

Cecilia Toledo de Azevedo

Análise da curva de pressão do fraturamento de formações de alta permeabilidade para estimativa dos parâmetros da fratura.

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Márcio Carvalho

Rio de Janeiro Janeiro de 2011

Cecilia Toledo de Azevedo

Análise da curva de pressão do fraturamento de formações de alta permeabilidade para estimativa dos parâmetros da fratura.

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Márcio Carvalho

Orientador Departamento de Engenharia Mecânica - PUC-Rio

> Marcos Antônio Rosolen Co-orientador Petrobras

Prof. Luis Fernando Azevedo Departamento de Engenharia Mecânica - PUC-Rio

> Paulo Dore CENPES - Petrobras

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 06 de janeiro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Cecilia Toledo de Azevedo

Graduou-se em Engenharia Civil com especialização em Engenharia de Produção e de Meio Ambiente na PUC-Rio em 2003. Cursou a especialização em Engenharia de Petróleo também na PUC-Rio em 2004. Neste ano foi contratada pelo GTEP (Grupo de Tecnologia em Engenharia de Petróleo do departamento de Engenharia Civil da PUC-Rio) e começou a trabalhar junto a Petrobras na área de estimativa de geopressões. Em 2006 ingressou na Petrobras, participando do curso de formação de Engenheiros de Petróleo (CEP) realizado na Universidade Petrobras em Salvador. Atualmente trabalha na área de estimulação de poços, se dedicando a projetos de fraturamento hidráulico.

Ficha Catalográfica

Azevedo, Cecilia Toledo de

Análise da curva de pressão do faturamento de formações de alta permeabilidade para estimativa dos parâmetros da fratura / Cecilia Toledo de Azevedo; orientadores: Márcio Carvalho, Marcos Antônio Rosolen. – 2011.

321 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Fraturamento hidráulico. 3. Fracpack. 4. Formações de alta permeabilidade. 5. Tip screenout (TSO). 6. Análise de pressões. 7. Geometria de fratura. 8. Modelagem matemática. 9. Simulação. I. Carvalho, Márcio. II. Rosolen, Marcos Antônio. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Dedico este trabalho aos meus pais, Humberto e Matilde, e ao meu namorado Walter, pela paciência e pelo constante incentivo.

Agradecimentos

A Deus, por cada dia da minha vida.

Ao meu co-orientador Rosolen, pela paciência e por todo o conhecimento que ele tem me transmitido, permitindo o meu crescimento profissional nos últimos anos.

Ao professor Márcio pela ajuda e orientação ao longo de todo o curso do mestrado.

Aos professores e funcionários do Departamento de Engenharia Mecânica da PUC-Rio.

Ao meu gerente Adolfo Polillo Filho pelo incentivo e pela cobrança.

Aos meus colegas de trabalho, Andrea, Alexandre, Rui, Paulo, Carlos Henrique e Pamphili pelo incentivo e orientação.

Aos meus pais, Humberto e Matilde, pelo amor e dedicação.

Ao meu namorado Walter, pela compreensão nos momentos ausentes.

Resumo

Azevedo, Cecília Toledo de; Carvalho, Márcio. Análise da curva de pressão do fraturamento de formações de alta permeabilidade para estimativa dos parâmetros da fratura. Rio de Janeiro, 2011. 321p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Valkó & Oligney propuseram um modelo que estima a evolução da fratura utilizando uma interpretação direta da curva de pressão de fundo medida durante uma operação de fracpack. Os únicos dados de entrada necessários para a aplicação do modelo são os registros geralmente disponíveis durante e após a operação. Considerando uma fratura de geometria radial e utilizando equações simples de fluxo e de geomecânica, o modelo obtém raios de empacotamento a partir da inclinação positiva da curva de pressão de fundo nos períodos de tip screenout. Nesta dissertação o modelo de Valkó & Oligney é aprimorado com a inclusão e o ajuste das equações de estado para o crescimento da fratura e para o processo de filtração, respectivamente. O modelo é também estendido para outras geometrias bidimensionais de fratura, PKN e KGD. A aplicação do modelo foi realizada utilizando os registros de pressão de oito operações de fracpack. Os resultados obtidos são a curva de propagação da fratura, o crescimento da abertura, a eficiência ao longo do tempo e a distribuição final do agente de sustentação na fratura. Para a validação desses resultados foram utilizados dois simuladores comerciais com modelos tridimensionais. Os estudos de caso indicaram que os ajustes realizados aproximaram os resultados do modelo aos obtidos nos simuladores comerciais. Além disso, a aplicação dos modelos desenvolvidos para cada geometria de fratura e a comparação com os resultados dos simuladores comerciais, permitiu confirmar a tendência esperada que, durante uma operação de *fracpack*, a geometria da fratura se aproxima da radial.

Palavras-chave

Fraturamento hidráulico; *Fracpack*; Formações de alta permeabilidade; *Tip screenout* (TSO); Análise de pressões; Geometria de fratura; Modelagem matemática; Simulação.

Abstract

Azevedo, Cecilia Toledo de; Carvalho, Márcio (Advisor). **Fracture parameters estimation through the analysis of the pressure curve during fracturing of high permeability formation.** Rio de Janeiro, 2011. 321p. MSc Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Valkó & Oligney developed a model to estimate fracture evolution using a direct interpretation of the measured bottom hole pressure curve during a fracpack operation. The only input data needed to use the model are the usual records of the job, available during and after the operation. Considering radial fracture geometry and using simplified equations of flow and geomechanics, the model estimates a packing radius of the fracture using the slope of the increasing bottom hole pressure curve during the tip screenout period. In this work, Valkó & Oligney method is enhanced with the inclusion of state equations for the fracture growth and for the leakoff process in order to improve the model, but still maintaining minimum input data. The method is also extended to other two-dimensional fracture geometries, PKN and KGD. To apply the enhanced method, eight fracpack operation data were used. The results obtained are fracture propagation, width growth and fluid efficiency in time as well as the final proppant distribution in the fracture. To validate these results, this work used two commercial simulators with three-dimensional models. The case studies show that the modifications done to Valkó & Oligney method approximate the two-dimensional model results to the ones obtained using the commercial simulators with threedimensional models. Furthermore, the comparison between the application of the model for each fracture geometry and the commercial simulators results confirmed the expected tendency for the fracture geometry during a fracpack operation, which is a radial fracture.

Keywords

Hydraulic fracturing; Fracpack; High permeability formations; *Tip screenout* (TSO); Pressure analysis; Fracture geometry; Mathematical modeling; Simulation.

