dimensionality functions. Therefore, the feedback
frequency parameter of 1 was considered the best value for Niching MG-PMA in
the benchmark tested.

5.4
Comparison with Well-Established Algortihms

This section presents a comparison between Niching MG-PMA and two
algorithms recommended by 2017 IEEE CEC Special Session on Niching
Methods for Multimodal Optimization (Li, 2013) as baseline: DE/nrand/1/bin
(Epitropakis, 2011) and Crowding DE/rand/1/bin (Thomsen, 2004). This baseline
algorithms are DE niching variants that use: (i) spatial information about the
neighborhood of each potential solution to produce a niching formation –
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DE/nrand/1/bin; and (ii) crowding technique to maintain a better population
diversity and therefore to prevent premature convergence to an optimum – Crowding
DE/rand/1/bin.

The best configurations found for Niching MG-PMA in this thesis were used
in this comparison: (i) local optimization and feedback frequency parameters equal
to 1 (Niching MG-PMA L1); and (ii) local optimization frequency parameter equal
to 150 and feedback frequency parameter equal to 1 (Niching MG-PMA L150).

5.4.1
Results of Comparison with Well-Established Algortihms

Figures 5.4-5.8 depict the PR of the Niching MG-PMA L1, Niching MG-
PMA L150, DE/nrand/1/bin and Crowding DE/rand/1/bin algorithms for 20
benchmark multimodal functions (p1-p20) with five level of accuracy.

Results for 1e−01 Accuracy

Figure 5.4 shows the results for the accuracy of 1e−01. The algorithms were
able to find all known global optima in all runs for functions p1-p5 and p10.
DE/nrand/1/bin was the best algorithm to optimize p12, but was the worst algorithm
to deal with p6-p9, p13 and p15. Crowding DE/rand/1/bin was the best algorithm in
p6 (with the same PR value of Niching MG-PMA L1), p8, p11, p17 and p20 and it
was the worst one to handle p12 and p19 (with the same PR value of Niching MG-
PMA L1). Niching MG-PMA L1 was the best algorithm in p6 (with the same PR

value of Crowding DE/rand/1/bin), p7 and p15 (with the same PR values of Niching
MG-PMA L150), but was the worst one in p14 and p16-p20 (with the same PR value
of Crowding DE/rand/1/bin in p19). Niching MG-PMA L150 was the best algorithm
in p7, p9, p13-p16 and p18 (with the same PR values of Niching MG-PMA L1 in p7

and p15).
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Figure 5.4: Peak ratio (PR) of the MG-PMA L1, MG-PMA L150, DE/nrand/1/bin
and Crowding DE/rand/1/bin algorithms for 20 benchmark multimodal functions
(p1-p20) with accuracy equal to 1e−01.

Overall, the Niching MG-PMA L150 was the best algorithm for accuracy
equal to 1e−01. In order to evaluate if this advantage was not a mere coincidence,
but a statistically significant outperformance, Table C16 shows the results of
Aligned Friedman’s (Derrac, 2011) and Iman-Davenport’s (Iman, 1980) tests, along
with the Holm’s (Holm, 1979) procedure based on the algorithms performance in
the benchmark multimodal functions. These tests were carried out using the KEEL
software (Alcalá-Fdez, 2011). It can be seen that the average rank of Niching MG-
PMA L150 was the lowest (31.225) of all algorithms tested.

Both tests (Aligned Friedman’s and Iman-Davenport’s) found a p-value less
than 0.05 (p-value = 0.025), so there is a significant difference between these
algorithms. As the average rank of Niching MG-PMA L150 is the lowest, it was
selected as the control model for the Holm’s test. Table C16 presents the remaining
results of the statistical procedure (z-scores, p-values and Holm’s correction for
the significance level). It can be seen that Niching MG-PMA L150 was ranked
significantly better than DE/nrand/1/bin. Nothing can be said in respect to the
comparison between Niching MG-PMA L150 and the other algorithms statistically
yielding better or worse results.

Results for 1e−02 Accuracy

Figure 5.5 shows the results for the accuracy equal to 1e−02. Almost all
algorithms were able to find all known global optima for functions p1-p5 and p10,
with the exception of Crowding DE/rand/1/bin for function p1 where PR value was
between 0.7 and 0.8. DE/nrand/1/bin was the best algorithm to optimize p12, p14
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and p16 (with the same PR values of Crowding DE/rand/1/bin), and p18-p20, but
was the worst algorithm to deal with p6-p9. Crowding DE/rand/1/bin was the best
algorithm for p6 (with the same PR value of Niching MG-PMA L1), p8, p11 and
p13-p17 (with the same PR values of DE/nrand/1/bin in p14 and p16) and it was the
worst one to handle p12 and p19 (with the same PR value of Niching MG-PMA
L1). Niching MG-PMA L1 was the best algorithm for p6 (with the same PR value
of Crowding DE/rand/1/bin) and p7, but was the worst one in p16-p20 (with the
same PR value of Crowding DE/rand/1/bin in p19). Niching MG-PMA L150 was
the worst one to handle for p11 and p13-p15.

Figure 5.5: Peak ratio (PR) of the MG-PMA L1, MG-PMA L150, DE/nrand/1/bin
and Crowding DE/rand/1/bin algorithms for 20 benchmark multimodal functions
(p1-p20) with accuracy equal to 1e−02.

Table C17 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the algorithms performance in
the benchmark multimodal functions. It can be seen that the average rank of
DE/nrand/1/bin was the lowest (36.300) of all algorithms tested.

Results for 1e−03 Accuracy

Figure 5.6 shows the results for the accuracy equal to 1e−03. As well as
1e−02 accuracy, almost all algorithms were able to find all known global optima
for functions p1-p5 and p10, with the exception of Crowding DE/rand/1/bin for
function p1 where PR value was between 0 and 0.1. DE/nrand/1/bin was the best
algorithm to optimize p11-p14 and p16-p20 (with the same PR values of Crowding
DE/rand/1/bin in p13, p14 and p16), but was the worst algorithm to deal with p6-
p9. Crowding DE/rand/1/bin was the best algorithm for p13-p16 (with the same PR

value of DE/nrand/1/bin in p13, p14 and p16) and it was the worst one to handle p12,
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p19 and p20 (with the same PR value of Niching MG-PMA L1). Niching MG-PMA
L1 was the best algorithm for p6-p9, but was the worst one for p16-p20 (with the
same PR values of Crowding DE/rand/1/bin in p19 and p20). Niching MG-PMA
L150 was the worst one to handle in p8, p11 and p13-p15.

Figure 5.6: Peak ratio (PR) of the MG-PMA L1, MG-PMA L150, DE/nrand/1/bin
and Crowding DE/rand/1/bin algorithms for 20 benchmark multimodal functions
(p1-p20) with accuracy equal to 1e−03.

Table C18 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the algorithms performance in
the benchmark multimodal functions. It can be seen that the average rank of
DE/nrand/1/bin was the lowest (36.350) of all algorithms tested.

Results for 1e−04 Accuracy

Figure 5.7 shows the results for the accuracy equal to 1e−04. Once again,
almost all algorithms were able to find all known global optima for functions p1-p5

and p10, with the exception of Crowding DE/rand/1/bin for function p1 where PR

value was between 0 and 0.1. DE/nrand/1/bin was the best algorithm to optimize
p11-p20 (with the same PR values of Crowding DE/rand/1/bin for p13, p14 and p16),
but was the worst one for p7-p9. Crowding DE/rand/1/bin was the best algorithm
for p13, p14 and p16 (with the same PR values of DE/nrand/1/bin in this functions)
and it was the worst one to handle p6, p12, p19 and p20 (with the same PR value of
Niching MG-PMA L1). Niching MG-PMA L1 was the best algorithm for p6-p9, but
was the worst one for p16-p20 (with the same PR values of Crowding DE/rand/1/bin
for p19 and p20). Niching MG-PMA L150 was the worst one to handle in p8, p11

and p13-p15.
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Figure 5.7: Peak ratio (PR) of the MG-PMA L1, MG-PMA L150, DE/nrand/1/bin
and Crowding DE/rand/1/bin algorithms for 20 benchmark multimodal functions
(p1-p20) with accuracy equal to 1e−04.

Table C19 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the algorithms performance in
the benchmark multimodal functions. It can be seen that the average rank of
DE/nrand/1/bin was the lowest (34.400) of all algorithms tested.

Results for 1e−05 Accuracy

Figure 5.8 shows the results for the accuracy equal to 1e−05. Again, almost
all algorithms were able to find all known global optima for functions p1-p5

and p10, with the exception of Crowding DE/rand/1/bin for functions p1 and p4

where PR values were equal to 0.020 and 0.995, respectively. DE/nrand/1/bin was
the best algorithm to optimize p11-p15 and p17-p20 (with the same PR values of
Crowding DE/rand/1/bin in p13 and p14), but was the worst one for p7-p9. Crowding
DE/rand/1/bin was the best algorithm for p13, p14 and p16 (with the same PR values
of DE/nrand/1/bin in p13 and p14) and it was the worst one to handle p6, p12, p19

and p20 (with the same PR values of Niching MG-PMA L1 in p19 and p20). Niching
MG-PMA L1 was the best algorithm for p6-p9, but was the worst one for p16-p20

(with the same PR values of Crowding DE/rand/1/bin in p19 and p20). Niching MG-
PMA L150 was the worst one to handle for p8, p11 and p13-p15.

Table C20 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the algorithms performance in
the benchmark multimodal functions. It can be seen that the average rank of
DE/nrand/1/bin was the lowest (31.225) of all algorithms tested.
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Figure 5.8: Peak ratio (PR) of the MG-PMA L1, MG-PMA L150, DE/nrand/1/bin
and Crowding DE/rand/1/bin algorithms for 20 benchmark multimodal functions
(p1-p20) with accuracy equal to 1e−05.

Statistical Analysis for 1e−02-1e−05 Accuracies

For the accuracies 1e−02-1e−05, both tests (Aligned Friedman’s and
Iman-Davenport’s) found a p-value less than 0.05 (p-value = 0.017), so there
is a significant difference between the algorithms. As the average rank of
DE/nrand/1/bin is the lowest, it was selected as the control model for the Holm’s
test.

Conclusions of Comparison with Well-Established Algortihms

There is a significant difference between Niching MG-PMA L150 and
DE/nrand/1/bin for accuracy 1e−01. It shows the potential of using Niching MG-
PMA for real-world problems that demand a multitude of solutions. For the other
four accuracies, DE/nrand/1/bin was significantly better than Niching MG-PMA.
However, the positive result found in the first accuracy (1e−01) also demonstrates
that Niching MG-PMA can be optimized to be competitive in the other accuracies
(1e−02-1e−05).
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6
Optimization of Quantum Well Infrared Photodetectors

Quantum well infrared photodetectors (QWIPs) are photon detectors based on
nanostructured materials known as quantum wells (QWs) (Levine, 1993). QWs are
able to selectively detect radiation in the mid-infrared region (3-6µm or 207-413
meV) using optical transitions within the conduction band (intraband absorption –
see Figure 6.1) (Penello, 2013). Electrons that are at a fundamental level of a QW
are photoexcited to a higher level in energy and then collected, thus generating a
photocurrent that depends fundamentally on the energy levels of the nanostructure.

Figure 6.1: Interband and intraband absorption in a quantum well structure
(Penello, 2013).

It can be noticed that the structure of the sample is a key point in the
development of photodetectors, since, by controlling the structure, it is possible
to control the energy difference between the levels of the different states. By
experimenting with different thicknesses for the QWs and coupling wells to form
supelattices, it is possible to control the energy levels below the potential barrier
(levels inside the well) as well as the energy levels above this barrier.

Two advantages can be obtained by controlling the levels (Penello, 2013):
(i) the transitions are no longer limited by the height of the potential barrier
(bandoffset) determined by the material of the wells and barriers; and (ii) control
of energy levels above the barrier can be used to minimize the dark current
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of a detector. The important point of the second advantage is the possibility of
photodetectors operating at temperatures close to room temperature. The operation
of QWIPs is currently limited to cryogenic temperatures, the search for operation
at higher temperatures is critical in reducing the complexity of using the QWIPs in
portable and easy-to-implement devices.

In 2018, Penello (Penello, 2018) presented a photodetector based on an
asymmetric InGaAs/InAlAs superlattice with a structural defect. The structural
defect creates localized states in the continuum. Due to the asymmetry of the
heterostructure, the electron in the localized state in the continuum has a preferable
direction to flow. That is, the photodetector based on asymmetric superlattice can be
operated at photovoltaic mode, without an applied bias voltage. The photocurrent
spectrum presented a good signal to noise ratio up to room temperature.

Figure 6.2 presents the conduction band of this asymmetric superlattice that
has five QWs with a thickness of 2.0 nm, the sixth one has a thickness of 2.5 nm and
the seventh QW is as thick as the first five ones. The sixth QW can be interpreted
as a defect in the superlattice and creates localized states within and outside the
miniband (allowed regions for the electronic state in the continuum). The QWs
are separated by 7.0 nm thick barriers. The asymmetric superlattice was repeated
20 times and each superlattice was separated from the following one by a thick
quantum barrier of 30 nm to avoid the coupling of neighboring superlattices.

Figure 6.2: Asymmetric superlattice with the thickness of the quantum wells and
barriers proposed by Penello (Penello, 2018). The red line represents the defective
quantum well.

In 2013, Penello (Penello, 2013) developed an easy-to-use computational
program that calculates the states of the heterostructure. With this program, it is
possible to calculate the energy levels of the structures, the wave functions, the
oscillator strengths between the levels and the absorption spectrum. Figure 6.3
shows the potential profile for the conduction band superimposed with the squared
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modulus of the wave function and oscillator strength versus energy for the
photodetector presented in 2018 (Penello, 2018). The ground state and the state
located in the continuum for the energy transition of 300 meV is highlighted in
Figure 6.3 (in blue). It is possible to note that the wave function of the state located
in the continuum is confined in the defect QW.

Figure 6.3: Potential profile of the structure presented by Penello in 2018
(Penello, 2018), showing the modulus squared wave functions and oscillator
strength versus energy.

By altering the thicknesses of the wells and barriers it is possible to tailor the
energy and the oscillator strength of the optical transitions between the ground state
and the localized states in the continuum. Until the work presented in this chapter,
the program that calculates the states of the heterostructure had to be used by trial
and error to try to reproduce experimental results or design new structures with
certain transition energies, which ended up being monotonous and time-consuming.

By applying MG-PMA to control and optimize the layers’ thicknesses of
photodetectors, it is possible to find desired structures and test new ideas in the
area. This chapter presents an optimized structure of the asymmetric superlattice
proposed by Penello (Penello, 2018) using the program that calculates the states
of the heterostructure. For comparison purposes, the same photodetector was
optimized using GA, PSO and covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen, 2001, Hansen, 2006).

6.1
Representation

The representation of individuals is given by three real variables: (i) a – the
thickness of the first five and the seventh QWs; (ii) b – the thickness of the barriers
separating the QWs; and (iii) c – the thickness of the sixth QW that represents the
defect in the superlattice. The initial barrier (Bini) has a fixed thickness equal to 2
nm and the last barrier (λ ) varies according to the thickness of the variable wells
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and barriers (values of a, b and c). Equation 6-1 presents the thickness calculation
for the last barrier.

center = Bini +5a+5b+
c
2

λ = center− c
2
−a−b

(6-1)

This variation of the thickness of the last barrier is due to the fact that the
heterostructure is centralized in the middle of the defective well by the software that
calculates the energy levels of the structure. Figure 6.4 presents the representation
of the asymmetric superlattice for the optimization.

Figure 6.4: Asymmetric superlattice with the thickness of the quantum wells
and barriers for the structural optimization. The red line represents the defective
quantum well.

The optimization was performed starting from the heterostructure proposed
by Penello (Figure 6.2). The values of a, b and c were allowed to vary by ±50%
with respect to the initial values.

6.2
Objective Function

This structural optimization is a maximization problem that aims to find the
heterostructure with the greater oscillator strength ( f0d) of the optical transition
between the ground state and the desired energy within a given energy range.
The oscillator strengh is a magnitude that determines how strong the two-state
transition is by means of an oscillating field (i.e. infrared radiation). The greater
the oscillator strength, the stronger this transition will be, giving indications that an
intense photocurrent peak will occur. Equation 6-2 presents the calculation of the
oscillator strength.
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f0d =
2m∗

h̄
(Ed−E0)|M0d|2

|M0d|2 =
∣∣∣∣∫ +∞

−∞

ψ
∗
d (z)(−ez)ψ0(z)dz

∣∣∣∣2 (6-2)

where m∗ is the effective mass of the electron, h̄ is the Plank constant divided by
2π , Ed is the desired energy and E0 is the ground state energy, M0d is the dipole
moment between the ground state and the desired energy, ψ0 is the wave function
of the ground state, ψd is the wave function of the desired state, z is the position, e is
the electronic charge. More details on these calculations can be found in Penello’s
Ph.D. thesis (Penello, 2013).

The energy range was restricted to values between 295 meV and 305 meV.
An application of a photodetector operating withing that energy range is in the
environmental area with the production of carbonic gas detectors, since this gas
absorbs at 300 meV.

6.3
Configuration and Parameterization of the Optimization Algorithms

For the four algorithms, the population size was equal to 50 and the number of
generations equal to 100, totaling the maximum of 5,000 evaluations per run. As a
measure of performance, the mean, minimum and maximum values of the oscillator
strength of the best structures found in 10 runs were calculated. Tables 6.1-6.3
presents the parameters used for GA, PSO and CMA-ES (default parameters, from
Yarpiz library (Heris, 2015) for MATLAB).

Table 6.1: Configuration of GA.

Parameters Values
Selection Stochastic uniform
Elitism count 1
Crossover rate 80%
Mutation rate 20%
Mutation Adaptative feaseble∗

∗ the default mutation function in MATLAB (MATLAB, 2016) when there are constraints, randomly generates directions
that are adaptive with respect to the last successful or unsuccessful generation. The mutation chooses a direction and step

length that satisfies bounds and linear constraints.

Table 6.2: Configuration of PSO.

Parameters Values
Learning factors 2
Inertia weight 0.9
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Table 6.3: Configuration of CMA-ES.

Parameters Values
λ – Number of children to produce at each generation 50
Number of parents to keep from the λ children 25
Cumulation constant for step-size (cs) 0.7267

MG-PMA used the high-level crossover operator available from GPTIPS 2
(Searson, 2015). Table 6.4 presents the remaining parameters and configurations
used by MG-PMA.

Table 6.4: Configuration of MG-PMA.

Parameters Values
maximum tree depth d 7
Decimal ERC∗ rate 90%
Integer ERC∗ rate 0%
ERC∗ range [−1,+1]
Low-level crossover rate 65%
Mutation rate 30%
Direct reproduction rate 5%
High-level crossover rate 50%
Elitism count 1
Lexicographic pressure (Luke, 2002) Yes

∗ ERC - Ephemeral Random Constant: constants generated in a specific range by the user to constitute the trees of each
individual together with variables (from the initial parameter values to be mapped by MG-PMA).

As described in Table 6.4, the probability of applying the mutation operator
in the experiments was 30%. The three types of mutation (Searson, 2015) were
employed with the following probabilities: ordinary sub-tree mutation (5%); switch
an input terminal to another randomly selected input terminal (47.5%); and
Gaussian perturbation of a randomly selected constant (47.5%, with the standard
deviation of the Gaussian used equal to 10%). The initial population was generated
using the ramped half-and-half method (Kora, 2017).

Domain constraint with PBC (presented in Section 3.3) was used in CMA-ES
and MG-PMA.

6.4
Results

Table 6.5 presents the GA, PSO, CMA-ES and MG-PMA results for the
structural optimization of the asymmetric superlattice. Analyzing the performance
characterization, the four algorithms performed similarly:

– maximum – all tested algorithms found the best individual with same
oscillator strength value;
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– mean – on average, PSO, CMA-ES and MG-PMA were able to find the
greater value of the oscillator strength;

– minimum – the worst structures found by PSO and CMA-ES had the same
oscillator strength values of their best solutions;

– standard deviation – this characterization of performance shows that CMA-
ES is the most stable among the algorithms tested, presenting a lower standard
deviation. The second most stable algorithm is PSO, followed by MG-PMA
and finally GA.

Table 6.5: Results of GA, PSO, CMA-ES and MG-PMA for the structural
optimization of the QWIP. The table shows the maximum, mean, minimum, and
standard deviation values of the oscillator strength of the best individuals in each
of the 10 runs for both algorithms. Being the maximum value referring to the best
individual and the minimum to the worst individual among the solutions presented
in these 10 runs.

Method
Maximum

Mean
Minimum Standard

(best individual) (worst individual) Deviation
GA 0.35 0.34 0.34 3.42e−3
PSO 0.35 0.35 0.35 7.07e−5
CMA-ES 0.35 0.35 0.35 1.01e−6
MG-PMA 0.35 0.35 0.34 9.99e−4

Figure 6.5 shows a mean of the evolution of CMA-ES and MG-PMA to the
best individuals over the generations in 10 runs and the oscillator strength value
from the structure proposed by Penello (Penello, 2018). It is possible to note that
these two algorithms were able to improve the value of the oscillator strength of the
initial structure, from 0.22 to 0.35 and CMA-ES converges, on average, faster than
the MG-PMA. GA and PSO did not save the evolution history of the solutions, but
during the optimization, the convergence of the algorithms was obtained between
the generations 20th and 40th.

Figure 6.6 shows the potential profile for the conduction band superimposed
with the squared modulus of the wave function and oscillator strength versus energy
for the best structures found among the solutions obtained by GA, PSO, CMA-ES
and MG-PMA in 10 runs. The ground state and the state located in the continuum
for the energy transition between 295 meV and 305 meV is highlighted in Figure 6.6
(in blue).

The algorithms found the following values of a, b and c:

– GA: a = 1.45 nm, b = 7.92 nm and c = 2.66 nm;

– PSO: a = 1.45 nm, b = 7.99 nm and c = 2.67 nm;

– CMA-ES: a = 1.45 nm, b = 7.99 nm and c = 2.67 nm;
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Figure 6.5: Evolution curve of the mean best values of the oscillator strength in 10
runs performed by MG-PMA (in blue) and CMA-ES (in black). The red line is the
oscillator strength value of the structure proposed by Penello (Penello, 2018).

Figure 6.6: Potential profile of the best structures found among the solutions
obtained, in 10 runs, by: (a) GA; (b) PSO; (c) CMA-ES; and (d) MG-PMA. The
potential profile shows the modulus squared wave functions and oscillator strength
versus energy.

– MG-PMA: a = 1.44 nm, b = 7.93 nm and c = 2.66 nm.

Comparing the four structures found by the algorithms, it is possible to
note that the structures are practically the same, with differences in the second
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decimal place (precision not reached during the production of these structures).
These structures present the wave function of the state located in the continuum
more confined in the QW defect when compared to the wave function of the
initial structure (Figure 6.3). It is also possible to observe that the optimized
structures present greater oscillator strength values which shows the efficiency of
the algorithms in finding satisfactory solutions for this optimization problem.

