

Edgard Poiate Junior

Mecânica das rochas e mecânica computacional para projeto de poços de petróleo em zonas de sal

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

> Orientadora: Prof^a. Deane de Mesquita Roehl Co-Orientador: Dr. Álvaro Maia da Costa

> > Volume I

Rio de Janeiro Dezembro de 2012

Edgard Poiate Junior

Mecânica das rochas e mecânica

computacional para projeto de poços de

petróleo em zonas de sal

Tese apresentada como requisito parcial para obtenção do Título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof^a. Deane de Mesquita Roehl Orientadora Departamento de Engenharia Civil / PUC-Rio

> > Dr. Álvaro Maia da Costa Co-Orientador PETROBRAS

Prof. Luiz Fernando Campos Ramos Martha Departamento de Engenharia Civil / PUC-Rio

> **Dr^a. Eda Freitas de Quadros** BGTech Engenharia de Solos e Rochas

> > Prof. Otto Luiz Alcântara Santos PETROBRAS

Prof. Tarcísio Celestino Barreto Universidade de São Paulo

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 20 de dezembro de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Edgard Poiate Junior

Engenheiro Mecânico e Mestre pela FEIS (Faculdade de Engenharia de Ilha Solteira-SP) da UNESP (Universidade Estadual Paulista), onde realizou pesquisas na Área de Ciências Térmicas. Ingressou na PETROBRAS em 2001 no Centro de Pesquisas e Desenvolvimento, atuando no desenvolvendo de estudos área de na mecânica computacional e mecânica das rochas aplicada em projeto de pocos através de camadas de sal ou próximos a domos salinos. Também atuou na análise estrutural termomecânica em modelos experimentais e numéricos de dutos e na instrumentação, monitoração e visualização 3D em ambiente de realidade virtual de sistema dutoviário.

Ficha Catalográfica

Poiate Jr, Edgard

Mecânica das rochas e mecânica computacional para projeto de poços de petróleo em zonas de sal / Edgard Poiate Junior ; orientadora: Deane de Mesquita Roehl ; coorientador: Álvaro Maia da Costa. – 2012.

2v. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Mecânica das rochas. 3. Mecânica computacional. 4. Projeto de poços de petróleo. 5. Rochas evaporíticas. 6. Zonas de sal. 7. Projeto de revestimento. 8. Fluência. I. Roehl, Deane de Mesquita. II. Costa, Álvaro Maia da. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 1022361/CB

À minha família.

Agradecimentos

A todos os meus amigos, a PETROBRAS, ao IPT-SP a PUC-Rio e a TECGRAF por todo apoio e pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Poiate Jr, Edgard; Roehl, Deane de Mesquita; Costa, Álvaro Maia da. **Mecânica das rochas e mecânica computacional para projeto de poços de petróleo em zonas de sal**. Rio de Janeiro, 2012. 462p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo deste estudo foi ampliar o conhecimento em mecânica de rochas evaporíticas e aplicar a mecânica computacional na modelagem numérica do comportamento estrutural de poços de petróleo em zonas de sal. Amostras de rochas evaporíticas de anidrita, halita, carnalita e taquidrita pertencentes à següência evaporítica Ibura da Formação Muribeca, testemunhadas em poços de petróleo, foram submetidas a ensaios laboratoriais de mecânicas de rochas, em especial a ensaios triaxiais de fluência sob diferentes condições de estado de tensões e temperaturas. Nas mesmas condições de ensaio triaxial de fluência a taquidrita desenvolveu deformação axial específica de cerca de 107 vezes maior que a halita e 2,7 vezes maior que a carnalita, sendo que a anidrita permanece essencialmente indeformável. Para os ensaios triaxiais de fluência com a halita na temperatura de 86°C foi possível definir o mecanismo duplo de deformação por fluência, enquanto que para a carnalita e a taquidrita isto ocorreu nas temperaturas de 130 e 86°C, respectivamente. A taxa de deformação por fluência em regime permanente obtida por simulação numérica reproduziu fielmente os resultados experimentais dos ensaios triaxias de fluência, com erro relativo inferior a 1%. Através dos ensaios laboratoriais foram obtidos os parâmetros geomecânicos de fluência das rochas ensaiadas e a seguir aplicados nos modelos numéricos de simulação, construídos para avaliar a influência de diversos parâmetros nos estudos de estabilidade de poços e integridade de revestimentos. A desconsideração da interação geomecânica entre estruturas salíferas e o maciço hospedeiro pode conduzir a falhas na perfuração de poços próximos a tais estruturas devido ao processo de halocinése do sal que altera o estado de tensões gravitacional.

Palavras-chave

Mecânica das rochas; mecânica computacional; projeto de poços de petróleo; rochas evaporíticas; zonas de sal; projeto de revestimento; fluência.

Abstract

Poiate Jr, Edgard; Roehl, Deane de Mesquita (Advisor); Costa, Álvaro Maia da (Co-Advisor). **Rock mechanics and computational mechanics for the design of oil wells in salt zones.** Rio de Janeiro, 2012. 462p. DSc Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The aim of this study was to increase knowledge of evaporitic rock mechanics and apply computational mechanics in numerical modeling of structural behavior of oil wells in areas of salt. Evaporitic rock samples of anhydrite, halite, carnallite e tachyhydrite and belonging to the evaporitic sequence Ibura from the Muribeca formation, coring in oil wells, were subjected to laboratory tests of rock mechanics, especially the triaxial creep under different states of stress and temperature. Under the same conditions of triaxial creep tachyhydrite developed specific axial strain rate about 107 times that of halite and 2.7 times that of carnallite, and anhydrite remains essentially undeformed. For the triaxial creep of halite in the temperature of 86°C it was possible to define the double mechanism creep law, while for carnallite and tachyhydrite this occurred at temperatures of 130 and 86°C, respectively. The creep rate in steady state condition obtained by numerical simulation accurately reproduced the experimental results of the triaxial creep tests, with a relative error less than 1%. Through laboratory tests geomechanical creep parameters of the tested rocks were obtained and then applied in numerical simulation models, designed to evaluate the influence of various parameters in the well stability and casing design. The lack of consideration of the geomechanical interaction between the salt structures and the host rock can lead to drilling failures in wells near such structures due to the salt halokinesis process that changes the gravitational stress state.

Keywords

Rock mechanics; computational mechanics; oil well design; evaporitic rocks; salt zones; casing design; creep.

Sumário

1 Introdução	41
1.1. Motivação	41
1.2. Estrutura da tese	47
	10
2 Revisão da literatura	49
2.1. Características das rochas evaporíticas	50
2.2. O comportamento de fluência	54
2.2.1. Os mecanismos de deformação por fluência	56
2.2.2. Leis empíricas	58
2.2.3. Modelos reológicos	59
2.2.4. Leis associadas a processos físicos	60
2.3. Aspectos importantes na construção de poços de	
petróleo em zonas de sal	67
2.3.1. Tecnologias de fluidos de perfuração	89
2.3.2. Tecnologias de perfuração, alargamento e controle	
de verticalidade	91
2.3.3. Tecnologias de colunas de revestimentos	96
2.3.4. Tecnologias de pastas de cimentação de revestimento	98
2.3.5. Tecnologias adicionais	100
2.4. Histórico de construções de poços de petróleo em zonas de sal	104
	100
3 Proposição	132
4 Materiais e métodos	135
4.1. Testemunhagem, armazenamento e preparo dos	
corpos de prova	135
4.2. Características químicas e mineralógicas da amostras	142
4.3. Ensaios geomecânicos realizados em laboratório	144
4.3.1. Em rochas evaporíticas	144
4.3.2. Ensaios em pastas de cimento	162
4.3.3. Ensaios no conjunto pasta de cimento aderida	

em rocha evaporítica	165
4.4. Ensaios realizados <i>in situ</i>	169
4.4.1. Fraturamento hidráulico	169
4.5. Modelagem numérica	169
4.5.1. Pré-processamento	170
4.5.2. Processamento	193
4.5.3. Pós-Processamento	195
5 Resultados e discussões	196
5.1. Caracteristicas químicas e mineralógicas da amostras	196
5.2. Ensaios geomecânicos realizados em laboratório	204
5.2.1. Em rochas evaporíticas	204
5.2.2. Em pastas de cimento	269
5.2.3. No conjunto pasta de cimento aderida em	
rocha evaporítica	272
5.3. Ensaios realizados in situ	279
5.3.1. Fraturamento hidráulico	279
5.4. Comparação dos parâmetros de fluência obtidos por	
ensaios de laboratório e retroanalisados por observação de campo	294
5.5. Simulações numéricas	298
5.5.1. Simulação numérica do ensaio triaxial de fluência	299
5.5.2. Validação do ANVEC 3D por meio do ANVEC 2D	300
5.5.3. Aplicação do ANVEC 2D e 3D com parâmetros	
de fluência obtidos por ensaios laboratoriais na simulação	
do painel experimental D1 da galeria C1D1 na mina de TV	302
5.5.4. Estabilidade de poço através de camadas de sal	303
5.5.5. Alteração do estado de tensões próximo a estruturas	
salíferas	359
5.5.6. Integridade de poço revestido frente às rochas salinas	378
6 Conclusões	439
6.1. Considerações Gerais	439
6.2. Conclusões e sugestões	440
Referências bibliográficas	448

