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Abstract

Peixoto, Hélvio de Farias Costa; Dumont, Ney Augusto (Advisor).
A Fast Multipole Method for High Order Boundary Ele-
ments. Rio de Janeiro, 2018. 64p. Tese de doutorado – Departa-
mento de Engenharia Civil e Ambiental, Pontifícia Universidade
Católica do Rio de Janeiro.
The Fast Multipole Method (FMM) has been used since the 1990s with

the Boundary Elements Method (BEM) for the simulation of large-scale
problems. This method relies on Taylor series expansions of the underlying
fundamental solutions to cluster the nodes on the discretised boundary of
a domain, aiming to reduce the computational time required to carry out
the simulation. It has become an important tool for the BEMs, as they
present matrices that are full and nonsymmetric, so that the improvement
of storage allocation and execution time is not a simple task. The application
of the FMM to the BEM ends up with a very intricate code, and usually
changing from one problem’s fundamental solution to another is not a simple
matter. This work presents a kernel-independent formulation of the FMM,
here called the General Fast Multipole Method (GFMM), which is also able
to deal with high order, curved boundary elements in a straightforward
manner. This is an important feature, as the fast multipole implementations
reported in the literature only apply to constant elements. All necessary
aspects of this method are presented, starting with the mathematical basics
of both FMM and BEM, carrying out some numerical assessments, and
ending up with the solution of large potential problems. The application
of the GFMM to both potential and elasticity problems is discussed and
validated in the context of BEM. Furthermore, the formulation of the
GFMM with the Simplified Hybrid Boundary Elements Method (SHBEM)
is presented. Several numerical assessments show that the GFMM is highly
efficient and may be as accurate as arbitrarily required, for problems with
up to many millions of degrees of freedom. The literature proposes that the
FMM is capable of reducing the time complexity of the BEM algorithms
from O(N2) to O(N), where N is the number of degrees of freedom. In fact,
it is shown that the GFMM is able to arrive at such time reduction without
resorting to techniques of computational optimisation.

Keywords
fast Multipole method, boundary elements, variational methods.
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Resumo

Peixoto, Hélvio de Farias Costa; Dumont, Ney Augusto. Um Mé-
todo Fast Multipole para Elementos de Contorno de Alta
Ordem. Rio de Janeiro, 2018. 64p. Tese de Doutorado – Depar-
tamento de Engenharia Civil e Ambiental, Pontifícia Universidade
Católica do Rio de Janeiro.
Desde a década de 1990, o Método Fast Multipole (FMM) tem sido

usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para
a simulação de problemas de grande escala. Este método utiliza expansões
em série de Taylor para aglomerar pontos da discretização do contorno, de
forma a reduzir o tempo computacional necessário para completar a simu-
lação. Ele se tornou uma ferramenta bastante importante para os BEMs,
pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a
utilização de técnicas de otimização de solução de sistemas de equação. A
aplicação do FMM ao BEM é bastante complexa e requer muita manipu-
lação matemática. Este trabalho apresenta uma formulação do FMM que é
independente da solução fundamental utilizada pelo BEM, o Método Fast
Multipole Generalizado (GFMM), que se aplica a elementos de contorno
curvos e de qualquer ordem. Esta característica é importante, já que os
desenvolvimentos de fast multipole encontrados na literatura se restringem
apenas a elementos constantes. Todos os aspectos são abordados neste tra-
balho, partindo da sua base matemática, passando por validação numérica,
até a solução de problemas de potencial com muitos milhões de graus de
liberdade. A aplicação do GFMM a problemas de potential e elasticidade
é discutida e validada, assim como os desenvolvimentos necessários para a
utilização do GFMM com o Método Híbrido Simplificado de Elementos de
Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e
precisão do método apresentado. A literatura propõe que o FMM pode re-
duzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em
que N é o número de graus de liberdade do problema. É demonstrado que
esta redução é de fato possível no contexto do GFMM, sem a necessidade
da utilização de qualquer técnica de otimização computational.

Palavras-chave
Método fast multipole, elementos de contorno, métodos variacionais.
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Faithless is he that says farewell when the road
darkens.

J. R. R. Tolkien, The Lord of The Rings.
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1
Introduction

The Fast Multipole Method (FMM), initially conceived by Greengard
and Rokhlin [1], has been acknowledged as one of the most important al-
gorithms of the last century [2]. Although developed for the simulation of
Coulombic and gravitational fields, it has proven to be a powerful tool to be
used with the Boundary Element Method (BEM) [3, 4].

The FMM relies on a series expansion of the problem’s underlying
fundamental solution. It aims to speed up the matrix-vector products that
are part of the iterative solution of a linear equation system by reducing
the number of product operations from, typically, O(N2) to O(N logN), or
even O(N)[3, 5]. Such order O(N) has been in fact achieved in this thesis, as
presented in Section 7.

The evaluation and manipulation of matrices in the BEM, as classicaly
done in the literature [6], may become computationally expensive. These
matrices are dense, which prevent the possibility of using algorithms to
optimise storage allocation. The classical simulation of large problems, with
hundreds of thousands – or even millions – of degrees of freedom, is nearly
impossible to carry out in an usual desktop [4].

Several methods have been proposed as an attempt to overcome these
issues [7]. The pFFT [8] uses a Fast Fourier Transform to perform the potential
computations, while the Adaptive Cross Aproximation (ACA) [9, 10] tries to
split the problem’s matrices into blocks that may be approximated by low rank
submatrices. The FMM takes into account the distance between nodes (poles)
in order to cluster them and circumvent the need to directly correlate each field
node to each source of the numerically discretised problem [4, 3]. Gholami et
al. [11] present a thorough comparative study between some of theses methods
with up to impressive 600 billions degrees of freedom on a parallel setup.

As reported in the literature [3], one major drawback of the FMM (as
compared to the ACA, for instance) is that it requires different expansion pat-
terns for different fundamental solutions, which prevents a code to be generally
applicable and may even require modifications of the most basic algorithm of
an already existing code. Liu [3] presents several of these developments for 2-
and 3D problems of both potential and elasticity fields.
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Chapter 1. Introduction 11

In this thesis, the proposed FMM scheme is independent of the problem’s
fundamental solution and relies on geometric and topological features that
are not seen in the technical literature. The kernel-independent formulation
presented herein is actually more simple than the ones already shown in
the literature [12, 13] which rely on equivalent density representations of
the potentials. It is also different from the Generalized FMM presented by
Létourneau et al. [14], and the Black-box FMM proposed by Fong & Darve [15],
which actually deal with kernels defined numerically.

The Taylor series expansion naturally leads to approximation errors,
which are related to the distance between source and field poles about which
expansions are carried out. Thus, distance assessment between poles is a key
part of the method. Numerous strategies have been used in order to map
adjacency in a FMM context [16, 3]. These are appropriate for mapping
constant elements (visualised as straight segments, but handled as single
points), as they are easily represented by their midpoint. Moreover, dealing
with curved, high order elements seems to have been an impossibility in the
classical literature on the FMM. This is no longer the case, as the present
developments are based on a conceptual improvement of the BEM proposed by
Dumont [17] regarding the interpolation normal derivatives (normal fluxes for
potentials, and tractions for elasticity). In order to adequately map adjacencies
for high order elements (e.g. linear and quadratic), this thesis extends a
hierarchical refinement strategy developed by Novelino [18], which works
fine for convex domains. The handling of multiply-connected domains is a
contribution of this work [19].

The General Fast Multipole Method (GFMM), as presented by
Peixoto [20] and initially applied to potential problems by Novelino [18], is
further discussed and extended to elasticity in this thesis. The evaluation of
results at internal points by Somigliana’s identity [21] in the GFMM is also for-
mulated. Finally the application to the Simplified Hybrid Boundary Element
Method [22] for both potential and elasticity problems is developed. Several
numerical assessments are shown and thoroughly examined.

In Chapter 2 it is presented the formulation of the Consistent Boundary
Element Method, its important improvement on the interpolation of tractions,
which allows the easy handling of high order elements. Moreover, it is shown
the mathematical basis of both the Hybrid Boundary Element Method, and
the Simplified Hybrid Element Method.

Chapter 3 discusses the usual application of the Fast Multipole Method
to the Boundary Element Method, as proposed by Liu [3].

The General Fast Multipole Method is comprehensively discussed in
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Chapter 1. Introduction 12

Chapter 4, as well as the strategy of hierarchical mesh refinement which is
able to determine adjacency of high order elements.

A thorough mathematical application of the General Fast Multipole
Method to potential and elasticity problems is presented in Chapter 5 for
both the Consistent Boundary Element Method, and the Simplified Hybrid
Element Method. Evaluation of internal results through Somigliana’s identity
is also shown.

Chapter 6 examines the overall computational aspects of the proposed
General Fast Multipole Method framework for high order elements through
flow charts of pseudo-algorithms.

The numerical assessments in Chapter 7 are intended to validate the
formulations presented in Chapter 5.

Finally, Chapter 8 sum up the developments presented in this thesis in
order to point out the relevant results achieved, and the contributions given to
the literature of both the Boundary Element Method and the Fast Multipole
Method.
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2
The Boundary Element Method

The Boundary Element Method (BEM) [23] is a powerful tool to solve
computational mechanics problems. Since it in principle requires discretisation
only along the boundary, it is well suited to represent complex geometries and
semi-infinite domains [6].

This chapter presents very briefly the formulation of three different
boundary element approaches: the Consistent BEM (CBEM) [17], the Hybrid
BEM (HBEM) [24], and the Simplified Hybrid BEM (SHBEM) [22].

The first formulation is basically the same conventional, collocation BEM
given in the classical literature, but introducing a previously neglected term
of rigid-body displacements [17, 25]. The HBEM is a variational formulation
based on the Hellinger-Reissner potential [24, 26, 27]. The SHBEM gives up the
full variational consistency of the HBEM in favor of a simplification that may
turn out advantageous in terms of computational implementation [22, 25, 27].

The following developments are not intended to be comprehensive, and
aim only to lay down the basics of each method and their main features for
the sake of application of the GFMM in Chapter 4.

2.1
Consistent formulation of the BEM

The CBEM will be proposed for an elasticity problem, and the relevant
aspects for this work will be pointed out when necessary. The development
for a potential field problem follows the same procedure as just a particular
application.

Let a linear elastic body, with a domain Ω and a boundary Γ, be subjected
to body forces bi in Ω, traction forces ti on Γσ, and displacements ui on Γu
(i = 1, 2 for 2D problems), with the constitutive relation

σij = Cijklεij in Ω (2-1)

where σij is the stress tensor, εij the strain tensor and Cijkl the symmetric
elastic tensor.