All optimization algorithms were able to optimize this initial structure
leading to new structures with greater oscillator strength values. These theoretically
predicted structures can be synthesized and tested in order to validate this
computational procedure. Assuming that the theoretical framework implemented in
the simulator is correct, this study shows the importance of optimization algorithms
in the design of new structures, replacing trial and error by intelligent design.
Moreover, it is important to stress that only small variations were allowed with
respect to the initial conditions. By assuming more flexibility, one could achieve
structures with even better properties.
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7
Conclusions and Future Work

7.1
Conclusions

In the year 2007, the development of an approach of the CGP to solve real-
valued optimization problems, by Walker and Miller, has widened the road of
optimization techniques by introducing a new category of methods, termed in this
thesis as: optimization by genetic programming (OGP). In 2008, Pujol and Poly
developed PMA that can be considered the first way of using the canonical GP in
OGP. Koshiyama extends PMA to a more general form, through MGGP, that is able
to optimize certain benchmark functions without the need of specify the domain
(Koshiyama, 2013). In this form, an arbitrary number k of equations (instead of
only one, in PMA) is used to map the optimizable parameters during the search for
optimal values. In this thesis, Koshiyama’s method has been thoroughly studied,
its code has been revised and updated and it was renamed to multi-gene parameter
mapping approach (MG-PMA).

In summary, the first results of this thesis show that MG-PMA is a flexible
and robust optimization method that can be applied to functions of varying
dimensionality and complexity. The performance of the method depends on the
number k and depth d of trees (the representation of GP programs in this method).
With k = n, which is the maximum number of trees (n corresponding to the number
of parameters to be optimized), MG-PMA tends to perform better for more complex
functions. A future work of automatic configuration of k must be done, since the
choice of the value of this parameter is an NP-hard problem and a sub-optimal
solution can further improve MG-PMA performance. Performance also strongly
depends upon the maximum allowed tree depth d, and usually improves upon
increasing d (note that the use of deeper trees also implies higher computational
costs).

This work also presented a normalization for domain constraint through the
periodic boundary conditions (PBC) used by molecular modeling. PBC can be used
for the output values of a GP tree and for other constrained optimization algorithms.

MG-PMA with feedback was presented to avoid premature convergence to
local optima due to the generation of a new mapping scheme. This approach was
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compared with the MG-PMA by varying the value of k. MG-PMA without the
feedback was the best algorithm for the CEC’2015 benchmark functions. The
updating of the initial parameters to be mapped has a destructive effect on the
evolution of GP programs. This is because the output of the trees of the best program
of a given generation replaces a random column of the initial parameters. In this
way, programs that used this column that was updated end up being changed. Future
work should be considered in order to study the destructive effect of the feedback
approach.

The change in tournament size was also evaluated and revealed an
improvement factor for MG-PMA, increasing the stochastic character of the
algorithm. Other high-level crossover operators were also used, being two of
them proposed in this thesis (high-level single-point and high-level uniform),
but there was no improvement for the benchmark tested. Finally, MG-PMA was
compared with PSO and the winning methods of CEC’2015. Because its parameters
were not tuned using optimization, but rather through a systematic analysis to
understand the effect of each parameter, for the CEC’2015, MG-PMA was not
able to outperform the algorithms that won the competition. However, the algorithm
performed similarly to PSO, which indicates that MG-PMA is a promising strategy
for complex optimization problems.

The analysis of the MG-PMA and MG-PMA with feedback was limited
to exploring several ways of representing the individuals, the variation of the
tournament size and the use of other high-level crossover operators. Better results
might be reached by varying other parameters, such as the mathematical operators,
the configuration of genetic operators (e.g. elitism, mutation probabilities).

This thesis also presented a new method using MGGP to multimodal
numerical optimization problem, called Niching MG-PMA. The new algorithm
used niching techniques based on the clearing procedure to maintain the population
diversity, in order to perform a multivariate mapping among initial guesses to
optimal parameters for a system. A set with 20 benchmark multimodal functions
with different characteristics and difficulty levels was considered.

From statistical and qualitative analysis of the high-level crossover operator,
the local optimization frequency and the feedback frequency it was possible to
find two configurations for Niching MG-PMA: (i) Niching MG-PMA L1 - Niching
MG-PMA using the high-level single-point crossover operator, local optimization
frequency of 1 and feedback frequency of 1; and (ii) Niching MG-PMA L150
- Niching MG-PMA using the high-level single-point crossover operator, local
optimization frequency of 150 and feedback frequency of 1.

These two configurations of Niching MG-PMA were compared to two well-
established DE niching algorithms (DE/nrand/1/bin and Crowding DE/rand/1/bin)
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in five levels of accuracy. Statistical analysis showed that for accuracy of 1e−01,
Niching MG-PMA L150 has significantly better than DE/nrand/1/bin, showing
potential usage for real-world problems that demand a multitude of solutions.

Finally, an MG-PMA application was presented for a real-world problem
in the field of semiconductor nanodevices. The algorithm proposed in this thesis
was able to perform the structural optimization of a QWIP, finding structures
with oscillator strength superior to the developed structures in the area. In the
comparison with other algorithms (GA, PSO and CMA-ES), all algorithms had
similar performances finding the same solution. Comparing MG-PMA with GA,
both algorithms had similar performances with a small difference in the minimum
and standard deviation values of the oscillator strength of the best structures found.
In these cases, MG-PMA is slightly better than GA. However, PSO and CMA-
ES were even more stable, finding structures with equal oscillator strength in all
simulations (equal values for maximum, minimum and mean).

The use of the evolutionary computation (EC) algorithms to determine a
heterostructure with a desired electronic energy configuration opens a new path
for the specialists in the field of the semiconductor nanodevices without the need
to waste time on trial and error methods to find a desired structure. From the
results obtained in this thesis, the use of these algorithms is validated not only to
optimize known structures but also to design new structures with different numbers
of wells, barriers and defects, starting from random dimensions. This allows the
use of computational intelligence to design new structures that can be studied and
fabricated by specialists with lower cost and greater efficiency.

7.2
Future Work

From the results obtained in this thesis, new paths for the OGP area are open,
a topic rarely explored in EC, with projects of improvement of the algorithms and
their applications:

– Application of optimization methods to tune MG-PMA, MG-PMA with
feedback and Niching MG-PMA parameters for the purpose of making them
competitive for IEEE CEC competitions.

– Development of an automatic selection of k values during the evolution
process in order to solve the problem of arbitrarily choosing k thus increasing
the flexibility of the methods (NP-hard problem).

– Study of the destructive effect of the MG-PMA with feedback.

– Application of other niching techniques (such as fitness sharing
(Goldberg, 1987), crowding methods (De Jong, 1975, Mahfoud, 1992)
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and restricted tournament selection (Harik, 1995) with MG-PMA, increasing
and enriching the area of multimodal optimization by genetic programming.

– Growth of the optimized semiconductor heterostructure found in this thesis
in the laboratory.

– Design, optimize and grow new QWIPs, varying the wells and barriers in size,
position and quantity.

– Optimization of photodetector materials to increase the accuracy of electronic
state control and decrease the cost of the production process.
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A
Analyses of the Multigenic Approach – Numerical Results

A1
Introduction

This appendix presents all the numerical results obtained in the experiments
of the Chapter 4 of this thesis.

A2
Numerical Results of the Analysis of Multigenic Individuals

This section presents the numerical results for benchmark-based sensitivity
analysis of the number of trees (k) as well as variations of the tree depth (d).
Tables corresponding to test set 1 (Tables A1- A5) and test set 2 (Tables A6-
A10) show the number of hits on the function global minimum (HITS), the mean
number of evaluations (MNE), the median number of evaluations (Median), the
minimum number of evaluations (Min), the maximum number of evaluations (Max),
the standard deviation of evaluations (Std), the first quartile of evaluations (1st
Quartile) and the third quartile of evaluations (3rd Quartile). Tables of test set 3
(Tables A13- A17) show the mean of the best fitness values (MBFV), the median of
the best fitness values (Median), the minimum of the best fitness values (Min), the
maximum of the best fitness values (Max), the standard deviation of the best fitness
values (Std), the first quartile of the best fitness values (1st Quartile) and the third
quartile of the best fitness values (3rd Quartile).
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A2.1
Set 1

Table A1: Numerical results for the test set 1 with the tree depth (d) equal to 2.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 2 100 426.000 100.000 0.000 8200.000 1302.648 100.000 200.000
n/2 2 100 788.000 400.000 100.000 6100.000 1014.369 300.000 900.000
n 2 100 1103.000 650.000 300.000 24200.000 2654.763 500.000 850.000

f2
1 2 100 46776.500 10000.000 0.000 739700.000 91480.119 350.000 64775.000
n 2 1 150.000 150.000 150.000 150.000 0.000 150.000 150.000

f3

1 2 100 244.000 100.000 0.000 2300.000 417.561 0.000 225.000
n/2 2 100 156.500 100.000 0.000 1150.000 188.247 50.000 200.000
n 2 100 151.000 100.000 0.000 2150.000 241.939 0.000 200.000

f4

1 2 100 66.000 0.000 0.000 1800.000 190.279 0.000 100.000
n/2 2 100 3193.000 3100.000 1600.000 5300.000 870.998 2500.000 3850.000
n 2 100 6180.000 6200.000 2200.000 10800.000 1650.467 5000.000 7200.000

f5

1 2 100 40363.000 31750.000 3100.000 166050.000 31408.007 17425.000 56150.000
n/2 2 100 378184.000 313600.000 26000.000 1995250.000 317216.314 168800.000 488600.000
n 2 100 440125.000 360725.000 15100.000 1771050.000 314084.844 217600.000 582150.000

f6

1 2 100 54648.000 32400.000 0.000 282000.000 63476.999 7200.000 81000.000
n/2 2 97 102496.907 65200.000 400.000 531200.000 114975.269 9500.000 151600.000
n 2 99 80446.465 48800.000 800.000 560600.000 103709.283 11750.000 101500.000

f7

1 2 100 293.000 100.000 0.000 6600.000 856.025 100.000 200.000
n/2 2 100 1279.000 1050.000 400.000 8300.000 868.098 900.000 1350.000
n 2 100 2590.000 2300.000 1000.000 10100.000 1276.398 1900.000 2900.000

f8

1 2 100 13849.000 10550.000 100.000 55900.000 11856.580 4700.000 19150.000
n/2 2 100 15916.000 9650.000 100.000 68600.000 15532.363 5200.000 22500.000
n 2 100 11045.000 7350.000 0.000 58100.000 11179.214 2700.000 16650.000

f9

1 2 100 15001.000 10600.000 200.000 80600.000 14480.370 5050.000 19500.000
n/2 2 100 13379.000 9350.000 400.000 57400.000 13207.431 3550.000 19450.000
n 2 100 11019.000 8200.000 200.000 49800.000 10692.192 2300.000 16800.000

f10

1 2 100 11924.000 7800.000 100.000 70100.000 13397.679 3000.000 14350.000
n/2 2 100 16266.000 10150.000 300.000 87000.000 18085.528 2300.000 22400.000
n 2 100 10061.000 5200.000 300.000 52100.000 11680.424 1900.000 11950.000

f11

1 2 100 11916.000 7650.000 100.000 79800.000 12574.680 3850.000 13950.000
n/2 2 100 14495.000 10900.000 300.000 136100.000 17913.498 3450.000 18650.000
n 2 100 10539.000 5600.000 500.000 61800.000 11850.993 2000.000 15400.000

f12

1 2 100 14173.000 9950.000 500.000 69500.000 13527.352 4550.000 19500.000
n/2 2 100 12412.000 8000.000 500.000 85300.000 14917.499 2150.000 16550.000
n 2 100 7421.000 3800.000 600.000 55900.000 9341.547 1650.000 8450.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number
of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard
deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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Table A2: Numerical results for the test set 1 with the tree depth (d) equal to 3.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 3 100 124.000 100.000 0.000 1700.000 190.226 100.000 100.000
n/2 3 100 453.000 400.000 100.000 4600.000 510.784 300.000 400.000

n 3 100 673.000 600.000 300.000 6900.000 681.035 500.000 700.000

f2
1 3 100 53307.000 24725.000 50.000 437400.000 82367.857 700.000 63575.000
n 3 0 − − − − − − −

f3

1 3 100 47.500 0.000 0.000 1150.000 127.004 0.000 50.000
n/2 3 100 45.500 0.000 0.000 550.000 83.815 0.000 50.000

n 3 100 39.000 0.000 0.000 200.000 53.927 0.000 100.000

f4

1 3 100 33.000 0.000 0.000 100.000 47.258 0.000 100.000
n/2 3 100 3100.000 3100.000 1600.000 5100.000 875.595 2400.000 3750.000

n 3 100 6264.000 6200.000 3800.000 9700.000 1265.751 5300.000 6950.000

f5

1 3 100 19835.000 15425.000 600.000 164400.000 20265.572 7350.000 26000.000
n/2 3 98 194594.388 145750.000 8200.000 862000.000 162636.010 74050.000 254850.000

n 3 100 216574.000 157100.000 15900.000 997200.000 202886.565 73425.000 265375.000

f6

1 3 100 45290.000 10500.000 0.000 460800.000 76564.551 400.000 63300.000
n/2 3 99 158579.798 64400.000 400.000 1563000.000 246482.867 800.000 217550.000

n 3 99 170652.525 46800.000 1200.000 1031200.000 238011.414 2050.000 292650.000

f7

1 3 100 95.000 100.000 0.000 600.000 75.712 100.000 100.000
n/2 3 100 1144.000 1100.000 300.000 6200.000 597.185 900.000 1300.000

n 3 100 2202.000 2100.000 900.000 3700.000 522.036 1900.000 2550.000

f8

1 3 100 1479.000 300.000 0.000 20900.000 3070.824 200.000 1200.000
n/2 3 100 975.000 500.000 0.000 11600.000 1770.429 300.000 800.000

n 3 100 1534.000 700.000 100.000 19800.000 3183.741 500.000 1200.000

f9

1 3 100 3086.000 500.000 0.000 90100.000 9852.221 200.000 1600.000
n/2 3 100 790.000 700.000 0.000 2900.000 466.125 500.000 1000.000

n 3 100 865.000 750.000 100.000 6400.000 735.997 550.000 900.000

f10

1 3 100 1682.000 400.000 0.000 22400.000 3692.235 200.000 1100.000
n/2 3 100 1015.000 700.000 0.000 9900.000 1305.418 500.000 1100.000

n 3 100 905.000 800.000 0.000 6200.000 772.164 500.000 1100.000

f11

1 3 100 1462.000 350.000 100.000 24900.000 3527.719 200.000 1050.000
n/2 3 100 1126.000 800.000 0.000 17900.000 1997.150 500.000 1100.000

n 3 100 1053.000 1000.000 0.000 2400.000 487.304 700.000 1300.000

f12

1 3 100 979.000 500.000 0.000 9400.000 1450.691 200.000 1000.000
n/2 3 100 908.000 900.000 0.000 2500.000 491.890 500.000 1200.000

n 3 100 940.000 800.000 100.000 5200.000 640.549 500.000 1250.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number
of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard
deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.

Table A3: Numerical results for the test set 1 with the tree depth (d) equal to 5.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 5 100 91.000 100.000 0.000 900.000 95.447 100.000 100.000
n/2 5 99 376.768 300.000 0.000 2100.000 242.785 300.000 400.000

n 5 100 582.000 600.000 200.000 1300.000 189.832 500.000 700.000

f2
1 5 100 67777.500 25025.000 50.000 648500.000 106830.875 1350.000 81375.000
n 5 0 − − − − − − −

f3

1 5 100 8.000 0.000 0.000 100.000 22.156 0.000 0.000
n/2 5 100 3.500 0.000 0.000 100.000 16.291 0.000 0.000

n 5 100 2.500 0.000 0.000 50.000 10.952 0.000 0.000

f4

1 5 100 21.000 0.000 0.000 100.000 40.936 0.000 0.000
n/2 5 100 3232.000 3250.000 1500.000 5800.000 949.416 2500.000 3800.000

n 5 100 5923.000 5750.000 2500.000 9800.000 1434.556 4950.000 6950.000

f5

1 5 100 15590.000 8275.000 100.000 147950.000 26096.659 4600.000 15175.000
n/2 5 98 170390.816 80175.000 400.000 1560250.000 250189.823 37800.000 178500.000

n 5 100 149828.000 110900.000 14400.000 700000.000 127382.178 60925.000 184800.000

f6

1 5 100 56622.000 1400.000 0.000 1773200.000 216023.201 400.000 11900.000
n/2 5 97 200843.299 21400.000 400.000 1363400.000 320776.187 1600.000 261600.000

n 5 97 184793.814 31000.000 1000.000 1660200.000 338268.067 3000.000 188950.000

f7

1 5 100 86.000 100.000 0.000 900.000 98.494 0.000 100.000
n/2 5 100 1116.000 1100.000 500.000 2600.000 287.701 950.000 1300.000

n 5 100 2171.000 2200.000 1100.000 3500.000 516.651 1850.000 2550.000

f8

1 5 100 199.000 100.000 0.000 1500.000 204.245 100.000 200.000
n/2 5 100 296.000 300.000 0.000 1100.000 205.441 200.000 400.000

n 5 100 294.000 250.000 0.000 1000.000 229.985 100.000 400.000

f9

1 5 100 177.000 100.000 0.000 1400.000 189.019 100.000 200.000
n/2 5 100 258.000 300.000 0.000 700.000 197.039 100.000 400.000

n 5 100 233.000 200.000 0.000 800.000 224.308 0.000 400.000

f10

1 5 100 232.000 200.000 0.000 2000.000 271.873 100.000 250.000
n/2 5 100 273.000 200.000 0.000 1100.000 246.534 50.000 450.000

n 5 100 193.000 200.000 0.000 700.000 188.698 0.000 300.000

f11

1 5 100 176.000 100.000 0.000 1500.000 223.435 100.000 200.000
n/2 5 100 268.000 300.000 0.000 1200.000 240.740 0.000 400.000

n 5 100 246.000 200.000 0.000 1400.000 254.820 0.000 350.000

f12

1 5 100 462.000 150.000 0.000 26300.000 2623.622 100.000 200.000
n/2 5 100 248.000 200.000 0.000 1200.000 256.030 0.000 400.000

n 5 100 185.000 200.000 0.000 800.000 194.040 0.000 300.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number
of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard
deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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Table A4: Numerical results for the test set 1 with the tree depth (d) equal to 7.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 7 100 126.000 100.000 0.000 4600.000 458.064 0.000 100.000
n/2 7 100 296.000 300.000 0.000 600.000 122.202 200.000 400.000

n 7 100 531.000 500.000 100.000 1100.000 187.861 400.000 600.000

f2
1 7 100 67115.000 21175.000 50.000 542100.000 115401.338 1475.000 62400.000
n 7 0 − − − − − − −

f3

1 7 100 1.000 0.000 0.000 50.000 7.035 0.000 0.000
n/2 7 100 0.500 0.000 0.000 50.000 5.000 0.000 0.000

n 7 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f4

1 7 100 17.000 0.000 0.000 100.000 37.753 0.000 0.000
n/2 7 100 3324.000 3300.000 1500.000 6400.000 980.427 2600.000 3900.000

n 7 100 6411.000 6350.000 2500.000 11000.000 1564.240 5400.000 7650.000

f5

1 7 100 38571.500 6400.000 100.000 829100.000 99642.140 1650.000 29225.000
n/2 7 95 180195.263 69700.000 1100.000 1737300.000 304490.680 30337.500 190862.500

n 7 100 164993.500 108700.000 8550.000 1493700.000 204234.686 49750.000 187050.000

f6

1 7 99 24567.677 1600.000 0.000 529600.000 85436.979 600.000 4800.000
n/2 7 98 206573.469 10000.000 400.000 1853600.000 376493.359 1600.000 262000.000

n 7 98 265324.490 63100.000 800.000 1825400.000 395656.570 3400.000 367400.000

f7

1 7 100 67.000 100.000 0.000 200.000 51.355 0.000 100.000
n/2 7 100 1131.000 1100.000 400.000 2600.000 341.623 900.000 1300.000

n 7 99 2185.859 2200.000 900.000 5500.000 674.311 1800.000 2500.000

f8

1 7 100 83.000 100.000 0.000 400.000 86.521 0.000 100.000
n/2 7 100 40.000 0.000 0.000 800.000 119.764 0.000 0.000

n 7 100 28.000 0.000 0.000 300.000 72.586 0.000 0.000

f9

1 7 100 91.000 100.000 0.000 400.000 93.306 0.000 100.000
n/2 7 100 9.000 0.000 0.000 200.000 32.083 0.000 0.000

n 7 100 3.000 0.000 0.000 200.000 22.270 0.000 0.000

f10

1 7 100 97.000 100.000 0.000 500.000 104.886 0.000 100.000
n/2 7 100 22.000 0.000 0.000 300.000 64.479 0.000 0.000

n 7 100 2.000 0.000 0.000 100.000 14.071 0.000 0.000

f11

1 7 100 69.000 100.000 0.000 400.000 78.746 0.000 100.000
n/2 7 100 7.000 0.000 0.000 600.000 60.728 0.000 0.000

n 7 100 2.000 0.000 0.000 100.000 14.071 0.000 0.000

f12

1 7 100 89.000 100.000 0.000 500.000 104.345 0.000 100.000
n/2 7 100 2.000 0.000 0.000 200.000 20.000 0.000 0.000

n 7 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean
number of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std -
Standard deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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Table A5: Numerical results for the test set 1 with the tree depth (d) equal to 9.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 9 100 53.000 100.000 0.000 200.000 54.039 0.000 100.000
n/2 9 100 281.000 300.000 100.000 600.000 135.360 200.000 400.000

n 9 100 536.000 600.000 200.000 900.000 177.252 400.000 700.000

f2
1 9 99 59526.263 8250.000 50.000 400600.000 96834.093 450.000 73237.500
n 9 0 − − − − − − −

f3

1 9 100 0.500 0.000 0.000 50.000 5.000 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f4

1 9 100 20.000 0.000 0.000 100.000 40.202 0.000 0.000
n/2 9 100 3497.000 3400.000 1400.000 9000.000 1156.750 3000.000 3950.000

n 9 100 6123.000 5800.000 3000.000 10800.000 1601.190 4850.000 7500.000

f5

1 9 100 46753.000 6475.000 200.000 778950.000 108406.904 2300.000 30950.000
n/2 9 91 175979.121 64800.000 650.000 1770000.000 327628.160 32900.000 132525.000

n 9 100 164769.500 107075.000 8550.000 1186600.000 189325.178 53275.000 198050.000

f6

1 9 96 45658.333 3200.000 0.000 782400.000 132793.043 600.000 24100.000
n/2 9 93 269539.785 53600.000 400.000 1931800.000 415599.070 5300.000 364050.000

n 9 98 241077.551 26400.000 1200.000 1802600.000 375844.584 4800.000 319800.000

f7

1 9 100 50.000 0.000 0.000 200.000 52.223 0.000 100.000
n/2 9 100 1092.000 1100.000 400.000 1800.000 310.971 900.000 1300.000

n 9 97 2169.072 2200.000 700.000 3800.000 622.221 1775.000 2500.000

f8

1 9 100 26.000 0.000 0.000 400.000 57.945 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f9

1 9 100 10.000 0.000 0.000 200.000 33.333 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f10

1 9 100 21.000 0.000 0.000 200.000 49.838 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f11

1 9 100 28.000 0.000 0.000 500.000 75.318 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f12

1 9 100 18.000 0.000 0.000 200.000 43.531 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean
number of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std -
Standard deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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A2.2
Set 2

