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Abstract

Cué La Rosa, Laura Elena; Feitosa, Raul Queiroz (Advisor). Crop
Recognition from Multitemporal SAR Image Sequences
Using Deep Learning Techniques. Rio de Janeiro, 2018. 96p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

The present dissertation aims to evaluate a set of deep learning (DL) techni-
ques for crop mapping from multitemporal sequences of SAR images. Three
methods were considered in this study: Autoencoders (AEs), Convolutio-
nal Neural Networks (CNNs) and Fully Convolutional Networks (FCNs).
The analysis was based on two databases containing image sequences ge-
nerated by the Sentinel-1A. The first database covers a temperate region
that presents a comparatively simpler dynamics, and second database of
a tropical region that represents a scenario with complex dynamics. In all
cases, a Random Forest (RF) classifier operating on texture features deri-
ved from co-occurrence matrices was used as baseline. For the temperate
region, DL techniques consistently produced better results than the RF
approach, with AE being the best one in almost all experiments. In the
tropical region the DL approaches performed similar to RF, alternating as
the best performing one for different experimental setups. By and large,
CNNs achieved the best or next to the best performance in all experiments.
Although the FCNs have performed well, the full potential was not fully
exploited in our experiments, mainly due to the difficulty of balancing the
number of training samples among the crop types. The dissertation also
proposes two post-processing strategies that exploit prior knowledge about
the crop dynamics in the target site. Experiments have shown that such
techniques can significantly improve the recognition accuracy, in particular
for less abundant crops.

Keywords
Crop Recognition; Remote Sensing; Deep Learning; Multitempo-

ral analysis; Sentinel-1
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Resumo

Cué La Rosa, Laura Elena; Feitosa, Raul Queiroz. Reconheci-
mento de Culturas Agrícolas a partir de Sequencias Multi-
temporais de Imagens SAR utilizando Técnicas de Apren-
dizado Profundo. Rio de Janeiro, 2018. 96p. Dissertação de Mes-
trado – Departamento de Engenharia Elétrica, Pontifícia Universi-
dade Católica do Rio de Janeiro.

A presente dissertação tem como objetivo avaliar um conjunto de técnicas de
aprendizado profundo para o reconhecimento de culturas agrícolas a partir
de sequências multitemporais de imagens SAR. Três métodos foram consi-
derados neste estudo: Autoencoders (AEs), Convolutional Neural Networks
(CNNs) and Fully Convolutional Networks (FCNs). A avaliação experimen-
tal baseou-se em duas bases de dados contendo sequências de imagens ge-
radas pelo sensor Sentinel- 1A. A primeira base cobre uma região tropical
e a segunda uma região de clima temperado. Em todos os casos, utilizou-
se como referência para comparação um classificador Random Forest (RF)
operando sobre atributos de textura derivados de matrizes de co-ocorrência.
Para a região de clima temperado que apresenta menor dinâmica agrícola
as técnicas de aprendizado profundo produziram consistentemente melhores
resultados do que a abordagem via RF, sendo AEs o melhor em pratica-
mente todos os experimentos. Na região tropical, onde a dinâmica é mais
complexa, as técnicas de aprendizado profundo mostraram resultados simi-
lares aos produzidos pelo método RF, embora os quatro métodos tenham
se alternado como o de melhor desempenho dependendo do número e das
datas das imagens utilizadas nos experimentos. De um modo geral, as RNCs
se mostraram mais estáveis do que os outros métodos, atingindo o melho-
res resultado entre os métodos avaliados ou estando muito próximos destes
em praticamente todos os experimentos. Embora tenha apresentado bons
resultados, não foi possível explorar todo o potencial das RTCs neste es-
tudo, sobretudo, devido à dificuldade de se balancear o número de amostras
de treinamento entre as classes de culturas agrícolas presentes na área de
estudo. A dissertação propõe ainda duas estratégias de pós-processamento
que exploram o conhecimento prévio sobre a dinâmica das culturas agríco-
las presentes na área alvo. Experimentos demonstraram que tais técnicas
podem produzir um aumento significativo da acurácia da classificação, es-
pecialmente para culturas menos abundantes.
Palavras-chave

Reconhecimento de Culturas; Sensoriamento Remoto; Aprendizado
Profundo; Análise multitemporal; Sentinel-1
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1
INTRODUCTION

1.1
Motivation

Accurate crop recognition can achieve a good estimation of crop pro-
ductivity, crop health and crop management. Timely and accurate estimation
of crop areas can provide valuable information for governmental and private
agencies to develop strategies to the agricultural market.

The use of Remote Sensing (RS) images in natural resources mapping
has been popular in recent years, becoming the source data for several
environmental processes modeling. During the last decade, several Optical and
Synthetic Aperture Radar (SAR) satellites were launched with high spatial
resolution and low revisit time. Optical remote sensing has been widely used
for crop recognition, however, due to cloud cover and shadows the resultant
data sets can have missing values. On the other hand, the all-weather, all-time,
acquisitions provided by SAR, make multitemporal SAR image sequences a
good option for crop type mapping. A key issue in RS image classification
relates to capturing contextual information. In crop mapping, the temporal
context is even more critical than the spatial one, because most crop types can
only be discriminated by exploiting their characteristic temporal behavior.

Neural Networks, Support Vector Machines and Random Forest have
been applied to crop classification in pixel-wise approaches [1, 2, 3]. Object-
based classification extracting quantitative attributes from segments (mean,
area, shape) has been also employed, but this approach relies on segments
whose delineation ignores semantics [4, 5]. Nevertheless, the performance of
these approaches strongly depends on the features selected for classification.
In addition, these approaches generally do not model temporal dependencies
in an explicit way.

To cope with the problem of pixel-wise and object-based approaches,
Probabilistic Graphical Models (PGMs), such as Markov Random Fields
(MRFs) [6] and Conditional Random Fields (CRFs) [7, 8], have successfully
exploited both spatial and temporal contexts for the classification of RS
imagery. Hidden Markov Model (HMM) has been used too in crop classification
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Chapter 1. INTRODUCTION 18

based on the time-series analysis of phenological states [9, 10].
Deep Learning (DL) techniques have recently gained broad interest in the

RS community. Such techniques contain specific supervised and unsupervised
representation-learning algorithms, which learn features from labeled and non-
labeled data. In fact, state-of-the-art performance in RS image classification
has been achieved by DL techniques, such as Autoencoders (AEs) [11, 12, 13],
and Convolutional Neural Networks (CNNs) [14, 15], which integrate both
spatial and temporal context in an unsupervised and/or supervised way. Recent
works showed that Fully Convolutional Networks (FCNs) outperform CNNs for
semantic image segmentation in terms of spatial accuracy and computational
load [16].

Other aspect worth mentioning is that most publications about crop
recognition from multitemporal RS images rely on datasets from temperate
regions, where crop dynamics is comparatively simple because there is usually
just a single crop per parcel during the whole season [17, 18, 19, 20, 21, 22].
Crop dynamics in tropical areas is more complex due to multiple agricultural
practices such as irrigation, non-tillage, crop rotation and multiple harvests per
year, which make the traditional methods not suitable for the aforementioned
approaches [23].

The study performed in this work comprehends the evaluation and
comparison of three DL algorithms that represent the current state-of-the-art
in RS image classification, specifically AE, CNN and FCN. This study is to our
knowledge the first attempts to apply FCN approach to crop recognition task.
Two different datasets have been used for evaluation, one from a temperate
region and a second one from a tropical region. Additionally, a postprocessing
algorithm is proposed to incorporate prior knowledge about crop dynamics
into the classification model.

1.2
Objectives and contributions

The general objective of this dissertation is to evaluate and compare
three different DL algorithms for crop type recognition using multitemporal
SAR images sequences. A secondary objective of this work is to include a priori
knowledge to model inter-class and intra-class relationships within the SAR
images sequence.

The contributions of this work are threefold:

1. Three DL based strategies for crop type classification from multitemporal
satellite images.
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Chapter 1. INTRODUCTION 19

2. A prior-knowledge based method to model high temporal dynamics
typical of agriculture in tropical regions.

3. A performance analysis of the proposed model on datasets representative
of different crop dynamics, specifically from a tropical and from a
temperate region.

1.3
Organization of the reminder parts

The following parts of this work are structured as follows:

1. Chapter 2 presents an overview of the state-of-the-art in crop mapping
from remote sensing image sequences with emphasis on deep learning
based approaches.

2. Chapter 3 details the theoretical background of the algorithms tested in
this work.

3. Chapter 4 details the methodology followed this study.

4. Chapter 5 presents the experimental protocol, describes the datasets
used, the accuracy metrics used to asses the tested classification ap-
proaches, the algorithms’ set up and the experimental results. The results
are discussed in the last part of the chapter.

5. Chapter 6 presents the final conclusions of this work and discusses the
future directions of this research.
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2
RELATED WORKS

This chapter introduces some important concepts in remote sensing
image classification with focus on crop type recognition. In addition, examples
of the most relevant works in this field are presented, with emphasis on those
related to multitemporal analysis and deep learning techniques.

2.1
Traditional Remote Sensing classification techniques

Traditional classification techniques for Remote Sensing (RS) takes the
image pixel as the unit of analysis, with which each pixel is labeled as
a single land use/cover class. This technique uses unsupervised (e.g., k-
means) or supervised (e.g., maximum likelihood, neural network, support
vector machine, random forests) methods to perform pixel-wise classification
[24, 25, 26, 27, 28]. This approach uses the spectral variables of the pixels
and their transformations (e.g., principal components, vegetation indices, etc.)
as input to per-pixel classifiers for unsupervised and supervised classification.
However, these methods have a major limitation, because they ignore spatial
and temporal context.

Generally, pixel-wise classification algorithms can be divided into two
groups: unsupervised and supervised classification. In unsupervised classifica-
tion, the image is split into a number of classes based on the image values,
without the help of prior knowledge [29, 30]. Some unsupervised classification
algorithms are k-means and Self-Organizing Maps (SOM) [31, 32]. In contrast,
supervised classifiers use representative examples with known class types (i.e.,
training samples) to learn the relationships among the spectral properties and
corresponding labels, then to assign the pixel to the class type according to a
mapping learned in the training phase [33]. Traditional supervised classifica-
tion methods include Maximum Likelihood Classifier (MLC) [1] and K-Nearest
Neighbors [34].

Spatio-contextual techniques such as texture extraction [35, 36] have also
been used. Texture feature extraction is the quantification of the variability of
pixels in a neighborhood and can improve the classification accuracy through
smoothing spectral confusion. Statistical methods include mean and standard
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Chapter 2. RELATED WORKS 21

deviation. Features derived from grey-level co-occurrence matrix (GLCM)
[37, 38] are probably the most widely used texture feature extraction strategy
used nowadays [39, 5, 40]. Nevertheless, the discriminative ability of these
low-level features is limited.

With the launch of more satellites, object-based image classification
(OBIA) methods have been developed to partially capture spatial context by
classifying segments [41, 4, 42, 43, 44]. The object-based approach generates
image objects through image segmentation and then performs the classification
on objects rather than pixels. The image objects are formed using spectral,
spatial, and textural information.

As the spectral appearance representing the same area changes over time,
the temporal context is the relationship of an image site (pixel or segment)
with respect to different acquisition times. Therefore, the incorporation of tem-
poral context in the classification model allows for significant improvements in
classification of crops and vegetation [45]. Spatio-temporal Markov Random
Fields (MRFs) and Conditional Random Fields (CRFs) have successfully inte-
grated both spatial and temporal information [6, 46, 47, 21]. Hidden Markov
Model (HMM) has also been used in crop classification based on the time-
series analysis of phenological states [9, 48]. These approaches achieve higher
accuracies than other methods at the cost of a higher computational effort and
more labeled samples for training. They also require expert knowledge about
the problem.

2.2
Deep Learning in Remote Sensing

Deep Learning (DL) has become a hotspot in the RS area due to its
capability to learn features automatically from data with a better performance
than handcrafted features that are manually designed based on domain-
specific knowledge. DL architectures are end-to-end approaches that learn
high-level feature representations and classify the image sites in an single
unified structure. This section focus on a few supervised and unsupervised DL
methods that represent the state-of-the-art in DL for RS image classification.
A detailed explanation of the DL-based algorithms used on this research is
given in the next chapter.