Assuming small displacements, the equilibrium is given by

σij,j + bi = 0 in Ω (2-2)
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with boundary conditions given by

σijηi = t̄j in Γσ (2-3)

where Γσ is the part of the body’s boundary that has prescribed forces.
The weighted residual statement for eqs. (2-2) and (2-3) may be written

as
−
∫

Ω
(σij,j + bi)δu∗idΩ +

∫
Γ

(σjiηj − ti)δu∗idΓ = 0, (2-4)
with the superscript ∗ meaning that the weighting function is a fundamental
solution of the problem, that is, it satisfies eq. (2-2) in Ω. By applying
integration by parts twice and taking into account Green’s theorem [23], one
arrives at the characteristic equation of the BEM∫

Γ
δσ∗jiηjuidΓ−

∫
Ω
δσ∗ij,juidΩ =

∫
Γ
tiδu

∗
idΓ +

∫
Ω
biδu

∗
idΩ. (2-5)

Dumont [17] expresses the variation of the fundamental solutions for dis-
placements δu∗ and stresses δσ∗ in terms of arbitrary virtual force parameters
δp∗m as

δσ∗ij = σ∗ijmδp
∗
m, and (2-6)

δu∗i = (u∗im + uricCcm)δp∗m, (2-7)
where the superscript r stands for rigid-body displacements, Ccm are arbitrary
constants, and the index m represents the point of application of δp∗m. Using
the definitions of eqs. (2-6) and (2-7), and taking into account the fact that
σ∗ij satisfies eq. (2-2), eq. (2-5) may be written as

um =
∫

Ω
biδu

∗
imdΩ−

∫
Γ
δσ∗jimηjuidΓ +

∫
Γ
tiδu

∗
imdΓ

+Ccm
(∫

Γ
tiu

r
icdΓ +

∫
Ω
biu

r
icdΩ

) (2-8)

which one recognises as Somigliana’s identity, except for the rigid-body terms,
which are void for forces in equilibrium, although this is not the case when
approximations are used. This consideration is one of the differences of the
CBEM when compared with the BEM.

Now let the displacements and traction forces be approximated, on the
boundary Γ as

ui = uindn, and (2-9)

ti = ti`t` (2-10)
where dn and t` are the vectors of nodal displacements and traction forces, and
uin and ti` are interpolation functions with local support, usually taken as the
same for both geometry and displacement interpolations, which constitutes an
isoparametric formulation.
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The discretisation of eq. (2-8) using eqs. (2-9) and (2-10) leads to [17](∫
Γ
σ∗jimηjuindΓ + δmn

)
dn =∫

Ω
biδu

∗
imdΩ +

∫
Γ
ti`δu

∗
imdΓt` + Ccm

(∫
Γ
ti`t`u

r
icdΓ +

∫
Ω
biu

r
icdΩ

)
.

(2-11)

Writing eq. (2-11) in matrix notation, one recognises the conventional BEM
equation, except for the rigid-body vector ε

Hd = Gt + b+ε, (2-12)

with
H = Hsf =

∫
Γ
σ∗jisηjuifdΓ + δsf , (2-13)

G = Gs` =
∫

Γ
ti`δu

∗
isdΓ, (2-14)

b = bs =
∫

Ω
biδu

∗
isdΩ, and (2-15)

ε = εs = Ccs

(∫
Γ
ti`t`u

r
icdΓ +

∫
Ω
biu

r
icdΩ

)
, (2-16)

where indices m and n have been replaced with s and f , respectively, to point
out that they refer to source and field points.

One major improvement introduced by Dumont [17] is the consistent
interpolation of traction forces, given in eq. (2-10). In fact, Dumont proposes
to interpolate traction forces as

ti = |J |at `
|J |

ui`t`. (2-17)

The only difference between eqs. (2-10) and (2-17) is the consideration
of the Jacobian J of coordinates transformation. Besides its conceptual con-
sistency [28], this definition proves to be very handy, as in eq. (2-14) the term
dΓ = |J | dξ is simplified by the division of |J | in the traction interpolation
functions.

This feature is key for the implementation of the General Fast Multipole
Method together with high order elements, as shown in Section 5. This is due
to the fact that the integrations of the single-layer potential matrix in eq. (2-
14) become polynomial, and may be evaluated analytically, thus diminishing
the overall numerical errors.

2.2
Hybrid Boundary Element Method

The Hybrid Boundary Element Method (HBEM), differently from the
CBEM, is based on an energy formulation. Dumont [24] proposes to use the
Hellinger-Reissner potential
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−πR(ui, σij) =
∫

Ω

[
UC

0 (σij) + (σij,j + bi)ui
]

dΩ−∫
Γ
uiσijηjdΓ +

∫
Γσ
uit̄idΓ + C = stationary,

(2-18)

where UC
0 is the complementary strain energy, and C is an arbitrary constant.

This formulation depends on the assumption of a stress field (σij) in the
domain,

σij = σ∗ij + σpij (2-19)
from which a displacement field is obtained:

ui = u∗i + upi . (2-20)

The quantities σ∗ij and u∗i are taken as the underlying problem’s fundamental
solutions, eq. (2-2), while σpij and upi are some particular solutions. Using
eqs. (2-6), (2-7) and (2-20), the potential of eq. (2-18) may be written as

πR(ui, σij) =
∫

Γ

(
σijηj − t̄i

)
uidΓ−

∫
Ω
UC

0 (σij)dΩ. (2-21)
Using eq. (2-1), integrating by parts and applying Green’s theorem, the

term
∫

Ω U
C
0 (σij)dΩ may be written as∫

Ω
UC

0 (σij)dΩ = 1
2p
∗
mFmnp

∗
n + p∗mbm + 1

2

∫
Ω
σpiju

p
i,jdΩ, (2-22)

where Fmn =
∫
Γ σ
∗
jimu

∗
inηjdΓ and bm =

∫
Γ σ
∗
jimu

p
inηjdΓ.

The remaining term of eq. (2-21) may also be rewritten by taking into
account eqs. (2-19), (2-9) and (2-11) as∫

Γ

(
σijηj − t̄i

)
uidΓ = pndn −Hmnp

∗
mdn − ppndn, (2-23)

with
H = Hmn =

∫
Γ
σ∗jimηju

n
indΓ, (2-24)

p = pn =
∫

Γ
t̄iu

n
i dΓ, and (2-25)

pp = ppn =
∫

Γ
σpijηju

n
indΓ. (2-26)

By writing the potential of eq. (2-21) in terms of eqs. (2-22) and (2-
23), and considering that the potential is stationary, one obtains, in matrix
notation, Fp∗ = H(d− dp)

HTp∗ = p− pp.
(2-27)

where H is the same kinematic transformation (double-layer potential) matrix
defined in eq. (2-13) for the CBEM, and F is a flexibility matrix, which is
symmetric by construction but computationally expensive to evaluate.
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For an in-depth assessment of the HBEM, the author recommends
Dumont’s works [24] and [26], and Oliveira’s Master’s thesis [27].

2.3
Simplified Hybrid Boundary Element Method

As remarked at the end of the previous section, the evaluation of the
flexibility matrix F in the HBEM is computationally expensive. The Simplified
Hybrid Boundary Element Method (SHBEM) [22, 21] was proposed as a means
to circumvent the evaluation of the flexibility matrix F, as defined in eq. (2-22).

Instead of the first of eq. (2-27), mechanical consistency assessments
justify the use of

U∗p∗ = d− dp, (2-28)
where U∗ = Usf is the matrix given by the direct evaluation of the fundamental
solutions u∗ at the field points. No integrations are required to evaluate the
elements of U∗, which is also symmetric.

One apparent drawback of eq. (2-28) is that the fundamental solutions
cannot be directly evaluated when s and f refer to the same nodal point.
Although such a mathematical impossibility has a sound mechanical basis,
the undefined values of U∗ can be obtained indirectly by imposing that, if
eq. (2-28) holds, then, by a hybrid contragradient statement [21],

U∗TP = HD, (2-29)

where D and P are matrices whose columns are respectively nodal displace-
ments and equivalent nodal forces corresponding to some simple solution of
the problem (linear displacement or potencial field, for instance). There are
usually more equations than unknowns in such an evaluation of the undefined
values of U∗ in eq. (2-29), so that least squares is used.
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3
The Fast Multipole Method

In 1987, Greengard and Rokhlin [1] presented a novel method to be
applied to N-body problems, such as the ones of Coulombic and gravitational
fields. The Fast Multipole Method (FMM) turned out to be useful in reducing
the amount of floating-point operations in the frame of an iterative solver from
O(N2) to O(N logN) and even O(N) [1, 3].

The FMM was firstly proposed for the approximation of the potential
interaction between two distant particles in terms of a Taylor series expansion
about a pole that is close to one of the particles.

Dongarra and Sullivan [2] acknowledged the FMM as one of the top 10
algorithms of the 20th century, alongside other well-known methods such as
the Krylov Subspace Iteration and the Fast Fourier Transform. Board and
Schulten [29] argue that the reduction in computational effort allowed simula-
tions to be done with a manageable approximation error without disregarding
far-field contributions and not at the expense of brute force.

The FMM began to be applied to the BEM in the mid-1990s [30, 31],
by recognizing the BEM as an N-body problem. In fact, the evaluation of the
matrix products Hd and Gt in eq. (2-12) have become feasible with the FMM
for the application of the BEM to very large scale problems [3].

3.1
The FMM applied to the BEM

This section briefly introduces the developments of the application of the
BEM for 2D potential problems, as described by Liu [3].

As already mentioned, the BEM formulation delivers matrices that are
dense and nonsymmetric. When a simulation scales up to tens of thousands
of degrees of freedom, the storage required by them is enormous, thus limiting
the possibility of mesh refinement, or the accurate description of the geometry
of the problem. For example, a square matrix with 20000 rows requires
approximately 3.0 GB for 64-bit numbers in double precision format. It is then
easy to see that the amount of storage for a larger problem rapidly becomes
impractical, not mentioning the required calculations to solve an equation
system with such a large matrix.
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Instead of using direct solvers, one must resort to iterative solvers, aiming
to decrease the computational time of the solution, but not circumventing the
storage issue. Matrix-free iterative solvers could prove useful in this case, except
that they would require the integration of the matrices H and G at every step.

None of the previous strategies deals with both storage and computa-
tional effort at the same time. The FMM allows the use of matrix-free it-
erative solvers, such as the Generalized Minimum Residual Method (GM-
RES) [32], while drastically reducing the number of numerical evaluations.
This is achieved by the speedup of the matrix-vector multiplication that is
required by the solver, usually written as

Ax = b, (3-1)

with the coefficients matrix A assembled from the rows and columns of
matrices H and G, a right-hand side vector b of known entries, and the
unknowns cast in vector x. Although eq. (3-1) is used to illustrate the problem,
it is important to point out once again that matrix A is never assembled in a
matrix-free scheme, such as the one used herein.

Liu [3] starts the developments by defining the fundamental solution u∗

used for 2D potential problems, in complex coordinates, as

u∗(z, z0) = − ln |z − z0|
2π , (3-2)

with normal fluxes
q∗(z, z0) = ∂u∗(z, z0)

∂η
, (3-3)

where z and z0 are a field and a source point, respectively, which will be defined
shortly in the next section.

3.1.1
Typical FMM expansions

Let the source point z0 – together with its expansion poles zL′ and zL –,
and the field point z – together with its expansion poles zc and zc′– be given
as in fig. 3.1.