Lista de figuras

Figura 2.1 - Tipos de estruturas salíferas, adaptado de
Jackson e Talbot (1994)52
Figura 2.2 - a)Sal autóctone e b)Sal alóctone, adaptado de
Cramez (2006)53
Figura 2.3 - Típico ensaio de fluência55
Figura 2.4 - Tipos de defeitos cristalinos, a)vacância, b)auto-intersticial,
c)impurezas ou soluções, d)discordância de aresta ou linha de
discordância, e)discordância espiral e f)discordâncias mistas
(Adaptado de CALLISTER, 1991)58
Figura 2.5 - Modelos reológicos fundamentais: (a) linear elástico,
perfeitamente plástico; (b) fluência estacionária viscoelástica
(Maxwell); (c) fluência transiente viscoelástica (Kelvin-Voigth) e
(d) Modelo de Burger (b)+(c), adaptado de Costa (1984)59
Figura 2.6 - Sistema de critalização cúbico da halita e esquema
simplificado de uma distorção ou imperfeição no arranjo atômico
ideal em razão da presença de uma aresta (<i>edge</i>) adicional em um
plano do retículo cristalino adaptado de Gangi et al. (1981)62
Figura 2.7 - Tipos de movimentação a)deslizamento, b)galgamento e
c)difusão de massa líquida e solubilização sob pressão63
Figura 2.8 - Mapa-mundi ilustrando acumulações de sal e regiões
de exploração de petróleo. Adaptado de George (1994)68
Figura 2.9 - Perfuração através de camadas de sal69
Figura 2.10 - Perfuração próxima a estruturas salíferas70
Figura 2.11 - Camadas pré e pós-sal no Brasil (PETROBRAS, 2012)71
Figura 2.12 - Extensão do pré-sal (PETROBRAS, 2010)71
Figura 2.13 - Prisão do BHA de Perfuração73
Figura 2.14 - Fechamento do poço ao longo da perfuração de
diferentes tipos de rochas evaporiticas em escala distorcida (x/y=50)74
Figura 2.15 - Arrombamento do poço por dissolução dos evaporitos
(washout)74
Figura 2.16 - Retroanálise de arrombamento do poço por excesso

de deformação75
Figura 2.17 – Batentes formados ao longo da perfuração de um poço
com diferentes litologias de rochas evaporíticas76
Figura 2.18 - Batentes formados ao longo da perfuração de um poço
com diferentes litologias de rochas evaporíticas76
Figura 2.19 - Poço direcional espiralado ao longo da perfuração em
diferentes litologias de rochas evaporíticas77
Figura 2.20 - a)Poço arrombado e com geometria irregular devido à
perfuração de camada de sal com fluido aquoso, b)poço com região
arrombada devido a deslocamento de fluido aquoso para liberação
de coluna de perfuração durante perfuração com fluido não aquoso
e região com fechamento significativo e c)poço perfurado com fluido
não aquoso com geometria bem cilíndrica (HOLT e JOHNSON, 1986)78
Figura 2.21 - a)Região de poço arrombado com deficiência de cimentação
(STASH e JONES, 1988) antes e b)após a cura da pasta de cimento79
Figura 2.22 - Carregamentos atuantes em revestimentos, adaptado
de Willson et al. (2002)
Figura 2.23 - Aumento de temperatura no poço em função da
entrada de produção81
Figura 2.24 - Redução da pressão interna no revestimento (7-8)
durante manutenção no poço82
Figura 2.25 - Simulação de revestimento colapsado devido aos esforços
localizados pelo sal (Zhang, Standifird e Lenamond, 2008)82
Figura 2.26 - Revestimento submetido a flambagem vertical
devido aos esforços gerados pela perda de contenção lateral83
Figura 2.27 - Forças de dobramento no revestimento devido à
movimentação do sal84
Figura 2.28 - Riscos superficiais gerados por movimentação do
diápiro de sal (adaptada de Seymour e Rae, 1993)85
Figura 2.29 - Alteração das geopressões acima e abaixo do sal no
Golfo do México (adaptada de Whitson e McFadyen, 2001)87
Figura 2.30 - Rubble Zone, região fraturada com perda de circulação
do fluido de perfuração do poço na base da camada de sal
Figura 2.31 - Riscos potenciais através e próximos a camadas de
sal, adaptada de Willson e Fredrich (2005)

Figura 2.32 - Alargadores excêntricos	92
Figura 2.33 - Alargadores concêntricos	94
Figura 2.34 - RSS em operação de desvio <i>push-the-bit</i> , em	
Savino (2009) apud Baker Hughes (2004)	95
Figura 2.35 - RSS em operação de desvio <i>point-the-bit</i> ,	
adaptado de Savino (2009) apud Halliburton (2007)	95
Figura 2.36 - Centralizadores: a)Aletas flexíveis, b)Aletas rígidas	
axiais e c)diagonais	97
Figura 2.37 - Tecnologia Casing Drilling	98
Figura 2.38 - Princípio de Funcionamento da a)Sísmica de	
superfície, b)VSP e c)SWD	102
Figura 3.1 - Esquema do embasamento do trabalho	134
Figura 3.2 - Metas divididas pelas áreas para atingir os objetivos	
propostos	134
Figura 4.1 - Rochas salinas testemunhadas e suas estruturas	
atômicas, a)halita, b)carnalita, c)taquidrita e d)anidrita	136
Figura 4.2 - Procedimentos especiais para amostragem, condicionamento	
e transporte de rochas evaporíticas. a)Limpeza de fluido de perfuração	
do testemunho, b)Verificação da integridade, c)Testemunho envolvido	
por camadas de filme de PVC e sachês de sílica gel nas extremidades	
do testemunho, d)Testemunho colocado em embalagem plástica e	
selado à vácuo, e)Espaço anular entre testemunho e barrilete preenchido	
com fluido de perfuração, f)ldentificação da caixa de transporte,	
g)ldentificação do barrilete, h)Espuma entre o tubo e a caixa de	
transporte e i)Testemunhos em caixa térmica para transporte	138
Figura 4.3 - Regiões de testemunhagens de rochas evaporíticas	
em poços de petróleo	138
Figura 4.4 - Seqüência evaporítica Ibura da Formação Muribeca	
(Cerqueir et al., 1982)	139
Figura 4.5 - Ambiente com umidade controlada para armazenamento	
de rochas evaporíticas	140
Figura 4.6 - Inauguração do laboratório para ensaio de rochas	
evaporíticas pelo presidente General Ernesto Geisel (Fonte: IPT-SP)	140
Figura 4.7 - Preparação de topo e base de CP em torno mecânico	141
Figura 4.8 - Medição de velocidade compressional em CP de halita	142

Figura 4.9 - Amostra de halita preparada para DRX
Figura 4.10 - Ilustração esquemática de uma das unidades de
ensaio triaxial de fluência (Fonte:IPT-SP)146
Figura 4.11 - Vista panorâmica das unidades de ensaio triaxial
de fluência146
Figura 4.12 - Montagem de um CP na célula de ensaio triaxial.
a)CP na base da célula triaxial, b)Colocada rótula introduzida,
c)Inserindo a membrana no CP, d)Membrana montada, e)Colocação
da câmara triaxial, f)Pistão inserido, g)Câmara na laje de reação com
resistência elétrica, h)Estufa ao redor da câmara, i)Montagem finalizada
e j)Controle de ensaios e monitoração dos dados em tempo real147
Figura 4.13 - Introdução de cristais piezoelétricos nos caps do
topo e base
Figura 4.14 - Princípio de funcionamento do sistema de aquisição
de ondas "p" e "s"
Figura 4.15 - Representação esquemática de cilindro vazado para
simular poço em escala reduzida150
Figura 4.16 - Ilustração esquemática da unidade de ensaio
desenvolvida para ensaio com cilindro vazado (Fonte: IPT-SP)151
Figura 4.17 - a) ADVDPC e b)Sistema de aquisição Spider 8152
Figura 4.18 - Cilindro vazado confeccionado em halita152
Figura 4.19 - Membrana de viton na parte interna do CP153
Figura 4.20 - Modos de instrumentação das deformações do
cilindro vazado, a)membrana de viton instrumentada com fibra
óptica e b)anel instrumentado com extensômetro elétrico154
Figura 4.21 - a)CP de anidrita e b)halita instrumentados preparados
para ECD156
Figura 4.22 - CP de carnalita instrumentada preparado para o
ECU (Fonte: IPT-SP)159
Figura 4.23 - Perfilagem de diâmetro de poço através de rochas
evaporíticas
Figura 4.24 - a)Amostras de pasta de cimento após a cura,
b)Usinagem de topo e base e c)CP preparado para ensaio163
Figura 4.25 - CP de pasta de cimento instrumentado e preparado
para iniciar ECU163