Unsupervised feature learning In crop recognition applications, obtaining
reference data with labeled samples is expensive due to the costs and time
consuming of field visits and/or visual interpretation by an human expert.
In this context, unsupervised techniques might be an attractive alternative.
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The unsupervised DL techniques learn features from the input data without
knowing the labels. These features are learned from image patches with no
knowledge about the semantic. Deep Belief Networks (DBNs) and Autencoders
(AEs) are the most widely used unsupervised DL methods in RS area [49,
50]. However, these models can not learn discriminative representations by
themselves. This task is usually left for a second stage, where a classifier is
trained by using the learned feature representations.

The DBNs has been applied to hyperspectral data classification and
achieved competitive accuracies compared to Principal Component Analysis
(PCA), and better performance compared to SVM [49, 51]. In recent years,
it has also been successfully proposed for land use and land cover, outper-
forming Support Vector Machine (SVM), Neural Networks (NN), stochastic
Expectation-Maximization (SEM) and MRFs [50, 52].

On the other hand, Romero et al. [11] proposed a deep convolutional
sparse autoencoder for learning spectral-spatial features relying on a specific
sparsity criterion. A set of features is extracted from image patches and
classification is then performed to assign a label to each learned feature vector.
Romero and co-authors adopt a greedy (layerwise) training strategy so as to
simplify the feature learning procedure. Similarly, Tao et al. [53] use sparse
stacked autoencoder to learn an effective feature representation from unlabeled
data, and then the learned features are fed into a linear SVM for hyperspectral
data classification. In [54], Chen et al. used a stacked autoencoders (SAE)
to learn deep features of hyperspectral signatures in an unsupervised fashion
followed by logistic regression.

Supervised classification The main supervised approaches in DL are vari-
ants of Convolutional Neural Networks (CNNs) [55], which have outperformed
most algorithms in visual recognition since 2012. While DBNs and AEs train
one layer at a time in an unsupervised manner, CNNs learn features and clas-
sify the input image or image sites in a single pass.

Recently, CNN have been used for crop type classification. Kussul et
al. [14] proposed 1-D and 2-D CNN architectures to explore spectral and
spatial features, respectively. They integrate the spatial and temporal contexts
in a supervised way, and concluded that ensemble of 1-D and 2-D CNNs
outperformed the Random Forest (RF) classifier for crop recognition. Similary,
Makantasis et al. [56] exploited a 2-D CNN to encode spectral and spatial
information, followed by a multi-layer perceptron to perform classification. In
these approaches the trained network computes a descriptor for a given image
patch and predicts a single semantic label for the entire patch (independently
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from the others). This patch label is then assumed to be the label of the central
pixel. They then apply the classifier in a sliding-window manner.

Recently, some studies have utilized 3-D CNNs for learning spatio-
temporal features from videos [57] or learning spatio-spectral presentations
from hyperspectral images [58]. Different from the aforementioned 2-D CNN
architecture, where temporal information is exploited by the stacking the
mltitemporal data, the 3-D CNN architecture use 3D kernels for the 3D
convolution operation to extract spatial and spectral features simultaneously.
In [59] authors use a 3-D CNN based method to automatically classify crops
from multitemporal RS images [59]. They shown that 3-D CNN is especially
suitable in characterizing the dynamics of crop growth and outperformed the
2-D CNN method.

CNNs were originally conceived for image categorization, i.e., to assign
a single class label to the whole input image. CNNs can be easily adapted for
semantic labeling (also know as semantic segmentation). In this approach, the
conventional CNN architecture is applied to the patch centered at each pixel
being classified, whereby the single label delivered by the CNN is assigned
to the central pixel. More recent approaches predict all labels in an image
patch instead of a single label to be assigned to the central pixel. In this
scenario the so called Fully Convolutional Network (FCNs) came into play,
which outperformed CNNs for semantic labeling/segmentation [60, 61, 16] in
terms of thematic and spatial accuracy as well as computational load.
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3
THEORETICAL BACKGROUND

This chapter presents the theoretical fundamentals for understanding the
frameworks proposed in Chapter 4. Only the principal aspects of each one are
given. For further details, the reader is referred to the papers cited in the
following sections.

3.1
Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) has been widely used for Earth remote
sensing for more than 30 years. It provides high-resolution images independent
from daylight, cloud coverage and weather conditions [62, 63]. SAR systems
have a side-looking imaging geometry and are based on a pulsed radar.
The systems transmits electromagnetic pulses and receives the echoes of the
backscattered signal. The amplitude and phase of the backscattered signal
depends on the physical and electrical properties of the imaged object. The
systems stores the backscatter information corresponding to the cell area on
ground scene. The images are recorded parallel to sensor motion (azimuth)
and also orthogonal to its motion (range).

The radar signals are either transmitted with electric field plane parallel
(horizontal polarization) or perpendicular (vertical polarization) to the Earth
surface. The antenna can transmit and receive in either horizontal (H) or
vertical (V) single polarizations (HH or VV) or cross-polarization (HV or VH).

Since SAR systems Earth surface, the backscattered information comes
from a portion of a area of a pixel. Thus, backscatter measured from a target
area in SAR is usually normalized per unit geometric cell area known as
normalized backscatter coefficient σ0 as shown in the following equation:

σ0 = Pr
(4π)3 ∗R3

A ∗ Pt ∗G2 ∗ λ2 (3-1)

where Pr refers to the received energy, G is the antenna gain, λ is the
wavelength, Pt is the transmitted energy, R corresponds to the range and
A is the area over which the measurement is made. This is the so-called the
SAR equation.
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The wavelength affects crop backscatter magnitude because of differences
in dielectric constant and relationship between wavelength and leave size.
Polarization also influences crop discrimination in SAR images since VV
polarized signals interact more with crop structure, HH polarization penetrates
crops and captures underlying soil roughness and moisture content and cross-
polarized images have also been found to improve crop separability [64, 65, 66].
Usually VV–VH is the preferred dual-polarization for crop classification. Figure
1 presents an example of a SAR image with this type of polarization from an
agricultural region in Campo Verde, Brazil.

VH band VV band

Figure 1: Example of VH and VV bands of a SAR image dual-polarized.

3.2
Random Forest

First proposed by Tin Kam Ho of Bell Labs in 1995 [67, 68], Random
Decision Forest is a classifier that consists of growing an ensemble of decision
trees and letting them vote for the most popular class. Tin Kam Ho used the
random subspace method, where the trees are constructed in randomly selected
subspaces and established that this technique can achieve high accuracy for
both training and unseen data.

The Random Forest algorithm (RF) in the current form was introduced
by Leo Beimman in 2001 [69], who defined it as a classifier consisting of a
collection of tree-structured classifiers {R(x,Θz), z = 1, ...}, where {Θz} are
independent identically distributed random vectors and each tree casts a unit
vote for the most popular class at input x [69]. Beirman combines Bagging [70]
with a random variable selection at each node [71] in one the most effective
methods in machine learning, working very well for a wide range of problems.
The mathematical fundamentals behind the algorithm can be found in [69].
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3.3
Autoencoders

An Autoencoder (AE) [72, 73] is a Neural Network (NN) [74] that
is trained with backpropagation and mini-batch gradient descent method
to reproduce at its output the pattern presented at its input. The basic
architecture of an AE involves an encoder function f whose outcome h is
used as a representation of the input data x, and a decoder function g, that
maps back from representation to the input space (see Figure 2). Since they
are restricted to only reproduce the input at the output, it often learns useful
properties of the data.

The AE automatically learns features from unlabeled data. The learning
process searches the parameter space for the set of values that minimizes
the reconstruction error, a measure of the average discrepancy between the
input and the corresponding output of the AE. Once the parameters have
been learned, the encoder is used to generate for any input the corresponding
internal representation, which is expected to be more discriminative than the
original one.
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Figure 2: Autoencoder architecture, example case for input data x(i).

Encoder and Decoder functions: Given a set of unlabeled training samples
x = {x(1), x(2), ..., x(I)} where x(i) ∈ Rd, the encoder function allows the
straightforward computation of a new feature representation h(i) ∈ Rk (see
Figure 2(green dotted block)). Each sample vector x(i) is processed by applying
a linear mapping followed by a nonlinear activation function:

h(i) = f(Wx(i) + β) (3-2)
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where W ∈ Rk×d is a weight matrix for k feature, β ∈ Rk is a bias vector
and f(.) is the encoder activation function (typically the element-wise sigmoid
or hyperbolic tangent non-linearity). The decoder function maps from feature
space h(i) back into input space (see Figure 2(red dotted block)), producing
the reconstruction x̂(i) as follows:

x̂(i) = g(W ′
h(i) + β

′) (3-3)
where W

′ is usually constrained to be equal to W T , β ′ ∈ Rd and g(.) is
the decoder activation function. The set of parameters θ = (W,W ′

, β, β
′) are

learned simultaneously attempting to get the lowest possible reconstruction
error L(x, x̂), typically mean square error 1

2‖x − x̂‖2. The cost function of
autoencoder is shown below:

J(θ) = 1
N

∑
i

L(x(i), g(f(x(i)))) (3-4)

where N denotes the training set size and L the reconstruction error for each
training sample.

Regularization and Sparsity: To capture useful properties it is important to
prevent the autoencoder from learning the identity function. This is achieved
through regularized terms. One particular form of regularization consists
in constraining the dimension of the latent representation h being smaller
than that of input x, i.e., k < d (undercomplete). However, when k > d

(overcomplete), is still possible extract meaningful features by enforcing a
sparsity constraint on the hidden units.

Sparsity in the representation can be achieved by penalizing the neurons
to be inactive most of the time. A neuron is considering “inactive” if its output
value is close to 0 (for sigmoid) or -1 (for hyperbolic tangent) [75]. The cost
function comprising sparsity and regularization takes the form

J(θ) = 1
N

∑
i

L(x(i), g(f(x(i)))) + α
nl∑
l

ml−1∑
j

ml∑
r

(W l
rj)2 (3-5)

+ λ
k∑
t

S(a(i)
t )

where the first term corresponds to the reconstruction error for each training
sample, the second term is the regularization term (the weight-decay term),
which favors the low magnitude of the weight vectors, and helps to prevent
overfitting. Here, nl is the number of layers, ml is the number of neurons in
layer l, (W l

rj)2 represents the connection between the j − th neuron in layer
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l − 1 and the r − th neuron in layer l. The parameter α controls the relative
importance of the two terms [76]. In last term, S(.) is the sparsity constraint
that penalizes the hidden units for being far from zero and a(i)

t represents the
output of t − th hidden unit of i − th input sample. There are many forms
of penalty terms, such as the L2 or L1 norm, Student-t and Kullback-Liebler
divergence. In practice, one common choice for the sparsity cost unit S(.)
corresponds to the L1 penalty S(at) = ‖at‖1 [77, 78].

3.4
Convolutional Networks

In this section, Convolutional Neural Networks (CNNs) and Fully Con-
volutional Neural Networks (FCNs) are described. Both neural networks ar-
chitectures are oriented to handling data with some spatial and/or temporal
relationship (e.g. images, videos, speech processing, etc.). In image analysis,
each layer of data in a Convolutional Networks (convnet) is a three-dimensional
array where the first layer is the image, with pixel size m× n, and d channels.
The region of the input space that are path-connected to a particular unit
of the network is called the receptive field. These type of networks are also
trained with backpropagation and stochastic gradient descent method (SGD).

3.4.1
CNNs principles

CNNs [79, 80, 55] rely on local linear operations followed by a non-linear
transformation, forming a sequential hierarchy of processing layers. The main
objective is assigning a single class label to an entire image/scene. A general
description of the CNN forward pass is given by

x1 → u1(x1;W 1)→ x2 → u2(x2;W 2)→ ... (3-6)
→ xL → uL(xL;WL)→ z

where x1 is the input (an order 3 tensor image in this work) and it goes
through the processing in the first layer u1 all the way to the final layer uL.
The functions ul(.) are usually linear functions, subsequently passed through
nonlinearities, while wl are the parameters at the l − th layer. The input of
each layer ul is the output of the preceding layer xl. One additional layer z is
added, which delivers the final network result.