Table A6: Numerical results for the test set 2 with the tree depth (d) equal to 2.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 2 0 − − − − − − −
n/2 2 4 1034875.000 1268050.000 39200.000 1564200.000 712590.071 519900.000 1549850.000

n 2 100 22414.000 20600.000 2900.000 93600.000 14610.174 12950.000 28050.000

f2
1 2 1 393850.000 393850.000 393850.000 393850.000 0.000 393850.000 393850.000
n 2 0 − − − − − − −

f3

1 2 100 235.000 100.000 0.000 3100.000 388.698 50.000 300.000
n/2 2 100 155.500 100.000 0.000 1000.000 200.617 50.000 200.000

n 2 100 138.500 100.000 0.000 750.000 153.882 0.000 200.000

f4

1 2 0 − − − − − − −
n/2 2 0 − − − − − − −

n 2 100 34230.000 33000.000 20000.000 59000.000 8001.395 28600.000 39350.000

f5

1 2 13 62600.000 57550.000 14550.000 132600.000 39909.998 28775.000 90562.500
n/2 2 14 603325.000 476625.000 55300.000 1294500.000 357100.665 340450.000 917100.000

n 2 99 463122.727 381950.000 73500.000 1486600.000 341744.782 191812.500 595350.000

f6

1 2 0 − − − − − − −
n/2 2 0 − − − − − − −

n 2 0 − − − − − − −

f7

1 2 0 − − − − − − −
n/2 2 0 − − − − − − −

n 2 100 50800.000 50100.000 15400.000 115800.000 20438.130 36300.000 63950.000

f8

1 2 100 11515.000 7200.000 200.000 64800.000 13328.252 3500.000 13900.000
n/2 2 100 12178.000 8400.000 200.000 67500.000 13254.361 3400.000 14000.000

n 2 100 9857.000 6600.000 200.000 36300.000 9251.287 2350.000 15400.000

f9

1 2 100 14579.000 10750.000 300.000 53500.000 13767.634 4050.000 20700.000
n/2 2 100 11853.000 7050.000 200.000 57000.000 12697.049 2750.000 16300.000

n 2 100 12436.000 5650.000 300.000 108100.000 15392.347 1900.000 20200.000

f10

1 2 100 11188.000 8200.000 0.000 67800.000 11555.184 3600.000 13100.000
n/2 2 100 13706.000 7700.000 400.000 78300.000 16614.894 2650.000 16600.000

n 2 100 13628.000 8000.000 600.000 100800.000 16676.537 2500.000 17300.000

f11

1 2 100 11408.000 6650.000 100.000 60100.000 12206.346 3200.000 14950.000
n/2 2 100 11394.000 6950.000 400.000 67900.000 12729.746 2650.000 16600.000

n 2 100 9127.000 3550.000 400.000 56300.000 11787.134 1700.000 12100.000

f12

1 2 100 12143.000 8600.000 400.000 51400.000 10530.123 4600.000 16750.000
n/2 2 100 10650.000 6450.000 400.000 65200.000 12735.955 1900.000 13600.000

n 2 100 7598.000 3800.000 500.000 67100.000 10190.270 1700.000 10550.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number of
evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard deviation of
evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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Table A7: Numerical results for the test set 2 with the tree depth (d) equal to 3.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 3 2 1837850.000 1837850.000 1774900.000 1900800.000 89024.744 1774900.000 1900800.000
n/2 3 46 411421.739 181800.000 1500.000 1963700.000 531838.156 48900.000 580400.000

n 3 100 24076.000 20400.000 1700.000 86900.000 17037.209 10450.000 32350.000

f2
1 3 9 711283.333 378350.000 90550.000 1901800.000 710437.407 258575.000 1245887.500
n 3 0 − − − − − − −

f3

1 3 100 34.000 0.000 0.000 350.000 58.552 0.000 50.000
n/2 3 100 38.000 0.000 0.000 300.000 59.933 0.000 50.000

n 3 100 48.000 0.000 0.000 450.000 72.097 0.000 50.000

f4

1 3 0 − − − − − − −
n/2 3 5 1360160.000 1642400.000 522600.000 1901300.000 623573.935 788175.000 1868675.000

n 3 100 30514.000 29600.000 18400.000 50600.000 6646.804 25100.000 35000.000

f5

1 3 44 239328.409 33125.000 1950.000 1614950.000 430928.923 14900.000 144175.000
n/2 3 34 524875.000 361075.000 16150.000 1757950.000 483876.068 176700.000 834950.000

n 3 100 183382.000 158850.000 10250.000 870850.000 141891.204 88900.000 228575.000

f6

1 3 0 − − − − − − −
n/2 3 0 − − − − − − −

n 3 0 − − − − − − −

f7

1 3 0 − − − − − − −
n/2 3 1 1314600.000 1314600.000 1314600.000 1314600.000 0.000 1314600.000 1314600.000

n 3 100 48509.000 42450.000 12300.000 165000.000 25539.896 32750.000 58800.000

f8

1 3 100 1005.000 300.000 0.000 26000.000 2706.086 200.000 1100.000
n/2 3 100 1309.000 600.000 0.000 17700.000 2548.642 400.000 900.000

n 3 100 1242.000 700.000 0.000 24700.000 2700.175 500.000 900.000

f9

1 3 100 1485.000 450.000 0.000 24900.000 3174.150 200.000 1200.000
n/2 3 100 1286.000 700.000 0.000 33900.000 3531.475 500.000 1000.000

n 3 100 889.000 700.000 0.000 4400.000 588.423 600.000 1150.000

f10

1 3 100 2109.000 400.000 0.000 52400.000 6269.537 200.000 1100.000
n/2 3 100 1169.000 800.000 0.000 31400.000 3104.988 600.000 1000.000

n 3 100 1006.000 800.000 0.000 4300.000 639.258 600.000 1250.000

f11

1 3 100 1539.000 550.000 0.000 28800.000 4101.167 200.000 1100.000
n/2 3 100 1021.000 800.000 0.000 10100.000 1093.442 500.000 1300.000

n 3 100 976.000 1000.000 0.000 3000.000 518.763 600.000 1250.000

f12

1 3 100 1548.000 500.000 100.000 45600.000 5004.815 200.000 1000.000
n/2 3 100 943.000 900.000 0.000 3600.000 544.440 600.000 1200.000

n 3 100 1017.000 1000.000 200.000 4100.000 544.774 700.000 1300.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number of
evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard deviation of
evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.

Table A8: Numerical results for the test set 2 with the tree depth (d) equal to 5.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 5 32 630781.250 434500.000 13200.000 1770700.000 581802.917 78900.000 1111750.000
n/2 5 75 281428.000 132900.000 7100.000 1854900.000 396877.793 43500.000 341150.000
n 5 100 19104.000 13850.000 1500.000 97100.000 17758.031 6950.000 24500.000

f2
1 5 28 514430.357 502700.000 10700.000 1756150.000 402057.528 154300.000 704925.000
n 5 0 − − − − − − −

f3

1 5 100 5.000 0.000 0.000 100.000 16.667 0.000 0.000
n/2 5 100 2.000 0.000 0.000 50.000 9.847 0.000 0.000
n 5 100 3.000 0.000 0.000 50.000 11.934 0.000 0.000

f4

1 5 0 − − − − − − −
n/2 5 70 712271.429 628800.000 93700.000 1844600.000 472993.180 284300.000 1005800.000
n 5 100 28782.000 26450.000 17000.000 69400.000 8518.612 23200.000 33250.000

f5

1 5 96 211866.667 21850.000 200.000 1924050.000 387141.201 7175.000 233000.000
n/2 5 73 293853.425 116400.000 7750.000 1771500.000 413556.237 68850.000 301287.500
n 5 100 132101.000 89575.000 6100.000 971100.000 126032.633 58100.000 173675.000

f6

1 5 0 − − − − − − −
n/2 5 0 − − − − − − −
n 5 0 − − − − − − −

f7

1 5 0 − − − − − − −
n/2 5 50 713536.000 553350.000 61600.000 1958000.000 579299.195 180500.000 1053100.000
n 5 99 36152.525 31900.000 12700.000 109900.000 19750.037 21450.000 44550.000

f8

1 5 100 181.000 100.000 0.000 1500.000 207.289 100.000 200.000
n/2 5 100 246.000 200.000 0.000 700.000 185.003 100.000 400.000
n 5 100 302.000 300.000 0.000 1600.000 280.685 100.000 400.000

f9

1 5 100 196.000 200.000 0.000 1300.000 183.633 100.000 200.000
n/2 5 100 251.000 200.000 0.000 1300.000 232.898 0.000 400.000
n 5 100 237.000 200.000 0.000 800.000 222.772 0.000 400.000

f10

1 5 100 242.000 100.000 0.000 2800.000 414.675 100.000 200.000
n/2 5 100 251.000 200.000 0.000 800.000 232.029 0.000 400.000
n 5 100 270.000 300.000 0.000 900.000 227.192 0.000 400.000

f11

1 5 100 189.000 100.000 0.000 1400.000 200.955 100.000 200.000
n/2 5 100 223.000 200.000 0.000 1300.000 251.000 0.000 400.000
n 5 100 198.000 200.000 0.000 700.000 188.015 0.000 300.000

f12

1 5 100 189.000 200.000 0.000 700.000 150.350 100.000 200.000
n/2 5 100 250.000 200.000 0.000 1000.000 252.862 0.000 400.000
n 5 100 236.000 200.000 0.000 1100.000 231.604 0.000 400.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number
of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard
deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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Table A9: Numerical results for the test set 2 with the tree depth (d) equal to 7.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 7 76 450513.158 255050.000 4500.000 1966400.000 499497.757 67350.000 655400.000
n/2 7 90 169258.889 47550.000 2700.000 1329200.000 268662.462 14900.000 211600.000

n 7 100 16176.000 7500.000 900.000 108900.000 19624.763 3450.000 21850.000

f2
1 7 80 470735.000 348950.000 5650.000 1806250.000 447305.257 84375.000 763300.000
n 7 0 − − − − − − −

f3

1 7 100 1.000 0.000 0.000 50.000 7.035 0.000 0.000
n/2 7 100 0.500 0.000 0.000 50.000 5.000 0.000 0.000

n 7 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f4

1 7 0 − − − − − − −
n/2 7 91 438524.176 247100.000 39800.000 1959900.000 446027.468 129200.000 628375.000

n 7 100 28681.000 27050.000 17800.000 72400.000 8260.991 23500.000 31850.000

f5

1 7 99 79162.121 10800.000 350.000 1748000.000 206296.440 4112.500 48575.000
n/2 7 80 302208.125 120425.000 1600.000 1982400.000 384506.111 34525.000 415825.000

n 7 100 84274.500 52025.000 5850.000 472250.000 82952.680 35300.000 100425.000

f6

1 7 0 − − − − − − −
n/2 7 0 − − − − − − −

n 7 0 − − − − − − −

f7

1 7 1 1412800.000 1412800.000 1412800.000 1412800.000 0.000 1412800.000 1412800.000
n/2 7 78 435564.103 246250.000 25200.000 1952000.000 446131.809 115900.000 581900.000

n 7 95 33951.579 30200.000 9000.000 118900.000 19968.086 19175.000 43075.000

f8

1 7 100 88.000 100.000 0.000 1400.000 170.726 0.000 100.000
n/2 7 100 59.000 0.000 0.000 800.000 123.987 0.000 100.000

n 7 100 29.000 0.000 0.000 400.000 78.232 0.000 0.000

f9

1 7 100 74.000 100.000 0.000 600.000 99.107 0.000 100.000
n/2 7 100 8.000 0.000 0.000 200.000 30.748 0.000 0.000

n 7 100 4.000 0.000 0.000 300.000 31.527 0.000 0.000

f10

1 7 100 109.000 100.000 0.000 1200.000 156.409 0.000 100.000
n/2 7 100 5.000 0.000 0.000 200.000 26.112 0.000 0.000

n 7 100 2.000 0.000 0.000 200.000 20.000 0.000 0.000

f11

1 7 100 71.000 100.000 0.000 400.000 80.773 0.000 100.000
n/2 7 100 2.000 0.000 0.000 100.000 14.071 0.000 0.000

n 7 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f12

1 7 100 79.000 100.000 0.000 400.000 83.236 0.000 100.000
n/2 7 100 2.000 0.000 0.000 200.000 20.000 0.000 0.000

n 7 100 1.000 0.000 0.000 100.000 10.000 0.000 0.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number of
evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard deviation of
evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.

Table A10: Numerical results for the test set 2 with the tree depth (d) equal to 9.
Benchmark

k d HITS MNE Median Min Max Std 1st Quartile 3rd Quartile
Function

f1

1 9 94 209245.745 61850.000 1800.000 1567700.000 311962.734 17100.000 255300.000
n/2 9 98 105754.082 24150.000 1900.000 961600.000 194180.495 9100.000 77600.000
n 9 100 16838.000 10800.000 1500.000 115800.000 17789.554 5250.000 22200.000

f2
1 9 86 191109.884 65325.000 2750.000 1523250.000 298018.973 15800.000 244550.000
n 9 0 − − − − − − −

f3

1 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f4

1 9 0 − − − − − − −
n/2 9 88 373156.818 192750.000 43800.000 1989200.000 453078.330 97250.000 459200.000
n 9 100 28248.000 26650.000 17900.000 51100.000 7537.562 23000.000 32550.000

f5

1 9 99 139900.505 10700.000 200.000 1871900.000 315419.062 4837.500 58387.500
n/2 9 73 394686.301 132100.000 4650.000 1973200.000 529829.629 46150.000 564137.500
n 9 100 71622.500 46775.000 5100.000 504650.000 69962.603 29925.000 94550.000

f6

1 9 0 − − − − − − −
n/2 9 0 − − − − − − −
n 9 0 − − − − − − −

f7

1 9 5 982600.000 964800.000 67800.000 1763500.000 616183.078 680625.000 1364875.000
n/2 9 90 337923.333 131950.000 16300.000 1997000.000 461742.392 63000.000 415300.000
n 9 93 29850.538 25300.000 8800.000 105100.000 18115.983 17350.000 35800.000

f8

1 9 100 18.000 0.000 0.000 200.000 43.531 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f9

1 9 100 23.000 0.000 0.000 300.000 52.905 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f10

1 9 100 20.000 0.000 0.000 500.000 63.564 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f11

1 9 100 18.000 0.000 0.000 300.000 45.793 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f12

1 9 100 18.000 0.000 0.000 200.000 47.948 0.000 0.000
n/2 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n 9 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; HITS - Number of hits on the function global minimum; MNE - Mean number
of evaluations; Median - Median number of evaluations; Min - Minimum number of evaluations; Max - Maximum number of evaluations; Std - Standard
deviation of evaluations; 1st Quartile - First quartile of evaluations; 3rd Quartile - Third quartile of evaluations.
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Tables A11 and A12 show the results of Aligned Friedman’s and
Iman-Davenport’s tests, along with the Holm’s procedure based on MG-PMA
performance in the test set 2 for all values of k and d considered (Tables A6-A10).

Table A11: Average rankings of Aligned Friedman’s and Iman-Davenport’s tests for
comparison between MG-PMAs with different values of the number of trees k and
the tree depths d for the test set 2.

i Algorithm Rank
14 MG-PMA with k = n/2 and d = 2 130.000
13 MG-PMA with k = 1 and d = 2 122.400
12 MG-PMA with k = 1 and d = 3 107.700
11 MG-PMA with k = n/2 and d = 3 102.400
10 MG-PMA with k = 1 and d = 5 81.200
9 MG-PMA with k = n and d = 2 80.9
8 MG-PMA with k = 1 and d = 7 77.650
7 MG-PMA with k = n and d = 3 65.200
6 MG-PMA with k = 1 and d = 9 62.300
5 MG-PMA with k = n/2 and d = 5 57.100
4 MG-PMA with k = n and d = 5 54.300
3 MG-PMA with k = n/2 and d = 7 50.000
2 MG-PMA with k = n/2 and d = 9 48.550
1 MG-PMA with k = n and d = 7 46.950
0 MG-PMA with k = n and d = 9 45.950

Table A12: Holm’s procedure for pairwise comparison between MG-PMAs with
different values of the number of trees k and the tree depths d for the test set 2. The
reference value R0 corresponds to the rank of the best algorithm (i = 0); in this case
MG-PMA with k = n and d = 9.

Test p-value
Aligned Friedman 0.839

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
MG-PMA with k = n/2 and d = 2 4.326 0.000 0.004 Yes
MG-PMA with k = 1 and d = 2 3.935 0.000 0.004 Yes
MG-PMA with k = 1 and d = 3 3.178 0.002 0.004 Yes
MG-PMA with k = n/2 and d = 3 2.905 0.004 0.005 Yes
MG-PMA with k = 1 and d = 5 1.814 0.070 0.005 No
MG-PMA with k = n and d = 2 1.794 0.073 0.006 No
MG-PMA with k = 1 and d = 7 1.632 0.103 0.006 No
MG-PMA with k = n and d = 3 0.991 0.322 0.007 No
MG-PMA with k = 1 and d = 9 0.842 0.400 0.008 No
MG-PMA with k = n/2 and d = 5 0.574 0.566 0.010 No
MG-PMA with k = n and d = 5 0.430 0.667 0.013 No
MG-PMA with k = n/2 and d = 7 0.208 0.835 0.017 No
MG-PMA with k = n/2 and d = 9 0.134 0.894 0.025 No
MG-PMA with k = n and d = 7 0.052 0.959 0.050 No
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A2.3
Set 3

Table A13: Numerical results for the test set 3 with the tree depth (d) equal to 2.
Benchmark k d MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 2 1.523e+08 1.698e+08 1.131e+08 1.698e+08 2.265e+07 1.131e+08 1.131e+08
n/2 2 2.166e+07 1.755e+07 1.071e+07 6.280e+07 1.205e+07 1.071e+07 1.071e+07
n 2 9.614e+06 5.597e+06 1.035e+06 5.590e+07 1.180e+07 1.035e+06 1.035e+06

c2

1 2 1.643e+10 1.836e+10 9.113e+09 2.204e+10 6.145e+09 9.113e+09 9.113e+09
n/2 2 5.166e+09 5.007e+09 4.829e+09 6.659e+09 3.928e+08 4.829e+09 4.829e+09
n 2 1.410e+06 2.424e+05 3.977e+04 5.520e+07 7.688e+06 3.977e+04 3.977e+04

c3

1 2 3.206e+02 3.206e+02 3.203e+02 3.209e+02 1.477e−01 3.203e+02 3.203e+02
n/2 2 3.201e+02 3.200e+02 3.200e+02 3.205e+02 7.588e−02 3.200e+02 3.200e+02
n 2 3.200e+02 3.200e+02 3.200e+02 3.200e+02 1.646e−03 3.200e+02 3.200e+02

c4

1 2 4.940e+02 4.934e+02 4.632e+02 5.108e+02 9.724e+00 4.632e+02 4.632e+02
n/2 2 4.535e+02 4.510e+02 4.304e+02 4.716e+02 8.333e+00 4.304e+02 4.304e+02
n 2 4.536e+02 4.550e+02 4.244e+02 4.637e+02 1.071e+01 4.244e+02 4.244e+02

c5

1 2 2.187e+03 2.157e+03 2.098e+03 2.455e+03 6.971e+01 2.098e+03 2.098e+03
n/2 2 1.365e+03 1.376e+03 9.595e+02 2.009e+03 2.337e+02 9.595e+02 9.595e+02
n 2 1.116e+03 1.063e+03 8.445e+02 1.732e+03 1.904e+02 8.445e+02 8.445e+02

c6

1 2 7.796e+07 1.251e+08 5.004e+06 1.251e+08 5.090e+07 5.004e+06 5.004e+06
n/2 2 1.278e+06 1.506e+06 4.826e+04 2.688e+06 6.652e+05 4.826e+04 4.826e+04
n 2 9.492e+05 6.698e+04 1.679e+03 4.299e+07 6.006e+06 1.679e+03 1.679e+03

c7

1 2 1.024e+03 9.144e+02 8.536e+02 1.268e+03 1.669e+02 8.536e+02 8.536e+02
n/2 2 7.072e+02 7.095e+02 7.020e+02 7.119e+02 3.860e+00 7.020e+02 7.020e+02
n 2 7.011e+02 7.011e+02 7.003e+02 7.026e+02 4.414e−01 7.003e+02 7.003e+02

c8

1 2 2.825e+06 1.957e+06 5.143e+03 9.757e+06 2.283e+06 5.143e+03 5.143e+03
n/2 2 7.375e+05 2.789e+05 2.080e+03 8.545e+06 1.620e+06 2.080e+03 2.080e+03
n 2 4.950e+05 2.079e+05 1.719e+03 3.088e+06 7.079e+05 1.719e+03 1.719e+03

c9

1 2 1.121e+03 1.112e+03 1.054e+03 1.254e+03 6.594e+01 1.054e+03 1.054e+03
n/2 2 1.013e+03 1.011e+03 1.005e+03 1.039e+03 9.473e+00 1.005e+03 1.005e+03
n 2 1.001e+03 1.001e+03 1.000e+03 1.003e+03 5.119e−01 1.000e+03 1.000e+03

c10

1 2 7.258e+05 6.255e+05 1.202e+05 3.818e+06 7.154e+05 1.202e+05 1.202e+05
n/2 2 5.540e+04 4.254e+04 4.188e+03 2.674e+05 5.538e+04 4.188e+03 4.188e+03
n 2 2.740e+04 1.354e+04 1.381e+03 2.134e+05 3.823e+04 1.381e+03 1.381e+03

c11

1 2 1.661e+03 1.657e+03 1.638e+03 1.768e+03 2.105e+01 1.638e+03 1.638e+03
n/2 2 1.408e+03 1.408e+03 1.402e+03 1.418e+03 3.375e+00 1.402e+03 1.402e+03
n 2 1.386e+03 1.403e+03 1.115e+03 1.406e+03 6.687e+01 1.115e+03 1.115e+03

c12

1 2 1.388e+03 1.400e+03 1.367e+03 1.400e+03 1.321e+01 1.367e+03 1.367e+03
n/2 2 1.316e+03 1.311e+03 1.304e+03 1.400e+03 2.151e+01 1.304e+03 1.304e+03
n 2 1.323e+03 1.308e+03 1.303e+03 1.400e+03 3.383e+01 1.303e+03 1.303e+03

c13

1 2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 6.436e−05 1.300e+03 1.300e+03
n/2 2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.337e−04 1.300e+03 1.300e+03
n 2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.429e−04 1.300e+03 1.300e+03

c14

1 2 8.175e+03 6.117e+03 6.109e+03 1.937e+04 4.330e+03 6.109e+03 6.109e+03
n/2 2 8.741e+03 8.707e+03 2.736e+03 1.473e+04 2.508e+03 2.736e+03 2.736e+03
n 2 3.558e+03 1.555e+03 1.518e+03 1.263e+04 3.246e+03 1.518e+03 1.518e+03

c15

1 2 2.698e+03 2.695e+03 2.553e+03 3.513e+03 2.177e+02 2.553e+03 2.553e+03
n/2 2 2.265e+03 2.256e+03 1.816e+03 2.419e+03 9.600e+01 1.816e+03 1.816e+03
n 2 1.600e+03 1.600e+03 1.600e+03 1.601e+03 1.653e−01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; MBFV - Mean of the best fitness values; Median
- Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std -
Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of
the best fitness values.
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Table A14: Numerical results for the test set 3 with the tree depth (d) equal to 3.
Benchmark k d MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 3 1.083e+08 1.075e+08 3.063e+07 1.698e+08 2.854e+07 3.063e+07 3.063e+07
n/2 3 1.603e+07 1.489e+07 4.936e+06 3.046e+07 6.017e+06 4.936e+06 4.936e+06
n 3 6.001e+06 4.034e+06 9.295e+05 5.039e+07 7.839e+06 9.295e+05 9.295e+05