Sumário

1 Introdução	38
1.1. Origem e história do fraturamento hidráulico	38
1.2. Conceito e aplicações do fraturamento hidráulico	39
1.3. Fraturamento hidráulico em formações de alta permeabilidade	40
1.4. Diagnóstico da fratura a partir da análise das curvas de pressão	42
1.5. Proposta de trabalho	43
2 Revisão bibliográfica	44
2.1. Tensões in situ, modos de falha e tensões ao redor do poço	44
2.2. Iniciação e propagação da fratura	47
2.3. Pressão de fechamento e pressão líquida (net pressure)	49
2.4. Princípios fundamentais do fraturamento hidráulico	50
2.4.1. Fluxo de fluido na fratura	50
2.4.1.1. Reologia do fluido de fraturamento	51
2.4.1.2. Filtração	53
2.4.2. Balanço de massa	54
2.4.2.1. Incorporação do conceito de filtração no balanço de massa	55
2.4.3. Deformação elástica da rocha	57
2.5. Modelos 2D de propagação de fratura	59
2.5.1. Equação de abertura de Perkins and Kern – Modelo PKN	59
2.5.2. Equação de abertura de Khristianovich-Zheltov-Geertsma-	
deKlerk – Modelo KGD	63
2.5.3. Modelo radial	66
2.6. Diagnóstico da fratura a partir do gráfico log-log	67
2.7. Crescimento da fratura com base na lei de potência	68
2.7.1. O expoente α	69
2.8. Testes de calibração	71
2.9. Declínio de pressão – análise de Nolte	72
2.9.1. Determinação da complacência c _f para cada geometria	75

2.9.2. Determinação do coeficiente de filtração CL	77
2.9.3. Declínio de pressão não ideal	78
2.10. A técnica do TSO	82
2.11. A análise de pressões e a técnica do TSO – breve histórico	86
3 O modelo proposto por Valkó & Oligney	89
3.1. Definição e hipóteses do modelo	89
3.2. Desenvolvimento do modelo	91
4 Variações e extensão do modelo de Valkó & Oligney	98
4.1. Etapas do modelo de Valkó & Oligney	98
4.1.1. Questões referentes ao período anterior ao início do TSO	99
4.1.2. Questões referentes ao período após o início do TSO	100
4.2. Variações propostas para o modelo	101
4.2.1. Raio hidráulico versus raio de empacotamento	102
4.2.2. Modelo de propagação da fratura	106
4.2.3. Ajustes adotados para o modelo de Valkó & Oligney	109
4.2.3.1. Estimativa do expoente α	109
4.2.3.2. Resolução da equação do terceiro grau	112
4.2.4. Definição do modelo combinado para a geometria radial	112
4.3. Extensão do modelo de Valkó & Oligney para outras	
geometrias	117
4.3.1. Desenvolvimento para o modelo PKN	118
4.3.2. Desenvolvimento para o modelo KGD	125
5 Simulações e resultados	131
5.1. Simuladores comerciais	131
5.2. Dados de entrada	132
5.2.1. Registros da operação	133
5.2.2. Outras informações necessárias	134
5.3. Parâmetros calculados	137
5.4. Estudos de caso - metodologia	138
5.5. Fracpack A	142
5.5.1. Calibração do modelo	143

5.5.1.1. Iniciação da fratura no intervalo canhoneado	143
5.5.1.2. Iniciação da fratura na menor tensão	146
5.5.2. Resultados e escolha do melhor modelo	149
5.5.3. Evolução do modelo de Valkó & Oligney	164
5.6. Fracpack B	168
5.6.1. Calibração do modelo	168
5.6.2. Resultados e escolha do melhor modelo	173
5.6.3. Evolução do modelo de Valkó & Oligney	181
5.7. Fracpack C	185
5.7.1. Calibração do modelo	185
5.7.1.1. Iniciação da fratura no intervalo canhoneado	186
5.7.1.2. Iniciação da fratura na menor tensão	189
5.7.2. Resultados e escolha do melhor modelo	192
5.7.3. Evolução do modelo de Valkó & Oligney	204
5.8. Fracpack D	206
5.8.1. Calibração do modelo	207
5.8.1.1. Iniciação da fratura no intervalo canhoneado	207
5.8.1.2. Iniciação da fratura na menor tensão	210
5.8.2. Resultados e escolha do melhor modelo	212
5.8.3. Evolução do modelo de Valkó & Oligney	220
5.9. Fracpack E	224
5.9.1. Calibração do modelo	224
5.9.1.1. Iniciação da fratura no intervalo canhoneado	225
5.9.1.2. Iniciação da fratura na menor tensão	228
5.9.2. Resultados e escolha do melhor modelo	230
5.9.3. Evolução do modelo de Valkó & Oligney	238
5.10. Fracpack F	242
5.10.1. Calibração do modelo	242
5.10.1.1. Iniciação da fratura no intervalo canhoneado	243
5.10.1.2. Iniciação da fratura na menor tensão	246
5.10.2. Resultados e escolha do melhor modelo	248
5.10.3. Evolução do modelo de Valkó & Oligney	261
5.10.4. Considerando Rh no balanço de massa	265

5.11. Fracpack G	268
5.11.1. Calibração do modelo	268
5.11.1.1. Iniciação da fratura no intervalo canhoneado	269
5.11.1.2. Iniciação da fratura na menor tensão	272
5.11.2. Resultados e escolha do melhor modelo	274
5.11.3. Evolução do modelo de Valkó & Oligney	282
5.12. Fracpack H	286
5.12.1. Calibração do modelo	286
5.12.1.1. Iniciação da fratura no intervalo canhoneado	287
5.12.1.2. Iniciação da fratura na menor tensão	290
5.12.2. Resultados e escolha do melhor modelo	293
5.12.3. Evolução do modelo de Valkó & Oligney	300
6 Conclusões e recomendações	305
6.1. Cenário das operações	305
6.2. Modelo desenvolvido e geometria da fratura	308
6.2.1. Modelo 3D versus modelagem 2D	313
6.3. Considerações finais	315
6.4. Recomendações	317
7 Referências bibliográficas	319