In the following, are described the five basic building blocks of the CNN
architectures that01 1his work deals with: convolution, nonlinear activation,

DBD
PUC-Rio - Certificação Digital Nº 1613341/CA



Chapter 3. THEORETICAL BACKGROUND 29

spatial pooling, classification, and the loss function. More details can be found
in [81].

Convolutional layer: Convolutional layer consists of several filters using on
local receptive fields on the features maps of the previous layer or input, in
order to extract interesting features. The input to a the layer is a 3-dimensional
array, which is convolved with a set of k trainable filters. Each filter is a set of
weights W of size w×w× d (usually squared), which maps the d-dimensional
feature map at the input to a k-dimensional feature map. Given an input tensor
of dimension m × n × d and a kernel window size of w × w × d centered at
location i, j, the convolution response for the r-th filter can be expressed as

xl+1
i,j,r =

d∑
c=1

w−1∑
q=0

w−1∑
v=0

(W l
v,q,c,r × xl

v,q,c)i,j + β (3-7)

where β is a learneable bias term and l is the layer number. Eq. (3-7) is
repeated for all k filters and for any spatial location i, j. The final output of
the convolutional layer is

(
(m−w+2zer)

s
+ 1

)
×
(

(n−w+2zer)
s

+ 1
)
× k-dimensional

feature map, where s is the stride and zer is the number of zero padding, if
applied and k is the number of filters. Stride indicates that the convolution
is performed once every s pixels both horizontally and vertically, and zero
padding is a padding trick used to control the size after convolution (e.g. to
ensure output with the same height and width of input image). Elements of
the padded rows and columns are usually set to 0. One of the many benefits
of the convolution layer over the fully connected counterpart is that all spatial
locations share the same filters and each filter is applied by sliding it over the
input which greatly reduces the number of parameters to be learned. Figure 3
illustrates this procedure.

Input feature map

Zero padding Convolution

Output feature map

Filter  𝒘𝒑

𝒑𝒕𝒉 feature

Figure 3: Principle of a convolutional layer.
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Nonlinearity layer: Many transformations have been used in the neural
network community to produce nonlinearity. However, during the training
procedure such nonlinearities cause the magnitude of the gradient to reduce
significantly, and after several layers, the gradient will be close to 0 (the
vanishing gradient problem). The use of nonsaturated activation function
improve the gradient propagation and accelerate the learning speed. In this
context, the most commonly chosen one is the Rectified Linear Unit (ReLU)
[82], formulated as ReLU(x) = max(0, x), which replaces all negative values
in the feature map (in the l-th layer) by zero.

Pooling layer: Most convolutional networks involve down sampling layers.
The objective is twofold: to provide some shift invariance and to summarize
spatial information while preserving discrimination, both at a low computa-
tional cost. A commonly used pooling strategy is the so-called max pooling.
It consists of mapping each non-overlapping subregion (typically 2 × 2 ) to
a single number, the maximum within the group. Given a small window size
of H × H centered at location i, j, the maximum value in Hij is given by
xl+1

ij = maxa∈Hij
xl

a.

Fully connected, classification and loss: A fully connected layer is com-
monly used at the end of a CNN model and implies that every neuron in the
previous layer l is connected to every neuron on the next layer l+ 1. It can be
seen as a Multi Layer Perceptron [75] that uses a Multinomial Logistic Regres-
sion in the penultimate layer (other classifiers like SVM can also be used). For
an image classification problem with C classes, the scores (class-conditional
probabilities) are usually given by the softmax activation function

p(y = i|xL) = exp(xL ×WL
i )∑C

c exp(xL ×WL
c )

(3-8)

where p(y = i|xL) is a C-dimensional output vector whose i-th entry encodes
the posterior probability of class i. The filters WL

c can be interpreted as the
weight vector of the classifier.

The last layer is a loss layer, that defines the objective function, which
is minimized in the training procedure in a supervised way using back-
propagation. In a classification problem, the cross-entropy loss is often used to
measure the discrepancy between the CNN prediction y and the target e, and
its formulated as:

z[p(y = i|xL), e] = −
∑

i

p(y = i|xL) log (ei) (3-9)
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where [e1, ..., eC ] is a categorical C-dimensional vector, whereby ei = 1 if i is
the target class, and ei = 0 otherwise. Once both e and p are probability mass
functions, the cross-entropy loss measures the distance between them.

Figure 4 shows a regular CNN architecture composed by a convolutional
layer, followed by three downsampling stages, a fully connected layer and a
softmax layer.

Input Image Conv2D + ReLU + 

Max-pooling

Conv2D + ReLU +  

Max-pooling

Conv2D + ReLU +  

Max-pooling

Fully connected Softmax

Figure 4: Convolutional Neural Networks architecture.

3.4.2
FCNs principles

The FCNs [83] were introduced in the literature as an extension of CNNs
specifically designed for semantic segmentation, i.e., assigning a semantic label
to every pixel in the input image. Basically, the FCN replaces the fully
connected layer of a standard CNN by upsampling layers to recover the spatial
resolution of the input at the output layer (see Figure 5).

FCN performs an end-to-end learning in two phases: first downsamples
(consisting of successive convolution, activation and pooling layers) and then
upsamples (deconvolution) it again, allowing to predict dense output labels
for an arbitrary-sized input. Often, the output of an upsampling layer is
connected with the output of the corresponding layer (in terms of size) in
the downsampling stage. These connections, so called skip connections, aim to
recover fine details that might have vanished due to successive downsamplings.
Several layers of deconvolution and activation functions can learn a nonlinear
upsampling.

In FCNs, both learning and inference are performed for the whole image
at once in order to get a probability map of semantic labels, without loss in
terms of spatial resolution.
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forward/inference

backward/learning

skip connections 

Figure 5: Fully convolutional architecture for semantic labeling.

From fully connected to upsampling: The fully connected layer can be
interpreted as a convolutional layer with filters that cover their entire input
regions. For example, a fully connected layer with k = 1028 that is connected
with an input volume of size 16× 16× 256, can be viewed as a convolutional
layer with dimension of 16 × 16 × 1028 performed with stride 1 and no zero
padding. That is, the filter size is setting to be the size of the input volume,
under this conditions only a single depth column fits across the input volume
and the output will be 1 × 1 × 1028. Thus, converting the fully connected
layers to convolutional layers (with a specific filter size), the network can take
an input of any size and output a classification map.

Deconvolutional Layer: As the data goes through convolutional and max-
pooling layers, the size of the feature maps becomes smaller. Thus, this process
has to be inverted somehow to obtain at the output a semantic label matrix
with the same resolution as the input data. To this purpose FCNs use so called
deconvolutional layers [84]. In practice, deconvolution is implemented as the
transposed convolution operator and can be seen as a convolutional layer with
backward and forward passes inverted [85, 81].

The transpose convolution relocates the activations of the previous layer
in the upsampled grid and performs a convolution for end-to-end learning
by backpropagation from the pixelwise loss. Figure 6 shows the transpose of
convolving a 3 × 3 kernel over a 5 × 5 input padded with a 1 × 1 border of
zeros using 2 × 2 strides, which it is equivalent to convolving a 3 × 3 kernel
over a 3×3 input (with one zero inserted between inputs) padded with a 1×1
border of zeros using unit strides.
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Figure 6: Principle of the transpose convolution (deconvolution). Adapted from
[81].

Classification and loss layer: As in CNNs the classification layer uses Multi
Layer Perceptron (or any other classifier). In this case, the final layer in the
network is a 1×1×C convolution (where C is the number of classes) typically
followed by a softmax non-linearity to provide the per class distribution at each
pixel. Finally, the model is trained by minimizing the pixel-wise cross-entropy
loss. The loss is not computed over a single prediction as for the CNN, but
over the grid of spatial predictions.

If the loss function is a sum over the spatial dimensions of the output
layer, its gradient will be a sum over the gradients of each of its spatial
components. Thus SGD computed on the whole image will be the same as SGD
taking all of the output layer receptive fields as a mini-batch. In this scenario10
both feedforward and backpropagation are much more efficient when computed
over an entire image instead of independently patches [83].

3.4.3
Regularization layers

There are several ways of controlling the capacity of neural networks to
prevent overfitting. Some of them are described in the following.

Batch Normalization: Batch Normalization (BN) [86] properly initializes
neural networks by forcing the set of activations throughout a network to have
zero mean and unit variance for each training mini-batch. This normalization
address the problem of internal covariate shift [87] (when the distribution of
each layer’s inputs changes during training). BN makes network training less
sensitive to layer initialization and improves convergence.
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Dropout: This technique has been proposed to reduce data overfitting in
the feature-learning procedure [88, 89]. During training, each neuron is kept
active with some probability p (dropout rate hyperparameter) or it is set to
zero otherwise. This can be seen as training a different model at every epoch,
similar to bagging. At inference time all activations are used but with scaled-
down weights. Mathematically, this approximates ensemble averaging, i.e., the
geometric mean. The ensemble predictions formed by voting tend to generalize
better than the individual predictions. Dropout could slow down training but
is particularly effective when the number of parameters to learn is large (e.g.,
in the fully connected layers).

Weight decay: Weight decay is a L2 regularizer and the most common form
of regularization. It can be implemented by adding a penalty term to weight
updates during backpropagation. For every weight w in the network is added
the term 1

2λw
2 to the objective, where λ is the hyperparameter, which controls

the penalization.

3.4.4
DenseNets

DenseNets [90] is a CNN where earlier feature maps are concatenated
with the last convolution output forming a data cube, which is then submitted
to a convolution operation. Thus, the output of the l-th layer is defined as
xl = bnl(conct(xl−1, xl−2, ..., x1)), where conct(...) represents the concatenation
operation and bn is a composite function of three consecutive operations:
BN, followed by ReLU and a 3 × 3 convolution. The purpose is to reuse the
information contained of the previous feature maps (with the same resolution,
no pooling is performed) generated up to that network layer. Let’s suppose
that the depth of the feature map at the output of each intermediate layer
l has G-dimensional feature maps, where G is called growth rate parameter.
Thus, at the hidden layer L the DensNet will have L × G feature maps (see
Figure 7).

After L layers a transition layer is introduced to reduce the spatial
dimensionality of the feature maps. Such transformation is composed of a 1×1
convolution followed by a 2× 2 pooling layer. A deep DenseNet architecture is
composed of one or more dense connections and downsamplig layers, followed
by a fully connected layer and a softmax layer (see Figure 7).
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Figure 7: A 4-layer dense block with a growth rate of G = 4 (dotted block)
and a deep DenseNet with three dense blocks (solid block).
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4
METHODOLOGY

This chapter describes the methodology followed in the present disser-
tation to accomplish the three goals of this work. Firstly, the single class
and multiclass approaches are described, followed by a detailed explanation
of each classification framework. Finally, the prior-knowledge post-processing
algorithm is described.

4.1
Single class and Multiclass analysis

Single class: Given a sequence (I1, I2, ..., IT ) of multitemporal RS data
acquired at epochs 1 to T respectively, the pair data-reference is defined as
follows:

H =((I11, I12, ..., I1T ), t1)... (4-1)
((IN1, IN2, ..., INT ), tN)

where Iij is the data from site i in epoch j, ti is the ground truth of i − th
image site, T is the sequence length and N is the number of image sites. We
assume that there is a single crop per image site, i.e., a unique reference map
for the whole sequence. Notice that in this approach a crop label is assigned
to a pixel even during the prepared soil and after harvest stages, although no
crop actually exists at these stages.

Multiclass: The multiclass approach relaxes the hypothesis that there is a
single crop per image site throughout the sequence. For a given sequence of
multitemporal RS data from time 1 to time T , the pair data-reference is defined
as follows

H =((I11, I12, ..., I1T ), (t11, t12, ..., t1T ))... (4-2)
((IN1, IN2, ..., INT ), (tN1, tN2, ..., tNT ))
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where tij corresponds to the ground truth in epoch i at site j. The multiclass
approach considers also the soil class that corresponds to the period prior to
seeding and after harvest.