Figura 4.26 - a)CP lixado e regiões de medição de rugosidade, b)Cimento
vertido, c)Matriz fechada e d)Colocação em câmera de cura165
Figura 4.27 - CPs retirados da matriz após a cura166
Figura 4.28 - a)Parte de CP moldado na caixa de cisalhamento
direto, b)Cilindro hidráulico axial, c)Cilindro hidráulico horizontal,
d)Esquema do ECDI e e)Equipamento (Fonte:IPT)166
Figura 4.29 - a)Dimensões do CP para ensaio de pull ou push-out
e b)CP confeccionado168
Figura 4.30 - a)Esquema (Fonte: IPT-SP) e b)Imagem de equipamento
para ensaios de push ou pull-out168
Figura 4.31 - Distância entre os poços ensaiados e a mina de TV169
Figura 4.32 - Modelo discreto de simulação de CP dos ensaios
Figura 4.33 - Modelo 2D para comparação com o 3D172
Figura 4.34 - Vista em perspectiva e frontal do modelo 3D para
comparação com o 2D173
Figura 4.35 - Galeria experimental C1D1 na mina de TV
(Adaptado de Costa, 1984)174
Figura 4.36 - Interpretação geológica do corte A-A'.
(COSTA et al, 1984)
Figura 4.37 - Típica seção de medição de convergência na mina
de TV (Fonte: Álvaro Maia da Costa)175
Figura 4.38 - Modelo 2D da galeria C1D1175
Figura 4.39 - Modelo 3D da galeria C1D1 em corte
Figura 4.40 - Template a)2D e b)3D de estabilidade de poço
Figura 4.41 - Cenários de simulação dos modelos dos grupos A e B,
fatores geométricos em relação a espessura de sal a ser perfurada179
Figura 4.42 - Modelo axissimétrico A1 com 2.000 m de rochas
salinas segundo o eixo longitudinal do poço (escala x/y=0,01)181
Figura 4.43 - Modelo axissimétrico A2 com 110 m de rochas
salinas segundo o eixo longitudinal do poço (escala x/y=0,1)182
Figura 4.44 - Modelos de I1 a I4
Figura 4.45 - Explicação geométrica do cálculo de diâmetro útil no poço 184
Figura 4.46 - Modelo de elementos finitos de rocha salina e do maciço
rochoso hospedeiro gerados a partir da seção sísmica convertida em
profundidade e poço localizado entre domos salinos (Modelo J)

Figura 4.47 - Modelo de elementos finitos de poço localizado próximo	
à estrutura salífera com espesso soterramento (Modelo K)	186
Figura 4.48 - Modelo de elementos finitos de estrutura salífera em	
forma de pináculo com soterramento delgado (Modelo L)	. 186
Figura 4.49 - Modelo de elementos finitos 2D para análise de	
estabilidade de poço	. 188
Figura 4.50 - Templates a)2D e b)3D de poço revestido	. 189
Figura 4.51 - Exemplo de modelo de elementos finitos 2D para AIP	. 190
Figura 4.52 - Exemplo de modelo de elementos finitos 3D para AIP	. 190
Figura 5.1 - Aspecto geral da anidrita com a)100, b)500 e	
c)1000 vezes de ampliação	. 197
Figura 5.2 - EDS das áreas a)1 e b)2 da Figura 5.1b	198
Figura 5.3 - Comprovação por DRX da fase NaCl presente na	
amostra identificada com halita	. 198
Figura 5.4 - Aspecto geral da halita com a)20 e b)200x de ampliação	. 199
Figura 5.5 - EDS das áreas a)1 e b)2 da Figura 5.2b	200
Figura 5.6 - a)Ampliação e b)EDS na área rica em bário	200
Figura 5.7 - Comprovação por DRX das fases Mg.Cl ₂ .KCl ₂ .6H ₂ O	
e NaCl presentes na amostra identificada com carnalita	201
Figura 5.8 - Aspecto geral da carnalita com a)25 e b)250x de ampliação	. 201
Figura 5.9 - EDS das áreas a)1, b)2 e c)3 da Figura 5.6b	202
Figura 5.10 - a)Ampliação e b)EDS na região B da Figura 5.6a	202
Figura 5.11 - Comprovação por DRX das fases CaCl ₂ .MgCl ₂ .12H ₂ O e	
Mg Cl ₂ .6H ₂ O presentes na amostra identificada como taquidrita	203
Figura 5.12 - a)Aspecto geral da taquidrita com ampliação de 22x	
e b)EDS	203
Figura 5.13 - a)Aspecto geral de outra amostra de taquidrita com	
ampliação de 22x e b)EDS	204
Figura 5.14 - a)Detalhe na amostra em área com partículas dispersas	
(800x) e b)EDS.	204
Figura 5.15 - Halita submetida a uma tensão desviatória de 16 MPa e	
temperatura 86 °C.	206
Figura 5.16 - Taxa de deformação por fluência em regime permanente em	
função da tensão diferencial na temperatura de 86 °C para halita	207
Figura 5.17 - Taxa de deformação por fluência em regime permanente	

em função da tensão diferencial nas temperaturas 43, 86 e
130 °C para halita
Figura 5.18 - Deformação axial específica ao longo do tempo de
CPs submetidos a tensão desviatória de 10 MPa nas temperaturas
de 86 e 130 °C
Figura 5.19 - Deformação axial específica ao longo do tempo
de CPs submetidos a temperatura de 86 °C e tensões desviatórias
de 10 e 20 MPa210
Figura 5.20 - Taxa de deformação por fluência em regime permanente em
função da tensão de confinamento na temperatura de 86 ºC, para a tensão
desviatória de a)20 MPa e b) 10MPa212
Figura 5.21 - Taxa de deformação por fluência em regime permanente
em função da tensão de confinamento na temperatura de 86 ºC e nas
tensões desviatórias de 10 e 20 MPa213
Figura 5.22 - Deformação axial específica, Vp e Vs ao longo do tempo
de CP submetidos a pressão confinante de 20 MPa, pressão axial de
40 MPa e temperatura de 86 °C214
Figura 5.23 - Taxa de deformação por fluência em regime permanente em
função da tensão diferencial nas temperaturas 86 e 130 °C para carnalita215
Figura 5.24 - Taxa de deformação por fluência em regime permanente em
função da tensão diferencial nas temperatura 86 e 130 °C para taquidrita216
Figura 5.25 - Ensaios de fluência das rochas salinas taquidrita, carnalita,
halita e anidrita, quando submetidas a tensão desviatória de 10 MPa e
temperatura 86 °C
Figura 5.26 - Resultados dos ensaios de fluência das rochas halita e
anidrita, quando submetidas a uma tensão desviatória de 10 MPa
e temperatura de 86 °C218
Figura 5.27 - a-d) CPs de anidrita, halita, carnalita e taquidrita antes e
e-h) após os ensaios de fluência sob tensão desviatória de 10 MPa e
temperatura de 86 °C218
Figura 5.28 - Ensaios de fluência em halitas dos EUA e do Brasil
submetidas às mesmas condições de ensaio219
Figura 5.29 - Taxa de deformação obtida em ensaios de fluência
em halita do campo de Mad Dog, testemunhada no Brasil e modelo
numérico de Bayou Choctaw