Lista de figuras

Figura 1.1 – Padrão de fluxo entre o poço fraturado e o reservatório.	39
Figura 1.2 – Exemplo de poço durante uma operação de fracpack.	42
Figura 2.1 – Tensões <i>in situ</i> em um elemento de rocha [4].	45
Figura 2.2 – Três principais modos de falha e sua relação com	
as tensões <i>in situ</i> .	46
Figura 2.3 – Campo de tensão uniforme (a) e campo de tensão	
não-uniforme (b) ao redor do poço [4].	47
Figura 2.4 – Vista superior de um poço vertical mostrando o	
ponto de iniciação da fratura [4].	48
Figura 2.5 – Fraturamento hidráulico de um poço vertical [5].	48
Figura 2.6 – Relação da <i>net pressure</i> com o controle do	
crescimento da altura da fratura.	49
Figura 2.7 – Balanço de massa esquematizado [2].	55
Figura 2.8 – Esquema da deformação ocorrida em uma fenda	
linear pressurizada.	58
Figura 2.9 – Geometria PKN [6].	63
Figura 2.10 – Geometria KGD [6].	64
Figura 2.11 – Tipos de propagação da fratura identificados a	
partir de um gráfico log-log da <i>net pressure</i> versus tempo [5].	68
Figura 2.12 – Declínio de pressão em condições ideais,	
permitindo que a relação entre a pressão e a função G	
seja aproximada por uma reta [5].	74
Figura 2.13 – Fissura linear de comprimento 2 c e extensão δ .	76
Figura 2.14 – Exemplo de um declínio de pressão ideal [19].	80
Figura 2.15 – Exemplo do efeito de <i>tip extension</i> durante o	
declínio de pressão [19].	80
Figura 2.16 – Exemplo do efeito de recessão em altura no	
declínio de pressão [19].	81
Figura 2.17 – Exemplo de um declínio de pressão com	
pressure dependet leakoff (PDL) [19].	82

Figura 2.18 – Estagios do fraturamento em formações de	
alta permeabilidade [2].	84
Figura 2.19 – Bombeio do colchão e início do bombeio do	
primeiro estágio do agente de sustentação [2].	85
Figura 2.20 – Evolução da distribuição da pasta durante	
o bombeio [2].	85
Figura 2.21 – Exemplo de gráfico obtido durante uma	
operação de <i>fracpack</i> [2].	86
Figura 3.1 – Registro da pressão de fundo durante	
uma operação de <i>fracpack</i> que apresenta intervalos	
de crescimento e de declínio de pressão durante o TSO.	90
Figura 3.2 – Esquema da fratura no modelo proposto por	
Valkó & Oligney [3].	92
Figura 3.3 – Registro de pressão de fundo utilizado por	
Valkó & Oligney e as inclinações positivas selecionadas	
ao longo do tempo [3].	94
Figura 3.4 – Exemplo esquemático da estimativa da	
distribuição final da concentração do agente de sustentação	
em função do raio da fratura.	96
Figura 3.5 - Concentração areal final do agente de sustentação	
do exemplo apresentado por Valkó & Oligney [3].	96
Figura 4.1 – Gráfico do raio de empacotamento ao longo	
do tempo utilizado no exemplo de Valkó & Oligney [3].	103
Figura 4.2 – Ilustração do raio hidráulico e dos raios de	
empacotamento que podem ser formados durante a	
propagação da fratura em uma operação de <i>fracpack</i> .	105
Figura 5.1 – Gráfico da função f ($\Delta t_D=0, \alpha$).	136
Figura 5.2 – Registros de campo e ajuste de pressão do	
fracpack A em unidades de campo na condição de iniciação	
da fratura no intervalo canhoneado.	144
Figura 5.3 - Registros de campo e ajuste de pressão do	
fracpack A em unidades do sistema internacional na condição	
de iniciação da fratura no intervalo canhoneado.	144

Figura 5.4 – Simulação da fratura executada no fracpack A	
no sofware Meyer na condição de iniciação da fratura no	
intervalo canhoneado.	145
Figura 5.5 – Simulação do <i>fracpack A</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado.	146
Figura 5.6 – Estimativa da geometria da fratura executada no	
fracpack A utilizando o software Stimplan na condição de	
iniciação da fratura no intervalo canhoneado.	146
Figura 5.7 – Registros de campo e ajuste de pressão do	
fracpack A na condição de iniciação da fratura na menor tensão.	147
Figura 5.8 – Simulação da fratura executada no fracpack A	
no <i>software</i> Meyer na condição de iniciação da fratura na	
menor tensão.	148
Figura 5.9 – Simulação do <i>fracpack A</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão.	149
Figura 5.10 – Estimativa da fratura executada no fracpack A	
utilizando o <i>software</i> Stimplan na condição de iniciação da	
fratura na menor tensão.	149
Figura 5.11 – Resultados obtidos para o <i>fracpack A</i> com os	
modelos desenvolvidos e os simuladores comerciais na	
condição de iniciação da fratura no intervalo canhoneado.	151
Figura 5.12 – Resultados obtidos para o <i>fracpack A</i> com	
o modelo desenvolvido e os simuladores comerciais na	
condição de iniciação da fratura na menor tensão.	151
Figura 5.13 - Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura no final do bombeio	
do fracpack A, estimada pelo modelo desenvolvido com a	
geometria radial na condição de iniciação da fratura no	
intervalo canhoneado.	152
Figura 5.14 – Raio da fratura ao longo do tempo durante o	
fracpack A, estimado pelo modelo desenvolvido com a	
geometria radial na condição de iniciação da fratura	
no intervalo canhoneado.	152

52

Figura 5.15 – Abertura da fratura ao longo do tempo durante o fracpack A, estimada pelo modelo desenvolvido com a geometria radial na condição de iniciação da fratura no intervalo canhoneado. 153 Figura 5.16 – Eficiência ao longo do tempo durante o fracpack A, estimada pelo modelo desenvolvido com a geometria radial na 153 condição de iniciação da fratura no intervalo canhoneado. Figura 5.17 – Distribuição da concentração do agente de sustentação ao longo do raio da fratura ao final do bombeio do fracpack A, estimada pelo modelo desenvolvido com a geometria radial na condição de iniciação da fratura na menor tensão. 154 Figura 5.18 – Raio da fratura ao longo do tempo durante o fracpack A, estimado pelo modelo desenvolvido com a geometria radial na condição de iniciação da fratura na menor tensão. 154 Figura 5.19 – Abertura da fratura ao longo do tempo durante o fracpack A, estimada pelo modelo desenvolvido com a geometria radial na condição de iniciação da fratura na menor tensão. 155 Figura 5.20 – Eficiência ao longo do tempo durante o fracpack A, estimada pelo modelo desenvolvido com a geometria radial na condição de iniciação da fratura na menor tensão. 155 Figura 5.21 – Distribuição da concentração do agente de sustentação ao longo do comprimento da fratura ao final do bombeio do fracpack A, estimada pelo modelo 156 desenvolvido com a geometria KGD. Figura 5.22 – Comprimento da fratura ao longo do tempo durante o fracpack A, estimado pelo modelo desenvolvido com a geometria KGD. 156 Figura 5.23 – Abertura da fratura ao longo do tempo durante o fracpack A, estimada pelo modelo desenvolvido com a 157 geometria KGD. Figura 5.24 – Eficiência ao longo do tempo durante o *fracpack* A, estimada pelo modelo desenvolvido com a geometria KGD. 157