4.2
Crop type classification frameworks

The general framework (Figure 8) is fed by a sequence of multitemporal
images (I1, ..., IT ) covering a certain geographical area. Each image It corre-
sponds to a different date within a selected period of time and is a tensor
Ii ∈ Rk×l×d, where k and l refers to spatial coordinates, and d is the num-
ber of bands per pixel. The crop type classification models to be tested in
this work are illustrated in Figure 8 (dotted blocks). Three DL methods are
used to evaluate three different approaches: 1) unsupervised feature learning
using AEs for pixel-based classification (AE-PB), 2) CNNs for patch classifi-
cation with spatially independent predictions (CNN-PC) and 3) FCNs for full
patch labeling with structured predictions (FCN-PL). A RF classifier used for
pixel-based classification (RF-PB) was chosen as baseline.

For all frameworks, the temporal context was exploited using the feature
stacking technique. Specifically, spatially correspondent pixels in all epochs are
concatenated along the 3rd dimension; the resulting tensor serves as input to
the classification in all epochs of the sequence.
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Figure 8: General crop type recognition framework: RF-PB (yellow dotted
block), AE-PB (red dotted block), CNN-PC and FCN-PL (green dotted block).
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4.2.1
Random Forest pixel-based framework

The RF-PB approach is highlighted in Figure 8 (yellow dotted block). It
consists of applying a RF classifier to the feature vector of each pixel. Recall
that there is a single feature space, where all pixels in the sequence are rep-
resented. Pixels at the same spatial coordinates share the same representation
in this space for all epochs. The procedure consists of three main steps: 1)
extract the texture features for each image in the sequence separately, 2) stack
these features over all images and 3) apply a Random Forest classifier to map
this feature space to a crop type in a given epoch. The classification result is
arranged in two dimensional matrix, in order to produce a label image.

4.2.2
Autoencoder pixel-based framework

Contrary to RF-PB the AE-PB exploits the spatial context by taking as
representation of each pixel the feature of all pixels in a patch of sizem×m (the
size of window) around that [91]. These are straightened into a one-dimensional
vector to be fed into an AE network. As depicted in Figure 8 (red dotted block),
the framework consists of four main steps: 1) patch-based feature extraction,
2) unsupervised feature learning, 3) stacking new feature representation, and
4) classification.

Patch extraction: The patch-wise descriptor of each image site was built by
arranging in a vector the pixel-wise descriptors within itsm×m neighborhood.
Thus, each pixel is represented by a m×m× d low level feature vector, where
d is the number of image bands.

Unsupervised feature learning: Part of the resulting patches are extracted
for each image using random sampling. This set of patches is fed into an AE of
one hidden layer architecture (see Figure 2 in chapter 3) for an unsupervised
learning of the feature extractor h (i.e., encoder). It is worth pointing out that
an AE is trained for each set of patches, i.e., an AE is trained for each image
in the sequence separately.

Stacking feature representation: After the unsupervised feature learning,
the learned feature extractor h of the corresponding AE is used to get
the new feature representation for each image. Specifically, a new feature
representation in Rk is computed for each m × m × d patch of the input
image, i.e., a k-dimensional feature is extracted from each location i, j. Next,
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the concatenation of those representations over the whole sequence is taken as
the final pixel descriptor.

Classification: A RF classifier is applied to map points in this feature space
to a crop type in a given epoch. Next, each pixel is spatially arranged to obtain
a crop-map at the same resolution of the input image.

4.2.3
CNN patch-classification framework

As in [16] the CNN-PC captures the spatial context of a certain pixel
by a CNN that takes as input an image patch (extracted from the original
image) and predicts a single label, which is assigned to the central pixel. As
illustrated in Figure 8 (green dotted block), the framework consists of three
principal steps: 1) image stacking, 2) patch extraction, and 3) classification.

Image stacking: The idea is stacking the pixel wise features, in this case
the raw data, over the whole sequence, similar to the procedure adopted in
the RF-PB approach. So, there is a single feature space of k × l dimensions
with d× b bands, which represents all images in that sequence, where b is the
number of images.

Patch extraction: The stacking feature space is then cropped in densely
overlapping images patches with a sliding window technique with a 1-pixel
step, so as to preserve the spatial resolution of predictions. Each image patch
has a dimension of m×m×d× b, where d× b is the depth of the patch. These
images patches must accomplish the condition of m«k and m«l.

Classification: In this step, a CNN architecture is used to perform both
training and inference. This architecture takes as input an image patch and
computes the patch class probabilities, which will be assigned to the pixel at
the center of the patch. Next, each query is spatially concatenated to obtain a
crop-map at the same resolution of the input image.

Architecture details As shown in Figure 9 the architecture consists of a
convolutional layer followed by a pooling layer. Then, they are followed by a
fully connected layer and an activation layer, which assigns class scores to the
central pixel of the input patch.
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Figure 9: CNN-PC architecture.

Limitations: The patch-classification framework presents some limitations
for crop mapping task:

– Patches close to each other in space are likely to represent the same class.
However, the network is designed to predict a single label from a patch,
independently on the labels of its surrounding. Often, this leads to a
salt-and-pepper-like result.

– A post-processing stage is often applied to performs structured prediction
on the probabilities given by the classifier, e.g., Conditional Random
Fields [92].

– To obtain a prediction map at the same resolution of the input image, it
is necessary to predict a considerable amount of patches corresponding
to the total number of pixels. This can be extremely inefficient for large-
scale image recognition.

4.2.4
FCN patch-wise labeling framework

The FCN-PL framework considers spatial structures by training an FCN
architecture to predict all labels in the patch instead of a single label. Similar
to CNN-PC, the framework consists of three main stages: 1) image stacking,
2) patch extraction, and 3) classification.

Image stacking: As in the previous framework, given a SAR image sequence,
pixel-wise features are stacked over all images to create a single feature space
which represents the entire sequence.
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Patch extraction: The stacking feature space is decomposed into a series
non-overlapping images patches. In this order, was applied a sliding window
technique with a m-pixel step to get adjacent images patches. Each image
patch has a dimension of m×m× d× b, where d× b is the depth of the patch.

Classification: In the classification step, the image patches are submitted to
the FCN-PL network to obtain a class score map at the same resolution as
the input patches. This way, the time can be roughly reduced at inference
compared with CNN-PC approach. After mosaicking the predicted patches, it
is obtained a crop-map at the same resolution of the input image.

Architecture details: As illustrated in Figure 10, the FCN-PL consist of
a downsampling (blue dotted block) and a upsampling (red dotted block)
path. Each downsampling step is implemented as a dense block followed
by a convolution and a max-pooling layer. The Dense block is referred to
the concatenation of the new feature maps created at a given resolution
(see chapter 3 subsection 3.4.4). The dense block architecture used in the
downsampling path is composed of two convolutional steps, whereby the input
of a dense block is concatenated with its output. From then on, two upsampling
layers restore the original resolution and a final convolution layer computes the
class scores.
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Figure 10: FCN-PL architecture.

Following [93], each upsampling stage is designed with a deconvolution
followed by a dense block. Each of these dense blocks comprises two convolu-
tional steps, but unlike to the downsampling ones, their input is not concate-
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nated with their output. It is also employed skip connections that concatenate
feature maps from the upsampling stage with the corresponding feature maps
produced in the downsampling path. The upsamplings are learned so that the
deconvolutions reconstruct learn spatial and geometrical arrangements of ac-
tivations at larger scale but acting locally, conditioned on the receptive field
of the previous layers.

The output of this architecture can be interpret as structured, since every
predicted label is learned to be interdependent with its neighbors, conditioned
on the receptive field of the previous layers.

Pros and Cons: As compared to a CNN-PC approach, the FCN-PL exhibits
the following pros and cons:

– The feature reuse by dense block and skip connections enforces connec-
tivity between downsampling and upsampling stages.

– Learning class-relationships and co-occurrences represented in the input
patch (i.e., the prediction is locally structured) can minimize salt-and-
pepper effect ensuring that sites are labeled in regard to neighboring
labels and data.

– The image patch can be feedforwarded to the trained network obtaining
a dense score map which implies a lower execution time at inference.

– Need of a more sophisticated balanced strategy to deal with highly
unbalanced data bases.

4.3
Incorporating prior knowledge

In this section we propose two post-processing approaches that enforce
prior knowledge about the dynamics of the different crop types in the target
site.

MLCS with crop rotation: The first approach, called most likely class
sequence with crop rotation (MLCS-CR), is illustrated in Figure 11. It is
inspired in a earlier work on crop recognition that rely on directed graphical
models to represent crop dynamics [10]. In this model yi stands for the crop
class in epoch i, for i = {1, ..., T}, and x denotes the observed feature vector.
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Figure 11: MLCS-CR.

Recall that in all classification methods introduced in the previous section
the observation related to an image site is the same for every epoch, i.e., the
stacked feature vector over all sequence. So, the probability that a particular
sequence of crop classes (y1, y2, ..., yT ) occurs in a given image site over T
epochs given the observation x is given by

p(y1, y2, ..., yT |x) =p(y1|x)p(y2|y1)p(y2|x)... (4-3)
p(yT−1|x)p(yT−1|yT )p(yT |x)

where p(yi|x) is the crop posterior probability in epoch i given the observation
x, and p(yi+1|yi) is the crop transition probability from epoch i to epoch i+ 1.

Assuming that the terms on the right-hand side of Equation (4 − 3)
can be properly estimated, it is possible to compute the probability of every
sequence of crop classes. We propose to take as the final result the sequence
(ŷ1, ŷ2, ..., ŷT ) corresponding to the highest probability, formally

(ŷ1, ŷ2, ..., ŷT ) = arg max
yi

[p(y1|x)p(y2|y1)...p(yT−1|yT )p(yT |x)] (4-4)

The posterior probabilities p(yi|x) can be calculated by any of the
classification methods introduced in previous section. As for the transition
probabilities p(yi+1|yi) we rely on prior knowledge.

Human experts on crop dynamics in the target site may inform the crop
class transitions that are less probable to occur in each pair of consecutive
epochs. For instance, under a proper/high temporal resolution, a change from
maize to soybean must necessarily go first through the class soil. So, the
transition maize → soybean can not occur in consecutive epochs. In view of
equation (4-4), every sequence containing at least one improbable transition
will have zero probability, and will therefore be discarded as a potential
solution.

Estimating the probabilities of possible transitions is not an easy task.
Even experienced experts may find it difficult to choose a real value between
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0 and 1, which represents the probability of each possible transition with
adequate accuracy. Given this difficulty, we propose an alternative solution,
which consists in taking for each class sequence its maximum probability
value. In other words, we assume that the probability of all admissible class
transitions in the sequence being evaluated are equal to 1. Thus, the solution
is given by

(ŷ1, ŷ2, ..., ŷT ) = arg max
yi

max
p(yi|yi−1)

[p(y1|x)p(y2|y1)...p(yT−1|yT )p(yT |x)] (4-5)

By assuming that every possible transition has probability equal to 1,
and impossible class transitions have zero probability, Eq.(4-5) can be further
simplified as

(ŷ1, ŷ2, ..., ŷT ) = arg max
yi

[p(y1|x)...p(yT |x)] (4-6)

whereby only sequences with no impossible class transitions are considered.
Figure 12 describes this solution for C = 4 classes and T = 4 epochs.

Columns correspond to epochs, and rows to crop classes. So, the nodes
represent a crop class in each epoch. Arcs identify possible class transitions
in adjacent epochs. From this graph we can infer the set of sequences to be
evaluated in the computation of Eq.(4-6).

Figure 12: Example of possible transitions.

The elimination of sequences inconsistent with the prior knowledge has
two benefits: the number of sequences to be evaluated is reduced, and the
accuracy increases.

Notice that the algorithm is not applied in a new train-inference pro-
cedure. It just combines the classification results obtained by the methods
introduced in the previous section with prior expert knowledge to eliminate
solutions that involve impossible class transitions.
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The graph of Figure 12 can be represented by a set of T −1 C×C binary
transition matrices. Each matrix refers to a pair of adjacent epochs. The rows
correspond to the crop type in the earlier epoch and columns to the crop type
in the later epoch. Its element ij will be 1 ("true") or 0 ("false") if the transition
yi → yj is possible or impossible, respectively.

MLCS crop sequence length: The MLCS-CR post processing improves
classification accuracy, as will be demonstrated experimentally in the next
chapter. However, it still admits some wrong solutions that could be avoided
with the use of prior knowledge. Figure 13 shows an example of a wrong
solution not detected by MLCS-CR. It shows the crop evolution along six
epochs. Let’s assume that the only two possible class sequences in the target
site are the ones shown in the upper part of Figure 13. Both sequences consist
of class C occurring in three consecutive epochs but shifted in time in relation
to one other.