Figura 5.30 - Esquema de aplicação das pressões no ensaio de
fluência em cilindro vazado221
Figura 5.31 - Tela de monitoração do ensaio com cilindro vazado
em tempo real, após equilíbrio termo-hidráulico222
Figura 5.32 - a)CP com diâmetro interno moldado com massa plástica,
b)Extração do molde interno e c)Imagem interna do CP cortado ao meio222
Figura 5.33 - a)Diâmetro interno do furo ao longo do comprimento
do CP e b)Molde223
Figura 5.34 - Esquema de aplicação das pressões no ensaio de
fraturamento em cilindro vazado224
Figura 5.35 - Tela de monitoramento do ensaio CP1Fh224
Figura 5.36 - a)Vista frontal e b)Superior do CP1Fh fraturado225
Figura 5.37 - Tela de monitoramento do ensaio CP2Fh225
Figura 5.38 - a)Vista frontal e b)Superior do CP2Fh fraturado226
Figura 5.39 - Esquema de aplicação das pressões no ensaio do CP3Fh227
Figura 5.40 - Tela de monitoramento do ensaio CP3Fh227
Figura 5.41 - a)Vista frontal e b)Superior do CP3Fh fraturado228
Figura 5.42 - Esquema de aplicação das pressões no ensaio do CP4Fh228
Figura 5.43 - Tela de monitoramento do ensaio CP4Fh229
Figura 5.44 - a)Vista frontal e b)Em três partes o CP4Fh fraturado,
com destaque aos EE230
Figura 5.45 - a)Monitoramento dos sinais da aquisição de dados
pela fibra óptica, b) e c) fibra óptica rompida230
Figura 5.46 - PR/PC versus pressão de confinamento nos ensaios
de fraturamento hidráulico em cilindro vazado
Figura 5.47 - Força e deformação horizontal (EE e CG) versus tempo
de ensaio no CP5_A_ECD_TB234
Figura 5.48 - Tensão à tração versus deformação do CP5_A_ECD_TB
para EE e CG234
Figura 5.49 - CP5_A_ECD_TB a)antes e b)após o ECD234
Figura 5.50 - Força e deformação (EE e CG) versus tempo de ensaio
para o CP4_A_ECD_TA235
Figura 5.51 - Tensão à tração versus deformação do CP4_A_ECD_TA
para EE e CG236
Figura 5.52 - CP4_A_ECD_TA antes do ECD

Figura 5.53 - Força e deformações versus tempo de ensaio no	
CP3_H_ECD_TB2	237
Figura 5.54 - Tensão à tração versus deformações no CP3_H_ECD_TB2	:38
Figura 5.55 - CP3_H_ECD_TB a)antes e b)após o ECD2	238
Figura 5.56 - Força e deformação versus tempo de ensaio no	
CP2_H_ECD_TM2	:39
Figura 5.57 - Tensão à tração versus deformações do CP2_H_ECD_TM2	239
Figura 5.58 - CP2_H_ECD_TM a)antes e b)após o ECD2	240
Figura 5.59 - Força e deformações versus tempo de ensaio no	
CP2_H_ECD_TA	240
Figura 5.60 - Tensão à tração versus deformações no CP2_H_ECD_TA2	241
Figura 5.61 - CP2_H_ECD_TA a)antes e b)após o ECD2	241
Figura 5.62 - CP8_C_ECD_TB a)antes e b)após o ECD2	242
Figura 5.63 - CP6_C_ECD_TM a)antes e b)após o ECD2	:43
Figura 5.64 - CP7_C_ECD_TA a)antes e b)após o ECD2	244
Figura 5.65 - CP4_T_ECD_TB a)antes e b)após o ECD2	245
Figura 5.66 - CP8_T_ECD_TM a)antes e b)após o ECD2	245
Figura 5.67 - CP10_T_ECD_TA a)antes e b)após o ECD2	246
Figura 5.68 - CP10_T_ECD_TA a)antes e b)após o ECD2	247
Figura 5.69 - Tensão versus deformação dos CP1-CP5_A_ECU2	248
Figura 5.70 - CP2_A_ECU a)antes e b)após o ensaio2	:49
Figura 5.71 - a)Curva σ x ϵ do CP6_A_ECU; b)antes e c)após o ensaio2	249
Figura 5.72 - a)Curva σ x ϵ do CP7_A_ECU; b)antes e b)após o ensaio2	249
Figura 5.73 - Tensão versus deformação dos CPs1-3_H_ECU2	251
Figura 5.74 - CP3_H_ECU a)antes e b)após o ensaio2	251
Figura 5.75 - Curva σ x ϵ dos CPs4-6_H_ECU2	252
Figura 5.76 - CP6_H_ECU a)antes e b)após o ensaio2	252
Figura 5.77 - Tensão versus deformação dos CPs1-3_C_ECU2	254
Figura 5.78 - CP1_C_ECU a)antes e b)após o ensaio2	254
Figura 5.79 - CP1_C_ECU a)antes e b)após o ensaio2	255
Figura 5.80 - Tensão versus deformações do CP3_T_ECU2	256
Figura 5.81 - CP3_T_ECU a)antes e b)após o ensaio	257
Figura 5.82 - Diagrama de barras dos resultados do ECU nas rochas	
ensaiadas2	257
Figura 5.83 - Diagrama de barras dos resultados da relação ECU/ECD2	258

Figura 5.84 - Diagrama de barras dos resultados da massa específica25	59
Figura 5.85 - Diagrama de barras dos resultados da velocidade da	
onda compressional (V _P)26	60
Figura 5.86 - Diagrama de barras dos resultados da velocidade da	
onda cisalhante (V _S)26	60
Figura 5.87 - Velocidade de onda compressional versus cisalhante	61
Figura 5.88 - Diagrama de barras dos resultados do módulo de	
deformabilidade estático26	62
Figura 5.89 - Diagrama de barras dos resultados do módulo de	
deformabilidade dinâmico	62
Figura 5.90 - Módulos de deformabilidade dinâmico versus estático	63
Figura 5.91 - Diagrama de barras dos coeficiente de Poisson	64
Figura 5.92 - a)Diagrama de barras das variáveis admensionalizadas	
das litologias26	65
Figura 5.93 - Diagrama qualitativo do comportamento das litologias26	65
Figura 5.94 - Resultados médios de perda de massa de carnalita ao	
longo dos ciclos	66
Figura 5.95 - Exemplos típicos de CPs de carnalita após o ensaio	
a)BRMUL de 8,8 lb/gal, b)BRMUL 8,8 lb/gal com fase aquosa saturada	
com carnalita, c)n-parafina, e d)tetracloreto de carbono26	67
Figura 5.96 - Resultados da perda de massa de taquidrita ao longo	
dos ciclos	68
Figura 5.97 - a)Diagrama σ x ϵ para o CP2_Ci_ECU e b) o mesmo	
após o ECU27	70
Figura 5.98 - Envoltória de resistência de pico de CPs de pasta	
de cimento27	71
Figura 5.99 - Envoltória de resistência de Mohr-Coulomb dos CPs de pasta	
de cimento27	72
Figura 5.100 - a)CP01_Ci_ECT e b)CP12_Ci_ECT após ensaio27	72
Figura 5.101 - Envoltória de resistência de pico da interface AC27	74
Figura 5.102 - Tensão cisalhante versus deslocamento horizontal	
dos ECDI AC	74
Figura 5.103 - CP04_AC_ECDI após ensaio27	75
Figura 5.104 - CP de ECDI de HC não aderidos com DRX nas faces das	
estruturas27	75

Figura 5.105 - Resistência ao cisalhamento versus a tensão normal	
da interface HC27	6
Figura 5.106 - a)CP02_HC_ECDI antes e b)após ensaio27	7
Figura 5.107 - Tela de monitoração do ensaio CP06_AC_ECII278	8
Figura 5.108 - CP06_AC_ECII a)antes e b)após ensaio (Fonte: IPT-SP)278	8
Figura 5.109 - Esquema de preparação de CP de ECII e da base da	
laje de reação27	9
Figura 5.110 - Esquema do ensaio de microfraturamento pela	
ferramenta MDT, modificado de Haimson e Lee, 1984	0
Figura 5.111 - Perfis que mapearam o intervalo de anidrita a ser testado28	0
Figura 5.112 - Perfil UBI na região da anidrita a ser testada	1
Figura 5.113 - Pressão e vazão ao longo do ensaio na região da anidrita282	2
Figura 5.114 - Perfil UBI após teste na região da anidrita	3
Figura 5.115 - Perfis que mapearam a halita a ser testada	3
Figura 5.116 - Perfil UBI na região da halita a ser testada	4
Figura 5.117 - Pressão e vazão ao longo do ensaio na região da halita28	5
Figura 5.118 - Perfil UBI após teste na região da halita, fraturas	
induzidas hidraulicamente e pela inflação dos packers	5
Figura 5.119 - a)Secção de teste de fraturamento e b)esquema de	
montagem da coluna no ensaio de fraturamento na carnalita	7
Figura 5.120 - a)Registrador mecânico com carta e b)coluna montada	
com obturadores sendo descida no poço28	8
Figura 5.121 - Gradiente de sobrecarga do poço gêmeo	
(Fonte: UO-SEAL)	8
Figura 5.122 - Pressão e vazão ao longo do ensaio na região da carnalita28	9
Figura 5.123 - Carta de registro de pressão no teste de fraturamento na	
carnalita	9
Figura 5.124 - a)Secção de teste de fraturamento e b)esquema de	
montagem da coluna no ensaio de fraturamento na taquidrita29	0
Figura 5.125 - Pressão e vazão ao longo do ensaio na região da	
taquidrita29	1
Figura 5.126 - Carta de registro de pressão no teste de fraturamento na	
taquidrita29	1
Figura 5.127 - Composição da coluna e perfil do poço na região de	
ancoramento dos obturadores para o segundo teste de fraturamento na	