Figura 5.25 – Distribuição da concentração do agente de	
sustentação ao longo do comprimento da fratura ao final	
do bombeio do <i>fracpack A</i> , estimada pelo modelo	
desenvolvido com a geometria PKN.	158
Figura 5.26 – Comprimento da fratura ao longo do tempo	
durante o fracpack A, estimado pelo modelo desenvolvido	
com a geometria PKN.	158
Figura 5.27 – Abertura da fratura ao longo do tempo durante	
o fracpack A, estimada pelo modelo desenvolvido com a	
geometria PKN.	159
Figura 5.28 – Eficiência ao longo do tempo durante o fracpack	
A, estimada pelo modelo desenvolvido com a geometria PKN.	159
Figura 5.29 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack A</i> .	161
Figura 5.30 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack A</i> .	163
Figura 5.31 – Evolução do modelo de Valkó & Oligney na	
previsão da distribuição do agente de sustentação ao longo	
do raio da fratura para o <i>fracpack A</i> .	165
Figura 5.32 – Evolução do modelo de Valkó & Oligney na	
previsão do raio da fratura ao longo do tempo durante o	
fracpack A.	166
Figura 5.33 – Evolução do modelo de Valkó & Oligney na	
previsão da abertura da fratura ao longo do tempo durante	
o fracpack A.	167
Figura 5.34 – Evolução do modelo de Valkó & Oligney na	
previsão da eficiência da fratura ao longo do tempo durante	
o fracpack A.	167
Figura 5.35 – Registros de campo e ajuste de pressão	
do <i>fracpack B</i> na condição de iniciação da fratura	
no intervalo canhoneado.	169

Figura 5.36 – Simulação da fratura executada no fracpack B	
no <i>software</i> Meyer na condição de iniciação da fratura	
no intervalo canhoneado.	169
Figura 5.37 – Registros de campo e ajuste de pressão do	
fracpack B na condição de iniciação da fratura na menor tensão.	170
Figura 5.38 – Simulação da fratura executada no fracpack B	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão.	170
Figura 5.39 – Simulação do <i>fracpack B</i> no <i>software</i> Stimplan,	
na condição de iniciação da fratura no intervalo canhoneado.	171
Figura 5.40 – Simulação do <i>fracpack B</i> no <i>software</i> Stimplan,	
na condição de iniciação da fratura na menor tensão.	172
Figura 5.41 – Estimativa da geometria final da fratura executada	
no <i>fracpack B</i> através do <i>software</i> Stimplan na condição de	
iniciação da fratura no intervalo canhoneado.	172
Figura 5.42 – Estimativa da geometria final da fratura executada	
no <i>fracpack B</i> através do <i>software</i> Stimplan na condição	
de iniciação da fratura na menor tensão.	173
Figura 5.43 – Resultados obtidos para o <i>fracpack B</i> com	
os modelos desenvolvidos e os simuladores comerciais	
na condição de iniciação da fratura no intervalo canhoneado.	174
Figura 5.44 – Resultados obtidos para o <i>fracpack B</i> com o	
modelo desenvolvido e os simuladores comerciais na	
condição de iniciação da fratura na menor tensão.	175
Figura 5.45 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack B</i> .	176
Figura 5.46 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack B</i> .	177
Figura 5.47 – Distribuição da concentração do agente de	
sustentação ao longo do comprimento da fratura ao final	
do bombeio do <i>fracpack B</i> .	178

durante o fracpack B.17Figura 5.49 – Abertura da fratura ao longo do tempo durante18o fracpack B.18Figura 5.50 – Eficiência ao longo do tempo durante o18fracpack B.18Figura 5.51 – Evolução do modelo de Valkó & Oligney na18previsão da distribuição do agente de sustentação ao longo18do raio da fratura para o fracpack B.18	79 80 81
 Figura 5.49 – Abertura da fratura ao longo do tempo durante o <i>fracpack B.</i> Figura 5.50 – Eficiência ao longo do tempo durante o <i>fracpack B.</i> Figura 5.51 – Evolução do modelo de Valkó & Oligney na previsão da distribuição do agente de sustentação ao longo do raio da fratura para o <i>fracpack B.</i> 	30 31
o <i>fracpack B</i> . 18 Figura 5.50 – Eficiência ao longo do tempo durante o <i>fracpack B</i> . 18 Figura 5.51 – Evolução do modelo de Valkó & Oligney na previsão da distribuição do agente de sustentação ao longo do raio da fratura para o <i>fracpack B</i> . 18	30 31
Figura 5.50 – Eficiência ao longo do tempo durante o <i>fracpack B.</i> 18 Figura 5.51 – Evolução do modelo de Valkó & Oligney na previsão da distribuição do agente de sustentação ao longo do raio da fratura para o <i>fracpack B</i> 18	31
fracpack B.18Figura 5.51 – Evolução do modelo de Valkó & Oligney naprevisão da distribuição do agente de sustentação ao longodo raio da fratura para o fracpack B18	81
Figura 5.51 – Evolução do modelo de Valkó & Oligney na previsão da distribuição do agente de sustentação ao longo do raio da fratura para o <i>fracpack B</i>	12
previsão da distribuição do agente de sustentação ao longo do raio da fratura para o <i>fracpack B</i>	12
do raio da fratura para o <i>fracpack B</i> . 18	32
Figura 5.52 – Evolução do modelo de Valkó & Oligney na previsão	
do raio da fratura ao longo do tempo durante o <i>fracpack B.</i> 18	3
Figura 5.53 – Evolução do modelo de Valkó & Oligney na previsão	
da abertura da fratura ao longo do tempo durante o <i>fracpack B</i> . 18	\$4
Figura 5.54 – Evolução do modelo de Valkó & Oligney na	
previsão da eficiência da fratura ao longo do tempo durante	
o fracpack B. 18	\$5
Figura 5.55 – Registros de campo e ajuste de pressão do fracpack	
C na condição de iniciação da fratura no intervalo canhoneado. 18	6
Figura 5.56 – Simulação da fratura executada no <i>fracpack C</i>	
no <i>software</i> Meyer na condição de iniciação da fratura	
no intervalo canhoneado. 18	37
Figura 5.57 – Simulação do <i>fracpack C</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado. 18	8
Figura 5.58 – Estimativa da geometria da fratura executada	
no <i>fracpack C</i> utilizando o <i>software</i> Stimplan na condição	
de iniciação da fratura no intervalo canhoneado. 18	8
Figura 5.59 – Registros de campo e ajuste de pressão do	
fracpack C na condição de iniciação da fratura na menor tensão. 18	9
Figura 5.60 – Simulação da fratura executada no <i>fracpack C</i>	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão. 19	0
Figura 5.61 – Simulação do <i>fracpack C</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão. 19	1