Notice that transition S → C between epochs 2 and 3 and the transition
C → C between epochs 3 and 4 would be permitted by the MLCS-CR ap-
proach. This would allow solutions other than the ones enrolled as admissible.
Starting either from class C or class S, the sequences can choose a wrong path
after epoch 3, allowing a sequence consisting of class C along epochs 1 to 5,
as well as a sequence with class C only in epoch 3 preceded and followed by
class S. Both sequences are inconsistent with the prior knowledge. In fact, the
MLCS-CR approach only enforced consistency for 2 consecutive epochs.

Figure 13: MLCS-CR transition matrix approach. C and S stands for two
different crop types.

In order to avoid this kind of errors we propose the MLCS crop sequence
length (MLCS-SL) approach (see Figure 14), which takes into account the
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knowledge about the crops’ sequence lengths. Given the same reference class
sequences, each crop type was split up into a set of classes depending on
their sequence lengths (see Figure 14 top). With this refinement, the transition
matrix between epoch 3 and epoch 4 only accept as possible transitions C3→
S1 or C1 → C2 (see Figure 14 middle) circumventing the aforementioned
incorrect paths. After applying the algorithm, each set of classes are grouped
back to the original crop type, obtaining this way the output class sequence
(see Figure 14 bottom). It is worthing point out that the posterior probabilities
of C1,C2,C3 is the probability of class C and the posterior probabilities of
S1,S2,S3 is the probability of class S.

Figure 14: MLCS-SL transition matrix approach.
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5
EXPERIMENTAL ANALYSIS

In this chapter we describe the experiments to evaluate the multitemporal
crop classification frameworks introduced in Chapter 4. Section 5.1 describes
the target sites and the training-testing sample selection strategy. Section 5.2
describes the metrics used for accuracy assessment. Section 5.3 presents the
implementation details and parameters’ setup. Finally, Section 5.4 describes
the experimental protocols and discusses the results.

5.1
Study area

Since agricultural areas can vary strongly in different regions, two highly
differentiated study areas have been used to assess the performance of the
proposed methods: Hanover in Germany and Campo Verde in Brazil. The
weather conditions in these sites are very different, which leads to distinct
crop dynamics.

Hanover dataset: The first site used in our experiments is in the surround-
ings of the city of Hanover, in Northern Germany (52°22’N, 9°43’E) (see Fig-
ure 15). The average annual precipitation is 656 mm and the average annual
temperature is 8.9 °C. Class found in this area are barley, rye, wheat, canola,
grassland, maize, potato and sugar beets. Typical of temperate regions, in this
dataset each parcel belongs to the same class over the whole season. The site
covers an extension of 1728 km2.

The dataset consists of 24 dual polarized (VV & VH) Sentinel-1 images
acquired in the Interferometric Wide Swath Level-1 Mode with a 250 km
swath at 5 meters by 20 meters spatial resolution, captured from October
2014 to September 2015 (see Table 1). The images were downloaded from the
Sentinels Scientific Data Hub in Level-1 Ground Range Detected (GRD) and
preprocessed using the Sentinel Application Platform (SNAP) with Sentinel-1
Toolbox.

First, precise orbit information was applied, which is available days
after the generation of the product. The orbit file provides accurate satellite
position and based on this information the orbit state vectors in the metadata
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Figure 15: Location of study area Hanover, Germany.

were updated. Second, the products were geometrically corrected using a
Range Doppler terrain correction with a Digital Elevation Model (DEM) from
Shuttle Radar Topography Mission (SRTM) and radiometrically calibrated to
a backscatter coefficient σ0. This step also involved georeferencing to the World
Geodetic System 1984 (WGS84) system and resampling of the DEM and the
images to 10 m resolution. Next, the VV and VH bands in a linear scale were
converted to dB. Two images per date at different times were necessary to
cover the entire region, and as last step the data of these dates was merged
and clipped according to the area of interest.

The reference in situ data contains 256 fields (∼120000 pixels) [94]. Two
disjoint sets of polygons were randomly selected, one for training and the other
for testing, using stratified random sampling from Quantum GIS. To ensure
that there were no pixels from the same field in the training and the testing
sets, the selection was performed at the polygon level. The experiments were
conducted taken approximately 50% for training and 50% for testing. Table 2
illustrates the field distribution for all crops in the study area.

In Hanover, crop year stretches from October to October with one
planting period. The crop life cycle extends from 4 months (barley and
potatoes) to 10 months (rye,wheat and canola). Figure 16 shows the crop
calendar.
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Table 1: Sentinel-1 acquisition dates over Hanover.

Year Month Date
October 13, 22

2014 November 15,27
December 09, 21
January 14, 29
February 10, 22
March 15, 27
April 11, 23

2015 May 14, 26
June 10, 22
July 13, 25
August 18, 30
September 14, 26

Table 2: Distribution of training and test data from Hanover.

Train testing

# fields # fields

Maize 24 23

Potato 8 8

Canola 8 7

Sugar beet 23 23

Barley 4 3

Wheat 19 19

Rye 11 11

Grassland 17 16

Campo Verde dataset: The second site is situated in Campo Verde, a
municipality in the state of Mato Grosso in the central west region of Brazil
(15°32’48"S, 55°10’08"W) (see Figure 17) [23]. The average annual precipitation
is 1726 mm and the average annual temperature is 22.3 °C. The main crops
found in this area are soybean, maize and cotton. Some minor crops, such as
beans and sorghum, are also present. In the class non-commercial crops (NCC )
we joined millet, brachiaria and crotalaria. Other classes present in the dataset
are pasture, eucalyptus, uncultivated soil (e.g., bare soil, soil with weeds, soil
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Figure 16: Crop calendar for Hanover. Adapted from [94].

with crop residues), turfgrass and cerrado (Brazilian savanna). Figure 18 shows
the class occurrences per month in the dataset. The area used in our analysis
has an extension of 4,782 km2.
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Figure 18: Class occurrences per month in Campo Verde.

The available database consists of a set of 14 pre-processed SAR Sentinel-
1 and 15 Landsat-8/OLI mosaic images [23]. Only the SAR images were used
in this work. The 14 dual polarized (VV & VH) images were acquired in the
Interferometric Wide Swath Level-1 Mode with a 250 km swath at 5 meters
by 20 meters spatial resolution, captured from October 2015 to July 2016 (see
Table 3). The images were acquired from the Sentinels Scientific Data Hub in
Level-1 GRD and preprocessed using SNAP with Sentinel-1 Toolbox.
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Figure 17: Location of study area in Campo Verde municipality, Mato Grosso
state, Brazil. Taken from [95].

First, the images were radiometrically calibrated to a backscatter co-
efficient σ0. Second, the images were geometrically corrected using a Range
Doppler terrain correction with a Digital Elevation Model (DEM). In this step
the images were georeferenced to the WGS84 system and resampled for 10 m
resolution. Next, the images were converted to dB, co-registered using a Rapid-
Eye mosaic (5 m spatial resolution) and georeferenced to UTM projection Zone
21S and Datum WGS84.

Table 3: Sentinel-1 Acquisition dates over Campo Verde.

Year Month Date

October 29

2014 November 10,22

December 04, 16

January 21

February 14

2015 March 09, 21

May 08, 20

June 13

July 07, 21

The available reference data (ground truth)[23] comprises a total of 513
fields (∼6 millions pixels). In order to select training and testing sets some
polygons was then split up using Quantum GIS getting a total of 608 fields.
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For a random selection of the sets we applied the same procedure adopted
for the Hanover dataset. For all ground truths the procedure ensured that all
classes were represented in both training and testing set. Table 4 illustrates
the global fields distribution for training/testing set.

Table 4: Distribution of training and testing data for Campo Verde.

Train testing
Number fields 312 296

The crop year stretches from late August to July with two seeding pe-
riods. The main crops are annual crops; their phenological cycles can ex-
tend to 3 or 4 months (soybeans and maize) and to 4 up to 6 months (cot-
ton). Figure 19 shows the crop calendar for principal crops: soybeans, cotton
and maize. The types of crop rotation present in the dataset are soybeans-
maize, soybeans-cotton, soybeans-sorghum, soybeans-pasture, soybeans-beans,
soybeans-non-commercial crops (NCC), beans-cotton, maize-cotton, NCC-
cotton. In addition, some areas were cultivated with soybean in the first period
and later used as pasture (soybean-pasture rotation) [23].

Figure 19: Crop calendar for principal crops in Campo Verde.

5.2
Accuracy Assessment

The performance of tested methods were expressed in terms of overall
accuracy, class accuracy, average class accuracy, F1 score per class, class-
averaged F1 score and kappa index. A description of each metric calculated in
this work is detailed bellow (more details can be found in [96]).

The Confusion matrix records correctly and incorrectly recognized ex-
amples for each class. Table 5 presents the matrix in mathematical terms. The
true classes are noted Ci (1 ≤ i ≤ h), whereas the estimated classes, as defined
by the considered classifier,are noted Ĉj (1 ≤ j ≤ h).
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Table 5: Mathematical example of confusion matrix.

C1 C2 ... Ch

Ĉ1 cm11 cm12 ... cm1h

Ĉ2 cm21 cm22 ... cm2h

... ... ... ... ...
Ĉh cmh1 cmh2 ... cmhh

The terms cmij (1 ≤ i, j ≤ h) denote the number of samples recognized
as category i in the classification map, when they actually belong to category
j in the reference data. Consequently, diagonal terms (i = j) correspond to
correctly classified instances and the off-diagonal (i 6= j) terms represent
incorrectly classified ones. The proportion is calculated by pij = cmij/cm,
when cm is the total number of samples. The sums of the confusion matrix
elements over row i and column j are noted cmi+ and cm+j,respectively.

The Overall Accuracy (OA) represents the proportion of correctly clas-
sified pixels with respect to reference data. Thus, the most used empirical
measure, OA is a global measure accuracy, so it is depending of larger classes.
This measure ranges from 0 (perfect misclassification) to 1 (perfect classifica-
tion) and can be stated as the trace of the confusion matrix divided by the
total number cm of classified instances:

OA =
∑h

i=1 cmij

cm
(5-1)

The producer’s accuracies value represents the probability that a certain
class on the reference is correctly classified. The PA for the class Cj and can
be computed by:

PACj
= cmjj

cm+j
(5-2)

The user’s accuracies represents the probability that a pixel classified
into a given class actually represents that class on the reference. The UA for
the class Ci and can be computed by:

UACi
= cmii

cmi+
(5-3)

F1 score (F1) is the harmonic mean of UA and PA. F1 is usually more
useful than accuracy, especially if uneven class distribution. The F1 measure
for the class Ci can be computed by:

F1Ci
= 2× PACi

× UACi

PACi
+ UACi

(5-4)

The Average Class Accuracy (AA) is the proportion of correctly classified
pixels per class. So, it is insensitive to the number of samples of the reference
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classes.
Kappa index it is a measure of the magnitude of agreement between

the predicted and reference class relationship. The calculation is based on the
difference between the actual agreement compared to the agreement that would
be expected by chance. It has value between 0 and 1, when a value of 0 point
to a total random classification and a value of 1 pint to a perfect agreement
between the reference and classification pixels. It is an approach to measure
agreement over and above chance. The Kappa index is also a global measure
accuracy.

5.3
Parameters setup

The hyperparameters of each tested method were tuned based on exper-
iments. In order to balance the number of training samples for all classes, we
replicated samples of less abundant classes. For CNN-PC it was taken into
account the class of the central pixel, whereas for FCN-PL the balancing was
done patch-wise. For the Hanover dataset we selected 30, 000 samples per class
and for Campo Verde 130, 000 samples per class.

For the DL frameworks batch sizes were selected experimentally and fixed
to 128 for AE-PB and CNN-PC, and 32 for the FCN-PL. For the optimization
we used AdaGrad [97] with a learning rate of 0.01 and AdaDelta [98] with a
learning rate of 1.0, for Campo Verde and Hanover datasets respectively.