c2

1 3 8.203e+09 8.152e+09 1.461e+09 1.760e+10 3.305e+09 1.461e+09 1.461e+09
n/2 3 1.569e+09 1.504e+08 2.379e+06 6.121e+09 2.174e+09 2.379e+06 2.379e+06
n 3 1.222e+05 7.122e+04 1.173e+04 6.470e+05 1.330e+05 1.173e+04 1.173e+04

c3

1 3 3.205e+02 3.204e+02 3.203e+02 3.208e+02 1.368e−01 3.203e+02 3.203e+02
n/2 3 3.200e+02 3.200e+02 3.200e+02 3.203e+02 4.723e−02 3.200e+02 3.200e+02
n 3 3.200e+02 3.200e+02 3.200e+02 3.200e+02 1.446e−03 3.200e+02 3.200e+02

c4

1 3 4.758e+02 4.736e+02 4.534e+02 5.085e+02 1.186e+01 4.534e+02 4.534e+02
n/2 3 4.462e+02 4.473e+02 4.186e+02 4.647e+02 1.199e+01 4.186e+02 4.186e+02
n 3 4.439e+02 4.438e+02 4.249e+02 4.637e+02 9.687e+00 4.249e+02 4.249e+02

c5

1 3 2.010e+03 2.028e+03 1.558e+03 2.464e+03 2.214e+02 1.558e+03 1.558e+03
n/2 3 1.247e+03 1.189e+03 8.817e+02 2.125e+03 2.388e+02 8.817e+02 8.817e+02
n 3 1.040e+03 9.820e+02 8.433e+02 1.347e+03 1.483e+02 8.433e+02 8.433e+02

c6

1 3 1.752e+07 7.310e+06 8.145e+04 8.713e+07 2.271e+07 8.145e+04 8.145e+04
n/2 3 1.019e+06 8.800e+05 1.106e+04 2.758e+06 7.785e+05 1.106e+04 1.106e+04
n 3 1.138e+05 5.412e+04 1.349e+03 7.756e+05 1.539e+05 1.349e+03 1.349e+03

c7

1 3 7.706e+02 7.283e+02 7.066e+02 9.280e+02 7.171e+01 7.066e+02 7.066e+02
n/2 3 7.033e+02 7.030e+02 7.018e+02 7.110e+02 1.643e+00 7.018e+02 7.018e+02
n 3 7.011e+02 7.011e+02 7.002e+02 7.026e+02 5.005e−01 7.002e+02 7.002e+02

c8

1 3 1.447e+06 7.564e+05 2.701e+03 4.481e+06 1.615e+06 2.701e+03 2.701e+03
n/2 3 7.046e+05 1.878e+05 1.207e+03 5.198e+06 1.318e+06 1.207e+03 1.207e+03
n 3 3.385e+05 1.496e+05 1.407e+03 1.891e+06 4.623e+05 1.407e+03 1.407e+03

c9

1 3 1.056e+03 1.054e+03 1.023e+03 1.134e+03 2.288e+01 1.023e+03 1.023e+03
n/2 3 1.003e+03 1.003e+03 1.001e+03 1.009e+03 2.522e+00 1.001e+03 1.001e+03
n 3 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.249e−01 1.000e+03 1.000e+03

c10

1 3 5.215e+05 4.473e+05 2.742e+04 8.006e+06 1.095e+06 2.742e+04 2.742e+04
n/2 3 3.228e+04 2.143e+04 2.776e+03 2.698e+05 4.106e+04 2.776e+03 2.776e+03
n 3 1.386e+04 6.445e+03 1.874e+03 1.435e+05 2.611e+04 1.874e+03 1.874e+03

c11

1 3 1.507e+03 1.462e+03 1.405e+03 1.664e+03 9.959e+01 1.405e+03 1.405e+03
n/2 3 1.405e+03 1.404e+03 1.402e+03 1.412e+03 2.378e+00 1.402e+03 1.402e+03
n 3 1.403e+03 1.403e+03 1.401e+03 1.404e+03 6.813e−01 1.401e+03 1.401e+03

c12

1 3 1.363e+03 1.360e+03 1.317e+03 1.400e+03 2.185e+01 1.317e+03 1.317e+03
n/2 3 1.319e+03 1.310e+03 1.304e+03 1.400e+03 2.732e+01 1.304e+03 1.304e+03
n 3 1.338e+03 1.309e+03 1.303e+03 1.400e+03 4.432e+01 1.303e+03 1.303e+03

c13

1 3 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.133e−04 1.300e+03 1.300e+03
n/2 3 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.058e−04 1.300e+03 1.300e+03
n 3 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.291e−04 1.300e+03 1.300e+03

c14

1 3 6.244e+03 6.061e+03 3.089e+03 1.583e+04 2.657e+03 3.089e+03 3.089e+03
n/2 3 6.703e+03 7.614e+03 2.155e+03 1.504e+04 3.484e+03 2.155e+03 2.155e+03
n 3 4.205e+03 1.535e+03 1.506e+03 1.312e+04 3.998e+03 1.506e+03 1.506e+03

c15

1 3 2.332e+03 2.498e+03 1.691e+03 2.804e+03 3.430e+02 1.691e+03 1.691e+03
n/2 3 1.884e+03 1.651e+03 1.600e+03 2.255e+03 2.997e+02 1.600e+03 1.600e+03
n 3 1.600e+03 1.600e+03 1.600e+03 1.600e+03 1.117e−01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; MBFV - Mean of the best fitness values; Median
- Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std -
Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of
the best fitness values.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Appendix A. Analyses of the Multigenic Approach – Numerical Results 134

Table A15: Numerical results for the test set 3 with the tree depth (d) equal to 5.
Benchmark k d MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 5 3.917e+07 3.059e+07 4.292e+06 1.111e+08 2.753e+07 4.292e+06 4.292e+06
n/2 5 7.554e+06 6.979e+06 2.678e+06 1.831e+07 3.562e+06 2.678e+06 2.678e+06
n 5 1.811e+06 1.711e+06 7.500e+05 6.343e+06 9.447e+05 7.500e+05 7.500e+05

c2

1 5 2.558e+09 1.362e+09 4.856e+07 1.114e+10 2.677e+09 4.856e+07 4.856e+07
n/2 5 4.318e+06 1.415e+06 7.198e+03 3.271e+07 6.936e+06 7.198e+03 7.198e+03
n 5 2.043e+04 1.015e+04 1.266e+03 1.181e+05 2.700e+04 1.266e+03 1.266e+03

c3

1 5 3.204e+02 3.203e+02 3.201e+02 3.207e+02 1.401e−01 3.201e+02 3.201e+02
n/2 5 3.200e+02 3.200e+02 3.200e+02 3.202e+02 4.437e−02 3.200e+02 3.200e+02
n 5 3.200e+02 3.200e+02 3.200e+02 3.200e+02 2.378e−03 3.200e+02 3.200e+02

c4

1 5 4.629e+02 4.627e+02 4.420e+02 4.926e+02 1.145e+01 4.420e+02 4.420e+02
n/2 5 4.372e+02 4.369e+02 4.167e+02 4.638e+02 1.219e+01 4.167e+02 4.167e+02
n 5 4.383e+02 4.378e+02 4.209e+02 4.597e+02 9.003e+00 4.209e+02 4.209e+02

c5

1 5 1.804e+03 1.816e+03 1.291e+03 2.431e+03 2.837e+02 1.291e+03 1.291e+03
n/2 5 1.089e+03 1.098e+03 6.375e+02 1.592e+03 1.546e+02 6.375e+02 6.375e+02
n 5 1.011e+03 9.651e+02 8.432e+02 1.305e+03 1.284e+02 8.432e+02 8.432e+02

c6

1 5 1.871e+06 2.376e+05 1.291e+04 5.441e+07 7.805e+06 1.291e+04 1.291e+04
n/2 5 9.038e+05 7.928e+05 1.799e+04 2.557e+06 6.818e+05 1.799e+04 1.799e+04
n 5 5.730e+04 3.130e+04 1.669e+03 2.756e+05 7.201e+04 1.669e+03 1.669e+03

c7

1 5 7.142e+02 7.117e+02 7.040e+02 7.393e+02 8.075e+00 7.040e+02 7.040e+02
n/2 5 7.025e+02 7.023e+02 7.012e+02 7.044e+02 7.352e−01 7.012e+02 7.012e+02
n 5 7.009e+02 7.010e+02 7.003e+02 7.025e+02 4.022e−01 7.003e+02 7.003e+02

c8

1 5 1.838e+05 8.154e+03 1.732e+03 3.894e+06 6.372e+05 1.732e+03 1.732e+03
n/2 5 1.366e+05 5.708e+04 1.786e+03 9.096e+05 1.879e+05 1.786e+03 1.786e+03
n 5 2.247e+05 7.191e+04 1.839e+03 1.320e+06 3.122e+05 1.839e+03 1.839e+03

c9

1 5 1.020e+03 1.017e+03 1.000e+03 1.068e+03 1.600e+01 1.000e+03 1.000e+03
n/2 5 1.001e+03 1.001e+03 1.000e+03 1.003e+03 5.578e−01 1.000e+03 1.000e+03
n 5 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.608e−01 1.000e+03 1.000e+03

c10

1 5 1.254e+05 9.264e+04 3.248e+03 6.258e+05 1.244e+05 3.248e+03 3.248e+03
n/2 5 1.133e+04 8.354e+03 1.477e+03 5.332e+04 1.141e+04 1.477e+03 1.477e+03
n 5 5.028e+03 3.029e+03 1.410e+03 3.675e+04 6.507e+03 1.410e+03 1.410e+03

c11

1 5 1.428e+03 1.412e+03 1.403e+03 1.639e+03 5.295e+01 1.403e+03 1.403e+03
n/2 5 1.402e+03 1.402e+03 1.401e+03 1.405e+03 8.876e−01 1.401e+03 1.401e+03
n 5 1.402e+03 1.402e+03 1.401e+03 1.406e+03 8.092e−01 1.401e+03 1.401e+03

c12

1 5 1.333e+03 1.328e+03 1.307e+03 1.400e+03 2.389e+01 1.307e+03 1.307e+03
n/2 5 1.317e+03 1.309e+03 1.302e+03 1.400e+03 2.770e+01 1.302e+03 1.302e+03
n 5 1.333e+03 1.310e+03 1.302e+03 1.400e+03 4.184e+01 1.302e+03 1.302e+03

c13

1 5 1.300e+03 1.300e+03 1.300e+03 1.300e+03 7.098e−05 1.300e+03 1.300e+03
n/2 5 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.883e−04 1.300e+03 1.300e+03
n 5 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.305e−04 1.300e+03 1.300e+03

c14

1 5 3.513e+03 3.241e+03 1.966e+03 9.733e+03 1.216e+03 1.966e+03 1.966e+03
n/2 5 4.678e+03 2.212e+03 1.532e+03 1.309e+04 3.364e+03 1.532e+03 1.532e+03
n 5 3.538e+03 1.510e+03 1.500e+03 1.263e+04 3.062e+03 1.500e+03 1.500e+03

c15

1 5 1.721e+03 1.660e+03 1.616e+03 2.300e+03 1.714e+02 1.616e+03 1.616e+03
n/2 5 1.613e+03 1.601e+03 1.600e+03 2.206e+03 8.467e+01 1.600e+03 1.600e+03
n 5 1.600e+03 1.600e+03 1.600e+03 1.600e+03 5.365e−02 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; MBFV - Mean of the best fitness values; Median
- Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std -
Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of
the best fitness values.
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Table A16: Numerical results for the test set 3 with the tree depth (d) equal to 7.
Benchmark k d MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 7 1.424e+07 6.844e+06 6.794e+05 8.270e+07 1.945e+07 6.794e+05 6.794e+05
n/2 7 2.903e+06 2.602e+06 5.634e+05 8.051e+06 1.657e+06 5.634e+05 5.634e+05
n 7 1.298e+06 1.054e+06 4.880e+05 3.248e+06 6.578e+05 4.880e+05 4.880e+05

c2

1 7 4.502e+08 2.219e+07 3.650e+05 6.042e+09 1.290e+09 3.650e+05 3.650e+05
n/2 7 1.053e+06 6.524e+04 2.992e+02 2.973e+07 4.234e+06 2.992e+02 2.992e+02
n 7 1.077e+04 6.855e+03 1.001e+03 6.743e+04 1.274e+04 1.001e+03 1.001e+03

c3

1 7 3.202e+02 3.202e+02 3.200e+02 3.206e+02 1.636e−01 3.200e+02 3.200e+02
n/2 7 3.200e+02 3.200e+02 3.200e+02 3.201e+02 1.828e−02 3.200e+02 3.200e+02
n 7 3.200e+02 3.200e+02 3.200e+02 3.200e+02 6.597e−03 3.200e+02 3.200e+02

c4

1 7 4.545e+02 4.538e+02 4.299e+02 4.880e+02 1.081e+01 4.299e+02 4.299e+02
n/2 7 4.292e+02 4.279e+02 4.080e+02 4.537e+02 1.158e+01 4.080e+02 4.080e+02
n 7 4.360e+02 4.328e+02 4.169e+02 4.537e+02 8.049e+00 4.169e+02 4.169e+02

c5

1 7 1.598e+03 1.669e+03 8.739e+02 2.156e+03 3.017e+02 8.739e+02 8.739e+02
n/2 7 1.059e+03 1.045e+03 6.393e+02 1.886e+03 2.002e+02 6.393e+02 6.393e+02
n 7 1.040e+03 1.021e+03 7.404e+02 1.771e+03 1.760e+02 7.404e+02 7.404e+02

c6

1 7 3.629e+05 1.223e+05 1.935e+03 2.113e+06 5.386e+05 1.935e+03 1.935e+03
n/2 7 5.819e+05 3.617e+05 4.892e+03 2.523e+06 6.422e+05 4.892e+03 4.892e+03
n 7 7.253e+04 3.954e+04 4.158e+03 2.843e+05 7.142e+04 4.158e+03 4.158e+03

c7

1 7 7.074e+02 7.055e+02 7.016e+02 7.216e+02 5.155e+00 7.016e+02 7.016e+02
n/2 7 7.020e+02 7.019e+02 7.006e+02 7.041e+02 5.708e−01 7.006e+02 7.006e+02
n 7 7.009e+02 7.011e+02 7.001e+02 7.039e+02 5.904e−01 7.001e+02 7.001e+02

c8

1 7 1.115e+04 5.101e+03 1.280e+03 1.312e+05 2.172e+04 1.280e+03 1.280e+03
n/2 7 6.016e+04 3.364e+04 1.213e+03 2.989e+05 7.550e+04 1.213e+03 1.213e+03
n 7 9.755e+04 3.331e+04 1.059e+03 6.407e+05 1.502e+05 1.059e+03 1.059e+03

c9

1 7 1.006e+03 1.001e+03 1.000e+03 1.061e+03 1.145e+01 1.000e+03 1.000e+03
n/2 7 1.001e+03 1.001e+03 1.000e+03 1.003e+03 5.499e−01 1.000e+03 1.000e+03
n 7 1.001e+03 1.001e+03 1.000e+03 1.002e+03 2.821e−01 1.000e+03 1.000e+03

c10

1 7 4.844e+04 2.793e+04 3.947e+03 3.617e+05 6.328e+04 3.947e+03 3.947e+03
n/2 7 1.146e+04 5.810e+03 1.465e+03 6.964e+04 1.524e+04 1.465e+03 1.465e+03
n 7 5.279e+03 2.053e+03 1.332e+03 4.870e+04 8.333e+03 1.332e+03 1.332e+03

c11

1 7 1.403e+03 1.406e+03 1.149e+03 1.427e+03 3.660e+01 1.149e+03 1.149e+03
n/2 7 1.402e+03 1.402e+03 1.401e+03 1.405e+03 8.371e−01 1.401e+03 1.401e+03
n 7 1.402e+03 1.402e+03 1.401e+03 1.404e+03 7.043e−01 1.401e+03 1.401e+03

c12

1 7 1.323e+03 1.315e+03 1.305e+03 1.400e+03 2.454e+01 1.305e+03 1.305e+03
n/2 7 1.328e+03 1.310e+03 1.303e+03 1.400e+03 3.813e+01 1.303e+03 1.303e+03
n 7 1.343e+03 1.308e+03 1.302e+03 1.400e+03 4.628e+01 1.302e+03 1.302e+03

c13

1 7 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.059e−04 1.300e+03 1.300e+03
n/2 7 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.010e−04 1.300e+03 1.300e+03
n 7 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.993e−04 1.300e+03 1.300e+03

c14

1 7 2.635e+03 2.343e+03 1.762e+03 9.155e+03 1.200e+03 1.762e+03 1.762e+03
n/2 7 4.244e+03 1.930e+03 1.506e+03 1.528e+04 3.765e+03 1.506e+03 1.506e+03
n 7 3.767e+03 1.518e+03 1.500e+03 1.285e+04 3.745e+03 1.500e+03 1.500e+03

c15

1 7 1.629e+03 1.610e+03 1.601e+03 1.944e+03 5.350e+01 1.601e+03 1.601e+03
n/2 7 1.600e+03 1.600e+03 1.600e+03 1.603e+03 4.979e−01 1.600e+03 1.600e+03
n 7 1.606e+03 1.600e+03 1.600e+03 1.700e+03 2.376e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; MBFV - Mean of the best fitness values; Median
- Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std -
Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of
the best fitness values.
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Table A17: Numerical results for the test set 3 with the tree depth (d) equal to 9.
Benchmark k d MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 9 3.299e+06 2.107e+06 3.262e+05 1.329e+07 3.291e+06 3.262e+05 3.262e+05
n/2 9 2.084e+06 1.917e+06 5.154e+05 8.469e+06 1.332e+06 5.154e+05 5.154e+05
n 9 1.561e+06 9.829e+05 4.036e+05 2.977e+07 4.045e+06 4.036e+05 4.036e+05

c2

1 9 8.085e+07 3.525e+06 3.722e+03 6.134e+08 1.549e+08 3.722e+03 3.722e+03
n/2 9 2.248e+06 3.467e+03 5.305e+02 1.113e+08 1.558e+07 5.305e+02 5.305e+02
n 9 2.183e+04 6.481e+03 5.701e+02 4.412e+05 6.665e+04 5.701e+02 5.701e+02

c3

1 9 3.201e+02 3.201e+02 3.200e+02 3.205e+02 1.282e−01 3.200e+02 3.200e+02
n/2 9 3.200e+02 3.200e+02 3.200e+02 3.201e+02 2.639e−02 3.200e+02 3.200e+02
n 9 3.200e+02 3.200e+02 3.200e+02 3.200e+02 3.625e−03 3.200e+02 3.200e+02

c4

1 9 4.477e+02 4.478e+02 4.292e+02 4.772e+02 9.606e+00 4.292e+02 4.292e+02
n/2 9 4.276e+02 4.279e+02 4.080e+02 4.458e+02 1.064e+01 4.080e+02 4.080e+02
n 9 4.323e+02 4.328e+02 4.179e+02 4.527e+02 7.137e+00 4.179e+02 4.179e+02

c5

1 9 1.433e+03 1.446e+03 9.338e+02 1.952e+03 2.981e+02 9.338e+02 9.338e+02
n/2 9 1.131e+03 1.102e+03 8.433e+02 1.713e+03 1.869e+02 8.433e+02 8.433e+02
n 9 1.033e+03 1.005e+03 7.520e+02 1.538e+03 1.594e+02 7.520e+02 7.520e+02

c6

1 9 1.319e+05 3.142e+04 1.246e+03 1.276e+06 2.667e+05 1.246e+03 1.246e+03
n/2 9 2.139e+05 1.263e+05 5.358e+03 2.438e+06 3.585e+05 5.358e+03 5.358e+03
n 9 6.483e+04 3.913e+04 2.214e+03 6.115e+05 9.384e+04 2.214e+03 2.214e+03

c7

1 9 7.061e+02 7.045e+02 7.016e+02 7.214e+02 4.912e+00 7.016e+02 7.016e+02
n/2 9 7.018e+02 7.017e+02 7.009e+02 7.034e+02 4.239e−01 7.009e+02 7.009e+02
n 9 7.009e+02 7.010e+02 7.002e+02 7.029e+02 4.653e−01 7.002e+02 7.002e+02

c8

1 9 8.801e+03 3.322e+03 1.376e+03 1.495e+05 2.082e+04 1.376e+03 1.376e+03
n/2 9 4.600e+04 2.600e+04 1.137e+03 6.303e+05 9.114e+04 1.137e+03 1.137e+03
n 9 6.285e+04 2.591e+04 1.713e+03 4.459e+05 8.513e+04 1.713e+03 1.713e+03

c9

1 9 1.006e+03 1.001e+03 1.000e+03 1.157e+03 2.246e+01 1.000e+03 1.000e+03
n/2 9 1.001e+03 1.001e+03 1.000e+03 1.004e+03 6.121e−01 1.000e+03 1.000e+03
n 9 1.001e+03 1.001e+03 1.000e+03 1.002e+03 5.321e−01 1.000e+03 1.000e+03

c10

1 9 4.261e+04 1.036e+04 1.927e+03 5.052e+05 9.047e+04 1.927e+03 1.927e+03
n/2 9 7.895e+03 3.746e+03 1.319e+03 5.751e+04 1.158e+04 1.319e+03 1.319e+03
n 9 2.905e+03 1.752e+03 1.326e+03 8.974e+03 2.181e+03 1.326e+03 1.326e+03

c11

1 9 1.405e+03 1.403e+03 1.400e+03 1.432e+03 5.974e+00 1.400e+03 1.400e+03
n/2 9 1.402e+03 1.402e+03 1.401e+03 1.404e+03 7.779e−01 1.401e+03 1.401e+03
n 9 1.402e+03 1.402e+03 1.400e+03 1.405e+03 8.131e−01 1.400e+03 1.400e+03

c12

1 9 1.324e+03 1.311e+03 1.304e+03 1.400e+03 3.112e+01 1.304e+03 1.304e+03
n/2 9 1.328e+03 1.309e+03 1.303e+03 1.400e+03 3.852e+01 1.303e+03 1.303e+03
n 9 1.328e+03 1.307e+03 1.302e+03 1.400e+03 4.023e+01 1.302e+03 1.302e+03

c13

1 9 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.669e−04 1.300e+03 1.300e+03
n/2 9 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.829e−04 1.300e+03 1.300e+03
n 9 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.102e−04 1.300e+03 1.300e+03

c14

1 9 2.128e+03 1.919e+03 1.718e+03 4.365e+03 4.928e+02 1.718e+03 1.718e+03
n/2 9 3.182e+03 1.859e+03 1.500e+03 1.318e+04 3.016e+03 1.500e+03 1.500e+03
n 9 4.477e+03 1.879e+03 1.500e+03 1.375e+04 3.992e+03 1.500e+03 1.500e+03

c15

1 9 1.618e+03 1.607e+03 1.600e+03 1.718e+03 3.067e+01 1.600e+03 1.600e+03
n/2 9 1.603e+03 1.600e+03 1.600e+03 1.700e+03 1.437e+01 1.600e+03 1.600e+03
n 9 1.600e+03 1.600e+03 1.600e+03 1.601e+03 8.130e−02 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; d - tree depth; MBFV - Mean of the best fitness values; Median
- Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std -
Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of
the best fitness values.
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Tables A18 and A19 show the results of Aligned Friedman’s and
Iman-Davenport’s tests, along with the Holm’s procedure based on MG-PMA
performance in the test set 3 for all values of k and d considered (Tables A13-A17).