The fundamental solution of eq. (3-2) is expanded by a Taylor series
about the pole zc as

u∗(z, z0) = − 1
2π

(
ln |z − zc| −

∞∑
i=0

i−1
(
z − zc
z0 − zc

)i)
. (3-4)

While in the original equation eq. (3-2) the source and field points
were linked by the natural logarithm, they are now decoupled in eq. (3-4).
Equation (3-4) may be conveniently rewritten as
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Figure 3.1: Definition of points and expansion poles by Liu [3].

u∗(z, z0) = 1
2π

∞∑
i=0

Oi(z0 − zc)Ii(z − zc), (3-5)

with the definition of vectors

Ii(z) = zi

i! for i ≥ 0, (3-6)

Oi(z) = (i− 1)!
zi

for i ≥ 1, and O0 = − ln z. (3-7)
Equation (3-5) may be used to evaluate G in eq. (2-14) as

Gs` =
∫

Γ
u∗sq`dΓ = 1

2π

∞∑
i=0

Oi(z0s − zc)Mi(zc), (3-8)

with the introduction of the moments about the field pole zc

Mi(zc) =
∫

Γ
Ii(z − zc)q`dΓ, i = 0, 1, 2, . . . , n. (3-9)

In eqs. (3-8) and (3-9), one may notice that only the vector I requires
boundary integration. This is a remarkable feature, as it allows the evaluation
of integrals over the boundary, without specifying a source point. Liu [3]
also provides the possibility of carrying out the expansion about successive
poles. By expanding eq. (3-9), one defines the moment-to-moment (M2M)
translations as

Mi(zc′) =
i∑

j=0
Ii(zc − zc′)Mj(zc). (3-10)

In order to generalise the expansion possibilities, one may also define the ex-
pansions about source poles, the so-called moment-to-local (M2L) translations.
Expanding eq. (3-8) about a pole zL, one has that

Gs` = 1
2π

∞∑
i=0

Li(zL)Ii(z0s − zL), (3-11)

with
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Li(zL) = (−1)j
∞∑
j=0

Oi+j(zL − zc)Mj(zc). (3-12)

As in the case of successive expansions about field poles, there is also the
possibility of expansions about successive source poles. These are defined as

Lj = (zL′) =
n−j∑
k=0

Ik(zL′ − zL)Lj+k(zL), (3-13)

the local-to-local (L2L) translations, where n is the number of terms of the
desired expansion.

The translations in eqs. (3-9), (3-10), (3-12), and (3-13) are defined for the
single-layer matrix G only. The developments for translations of the double-
layer matrix H are presented in [3] and [4].

Liu [3] also provides an algorithm for the solution of a BEM problem
using the proposed FMM developments, as carefully described in Section 3.2.8
of his book.
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4
The General Fast Multipole Method (GFMM)

A generalisation of the FMM is presented in this section. The extension of
the FMM developments to different fundamental solutions, as given by Liu [3],
is not straightforward.

The General Fast Multipole Method (GFMM), as proposed by
Peixoto [20], and expanded as in Novelino [18], aims to implement a FMM for-
mulation that is as much as possible independent of the fundamental solution.
Moreover, different notation and terminology – other than the ones given in
the classical literature on FMM – are introduced in order to arrive at a more
compact formulation that is also directed to a computational implementation.

4.1
GFMM formulation

The following basic definitions are used in the present developments to
represent a general function in the complex domain f(z):

– z − zs = distance between the source point zs and the field point z.

– zck , k = 0, 1, 2, . . . , nc: hierarchical levels of poles about which the
fundamental solution will be successively expanded for the field point
z (then, by definition, zc0 ≡ z).

– zLl , l = 0, 1, 2, . . . , nL: hierarchical levels of poles about which the
fundamental solution will be successively expanded for the source point
zs (by definition, zL0 ≡ zs).

The above definitions of a pole zck that is close (lower case c) to the
field point z and of a pole zLl that is local (upper case L) to the source
point zs follow the notation introduced by Liu [3], depicted in fig. 3.1. In the
following developments, each close pole zck and each local pole zLl are actually
array representations of different hierarchical levels of poles, as illustrated in
fig. 4.1, where the attached superscripts (here omitted, for simplicity) denote
an individual pole in the array.

The expression of a generic fundamental solution f(z) for 2D problems
is initially expanded about the close pole zcnc (of highest level, as developed
next) using n terms:
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f(z − zs) =
n∑
i=0

1
i! (z − zc

nc )iD(i)f(zcnc − zs) +O(z − zcnc )n+1 (4-1)

where D(0)f(z) = f(z) and D(i)f(z) = ∂if(z)/∂zi.
The truncated form of eq. (4-1) is conveniently written as

f(z − zs) =
n+1∑
i=1

1
(i− 1)!Pi(z − zc

nc )Qi(zcnc − zs) (4-2)

for truncation order O(z − zcnc )n+1, proportional to the distance between z

and zs and with the arrays of functions P (z) and Q(z) defined for a generic
argument z as

P (z) =
{

1 z z2 z3 · · · zn+1
}
, and (4-3)

Q(z) =
{
f(z) ∂f(z)

∂z
∂f2(z)
∂z2

∂f3(z)
∂z3 · · · ∂fn+1(z)

∂zn+1

}
. (4-4)

Expansions about the source point are also possible. Let the derivatives
D(i)f(zcnc − zs) in eq. (4-1) be also expanded for the source point zs about the
local point zLnL (of highest level, as to be also shown subsequently) using m
terms:

D(i)f(zcnc − zs) =
m∑
j=0

1
j! (zL

nL − zs)jD(i+j)f(zcnc − zLnL ) +O(zLnL − zs)m+1. (4-5)

Substituting for D(i)f(zcnc − zs) in eq. (4-1) according to above results in

f(z − zs) =
n∑
i=0

1
i! (z − zc

nc )i
m∑
j=0

1
j! (zL

nL − zs)jD(i+j)f(zcnc − zLnL )

+O(z − zcnc )n+1 +O(zLnL − zs)m+1.

(4-6)

The truncated form of eq. (4-6) is conveniently written as

f(z − zs) =
n+1∑
i=1

1
(i− 1)!Pi(z − zc

nc )
m+1∑
j=1

1
(j − 1)!Pj(zLnL − zs)Qi+j−1(zcnc − zLnL)

(4-7)

for truncation order given by

max
(
|(z − zcnc )/(z − zs) |n+1, |(zLnL − zs)/(z − zs) |m+1

)
.

Equation (4-2) is undoubtedly more economical than eq. (4-7) and seems
to be the simplest and fastest way of handling the expansions. However,
eq. (4-7) is given as the starting point for a general procedure that leads
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to a computationally fast and economical evaluation of a given fundamental
solution f(z−zs) for a very large number of source points zs and of field points
z by means of an approximate expression that can be as accurate as required.
The expansion about successive levels of poles is dealt with in the next section.

As a matter of illustration, three expansion schemes are shown in fig. 4.1.
They depict the cases where several field points are expanded about a pole
zc (upper left), field point expansions are undertaken about three successive
layers of poles zc (lower left) and, moreover, expansions of source points are
carried out about two layers of poles zL (upper right). The green lines represent
analytical integrations of the BEM matrices for the matrix-vector products, as
proposed in Peixoto [20].
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Figure 4.1: Schematic representations of expansions about field and source
poles.

The definition of the functions Pi(z) and Qi(z) – in eqs. (4-3) and (4-4)
– follows closely the definitions in eqs. (3-6) and (3-7) of I and O by Liu [3],
although without the factorials that are present there. Observe the mnemonic
appeal of P (for polynomials, actually binomials) and Q (for quotients, as in
the case of the expansion of a logarithm – the simplest fundamental solution
conceivable [28, 33]).

Although these latter functions may be computationally intensive to
evaluate, they are only needed for the array of poles represented by zLl

interacting with the array of poles represented by zck . Then, the evaluation
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of Qi(zLnl −zcnk ) ends up, depending on the numerical implementation, orders
of magnitude less intensive than the direct evaluation of f(z−zs) for all source
and field points – and this is the basis of the Fast Multipole Method.

4.1.1
Expansions about successive poles

The next developments are somewhat analogous to the M2M and L2L
translations presented by Liu [3] – discussed in Section 3.1 –, and shall lead to
the complete generalization of the fast multipole technique. Figure 4.1, in its
upper-right corner, shows three levels of close poles (with one, two and four
one poles on each level) and two levels of local poles (with one and two poles on
each level). This generalisation is at least in part required because, for a closed
boundary, z1

c3 may be sufficiently far only from a certain subboundary of Γs.
Then, hierarchical levels of poles must be implemented, which are sufficiently
far from certain subboundaries while building up the contribution for higher-
level poles.

The superscripts nc and nL in eq. (4-7) turn out to be the highest levels
of field and source poles for an expansion to be carried out hierarchically about
successive layers of poles. Moreover, the binomials Pi(·) introduced in eq. (4-7)
are actually to be directly evaluated according to their definition in eq. (4-3)
only when the argument refers to a coordinate difference for two consecutive
levels of poles, such as zck−1−zck , k = 1, · · · , nc in the definition of Pi(z−zck), or
zLl−zLl−1 , l = 1, · · · , nL in the definition of Pj(zLnL−zs). When the argument
of Pi(·) refers to poles that are not on consecutive layers, it is expanded in
terms of a lower-level pole zcl−1 exactly as

Pi(z − zcl) =
i∑

j=1
Cj,i+1−jPj(z − zcl−1)Pi+1−j(zcl−1 − zcl) (4-8)

where
Cij =

 1 if i = 1 or j = 1
Ci−1,j + Ci,j−1 else

(4-9)

In eq. (4-8), Pi+1−j(zcl−1 − zcl) is defined as in eq. (4-3), since it refers to
two consecutive poles. On the other hand, Pj(z−zcl−1) is recursively evaluated
according to the same eq. (4-8) until the lowest level Pj (z − zc1) is reached
and eq. (4-3) becomes directly applicable. With this recursive approach, the
binomials Pi(z−zcnk ) in eq. (4-7) – and, similarly, Pj(zLnl−zs) – are ultimately
expressed in terms of arguments given as differences of poles on two consecutive
levels.

As shown, f(z − zs) is expanded in terms of successive arrays of source
poles zLl as well as field poles zck . The indicated poles zLl and zck are
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representative of arrays of poles corresponding to hierarchical expansion levels l
and k. The expansion ends up with a series of products of binomials Pi(z−zcnk )
and Pi(zs− zLnl ) – which are independent from the complexity of a problem’s
fundamental solution – multiplied by functions Qi(zLnl − zcnk ) that, although
eventually cumbersome to obtain numerically, refer to the least number of
higher-order pairs of pole arrays zLnl − zcnk . In the illustration on the upper
right of fig. 4.1, there is only one pair of poles z1

L2 − z1
c3 for which, in the case,

Qi(z1
L2 − z1

c3) needs to be evaluated.
The hierarchical expansions described above are next implemented in a

boundary element code. It has turned out that the hierarchical development of
source poles is not of advantage, at least as presently implemented (Novelino,
2015), so that the scheme shown on the lower left of fig. 4.1 is the actual
procedure to be assessed in the numerical examples.

