
88

4.
Detailed Implementation

4.1.
EKF SLAM

The Extended Kalman Filter (EKF) fuses all available information about the

system’s state to compute a state estimate. This is accomplished through a

recursive three-stage cycle consisting of prediction, observation and update steps.

1. Prediction

This step involves computing
tλ and tΣ .

As seen in eq. (3.20),
tλ depends on ut and λt-1. Using a naïve example,

the control ut could be one of two types: the first specifies the

translational and rotational velocities, and the second specifies odometry

information (such as distance traveled, angle turned). That is:

 or
t

t

t

v
u

ω

 
=  
 












=

ϕ

d
ut

 (4.1)

Thus, the uncertainty of the control ut is given by its covariance matrices:

0

or
0

v
U

ω

σ

σ

 
=  
 









=

ϕσ

σ

0

0d
U

 (4.2)

Using a landmark map representation, λt-1 is a vector containing the robot

and landmark positions at one time step earlier. That is:

[]Ttntntttttt yLxLyLxLRRyRx 1111111111 ... −−−−−−−− = θλ

 Robot position Landmark 1 position Landmark n position

 (4.3)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

89

Figure 4.1 shows the robot position at the previous time step, t−1, and the

predicted robot position made by the odometry information in a Cartesian

plane. The predicted state vector
tλ is given by

()

()
















+

++

++

=



















=

−

−−

−−

−

ϕ

ϕ

ϕ

λ

θ

θ

θ

θ 1

11

11

1 sin

cos

),(

t

tt

tt

tt

R

RdRy

RdRx

R

yR

xR

uf

 (4.4)

Figure 4.1: Robot position (red fill circle) at time t−1 , and predicted robot position

(white filled circle).

Notice however, that it is not necessary to predict landmark positions.

Thus, the predicted state vector
tλ is now

[]Tnnt yLxLyLxLyLxLRyRxR ...2211θλ =

where

[] []Ttntntttt

T

nn yLxLyLxLyLxLyLxLyLxLyLxL 11121211112211 −−−−−−=

In order to compute the predicted covariance
tΣ , as in eq. (3.21), Ft is

given by:

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

90

()

()
















+

+−

=
∂

∂
= −

−

−

− 100

cos10

sin01

),(
1

1

1

1

ϕ

ϕ
λ

θ

θ

λ
t

t

tt
t Rd

Rd

uf
F

t

 (4.5)

Notice that Ft is a matrix of size m x m, where m is the dimension of the

state vector (3+2n), being n the number of landmarks. However since the

environment is stationary, again, movement of landmarks does not need

to be predicted, thus the remaining elements in Ft are zero.

Pt is given by eq. (4.6) where U was described in eq. (4.2) and
tuJf is

given by:

() ()

() ()
















++

+−+

=
∂

∂
= −−

−−

−

10

cossin

sincos

),(
11

11

1 ϕϕ

ϕϕ
λ

θθ

θθ

tt

tt

tt RdR

RdR

uf
Jf

tu
tu

 (4.6)

 T

t tutu JfUJfP =

 (4.7)

In the same way,
tuJf is of size m x 2; however the elements related to

landmarks are zero. Thus the mean
tλ is the predicted state vector of size

(3+2n) x 1 and
tΣ the predicted covariance matrix of size (3+2n) x

(3+2n).

2. Observation

The observation step computes the innovation vector and the innovation

covariance, that is [])(tt hz λ− and ()QHH
T

ttt +Σ

in the eq. (3.23)

and eq. (3.22), respectively.

The perception function,)(th λ , that represents the predicted landmark

position seen from the predicted robot position is shown in Figure 4.2.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

91

Figure 4.2: Predicted landmark position seen from the predicted robot position

In the same Cartesian plane, the predicted distance and angle (l and α)

from the predicted robot position to the landmark L1, is given by eq.

(4.8):













−−−

−+−
=








=

θα
λ

RxRxLyRyL

yRyLxRxL
h

)/arctan(

)()(
)(

11

2

1

2

1
l

 (4.8)

Note that)(th λ shown in eq. (4.8) is written for the Landmark 1, in the

same way it must be computed for the n landmarks. Thus, the size of the

vectors)(th λ and the zt is 2n.