Table A18: Average rankings of Aligned Friedman’s and Iman-Davenport’s tests for
comparison between MG-PMAs with different values of the number of trees k and
the tree depths d for the test set 3.

i Algorithm Rank
14 MG-PMA with k = 1 and d = 2 201.400
13 MG-PMA with k = 1 and d = 3 198.600
12 MG-PMA with k = 1 and d = 5 145.800
11 MG-PMA with k = n/2 and d = 2 142.333
10 MG-PMA with k = n/2 and d = 3 115.533
9 MG-PMA with k = 1 and d = 7 100.200
8 MG-PMA with k = n and d = 2 97.933
7 MG-PMA with k = 1 and d = 9 95.533
6 MG-PMA with k = n/2 and d = 5 92.333
5 MG-PMA with k = n and d = 3 87.800
4 MG-PMA with k = n and d = 7 85.533
3 MG-PMA with k = n/2 and d = 7 83.400
2 MG-PMA with k = n and d = 5 83.200
1 MG-PMA with k = n and d = 9 82.733
0 MG-PMA with k = n/2 and d = 9 82.667

Table A19: Holm’s procedure for pairwise comparison between MG-PMAs with
different values of the number of trees k and the tree depths d for the test set 3. The
reference value R0 corresponds to the rank of the best algorithm (i = 0); in this case
MG-PMA with k = n/2 and d = 9.

Test p-value
Aligned Friedman 0.535

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
MG-PMA with k = 1 and d = 2 4.995 0.000 0.004 Yes
MG-PMA with k = 1 and d = 3 4.877 0.000 0.004 Yes
MG-PMA with k = 1 and d = 5 2.656 0.008 0.004 No
MG-PMA with k = n/2 and d = 2 2.510 0.012 0.005 No
MG-PMA with k = n/2 and d = 3 1.383 0.167 0.005 No
MG-PMA with k = 1 and d = 7 0.738 0.461 0.006 No
MG-PMA with k = n and d = 2 0.642 0.521 0.006 No
MG-PMA with k = 1 and d = 9 0.541 0.588 0.007 No
MG-PMA with k = n/2 and d = 5 0.407 0.684 0.008 No
MG-PMA with k = n and d = 3 0.216 0.829 0.010 No
MG-PMA with k = n and d = 7 0.121 0.904 0.013 No
MG-PMA with k = n/2 and d = 7 0.031 0.975 0.017 No
MG-PMA with k = n and d = 5 0.023 0.982 0.025 No
MG-PMA with k = n and d = 9 0.003 0.998 0.050 No
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A3
Numerical Results for MG-PMA

This section presents the numerical results for benchmark-based analysis
of MG-PMA to compare with the feedback approach and the analysis of the
tournament size and the high-level crossover operator. The results shown in
Table A20 presents the results for MG-PMA with tree depth equal to 7, tournament
size equal to 100 and high-level crossover operator.

Table A20 shows the mean of the best fitness values (MBFV), the median of
the best fitness values (Median), the minimum of the best fitness values (Min), the
maximum of the best fitness values (Max), the standard deviation of the best fitness
values (Std), the first quartile of the best fitness values (1st Quartile) and the third
quartile of the best fitness values (3rd Quartile).

Table A20: Numerical results for MG-PMA with tree depth equal to 7, tournament
size equal to 100 and high-level crossover operator.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 1.058e+07 5.740e+06 1.647e+06 5.935e+07 1.398e+07 4.303e+06 9.182e+06
n/2 2.715e+06 2.555e+06 2.972e+05 6.100e+06 1.200e+06 1.904e+06 3.484e+06

n 1.236e+06 1.165e+06 6.055e+05 2.794e+06 4.714e+05 8.448e+05 1.557e+06

c2

1 7.139e+08 1.220e+08 3.754e+05 9.113e+09 1.673e+09 2.266e+07 3.742e+08
n/2 3.613e+05 4.948e+04 8.336e+02 4.727e+06 9.638e+05 6.956e+03 1.917e+05

n 1.487e+04 8.088e+03 1.181e+03 1.330e+05 2.472e+04 4.998e+03 1.147e+04

c3

1 3.202e+02 3.201e+02 3.200e+02 3.207e+02 1.772e−01 3.200e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.203e+02 6.048e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 1.694e−04 3.200e+02 3.200e+02

c4

1 4.515e+02 4.522e+02 4.320e+02 4.795e+02 1.062e+01 4.428e+02 4.579e+02
n/2 4.329e+02 4.331e+02 4.090e+02 4.497e+02 1.025e+01 4.279e+02 4.405e+02

n 4.338e+02 4.328e+02 4.129e+02 4.527e+02 7.343e+00 4.298e+02 4.408e+02

c5

1 1.604e+03 1.544e+03 9.686e+02 2.254e+03 2.944e+02 1.403e+03 1.842e+03
n/2 1.093e+03 1.086e+03 7.889e+02 1.584e+03 1.753e+02 9.619e+02 1.179e+03

n 9.985e+02 9.617e+02 6.220e+02 1.370e+03 1.405e+02 9.617e+02 1.080e+03

c6

1 3.558e+05 1.007e+05 8.338e+03 2.451e+06 5.198e+05 3.422e+04 4.527e+05
n/2 6.416e+05 3.616e+05 3.499e+03 5.275e+06 1.006e+06 1.655e+05 7.264e+05

n 3.379e+04 2.062e+04 1.303e+03 1.816e+05 3.726e+04 1.071e+04 4.663e+04

c7

1 7.085e+02 7.061e+02 7.021e+02 7.291e+02 6.180e+00 7.043e+02 7.112e+02
n/2 7.020e+02 7.018e+02 7.012e+02 7.041e+02 5.833e−01 7.016e+02 7.021e+02

n 7.009e+02 7.011e+02 7.002e+02 7.015e+02 3.358e−01 7.008e+02 7.011e+02

c8

1 3.936e+04 3.677e+03 1.503e+03 1.462e+06 2.039e+05 2.232e+03 1.119e+04
n/2 1.068e+05 3.922e+04 1.269e+03 8.356e+05 1.732e+05 1.968e+04 8.176e+04

n 8.318e+04 3.662e+04 1.617e+03 4.512e+05 9.766e+04 1.027e+04 1.381e+05

c9

1 1.004e+03 1.001e+03 1.000e+03 1.053e+03 8.740e+00 1.001e+03 1.004e+03
n/2 1.001e+03 1.001e+03 1.000e+03 1.004e+03 5.717e−01 1.000e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 2.790e−01 1.001e+03 1.001e+03

c10

1 4.036e+04 2.379e+04 1.950e+03 3.816e+05 6.179e+04 7.841e+03 4.123e+04
n/2 1.105e+04 5.581e+03 1.356e+03 4.524e+04 1.163e+04 2.061e+03 2.088e+04

n 5.123e+03 3.478e+03 1.385e+03 4.419e+04 6.935e+03 1.532e+03 5.954e+03

c11

1 1.403e+03 1.405e+03 1.149e+03 1.441e+03 3.691e+01 1.403e+03 1.408e+03
n/2 1.402e+03 1.402e+03 1.401e+03 1.404e+03 8.516e−01 1.401e+03 1.403e+03

n 1.402e+03 1.402e+03 1.401e+03 1.404e+03 6.668e−01 1.401e+03 1.402e+03

c12

1 1.322e+03 1.314e+03 1.304e+03 1.400e+03 2.310e+01 1.311e+03 1.319e+03
n/2 1.319e+03 1.308e+03 1.303e+03 1.400e+03 3.006e+01 1.306e+03 1.313e+03

n 1.330e+03 1.307e+03 1.303e+03 1.400e+03 4.137e+01 1.304e+03 1.379e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.340e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.181e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.892e−04 1.300e+03 1.300e+03

c14

1 2.644e+03 2.408e+03 1.757e+03 1.032e+04 1.270e+03 2.074e+03 2.681e+03
n/2 3.789e+03 1.925e+03 1.504e+03 1.308e+04 3.305e+03 1.534e+03 7.520e+03

n 4.484e+03 1.859e+03 1.500e+03 1.375e+04 4.198e+03 1.502e+03 7.540e+03

c15

1 1.634e+03 1.613e+03 1.602e+03 1.881e+03 4.796e+01 1.606e+03 1.642e+03
n/2 1.607e+03 1.600e+03 1.600e+03 1.700e+03 2.378e+01 1.600e+03 1.600e+03

n 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.400e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.
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A4
Numerical Results for MG-PMA with Feedback

This section presents the numerical results for benchmark-based analysis of
MG-PMA with feedback. The results shown in Table A20 presents the results for
MG-PMA with tree depth equal to 7, tournament size equal to 100 and high-level
crossover operator. The numerical results of MG-PMA with feedback are presented
in Table A21.

Tables A20 and A21 show the mean of the best fitness values (MBFV), the
median of the best fitness values (Median), the minimum of the best fitness values
(Min), the maximum of the best fitness values (Max), the standard deviation of the
best fitness values (Std), the first quartile of the best fitness values (1st Quartile) and
the third quartile of the best fitness values (3rd Quartile).

Table A21: Numerical results for MG-PMA with feedback using the test set 3 with
the tree depth (d) equal to 7.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 5.481e+07 1.241e+07 2.027e+06 1.698e+08 6.865e+07 7.668e+06 1.183e+08
n/2 5.713e+07 5.962e+07 5.770e+06 1.163e+08 2.206e+07 4.307e+07 7.216e+07

n 8.297e+07 7.287e+07 1.288e+07 1.698e+08 4.075e+07 5.875e+07 1.118e+08

c2

1 3.834e+09 6.935e+08 2.979e+04 2.204e+10 6.867e+09 1.683e+08 3.420e+09
n/2 8.753e+09 6.714e+09 1.279e+09 1.973e+10 5.745e+09 3.406e+09 1.368e+10

n 1.219e+10 1.190e+10 4.273e+09 2.204e+10 3.102e+09 1.037e+10 1.405e+10

c3

1 3.204e+02 3.203e+02 3.202e+02 3.206e+02 7.782e−02 3.203e+02 3.204e+02
n/2 3.204e+02 3.204e+02 3.201e+02 3.207e+02 1.292e−01 3.203e+02 3.205e+02

n 3.202e+02 3.202e+02 3.200e+02 3.205e+02 8.386e−02 3.202e+02 3.202e+02

c4

1 4.611e+02 4.590e+02 4.293e+02 5.108e+02 1.825e+01 4.461e+02 4.682e+02
n/2 4.644e+02 4.641e+02 4.442e+02 4.835e+02 1.100e+01 4.566e+02 4.733e+02

n 4.658e+02 4.665e+02 4.445e+02 4.875e+02 1.060e+01 4.570e+02 4.731e+02

c5

1 1.563e+03 1.525e+03 8.173e+02 2.379e+03 4.060e+02 1.272e+03 1.822e+03
n/2 1.788e+03 1.813e+03 1.277e+03 2.356e+03 2.747e+02 1.593e+03 1.965e+03

n 1.815e+03 1.809e+03 1.236e+03 2.320e+03 2.538e+02 1.621e+03 2.008e+03

c6

1 1.341e+07 2.671e+05 2.002e+03 1.251e+08 3.751e+07 4.523e+04 1.226e+06
n/2 2.294e+06 1.143e+06 1.447e+04 2.025e+07 3.924e+06 3.176e+05 1.806e+06

n 2.167e+07 1.134e+07 4.761e+04 1.251e+08 2.698e+07 2.595e+06 3.075e+07

c7

1 7.175e+02 7.092e+02 7.021e+02 7.827e+02 1.974e+01 7.044e+02 7.255e+02
n/2 7.148e+02 7.138e+02 7.045e+02 7.489e+02 9.718e+00 7.073e+02 7.165e+02

n 7.508e+02 7.323e+02 7.059e+02 8.972e+02 4.254e+01 7.229e+02 7.717e+02

c8

1 9.438e+03 5.184e+03 1.620e+03 4.589e+04 1.039e+04 2.529e+03 1.246e+04
n/2 8.310e+04 7.551e+03 1.620e+03 1.940e+06 3.198e+05 2.505e+03 1.898e+04

n 3.401e+06 2.145e+06 7.209e+04 1.303e+07 2.684e+06 1.871e+06 3.866e+06

c9

1 1.033e+03 1.015e+03 1.000e+03 1.254e+03 5.346e+01 1.001e+03 1.045e+03
n/2 1.036e+03 1.038e+03 1.008e+03 1.091e+03 1.814e+01 1.021e+03 1.047e+03

n 1.075e+03 1.072e+03 1.025e+03 1.206e+03 3.441e+01 1.051e+03 1.092e+03

c10

1 2.479e+05 2.175e+05 2.819e+03 6.254e+05 2.216e+05 4.021e+04 4.370e+05
n/2 4.475e+05 2.880e+05 1.363e+04 2.221e+06 4.758e+05 1.490e+05 6.254e+05

n 4.780e+05 3.597e+05 5.682e+03 4.200e+06 6.652e+05 1.468e+05 6.254e+05

c11

1 1.436e+03 1.411e+03 1.403e+03 1.767e+03 8.211e+01 1.406e+03 1.419e+03
n/2 1.439e+03 1.429e+03 1.404e+03 1.539e+03 2.957e+01 1.417e+03 1.452e+03

n 1.439e+03 1.427e+03 1.406e+03 1.554e+03 3.196e+01 1.418e+03 1.450e+03

c12

1 1.344e+03 1.328e+03 1.304e+03 1.400e+03 3.859e+01 1.311e+03 1.400e+03
n/2 1.332e+03 1.329e+03 1.310e+03 1.400e+03 2.041e+01 1.318e+03 1.332e+03

n 1.364e+03 1.355e+03 1.317e+03 1.400e+03 2.642e+01 1.344e+03 1.400e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.377e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.112e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 6.863e−05 1.300e+03 1.300e+03

c14

1 4.974e+03 3.761e+03 2.058e+03 1.786e+04 3.028e+03 3.032e+03 5.981e+03
n/2 8.114e+03 7.290e+03 2.264e+03 1.587e+04 2.950e+03 6.305e+03 9.904e+03

n 1.528e+04 1.566e+04 8.092e+03 1.839e+04 2.504e+03 1.419e+04 1.764e+04

c15

1 1.706e+03 1.700e+03 1.600e+03 2.557e+03 1.717e+02 1.636e+03 1.700e+03
n/2 2.000e+03 1.796e+03 1.652e+03 3.877e+03 5.367e+02 1.700e+03 1.995e+03

n 2.015e+03 1.988e+03 1.700e+03 2.628e+03 2.175e+02 1.867e+03 2.074e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.
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Table A22 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the performance of MG-PMA and
MG-PMA with feedback methods (Tables A20 and A21).

Table A22: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between MG-PMA and MG-PMA with feedback. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this
case MG-PMA with k = n.

i Algorithm Rank
5 MG-PMA with feedback with k = 1 59.500
4 MG-PMA with feedback with k = n/2 58.567
3 MG-PMA with feedback with k = n 49.100
2 MG-PMA with k = 1 45.033
1 MG-PMA with k = n/2 30.633
0 MG-PMA with k = n 30.167

Test p-value
Aligned Friedman 0.025

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
MG-PMA with k = 1 with feedback 3.075 0.002 0.010 Yes
MG-PMA with k = n/2 with feedback 2.977 0.003 0.013 Yes
MG-PMA with k = n with feedback 1.985 0.047 0.017 No
MG-PMA with k = 1 1.559 0.119 0.025 No
MG-PMA with k = n/2 0.049 0.961 0.050 No
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A5
Numerical Results for Analysis of Tournament Size and Crossover

This section presents the numerical results for benchmark-based analysis
of the tournament size (Tables A23-A25) and the high-level crossover operator
(Tables A26-A29).

Tables A23-A29 show the mean of the best fitness values (MBFV), the median
of the best fitness values (Median), the minimum of the best fitness values (Min),
the maximum of the best fitness values (Max), the standard deviation of the best
fitness values (Std), the first quartile of the best fitness values (1st Quartile) and the
third quartile of the best fitness values (3rd Quartile).
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Table A23: Numerical results for MG-PMA with tournament size equal to 2 and the
tree depth (d) equal to 7 using the test set 3.

Benchmark
k MVBF Median Min Max Std 1st Quartile 3rd Quartile

Function

c1

1 6.878e+06 6.822e+06 1.092e+06 1.710e+07 3.492e+06 4.211e+06 9.122e+06
n/2 9.698e+06 9.818e+06 3.309e+06 1.677e+07 3.042e+06 7.549e+06 1.171e+07

n 5.000e+06 5.081e+06 1.044e+06 1.164e+07 2.355e+06 3.437e+06 6.632e+06

c2

1 1.502e+08 9.567e+07 2.137e+06 1.457e+09 2.226e+08 3.047e+07 1.977e+08
n/2 1.143e+08 2.449e+07 1.005e+05 2.767e+09 4.002e+08 8.709e+06 5.529e+07

n 2.338e+06 5.078e+05 2.746e+03 4.663e+07 6.768e+06 1.134e+05 2.066e+06

c3

1 3.201e+02 3.201e+02 3.200e+02 3.204e+02 7.232e−02 3.200e+02 3.201e+02
n/2 3.201e+02 3.200e+02 3.200e+02 3.203e+02 5.254e−02 3.200e+02 3.201e+02

n 3.200e+02 3.200e+02 3.200e+02 3.201e+02 1.876e−02 3.200e+02 3.200e+02

c4

1 4.462e+02 4.451e+02 4.349e+02 4.653e+02 8.135e+00 4.402e+02 4.520e+02
n/2 4.285e+02 4.266e+02 4.152e+02 4.518e+02 7.721e+00 4.231e+02 4.322e+02

n 4.347e+02 4.342e+02 4.163e+02 4.528e+02 8.251e+00 4.281e+02 4.416e+02

c5

1 1.332e+03 1.352e+03 8.349e+02 1.723e+03 1.913e+02 1.186e+03 1.441e+03
n/2 1.068e+03 1.059e+03 7.487e+02 1.323e+03 1.194e+02 9.723e+02 1.179e+03

n 9.875e+02 9.639e+02 7.481e+02 1.208e+03 9.433e+01 9.619e+02 1.063e+03

c6

1 6.044e+04 2.085e+04 3.041e+03 6.279e+05 1.052e+05 9.549e+03 7.420e+04
n/2 9.001e+04 3.492e+04 1.570e+03 1.114e+06 2.112e+05 1.721e+04 4.258e+04

n 2.983e+04 3.097e+04 2.192e+03 1.812e+05 2.572e+04 1.430e+04 3.663e+04

c7

1 7.041e+02 7.036e+02 7.019e+02 7.122e+02 1.944e+00 7.028e+02 7.049e+02
n/2 7.025e+02 7.023e+02 7.013e+02 7.052e+02 8.139e−01 7.019e+02 7.033e+02

n 7.015e+02 7.015e+02 7.006e+02 7.033e+02 4.955e−01 7.012e+02 7.018e+02

c8

1 5.068e+03 2.770e+03 1.194e+03 1.930e+04 4.406e+03 1.916e+03 8.239e+03
n/2 3.046e+03 1.703e+03 1.004e+03 3.475e+04 4.928e+03 1.519e+03 2.507e+03

n 2.917e+03 2.207e+03 1.114e+03 1.086e+04 2.185e+03 1.553e+03 3.151e+03

c9

1 1.002e+03 1.001e+03 1.000e+03 1.015e+03 2.574e+00 1.001e+03 1.002e+03
n/2 1.001e+03 1.001e+03 1.000e+03 1.005e+03 1.232e+00 1.001e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.590e−01 1.001e+03 1.001e+03

c10

1 2.080e+04 1.373e+04 1.771e+03 9.250e+04 2.026e+04 6.871e+03 2.701e+04
n/2 6.871e+03 2.766e+03 1.659e+03 3.048e+04 7.699e+03 2.123e+03 8.343e+03

n 3.778e+03 1.687e+03 1.340e+03 1.208e+04 3.211e+03 1.449e+03 5.646e+03

c11

1 1.405e+03 1.405e+03 1.400e+03 1.413e+03 2.499e+00 1.403e+03 1.406e+03
n/2 1.404e+03 1.404e+03 1.401e+03 1.407e+03 1.357e+00 1.403e+03 1.405e+03

n 1.370e+03 1.402e+03 1.111e+03 1.406e+03 9.065e+01 1.401e+03 1.403e+03

c12

1 1.311e+03 1.309e+03 1.303e+03 1.400e+03 1.372e+01 1.306e+03 1.311e+03
n/2 1.308e+03 1.308e+03 1.304e+03 1.313e+03 2.468e+00 1.306e+03 1.310e+03

n 1.306e+03 1.306e+03 1.302e+03 1.310e+03 1.925e+00 1.304e+03 1.308e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.687e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.794e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.874e−04 1.300e+03 1.300e+03

c14

1 2.289e+03 2.194e+03 1.730e+03 3.320e+03 3.733e+02 2.005e+03 2.458e+03
n/2 2.908e+03 2.240e+03 1.769e+03 1.261e+04 2.126e+03 2.091e+03 2.510e+03

n 2.839e+03 2.000e+03 1.525e+03 1.261e+04 2.319e+03 1.666e+03 2.374e+03

c15

1 1.619e+03 1.614e+03 1.601e+03 1.700e+03 1.940e+01 1.608e+03 1.624e+03
n/2 1.609e+03 1.604e+03 1.601e+03 1.700e+03 1.926e+01 1.602e+03 1.607e+03

n 1.603e+03 1.601e+03 1.600e+03 1.700e+03 1.399e+01 1.600e+03 1.602e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median - Median of the best
fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std - Standard deviation of the best
fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of the best fitness values.
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Table A24: Numerical results for MG-PMA with tournament size equal to 25 and
the tree depth (d) equal to 7 using the test set 3.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 7.575e+06 6.699e+06 5.626e+05 2.429e+07 4.869e+06 3.932e+06 9.847e+06
n/2 3.431e+06 2.483e+06 7.397e+05 1.565e+07 2.748e+06 1.904e+06 4.033e+06

n 1.227e+06 1.081e+06 5.864e+05 2.647e+06 5.076e+05 8.379e+05 1.634e+06

c2

1 3.209e+08 6.469e+07 5.018e+05 4.703e+09 8.580e+08 1.479e+07 2.529e+08
n/2 6.629e+05 1.415e+04 1.214e+03 7.697e+06 1.680e+06 4.394e+03 2.536e+05

n 2.513e+04 9.262e+03 1.063e+03 7.180e+05 9.970e+04 3.421e+03 1.526e+04

c3

1 3.202e+02 3.201e+02 3.200e+02 3.206e+02 1.465e−01 3.200e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.201e+02 2.059e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 3.678e−03 3.200e+02 3.200e+02

c4

1 4.503e+02 4.470e+02 4.239e+02 4.721e+02 1.088e+01 4.435e+02 4.583e+02
n/2 4.317e+02 4.328e+02 4.090e+02 4.497e+02 1.049e+01 4.271e+02 4.408e+02