4.2
Hierarchical mesh refinement

The expansions described in the last section give the basic outline for
the GFMM formulation. However, as pointed-out in eqs. (4-1) and (4-6), the
accuracy of GFMM’s expansions is proportional to the distance between source
and field points themselves, and their expansion poles. Thus, a strategy to
determine adjacency is of utmost importance in order to implement a generally
applicable FMM algorithm.

The literature presents many possibilities to handle adjacencies. Liu [3]
resorts to a tree structure – a quad-tree in 2D – which is fairly able to assess the
relative distances between boundary nodes, and their expansion poles, when
dealing with constant elements. Yasuda and Sakuma [16] propose a hierarchical
cell structure to be embedded in a conventional BEM algorithm, which also
relies on a tree structure, and, again is particularised to constant elements.

These elements are geometrically represented as line segments, but are
actually defined by the segment’s midpoint. Thus, any adjacency search
strategy that deals with points is able to deliver the neighbourhood information
required. However, should the order of the elements be higher than constant,
these algorithms demand adaptations, which are not straightforward, or may
even be not applicable.

As one of the goals of the GFMM is to be as general as possible, it
demands an adjacency search able to be applied to elements of any order. The
applicability of the GFMM to linear and quadratic elements has been shown
both by Peixoto [20] and Novelino [18], and the generalisation to higher-order
elements should be simple. A hierarchical mesh refinement and topological

DBD
PUC-Rio - Certificação Digital Nº 1412832/CA



Chapter 4. The General Fast Multipole Method (GFMM) 27

numbering of the elements is proposed in [18, 34] for high order elements, as
long as the assessed domain is convex.

This mesh refinement is based on a scheme for splitting elements into
two others of the same order and the same geometrical shape. Thus, a refined
element inherits from its parent element all geometrical properties under the
assumption that the initial refinement level already describes the boundary’s
shape, although additional degrees of freedom are still required to achieve an
accurate solution.

The refinement shown in fig. 4.2 illustrates the numbering rule for
successively refined elements and nodes starting from a given macro element.
This numbering scheme is the basis of a topological structure that enables the
identification of adjacent elements at each refinement level, as stored during
runtime only for each uppermost macroelement, which drastically saves storage
allocation. Thus, the distance between elements is merely described by how far
their numbering is from each other in a given refinement level.

1 3 2


1

2

3

4
5


1

2 3

4

5
6

7

a) linear element b) quadratic element c) cubic element

Figure 4.2: Schemes for splitting a general element into two sub-elements [18].

The concept of refinement levels is illustrated in fig. 4.3, which also shows
three out of many possibilities for the number of split elements. This strategy
naturally creates the near expansion poles required by the FMM algorithm, as
the elements on a given refinement level are always linked to its parent element
on the previous level.

In order to simulate multiply-connected or irregularly shaped domains,
it is proposed an extension of the hierarchical mesh refinement strategy given
in [18]. Aiming to avoid unnecessary distance evaluations, this strategy takes
advantage of the adjacency information from previous refinement levels, and
only assesses the distance between elements with common adjacent parents.

Figure 4.4 shows a square domain with a hole to be assessed at two
different refinement levels. If the topological adjacency were to be considered
in such a domain for the refinement level k = 0, on the left, element 5
would not be detected as adjacent to element 1, as they are 4 elements apart.
This illustrates a case that requires a geometry-based assessment. Using the
hierarchical refinement, it is possible to deliver the adjacency information of a
given element at level k to its children, split elements at level k + 1. This
information is used to reduce the number of possible adjacent nodes, and
therefore, the number of distance evaluations.
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Figure 4.3: Schematic pole expansions using numbers of children poles nc =
2, 4 or 8 (constant elements).

As illustrated on the left of fig. 4.4 for the level k = 0, a search is carried
out for element 1 using the two green circles centered on its nodes, and it comes
out that the nodes marked as blue (corners of the square hole) are adjacent.
Then, any element that contains at least one of theses nodes is considered
adjacent to element 1. The search radius is AdjTOL×L, where L is the length
of the reference element. Good numerical results have been obtained in the
frame of the implemented fast multipole algorithm using 0.7 ≤ AdjTOL ≤ 2.
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Figure 4.4: Schemes for the adjacency search at the coarser refinement level
k = 0 (left) and at the next refinement level k = 1 (right).

The red element on the right of fig. 4.4 corresponds to a level k = 1 and
has been generated from element 1 at level k = 0. Since the adjacent elements
of element 1 at level k = 0, on the left figure, are already known, they are the
candidates to have adjacent child elements at level k = 1, as shown in yellow.
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Once more, search circles with radii proportional to the element length are
drawn and nodes inside them are marked as adjacent.

An element’s adjacency list is built as the hierarchical mesh refinement
proceeds up to the highest level. This list is generated and stored for just one
element at a given refinement level.
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5
GFMM application to the CBEM and SHBEM

This chapter presents the mathematical developments required to apply
the GFMM to both potential and elasticity problems with the CBEM and the
SHBEM. As eqs. (4-2) and (4-7) are defined for functions in the complex plane,
while the definitions in Section 2 are developed for Cartesian coordinates, it is
necessary to define complex counterparts of the main equations of the BEM
methods to be studied in a GFMM framework.

5.1
Developments for potential problems

Herein is formulated the application of the GFMM to both the CBEM
and the SHBEM for high order elements, instead of the usual constant elements
seen in the literature [3, 4].

5.1.1
Complex counterpart of BEM fundamental solutions for potential prob-
lems

In the following equations zs is the reference coordinates of a source point
(as conceptualised in the frame of a boundary element development) and the
difference of a field point z to the source point is z− zs [35]. However, just for
the sake of notation simplicity we temporarily assume zs = 0 as the reference
coordinates origin.

The fundamental solution for a potential problem may be written in
complex notation as

θ∗s = <
( −1

2πk ln (z)
)
≡ <

(
θCs
)

(5-1)

with z = x + iy and including a material property k, such as a conductivity
parameter in a stationary heat propagation analysis for a homogeneous and
isotropic domain. One checks that

−1
2πk ln (z) = −1

2πk ln (r) + i arctan(y, x), (5-2)

where r =
√
x2 + y2 is the distance between source and field points. Since
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d ln (z)
dz = 1

z
≡ 1

x+ i y
= x

r2 − i
y

r2 , (5-3)

the potential flux in the Cartesian coordinates is defined as

qx = −k∂θ
∗
s

∂x
= − x

r2 ≡ −<
(
k
dθCs
∂z

)

qy = −k∂θ
∗
s

∂y
= − y

r2 ≡ −=
(
k
dθCs
∂z

)
,

(5-4)

or, in complex notation,

q = qx + iqy ≡ −k
dθCs
dz

. (5-5)

The complex expression of the boundary unit vector is

η = ηx + i ηy ≡
1
|J |

(
dy

dξ
− idx

dξ

)
(5-6)

and the expression of the boundary normal flux qn becomes

qn = −qxηx − qyηy = ∂θ∗s
∂x

ηx + ∂θ∗s
∂y

ηy ≡ <
(
dθCs
∂z

η

)
. (5-7)

5.1.2
Complex counterpart of BEM matrices for potential problems

The double-layer and single-layer potential matrices H and G are

Hsf = <
(
HC
sf

)
, and (5-8)

Gs` = <
(
GC
s`

)
, (5-9)

with

HC
sf = k

∫
Γ

∂θCs (zf − zs)
∂z(ξ) η(ξ)uf (ξ)dΓ(ξ)

= −1
2π

∫
Γ

1
zf − zs

η(ξ)uf (ξ)dΓ(ξ)
(5-10)

GC
s` =

∫
Γ
θCs (z` − zs)q`(ξ)dΓ(ξ) = −1

2πk

∫
Γ

ln(z` − zs)q`(ξ)dΓ(ξ). (5-11)
Equations (5-10) and (5-11) are the complex counterparts of eqs. (2-13)

and (2-14) for potential problems.
Integration over a general segment in the frame of the CBEM is carried

out considering that both potential θ and normal flux q are interpolated along
a boundary segment according to the real functions

θ = uf (ξ)df , and (5-12)
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q = t`(ξ)q`, (5-13)
where

t` = u`|J |at `/|J |, (5-14)
with uf (ξ) and u`(ξ) standing for the same type of real polynomial inter-
polation functions of any order (constant, linear and quadratic functions are
implemented in our code).

Since uf (ξ) and u`(ξ) have local support, there is no need to make explicit
that the integrations indicated in the evaluation ofHsf and Gs` must be carried
out segment by segment along the boundary.

5.1.3
Formulation for the CBEM

The application of the GFMM to 2D potential problems using the CBEM
is developed in [20, 18, 34] and will be briefly outlined in this section.

Let eq. (4-2) be applied to eq. (5-9) with f(z − zs) = θCs , then

GC
s` = −1

2πk

∫
Γ
q`(ξ)

n+1∑
i=1

1
(i− 1)!Pi(z(ξ)− zcnc )Qi(zcnc − zs)dΓ(ξ), (5-15)

without the need to define a priori the vector Q. It must be specified only
when the fundamental solution of the potential problem is determined. Thus,
eq. (5-15) describes any potential problem in 2D, as long as its fundamental
solution θC has a valid series representation.

Taking into account that in eq. (5-15) Q is constant on Γ – as its
arguments are expansion poles which do not lay on the domain’s boundary,
one may further write

GC
s` = −1

2πk

n+1∑
i=1

1
(i− 1)!Qi(zcnc − zs)

∫
Γ
q`(ξ)Pi(z(ξ)− zcnc )dΓ(ξ). (5-16)

The integrals in eq. (5-16) may be analytically evaluated, as they are
merely the integration of a multiplication of polynomials, if the fluxes q`
are interpolated as proposed in eq. (5-13). Moreover, eq. (5-15) also shows
that integrations are not required for vector Q, that usually is composed of
transcendental functions, which are not easily integrated by numerical means.
Also, the integrations do not depend on a source point zs, and may be evaluated
for a cluster of field points z ultimately expanded about a pole zcnc .

The same GFMM expansion of eq. (4-2) applied to eq. (5-10) leads to

HC
sf =
−1
2π

∫
Γ
η(ξ)uf (ξ)

n+1∑
i=1

1
(i− 1)!Pi(z(ξ)− zcnc )Qi+1(zcnc − zs)dΓ(ξ),

(5-17)
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which can be written as

HC
sf =
−1
2π

n+1∑
i=1

1
(i− 1)!Qi+1(zcnc − zs)

∫
Γ
η(ξ)uf (ξ)Pi(z(ξ)− zcnc )dΓ(ξ),

(5-18)

by once again taking advantage of the fact that Q is constant over Γ. As in
the case of eq. (5-16), these integrals may be analytically evaluated as they
are composed by polynomials. Notice that the indices of vector Q in eq. (5-
18) are shifted by 1 when compared to eq. (5-16). This is due to the fact
that the function to be expanded, in the case of the double-layer potential
matrix, is actually the first derivative of the fundamental solution θC , which is
represented by the second component in the definition of vector Q in eq. (4-4).