taquidrita
Figura 5.128 - Segundo teste de fraturamento na taquidrita
Figura 5.129 - Carta de registro de pressão no segundo teste de
fraturamento na Taquidrita
Figura 5.130 - Comparação da taxa de deformação versus a tensão
desviatória, obtidas nos ensaios laboratoriais com halita e os parâmetros
retroanalisados a partir do comportamento das escavações da mina
de potássio de TV (corrigidas para a temperatura de 86 °C)
Figura 5.131 - Comparação dos resultados de simulação numérica
com os resultados medidos em laboratório num CP de halita submetido
ao ensaio triaxial de fluência
Figura 5.132 - a) CP antes do ensaio de fluência, b) modelo numérico
axissimétrico do CP, c) CP após o ensaio e d) resultados da simulação
do modelo numérico do CP
Figura 5.133 - Resultados dos modelos 2D e 3D do fechamento radial
do poço ao longo do tempo
Figura 5.134 - Deslocamento vertical em metros do modelo 3D da
galeria C1D1
Figura 5.135 - Comparação entre os resultados de convergência medidos
na galeria C1D1 com os obtidos por simulações numéricas 2D e 3D
Figura 5.136 - Evolução com o tempo do fechamento diametral do
poço (modelo A1)
Figura 5.137 - Ampliação no intervalo de 240 h e 0,250" de fechamento
(modelo A1)
Figura 5.138 - Tensão efetiva a partir da parede do poço perfurado ao
longo do tempo na camada de taquidrita em -4945 m (modelo A1) 307
Figura 5.139 - Modelo de simulação e resultados da tensão efetiva
(em kPa) ao longo do tempo (modelo A1)
Figura 5.140 - Deformação efetiva a partir da parede do poço perfurado
ao longo do tempo na camada de taquidrita em -4945 m (modelo A1)
Figura 5.141 - Modelo de simulação e resultados da deformação efetiva
ao longo do tempo (modelo A1)
Figura 5.142 - Evolução ao longo do tempo da tensão efetiva na parede do poço
perfurado ao longo da profundidade (modelo A1)
Figura 5.143 - Evolução ao longo do tempo da deformação efetiva na

parede do poço perfurado ao longo da profundidade (modelo A1)310
Figura 5.144 - Fechamento radial entre as profundidades -3985 a
-4015 m ao longo de intervalos de tempo (modelo A1)
Figura 5.145 - Fechamento radial entre as profundidades -4930 a
-4960 m ao longo de intervalos de tempo (modelo A1)
Figura 5.146 - Ampliação na região próxima a base da camada de
sal com deformada ampliada 5 vezes (modelo A1)
Figura 5.147 - Evolução com o tempo do fechamento diametral do
poço (modelo A2)
Figura 5.148 - Tensão efetiva a partir da parede do poço perfurado
ao longo do tempo na camada de taquidrita em -4945 m (modelo A2)
Figura 5.149 - Deformação efetiva a partir da parede do poço perfurado
ao longo do tempo na camada de taquidrita em -4945 m (modelo A2)
Figura 5.150 - Evolução ao longo do tempo da tensão efetiva na parede
do poço perfurado ao longo da profundidade (modelo A2)
Figura 5.151 - Evolução ao longo do tempo da deformação efetiva na
parede do poço perfurado ao longo da profundidade (modelo A2)315
Figura 5.152 - Fechamento radial ao longo da profundidade em
intervalos de tempo (modelo A2)
Figura 5.153 - Ampliação na região próxima a base da camada de sal
com deformada ampliada 2 vezes (modelo A2)
Figura 5.154 - Comparação do fechamento diametral entre os modelos
A1 e A2
Figura 5.155 - Comparação da taxa de fechamento diametral entre os
modelos A1 e A2
Figura 5.156 - Comparação do diâmetro útil ao longo do tempo entre os
modelos A1 e A2
Figura 5.157 - Evolução com o tempo do fechamento diametral do
poço (modelo B2)
Figura 5.158 - Evolução com o tempo do fechamento diametral do
poço (modelo B3)
Figura 5.159 - Comparação do fechamento diametral entre os
modelos B1, B2 e B3
Figura 5.160 - Evolução com o tempo do fechamento diametral do
poço (modelo C1)

Figura 5.161 - Evolução com o tempo do fechamento diametral do
poço (modelo C2)
Figura 5.162 - Evolução com o tempo do fechamento diametral do
poço (modelo C3)
Figura 5.163 - Comparação do fechamento diametral entre os
modelos C1, C2, C3 e C4
Figura 5.164 - Redução no espaço anular para a cimentação do
revestimento ao longo do tempo para os modelos C1, C2, C3 e C4326
Figura 5.165 - Taxa de fechamento do poço ao longo do tempo
(modelos grupo C)
Figura 5.166 - Redução da taxa de fechamento do poço em função do
peso de fluido (modelos grupo C)
Figura 5.167 - Evolução com o tempo do fechamento diametral do
poço (modelo D1)
Figura 5.168 - Evolução com o tempo do fechamento diametral do
poço (modelo D2)
Figura 5.169 - Evolução com o tempo do fechamento diametral do
poço (modelo D3)
Figura 5.170 - Evolução com o tempo do fechamento diametral do
poço (modelo D4)
Figura 5.171 - Comparação do fechamento diametral entre os
modelos D1-D4
Figura 5.172 - Evolução com o tempo do fechamento diametral do
poço (modelo E1)
Figura 5.173 - Evolução com o tempo do fechamento diametral do
poço (modelo E2)
Figura 5.174 - Evolução com o tempo do fechamento diametral do
poço (modelo E3)
Figura 5.175 - Comparação entre o fechamento diametral dos
modelos E1-E3 para as camadas de T e H
Figura 5.176 - Comparação entre a taxa de fechamento diametral dos
modelos E1-E3
Figura 5.177 - Evolução com o tempo do fechamento diametral do poço (modelo
F1)
Figura 5.178 - Evolução com o tempo do fechamento diametral do

poço (modelo F3)
Figura 5.179 - Comparação entre o fechamento diametral dos
modelos F1-F4 para a camada de T
Figura 5.180 - Comparação entre a taxa de fechamento diametral
dos modelos F1-F4 para a camada de T
Figura 5.181 - Comparação entre o fechamento diametral dos
modelos G1-G4
Figura 5.182 - Tensão efetiva na parede do poço ao longo do tempo
(modelo G1)
Figura 5.183 - Evolução com o tempo do fechamento diametral do poço
(modelo H1)
Figura 5.184 - Evolução com o tempo do fechamento diametral do poço
(modelo H2)
Figura 5.185 - Evolução com o tempo do fechamento diametral do poço
(modelo H3)
Figura 5.186 - Comparação entre o fechamento diametral dos
modelos H1-H3
Figura 5.187 - Comparação entre a taxa de fechamento diametral
dos modelos H1-H3
Figura 5.188 - Evolução com o tempo do fechamento diametral do
poço (modelo I1)
Figura 5.189 - Campo de deslocamentos em x (em metros) em a)t = 0
e b)t = 480 h (modelo I1)
Figura 5.190 - Ampliação na região de maior deslocamento do
modelo I1
Figura 5.191 - Evolução com o tempo do fechamento diametral do
poço (modelo I2)
Figura 5.192 - Campo de deslocamentos em x (modelo I2) em a)t = 0
e b)t = 480 h
Figura 5.193 - Ampliação na região de maior deslocamento do modelo I2353
Figura 5.194 - Evolução com o tempo do fechamento diametral do
poço (modelo I3)
Figura 5.195 - Campo de deslocamentos em x (modelo I3) em a)t = 0
e b)t = 480 h
Figura 5.196 - Ampliação na região de maior deslocamento do modelo I3 355