n 4.338e+02 4.319e+02 4.129e+02 4.597e+02 1.026e+01 4.269e+02 4.408e+02

c5

1 1.525e+03 1.464e+03 9.377e+02 2.036e+03 2.592e+02 1.343e+03 1.720e+03
n/2 1.082e+03 1.088e+03 6.230e+02 1.712e+03 2.152e+02 9.618e+02 1.179e+03

n 1.006e+03 9.618e+02 7.404e+02 1.366e+03 1.548e+02 8.433e+02 1.143e+03

c6

1 2.289e+05 9.448e+04 2.304e+03 1.404e+06 3.298e+05 4.488e+04 2.371e+05
n/2 3.952e+05 2.848e+05 5.325e+03 1.509e+06 3.496e+05 1.423e+05 5.726e+05

n 5.660e+04 3.271e+04 3.496e+03 3.581e+05 7.165e+04 1.986e+04 6.309e+04

c7

1 7.062e+02 7.050e+02 7.015e+02 7.212e+02 4.639e+00 7.037e+02 7.063e+02
n/2 7.019e+02 7.019e+02 7.012e+02 7.034e+02 4.184e−01 7.017e+02 7.021e+02

n 7.009e+02 7.009e+02 7.001e+02 7.046e+02 7.036e−01 7.004e+02 7.011e+02

c8

1 6.729e+03 5.983e+03 1.448e+03 1.959e+04 4.501e+03 2.759e+03 9.237e+03
n/2 2.774e+04 1.583e+04 9.904e+02 1.439e+05 3.195e+04 6.573e+03 3.378e+04

n 5.934e+04 3.222e+04 1.476e+03 4.290e+05 7.619e+04 1.219e+04 7.900e+04

c9

1 1.004e+03 1.001e+03 1.000e+03 1.045e+03 8.063e+00 1.001e+03 1.002e+03
n/2 1.001e+03 1.001e+03 1.000e+03 1.003e+03 4.616e−01 1.000e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.093e−01 1.000e+03 1.001e+03

c10

1 2.835e+04 1.190e+04 2.719e+03 1.852e+05 3.717e+04 7.022e+03 3.514e+04
n/2 1.083e+04 5.705e+03 1.384e+03 4.931e+04 1.075e+04 2.169e+03 1.732e+04

n 7.443e+03 1.773e+03 1.330e+03 1.994e+05 2.767e+04 1.489e+03 5.527e+03

c11

1 1.401e+03 1.406e+03 1.117e+03 1.421e+03 4.100e+01 1.403e+03 1.410e+03
n/2 1.402e+03 1.402e+03 1.401e+03 1.404e+03 7.217e−01 1.401e+03 1.402e+03

n 1.402e+03 1.402e+03 1.401e+03 1.405e+03 8.438e−01 1.401e+03 1.403e+03

c12

1 1.327e+03 1.313e+03 1.303e+03 1.400e+03 3.236e+01 1.308e+03 1.323e+03
n/2 1.317e+03 1.308e+03 1.303e+03 1.400e+03 2.783e+01 1.306e+03 1.310e+03

n 1.321e+03 1.306e+03 1.302e+03 1.400e+03 3.468e+01 1.304e+03 1.309e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.393e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.869e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.214e−04 1.300e+03 1.300e+03

c14

1 2.672e+03 2.304e+03 1.751e+03 9.141e+03 1.342e+03 2.144e+03 2.618e+03
n/2 2.913e+03 1.897e+03 1.504e+03 1.301e+04 2.766e+03 1.615e+03 1.975e+03

n 4.323e+03 1.920e+03 1.500e+03 1.263e+04 3.770e+03 1.503e+03 7.429e+03

c15

1 1.630e+03 1.613e+03 1.601e+03 1.847e+03 4.324e+01 1.607e+03 1.630e+03
n/2 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.396e+01 1.600e+03 1.601e+03

n 1.600e+03 1.600e+03 1.600e+03 1.600e+03 6.044e−02 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.
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Table A25: Numerical results for MG-PMA with tournament size equal to 50 and
the tree depth (d) equal to 7 using the test set 3.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 9.000e+06 5.655e+06 1.235e+06 6.011e+07 1.132e+07 5.655e+06 8.379e+06
n/2 3.215e+06 3.091e+06 9.358e+05 6.998e+06 1.341e+06 3.091e+06 4.284e+06

n 1.339e+06 1.090e+06 5.437e+05 4.526e+06 7.372e+05 1.090e+06 1.546e+06

c2

1 1.054e+09 9.925e+07 5.371e+05 1.014e+10 2.311e+09 9.925e+07 4.539e+08
n/2 7.897e+05 2.966e+04 9.667e+02 1.937e+07 2.810e+06 2.966e+04 2.834e+05

n 2.165e+04 8.414e+03 1.210e+03 5.035e+05 7.187e+04 8.414e+03 1.106e+04

c3

1 3.202e+02 3.201e+02 3.200e+02 3.206e+02 1.400e−01 3.201e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.201e+02 1.359e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 1.153e−03 3.200e+02 3.200e+02

c4

1 4.523e+02 4.518e+02 4.367e+02 4.777e+02 9.895e+00 4.518e+02 4.598e+02
n/2 4.337e+02 4.338e+02 4.090e+02 4.523e+02 1.044e+01 4.338e+02 4.428e+02

n 4.311e+02 4.328e+02 4.129e+02 4.438e+02 8.024e+00 4.328e+02 4.358e+02

c5

1 1.602e+03 1.542e+03 7.851e+02 2.367e+03 3.133e+02 1.542e+03 1.811e+03
n/2 1.077e+03 1.064e+03 7.557e+02 1.619e+03 2.005e+02 1.064e+03 1.182e+03

n 1.013e+03 1.007e+03 7.404e+02 1.469e+03 1.379e+02 1.007e+03 1.095e+03

c6

1 3.087e+05 1.645e+05 2.934e+03 1.277e+06 3.549e+05 1.645e+05 4.740e+05
n/2 5.833e+05 3.937e+05 1.085e+04 3.721e+06 6.890e+05 3.937e+05 6.689e+05

n 6.401e+04 2.267e+04 2.100e+03 4.712e+05 9.996e+04 2.267e+04 6.221e+04

c7

1 7.080e+02 7.055e+02 7.022e+02 7.274e+02 6.388e+00 7.055e+02 7.076e+02
n/2 7.019e+02 7.018e+02 7.009e+02 7.039e+02 5.396e−01 7.018e+02 7.020e+02

n 7.009e+02 7.010e+02 7.001e+02 7.014e+02 3.331e−01 7.010e+02 7.012e+02

c8

1 3.543e+04 4.494e+03 1.477e+03 1.406e+06 1.960e+05 4.494e+03 1.044e+04
n/2 7.736e+04 2.379e+04 1.921e+03 8.428e+05 1.624e+05 2.379e+04 5.334e+04

n 9.720e+04 3.452e+04 1.606e+03 1.074e+06 1.802e+05 3.452e+04 8.877e+04

c9

1 1.006e+03 1.001e+03 1.000e+03 1.057e+03 1.053e+01 1.001e+03 1.006e+03
n/2 1.001e+03 1.001e+03 1.000e+03 1.004e+03 5.282e−01 1.001e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.033e−01 1.001e+03 1.001e+03

c10

1 3.364e+04 1.299e+04 2.260e+03 3.374e+05 5.261e+04 1.299e+04 4.161e+04
n/2 1.034e+04 5.092e+03 1.481e+03 3.938e+04 1.051e+04 5.092e+03 1.687e+04

n 3.572e+03 1.889e+03 1.287e+03 1.055e+04 2.697e+03 1.889e+03 5.843e+03

c11

1 1.408e+03 1.406e+03 1.401e+03 1.434e+03 6.153e+00 1.406e+03 1.410e+03
n/2 1.402e+03 1.402e+03 1.401e+03 1.404e+03 6.960e−01 1.402e+03 1.402e+03

n 1.402e+03 1.402e+03 1.400e+03 1.405e+03 8.359e−01 1.402e+03 1.402e+03

c12

1 1.325e+03 1.312e+03 1.303e+03 1.400e+03 3.112e+01 1.312e+03 1.317e+03
n/2 1.317e+03 1.308e+03 1.302e+03 1.400e+03 2.779e+01 1.308e+03 1.310e+03

n 1.326e+03 1.307e+03 1.302e+03 1.400e+03 3.917e+01 1.307e+03 1.311e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.401e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.882e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.065e−04 1.300e+03 1.300e+03

c14

1 2.711e+03 2.443e+03 1.772e+03 1.245e+04 1.487e+03 2.443e+03 2.907e+03
n/2 3.775e+03 1.941e+03 1.504e+03 1.313e+04 3.241e+03 1.941e+03 6.642e+03

n 4.119e+03 1.868e+03 1.500e+03 1.285e+04 3.641e+03 1.868e+03 7.413e+03

c15

1 1.631e+03 1.614e+03 1.601e+03 1.700e+03 3.513e+01 1.614e+03 1.635e+03
n/2 1.601e+03 1.600e+03 1.600e+03 1.626e+03 3.582e+00 1.600e+03 1.600e+03

n 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.400e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Appendix A. Analyses of the Multigenic Approach – Numerical Results 145

Table A26: Numerical results for MG-PMA with restricted high-level crossover and
the tree depth (d) equal to 7 using the test set 3.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 9.561e+06 7.207e+06 6.654e+05 7.261e+07 1.207e+07 3.387e+06 1.015e+07
n/2 2.716e+06 2.313e+06 5.277e+05 6.592e+06 1.393e+06 1.517e+06 3.619e+06

n 1.739e+06 1.205e+06 2.642e+05 1.760e+07 2.431e+06 9.580e+05 1.707e+06

c2

1 8.220e+08 4.435e+07 3.058e+05 8.007e+09 1.912e+09 1.355e+07 2.538e+08
n/2 3.438e+05 2.469e+04 3.982e+02 2.790e+06 7.259e+05 5.190e+03 1.580e+05

n 1.422e+04 6.126e+03 5.149e+02 1.640e+05 2.595e+04 3.117e+03 1.182e+04

c3

1 3.202e+02 3.202e+02 3.200e+02 3.206e+02 1.742e−01 3.200e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.202e+02 3.798e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 2.044e−03 3.200e+02 3.200e+02

c4

1 4.520e+02 4.522e+02 4.181e+02 4.829e+02 1.299e+01 4.443e+02 4.632e+02
n/2 4.311e+02 4.305e+02 4.090e+02 4.497e+02 1.029e+01 4.241e+02 4.408e+02

n 4.352e+02 4.328e+02 4.129e+02 4.527e+02 8.842e+00 4.298e+02 4.433e+02

c5

1 1.600e+03 1.565e+03 1.009e+03 2.172e+03 2.817e+02 1.400e+03 1.756e+03
n/2 1.060e+03 1.043e+03 6.325e+02 1.752e+03 2.032e+02 9.617e+02 1.144e+03

n 1.039e+03 9.655e+02 8.433e+02 1.512e+03 1.708e+02 9.617e+02 1.117e+03

c6

1 3.936e+05 2.001e+05 2.035e+03 2.010e+06 4.635e+05 7.218e+04 5.672e+05
n/2 4.431e+05 2.633e+05 1.309e+04 2.303e+06 4.876e+05 1.466e+05 5.807e+05

n 6.538e+04 3.422e+04 9.422e+02 6.159e+05 1.072e+05 1.008e+04 7.879e+04

c7

1 7.070e+02 7.058e+02 7.016e+02 7.212e+02 4.397e+00 7.038e+02 7.082e+02
n/2 7.021e+02 7.019e+02 7.011e+02 7.045e+02 6.816e−01 7.017e+02 7.022e+02

n 7.009e+02 7.010e+02 7.001e+02 7.025e+02 4.328e−01 7.006e+02 7.011e+02

c8

1 1.895e+04 7.389e+03 1.597e+03 2.436e+05 4.239e+04 2.474e+03 1.311e+04
n/2 1.495e+05 3.918e+04 1.574e+03 3.760e+06 5.240e+05 1.578e+04 1.064e+05

n 8.270e+04 3.603e+04 2.435e+03 6.610e+05 1.230e+05 1.125e+04 1.279e+05

c9

1 1.005e+03 1.001e+03 1.000e+03 1.044e+03 9.457e+00 1.001e+03 1.005e+03
n/2 1.004e+03 1.001e+03 1.000e+03 1.153e+03 2.140e+01 1.000e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.709e−01 1.000e+03 1.001e+03

c10

1 5.281e+04 4.079e+04 2.077e+03 1.765e+05 4.546e+04 1.157e+04 9.190e+04
n/2 1.127e+04 3.877e+03 1.381e+03 8.197e+04 1.563e+04 2.243e+03 1.246e+04

n 4.270e+03 2.008e+03 1.354e+03 2.398e+04 4.364e+03 1.498e+03 5.702e+03

c11

1 1.408e+03 1.406e+03 1.401e+03 1.485e+03 1.202e+01 1.403e+03 1.409e+03
n/2 1.402e+03 1.402e+03 1.401e+03 1.404e+03 6.908e−01 1.401e+03 1.403e+03

n 1.402e+03 1.402e+03 1.401e+03 1.404e+03 6.282e−01 1.401e+03 1.402e+03

c12

1 1.322e+03 1.314e+03 1.305e+03 1.400e+03 2.676e+01 1.309e+03 1.317e+03
n/2 1.320e+03 1.308e+03 1.302e+03 1.400e+03 3.218e+01 1.306e+03 1.310e+03

n 1.334e+03 1.307e+03 1.302e+03 1.400e+03 4.321e+01 1.305e+03 1.400e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.574e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.151e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.724e−04 1.300e+03 1.300e+03

c14

1 2.405e+03 2.375e+03 1.773e+03 5.726e+03 5.789e+02 2.072e+03 2.515e+03
n/2 4.321e+03 1.917e+03 1.502e+03 1.261e+04 3.685e+03 1.830e+03 7.577e+03

n 3.413e+03 1.511e+03 1.500e+03 1.263e+04 3.446e+03 1.502e+03 2.026e+03

c15

1 1.635e+03 1.613e+03 1.601e+03 1.840e+03 4.569e+01 1.608e+03 1.651e+03
n/2 1.606e+03 1.600e+03 1.600e+03 1.700e+03 2.371e+01 1.600e+03 1.600e+03

n 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.400e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Appendix A. Analyses of the Multigenic Approach – Numerical Results 146

Table A27: Numerical results for MG-PMA with high-level single-point crossover
and the tree depth (d) equal to 7 using the test set 3.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 9.980e+06 7.623e+06 1.341e+06 4.748e+07 8.754e+06 5.161e+06 1.150e+07
n/2 3.407e+06 2.827e+06 6.111e+05 8.450e+06 1.730e+06 2.154e+06 4.467e+06

n 1.275e+06 1.181e+06 4.469e+05 2.673e+06 5.266e+05 8.585e+05 1.655e+06

c2

1 7.010e+08 6.745e+07 4.391e+05 9.113e+09 1.823e+09 1.264e+07 5.018e+08
n/2 1.033e+06 5.047e+04 4.411e+02 1.950e+07 3.051e+06 1.104e+04 3.192e+05

n 1.134e+04 8.470e+03 8.342e+02 1.135e+05 1.842e+04 3.364e+03 1.165e+04

c3

1 3.202e+02 3.202e+02 3.200e+02 3.206e+02 1.587e−01 3.201e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.201e+02 3.270e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 8.716e−04 3.200e+02 3.200e+02

c4

1 4.495e+02 4.480e+02 4.273e+02 4.755e+02 1.038e+01 4.431e+02 4.562e+02
n/2 4.325e+02 4.328e+02 4.060e+02 4.472e+02 9.967e+00 4.269e+02 4.408e+02

n 4.317e+02 4.328e+02 4.129e+02 4.507e+02 8.063e+00 4.279e+02 4.358e+02

c5

1 1.628e+03 1.592e+03 9.917e+02 2.266e+03 2.712e+02 1.427e+03 1.786e+03
n/2 1.068e+03 9.905e+02 7.472e+02 1.556e+03 2.008e+02 9.617e+02 1.200e+03

n 1.024e+03 1.036e+03 6.221e+02 1.611e+03 1.748e+02 8.635e+02 1.090e+03

c6

1 3.287e+05 1.544e+05 8.962e+03 1.803e+06 4.095e+05 4.515e+04 5.216e+05
n/2 4.731e+05 3.104e+05 2.493e+04 2.605e+06 5.082e+05 1.238e+05 7.070e+05

n 1.098e+05 3.462e+04 2.525e+03 1.778e+06 2.981e+05 1.265e+04 6.522e+04

c7

1 7.077e+02 7.054e+02 7.021e+02 7.236e+02 5.931e+00 7.039e+02 7.085e+02
n/2 7.021e+02 7.019e+02 7.011e+02 7.052e+02 7.799e−01 7.017e+02 7.024e+02

n 7.009e+02 7.010e+02 7.002e+02 7.021e+02 3.615e−01 7.006e+02 7.011e+02

c8

1 1.104e+04 3.836e+03 1.187e+03 1.124e+05 2.080e+04 2.161e+03 1.020e+04
n/2 1.559e+05 1.066e+05 5.783e+03 6.226e+05 1.444e+05 6.206e+04 1.961e+05

n 5.793e+05 3.374e+05 1.415e+03 9.586e+06 1.315e+06 2.191e+05 5.124e+05

c9

1 1.005e+03 1.001e+03 1.000e+03 1.034e+03 7.624e+00 1.001e+03 1.004e+03
n/2 1.004e+03 1.001e+03 1.000e+03 1.146e+03 2.036e+01 1.001e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 2.984e−01 1.000e+03 1.001e+03

c10

1 4.850e+04 2.598e+04 2.769e+03 2.383e+05 5.352e+04 9.368e+03 7.249e+04
n/2 9.619e+03 3.462e+03 1.341e+03 6.247e+04 1.285e+04 2.047e+03 1.458e+04

n 1.408e+04 3.735e+03 1.363e+03 1.980e+05 3.865e+04 1.967e+03 6.177e+03

c11

1 1.408e+03 1.406e+03 1.302e+03 1.497e+03 2.047e+01 1.404e+03 1.409e+03
n/2 1.402e+03 1.402e+03 1.400e+03 1.405e+03 8.351e−01 1.402e+03 1.403e+03

n 1.402e+03 1.402e+03 1.401e+03 1.404e+03 8.893e−01 1.401e+03 1.402e+03

c12

1 1.324e+03 1.314e+03 1.304e+03 1.400e+03 2.744e+01 1.309e+03 1.320e+03
n/2 1.331e+03 1.310e+03 1.304e+03 1.400e+03 4.053e+01 1.307e+03 1.378e+03

n 1.346e+03 1.310e+03 1.301e+03 1.400e+03 4.715e+01 1.305e+03 1.400e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.474e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.089e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.139e−04 1.300e+03 1.300e+03

c14

1 2.792e+03 2.355e+03 1.839e+03 9.655e+03 1.486e+03 2.179e+03 2.658e+03
n/2 3.995e+03 1.982e+03 1.406e+03 1.378e+04 3.205e+03 1.837e+03 7.583e+03

n 5.021e+03 1.946e+03 1.405e+03 1.404e+04 4.146e+03 1.503e+03 7.429e+03

c15

1 1.620e+03 1.609e+03 1.601e+03 1.700e+03 2.662e+01 1.604e+03 1.623e+03
n/2 1.604e+03 1.600e+03 1.600e+03 1.700e+03 1.955e+01 1.600e+03 1.600e+03

n 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.400e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.
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Table A28: Numerical results for MG-PMA with high-level two-point crossover
and the tree depth (d) equal to 7 using the test set 3.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 1.217e+07 6.457e+06 2.238e+05 5.725e+07 1.434e+07 4.817e+06 1.131e+07
n/2 3.095e+06 2.695e+06 6.477e+05 1.076e+07 1.805e+06 1.693e+06 4.031e+06

n 1.289e+06 1.090e+06 3.795e+05 3.641e+06 6.554e+05 8.285e+05 1.646e+06

c2

1 2.664e+08 6.766e+07 3.570e+05 5.109e+09 7.425e+08 2.247e+07 2.508e+08
n/2 1.231e+06 2.312e+04 1.612e+03 1.976e+07 3.639e+06 6.102e+03 3.576e+05

n 8.528e+03 3.891e+03 2.134e+02 7.074e+04 1.136e+04 1.494e+03 1.173e+04

c3

1 3.202e+02 3.202e+02 3.200e+02 3.206e+02 1.541e−01 3.201e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.202e+02 2.671e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 2.883e−03 3.200e+02 3.200e+02

c4

1 4.543e+02 4.542e+02 4.334e+02 4.744e+02 8.386e+00 4.499e+02 4.580e+02
n/2 4.306e+02 4.318e+02 4.100e+02 4.488e+02 1.024e+01 4.220e+02 4.388e+02

n 4.325e+02 4.318e+02 4.179e+02 4.527e+02 8.687e+00 4.259e+02 4.405e+02

c5

1 1.607e+03 1.590e+03 1.113e+03 2.336e+03 2.861e+02 1.403e+03 1.759e+03
n/2 1.090e+03 1.060e+03 7.445e+02 1.649e+03 2.208e+02 9.622e+02 1.204e+03

n 9.936e+02 9.618e+02 6.469e+02 1.325e+03 1.345e+02 9.617e+02 1.079e+03

c6

1 2.889e+05 1.139e+05 2.251e+03 2.017e+06 4.380e+05 4.104e+04 2.693e+05
n/2 5.111e+05 3.351e+05 1.253e+04 2.475e+06 4.899e+05 2.071e+05 7.410e+05

n 7.609e+04 2.678e+04 2.609e+03 1.069e+06 1.757e+05 9.939e+03 5.648e+04

c7

1 7.076e+02 7.057e+02 7.022e+02 7.276e+02 5.540e+00 7.043e+02 7.078e+02
n/2 7.022e+02 7.019e+02 7.011e+02 7.055e+02 9.022e−01 7.017e+02 7.022e+02

n 7.008e+02 7.009e+02 7.002e+02 7.014e+02 3.118e−01 7.005e+02 7.011e+02

c8

1 9.029e+04 6.579e+03 1.649e+03 3.885e+06 5.424e+05 3.065e+03 1.365e+04
n/2 1.731e+05 4.576e+04 1.448e+03 1.978e+06 3.726e+05 1.831e+04 1.179e+05

n 4.531e+05 2.732e+05 2.780e+03 4.024e+06 6.446e+05 1.518e+05 3.836e+05

c9

1 1.004e+03 1.001e+03 1.000e+03 1.031e+03 6.985e+00 1.001e+03 1.003e+03
n/2 1.001e+03 1.001e+03 1.000e+03 1.001e+03 1.721e−01 1.001e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 4.449e−01 1.000e+03 1.001e+03

c10

1 6.365e+04 2.784e+04 3.462e+03 6.254e+05 9.877e+04 1.111e+04 7.006e+04
n/2 6.749e+03 3.135e+03 1.409e+03 2.258e+04 6.597e+03 2.022e+03 8.021e+03

n 5.742e+03 3.315e+03 1.352e+03 7.280e+04 1.029e+04 1.580e+03 5.639e+03

c11

1 1.408e+03 1.406e+03 1.401e+03 1.429e+03 6.826e+00 1.403e+03 1.412e+03
n/2 1.402e+03 1.402e+03 1.401e+03 1.404e+03 7.449e−01 1.402e+03 1.403e+03

n 1.402e+03 1.402e+03 1.401e+03 1.405e+03 6.985e−01 1.401e+03 1.402e+03

c12

1 1.329e+03 1.314e+03 1.305e+03 1.400e+03 2.941e+01 1.311e+03 1.337e+03
n/2 1.322e+03 1.308e+03 1.302e+03 1.400e+03 3.408e+01 1.306e+03 1.311e+03

n 1.329e+03 1.306e+03 1.302e+03 1.400e+03 4.177e+01 1.304e+03 1.377e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.497e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.422e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.533e−04 1.300e+03 1.300e+03

c14

1 2.787e+03 2.263e+03 1.578e+03 1.386e+04 1.920e+03 2.083e+03 2.838e+03
n/2 4.666e+03 1.957e+03 1.501e+03 1.354e+04 3.775e+03 1.873e+03 8.118e+03

n 5.666e+03 7.377e+03 1.500e+03 1.347e+04 4.358e+03 1.504e+03 8.118e+03

c15

1 1.631e+03 1.617e+03 1.601e+03 1.917e+03 4.895e+01 1.606e+03 1.638e+03
n/2 1.605e+03 1.600e+03 1.600e+03 1.700e+03 1.984e+01 1.600e+03 1.600e+03

n 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.400e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.
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Table A29: Numerical results for MG-PMA with high-level uniform crossover and
the tree depth (d) equal to 7 using the test set 3.