All boundary integrals may be obtained analytically in the proposed
GFMM framework for generally curved, high order elements [20, 18] – near-
field evaluations are carried out as usually in the conventional CBEM [36].

5.1.4
Formulation for the SHBEM

As discussed in Section 2.3, the SHBEM relies on the same double-layer
potential matrix H, presented in eq. (2-27), and on the matrix U∗ = U∗sf = θ∗sf .
In order to be able to apply the GFMM to the transpose of H, it will be required
to apply eq. (4-7), instead of eq. (4-2) as done in the last Section (eq. (5-17)),
leading to

HC
fs = −1

2π

∫
Γ
η(ξ)uf (ξ)

n+1∑
i=1

1
(i− 1)!Pi(z − zc

nc )

m+1∑
j=1

1
(j − 1)!Pj(zL

nL − zs)Qi+j−1(zcnc − zLnL )dΓ(ξ),
(5-19)

which can be written as,

HC
fs = −1

2π

m+1∑
j=1

1
(j − 1)!Pj(zL

nL − zs)Qi+j−1(zcnc − zLnL )

n+1∑
i=1

1
(i− 1)!

∫
Γ
η(ξ)uf (ξ)Pi(z − zcnc )dΓ(ξ).

(5-20)

The integrals in eq. (5-20) may be analytically integrated and are exactly the
same as in eq. (5-18) for the CBEM.

The application of the GFMM to the matrix U∗ is straightforward
and consists only in directly using any of eqs. (4-2) or (4-6) while taking
f(z − zs) = θCs , as
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U∗sf =
n+1∑
i=1

1
(i− 1)!Pi(zf − zc

nc )Qi+1(zcnc − zs), (5-21)

or

U∗sf =
n+1∑
i=1

1
(i− 1)!Pi(zf − zc

nc )

m+1∑
j=1

1
(j − 1)!Pj(zL

nL − zs)Qi+j−1(zcnc − zLnL ),
(5-22)

respectively.

5.1.5
Results at internal points

The formulation developed up to now refers to a source point located
on the boundary. In the frame of the CBEM, potential results at internal
points are obtained by applying the Somigliana’s identity [17], as presented in
Section 5.2.5) for elasticity. For potential problems, it is written as

θm =
∫

Γ
qiθ
∗
imdΓ−

∫
Γ
q∗imηiuidΓ, (5-23)

where m are the internal points of interest, and i are the degrees of freedom
along the boundary, disregarding eventual body sources.

Since the integrals in eq. (5-23) are the same ones of matrices Hsf and
Gs` presented in eqs. (5-10) and (5-11), the previous developments are directly
applicable by just replacing source points s with internal points m, and field
points f with degrees of freedom i. The application of the GFMM to eq. (5-23)
is then straightforward and requires only the adjustment of indices in eqs. (5-
16) and (5-18).

However simple this application may seem, it actually poses as a very
efficient application of the GFMM, as Somigliana’s identity requires integration
over all boundary elements for each internal point. Internal points that are
sufficiently far from a cluster of elements of the boundary, may take advantage
of a single Fast Multipole integration for all of them.

5.2
Developments for elasticity problems

The application of the GFMM for elasticity problems for both the CBEM
and the SHBEM is discussed in this subsection. In principle, elements of
arbitrary order (quadratic, cubic, and so on) may be used in the context of
this formulation.
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5.2.1
Complex counterpart of BEM fundamental solutions for elasticity

The following developments are classical in the literature and thoroughly
covered in [35, 37, 38].

Let the displacements u(z) ≡ ux(x, y) + i uy(x, y) be expressed as a
function of the complex potentials ϕ(z) and ψ(z) as

u∗(z) = 1
2G

(
(3− 4ν)ϕ(z)− zϕ′(z)− ψ(z)

)
. (5-24)

The stresses are obtained from

σ∗xx + σ∗yy = 4<ϕ′(z), and (5-25)

σ∗yy − σ∗xx + 2iσ∗xy = 2 (z̄ϕ′′(z) + ψ′(z)) , (5-26)
which leads to

σ∗xx = < (2ϕ′(z)− z̄ϕ′′(z)− ψ′(z)) , (5-27)

σ∗yy = < (2ϕ′(z) + z̄ϕ′′(z) + ψ′(z)) , and (5-28)

σ∗xy = = (z̄ϕ′′(z) + ψ′(z)) . (5-29)
Given the boundary unit vector η, defined in eq. (5-6), the boundary

traction forces are

Tx = σ∗xxηx + σ∗xyηy ≡ 2< (ϕ′(z))< (η)−< ((z̄ϕ′′(z) + ψ′(z)) η)
Ty = σxyηx + σyyηy ≡ 2< (ϕ′(z))= (η) + = ((z̄ϕ′′(z) + ψ′(z)) η) ,

(5-30)

which may be compactly written as

T ≡ Tx + i Ty = 2< (ϕ′(z)) η − ((z̄ϕ′′(z) + ψ′(z)) η). (5-31)

For the specific case of Kelvin’s fundamental solution, the potential
functions ϕ(z) and ψ(z) are

ϕ(z) = −p∗

8π (1− ν) ln (z) (5-32)

ψ(z) = (3− 4ν) p̄∗
8π (1− ν) ln (z) (5-33)

where p∗ = p∗x + ip∗y is a point force applied at a source point zs. Applying
these potentials to eq. (5-24) leads to

u∗ = −1
8πG (1− ν)

[
(3− 4ν)p∗< ln (z)− 1

2

(
p∗
z̄

z

)]
(5-34)

which coincides exactly with the solution arrived at in a displacement formu-
lation using a real potential function of the distance r from a field point to
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the source, force point. The only negligible difference consists in the explicit
inclusion of a rigid-body term in the displacement expressions, coming from
eqs. (5-32) and (5-33):u

∗
x

u∗y

 =

−1
8πG(1− ν)

3− 4ν
2 ln(r2)

1 0
0 1

− 1
r2

x2 xy

xy y2

+ 1
2

1 0
0 1

p
∗
x

p∗y

 .
(5-35)

Dumont [39] presents a thorough assessment of these rigid-body terms using
a consistent BEM formulation and shows that they do not influence the
numerical results in the frame of a consistent formulation.

Moreover, applying eqs. (5-32) and (5-33) to the tractions in eq. (5-31)
one obtains the complex expression

T ∗ = −1
8π (1− ν)

[
2<

(
p∗

z

)
η +

(3− 4ν
z

p̄∗ + p∗
z̄

z2

)
η

]
(5-36)

5.2.2
Complex counterpart of BEM matrices for elasticity

The general expressions of both H and G in Cartesian coordinates are

Hsf =
∫

Γ
T ∗jsujf (ξ)dΓ(ξ), and (5-37)

Gs` =
∫

Γ
u∗jsTj`(ξ)dΓ(ξ) (5-38)

where T ∗js and u∗js are the Kelvin’s fundamental solution expressed for point
force parameters p∗s, with

T ∗js = −1
4π(1− ν)r

{ [
(1− 2ν)δjs + 2r,jr,s

] ∂r
∂η

+

(1− 2ν)(r,jηs − ηjr,s)
}
, and

(5-39)

u∗js = −1
8πG(1− ν)

(
(3− 4ν) ln(r)δjs − r,jr,s + Cδjs

)
, (5-40)

for j = 1, 2 indicating the Cartesian coordinate directions x and y. It is
understood that, for notation simplicity, r ≡

√
(xf − xs)2 + (yf − ys)2 in

eq. (5-39) and r ≡
√

(x` − xs)2 + (y` − ys)2 in eq. (5-40).
While the matrices H and G for a potential problem have the simple

complex representation of eqs. (5-8) and (5-9), the application to elasticity
problems is slightly more involved. To start with, it is advisable to rewrite the
displacement and boundary traction expressions in eqs. (5-34) and (5-36) in
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terms of functions that multiply p∗ and p∗ explicitly as

u∗ ≡ −1
8πG (1− ν)

〈
(3− 4ν)< ln (z) −1

2

(
z
z

)〉p
∗

p∗


≡
〈
u∗1 u∗2

〉p
∗

p∗

 , and
(5-41)

T ∗ ≡ −1
8π (1− ν)

〈
n
z

+ 3−4ν
z
η η

z
+ z

z2η
〉p

∗

p∗

 ≡ 〈T ∗1 T ∗2

〉p
∗

p∗

 (5-42)

observing that <
(
p∗

z

)
= 1

2

(
p∗

z
+ p∗

z

)
.

A more convenient expression of displacements is
u
∗

u∗

 = −1
8πG (1− ν)

(3− 4ν)< ln (z) −1
2

(
z
z

)
−1

2

(
z
z

)
(3− 4ν)< ln (z)

p
∗

p∗


≡

u∗11 u∗12

u∗21 u∗22

p
∗

p∗

 ≡
u∗11 u∗21

u∗21 u∗11

p
∗

p∗

 .
(5-43)

Observe the introduction of a Hermitian matrix in the above linear transfor-
mation. Similarly, the boundary tractions are better represented as

T
∗

T
∗

 = −1
8π (1− ν)

ηz + 3−4ν
z
η η

z
+ z

z2η
η
z

+ z
z2η

(
η
z

)
+ 3−4ν

z
η

p
∗

p∗


≡

T ∗11 T ∗12

T ∗21 T ∗22

p
∗

p∗

 ≡
T ∗11 T

∗
21

T ∗21 T
∗
11

p
∗

p∗

 .
(5-44)

This linear transformation matrix is the sum of a Hermitian and a diagonal
matrix. This property is possibly more relevant than the fact that the corre-
sponding transformation matrix for the real-variable formulation, as shown in
eq. (5-39), is the sum of a symmetric and a skew-symmetric matrix.