We developed a program to configure the experiments in a simple and
user friendly way. It was implemented using the Sklearn module of Python for
RF-PB experiments and Keras (with TensorFlow backend) for the DL based
techniques. The models were trained on a desktop workstation with an Intel
Core i7-4790 3.6GHz CPU, 32GB of main memory and an NVIDIA GeForce
GTX1080 graphics processor with 12GB of memory. All experiments run under
Linux (Ubunutu 16.04 distribution).

RF implementation details: For the RF-PB approach hand-crafted features
were used. Following [20], we computed texture features (correlation, homo-
geneity, mean and variance) from Gray-Level Co-occurrence Matrices (GLCM)
in four directions (0, 45, 90 and 135 degrees) using 7 × 7 windows per polar-
ization (VV and VH in this case). We tested 3 window sizes (3, 5, 7 pixels)
and decided to use 7×7 regions. This approach yielded 32 dimensional feature
vectors for each pixel in each epoch. After some tests the RF classifier was
foxed to 250 random trees with a maximum depth equal to 25.
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AE-PB implementation details: Patches from the original images were
selected as input features. After some tests we decided to take patches
with 7 × 7 pixels as input to the AE, thus, the final vector comprehend a
7 × 7 × 2bands = 98 features. The patches were flattened into vectors, which
were standardized zero mean and unit variance. It was employed 100 neurons
at the hidden layer with tanh activation function and an L1 norm fixed to
0.001. The feature maps obtained this way were the inputs to a random forest
classifier setup as described before.

CNN-PC implementation details: Patches from the original images were
selected as input features. After having tested square patches of width/height
equal to 5, 7, 9 and 16, we decided to work with 7 × 7 patches. The
downsampling stage were built with 3×3 convolution using ReLU as activation
function, followed by a 2× 2 max pooling. The convolution stride was fixed to
1 pixel. For the convolution spatial padding was applied in order to preserve
the spatial dimension after the convolution. In the end, a fully connected with
dropout of 20% and a softmax layer to perform classification were added. The
input patches were standardized by subtracting the mean. Table 6 summarizes
all layers for inputs consisting of a stack of 14 images (i.e., 28 channels) and
11 classes.

Training was carried out by SGD applied to patches randomly selected
from training set. At each iteration, the patches were grouped in mini-batches
to estimate the gradient of the loss function with respect to the network’s
parameters.

Table 6: Architecture details of CNN-PC model.

CNN-PC Architecture

Layers Output shape

Input 7× 7× 28

3× 3 Conv 7× 7× 100

Max Pooling 3× 3× 100

Fully connected 200

Softmax, 11 classes

Total params: 207.711

Trainable params: 207.711

Non-trainable params: 0
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FCN-PL implementation details: Patches from the original images were
selected as input features. In order to exploit the advantage of the FCN
architecture, large patches were selected, specifically of size 16, 32, 64, and
128 pixels. Experiments showed that 32 × 32 pixel patches delivered the best
results. Dense block layers were composed of BN, followed by ReLU, a 3 × 3
convolution (with stride 1, i.e., no resolution loss) and dropout with 20% rate.
The growth rate of the dense block was set to G = 16. An initial convolution
was applied with zero padding. The downsampling stages were built with BN,
followed by ReLU, a 1 × 1 convolution, a dropout with 20% rate and a 2 × 2
max pooling. Upsampling was carried out by applying a 3 × 3 transposed
convolution with stride 2. Table 7 summarizes all layers (DB stands for the
downsampling dense blocks and DB’ stands for the upsampling dense block)
for a stack of 14 images and 11 classes. As in CNN-PC, training was carried
out by SGD.

Table 7: Architecture details of FCN-PL model.

FCN-PL Architecture

Layers Output shape Feature maps

Input 32× 32 28

3× 3 Conv 32× 32 48

DB (2 layers) 32× 32 48 + 16 + 16 = 80

Downsampling 16× 16 80

DB (2 layers) 16× 16 80 + 16 + 16 = 112

Downsampling 8× 8 112

DB’ (2 layers) 8× 8 16 + 16 = 32

Upsampling 16× 16 32 + 112 = 144

DB’ (2 layers) 16× 16 16 + 16 = 32

Upsampling 32× 32 32 + 80 = 112

1× 1 Conv 32× 32 11

Softmax, 11 classes

Total params: 174.672

Trainable params: 172.624

Non-trainable params: 2.048
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5.4
Experiments

This section describes the experimental procedures and the results for
each method/protocol tested in this work.

5.4.1
Single class evaluation protocol

In the Campo Verde dataset there are more than one crop per parcel
along the sequence. Therefore, the single class protocol can not be applied to
the entire sequence. In order to test the single class approach in Campo Verde
dataset we split the sequence into two sub-sequences, within the single class
condition holds, as shown in Figure 20. The first one is from October 2015 to
February 2016 (hereafter called Seq-1) containing mostly soybean. The second
sub-sequence extends from March to July (hereafter called Seq-2), with cotton
and maize being the major crops. These sequences contain mainly uncultivated
soil and a unique crop type per parcel, and can therefore be used to test the
single class approach. In spite of the occurrence of soil in some epochs, in these
experiments we assigned a single crop label to each pixel along the whole sub-
sequence in order to identify the crop type cultivate in that planting period. In
both sub-sequences, we had to discard a small number of parcels, where this
condition does not hold.

Figure 20: Campo Verde sub-sequences for single class analysis.
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All accuracy values reported in the next subsections refer to the last
epoch of the whole sequence. Notice that many sequences ending in a given
epoch can be built by appending images of earlier epochs.

Results for Hanover: Figures 21 and 22 summarize the measured perfor-
mances in terms of average F1 and AA, respectively. The bars within each
group correspond to RF-PB, AE-PB, CNN-PC and FCN-PL frameworks, re-
spectively. The leftmost bar of a graph refers to a monotemporal classification,
i.e., for a sequence comprising a single image. The next bars to the right indi-
cate the performance measured upon sequences of increasing lengths, formed
by adding earlier images consecutively. As more images were considered, av-
erage F1 improved from 25% to 82% (RF-PB), from 34% to 92% (AE-PB),
from 31% to 90% (CNN-PC) and from 23% to 92% (FCN-PL). In terms of
AA a similar behavior was observed: from 27% to 80% (RF-PB), from 36% to
90% (AE-PB), from 31% to 90% (CNN-PC) and from 23% to 93% (FCN-PL).
Table 8 also shows that the OA and Kappa index increased as prior images
were added to the sequence.

Figure 21: Average F1 for different sequences, taking the last image in the
database and adding earlier images. Hanover dataset.

For up to 11 images per sequence (which includes images from May to
September) performance improved considerably as more images were added
to the sequence. For sequences between 12 and 24 images, the performance
remained nearly constant for all frameworks. This behavior can be explained
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Figure 22: AA for different sequences, taking the last image in the database
and adding earlier images. Hanover dataset.

by the crop calendar shown in Figure 16. Up to May, many crops are still in
their prepared soil stages and cannot be easily discriminated. From May on the
crops sprout and assume characteristic appearances in the SAR data, which
allows better discrimination.

Table 8: Hanover: OA and Kappa index for different sequence lengths.

Sequence 

Length

RF-PB AE-PB CNN-PC FCN-PL

OA Kappa OA Kappa OA Kappa OA Kappa

1 34.11 21.65 46.46 35.29 41.33 29.13 33.17 19.24

3 58.17 50.01 63.66 56.04 61.00 53.38 59.38 51.47

5 69.46 63.27 74.56 69.13 72.54 67.10 68.63 62.67

7 86.79 83.97 91.77 90.00 92.05 90.38 89.38 87.15

9 86.96 84.18 92.62 91.08 93.59 92.25 91.98 90.30

11 86.97 84.19 93.64 92.32 94.00 92.75 90.70 88.75

13 87.41 84.72 94.57 93.43 93.19 91.79 92.27 90.64

15 87.85 85.23 94.67 93.55 94.22 93.01 93.84 92.54

17 88.08 85.50 94.73 93.62 93.19 91.79 93.08 91.66

19 87.53 84.83 94.81 93.72 93.66 92.34 92.42 90.85

21 87.65 84.98 94.73 93.62 94.12 92.89 93.56 92.24

24 87.50 84.76 94.66 93.53 92.08 90.44 93.99 92.74

The DL based techniques outperformed the RF-PB approach in almost
all experiments, being AE-PB generally the best performing one. In terms of F1
and class accuracy (Acc) all classes reached higher values for DL frameworks.

DBD
PUC-Rio - Certificação Digital Nº 1613341/CA



Chapter 5. EXPERIMENTAL ANALYSIS 60

Table 9 show the results for barley and rye, which are cereals crops and
differentiate between them is a more challenging task.

Table 9: Hanover: F1 and Accuracy (Acc) per class for different sequence
lengths. Crops type: barley and rye. SeqLen stands for the sequence length.

RF-PB AE-PB CNN-PC FCN-PL
SeqLen F1 Acc F1 Acc F1 Acc F1 Acc

ba
rl

ey

7 14.95 9.83 26.21 15.82 29.58 23.73 24.88 20.12
12 20.32 13.21 67.77 61.52 54.61 63.06 45.97 52.31
16 31.43 20.12 70.54 60.68 60.87 63.67 55.58 74.73
21 42.74 30.41 73.63 60.06 67.23 64.44 86.53 95.71

ry
e

7 74.88 73.66 86.81 83.66 85.92 85.21 81.21 82.93
12 75.11 74.17 92.72 92.82 91.35 87.74 83.23 80.04
16 77.13 75.22 93.66 94.15 92.04 86.95 88.38 83.44
21 75.42 71.42 93.69 94.44 94.42 96.62 90.01 92.72

We did not assess quantitatively the spatial accuracy of the methods.
However, Figure 23 provides some visual perception on how the four methods
perform under this point of view. It shows some clippings of the predictions
maps produced by the four methods. For conciseness we show for each method
(four groups of two images) the results for sequence lengths 5 (left image within
the group) and 22 (right image within the group). Results show that for all
frameworks temporal information improves the accuracy of the output crop
map. Generally, FCN-PL and CNN-PC produced smoother maps, whereas the
salt-and-pepper effect is more apparent in the RF-PB and AE-PB outcomes.

Figure 23: Hanover single class. Example of predictions for sequence lengths 5
and 22. GT stands for ground truth.
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Results for Campo Verde: The results for Seq-1 are shown in Figure 24,
Figure 25 and Table 10. Similar to the results drawn from the experiments
on Hanover, temporal information helped to improve the classification perfor-
mance for all evaluated frameworks. Improvements on Average F1 from 16% to
60% (RF-PB), from 16% to 56% (AE-PB), from 15% to 61% (CNN-PC) and
from 20% to 59% (FCN-PL) were measured. In terms of AA, improvements
from 30% to 73% (RF-PB), from 34% to 73% (AE-PB), from 35% to 76%
(CNN-PC) and from 34% to 78% (FCN-PL) were attained.

Figure 24: Average F1 for different sequences, taking the last image in the
sub-sequence and adding earlier images to classify the season. Campo Verde
Seq-1.

Similarly, for Seq-2 (see Figure 26) we obtained improvements on average
F1 from 19% to 57% (RF-PB), from 25% to 57% (AE-PB), from 21% to 58%
(CNN-PC) and from 27% to 56% (FCN-PL). In terms of AA we recorded
improvements (see 27), they were observed improvements from 31% to 69%
(RF-PB), from 37% to 68% (AE-PB), from 38% to 72% (CNN-PC) and from
41% to 67% (FCN-PL).
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Figure 25: AA for different sequences, taking the last image in the sub-sequence
and adding earlier images to classify the season. Campo Verde Seq-1.

Figure 26: Average F1 for different sequences, taking the last image in the
database and adding earlier images to classify the season. Campo Verde Seq-2.

The results in Table 10 and Table 11 are consistent with the results
exhibited so far; by and large OA and Kappa index improved as more images
were added to the sequence.
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Figure 27: AA for different sequences, taking the last image in the database
and adding earlier images to classify the season. Campo Verde Seq-2.

Table 10: Campo Verde Seq-1: OA and Kappa index for different sequence
lengths.