Benchmark k MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1

1 7.060e+06 5.810e+06 1.082e+06 4.358e+07 6.391e+06 3.490e+06 9.274e+06
n/2 2.916e+06 2.424e+06 7.768e+05 7.165e+06 1.449e+06 1.873e+06 4.146e+06

n 1.366e+06 1.288e+06 5.729e+05 2.871e+06 5.387e+05 9.713e+05 1.788e+06

c2

1 5.779e+08 2.075e+08 2.907e+04 6.552e+09 1.260e+09 3.003e+07 5.427e+08
n/2 2.171e+05 1.740e+04 2.271e+02 4.463e+06 7.121e+05 4.238e+03 7.361e+04

n 1.707e+04 8.092e+03 4.572e+02 3.096e+05 4.440e+04 4.598e+03 1.171e+04

c3

1 3.202e+02 3.202e+02 3.200e+02 3.206e+02 1.855e−01 3.200e+02 3.203e+02
n/2 3.200e+02 3.200e+02 3.200e+02 3.202e+02 2.736e−02 3.200e+02 3.200e+02

n 3.200e+02 3.200e+02 3.200e+02 3.200e+02 9.427e−04 3.200e+02 3.200e+02

c4

1 4.533e+02 4.525e+02 4.329e+02 4.811e+02 1.030e+01 4.460e+02 4.605e+02
n/2 4.322e+02 4.339e+02 4.120e+02 4.459e+02 9.677e+00 4.236e+02 4.408e+02

n 4.319e+02 4.320e+02 4.060e+02 4.517e+02 8.706e+00 4.281e+02 4.358e+02

c5

1 1.628e+03 1.651e+03 1.077e+03 2.167e+03 2.643e+02 1.425e+03 1.843e+03
n/2 1.062e+03 1.059e+03 6.259e+02 1.640e+03 2.107e+02 9.618e+02 1.179e+03

n 1.016e+03 9.695e+02 8.433e+02 1.327e+03 1.304e+02 9.586e+02 1.101e+03

c6

1 1.885e+05 1.162e+05 3.967e+03 1.108e+06 2.060e+05 4.931e+04 2.902e+05
n/2 5.031e+05 3.309e+05 1.207e+04 2.237e+06 5.016e+05 1.540e+05 7.475e+05

n 2.252e+05 2.694e+04 1.866e+03 9.321e+06 1.300e+06 1.185e+04 6.116e+04

c7

1 7.069e+02 7.054e+02 7.014e+02 7.207e+02 4.519e+00 7.040e+02 7.075e+02
n/2 7.020e+02 7.019e+02 7.011e+02 7.039e+02 5.281e−01 7.017e+02 7.021e+02

n 7.009e+02 7.010e+02 7.002e+02 7.018e+02 3.679e−01 7.006e+02 7.011e+02

c8

1 5.737e+04 4.825e+03 1.501e+03 1.617e+06 2.390e+05 2.523e+03 9.908e+03
n/2 3.753e+05 1.217e+05 2.232e+03 4.379e+06 7.753e+05 6.322e+04 3.601e+05

n 3.989e+05 2.953e+05 2.441e+03 2.772e+06 4.295e+05 1.437e+05 4.985e+05

c9

1 1.006e+03 1.001e+03 1.000e+03 1.030e+03 8.611e+00 1.001e+03 1.008e+03
n/2 1.001e+03 1.001e+03 1.000e+03 1.003e+03 6.894e−01 1.001e+03 1.001e+03

n 1.001e+03 1.001e+03 1.000e+03 1.002e+03 3.252e−01 1.001e+03 1.001e+03

c10

1 6.229e+04 4.250e+04 2.959e+03 2.983e+05 5.935e+04 1.426e+04 9.636e+04
n/2 9.609e+03 3.861e+03 1.453e+03 1.093e+05 1.674e+04 2.409e+03 8.486e+03

n 6.813e+03 3.045e+03 1.347e+03 6.401e+04 1.273e+04 1.537e+03 5.455e+03

c11

1 1.407e+03 1.404e+03 1.401e+03 1.445e+03 7.050e+00 1.403e+03 1.408e+03
n/2 1.402e+03 1.402e+03 1.401e+03 1.404e+03 7.766e−01 1.402e+03 1.403e+03

n 1.402e+03 1.402e+03 1.400e+03 1.404e+03 8.990e−01 1.401e+03 1.402e+03

c12

1 1.318e+03 1.312e+03 1.303e+03 1.400e+03 2.216e+01 1.308e+03 1.316e+03
n/2 1.343e+03 1.312e+03 1.304e+03 1.400e+03 4.444e+01 1.308e+03 1.400e+03

n 1.354e+03 1.400e+03 1.303e+03 1.400e+03 4.760e+01 1.306e+03 1.400e+03

c13

1 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.371e−04 1.300e+03 1.300e+03
n/2 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.989e−04 1.300e+03 1.300e+03

n 1.300e+03 1.300e+03 1.300e+03 1.300e+03 2.181e−04 1.300e+03 1.300e+03

c14

1 2.577e+03 2.430e+03 1.622e+03 9.162e+03 1.044e+03 2.180e+03 2.717e+03
n/2 3.958e+03 1.947e+03 1.503e+03 1.291e+04 3.104e+03 1.866e+03 7.448e+03

n 3.903e+03 1.882e+03 1.500e+03 1.261e+04 3.438e+03 1.501e+03 7.428e+03

c15

1 1.633e+03 1.611e+03 1.601e+03 2.227e+03 9.279e+01 1.605e+03 1.626e+03
n/2 1.604e+03 1.600e+03 1.600e+03 1.700e+03 1.954e+01 1.600e+03 1.601e+03

n 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.400e+01 1.600e+03 1.600e+03

k - Number of functions incorporated in an MG-PMA individual; MBFV - Mean of the best fitness values; Median -
Median of the best fitness values; Min - Minimum of the best fitness values; Max - Maximum of the best fitness values; Std
- Standard deviation of the best fitness values; 1st Quartile - First quartile of the best fitness values; 3rd Quartile - Third
quartile of the best fitness values.
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Tables A30 and A31 show the results of Aligned Friedman’s and Iman-
Davenport’s tests, along with the Holm’s procedure based on the accuracy of MG-
PMA with variations of k (Table A20), tournament size (Tables A23-A25) and high-
level crossover operators (Tables A26-A29).

Table A30: Average rankings of Aligned Friedman’s and Iman-Davenport’s tests
for comparison between MG-PMAs with different tournament sizes and crossover
operators.

i Algorithm k
Tournament Crossover

Rank
Size Operator

23 MG-PMA 1 50 high-level 257.733
22 MG-PMA 1 25 high-level 252.733
21 MG-PMA 1 100 restricted high-level 243.833
20 MG-PMA 1 100 high-level two-point 238.367
19 MG-PMA 1 100 high-level 233.500
18 MG-PMA 1 100 high-level single-point 230.700
17 MG-PMA 1 100 high-level uniform 217.833
16 MG-PMA n/2 100 high-level uniform 201.800
15 MG-PMA n/2 100 high-level single-point 193.733
14 MG-PMA 1 2 high-level 191.800
13 MG-PMA n/2 100 restricted high-level 186.567
12 MG-PMA n/2 100 high-level two-point 170.267
11 MG-PMA n/2 50 high-level 169.100
10 MG-PMA n/2 100 high-level 163.100
9 MG-PMA n 100 high-level single-point 162.400
8 MG-PMA n 100 high-level uniform 161.700
7 MG-PMA n 100 high-level 144.867
6 MG-PMA n 100 high-level two-point 141.667
5 MG-PMA n 50 high-level 140.767
4 MG-PMA n 100 restricted high-level 140.400
3 MG-PMA n/2 25 high-level 138.433
2 MG-PMA n 25 high-level 133.200
1 MG-PMA n/2 2 high-level 117.067
0 MG-PMA n 2 high-level 100.433
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Table A31: Holm’s procedure for pairwise comparison between MG-PMAs with
different tournament sizes and crossover operators. The reference value R0
corresponds to the rank of the best algorithm (i = 0); in this case MG-PMA with
k = n, tournament size equals 2 and high-level crossover operator.

Test p-value
Aligned Friedman 0.925

Algorithm k
Tournament Crossover

z = (R0−Ri)/SE p-value Holm Reject?
Size Operator

MG-PMA 1 50 high-level 4.139 0.000 0.002 Yes
MG-PMA 1 25 high-level 4.008 0.000 0.002 Yes
MG-PMA 1 100 restricted high-level 3.774 0.000 0.002 Yes
MG-PMA 1 100 high-level two-point 3.630 0.000 0.003 Yes
MG-PMA 1 100 high-level 3.502 0.000 0.003 Yes
MG-PMA 1 100 high-level single-point 3.428 0.001 0.003 Yes
MG-PMA 1 100 high-level uniform 3.089 0.002 0.003 Yes
MG-PMA n/2 100 high-level uniform 2.668 0.008 0.003 No
MG-PMA n/2 100 high-level single-point 2.455 0.014 0.003 No
MG-PMA 1 2 high-level 2.404 0.016 0.004 No
MG-PMA n/2 100 restricted high-level 2.267 0.023 0.004 No
MG-PMA n/2 100 high-level two-point 1.838 0.066 0.004 No
MG-PMA n/2 50 high-level 1.807 0.071 0.005 No
MG-PMA n/2 100 high-level 1.649 0.099 0.005 No
MG-PMA n 100 high-level single-point 1.631 0.103 0.006 No
MG-PMA n 100 high-level uniform 1.612 0.107 0.006 No
MG-PMA n 100 high-level 1.169 0.242 0.007 No
MG-PMA n 100 high-level two-point 1.085 0.278 0.008 No
MG-PMA n 50 high-level 1.061 0.289 0.010 No
MG-PMA n 100 restricted high-level 1.052 0.293 0.013 No
MG-PMA n/2 25 high-level 1.000 0.317 0.017 No
MG-PMA n 25 high-level 0.862 0.389 0.025 No
MG-PMA n/2 2 high-level 0.438 0.662 0.050 No
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A6
Numerical Results for Comparison with Known Methods

Table A32: Numerical results for MG-PMA with number of functions (k) equal to
n (n = 10), tournament size equal to 2, high-level crossover, the tree depth (d) equal
to 7 and local minimization using the test set 3.

Benchmark MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction
c1 1.000e+02 1.000e+02 1.000e+02 1.000e+02 3.855e−03 1.000e+02 1.000e+02
c2 2.004e+02 2.000e+02 2.000e+02 2.198e+02 2.776e+00 2.000e+02 2.000e+02
c3 3.200e+02 3.200e+02 3.200e+02 3.200e+02 4.806e−05 3.200e+02 3.200e+02
c4 4.303e+02 4.298e+02 4.129e+02 4.448e+02 7.615e+00 4.249e+02 4.376e+02
c5 9.606e+02 9.617e+02 6.369e+02 1.193e+03 1.116e+02 9.584e+02 1.049e+03
c6 8.731e+02 8.753e+02 6.119e+02 1.345e+03 2.058e+02 6.644e+02 9.804e+02
c7 7.015e+02 7.015e+02 7.006e+02 7.033e+02 4.963e−01 7.012e+02 7.017e+02
c8 9.007e+02 8.199e+02 8.067e+02 1.275e+03 1.244e+02 8.179e+02 9.914e+02
c9 1.001e+03 1.001e+03 1.000e+03 1.001e+03 1.649e−01 1.000e+03 1.001e+03
c10 1.446e+03 1.418e+03 1.293e+03 1.679e+03 1.049e+02 1.365e+03 1.523e+03
c11 1.369e+03 1.402e+03 1.108e+03 1.406e+03 9.198e+01 1.400e+03 1.403e+03
c12 1.303e+03 1.303e+03 1.301e+03 1.308e+03 1.493e+00 1.302e+03 1.304e+03
c13 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.880e−04 1.300e+03 1.300e+03
c14 2.400e+03 1.500e+03 1.500e+03 1.261e+04 2.291e+03 1.500e+03 1.716e+03
c15 1.602e+03 1.600e+03 1.600e+03 1.700e+03 1.401e+01 1.600e+03 1.600e+03

MBFV - Mean of the best fitness values; Median - Median of the best fitness values; Min - Minimum of the best
fitness values; Max - Maximum of the best fitness values; Std - Standard deviation of the best fitness values; 1st
Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of the best fitness values.

Table A33: Numerical results for PSO with local minimization using the test set 3.
Benchmark MVBF Median Min Max Std 1st Quartile 3rd QuartileFunction

c1 1.328e+02 1.000e+02 1.000e+02 1.107e+03 1.530e+02 1.000e+02 1.000e+02
c2 2.017e+02 2.000e+02 2.000e+02 2.698e+02 9.928e+00 2.000e+02 2.001e+02
c3 3.196e+02 3.200e+02 3.000e+02 3.200e+02 2.800e+00 3.200e+02 3.200e+02
c4 4.050e+02 4.050e+02 4.020e+02 4.090e+02 1.554e+00 4.040e+02 4.060e+02
c5 7.640e+02 7.540e+02 5.152e+02 1.339e+03 1.909e+02 6.258e+02 8.783e+02
c6 8.103e+02 7.448e+02 6.002e+02 2.210e+03 2.379e+02 7.232e+02 8.576e+02
c7 7.010e+02 7.011e+02 7.001e+02 7.028e+02 6.092e−01 7.010e+02 7.011e+02
c8 9.130e+02 9.251e+02 8.010e+02 1.346e+03 1.088e+02 8.192e+02 9.437e+02
c9 1.000e+03 1.000e+03 1.000e+03 1.000e+03 5.151e−02 1.000e+03 1.000e+03
c10 1.444e+03 1.392e+03 1.267e+03 2.097e+03 1.679e+02 1.331e+03 1.486e+03
c11 1.379e+03 1.400e+03 1.103e+03 1.500e+03 8.215e+01 1.400e+03 1.401e+03
c12 1.301e+03 1.301e+03 1.301e+03 1.303e+03 3.943e−01 1.301e+03 1.302e+03
c13 1.300e+03 1.300e+03 1.300e+03 1.300e+03 1.404e−02 1.300e+03 1.300e+03
c14 2.793e+03 1.716e+03 1.500e+03 1.025e+04 1.940e+03 1.716e+03 2.910e+03
c15 1.600e+03 1.600e+03 1.600e+03 1.600e+03 3.232e−13 1.600e+03 1.600e+03

MBFV - Mean of the best fitness values; Median - Median of the best fitness values; Min - Minimum of the best
fitness values; Max - Maximum of the best fitness values; Std - Standard deviation of the best fitness values; 1st
Quartile - First quartile of the best fitness values; 3rd Quartile - Third quartile of the best fitness values.

Table A34 shows the results of Aligned Friedman’s and Iman-Davenport’s
tests, along with the Holm’s procedure based on the accuracy PSO, SPS-L-SHADE-
EIG, DEsPA, LSHADE-ND, MVMO-SH and MG-PMA (Table 4.7).
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Table A34: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between MG-PMA, PSO, SPS-L-SHADE-EIG, DEsPA,
LSHADE-ND and MVMO-SH. The reference rank (R0) corresponds to the rank of
the best algorithm (i = 0); in this case SPS-L-SHADE-EIG.

i Algorithm Rank
5 PSO 63.433
4 MG-PMA 63.200
3 DEsPA 45.933
2 LSHADE-ND 37.933
1 MVMO-SH 31.800
0 SPS-L-SHADE-EIG 30.700

Test p-value
Aligned Friedman 0.032

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
PSO 3.431 0.000 0.010 Yes
MG-PMA 3.407 0.001 0.0125 Yes
DEsPA 1.597 0.110 0.0167 No
LSHADE-ND 0.758 0.448 0.025 No
MVMO-SH 0.115 0.908 0.050 No
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B
CEC’2015 Benchmark Functions

B1
Introduction

This appendix presents the properties of the CEC’2015 benchmark functions
(c1-c15) and their 3-D maps for the 2-D functions available in the problem definition
for the CEC’2015 competition (Liang, 2014). More details about the benchmark
functions can also be found in the rules of the competition (Liang, 2014).

B1.1
Unimodal Functions

Figure B1 presents the 3-D map for 2-D Rotated High Conditioned Elliptic
Function (c1).

Figure B1: 3-D map for 2-D Rotated High Conditioned Elliptic Function (c1)
(Liang, 2014).

Properties of c1:

– Unimodal;

– Non-separable;

– Quadratic ill-conditioned.
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Figure B2 presents the 3-D map for 2-D the Rotated Cigar Function (c2).

Figure B2: 3-D map for 2-D Rotated Cigar Function (c2) (Liang, 2014).

Properties of c2:

– Unimodal;

– Non-separable;

– Smooth but narrow ridge.

B1.2
Multimodal Functions

Figure B3 presents the 3-D map for 2-D the Shifted and Rotated Ackley’s
Function (c3).

Figure B3: 3-D map for 2-D Shifted and Rotated Ackley’s Function (c3)
(Liang, 2014).

Properties of c3:

– Multimodal;

– Non-separable.
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Figure B4 presents the 3-D map for 2-D the Shifted and Rotated Rastrigin’s
Function (c4).

Figure B4: 3-D map for 2-D Shifted and Rotated Rastrigin’s Function (c4)
(Liang, 2014).

Properties of c4:

– Multimodal;

– Non-separable;

– Local optima’s number is huge.

Figure B5.a presents the 3-D map for 2-D the Shifted and Rotated Schwefel’s
Function (c5) and Figure B5.b its contour map 2-D function.

Figure B5: Shifted and Rotated Schwefel’s Function (c5): (a) 3-D map for 2-D
funtion; and (b) Contour map for 2-D function (Liang, 2014).
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Properties of c5:

– Multimodal;

– Non-separable;

– Local optima’s number is huge and second better local optimum is far from
the global optimum.

B1.3
Hybrid Functions

The hybrid functions (c6-c8) are divided into some subcomponents and then
different basic functions (Liang, 2014) are used for different subcomponents. The
properties of hybrid functions are:

– Multimodal or unimodal, depending on the basic function;

– Non-separable subcomponents;

– Different properties for different variables subcomponents.

B1.4
Composition Functions

Figure B6.a presents the 3-D map for 2-D the Composition Function I (c9)
and Figure B6.b its contour map 2-D function.

Figure B6: Composition Function I (c9): (a) 3-D map for 2-D funtion; and (b)
Contour map for 2-D function (Liang, 2014).

Properties of c9:

– Multimodal;

– Non-separable;

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Appendix B. CEC’2015 Benchmark Functions 157

– Different properties around different local optima;

– The basic function of which the global optimum belongs to is fixed. The
sequence of the other basic functions can be randomly generated.

Properties of c10:

– Multimodal;

– Non-separable;

– Asymmetrical;

– Different properties around different local optima;

– Different properties for different variables subcomponents;

– The sequence of the basic functions can be randomly generated.

Figure B7.a presents the 3-D map for 2-D the Composition Function 3 (c11)
and Figure B7.b its contour map 2-D function.

Figure B7: Composition Function 3 (c11): (a) 3-D map for 2-D funtion; and (b)
Contour map for 2-D function (Liang, 2014).

Properties of c11:

– Multimodal;

– Non-separable;

– Asymmetrical;

– Different properties around different local optima;

– The basic function of which the global optimum belongs to is fixed. The
sequence of the other basic functions can be randomly generated.
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Figure B8.a presents the 3-D map for 2-D the Composition Function 4 (c12)
and Figure B8.b its contour map 2-D function.

Figure B8: Composition Function 4 (c12): (a) 3-D map for 2-D funtion; and (b)
Contour map for 2-D function (Liang, 2014).

Properties of c12:

– Multimodal;

– Non-separable;

– Asymmetrical;

– Different properties around different local optima;

– Different properties for different variables subcomponents;

– The sequence of the basic functions can be randomly generated.

Properties of c13:

– Multimodal;

– Non-separable;

– Asymmetrical;

– Different properties around different local optima;

– The sequence of the basic functions can be randomly generated.
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Figure B9.a presents the 3-D map for 2-D the Composition Function 6 (c14)
and Figure B9.b its contour map 2-D function.

Figure B9: Composition Function 6 (c14): (a) 3-D map for 2-D funtion; and (b)
Contour map for 2-D function (Liang, 2014).

Properties of c14:

– Multimodal;

– Non-separable;

– Asymmetrical;

– Different properties around different local optima;

– Different properties for different variables subcomponents;

– The sequence of the basic functions can be randomly generated.

Figure B10.a presents the 3-D map for 2-D the Composition Function 7 (c15)
and Figure B10.b its contour map 2-D function.

Properties of c15:

– Multimodal;

– Non-separable;

– Asymmetrical;

– Different properties around different local optima;

– The sequence of the basic functions can be randomly generated.
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Figure B10: Composition Function 7 (c15): (a) 3-D map for 2-D funtion; and (b)
Contour map for 2-D function (Liang, 2014).
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C
Analyses of Niching MG-PMA – Numerical Results

C1
Introduction

This appendix presents all the numerical results obtained in the experiments
of the Chapter 5 of this thesis.

C2
Numerical Results for High-Level Crossover Operator Analysis

Figure C1: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level crossover operator for 20 benchmark multimodal functions (p1-p20) with
five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C2: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator for 20 benchmark multimodal functions
(p1-p20) with five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04,
1.0e−05}.

Figure C3: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level two-point crossover operator for 20 benchmark multimodal functions
(p1-p20) with five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04,
1.0e−05}.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Appendix C. Analyses of Niching MG-PMA – Numerical Results 163

Figure C4: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level uniform crossover operator for 20 benchmark multimodal functions (p1-
p20) with five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Tables C1-C5 the Aligned Friedman’s and Iman-Davenport’s tests, and
Holm’s procedure for pairwise comparison between high-level crossover operators
for Niching MG-PMA with five level of accuracy: {1e−1, 1e−2, 1e−3, 1e−4,
1e−5}.