Figura 5.62 – Estimativa da fratura executada no fracpack C	
utilizando o <i>software</i> Stimplan na condição de iniciação	
da fratura na menor tensão.	191
Figura 5.63 – Resultados obtidos para o <i>fracpack C</i> com	
os modelos desenvolvidos e os simuladores comerciais na	
condição de iniciação da fratura no intervalo canhoneado.	193
Figura 5.64 – Resultados obtidos para o <i>fracpack C</i> com	
o modelo desenvolvido e os simuladores comerciais	
na condição de iniciação da fratura na menor tensão.	193
Figura 5.65 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack C</i> .	195
Figura 5.66 – Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura no final do bombeio do	
fracpack C, estimada pelo modelo desenvolvido com a geometria	
radial na condição de iniciação da fratura no intervalo canhoneado.	196
Figura 5.67 – Raio da fratura ao longo do tempo durante o	
fracpack C, estimado pelo modelo desenvolvido com a geometria	
radial na condição de iniciação da fratura no intervalo canhoneado.	197
Figura 5.68 – Abertura da fratura ao longo do tempo durante o	
fracpack C, estimada pelo modelo desenvolvido com a geometria	
radial na condição de iniciação da fratura no intervalo canhoneado.	198
Figura 5.69 – Eficiência ao longo do tempo durante o fracpack C,	
estimada pelo modelo desenvolvido com a geometria radial na	
condição de iniciação da fratura no intervalo canhoneado.	199
Figura 5.70 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack C</i> .	200
Figura 5.71 – Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura no final do bombeio do	
fracpack C, estimada pelo modelo desenvolvido com a geometria	
radial na condição de iniciação da fratura na menor tensão.	201

Figura 5.72 – Raio da fratura ao longo do tempo durante o	
fracpack C, estimado pelo modelo desenvolvido com a geometria	
radial na condição de iniciação da fratura na menor tensão.	202
Figura 5.73 – Abertura da fratura ao longo do tempo durante o	
fracpack C, estimada pelo modelo desenvolvido com a geometria	
radial na condição de iniciação da fratura na menor tensão.	203
Figura 5.74 – Eficiência ao longo do tempo durante o fracpack C,	
estimada pelo modelo desenvolvido com a geometria radial	
na condição de iniciação da fratura na menor tensão.	204
Figura 5.75 – Evolução do modelo de Valkó & Oligney na	
previsão da distribuição da concentração do agente de	
sustentação ao longo do raio da fratura para o fracpack C.	205
Figura 5.76 – Evolução do modelo de Valkó & Oligney na	
previsão do raio da fratura ao longo do tempo durante	
o fracpack C.	206
Figura 5.77 – Registros de campo e ajuste de pressão	
do <i>fracpack D</i> na condição de iniciação da fratura no	
intervalo canhoneado.	207
Figura 5.78 – Simulação da fratura executada no fracpack D	
no <i>software</i> Meyer na condição de iniciação da fratura no	
intervalo canhoneado.	208
Figura 5.79 – Simulação do <i>fracpack D</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado.	209
Figura 5.80 – Estimativa da fratura executada no <i>fracpack</i> D	
através da simulação utilizando o <i>software</i> Stimplan na	
condição de iniciação da fratura no intervalo canhoneado.	209
Figura 5.81 – Registros de campo e ajuste de pressão do	
fracpack D na condição de iniciação da fratura na menor tensão.	210
Figura 5.82 – Simulação da fratura executada no fracpack D	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão.	211
Figura 5.83 – Simulação do <i>fracpack</i> D no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão.	212

Figura 5.84 – Estimativa da fratura executada no fracpack D	
através da simulação utilizando o <i>software</i> Stimplan	
considerando a iniciação da fratura na menor tensão.	212
Figura 5.85 – Resultados obtidos para o <i>fracpack D</i> com	
os modelos desenvolvidos e os simuladores comerciais na	
condição de iniciação da fratura no intervalo canhoneado.	213
Figura 5.86 – Resultados obtidos para o <i>fracpack D</i> com o	
modelo desenvolvido e os simuladores comerciais na	
condição de iniciação da fratura na menor tensão.	214
Figura 5.87 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack D</i> .	216
Figura 5.88 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack D</i> .	216
Figura 5.89 – Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura ao final do bombeio	
do fracpack D.	217
Figura 5.90 – Raio da fratura ao longo do tempo durante	
o fracpack D.	218
Figura 5.91 – Abertura da fratura ao longo do tempo durante	
o fracpack D.	219
Figura 5.92 – Eficiência ao longo do tempo durante o fracpack D.	220
Figura 5.93 – Evolução do modelo de Valkó & Oligney na	
previsão da distribuição da concentração do agente de	
sustentação ao longo do raio da fratura para o <i>fracpack D.</i>	221
Figura 5.94 – Evolução do modelo de Valkó & Oligney na previsão	
do raio da fratura ao longo do tempo durante o fracpack D.	222
Figura 5.95 – Evolução do modelo de Valkó & Oligney na previsão	
da abertura da fratura ao longo do tempo durante o fracpack D.	223
Figura 5.96 – Evolução do modelo de Valkó & Oligney na previsão	
da eficiência da fratura ao longo do tempo durante o fracpack D.	224

Figura 5.97 – Registros de campo e ajuste de pressão do	
fracpack E na condição de iniciação da fratura no intervalo	
canhoneado.	225
Figura 5.98 – Simulação da fratura executada no <i>fracpack E</i>	
no <i>software</i> Meyer na condição de iniciação da fratura no	
intervalo canhoneado.	226
Figura 5.99 – Simulação do <i>fracpack E</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado.	227
Figura 5.100 – Estimativa da fratura executada no	
fracpack E através da simulação utilizando o software Stimplan	
considerando a iniciação da fratura no intervalo canhoneado.	227
Figura 5.101 – Registros de campo e ajuste de pressão do	
fracpack E na condição de iniciação da fratura na menor tensão.	228
Figura 5.102 – Simulação da fratura executada no fracpack E	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão.	229
Figura 5.103 – Simulação do <i>fracpack E</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão.	230
Figura 5.104 – Estimativa da fratura executada no fracpack	
<i>E</i> através da simulação utilizando o <i>software</i> Stimplan	
considerando a iniciação da fratura na menor tensão.	230
Figura 5.105 – Resultados obtidos para o <i>fracpack E</i> com os	
modelos desenvolvidos e os simuladores comerciais na	
condição de iniciação da fratura no intervalo canhoneado.	231
Figura 5.106 – Resultados obtidos para o <i>fracpack E</i> com o	
modelo desenvolvido e os simuladores comerciais na	
condição de iniciação da fratura na menor tensão.	232
Figura 5.107 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack E</i> .	234
Figura 5.108 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack E</i> .	234