Figura 5.197 - Evolução com o tempo do fechamento diametral do
poço (modelo I4)
Figura 5.198 - Campo de deslocamentos em x (modelo l4) em a)t = 0
e b)t = 480 h
Figura 5.199 - Ampliação na região de maior deslocamento (modelo I4)356
Figura 5.200 - Comparação entre o fechamento diametral dos
modelos I1-I4
Figura 5.201 - Efeito do ângulo de perfuração na redução do fechamento
do poço358
Figura 5.202 - Efeito da anomalia gravitacional causada pelo processo
de diapirismo ao longo de um poço locado entre os domos salinos
(modelo J)
Figura 5.203 - Tensões verticais e horizontais em uma seção horizontal
na profundidade de 5000 m (modelo J)
Figura 5.204 - Detalhe do isomapa de coeficiente de microruptura
próximo aos domos salinos
Figura 5.205 - Isomapa do campo de deslocamento vertical, com
sua deformada aumentada por um fator de dez vezes (modelo J)
Figura 5.206 - Deslocamento do piso acima dos domos 1 e 2 (modelo J) 362
Figura 5.207 - Resultados do gradiente de fratura para a profundidade
-5960 m
Figura 5.208 - Pesos de fluido analisados e área do poço plastificada
(modelo J)
Figura 5.209 - A aplicação do conceito do trabalho plástico efetivo,
que permite que a parede do poço entre em regime plástico sem que
ocasione o seu colapso (modelo J)
Figura 5.210 - a)Cáliper, b)litologia e c)peso de fluido medido no poço
entre -5.870 e -5.950 m
Figura 5.211 - a)Cáliper, b)ampliação no trecho colapso e litologia associada
e c)peso de fluido medido no poço entre domos salinos na região que houve
colapso de parede de poço
Figura 5.212 - Isomapa de tensões verticais (modelo K)
Figura 5.213 - Tensões verticais e horizontais ao longo de uma trajetória
de poço definida locado próximo a estrutura salífera (modelo K)
Figura 5.214 - Isomapa de tensões verticais com seção horizontal em

-4000m (modelo K)
Figura 5.215 - Tensões verticais e horizontais em uma seção horizontal
na profundidade de 4000 m (modelo K)
Figura 5.216 - Isomapa de tensões verticais com seção vertical a 500 m
da estrutura de sal (modelo K)
Figura 5.217 - Tensões verticais e horizontais em uma seção vertical a
500 m da estrutura salífera (modelo K)
Figura 5.218 - Isomapa do campo de deslocamento vertical atráves da
profundidade que corta a estrutura de sal na região de estricção
Figura 5.219 - Deslocamentos vertical e horizontal atráves da
profundidade que corta a estrutura de sal na região de estricção
Figura 5.220 - Pesos de fluido analisados e área do poço plastificada
(modelo K) para a profundidade de -3500 m
Figura 5.221 - A aplicação do conceito do trabalho plástico efetivo,
que permite que a parede do poço entre em regime plástico sem que
ocasione o seu colapso (modelo K)
Figura 5.222 - Isomapa de tensões horizontais e abaixo imagem do
modelo de simulação e localização de trajetória do poço (B-E) (modelo L) 374
Figura 5.223 - Tensões verticais e horizontais ao longo de uma trajetória
de poço definida locado próximo a estrutura salífera (modelo L)
Figura 5.224 - Isomapa de tensões verticais e abaixo imagem do modelo
de simulação com a localização de trajetória do poço (B-E) e uma seção
horizontal (F-G) na profundidade de 1500 m. (modelo L)
Figura 5.225 - Tensões verticais e horizontais em uma seção horizontal
na profundidade de 1500 m, plotada sobre a deformada (modelo L)
Figura 5.226 - a)Deformada apliada em 1000 vezes e b)Tensões verticais
e horizontais em uma seção horizontal na profundidade de -4500 m
(modelo L)
Figura 5.227 - Detalhe do isomapa de coeficiente de microruptura próximo
a estrutura salífera (modelo L)
Figura 5.228 - a)lsomapa do campo de deslocamento vertical e
b)horizontal (modelo L)
Figura 5.229 - a)Localização de pontos de deslocamento monitorados,
b)Deslocamento vertical e c)vertical
Figura 5.230 - Distribuição do índice de plastificação após 30 anos

(modelo M1)	380
Figura 5.231 - Distribuição do índice de plastificação após 30 anos	
(modelo M2)	381
Figura 5.232 - Distribuição do índice de plastificação após 30 anos	
(modelo M3)	381
Figura 5.233 - Distribuição do índice de plastificação após 30 anos	
(modelo M4)	381
Figura 5.234 - Distribuição do índice de plastificação após 30 anos	
(modelo M5)	382
Figura 5.235 - Distribuição do índice de plastificação após 30 anos	
(modelo M6)	382
Figura 5.236 - Distribuição do índice de plastificação após 30 anos	
(modelo M7)	382
Figura 5.237 - Distribuição do índice de plastificação após 30 anos	
(modelo M8)	383
Figura 5.238 - Distribuição do índice de plastificação após 30 anos	
(modelo M9)	383
Figura 5.239 - Distribuição do índice de plastificação após 30 anos	
(modelo M10)	383
Figura 5.240 - Evolução do índice de plastificação ao longo do tempo no	
ponto nodal de maior tensão do revestimento para os modelos M1 a M10	384
Figura 5.241 - Índice de plastificação através da espessura de parede	
do revestimento para os modelos M1, M2, M3 e M4	.386
Figura 5.242 - Em azul área plastificada no revestimento do modelo	
a)M4 e b)M10	386
Figura 5.243 - Índice de plastificação através da espessura de parede	
do revestimento e ao longo do tempo para o modelo M3	.388
Figura 5.244 - Distribuição dos deslocamentos no modelo M3	389
Figura 5.245 - Similaridade entre uma viga apoiada e a falha na	
cimentação de um revestimento	.390
Figura 5.246 - Distribuição do índice de plastificação após 30 anos	
(modelo N2)	.391
Figura 5.247 - a)Distribuição do índice de plastificação após 30 anos	
e ampliação na região da falha de cimentação (modelo N3)	392
Figura 5.248 - Zoom na região de falha de cimentação da Figura 5.247	

(modelo N3)
Figura 5.249 - Evolução do índice de plastificação ao longo do tempo
no ponto nodal interno do revestimento na região da falha de cimentação
para os modelos N1-N3
Figura 5.250 - Índice de plastificação através da espessura de parede
do revestimento para os modelos N1 a N3
Figura 5.251 - Distribuição do índice de plastificação após 30 anos
(modelo O2)
Figura 5.252 - Evolução do índice de plastificação ao longo do tempo
no ponto nodal interno do revestimento na região da falha (modelo O2)
Figura 5.253 - Índice de plastificação através da espessura de parede
do revestimento (modelos O1 e O2)
Figura 5.254 - a)Distribuição dos deslocamentos e b)Evolução o
fechamento diametral do revestimento ao longo do tempo (modelo O2)
Figura 5.255 - a)Fluxos e pressões em a depender do tipo de rocha frente
a cimentação e b)corte AA'
Figura 5.256 - Distribuição do índice de plastificação após 30 anos
(modelo P1)
Figura 5.257 - Distribuição do índice de plastificação após 30 anos
(modelo P3)
Figura 5.258 - Evolução do índice de plastificação ao longo do tempo
no ponto nodal interno do revestimento na região da falha de cimentação
para os modelos P1-P3401
Figura 5.259 - Índice de plastificação através da espessura de parede
do revestimento (modelos P1 a P3)402
Figura 5.260 - Distribuição do índice de plastificação após 30 anos
(modelo Q2)
Figura 5.261 - Distribuição do índice de plastificação após 30 anos
(modelo Q3)
Figura 5.262 - Evolução do índice de plastificação ao longo do tempo
no ponto nodal interno do revestimento na região da falha de cimentação
para os modelos Q1-Q3404
Figura 5.263 - Índice de plastificação através da espessura de parede
do revestimento (modelos Q1 a Q3)
Figura 5.264 - Distribuição do índice de plastificação após 30 anos