Finally, integration over a general segment in the frame of the CBEM
is carried out considering that displacements uj and boundary tractions
Tj are interpolated along a boundary segment according to the complex
representation uū

 = uf (ξ)
dd̄

f

, and
TT̄

 = t`(ξ)
tt̄

`

, (5-45)

where uf ∈ < and t` = u`|J |at `/|J |.
The interpolation function u` is the same one introduced in eq. (2-17). As

a result of the above developments, the double- and the single-layer matrices
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for elasticity problems are represented as

Hsf =
∫

Γ

T ∗11 T
∗
21

T ∗21 T ∗11


s

ufdΓ, and (5-46)

Gs` =
∫

Γ

u∗11 u∗21

u∗21 u∗11


s

t`dΓ. (5-47)

5.2.3
Formulation for the CBEM

Let the single-layer potential matrix Gs` presented in eq. (5-47) be
multiplied by the vector of traction forces as in eq. (2-12), then

Gs`T` =
∫

Γ

u∗11 u∗21

u∗21 u∗11


s

u`
|J |`
|J |

dΓ
TT


`

, (5-48)

using the interpolation of tractions defined in eq. (5-45). As the first line of
the matrix-vector multiplication Gs`T` is the complex conjugate of the second
(u∗11 is a real number), only one of them needs to be evaluated. The second
component of Gs`T` in eq. (5-48) is

{Gs`T`}2 =
∫

Γ

(
u∗21sT` + u∗11sT `

)
u`
|J |at `
|J |

dΓ

=
∫

Γ
u∗21sT`u`

|J |at `
|J |

dΓ +
∫

Γ
u∗11sT `u`

|J |at `
|J |

dΓ.
(5-49)

Now let the definition of u∗ in eq. (5-43) be applied to eq. (5-49), then

{Gs`T`}2 = 1
16πG (1− ν)

∫
Γ

z − zs
z − zs

T`u`
|J |at `
|J |

dΓ−

(3− 4ν)
8πG (1− ν)

∫
Γ
< ln (z − zs)T `u`

|J |at `
|J |

dΓ.
(5-50)

The second term of the previous expression is the same one of the potential
problem, defined in eq. (5-16), except for a multiplication constant. Thus, no
additional attention is required for this term, as it has already been dealt
with. On the other hand, dealing with the first term of eq. (5-50) may be
challenging, as the series expansion of the function z−zs

z−zs is not straightforward.
Let a function g(z) be defined as

g(z) = z − zsf(z) ≡ (z̄ − z̄s) f(z), with f(z) = 1
z − zs

. (5-51)

Introducing the latter definition in the first term of the right-hand side of
eq. (5-50), one obtains∫

Γ

z − zs
z − zs

T`u`
|J |at `
|J |

dΓ =
∫

Γ
z − zsf(z)T`u`

|J |at `
|J |

dΓ, (5-52)
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which may be further expanded by making use of eq. (4-2) as∫
Γ

z − zs
z − zs

T`u`
|J |at `
|J |

dΓ =[ ∫
Γ
z
n+2∑
i=2

faci−1Pi−1 (z − zc)Qi (zc − zs)T`u`
|J |at `
|J |

dΓ

− zs
∫

Γ

n+2∑
i=2

faci−1Pi−1 (z − zc)Qi (zc − zs)T`u`
|J |at `
|J |

dΓ
]
.

(5-53)

Taking the constant parts out of the integrals, one finally obtains∫
Γ

z − zs
z − zs

T`u`
|J |at `
|J |

dΓ =

T`|J |at `

[
n+2∑
i=2

faci−1Qi (zc − zs)
∫

Γ
zPi−1 (z − zc)u`

1
|J |

dΓ

− zs
n+2∑
i=2

faci−1Qi (zc − zs)
∫

Γ
Pi−1 (z − zc)u`

1
|J |

dΓ
]
.

(5-54)

Then, introducing the vectors

Q̃i = zsQi, and P̃i = zPi, (5-55)

eq. (5-54) may be written compactly as∫
Γ

z − zs
z − zs

T`u`
|J |at `
|J |

dΓ =

T`|J |at `

[
n+2∑
i=2

faci−1Qi (zc − zs)
∫

Γ
P̃i−1 (z − zc)u`

1
|J |

dΓ

−
n+2∑
i=2

faci−1Q̃i (zc − zs)
∫

Γ
Pi−1 (z − zc)u`

1
|J |

dΓ
]
.

(5-56)

Discretisation of the boundary Γ in the above expression leads to∫
Γ

z − zs
z − zs

T`u`
|J |at `
|J |

dΓ =

T`|J |at `

[
n+2∑
i=2

faci−1Qi (zc − zs)
∫ 1

0
P̃i−1 (z(ξ)− zc)N(ξ)`dξ

−
n+2∑
i=2

faci−1Q̃i (zc − zs)
∫ 1

0
Pi−1 (z(ξ)− zc)N(ξ)`dξ

]
,

(5-57)

where N(ξ) are shape functions.
Both integrals in eq. (5-57) may be evaluated analytically, as they are

as simple as the multiplication of polynomials. One of these terms, which
uses vector P , has been analytically evaluated and organized in tables by
Peixoto [20] for potential problems. The second term is a polynomial of only
one order higher and may be evaluated in the same way.

Now, let the double-layer potential matrix Hsf , as defined in eq. (5-46),
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be multiplied by the vector of displacements df as in eq. (2-12) – in a similar
assessment as previously carried out for the single-layer potential matrix. Then,

Hsfdf =
∫

Γ

T ∗11 T
∗
21

T ∗21 T ∗11


s

ufdΓ
dd

f

. (5-58)

Once again, as in eq. (5-48), the first line of eq. (5-58) is the complex conjugate
of the second. The evaluation of the second line leads to

{Hsfdf}2 =
∫

Γ

(
T ∗21sdf + T ∗11sdf

)
ufdΓ

=
∫

Γ
T ∗21sufdfdΓ +

∫
Γ
T ∗11sufdfdΓ.

(5-59)

Expanding this expression using the definition of T ∗ in eq. (5-44), one obtains

{Hsfdf}2 =
∫

Γ

[
η(z)
z − zs

+ z − zs
(z − zs)2η(z)

]
ufdfdΓ+

∫
Γ

[
η(z)
z − zs

+ 3− 4ν
z − zs

η(z)
]
ufdfdΓ.

(5-60)

The first term in each integral of eq. (5-60) is the same one of eq. (5-10)
for the matrix HC

sf of potential problems – except for the complex conjugate of
the normal vector η. Then, its evaluation is carried out according to eq. (5-18)
and only paying attention to the conjugate term.

On the other hand, the terms multiplied by z−zs
(z−zs)2 and 1

z−zs must be
more carefully assessed. Let the former term be written as∫

Γ

z − zs
(z − zs)2η(z)ufdfdΓ =

∫
Γ

z

(z − zs)2η(z)ufdfdΓ−∫
Γ

zs

(z − zs)2η(z)ufdfdΓ,
(5-61)

which presents similar terms as in eq. (5-53) except for the higher order power
of the binomial z − zs. By observing the definition of the vector Q in eq. (4-
4) for the fundamental solution, one identifies that eq. (4-2) may be readily
applied to the first term of eq. (5-61) as∫

Γ

z

(z − zs)2η(z)ufdfdΓ =

n+3∑
i=3

faci−2P̃i−2 (z − zc)Qi (zc − zs)η(z)ufdfdΓ,
(5-62)

also using eq. (5-55). Moving the constants out of the integral leads to∫
Γ

z

(z − zs)2η(z)ufdfdΓ =

n+3∑
i=3

faci−2Qi (zc − zs)
∫

Γ
P̃i−2 (z − zc)η(z)ufdfdΓ.

(5-63)
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By a similar manipulation, the second term in eq. (5-61) results in∫
Γ

zs

(z − zs)2η(z)ufdfdΓ =

n+3∑
i=3

faci−2Q̃i (zc − zs)
∫

Γ
Pi−2 (z − zc)η(z)ufdfdΓ.

(5-64)

Finally, the term in eq. (5-60) that is multiplied by 1
z−zs may be written

as ∫
Γ

3− 4ν
z − zs

η(z)ufdfdΓ =
∫

Γ

3− 4ν
z − zs

η(z)ufdfdΓ. (5-65)

Then, application of the GFMM series expansion of eq. (4-2) leads to∫
Γ

3− 4ν
z − zs

η(z)ufdfdΓ =
∫

Γ
(3− 4ν)

n+2∑
i=2

faci−1Pi−1 (z − zc)Qi (zc − zs)η(z)ufdfdΓ =

(3− 4ν)
n+2∑
i=2

faci−1Qi (zc − zs)
∫

Γ
P i−1 (z − zc) η(z)ufdfdΓ.

(5-66)

5.2.4
Formulation for the SHBEM

As it has already been remarked in Section 5.1.4, the SHBEM uses the
conjugate transpose of the same matrix H of the CBEM, as indicated in the
matrix product in the second line of eq. (2-27). Moreover, the SHBEM makes
use of the Hermitian matrix of fundamental solutions of eq. (5-43),

U∗ = U∗sf =
u∗11 u∗21

u∗21 u∗11


z=zf−zs

. (5-67)

In order to evaluate the product of the conjugate transpose matrix of
Hsf in a GFMM context, it is necessary to use the full expansion presented in
eq. (4-7). The product of the conjugate transpose matrix Hsf by the vector of
equivalent nodal forces pf is, from eq. (5-58),

Hfspf = Hsfps =
∫

Γ

T ∗11 T
∗
21

T ∗21 T
∗
11


s

ufdΓ
pp

s

. (5-68)

As done in the last session, one can write for the second line of equations above{
Hsfps

}
2

=
∫

Γ

(
T ∗21sps + T ∗11sps

)
ufdΓ

=
∫

Γ
T ∗21sufpsdΓ +

∫
Γ
T ∗11sufpsdΓ,

(5-69)

which can be expanded by applying the definition of T ∗ in eq. (5-44) as
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{
Hsfps

}
2

=
∫

Γ

[
η(z)
z − zs

+ z − zs
(z − zs)2η(z)

]
ufpsdΓ+

∫
Γ

[
η(z)
z − zs

+ 3− 4ν
z − zs

η(z)
]
ufpsdΓ.

(5-70)

As a matter of illustration of the application of the full GFMM expansion
of eq. (4-7), the first integral in the above expression can be written, with
f(z − z0) = 1

z−zs , as∫
Γ

η(z)
z − zs

ufpsdΓ =
∫

Γ

n+1∑
i=1

faciPi(z − zcnc )
m+1∑
j=1

facjPj(zLnL − zs)Qi+j(zcnc − zLnL)η(z)uspfdΓ =

n+1∑
i=1

faci

∫
Γ
Pi(z − zLnL )η(z)uspfdΓ

m+1∑
j=1

facjPj(zcnc − zf )Qi+j(zLnL − zcnc ),

(5-71)
which holds for the other terms multiplied by 1

z−zs in eq. (5-70). These integrals
are the same ones solved analytically by Peixoto [20].

The remaining integral in eq. (5-70) may be written as a sum of integrals
– aiming to take advantage of the definitions of eq. (5-55) – as∫

Γ

z − zs
(z − zs)2η(z)ufpsdΓ =∫

Γ

z

(z − zs)2η(z)ufpsdΓ−
∫

Γ

zs

(z − zs)2η(z)ufpsdΓ.
(5-72)

Applying the GFMM expansion of eq. (4-7) to the first term at the right-
hand side of eq. (5-72), one obtains∫

Γ

z

(z − zs)2η(z)ufpsdΓ =

∫
Γ

n+1∑
i=1

faciP̃i(z − zcnc )
m+1∑
j=1

facjPj(zLnL − zs)Qi+j+1(zcnc − zLnL)η(z)ufpsdΓ =

n+1∑
i=1

faci

∫
Γ
P̃i(z − zcnc )ufpsdΓ

m+1∑
j=1

facjPj(zLnL − zs)Qi+j+1(zcnc − zLnL)η(z),

(5-73)
which may be discretised and integrated with the same strategies of the ones
presented in the previous Section.