Figura 5.109 – Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura ao final do bombeio	
do <i>fracpack E</i> .	235
Figura 5.110 – Raio da fratura ao longo do tempo durante	
o fracpack E.	236
Figura 5.111 – Abertura da fratura ao longo do tempo durante	
o fracpack E.	237
Figura 5.112 – Eficiência ao longo do tempo durante o	
fracpack E.	237
Figura 5.113 – Evolução do modelo de Valkó & Oligney na	
previsão da distribuição da concentração do agente de	
sustentação ao longo do raio da fratura para o <i>fracpack E.</i>	239
Figura 5.114 – Evolução do modelo de Valkó & Oligney na	
previsão do raio da fratura ao longo do tempo durante o	
fracpack E.	240
Figura 5.115 – Evolução do modelo de Valkó & Oligney	
na previsão da abertura da fratura ao longo do tempo	
durante o <i>fracpack E</i> .	241
Figura 5.116 – Evolução do modelo de Valkó & Oligney	
na previsão da eficiência da fratura ao longo do tempo	
durante o <i>fracpack E</i> .	242
Figura 5.117 – Registros de campo e ajuste de pressão	
do <i>fracpack F</i> na condição de iniciação da fratura	
no intervalo canhoneado.	243
Figura 5.118 – Simulação da fratura executada no fracpack F	
no <i>software</i> Meyer na condição de iniciação da fratura	
no intervalo canhoneado.	244
Figura 5.119 – Simulação do <i>fracpack F</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado.	245
Figura 5.120 – Estimativa da fratura executada no fracpack F	
através da simulação utilizando o <i>software</i> Stimplan,	
considerando a iniciação da fratura no intervalo canhoneado.	245

Figura 5.121- Registros de campo e ajuste de pressão do	
fracpack F na condição de iniciação da fratura na menor tensão.	246
Figura 5.122– Simulação da fratura executada no <i>fracpack F</i>	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão.	247
Figura 5.123 – Simulação do <i>fracpack F</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão.	
É possível notar que não houve um bom ajuste de pressão.	248
Figura 5.124 – Estimativa da fratura executada no fracpack F	
através da simulação utilizando o <i>software</i> Stimplan	
considerando a iniciação da fratura na menor tensão.	248
Figura 5.125 – Resultados obtidos para o <i>fracpack F</i> com	
os modelos desenvolvidos e os simuladores comerciais	
na condição de iniciação da fratura no intervalo canhoneado.	249
Figura 5.126 – Resultados obtidos para o <i>fracpack F</i> com o	
modelo desenvolvido e o simulador comercial MFrac na	
condição de iniciação da fratura na menor tensão.	250
Figura 5.127 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack F</i> .	252
Figura 5.128 – Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura no final do bombeio	
do <i>fracpack F</i> , estimada pelo modelo desenvolvido com a	
geometria radial na condição de iniciação da fratura no	
intervalo canhoneado.	253
Figura 5.129 – Raio da fratura ao longo do tempo durante	
o <i>fracpack F</i> , estimado pelo modelo desenvolvido com a	
geometria radial na condição de iniciação da fratura	
no intervalo canhoneado.	254
Figura 5.130 – Abertura da fratura ao longo do tempo durante	
o <i>fracpack F</i> , estimada pelo modelo desenvolvido com a	
geometria radial na condição de iniciação da fratura	
no intervalo canhoneado.	255

Figura 5.141 – A curva verde mostra a distribuição da	
concentração do agente de sustentação ao longo do raio	
da fratura considerando a filtração através da área hidráulica	
nos períodos de TSO.	267
Figura 5.142 – Os pontos verdes representam o raio da fratura	
ao longo do tempo considerando a filtração através da área	
hidráulica nos períodos de TSO.	267
Figura 5.143 – Registros de campo e ajuste de pressão do	
fracpack G na condição de iniciação da fratura no	
intervalo canhoneado.	269
Figura 5.144 – Simulação da fratura executada no fracpack G	
no <i>software</i> Meyer na condição de iniciação da fratura no	
intervalo canhoneado.	270
Figura 5.145 – Simulação do <i>fracpack G</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado.	271
Figura 5.146 – Estimativa da fratura executada no fracpack G	
através da simulação utilizando o <i>software</i> Stimplan,	
considerando a iniciação da fratura no intervalo canhoneado.	271
Figura 5.147- Registros de campo e ajuste de pressão do	
fracpack G na condição de iniciação da fratura na menor tensão.	272
Figura 5.148– Simulação da fratura executada no fracpack G	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão.	273
Figura 5.149 – Simulação do <i>fracpack G</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão.	274
Figura 5.150 – Estimativa da fratura executada no fracpack G	
através da simulação utilizando o <i>software</i> Stimplan	
considerando a iniciação da fratura na menor tensão.	274
Figura 5.151 – Resultados obtidos para o <i>fracpack F</i> com	
os modelos desenvolvidos e os simuladores comerciais na	
condição de iniciação da fratura no intervalo canhoneado.	275

Figura 5.152 – Resultados obtidos para o <i>fracpack F</i> com o	
modelo desenvolvido e os simuladores comerciais na condição	
de iniciação da fratura na menor tensão.	276
Figura 5.153 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador MFrac (Meyer) para o <i>fracpack G</i> .	278
Figura 5.154 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack G</i> .	278
Figura 5.155 – Distribuição da concentração do agente de	
sustentação ao longo do raio da fratura ao final do bombeio	
do <i>fracpack G</i> .	279
Figura 5.156 – Raio da fratura ao longo do tempo	
durante o fracpack G.	280
Figura 5.157 – Abertura da fratura ao longo do tempo	
durante o <i>fracpack G</i> .	281
Figura 5.158 – Eficiência ao longo do tempo durante	
o fracpack G.	282
Figura 5.159 – Evolução do modelo de Valkó & Oligney na	
previsão da distribuição da concentração do agente de	
sustentação ao longo do raio da fratura para o <i>fracpack G.</i>	283
Figura 5.160 – Evolução do modelo de Valkó & Oligney	
na previsão do raio da fratura ao longo do tempo	
durante o <i>fracpack G</i> .	284
Figura 5.161 – Evolução do modelo de Valkó & Oligney	
na previsão da abertura da fratura ao longo do tempo	
durante o fracpack G.	285
Figura 5.162 – Evolução do modelo de Valkó & Oligney	
na previsão da eficiência da fratura ao longo do tempo	
durante o <i>fracpack G</i> .	286
Figura 5.163 – Registros de campo e ajuste de pressão	
do <i>fracpack H</i> na condição de iniciação da fratura no intervalo	
canhoneado.	287