Sequence 

Length

RF-PB AE-PB CNN-PC FCN-PL

OA Kappa OA Kappa OA Kappa OA Kappa

1 40.30 17.17 40.27 17.58 38.04 16.32 53.07 21.92

2 60.97 33.24 61.56 35.74 60.02 34.09 72.38 47.99

3 77.88 56.03 75.26 52.79 77.18 55.65 86.13 70.35

4 80.87 61.15 77.97 56.97 81.49 62.67 82.77 57.08

5 85.09 68.70 83.44 65.88 86.41 71.36 91.64 81.14

6 85.86 70.10 84.65 68.03 87.37 73.10 86.98 71.62

7 86.91 72.22 85.54 69.85 87.96 74.16 89.03 76.31

The FCN-PL performance declined considerably in both sub-sequences
for some sequence lengths, specifically, 4 for Seq-1 and 5 for Seq-2. One possible
reason for this behavior lies in the dynamics of some crops. Take as example
soybean, which is the dominant crop in Seq-1. It can be easily inferred from
Figure 20 that for soybean the seeding and, consequently, the harvest epoch
vary considerably within the sequence. Thus, in one epoch soybean might
be in different phenological stages depending on the parcel being imaged.
Under this conditions, a classifier can get confused because the training set
contains samples in different phenological stages for the same crop. The climate
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Table 11: Campo Verde Seq-2: OA and Kappa index for different sequence
lengths.

Sequence 

Length

RF-PB AE-PB CNN-PC FCN-PL

OA Kappa OA Kappa OA Kappa OA Kappa

1 33.39 20.62 52.11 36.90 41.35 28.53 58.17 42.81

2 66.14 53.14 68.03 55.77 63.47 50.90 71.34 58.47

3 71.01 59.18 71.07 59.45 69.19 57.42 78.01 67.93

4 74.87 64.33 73.70 62.85 74.53 64.07 83.75 75.66

5 78.33 68.87 75.82 65.63 78.55 69.27 73.75 60.98

6 80.99 72.55 78.96 69.82 81.70 73.30 86.36 79.75

7 82.40 74.42 80.19 71.41 83.27 75.35 84.65 77.20

conditions in Hanover dataset do not permit such a variation in seeding/harvest
times. Even more important, was the difficulty to deal with unbalanced training
samples among classes in FCN-PL. Recall that for the RF, AE and CNN each
sample consists exactly of one pixel. For the FCN-PL architecture, a sample
is an image patch that carries all the classes of the pixels in it. In such cases,
some crops might have been not properly represented in the training sets and
the classifier accuracy might have been impacted. Nevertheless, FCN-PL was
the most accurate in terms of OA and Kappa for almost all sequence lengths in
both sub-sequences. In spite of comparatively higher values for OA, the average
F1 and AA were lower due to low accuracies for classes with few samples.

Table 12 (Seq-1) and Table 13(Seq-2) shows the F1 and class accuracy
(Acc) for soybeans, maize, cotton and beans. For conciseness, we show in these
tables only the performance for sequence lengths equal to 1, 4 and 6. For Seq-
1, FCN-PL was the most accurate approach in almost all experiments, except
for length 6, where performance droped for maize, cotton, and beans. Notice
that at this point images from November were added, which, compared with
images from December, contained a considerable percentage of parcels in soil
stage. For Seq-2, FCN-PL was consistently the most accurate for maize and
cotton, and also the worst for beans and soybeans (classes with less abundant
samples) for sequence lengths 1 and 4.
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Table 12: Campo Verde Seq-1: F1 and Accuracy (Acc) per class for different
sequence lengths.

Crop

RF-PB AE-PB CNN-PC FCN-PL

SeqLen F1 Acc F1 Acc F1 Acc F1 Acc

1

Soybeans 58.32 42.18 58.19 41.84 57.08 40.62 70.44 59.10

Maize 9.39 29.93 9.148 32.59 8.29 38.07 12.31 47.66

Cotton 4.63 21.64 4.17 19.64 4.86 28.2 12.86 31.41

Beans 2.44 33.62 2.83 36.77 2.27 51.57 4.99 54.69

4

Soybeans 91.82 86.91 90.00 83.59 92.29 87.12 92.76 96.30

Maize 41.97 82.88 39.44 88.82 47.56 93.46 53.61 97.24

Cotton 43.04 74.77 28.17 60.44 31.65 76.33 23.27 63.94

Beans 39.29 93.57 24.46 97.07 29.47 99.27 46.36 90.78

6

Soybeans 94.41 91.18 93.37 89.56 95.15 92.22 95.17 93.50

Maize 55.58 88.93 43.58 91.48 57.61 97.44 41.71 96.42

Cotton 54.13 79.98 40.47 74.54 49.92 90.47 41.68 85.61

Beans 41.59 96.07 21.77 96.26 30.54 99.16 21.07 98.62

Table 13: Campo Verde Seq-2: F1 and Accuracy (Acc) per class for different
sequence lengths.

Crop

RF-PB AE-PB CNN-PC FCN-PL

SeqLen F1 Acc F1 Acc F1 Acc F1 Acc

1

Soybeans 3.41 6.60 3.86 23.06 3.58 13.02 0 0

Maize 26.90 16.51 72.14 68.79 62.73 50.15 73.16 70.96

Cotton 59.54 47.08 59.64 46.52 52.96 38.35 68.38 58.39

Beans 0.09 6.37 0.44 0.26 0.87 10.59 0 0

4

Soybeans 9.88 27.60 8.49 30.67 9.97 11.71 0 0

Maize 79.95 73.50 80.16 74.07 79.73 72.64 87.13 89.86

Cotton 89.93 86.35 89.21 84.70 89.40 85.29 93.77 93.19

Beans 7.33 49.78 8.00 50.90 8.87 63.91 0 0

6

Soybeans 44.45 67.32 56.38 73.32 55.61 79.59 59.36 61.27

Maize 85.68 81.93 83.91 80.26 84.99 81.22 90.08 88.84

Cotton 91.71 88.74 90.15 86.04 91.66 90.65 93.98 94.63

Beans 10.28 54.95 13.75 57.81 16.13 74.76 30.79 36.35

Figure 28(Seq-1) and Figure 29(Seq-2) shows some clippings of the
predictions maps produced by the four methods for both sub-sequence. For
conciseness we show for each method (four groups of two images) the results
for sequence lengths 1 (left image within the group) and 6 (right image
within the group). Results show that for all frameworks temporal information
improves considerably the accuracy of the output crop map. As in Hanover
dataset, FCN-PL produced smoother maps. The salt-and-pepper effect is even
more apparent for the other three methods in comparison with the results
from Hanover. In addition, the prediction maps were more accurate for more
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abundant classes (soybean and maize) and less accurate for classes that are
less present (e.g., pasture).

Figure 28: Seq-1, example of predictions for sequence lengths 1 and 6. GT
stands for ground truth.

Figure 29: Seq-2, example of predictions sequence lengths 1 and 6. GT stands
for ground truth.

5.4.2
Multiclass evaluation protocol

The Hanover dataset in its original form has a single crop per pixel along
the whole sequence. In order to test the Multiclass protocol on this dataset
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the class uncultivated soil was inferred from [94]. We assigned the class label
soil to the periods outside of the crop life cycle (i.e., soil preparation and post-
harvesting) and it splits the sequence in 7 different periods/ground truth (see
Figure 30 yellow block). The new class distribution after this modification is
shown in Figure 31. Notice that the ground truth from the second date in May
(May_2) to first date of July (Jul_1) corresponds to the original ground truth.
Two protocols were adopted in this case:

1. Protocol I: Similar to the experiments dealing with a single class per
pixel along the sequence, we classified the most recent image of a sequence
adding earlier images successively. Different from the single class analysis,
in this case there might be more than one reference map along the
sequence. The main objective of this protocol is evaluate the performance
of the different approaches in each epoch when information from past is
exploited. For conciseness, in the next subsection we only show the results
of this protocol in graphic mode (not tables).

2. Protocol II: In this protocol we classified all images within the sequence
using the whole set of images. The main objective of this protocol was to
evaluate the performance of the different approaches in each epoch when
the information from past, present and future is exploited. For Campo
Verde dataset images were grouped into 9 different ground truth (see
Figure 18) and for Hanover dataset images are grouped into 7 ground
truth data (see Figure 31).

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep

grassland

potatoes

maize

canola

sugar beets

barley

rye

wheat

Indicate the date of image 

acquisition

Crop life cycle

Figure 30: Hanover crop life cycle. Adapted from [94].
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Figure 31: Hanover new class distribution.

Results for Hanover - Protocol I: Figures 32, 34, 36 and 38 show the
results for RF-PB, AE-PB, CNN-PC and FCN-PL, respectively, in terms
of average F1 (grayish bars), AA (orangish bars) and OA (blueish bars).
For conciseness we show the results for the second image acquired at each
month (i.e., Oct_2,Nov_2,..). Each group of bars presents the performance
corresponding to the acquisition date indicated on the horizontal axis. The
number of bars within a group corresponds to the different sequence lengths.
Thus, the leftmost bar of each group corresponds to a single image, the one
being classified (i.e., monotemporal classification). Bars to the right indicate
the classification performance of the same target image using data of earlier
images consecutively. Notice that the leftmost group has the classification for
both image of October, the two earliest images in the dataset. The rightmost
group has 24 bars corresponding to the maximum number of images in the
database. In addition, Figures 33, 35, 37 and 39 shown the Kappa index for
RF-PB, AE-PB, CNN-PC and FCN-PL, respectively.
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Figure 32: OA (bluish bars), AA (orangish bars) and average F1 (grayish bars).
RF-PB performance for different sequences (bar groups), formed by adding
earlier images. Hanover.

Figure 33: Kappa index. RF-PB performance for different sequences (bar
groups), formed by adding earlier images. Hanover.
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Figure 34: OA (blueish bars), AA (orangish bars) and average F1 (grayish
bars). AE-PB performance for different sequences (bar groups), formed by
adding earlier images. Hanover.

Figure 35: Kappa index. AE-PB performance for different sequences (bar
groups), formed by adding earlier images. Hanover.
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Figure 36: OA (blueish bars), AA (orangish bars) and average F1 (grayish
bars). CNN-PC performance for different sequences (bar groups), formed by
adding earlier images. Hanover.

Figure 37: Kappa index. CNN-PC performance for different sequences (bar
groups), formed by adding earlier images. Hanover.
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Figure 38: OA (blueish bars), AA (orangish bars) and average F1 (grayish
bars). FCN-PL performance for different sequences (bar groups), formed by
adding earlier images. Hanover.

Figure 39: Kappa index. FCN-PL performance for different sequences (bar
groups), formed by adding earlier images. Hanover.

Clearly, all metrics tended to increase as prior images were added to the
sequence in almost all experiments. This improvement was generally significant
for sequence lengths from 2 to 5 images, staying nearly constant or even
declining for longer sequences. A similar behaviour showed the results for
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average F1 and AA. The plot reveals AE-PB as the best performing approach
in most cases, followed by CNN-PC, RF-PB and FCN-PL. The plot also shows
that performance varied depending on the epoch, reaching the highest values
in September.

For FCN-PL and RF-PB a considerable decline was observed in April and
May. This can be understood by looking at the class occurrence histogram in
Figure 31. From April to the second date of May there were more crops at
the beginning of their life cycle (e.g., barley, maize and potatoes ), making
the classification more challenging. Thus, adding earlier images, which contain
mostly class soil, brought moderate gains.

Results for Hanover Protocol II: Table 14, Figure 40 and Figure 41 show
that the use of data from earlier and later epochs brought a considerable
improvement for all images/epochs in the database. Again the DL frameworks
outperformed RF, from 84% to 97% for both, average F1 score and AA.
In terms of OA and Kappa index, DL approaches achieved values above
91%, being AE-PB the best performing framework in almost all experiments,
followed by FCN-PL. AE-PB was once again the best approach followed by
FCN-PL and CNN-PC.

Table 14: OA and Kappa index for all images within the sequence. Hanover
dataset.