The second term at the right-hand side of eq. (5-72) becomes, by making
use of eq. (4-7),
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∫
Γ

zs

(z − zs)2η(z)ufpsdΓ =

n+1∑
i=1

faci

∫
Γ
Pi(z − zcnc )ufpsdΓ

m+1∑
j=1

facjPj(zLnL − zs)Q̃i+j+1(zcnc − zLnL)η(z).

(5-74)
The application of the GFMM expansions to the matrix Usf of funda-

mental solutions is as straightforward as possible, as it requires no integrations
at all. Moreover, the expressions of the fundamental solution u∗, defined in
eq. (5-43), are almost the same ones of potential problems, except for the mul-
tiplication by z in the off-diagonal terms, which can be dealt with according
to the definitions given in eq. (5-55).

5.2.5
Results at internal points

The evaluation of results at internal points for elasticity follows the same
strategy as for potential problems in Section 5.1.5. The Somigliana identity
reads, as presented by Dumont [17],

um =
∫

Γ
u∗imtidΓ−

∫
Γ
σ∗jimηjuidΓ, (5-75)

withm internal points, disregarding rigid-body displacements and body forces.
As for potential problems, eq. (5-75) presents two terms that are very

similar to matrices Hsf and Gs`, for displacements at an internal point and
degree of freedom m and considering that the boundary data are known in
terms of nodal tractions ti and displacements ui.
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6
Computational aspects

Herein the computational aspects of an algorithm to the formulation
presented in Section 5 are discussed. For the sake of simplicity and generality,
the algorithms are presented as flowcharts and code independent. They are
valid for both potential and elasticity problems, as well as for the CBEM and
the SHBEM. Thus, they may be implemented in any suitable language. The
numerical assessments of Section 7 are based on an implementation in C++.
The number of code lines is actually very small, as the algorithm resorts to
recursion in two different instances.

There are four major procedures: Main, Adjacencies, Source and PoleEx-
pansion [28, 40]. As the recursive routine PoleExpansion is used inside the also
recursive routine Adjacencies, the written explanation of such a convoluted al-
gorithm becomes difficult. Aiming to overcome this issue, flowcharts are used
to present the basics of each procedure.

The procedure Main shown in fig. 6.1 loads the input data, generates
the hierarchical mesh according to the concepts discussed in Section 4.2 and
defines the vector Q from eq. (4-4), which is the only kernel-dependent part of
the whole algorithm. Then, it executes a small loop over all elements of the first
refinement level (k = 0) – herein referred to as macro-elements ie – in order to
create the first adjacency structure (in routine Adjacencies0), carrying out at
the same time all possible field evaluations for the child elements of element
ie.

The routine Adjacencies, presented in fig. 6.2 and called in the Main
procedure after the initialising routine Adjacencies0, assembles the adjacency
structure for all children elements of ie in a recursive loop until the most refined
level is reached.

The routine Source is called in the routine Adjacencies when the most
refined level (k = nv) is reached. This routine, shown in fig. 6.3, handles inte-
grations of both the near (routine BEMAdj) and far field elements and child
elements of ie. The procedure BEMAdj is a BEM algorithm for matrix-vector
products handled by conventional numerical integration (see Dumont [36]),
without Fast Multipole considerations, but taking into account the interpo-
lation of tractions of eq. (2-17). Singularity and quasi-singularity issues must

DBD
PUC-Rio - Certificação Digital Nº 1412832/CA



Chapter 6. Computational aspects 45

Figure 6.1: Flowchart for the routine Main.

be handled carefully by BEMAdj, which is never the case in the frame of the
GFMM per se. The FMM integrations for non-adjacent elements – already
analytically pre-evaluated – are assembled in the Routine Source, which deals
– as indicated in eq. (5-16), for instance – with the corresponding information
passed to the nc child elements of element iep.

Figure 6.2: Flowchart for the routine Adjacencies.
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Figure 6.3: Flowchart for the routine Source.

At last, the expansion data are passed to the non-adjacent points by
means of the recursive routine PoleExpansion. This routine (fig. 6.4), passes the
Fast Multipole integrated P vectors to either distant source or internal points
by calling the routine Qvector, which evaluates the array of kernel expansions
given in eq. (4-4) after evaluating one of the expansions series in eqs. (4-2)
or (4-7). It also checks if the level k = kexp has been reached, as successive
multipole expansions (eq. (4-8)) stop at this level, indicating that the P data
vectors clustered so far are directly passed to the remaining source or internal
points. For k < kexp, the routine expands the P vectors – clustered up to this
level – to one level higher (k+1) by applying eq. (4-8), which is represented in
fig. 6.4 by routine Pvector. When all elements of the current level k have been
processed, PoleExpansion calls itself recursively to proceed to the immediately
higher refinement level of the hierarchical structure.

The definition of kexp is actually user-dependent, as it, in principle, does
not influence the accuracy of the method. In the assessments of Chapter 7, it
is always taken as kexp = 2, which allows expansions up to a somewhat coarse
mesh refinement level.

6.1
Solution of the equations system

All applications of the GFMM up to this point consist in carrying out a
single matrix-vector multiplication. In order to solve the linear equation system
of the BEM while using the GFMM, one must use iterative solvers that rely
on this multiplication. The Generalized Minimum Residual Method (GMRES)
[32] is the most common iterative solver used in the BEM literature for FMM
implementations [3, 4, 41].

The major feature of the GMRES is that it requires only one matrix-
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Figure 6.4: Flowchart for the routine Source.

vector multiplication per iteration. This is very interesting for the FMM, as a
problem’s number of degrees of freedom may be very large. Thus, the matrix-
vector products are, usually, the bottleneck of the solution by iterative solvers.
Furthermore, the GMRES is also capable of handling nonsymmetric systems
of equations, such as the ones from the BEM.

A fast, optimised version of GMRES, as the one used by Liu [3], is avail-
able online in the open-source library SLATEC (<[http://www.netlib.org/
slatec/>) in FORTRAN language. In this thesis, a C++ version of the opti-
mised SLATEC GMRES package is used (<http://www.netlib.org/templates/
cpp/>). All the results presented herein which use the GMRES are obtained
without the need of preconditioners. Should these be needed in order to grant
convergence, Liu [3] proposes the usage Jacobi block-diagonal preconditioners
[42].

[http://www.netlib.org/slatec/
[http://www.netlib.org/slatec/
http://www.netlib.org/templates/cpp/
http://www.netlib.org/templates/cpp/
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7
Some numerical assessments and examples

This section attempts to numerically validate the developments formu-
lated in the previous chapters by means of some error assessments of results
that can also be evaluated analytically. Moreover, the computational time of
the GFMM algorithms is given for different calculations and particularly for
comparison with the time required when running the corresponding conven-
tional implementation. All codes have been implemented by the author in
C++ and were compiled with VC++ 2015 with O2 optimisation flag, based on
the topics discussed in Section 6 as an extension of the codes initially proposed
by Peixoto [20] and Novelino [18].

All numerical tests were executed in a desktop computer with an i7™-
4770 CPU 3.4 GHz, 16 GB RAM on Windows® 7. None of the following
examples used parallel execution, despite the fact that the processor provided
8 threads for concurrent execution in a shared memory environment. Both
algorithms for the conventional methods and their GFMM counterparts follow
the same logic and data structure, aiming to compare results as consistently
as possible, without taking into account some eventual code optimisation that
might contribute to arrive at smaller computational times.

7.1
Cut-out tests

Let some analytical solution of the differential equation that governs the
problem to be assessed be defined in the open domain. One may draw an
arbitrary boundary and evaluate displacements d and traction forces t, for
an elasticity problem, or potentials θ and normal fluxes q, for a potential
problem, along points of a discretised mesh and evaluate eq. (2-12) in terms
of the Euclidean error norm

ε = |Hd−Gt|
|Gt|

, (7-1)

which configures a cut-out test. These are useful in order to assess the
numerical errors introduced by the methods used, when compared to analytical
solutions.
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7.1.1
Evaluations for potential problems

Some results for potential problems have been already discussed by Nov-
elino [18] for convex problems with both constant and curved elements. Novel-
ino [18] has shown that the GFMM indeed leads to a running time complexity
below O(N logN) – where N is the number of degrees of freedom – for con-
stant elements with a small loss of precision even for a number of expansion
terms as low as n = 5. Novelino [18] also presents an accuracy assessment of
the GFMM for curved quadratic elements, which demonstrates its capability
of arriving at good results when compared against the conventional method.

Peixoto and Dumont [33] present results for the multiply-connected
domain with a boundary full of reentrancies defined by the nodes numbered
from 1 to 20 shown in fig. 7.1, which are studied for linear and quadratic
elements, refined according to the developments discussed in Section 4.2.
Despite the fact that the domain has a very irregular boundary, excellent
results could be obtained with the application of the GFMM in the frame of
the CBEM. The study is carried out for a series of mesh discretizations in
terms of quadratic elements with up to 5×218 = 1, 310, 720 degrees of freedom
submitted to a logarithmic field θ = ln |z − zs1|+ ln |z − zs2 |, where z = x+ iy

is a domain point and zs1 = 12.5 + 14i and zs2 = 20 + 10i are source points,
represented by (∗) in fig. 7.1.
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Figure 7.1: Curved domain discretized with quadratic elements and submitted
to a logarithmic potential field due to two point sources (marked as *) [33].

The execution times and errors are given in fig. 7.2 for several levels
of mesh refinement. The solid black circles refer to the error in eq. (7-1) for
the conventional CBEM without GFMM improvements. It is shown on the
left of fig. 7.2 that the CBEM algorithm demands running time proportional
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to N2, the expected complexity. The blue squares mark the execution time
and error delivered by a CBEM execution for N = 5, 120. Moreover, several
simulations using the GFMM are shown for an increasing number of series
terms in eq. (4-2). As expected, results for n = 1 are the fastest in terms of
execution time and also lead to the highest errors. Results for n = 17 and
N = 5, 120 are marked with red circles for the sake of comparison with the
CBEM results for the same N . For the same level of accuracy, around 10−7,
the GFMM requires approximately 0.1% of the computational time for the
conventional implementation. As a matter of fact, a dashed line proportional
to N logN and a dotted line proportional to N are also drawn on the left
figure to show that the computational time required by the GFMM algorithm
grows rather proportional to N , which is the theoretical best time performance
expected [1, 3].
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Figure 7.2: Execution times and error measures for the irregular domain of
fig. 7.1 discretized with quadratic elements [33].

Another contribution to the application of the GFMM to potential
problems is presented by Dumont and Peixoto [19] for the irregularly-shaped
domain in fig. 7.3. It is submitted to the quadratic field θ = x2 +y2, which is an
analytical solution for the Laplace equation. Its boundary is discretized with
constant, linear and quadratic elements with up to 224 = 16, 777, 216 degrees
of freedom as represented in the horizontal axis of fig. 7.4. It may be noticed
that, for a given element type, increasing the number of terms in the series does
not lead to a considerable increase in the execution time. On the other hand,
the graph on the right of fig. 7.4 shows that the number of expansion terms n
considerably affects the numerical accuracy. Since the applied analytical field
is quadratic, the conventional CBEM solution for quadratic elements (dashed
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lines) is as accurate as the numerical integration and round-off errors make
possible. However, when evaluated using the GFMM, there is an intrinsic error
due to the series expansions. This error turns out to be an accuracy threshold
of the simulations with lower-order elements, as shown in fig. 7.4.