Figura 5.164 – Simulação da fratura executada no	
<i>fracpack H</i> no <i>software</i> Meyer na condição de iniciação	
da fratura no intervalo canhoneado.	288
Figura 5.165 – Simulação do <i>fracpack H</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura no intervalo canhoneado.	289
Figura 5.166 – Estimativa da fratura executada no fracpack H	
através da simulação utilizando o <i>software</i> Stimplan	
considerando a iniciação da fratura no intervalo canhoneado.	289
Figura 5.167– Registros de campo e ajuste de pressão do	
fracpack H na condição de iniciação da fratura na menor tensão.	290
Figura 5.168– Simulação da fratura executada no <i>fracpack H</i>	
no <i>software</i> Meyer na condição de iniciação da fratura	
na menor tensão.	291
Figura 5.169 – Simulação do <i>fracpack H</i> no <i>software</i> Stimplan	
na condição de iniciação da fratura na menor tensão.	292
Figura 5.170 – Estimativa da fratura executada no fracpack H	
através da simulação utilizando o <i>software</i> Stimplan	
considerando a iniciação da fratura na menor tensão.	292
Figura 5.171 – Resultados obtidos para o <i>fracpack H</i> com os	
modelos desenvolvidos e os simuladores comerciais na	
condição de iniciação da fratura no intervalo canhoneado.	294
Figura 5.172 – Resultados obtidos para o <i>fracpack H</i> com o	
modelo desenvolvido e os simuladores comerciais na condição	
de iniciação da fratura na menor tensão.	294
Figura 5.173 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados do	
simulador MFrac (Meyer) para o <i>fracpack H</i> .	296
Figura 5.174 – Gráfico de barras com as diferenças quadradas	
entre os índices dos modelos desenvolvidos e os resultados	
do simulador Stimplan para o <i>fracpack H</i> .	296
Figura 5.175 – Distribuição da concentração do agente	
de sustentação ao longo do comprimento da fratura ao	
final do bombeio do <i>fracpack H</i> .	297

Figura 5.176 – Comprimento da fratura ao longo do tempo	
durante o <i>fracpack H</i> .	298
Figura 5.177 – Abertura da fratura ao longo do tempo	
durante o <i>fracpack H</i> .	299
Figura 5.178 – Eficiência ao longo do tempo durante	
o fracpack H.	300
Figura 5.179 – Evolução do modelo de Valkó & Oligney na	
previsão da distribuição da concentração do agente de	
sustentação ao longo do raio da fratura para o <i>fracpack H.</i>	301
Figura 5.180 – Evolução do modelo de Valkó & Oligney	
na previsão do raio da fratura ao longo do tempo durante	
o fracpack H.	302
Figura 5.181 – Evolução do modelo de Valkó & Oligney	
na previsão da abertura da fratura ao longo do tempo	
durante o <i>fracpack H</i> .	303
Figura 5.182 – Evolução do modelo de Valkó & Oligney	
na previsão da eficiência da fratura ao longo do tempo	
durante o fracpack H	304
Figura 6.1 – Mapa com a distribuição e localização	
geográfica dos <i>fracpacks</i> analisados que foram realizados	
na bacia de Campos.	306
Figura 6.2 – Utilizando a geometria de fratura obtida a partir	
de uma modelagem 3D, o gráfico estabelece qual modelagem	
2D apresentaria resultados mais próximos dos estimados pelo	
modelo 3D [26].	310

Lista de tabelas

Tabela 1.1 - Classificação da permeabilidade da formação de	
acordo com o fluido produzido [2].	40
Tabela 2.1 - Interpretação das inclinações da curva de pressão	
no gráfico log-log da <i>net pressure</i> versus tempo.	68
Tabela 5.1 – Metodologia para a escolha do melhor modelo para	
a previsão dos resultados dos simuladores Meyer e Stimplan.	142
Tabela 5.2 – Resumo dos resultados obtidos a partir da	
nterpretação dos registros do fracpack A.	150
Tabela 5.3 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack A</i> .	160
Tabela 5.4 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do <i>fracpack B</i> .	174
Tabela 5.5 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack B</i> .	176
Tabela 5.6 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do <i>fracpack C</i> .	192
Tabela 5.7 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack C</i> .	194
Tabela 5.8 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do fracpack D.	213
Tabela 5.9 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack D</i> .	215
Tabela 5.10 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do fracpack E.	231

Tabela 5.11 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack E</i> .	233
Tabela 5.12 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do fracpack F.	249
Tabela 5.13 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack F</i> .	251
Tabela 5.14 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do fracpack F.	275
Tabela 5.15 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack G</i> .	277
Tabela 5.16 – Resumo dos resultados obtidos a partir da	
interpretação dos registros do <i>fracpack H</i> .	293
Tabela 5.17 – Comparação entre os índices dos modelos	
desenvolvidos com os obtidos nos simuladores comerciais	
para o <i>fracpack H</i> .	295
Tabela 6.1 – Cenário das oito operações de fracpacks	
utilizadas para a aplicação dos modelos desenvolvidos.	307
Tabela 6.2 – Resultados do declínio de pressão dos	
minifracs e dos ajustes de pressão.	308
Tabela 6.3 – Avaliação da geometria da fratura estimada	
pelo simulador Meyer, indicando qual modelagem 2D que	
poderia apresentar resultados mais próximos dos obtidos	
na modelagem pseudo 3D, neste caso.	311
Tabela 6.4 – Avaliação da geometria da fratura estimada	
pelo simulador Stimplan, indicando qual modelagem 2D	
que poderia apresentar resultados mais próximos dos	
obtidos na modelagem 3D.	311

Tabela 6.5 – Comparação entre o melhor modelodesenvolvido indicado pelos índices para previsão dosresultados do simulador Meyer e a modelagem 2D indicadaa partir da geometria da fratura prevista pelo modelo pseudo3D utilizando o gráfico da figura 6.2.314Tabela 6.6 – Comparação entre o melhor modelo desenvolvidoindicado pelos índices para previsão dos resultados dosimulador Stimplan e a modelagem 2D indicada a partir dageometria da fratura prevista pelo modelo 3D utilizando ográfico da figura 6.2.314