Table C1: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between high-level crossover operators for Niching MG-
PMA with 1e−1 accuracy. The reference rank (R0) corresponds to the rank of the
best algorithm (i = 0); in this case high-level two-point crossover.

i Genetic Operator Rank
3 high-level uniform crossover 42.750
2 high-level crossover 41.900
1 high-level single-point crossover 39.075
0 high-level two-point crossover 38.275

Test p-value
Aligned Friedman 0.017

Genetic Operator z = (R0−Ri)/SE p-value Holm Reject?
high-level uniform crossover 0.609 0.543 0.017 No
high-level crossover 0.493 0.622 0.025 No
high-level single-point crossover 0.109 0.913 0.050 No
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Table C2: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between high-level crossover operators for Niching MG-
PMA with 1e−2 accuracy. The reference rank (R0) corresponds to the rank of the
best algorithm (i = 0); in this case high-level two-point crossover.

i Genetic Operator Rank
3 high-level uniform crossover 47.225
2 high-level crossover 45.300
1 high-level single-point crossover 36.350
0 high-level two-point crossover 33.125

Test p-value
Aligned Friedman 0.017

Genetic Operator z = (R0−Ri)/SE p-value Holm Reject?
high-level uniform crossover 1.919 0.055 0.017 No
high-level crossover 1.657 0.098 0.025 No
high-level single-point crossover 0.439 0.661 0.050 No

Table C3: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between high-level crossover operators for Niching MG-
PMA with 1e−3 accuracy. The reference rank (R0) corresponds to the rank of the
best algorithm (i = 0); in this case high-level two-point crossover.

i Genetic Operator Rank
3 high-level uniform crossover 47.900
2 high-level crossover 43.050
1 high-level single-point crossover 37.275
0 high-level two-point crossover 33.775

Test p-value
Aligned Friedman 0.017

Genetic Operator z = (R0−Ri)/SE p-value Holm Reject?
high-level uniform crossover 1.922 0.055 0.017 No
high-level crossover 1.262 0.207 0.025 No
high-level single-point crossover 0.476 0.634 0.050 No
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Table C4: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between high-level crossover operators for Niching MG-
PMA with 1e−4 accuracy. The reference rank (R0) corresponds to the rank of the
best algorithm (i = 0); in this case high-level two-point crossover.

i Genetic Operator Rank
3 high-level uniform crossover 47.950
2 high-level crossover 43.200
1 high-level single-point crossover 37.025
0 high-level two-point crossover 33.825

Test p-value
Aligned Friedman 0.017

Genetic Operator z = (R0−Ri)/SE p-value Holm Reject?
high-level uniform crossover 1.922 0.055 0.017 No
high-level crossover 1.276 0.202 0.025 No
high-level single-point crossover 0.436 0.663 0.050 No

Table C5: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between high-level crossover operators for Niching MG-
PMA with 1e−5 accuracy. The reference rank (R0) corresponds to the rank of the
best algorithm (i = 0); in this case high-level two-point crossover.

i Genetic Operator Rank
3 high-level uniform crossover 47.125
2 high-level crossover 45.275
1 high-level single-point crossover 36.425
0 high-level two-point crossover 33.175

Test p-value
Aligned Friedman 0.017

Genetic Operator z = (R0−Ri)/SE p-value Holm Reject?
high-level uniform crossover 1.898 0.058 0.017 No
high-level crossover 1.647 0.100 0.025 No
high-level single-point crossover 0.442 0.658 0.050 No
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C3
Numerical Results for Local Optimization Frequency Analysis

This section presents the numerical results for local optimization frequency
analysis. Figures C5-C13 present the bar chart with peak ratio (PR) results from
Niching MG-PMA using high-level single-point crossover operator or high-level
two-point crossover operator for 20 benchmark multimodal functions (p1-p20) with
five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}. Each
figure uses a different local optimization frequency and the values used are: 10, 50,
100, 150 and 200.

Figure C5: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and local optimization frequency equal
to 10, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C6: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level two-point crossover operator, and local optimization frequency equal to
10, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Figure C7: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and local optimization frequency equal
to 50, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C8: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level two-point crossover operator, and local optimization frequency equal to
50, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Figure C9: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and local optimization frequency equal
to 100, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C10: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level two-point crossover operator, and local optimization frequency equal to
100, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Figure C11: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level two-point crossover operator, and local optimization frequency equal to
150, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C12: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and local optimization frequency equal
to 200, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Figure C13: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level two-point crossover operator, and local optimization frequency equal to
200, for 20 benchmark multimodal functions (p1-p20) with five level of accuracy:
{1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

DBD
PUC-Rio - Certificação Digital Nº 1412788/CA



Appendix C. Analyses of Niching MG-PMA – Numerical Results 171

Tables C6-C10 present the Aligned Friedman’s and Iman-Davenport’s tests,
and Holm’s procedure for pairwise comparison between different local optimization
frequency values (L1, L10, L50, L100, L150 and L200) and high-level crossover
operators (sp – single-point, tp – two-point) for Niching MG-PMA with five level
of accuraciy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Table C6: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different local optimization frequency values (L1,
L10, L50, L100, L150 and L200) and high-level crossover operators (sp – single-
point, tp – two-point) for Niching MG-PMA with 1e−1 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case the
configuration L150 sp.

i Niching MG-PMA Rank
11 L1 tp 152.400
10 L1 sp 148.650
9 L10 tp 137.150
8 L50 tp 126.100
7 L200 tp 123.550
6 L150 tp 122.050
5 L10 sp 117.625
4 L50 sp 114.625
3 L100 tp 108.475
2 L200 sp 101.825
1 L100 sp 98.075
0 L150 sp 95.475

Test p-value
Aligned Friedman 0.005

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
L1 tp 2.593 0.010 0.005 No
L1 sp 2.422 0.154 0.005 No
L10 tp 1.898 0.058 0.006 No
L50 tp 1.395 0.163 0.006 No
L200 tp 1.279 0.201 0.007 No
L150 tp 1.211 0.226 0.008 No
L10 sp 1.009 0.313 0.010 No
L50 sp 0.872 0.383 0.013 No
L100 tp 0.592 0.554 0.017 No
L200 sp 0.289 0.772 0.025 No
L100 sp 0.118 0.906 0.050 No
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Table C7: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different local optimization frequency values (L1,
L10, L50, L100, L150 and L200) and high-level crossover operators (sp – single-
point, tp – two-point) for Niching MG-PMA with 1e−2 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case the
configuration L1 sp.

i Niching MG-PMA Rank
11 L200 tp 143.050
10 L150 tp 136.775
9 L50 tp 131.725
8 L50 sp 129.050
7 L10 tp 127.850
6 L100 tp 120.400
5 L150 sp 117.025
4 L100 sp 115.625
3 L200 sp 112.950
2 L10 sp 110.650
1 L1 tp 105.200
0 L1 sp 95.700

Test p-value
Aligned Friedman 0.005

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
L200 tp 2.157 0.031 0.005 No
L150 tp 1.871 0.061 0.005 No
L50 tp 1.641 0.101 0.006 No
L50 sp 1.519 0.129 0.006 No
L10 tp 1.464 0.143 0.007 No
L100 tp 1.125 0.261 0.008 No
L150 sp 0.971 0.331 0.010 No
L100 sp 0.908 0.364 0.013 No
L200 sp 0.786 0.432 0.017 No
L10 sp 0.681 0.496 0.025 No
L1 tp 0.433 0.665 0.050 No
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Table C8: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different local optimization frequency values (L1,
L10, L50, L100, L150 and L200) and high-level crossover operators (sp – single-
point, tp – two-point) for Niching MG-PMA with 1e−3 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case the
configuration L1 sp.

i Niching MG-PMA Rank
11 L200 tp 142.550
10 L150 tp 135.725
9 L50 tp 129.600
8 L50 sp 128.850
7 L100 tp 122.650
6 L10 tp 121.425
5 L200 sp 118.300
4 L100 sp 117.800
3 L150 sp 115.800
2 L10 sp 113.850
1 L1 tp 104.200
0 L1 sp 95.250

Test p-value
Aligned Friedman 0.005

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
L200 tp 2.155 0.031 0.005 No
L150 tp 1.844 0.065 0.005 No
L50 tp 1.565 0.118 0.006 No
L50 sp 1.530 0.126 0.006 No
L100 tp 1.248 0.212 0.007 No
L10 tp 1.192 0.233 0.008 No
L200 sp 1.050 0.294 0.010 No
L100 sp 1.027 0.304 0.013 No
L150 sp 0.936 0.349 0.017 No
L10 sp 0.847 0.397 0.025 No
L1 tp 0.408 0.684 0.050 No
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Table C9: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different local optimization frequency values (L1,
L10, L50, L100, L150 and L200) and high-level crossover operators (sp – single-
point, tp – two-point) for Niching MG-PMA with 1e−4 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case the
configuration L1 sp.

i Niching MG-PMA Rank
11 L200 tp 143.650
10 L150 tp 137.050
9 L50 tp 130.525
8 L50 sp 125.825
7 L100 tp 123.950
6 L150 sp 123.175
5 L10 tp 121.125
4 L200 sp 118.175
3 L100 sp 113.750
2 L10 sp 112.675
1 L1 tp 103.275
0 L1 sp 92.825

Test p-value
Aligned Friedman 0.005

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
L200 tp 2.315 0.021 0.005 No
L150 tp 2.014 0.044 0.005 No
L50 tp 1.717 0.086 0.006 No
L50 sp 1.503 0.133 0.006 No
L100 tp 1.418 0.156 0.007 No
L150 sp 1.382 0.169 0.008 No
L10 tp 1.289 0.197 0.010 No
L200 sp 1.155 0.248 0.013 No
L100 sp 0.953 0.341 0.017 No
L10 sp 0.904 0.366 0.025 No
L1 tp 0.476 0.634 0.050 No
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Table C10: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different local optimization frequency values (L1,
L10, L50, L100, L150 and L200) and high-level crossover operators (sp – single-
point, tp – two-point) for Niching MG-PMA with 1e−5 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case the
configuration L1 sp.

i Niching MG-PMA Rank
11 L200 tp 141.075
10 L150 tp 133.375
9 L50 tp 132.925
8 L100 tp 126.850
7 L10 tp 123.100
6 L50 sp 122.500
5 L150 sp 121.625
4 L200 sp 115.525
3 L100 sp 114.900
2 L10 sp 114.100
1 L1 tp 105.300
0 L1 sp 94.725

Test p-value
Aligned Friedman 0.005

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
L200 tp 2.112 0.035 0.005 No
L150 tp 1.761 0.078 0.005 No
L50 tp 1.740 0.082 0.006 No
L100 tp 1.463 0.143 0.006 No
L10 tp 1.293 0.196 0.007 No
L50 sp 1.265 0.206 0.008 No
L150 sp 1.225 0.221 0.010 No
L200 sp 0.947 0.343 0.013 No
L100 sp 0.919 0.358 0.017 No
L10 sp 0.883 0.378 0.025 No
L1 tp 0.482 0.630 0.050 No
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C4
Numerical Results for Feedback Frequency Analysis

This section presents the numerical results for feedback frequency analysis.
Figures C14-C18 present the bar chart with peak ratio (PR) results from Niching
MG-PMA using high-level single-point crossover operator for 20 benchmark
multimodal functions (p1-p20) with five level of accuracy: {1.0e−01, 1.0e−02,
1.0e−03, 1.0e−04, 1.0e−05}. Each figure uses a different feedback frequency and
the values used are: 0, 10, 50, 100, 150 and 200.

Figure C14: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and feedback frequency equal to 0, for
20 benchmark multimodal functions (p1-p20) with five level of accuracy: {1.0e−01,
1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C15: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and feedback frequency equal to 50, for
20 benchmark multimodal functions (p1-p20) with five level of accuracy: {1.0e−01,
1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Figure C16: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and feedback frequency equal to 100, for
20 benchmark multimodal functions (p1-p20) with five level of accuracy: {1.0e−01,
1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Figure C17: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and feedback frequency equal to 150, for
20 benchmark multimodal functions (p1-p20) with five level of accuracy: {1.0e−01,
1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Figure C18: Bar chart with peak ratio (PR) results from Niching MG-PMA using
high-level single-point crossover operator, and feedback frequency equal to 200, for
20 benchmark multimodal functions (p1-p20) with five level of accuracy: {1.0e−01,
1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.
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Tables C11-C15 present the Aligned Friedman’s and Iman-Davenport’s
tests, and Holm’s procedure for pairwise comparison between different feedback
frequency values (F0, F1, F10, F50, F100, F150 and F200) for Niching MG-PMA
with five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04, 1.0e−05}.

Table C11: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different feedback frequency values (F0, F1,
F10, F50, F100, F150 and F200) for Niching MG-PMA with 1e−1 accuracy. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
the configuration F1.

i Niching MG-PMA Rank
6 F50 83.750
5 F10 74.425
4 F150 73.100
3 F100 70.675
2 F0 68.375
1 F200 68.050
0 F1 55.125

Test p-value
Aligned Friedman 0.008

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
F50 2.233 0.026 0.008 No
F10 1.505 0.132 0.010 No
F150 1.402 0.161 0.013 No
F100 1.212 0.225 0.017 No
F0 1.033 0.302 0.025 No
F200 1.008 0.314 0.050 No
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Table C12: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different feedback frequency values (F0, F1,
F10, F50, F100, F150 and F200) for Niching MG-PMA with 1e−2 accuracy. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
the configuration F1.

i Niching MG-PMA Rank
6 F50 88.525
5 F150 80.450
4 F0 70.275
3 F200 68.700
2 F10 65.300
1 F100 63.750
0 F1 56.500

Test p-value
Aligned Friedman 0.008

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
F50 2.497 0.013 0.008 No
F150 1.867 0.062 0.010 No
F0 1.074 0.283 0.013 No
F200 0.951 0.342 0.017 No
F10 0.686 0.493 0.025 No
F100 0.565 0.572 0.050 No

Table C13: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different feedback frequency values (F0, F1,
F10, F50, F100, F150 and F200) for Niching MG-PMA with 1e−3 accuracy. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
the configuration F1.

i Niching MG-PMA Rank
6 F50 92.375
5 F150 84.800
4 F200 74.075
3 F0 71.125
2 F10 59.525
1 F100 59.150
0 F1 52.450

Test p-value
Aligned Friedman 0.010

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
F50 3.113 0.002 0.008 Yes
F150 2.522 0.012 0.010 No
F200 1.686 0.092 0.013 No
F0 1.456 0.145 0.017 No
F10 0.552 0.581 0.025 No
F100 0.522 0.601 0.050 No
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Table C14: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different feedback frequency values (F0, F1,
F10, F50, F100, F150 and F200) for Niching MG-PMA with 1e−4 accuracy. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
the configuration F1.

i Niching MG-PMA Rank
6 F50 91.200
5 F150 88.975
4 F200 74.750
3 F0 70.425
2 F100 59.025
1 F10 57.150
0 F1 51.975

Test p-value
Aligned Friedman 0.013

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
F50 3.058 0.002 0.008 Yes
F150 2.885 0.004 0.010 Yes
F200 1.776 0.076 0.013 No
F0 1.439 0.150 0.017 No
F100 0.550 0.583 0.025 No
F10 0.404 0.687 0.050 No

Table C15: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between different feedback frequency values (F0, F1,
F10, F50, F100, F150 and F200) for Niching MG-PMA with 1e−5 accuracy. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
the configuration F10.

i Niching MG-PMA Rank
6 F50 89.475
5 F150 88.475
4 F200 78.475
3 F0 67.100
2 F100 62.225
1 F1 54.475
0 F10 53.275

Test p-value
Aligned Friedman 0.013

Niching MG-PMA z = (R0−Ri)/SE p-value Holm Reject?
F50 2.822 0.005 0.008 Yes
F150 2.775 0.006 0.010 Yes
F200 1.965 0.049 0.013 No
F0 1.078 0.281 0.017 No
F100 0.698 0.485 0.025 No
F1 0.094 0.926 0.050 No
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C5
Numerical Results for Comparison with Well-Established Algortihms

Tables C16-C20 present the Aligned Friedman’s and Iman-Davenport’s tests,
and Holm’s procedure for pairwise comparison between two configuration of
Niching MG-PMA (Niching MG-PMA L1 and Niching MG-PMA L150) and
two algorithms recommended by 2017 IEEE CEC Special Session on Niching
Methods for Multimodal Optimization (Li, 2013) (DE/nrand/1/bin and Crowding
DE/rand/1/bin) with five level of accuracy: {1.0e−01, 1.0e−02, 1.0e−03, 1.0e−04,
1.0e−05}.

Table C16: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between Niching MG-PMA L1, Niching MG-PMA L150,
DE/nrand/1/bin and Crowding DE/rand/1/bin for 1e−01 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case Niching
MG-PMA L150.

i Algorithm Rank
3 DE/nrand/1/bin 50.200
2 Niching MG-PMA L1 42.800
1 Crowding DE/rand/1/bin 37.775
0 Niching MG-PMA L150 31.225

Test p-value
Aligned Friedman 0.025

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
DE/nrand/1/bin 2.582 0.010 0.017 Yes
Niching MG-PMA L1 1.575 0.115 0.025 No
Crowding DE/rand/1/bin 0.891 0.373 0.050 No
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Table C17: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between Niching MG-PMA L1, Niching MG-PMA L150,
DE/nrand/1/bin and Crowding DE/rand/1/bin for 1e−02 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
DE/nrand/1/bin.

i Algorithm Rank
3 Niching MG-PMA L150 47.075
2 Niching MG-PMA L1 41.750
1 Crowding DE/rand/1/bin 36.875
0 DE/nrand/1/bin 36.300

Test p-value
Aligned Friedman 0.017

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
Niching MG-PMA L150 1.466 0.143 0.017 No
Niching MG-PMA L1 0.742 0.458 0.025 No
Crowding DE/rand/1/bin 0.078 0.938 0.050 No

Table C18: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between Niching MG-PMA L1, Niching MG-PMA L150,
DE/nrand/1/bin and Crowding DE/rand/1/bin for 1e−03 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
DE/nrand/1/bin.

i Algorithm Rank
3 Niching MG-PMA L150 45.850
2 Niching MG-PMA L1 40.300
1 Crowding DE/rand/1/bin 39.500
0 DE/nrand/1/bin 36.350

Test p-value
Aligned Friedman 0.017

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
Niching MG-PMA L150 1.293 0.196 0.017 No
Niching MG-PMA L1 0.538 0.591 0.025 No
Crowding DE/rand/1/bin 0.429 0.668 0.050 No
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Table C19: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between Niching MG-PMA L1, Niching MG-PMA L150,
DE/nrand/1/bin and Crowding DE/rand/1/bin for 1e−04 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
DE/nrand/1/bin.

i Algorithm Rank
3 Crowding DE/rand/1/bin 46.450
2 Niching MG-PMA L150 43.300
1 Niching MG-PMA L1 37.850
0 DE/nrand/1/bin 34.400

Test p-value
Aligned Friedman 0.017

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
Crowding DE/rand/1/bin 1.640 0.101 0.017 No
Niching MG-PMA L150 1.211 0.226 0.025 No
Niching MG-PMA L1 0.470 0.639 0.050 No

Table C20: Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure
for pairwise comparison between Niching MG-PMA L1, Niching MG-PMA L150,
DE/nrand/1/bin and Crowding DE/rand/1/bin for 1e−05 accuracy. The reference
rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case
DE/nrand/1/bin.

i Algorithm Rank
3 Crowding DE/rand/1/bin 47.125
2 Niching MG-PMA L150 44.625
1 Niching MG-PMA L1 39.025
0 DE/nrand/1/bin 31.225

Test p-value
Aligned Friedman 0.017

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
Crowding DE/rand/1/bin 2.164 0.031 0.017 No
Niching MG-PMA L150 1.824 0.068 0.025 No
Niching MG-PMA L1 1.062 0.289 0.050 No
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D
CEC’2017 Benchmark Multimodal Functions

D1
Introduction

This appendix presents the properties of the benchmark functions from 2017
IEEE CEC Special Session on Niching Methods for Multimodal Optimization. The
benchmark functions (p1-p20) are based on 12 test functions (F1-F12) with different
dimensions and number of global optima. More details about the benchmark and test
functions can also be found in the technical report of the competition (Li, 2013).

D1.1
Test Functions

Test functions from 2017 IEEE CEC Special Session on Niching Methods
for Multimodal Optimization are scalable to dimension and the number of global
optima can be adjusted freely by the user. Table D1 presents the test functions of
this competition and their properties.
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Table D1: Test functions from 2017 IEEE CEC Special Session on Niching Methods
for Multimodal Optimization and their properties

.
Function Name Properties

F1 Five-Uneven-Peak Trap
Variables ranges: x ∈ [0,30]
Number of global optima: 2
Number of local optima: 3

F2 Equal Maxima
Variables ranges: x ∈ [0,1]
Number of global optima: 5
Number of local optima: 0

F3 Uneven Decreasing Maxima
Variables ranges: x ∈ [0,1]
Number of global optima: 1
Number of local optima: 4

F4 Himmelblau
Variables ranges: x,y ∈ [−6,6]
Number of global optima: 4
Number of local optima: 0

F5 Six-Hump Camel Back
Variables ranges: x ∈ [−1.9,1.9];y ∈ [−1.1,1.1]
Number of global optima: 2
Number of local optima: 2

F6 Shubert
Variables ranges: xi ∈ [−10,10]D, i = 1,2, ...,D
Number of global optima: D ·3D

Number of local optima: many

F7 Vincent
Variables ranges: xi ∈ [0.25,10]D, i = 1,2, ...,D
Number of global optima: 6D

Number of local optima: 0

F8 Modified Rastrigin - All Global Optima
Variables ranges: xi ∈ [0,1]D, i = 1,2, ...,D
Number of global optima: 12
Number of local optima: 0

F9 Composition Function 1
Multimodal, Shifted, Non-Rotated,
Non-symmetric, Separable near the global optima, Scalable,
Numerous local optima, Different function’s properties are mixed together,
Number of global optima: 6

F10 Composition Function 2
Multimodal, Shifted, Non-Rotated,
Non-symmetric, Separable near the global optima, Scalable,
Numerous local optima, Different function’s properties are mixed together,
Number of global optima: 8

F11 Composition Function 3
Multimodal, Shifted, Rotated,
Non-symmetric, Non-separable, Scalable,
A huge numerous of local optima, Different function’s properties are mixed together,
Number of global optima: 6

F12 Composition Function 4
Multimodal, Shifted, Rotated,
Non-symmetric, Non-separable, Scalable,
A huge numerous of local optima, Different function’s properties are mixed together,
Number of global optima: 8
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Figure D1 presents the 3-D map for 2-D test functions.

Figure D1: 3-D map for 2-D test functions (F1-F12) (Li, 2013).
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D1.2
Benchmark Functions

Table D2 presents the 20 multimodal benchmark functions (p1-p20).

Table D2: Benchmark functions from 2017 IEEE CEC Special Session on Niching
Methods for Multimodal Optimization

.

Benchmark Function Test Function
p1 F1 (1D)
p2 F2 (1D)
p3 F3 (1D)
p4 F4 (2D)
p5 F5 (2D)
p6 F6 (2D)
p7 F7 (2D)
p8 F6 (3D)
p9 F7 (3D)
p10 F8 (2D)
p11 F9 (2D)
p12 F10 (2D)
p13 F11 (2D)
p14 F11 (3D)
p15 F12 (3D)
p16 F11 (5D)
p17 F12 (5D)
p18 F11 (10D)
p19 F12 (10D)
p20 F12 (20D)
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