(modelo R1)	406
Figura 5.265 - Distribuição do índice de plastificação após 30 anos	
(modelo R3)	407
Figura 5.266 - Evolução do índice de plastificação ao longo do tempo no	
ponto nodal interno do revestimento na região da falha de cimentação	
(modelos R1-R3)	408
Figura 5.267 - Índice de plastificação através da espessura de parede do	
revestimento (modelos R1 a R3)	409
Figura 5.268 - Em azul área plastificada no revestimento (modelo R3)	409
Figura 5.269 - Distribuição do índice de plastificação após 30 anos	
(modelo S2)	411
Figura 5.270 - Distribuição do índice de plastificação após 30 anos	
(modelo S3)	411
Figura 5.271 - Evolução do índice de plastificação ao longo do tempo	
no ponto nodal interno do revestimento na região da falha de cimentação	
(modelos S1-S3)	412
Figura 5.272 - Índice de plastificação através da espessura de parede do	
revestimento (modelos S1 a S3).	413
Figura 5.273 - Em vermelho área plastificada nos revestimentos	
a)S2 e b)S3	413
Figura 5.274 - Distribuição do índice de plastificação após 30 anos	
(modelo T1)	415
Figura 5.275 - Distribuição do índice de plastificação após 30 anos	
(modelo T3)	415
Figura 5.276 - Evolução do índice de plastificação ao longo do tempo no	
ponto nodal interno do revestimento na região da falha de cimentação	
(modelos T1-T3)	416
Figura 5.277 - Índice de plastificação através da espessura de parede do	
revestimento (modelos T1 a T3).	417
Figura 5.278 - Em vermelho área plastificada no revestimento	
(modelo T3)	417
Figura 5.279 - Distribuição do índice de plastificação após 30 anos	
(modelo U3)	419
Figura 5.280 - Evolução do índice de plastificação ao longo do tempo no	
ponto nodal interno do revestimento na região da falha de cimentação	

(modelos U1-U3)	.419
Figura 5.281 - Índice de plastificação através da espessura de parede do	
revestimento (modelos U1 a U3)	.420
Figura 5.282 - Em vermelho área plastificada no revestimento U3	.420
Figura 5.283 - Distribuição do índice de plastificação após 30 anos	
(modelo V2)	.422
Figura 5.284 - Evolução do índice de plastificação ao longo do tempo	
no ponto nodal interno do revestimento na região da falha de cimentação	
(modelos V1 e V2)	.423
Figura 5.285 - Índice de plastificação através da espessura de parede do	
revestimento (modelos U1 a U3)	.423
Figura 5.286 - Distribuição do índice de plastificação após 30 anos	
(modelo W1)	.425
Figura 5.287 - Distribuição do índice de plastificação após 30 anos	
(modelo W2)	.425
Figura 5.288 - Índice de plastificação através da espessura de parede dos	
revestimentos (modelos W1 e W2)	.426
Figura 5.289 - Distribuição do índice de plastificação após 30 anos	
(modelo W3)	.426
Figura 5.290 - Distribuição do índice de plastificação após 30 anos	
(modelo W4)	.427
Figura 5.291 - Índice de plastificação através da espessura de parede dos	
revestimentos (modelos W3 e W4).	.427
Figura 5.292 - Distribuição do índice de plastificação após 30 anos	
e através da espessura de parede dos revestimentos (modelo W5)	.428
Figura 5.293 - Distribuição do índice de plastificação após 30 anos e	
índice de plastificação através da espessura de parede dos revestimentos	
(modelo W6)	.428
Figura 5.294 - Distribuição do índice de plastificação após 30 anos e	
através da espessura de parede dos revestimentos (modelo W7)	.429
Figura 5.295 - Distribuição do índice de plastificação após 30 anos	
(modelo X2)	.430
Figura 5.296 - Distribuição do índice de plastificação após 30 anos	
(modelo X3)	.430
Figura 5.297 - Evolução do índice de plastificação ao longo do tempo	

no ponto nodal interno do revestimento na região da falha de cimentação
(modelos X1-X3)
Figura 5.298 - Índice de plastificação através da espessura de parede do
revestimento (modelos X1 a X3)432
Figura 5.299 - Em vermelho área plastificada nos revestimentos a)X2
e b)X3432
Figura 5.300 - Distribuição do índice de plastificação após 30 anos
(modelo Y2)
Figura 5.301 - Distribuição do índice de plastificação após 30 anos
(modelo Y3)
Figura 5.302 - Evolução do índice de plastificação ao longo do tempo
no ponto nodal interno do revestimento na região da falha de cimentação
(modelos Y1-Y3)
Figura 5.303 - Índice de plastificação através da espessura de parede do
revestimento (modelos Y1 a Y3)435
Figura 5.304 - Distribuição do índice de plastificação após 30 anos
(modelo Z2)437
Figura 5.305 - Distribuição do índice de plastificação após 30 anos
(modelo Z3)
Figura 5.306 - Evolução do índice de plastificação ao longo do tempo no
ponto nodal interno do revestimento na região da falha de cimentação
(modelos Z1-Z3)

Lista de tabelas

Tabela 2.1 - Composição química dos principais minerais evaporíticos	51
Tabela 2.2 - Valores característicos para identificação de evaporítos	54
Tabela 2.3 - Vantagens e desvantagens dos fluidos à base água	89
Tabela 2.4 - Vantagens e desvantagens dos fluidos sintéticos	90
Tabela 2.5 - Pastas salinas "pobres em sal" – 0 a 15% BWOW NaCl	. 100
Tabela 2.6 - Pastas salinas "ricas em sal" – 15 a 37% BWOW NaCl	. 100
Tabela 2.7 - Pastas salinas com 3 a 5% BWOW KCI	. 100
Tabela 2.8 - Pastas espumadas	. 100
Tabela 4.1 - Modelos simulados para AEP através de camadas de sal	. 180
Tabela 4.2 - Modelos simulados para avaliação da alteração no	
estado de tensões (AET) de poços próximos à estrutura salífera	. 185
Tabela 4.3 - Modelos para AIP frente à rocha salina	. 192
Tabela 5.1 - Resultados da composição da mineralogia total (% relativa)	
da amostra identificada como anidrita	. 196
Tabela 5.2 - Resumo dos resultados do ensaio de fraturamento	
hidráulico	.231
Tabela 5.3 - Resultados de resistência à tração por compressão diametral	
e da deformação horizontal da anidrita sob taxa de carregamento de	
0,30 MPa/s	. 233
Tabela 5.4 - Resultados de resistência à tração por compressão	
diametral da anidrita sob taxa de carregamento de 1,5 MPa/s	.235
Tabela 5.5 - Resultados do ECD da halita sob taxa de carregamento	
de 0,175 MPa/s	.237
Tabela 5.6 - Resultados do ECD da halita sob taxa de carregamento	
de 0,30 MPa/s	.238
Tabela 5.7 - Resultados do ECD da halita sob taxa de carregamento	
de 0,70 MPa/s	. 240
Tabela 5.8 - Resultados do ECD da carnalita sob taxa de carregamento	
de 0,175 MPa/s	.242
Tabela 5.9 - Resultados do ECD da carnalita sob taxa de carregamento	
de 0,30 MPa/s	.243

Tabela 5.10 - Resultados do ECD da carnalita sob taxa de carregamento	
de 0,70 MPa/s	243
Tabela 5.11 - Resultados do ECD da taquidrita sob taxa de carregamento	
de 0,175 MPa/s	244
Tabela 5.12 - Resultados do ECD da taquidrita sob taxa de carregamento	
de 0,30 MPa/s	245
Tabela 5.13 - Resultados do ECD da taquidrita sob taxa de carregamento	
de 0,30 MPa/s	246
Tabela 5.14 - Resultados do ECU da anidrita.	247
Tabela 5.15 - Propriedade dinâmicas calculadas a partir do ECU da	
anidrita	248
Tabela 5.16 - Resultados do ECU da halita	250
Tabela 5.17 - Propriedade dinâmicas calculadas a partir do ECU da	
halita	251
Tabela 5.18 - Resultados do ECU da carnalita.	253
Tabela 5.19 - Propriedade dinâmicas calculadas a partir do ECU da	
carnalita	253
Tabela 5.20 - Resultados do ECU da taquidrita.	255
Tabela 5.21 - Propriedade dinâmicas calculadas a partir do ECU da	
carnalita	256
Tabela 5.22 - Resultados dos ensaios de compressão uniaxial em pasta	
de cimento	270
Tabela 5.23 - Resultados dos ensaios de compressão triaxial de pasta	
de cimento	270
Tabela 5.24 - Resultados dos ECDI anidrita-cimento	273
Tabela 5.25 - Resultados dos ECDI halita-cimento	276
Tabela 5.26 - Planejamento do ECII HC.	278
Tabela 5.27 - Parâmetros de fluência para as rochas salinas da	
mina de TV.	295
Tabela 5.28 - Comparação dos parâmetros de fluência obtidos nos	
ensaios laboratoriais com halita, carnalita e taquidrita e os parâmetros	
retroanalisados a partir do comportamento das escavações da mina	
de potássio de TV (corrigidas para a temperatura de 86 °C)	297