Images

RF-PB AE-PB CNN-PC FCN-PL

OA Kappa OA Kappa OA Kappa OA Kappa

Oct-March 90.46 85.34 96.41 94.46 95.63 93.27 93.85 90.48

Apr 88.01 84.86 94.88 93.56 94.75 93.42 94.16 92.71

May_1 87.39 84.64 94.63 93.49 92.74 91.23 92.64 91.13

May_2-Jul_1 87.45 84.70 94.65 93.52 93.02 91.56 88.15 85.77

Jul_2 89.54 85.81 95.49 93.93 93.83 91.71 94.57 92.69

Aug 91.81 88.72 96.40 95.07 94.39 92.36 95.44 93.74

Sep 92.88 89.32 96.79 95.21 95.57 93.39 95.32 93.09

Results for Campo Verde - Protocol I: Figure 42, 44, 46 and 49 show
the results recorded in our experiments on Campo Verde (protocol I) for RF-
PB, AE-PB, CNN-PC and FCN-PL, respectively. The figures summarize the
results in terms of average F1 (grayish bars), AA (orangish bars) and OA
(blueish bars) for each image, whereby Month_#, stands for first and second
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Figure 40: Average F1 for all images within the sequence. Hanover dataset.

Figure 41: AA for all images within the sequence. Hanover dataset.

image for November, December, March, May and July. The bars to the right
indicate the classification performance of the same target image when more
earlier images were considered as data input. Notice that the leftmost group
has only the classification for October, the earliest image in the dataset. The
rightmost group has 14 bars corresponding to the maximum number of images
in the database. In addition, Figures 43, 45, 47 and 49 show the Kappa index
achieved by RF-PB, AE-PB, CNN-PC and FCN-PL, respectively.
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Figure 42: OA (blueish bars), AA (orangish bars) and average F1 (grayish
bars). RF-PB performance for different sequences (bar groups), formed by
adding earlier images. Campo Verde.

Figure 43: Kappa index. RF-PB performance for different sequences (bar
groups), formed by adding earlier images. Campo Verde.
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Figure 44: OA (blueih bars), AA (orangish bars) and average F1 (grayish bars).
AE-PB performance for different sequences (bar groups), formed by adding
earlier images. Campo Verde.

Figure 45: Kappa index. AE-PB performance for different sequences (bar
groups), formed by adding earlier images. Campo Verde.
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Figure 46: OA (blue bars), AA (orange bars) and average F1 (gray bars). CNN-
PC performance for different sequences (bar groups), formed by adding earlier
images. Campo Verde.

Figure 47: Kappa index. CNN-PC performance for different sequences (bar
groups), formed by adding earlier images. Campo Verde.
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Figure 48: OA (blue bars), AA (orange bars) and average F1 (gray bars).
FCN-PL performance for different sequences (bar groups), taking images in
the dataset and adding former images to classify that image. Campo Verde.

Figure 49: Kappa index. FCN-PL performance for different sequences (bar
groups), taking images in the dataset and adding former images to classify
that image. Campo Verde.

As observed in the discussion of the results on Hanover dataset, all
metrics tended to increase as prior images were added to the sequence in
almost all experiments. In certain cases, for longer sequences (see three

DBD
PUC-Rio - Certificação Digital Nº 1613341/CA



Chapter 5. EXPERIMENTAL ANALYSIS 79

leftmost groups), the inclusion of one more image to the sequence was even
deleterious. The For RF-PB, AE-PB, and CNN-PC this improvement was
generally significant for sequences with 2 to 6 images, staying nearly constant
for longer sequences.

On the other hand, FCN-PL manifested a different behavior, being the
most accurate one for short sequences. Almost all images reached more than
60% in terms of OA for sequences containing one or two images. Contrary to
other methods, FCN-PL captures the structure in terms of classes withing the
patch, which reduces the salt-and-paper effect in the classification. Also, for
some images FCN-PL reached low average F1 and AA values compared with
other models. Again, this can be explained by the difficulty to balance training
samples among classses when working with FCN-PL. Similar to what had been
observed for the single class analysis, in some cases adding more images to the
sequence was even deleterious.

Results for Campo Verde - Protocol II: Figure 50, Figure 51 and Table 15
show the results of experiments on Campo Verde following Protocol II. Once
again the use of data from earlier and later epochs improved the accuracy.
Compared with Protocol I the benefits of exploiting data of earlier epochs were
more significant here. RF-PB and CNN-PC alternated as the best performing
method in term of OA and AA.

The average F1 score for CNN-PC and RF-PB exhibited comparable
results. As expected FCN-PL showed low values in terms of average F1
compared with the other three methods. For AA, CNN-PC was the best
performing approach in six out of the nine months, following by FCN-PL and
RF-PB methods.

Figure 50: Average F1 for all images within the sequence. Campo Verde dataset.
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Figure 51: AA for all images within the sequence. Campo Verde dataset.

Table 15: OA and Kappa index for all images within the sequence. Campo
Verde dataset.

Images

RF-PB AE-PB CNN-PC FCN-PL

OA Kappa OA Kappa OA Kappa OA Kappa

Oct 91.46 75.20 89.90 72.12 92.99 79.41 91.66 76.22

Nov 82.37 72.93 79.57 69.51 83.33 74.11 81.06 71.31

Dec 91.51 82.82 89.62 79.46 92.15 83.98 91.37 82.47

Jan 83.50 73.91 81.63 71.16 85.32 76.67 85.04 76.21

Feb 86.20 78.17 84.94 76.35 87.30 79.76 85.76 77.49

Mar 81.44 74.15 79.60 71.76 81.20 73.73 78.77 70.61

May 87.76 81.92 86.61 80.39 87.16 80.92 85.15 77.99

Jun 78.83 71.37 78.25 70.77 78.12 70.36 75.08 66.59

Jul 75.43 67.08 74.18 65.70 74.61 65.89 71.04 61.13

Figure 52 presents some clippings of the predictions maps produced by
the CNN-PC approach (generally presents a more stable behavior over the DL
outcomes). For conciseness we show the results for October, December and
March. The prediction maps were more accurate for more abundant classes:
soil for October, soybeans for December and cotton for March.
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Figure 52: Campo Verde. Example of predictions for October, December and
March. GT stands for ground truth. Same color legend as in Figure 29.

Inference time CNN versus FCN: Table 16 presents the training and
inference time for the CNN-PC and FCN-PL models (example case for Single
Class experiment on Campo Verde dataset). As expected, the FCN-PL average
training time per epoch was longer (approximately twice) than for CNN-PC.
On the other hand, the FCN-PL inference time was more than one hundred
times shorter than for CNN-PC. It can be easily demonstrated that these
differences would have been even larger if we had adopted larger patches for
CNN-PC.

Table 16: Average training and inference time for the CNN-PC and FCN-PL
models.

CNN-PC FCN-PL

Training (s/epoch) 31 61

Inference (s) 240 2

Single class versus Multiclass: For decision makers the information what
matters in most cases is the crop in the harvest rather than the crop in each
month. However, the multiclass approach delivers a class in each epoch. In
order to compare the single class and multiclass variants, we adopted a majority
voting strategy to summarize the multiclass responses into a single response
per image site for the whole observed sequence. For the Hanover dataset, the
results of AE-PB (best performing model) Protocol II were compared with
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AE-PB single class results. For both Campo Verde sub-sequences following
Protocol II, we only took the results of CNN-PC, since it achieved the best
results in terms of absolute performance and stability.

Table 17 summarizes the results in terms of OA and Kappa index. The
results for the single class and the multiclass approaches were not significantly
different.

Table 17: OA and Kappa index for Single class and Multiclass analysis. Results
for Hanover and Campo Verde Seq-1 and Seq-2.

Hanover Seq-1 Seq-2
OA Kappa OA Kappa OA Kappa

Single class 94.7 93.5 88.0 74.2 83.3 75.4
Multiclass 94.8 93.6 86.8 72.7 83.7 76.0

In addition, on the Hanover dataset, the multiclass Protocol II presented
better results in epochs outside the crop cycle period, in which the crop label
was replaced by the label soil. Notice that on images between May and July
lower accuracy values were achieved than on images from October to April and
from August to September.

5.4.3
Evaluation of post-processing algorithms

As described in chapter 4, the MLCS post-processing algorithms were
conceived to refine the results produced by any of the methods evaluated in
the preceding section by exploiting prior knowledge about crop dynamics.

The Hanover dataset does not contain crop rotation and temporal
displacements of crop circles occur rarely. Thus, the assessment of the post-
processing strategies will be limited on Campo Verde dataset. Since CNN-PC
was the best performing method in most cases, we limit ourselves to present
the results of the post-processing algorithms for CNN-PC only.

Figure 53 and Figure 54 show the improvements in F1 per class brought
by both post-processing algorithms in different epochs. For the first 4 epochs
(Figure 53) improvements ranged from ∼5% to ∼7% for maize, turfgrass,
cotton, cerrado and NCC. For epochs 5 onwards (Figure 54), even higher values
were achieved for maize, soybeans, and beans, that is, from ∼10% to ∼21%.
Notice that, MLCS-SL outperformed or stayed nearly equal to MLCS-CR for
almost all crops.

Maize is a good example of MLCS-SL post-processing benefits when
there is a temporal displacement in the crop cycle. In December maize is at
the end of its life cycle in some parcels, whereas it is at the beginning of its
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vegetative growth in other parcels. A similar phenomenon occurs for NCC. In
January, NCC is at the end of its vegetation season in some parcels, whereas
it is continuing its vegetation season in other parcels. This explains the better
performance presented by MLCS-SL compared to MLCS-CR.
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Figure 53: F1 score improvements for MLCS-CR and MLCS-SL. Images from
October to January.
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Figure 54: F1 score improvements for MLCS-CR and MLCS-SL. Images from
February to July.
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5.4.4
Summary and Discussion

The results collected in our experiments confirmed that the accuracy
improves as more multitemporal data are added to the data set. However, the
gain tends to stabilize after some sequence length. As expected, the results for
the temperate region were superior to what has been obtained on the dataset
of a tropical region. The favorable climate conditions allow more flexibility
in the land use, which implies in a more complex dynamics in tropical region,
and consequently, makes the classification task more challenging. Furthermore,
the analysis indicated that the DL techniques yielded better results than the
standard RF approach in almost all experiments.

The results also confirmed the high potential of FCN for crop recognition,
and the need to conceive a strategy to handle databases with complex crop
dynamics and unbalanced classes.

In addition, the approaches tested in this study can be easily applied
in temperate as well as in tropical regions, both in their single or multiclass
variants. For the data set of a temperate region the multiclass approach brought
no significant gain in relation to the single class per season approach. However,
the multiclass protocol achieved better results when dealing with data from a
tropical region.

Finally, the proposed post-processing algorithms, which exploit prior
knowledge, brought significant gains when working with multiclass approaches.
The algorithm brought a F1 score increase in almost all classes and a reduction
in the number of sequences to be evaluated from 384 (CNN-PC) to 44 and 21
for MLCS-CR and MLCS-SL, respectively.
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6
CONCLUSIONS AND FUTURE WORKS

In this work three Deep Learning (DL) based approaches for crop recog-
nition from multitemporal SAR image sequences were investigated: Autoen-
coders (AE), Convolutional Neural Networks (CNN), and Fully Convolutional
Networks (FCN). The AE method combines unsupervised feature learning with
a Random Forest (RF) classifier in a pixel-wise analysis. The CNN method uses
a three-layer network for supervised patch-wise classification with spatially in-
dependent predictions. Finally, the FCN methods investigated in this work
implement a full patch semantic segmentation with structured predictions. As
baseline we took a RF classifier running upon hand-crafted textural features.

The DL based methods performed better than the baseline in almost
all experiments. In fact, AE provided the best results on the dataset of the
temperate region. It achieved the best or close to the best performance for each
metrics in all experiments. On the other hand, for the dataset of a tropical
region the CNN patch-based approach alternated with RF and FCN, having
reached the best or close to the best accuracy in most experiments. Moreover,
the CNN approach presents a more stable behavior when compared with FCN.

Although the FCNs have performed well, their full potential was not
fully exploited in our experiments, mainly due to the difficulty in balancing
the number of training samples among the crop types.

Finally, the post-processing strategies were able to incorporate prior-
knowledge about crop rotations and temporal displacements. Indeed, the post
processing improved accuracy in term of F1 score in almost all classes, reached
from 10% to 20% for some crops.

As future works we plan to investigate procedures to handle class
unbalance, specially for the FCN approaches, and the inclusion of a data
augmentation strategy. In addition, it is to remark that these methods are
not tailored to SAR data, and could be straightforwardly applied to optical
data. In the continuation of this research we intend to extend the methods to
exploit multisensor data.
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