Figure 7.3: Domain shaped by a series of straight segments and submitted to a
quadratic potential field used in numerical assessments for potential problems
[19].
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Figure 7.4: Execution times (left) for the domain of fig. 7.3 using constant,
linear and quadratic elements, and errors (right) for different numbers n of
expansion terms [19].

7.1.2
Elasticity problems

The assessments for elasticity problems follow the same framework as the
ones for potential problems. Figure 7.5 shows a multiply connected domain
that will undergo a hierarchical mesh refinement and then will be submitted
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to a testing field of displacements u = 1
−3x2−3y2 , which satisfies equilibrium

homogeneously. The displacements u and traction forces t are obtained along
the nodal points of the boundary drawn in the open field, as shown. This cut-
out test measures the accuracy of the BEM equations for elasticity by using
the same Euclidean error norm in eq. (7-1).
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Figure 7.5: Irregularly-shaped, multiply-connected domain.

The domain of fig. 7.5 is discretised with quadratic elements with up to
5× 218 = 1, 310, 720 degrees of freedom.

One sees on the left of fig. 7.6 that the computational effort increases only
slightly as the number n of expansion terms increases. This graph also displays
the curves proportional to O(N) (dotted line), O(N logN) (dashed line), and
O(N2) (dash-dot line). Furthermore, while the implementation of the matrix-
vector product in terms of the conventional BEM requires a computational time
proportional to O(N2), the present fast multipole implementation performs
close to O(N), as already suggested by Liu [3] as an achievable goal.

7.2
Evaluation of results at internal points

The domain in fig. 7.7 is used to demonstrate the capability of the
GFMM to rapidly evaluate results at internal points. This multiply-connected
domain has 3829 internal points that will be used to obtain, in this case,
potentials based on the Somigliana’s identity. The nodal values of potentials
and normal fluxes are evaluated from the analytical potential field θ =
.5 ln(x2 + 2x+ 1 + y2), which is a solution of the Laplace equation.

Figure 7.8 shows on the left the computational time needed to obtain
potential results at all internal points of the domain in fig. 7.7. It also displays,
on the right, the global error norms for the evaluated potential results as
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Figure 7.6: Execution times (left) for an elasticity field for the domain on fig. 7.5
with quadratic elements, and accuracy results (right) for different numbers of
expansion terms n.

Figure 7.7: Irregular domain with two holes and 3829 internal points marked
as dots.

compared with the analytical ones. As expected, the GFMM execution times
are faster then the ones using the conventional formulation of the BEM.
Moreover, the curves for different numbers of expansion terms still tend to
be parallel, but more apart from each other than in the evaluation of the
BEM matrix products, which should be expected, as the evaluation of results
at internal points does not involve the same code complexity as for the
BEM matrices. In fact, the number of internal points is kept constant in
all calculations even though the number of boundary segments and nodes
increases, which changes the time complexity algorithm for the conventional
evaluations from O(N2) to O(N ∗M), with M being the number of internal
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points. For a constant M , it is then expected that the execution time of
different discretizations be proportional to N . Then, the time performance
with the FMM does not differ as drastically as when matrix products are
evaluated.

The error results on the right of fig. 7.8 are not of the same accuracy order
than the ones from the previous examples. Observe that the increase of the
number of terms n in the series expansion does not increase the precision of the
GFMM. This is due to the fact that internal points which are too close to nodes
of the parametric representation of the boundary present quasi-singularities,
which are not treated in this work, but should be addressed in a future research
work, based on the formulation proposed by Dumont [36].
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Figure 7.8: Execution times (left) for the evaluation of results at internal points
for the domain on fig. 7.7 with quadratic elements, and accuracy results (right)
for different numbers of expansion terms n.

7.3
Complete solution

All the assessments above have been done in order to show the GFMM’s
capability of representing the BEM matrices accurately. A more comprehensive
study than the cut-out tests is to couple the GFMM developments with the
GMRES iterative solver, aiming to analyse a problem with consistent boundary
conditions.

The domain in fig. 7.9 is an annular region submitted to a constant
potential θinner = 100 in the inner boundary, and constant normal flux
qouter = 200 on the outer boundary. This example is proposed and studied
by Liu [3]. For this arrangement, the analytical solution of the problem is
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θ(r) = θinner + qouterrinner log r

router
, (7-2)

where rinner = 1 is the internal and router = 2 is the outer radius of the
annular domain. Thus, the expected solution for this problem is θ = 377.2589
and q = −400.0.

200outerq 

100inner 

1innerr 

2outerr 

Figure 7.9: Annular domain submitted to a prescribed potential in its inner
rim, and a prescribed flux on its outer rim.

As the curved geometry already suggests, a discretisation with quadratic
elements is the more suited for this analysis. The results shown in fig. 7.10
present the same behaviour as the ones for cut-out tests already presented in
the previous sections, since the GFMM execution times perform close to O(N),
while with the BEM they are proportional to O(N2).

Fifteen simulation results are shown, and except for the simulations with
n = 5 terms in the series expansion, all of them converged to a tolerance of 10−6

with just two GMRES iterations. The simulations with n = 5 took 4 iterations
to converge. None of them required a restart of the GMRES. Moreover, the
problems were studied with AdjTol = 2, meaning that source points that are
more distant than two lengths from a reference element are considered far
enough to receive GFMM expansions. This tolerance is required in order to
obtain a fairly accurate matrix-vector product inside the GMRES iteration,
thus letting the solution converge in 2, or maybe 3, iterations.

The computational time to run the simulation with the largest number
of degrees of freedom (2, 097, 152) for n = 15 terms in the series expansion
was about 2 hours. The simulation for 16, 384 degrees of freedom with the
conventional BEM took about 3 hours to run. Thus, a GFMM execution with

DBD
PUC-Rio - Certificação Digital Nº 1412832/CA



Chapter 7. Some numerical assessments and examples 56

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

↑
∝ N

∝ N logN →
∝ N2 →

Number of degrees of freedom

T
im

e
 (

s
)

 

 

CBEM
n = 5
n = 10
n = 15

10
1

10
2

10
3

10
4

10
5

10
6

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Number of degrees of freedom

E
rr

o
r

 

 

CBEM
n = 5
n = 10
n = 15

Figure 7.10: Execution times (left) for the solution for the potential problem
on the annular domain in fig. 7.9 with quadratic elements, and accuracy results
(right) for different numbers of expansion terms n.

128 times the number of degrees of freedom as in the BEM case took 67% of
the running time for the same error tolerance.
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8
Conclusions

The main goal of this thesis was to propose, develop and validate a
kernel-independent Fast Multipole Method applied to both conventional and
hybrid Boundary Element Methods, by further extending the author’s [20]
and Novelino’s [18] Master dissertations, which were based on a draft paper
proposed by their advisor [43]. Several features and mathematical aspects were
still open subjects after these two works, and are now presented in this thesis.
Novelino [18] laid the basics of the application of the GFMM – developed by
the author [20] – to potential problems in the conventional BEM. This initial
work was limited to convex domains, as no strategy to handle geometrical
neighbourhood was available in connection with the hierarchical refinement
strategy proposed. In this thesis, this limitation is removed by a simple,
yet efficient, strategy to assess multiply-connected domains. The results in
Section 7 present some complex and challenging domains, such as the one in
fig. 7.1, which are successfully handled by the proposed extension of Novelino’s
developments.

Furthermore, the application of the GFMM to elasticity problems is also
shown in this work and can easily be extended, in the framework of the GFMM,
to other problems with vector fields, but with different kernels. The Simplified
Hybrid BEM is also approached and its application together with the GFMM
is formulated for both potential and elasticity problems.

Several numerical assessments are discussed in Section 7 for a variety
of domains. It is shown that the Fast Multipole Method is in fact a powerful
algorithm as suggested by Dongarra and Sullivan [2]. The GFMM is capable
of delivering a matrix-vector multiplication with a running time complexity as
low as O(N), which is the best performance achievable, according to Liu [3].
Almost all results presented in Section 7 support this statement, which puts the
GFMM in a competitive position when compared with the conventional FMM,
letting aside the major feature of being able to handle general kernels [20, 43].

Results at internal points, evaluated via Somigliana’s identity, are also
dealt with in this work for both potential and elasticity problems. The
evaluation of results for gradients and stresses pose no conceptual difficulties
and will be dealt with in a future work. Although the application of the GFMM
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to the evaluation of results at internal points reduces the computational effort
significantly when compared to conventional BEM methods, the speed-up is
not as astonishing as for the matrix-vector product evaluation in the frame of
an iterative BEM solution. This is due to the fact that the implementation
of the Somigliana’s identity has a lower complexity than for assembling a
complete BEM problem.

The last numerical example in this thesis illustrated the complete, itera-
tive solution of a BEM problem that uses the matrix-vector multiplication de-
veloped in the frame of the GFMM. The GMRES solver [32] was chosen due to
its widespread use in the BEM literature such as by Liu [3] and Nishimura [4].
This solver is fairly stable, requires only one matrix-vector product per itera-
tion, and usually converges within an acceptable error tolerance in just a few
iterations without the need to use its restart feature – provided that one uses
a preconditioner, such as the Jacobi block-diagonal.

Summing up, this work lays down a comprehensive study of the GFMM
by separately assessing execution time and accuracy in the evaluation of a
matrix-vector product for different problems and topology issues. The iterative
solution of a linear equation system is dealt with more as a black box problem.

8.1
Suggestions for future research works

Although much effort has been dedicated to this thesis, time constraint
has forced the author to leave significant developments to future works.
Several features of the GFMM combined with the conventional and the hybrid
boundary element methods are still open to further developments. Some of
these research subjects are listed in the following.

– Develop the present GFMM-BEM algorithms for the accurate evaluation
of quasi-singular integrals, as the basic literature is already available [36].

– Propose, formulate and validate a 3D version of the GFMM. Nishimura et
al. [31, 3] uses solid harmonic functions to carry out the expansions. This
is already the subject of a Ph.D research work in progress at PUC-Rio,
also advised by Prof. Dumont.

– Develop an open-source BEM-GFMM framework in an efficient com-
putational language, such as C++, aiming to disseminate the method’s
efficiency.

– Propose and implement a parallel version – whether in CPUs or Graphics
Processing Units (GPUs) – of the current algorithms, as the GFMM
clustering capabilities are naturally suited for this improvement.
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– Consistently compare the efficiency of the proposed GFMM and BEM
implementation with developments available in the literature.

– Propose, formulate and validate the present GFMM developments for
applications in relation with the isogeometric BEM.

– Attempt to formulate a GFMM-BEM for large topology optimisation
problems.

– Appplication of the GFMM to classical elasticity problems, as fracture
mechanics and plate bending.
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