Lista de quadros

Quadro 4.1 – Resumo das equações utilizadas para a estimativa	
da evolução de uma fratura radial ao longo do tempo através	
da análise da curva de pressão de fundo de uma operação	
de fracpack.	117
Quadro 4.2 - Resumo das equações utilizadas para a estimativa	
da evolução de uma fratura ao longo do tempo através da	
análise da curva de pressão de fundo de uma operação de	
fracpack utilizando a geometria PKN.	125
Quadro 4.3 - Resumo das equações utilizadas para a estimativa	
da evolução de uma fratura ao longo do tempo através da	
análise da curva de pressão de fundo de uma operação de	
fracpack utilizando a geometria KGD.	130

Lista de Símbolos

Letras latinas

A	Área, m ²
A	Área da fratura, m ²
A _{elipse}	Área da elipse, m²
A _{fluxo}	Área de fluxo para definição da velocidade média na fratura, m^2
A _{fp}	Área da fratura no final do bombeio, m ²
A _h	Área hidráulica da fratura, m ²
$A_{ ho}$	Área empacotada da fratura, m ²
С	Comprimento de uma asa da fenda, m
С	Concentração do agente de sustentação por volume de pasta,
	lb/gal (ppg)
С	Condutividade da fratura, md.ft
ca	Concentração do agente de sustentação por volume de líquido,
	lb/gal (ppa)
Cf	Complacência da fratura, m/psi
C_{fd}	Condutividade adimensional da fratura
C_L	Coeficiente de filtração, ft/min ^{1/2}
Δp	Diferencial de pressão, psi
Δp	Perda de carga, psi
$\Delta\sigma$	Diferença de tensão, psi
Δt	Período de declínio de pressão, min
Δt_c	Tempo do fechamento da fratura, min
Δt_{cD}	Tempo adimensional do fechamento da fratura
Δt_D	Tempo adimensional para o declínio de pressão
E	Módulo de elasticidade, psi
E'	Módulo plano de deformação, psi
$f(\Delta t_D, \alpha)$	Função vazão de filtração, adimensional

$G(\Delta t_{cD})$	Função G no ponto de fechamento da fratura, adimensional
$g(\Delta t_D, \alpha)$	Função volume perdido para a formação, adimensional
$G(\Delta t_D, \alpha)$	Função declínio de pressão, adimensional
$g_0(\alpha)$	Função volume perdido durante o bombeio, adimensional
h _f	Altura da fratura, m
k	Permeabilidade, D
k	Fator de distribuição do tempo de abertura dos elementos da
	face da fratura, adimensional
K	Índice de consistência, lbf.s ⁿ /ft ²
<i>k</i> _f	Permeabilidade da fratura, mD
L	Comprimento, m
М	Massa de agente de sustentação, lb
m (t)	Inclinação positiva da curva de pressão de fundo versus tempo,
	psi/min
n	Índice de comportamento de fluxo, adimensional
<i>p</i> *	Inclinação da reta de pressão versus G, psi
P_0	Pressão constante no interior da fenda, psi
P_c	Pressão de fechamento, psi
P_{f}	Pressão dentro da fratura, psi
PISIP	Pressão no poço no desligamento das bombas, psi
P_{NET}	Pressão líquida, <i>net pressure</i> , psi
P_w	Pressão no poço, psi
q	Vazão, bpm
q	Vazão de injeção, bpm
q_L	Vazão de filtração, bpm
R	Raio da fratura, m
R _c	Raio da fratura calculado pelo balanço de massa de Carter, m
R_h	Raio hidráulico, m
R_p	Raio de empacotamento, m
$R_p(t_{TSO})$	Raio de empacotamento no tempo inicial do TSO, m
$S_{ ho}$	Spurt loss, cm
t	Tempo, min
t _D	Tempo adimensional definido por Nordgren

tρ	Tempo de bombeio, min
t _{TSO}	Tempo inicial do TSO, min
U _{avg}	Velocidade média, m/s
V	Volume de uma asa de fissura linear, m ³
V _f	Volume da fratura, m ³
V _{fp}	Volume da fratura no final do bombeio, m ³
V_i	Volume injetado, m ³
$V_{i,t}$	Volume injetado até o tempo t, m ³
$V_{i,t_{TSO}}$	Volume injetado até o início do TSO, m3
VL	Velocidade de filtração, m/s
VL	Volume filtrado, m ³
$V_{L (tp+\Delta t)}$	Volume filtrado durante o bombeio e durante o declínio de
	pressão, m ³
V _{Lp}	Volume filtrado durante o bombeio, m ³
V _{Ls}	Volume filtrado durante o declínio de pressão, m ³
V _{prop}	Volume de agente de sustentação na fratura, m ³
W	Abertura da fratura, cm
\overline{W}	Abertura média da fratura, cm
\overline{W}_c	Abertura média da fratura definida pela equação de abertura e
	utilizada no balanço de massa de Carter, cm
W ₀	Abertura máxima da fratura, cm
W _W	Abertura da fratura no poço, cm
W _{w,0}	Abertura máxima da fratura no poço, cm
X _f	Comprimento de uma asa da fratura, m
X _{fC}	Comprimento da fratura calculado pelo balanço de massa de
	Carter, m
X _{fh}	Comprimento hidráulico da fratura, m
X fp	Comprimento de empacotamento da fratura, m

Letras gregas

α	Expoente da lei de potência proposta por Nolte, adimensional
$lpha_0$	Limite inferior do expoente alfa, adimensional
α_1	Limite superior do expoente alfa, adimensional
α_i	Expoente alfa inicial, adimensional
δ	Extensão, cm
γ	Fator de forma, adimensional
Ϋ́	Taxa de cisalhamento, s ⁻¹
η	Eficiência, percentual
$oldsymbol{\eta}_{c}$	Eficiência calculada pelo modelo de propagação, percentual
μ	Viscosidade, Pa.s
μ_e	Viscosidade equivalente, Pa.s
V	Coeficiente de Poisson, adimensional
$ ho_{ ho}$	Massa específica do agente de sustentação, g/cm ³
σ_1	Tensão principal maior, psi
σ_2	Tensão principal intermediária, psi
$\sigma_{\!3}$	Tensão principal menor, psi
$\sigma_{\!H}$	Tensão horizontal máxima <i>in situ</i> , psi
σ_h	Tensão horizontal mínima <i>in situ</i> , psi
σ_{hARN}	Tensão horizontal mínima no arenito, psi
σ_{hFLH}	Tensão horizontal mínima no folhelho, psi
$\sigma_{\! heta}$	Tensão tangencial ao redor do poço, psi
$\sigma_{\!\scriptscriptstyle V}$	Tensão vertical <i>in situ</i> , psi
τ	Tensão cisalhante, lbf/ft ²

Tempo de abertura de cada elemento da face da fratura, min

τ