Lista de abreviações e siglas

- AC Anidrita/Cimento
- AEF Análise de Elementos Finitos
- AIP Análise de Integridade de Poço
- ANP Análise de Estabilidade de Poço
- ANVEC Análise Visco-Elástica do Contínuo
- APB Annular Pressure Build-up
- API American Petroleum Institute
- AST Anti-Stall Tool
- ASTM American Society of Testing Materials
- BHA Bottom Hole Assembly
- BUR Build Up Rate
- BWOW By Weight of Water
- CEL Casing Evaluation Log
- CBL Cement Bond Log
- CENPES Centro de Pesquisas e Desenvolvimento Leopoldo A. M. de Mello
- CFD Computer Fluid Dynamics
- CP Corpos de Prova
- CSD Centro de Suporte à Decisão
- DOE Departament of Energy
- DIP Ângulos de mergulho de camadas
- DLS Dog Leg Severities
- DORWD Drill Out Ream While Drilling
- DPI Diamond Products International
- DRX Difracao de raios X
- ECD Equivalent Circulation Density
- ECD Ensaio de Compressão Diametral
- ECDI Ensaio de Cisalhamento Direto da Interface
- ECII Ensaio de Cisalhamento Indireto da Interface
- ECU Ensaio de Compressão Uniaxial
- ECT Ensaio de Compressão Triaxial
- EDS Elétrons retroespalhados

- EMW Equivalent Mud Weight
- EPD Estado Plano de Deformações
- EUA Estados Unidos da América
- FINEP Financiadora de Estudos e Projetos
- GeoEngineering Geomechanics Engineering
- HC Halita/Cimento ou hidrocarboneto
- HPHT High Pressure High Temperature
- IPT Instituto de Pesquisas Tecnológicas do Estado de São Paulo
- ISO International Organization for Standardization
- ISRM International Society for Rock Mechanics
- KOP Kick Off Point
- LCM Lost Circulation Material
- LDA Lâmina d'água
- LMHR Laboratório de Mecânica e Hidráulica de Rochas
- LOT Leak-off test
- LVDT Linear Variable Differential Transformer
- LWD Logging While Drilling
- MD Multimechanism Deformation
- MEV Microscópio eletrônico de varredura
- MC Gerência de Métodos Científicos
- MWD Measure While Drilling
- OVB Overburden
- PETROBRAS Petróleo Brasileiro S.A.
- PETROMISA Petrobras Mineração S.A.
- PDC Policristalline Diamond Compacts
- PDEP Pesquisa e Desenvolvimento em Engenharia de Produção
- PP Pressão de poros
- PUC-Rio Pontifícia Universidade Católica do Rio de Janeiro
- PUNDIT Portable Ultrasonic Non-destructive Digital Indicating Tester
- PWD Pressure While Drilling
- ROP Rate of penetration, ou taxa de penetração
- RPM Rotações por minuto
- RSS Rotary Steerable System
- RWD Ream While Drilling
- SIGMA Geotecnia para Múltiplas Análises

- SMYS Specified Minimum Yield Strength
- SNL Sadia National Laboratories
- SO Stand Off
- SPE Society of Petroleum Engineers
- SPR Strategic Petroleum Reserve
- SWD Seimic While Drilling
- TECGRAF Tecnolgia em Computação Gráfica
- TEO Tecnologia de Engenharia Oceânica
- TV Taquari-Vassouras
- UO-SEAL Unidade Operacional de Sergipe-Alagoas
- USIT Ultrasonic Imager Tool
- USP Universidade de São Paulo
- VDL Variable Density Log
- VSP Vertical Seismic Profile
- WIPP Waste Isolation Pilot Plant

Lista de símbolos

- A Área ou constante empírica
- ADVDPC Advanced Pressure/Volume Controller
- Ai Constante
- b Coeficiente linear
- Bi Constante
- CP Corpo de prova
- CG Clip Gage
- c Coesão
- D Diâmetro externo
- d Diâmetro interno
- DDP Deslocamento pelo nó da direita projetado
- DEP Deslocamento pelo nó da esquerda projetado
- Dinicial Diâmetro inicial do poço ou diâmetro da broca
- DRD Deslocamento resultante pelo nó da direita
- DRE Deslocamento resultante pelo nó da esquerda
- Dutil Diâmetro útil ou de passagem de ferramenta no poço
- DX, DY, DZ Deslocamentos nas direções X, Y e Z
- E Módulo de deformabilidade ou elasticidade
- Elinear Módulo de deformabilidade ou elasticidade na região linear
- Esec Módulo de deformabilidade secante (estático)
- Etan Módulo de deformabilidade tangente (estático)
- E_{Dsec} Módulo de deformabilidade secante (dinâmico)
- E_{Dtan} Módulo de deformabilidade tangente (dinâmico)
- EE Extensômetro elétrico
- F Força de ruptura
- gal Galão
- G Módulo de cisalhamento
- GDS Geotechnical Digital Systems
- H Função degrau Heaviside
- h Horas
- J1, J2, J3 Invariantes de tensão
- K Módulo volumétrico

- K, a, b, c Parâmetros obtidos nos ensaios
- L Comprimento
- lb Libras
- m Coeficente angular
- MUE Máquina Universal de Ensaios
- n_i Expoente da tensão
- P pressão no contorno de estrutura de sal
- P_p Pressão de poros
- P_q Pressão de quebra
- q Constante da tensão
- Q_i Energia de ativação
- R Constante universal dos gases
- T Temperatura absoluta
- T_o Temperatura de referência ou resistência a tração da rocha
- t Tempo ou espessura
- TA Taxa alta de carregamento
- TB Taxa baixa de carregamento
- TM Taxa média de carrgamento
- V volume
- V_p Velocidade da onda compressional
- V_s Velocidade da onda cisalhante
- V_{Ssec} Velocidade da onda cisalhante pelo Poisson secante
- V_{Stan} Velocidade da onda cisalhante pelo Poisson tangente
- z Profundidade
- α Ângulo de inclinação do poço
- $\epsilon_1, \Box \epsilon_2, \epsilon_3$ Deformações principais
- ϵ_a , ϵ_r Deformações axial e radial
- ε_{el} Deformação elástica
- ε_{pl} Deformação plástica
- $\epsilon_{\rm ef}^{\rm P}$ Deformação plástica efetiva
- ϵ_h , ϵ_v Deformações horizontal e vertical
- ϵ_f Deformação acumulada de fluência
- ε Taxa de deformação por fluência na condição em regime permanente
- $\dot{\epsilon}_0$ Taxa de deformação por fluência de referência em regime permanente

- γ_{rocha} peso específico da rocha
- γ_{SAL} peso específico do sal
- v Coeficiente de Poisson
- vlinear Coeficiente de Poisson na região linear
- v_{sec} Coeficiente de Poisson secante
- vtan Coeficiente de Poisson tangente
- ρ Densidade
- τ_{oct} Tensão octaédrica
- σ Tensão desviatória ou generalizada
- $\sigma_{o}-$ Tensão efetiva de referência ou tensão limite
- $\sigma_{1},\,\sigma_{2},\,\sigma_{3}\,$ Tensões principais
- σ_{efet} Tensão efetiva
- $\sigma_{\scriptscriptstyle e\!f}^{\scriptscriptstyle T}$ Tensão efetiva do trabalho plástico
- σ_{ef} Tensão efetiva de fluência
- σ_{c} Resistência à compressão uniaxial
- σ_H Tensão in-situ horizontal máxima
- σ_h- Tensão *in-situ* horizontal mínima
- σ_n Tensão normal
- σ_r Tensão radial
- σ_{T} Resistência à tração
- σ_y Tensão de plastificação
- σ_{θ} Tensão tangencial

Fatores de conversão de unidades para o Sistema Internacional

1 ft	Х	3,28084	= 1 m
1 in	х	39,3701	= 1 m
1 gal	х	264,1721	$= 1 m^{3}$
1 lb	х	2,204623	= 1 kg
1 lbf	х	0,224809	= 1 N
1 psi	x	0,145038	= 1 kPa
1 kgf/cm ²	х	0,010198	= 1 kPa
1 lbf/gal	x	1,175	= 1 kN/m ³