To compute the matrix Ht, the Jacobian of h at tλ

is given by



















∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=
∂

∂
=

ααααα

λ

θ

θ

λ

yLxLRyRxR

yLxLRyRxRh
H t

11

11)(
lllll

 (4.9)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

92





















++

−
−

+

−

+

+++

−

+

−

=

22222222

22222222

1
yx

x

yx

y

yx

x

yx

y

yx

y

yx

x

yx

y

yx

x

t

dd

d

dd

d

dd

d

dd

d

dd

d

dd

d

dd

d

dd

d

H

0

where

1 1and

x
d L x Rx dy L y Ry= − = −

Notice however, that eq. (4.9) shows Ht using only the Landmark 1, thus

the true size of Ht is 2 x (3+2n).



















∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=
∂

∂
=

ααα

λ

λ

n

n
t

LLR

LLRh
H

...

...
)(

1

1

lll

 (4.10)

and Qt represents the covariance matrix for the sensor noise:














=

ασ

σ

0

0l

Q

 (4.11)

3. Update

Finally, this last step computes the desired λt and Σt, using eq. (3.22),

eq. (3.23) and eq. (3.24).

It is important to point out that in the beginning, where the robot starts the

mapping process, it may not see all landmarks, or not even one. Therefore, as the

robot moves through the environment, the state vector λt grows. Thus, when a new

landmark is acquired, the state vector is augmented. Figure 4.3 shows how the

robot sees a new landmark (p) at distance l and at angle α; eq. (4.12) and eq.

(4.13) show how this is modeled.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

93

Figure 4.3: New landmark Lp, is added to the state vector.















++

++
=














=

)sin(

)cos(

α

α

θ

θ

RRy

RRx

yL

xL

z

p

p

p

l

l

(4.12)












=

p

t

t
L

λ
λ :

 (4.13)

As it was seen in Section 3.2.2, the covariance matrix Σt, represents the

relationships landmarks-robot and landmarks-landmarks (because the robot’s pose

uncertainty correlates landmark positions), these relationships are shown in eq.

(4.14).

 (4.14)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

94

In the same way the covariance matrix Σt grows in dimension to include the

new landmark. To do this, the covariance matrices, CLpLp (Lp to Lp), CRLp (robot to

Lp) and CL1Lp … CLnLp (all old landmarks L1… Ln to Lp) are computed by eq.

(4.15), eq. (4.16) and eq. (4.17), respectively.

 ααθθ ,,,,,, l

T

pt
l

p
RRyRx

T

pRR
RRyRx

pLpLp JzQJzJzCJzC +=

(4.15)

RR

RRyRx
RLp CJzC p

θ,,

=

(4.16)

[]

nRLRL

RRyRx

pLnLpLpL CCJzCC ...
11

,, θ

=K

(4.17)

where Jzp are the Jacobians:

















+

+

=



















∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=

)sin(10

)cos(01

,,
α

α

θ

θ

θ

θ

θ

R

R

yL
R

yL
Ry

yL
Rx

xL
R

xL
Ry

xL
Rx

Jz

ppp

ppp

RRyRx

p

l

l-

(4.18)

















++

+−+

=



















∂

∂

∂

∂

∂

∂

∂

∂

=

)cos()sin(

)sin()cos(

,
αα

αα

α

α

θθ

θθ

α
RR

RR

yLyL

xLxL

Jz

pp

pp

l

p

l

l

l

l

 (4.19)

Finally, the augmented covariance matrix looks like eq. (4.20), representing

now: n:=n+1 landmarks.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

95

 (4.20)

4.2.
FastSLAM

The Fast Slam algorithm receives as input the previous distribution p(xt-1),

as a particle set }...1/{: 11 Nis
i

tt ==Φ −− , the odometry (or control) information

ut, and the landmark measurements zt. From the idea exposed in Section 2.2.4, the

FastSLAM algorithm uses the following steps.

1. Each particle i representing the robot position at time t−1, i

tR 1− , from the

set Φt-1, is moved following the control vector ut and the motion model.

 










=

t

t

t

v
u

ω

or

 










=

t

t

t

d
u

ϕ

(4.21)

Table 4.1 shows an algorithm [1] for sampling from the motion model

p(R t | u t ,R t -1) to generate a random pose i

tR . Lines 1 and 2 perturb the

commanded control parameters with noise, drawn from the error

parameters α1 to α6 (a detailed explanation of these error parameters can

be found in [1]). The noise values are then used to generate the sample’s

new pose in lines 4 through 7.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

96

Table 4.1: Sample Motion Model Algorithm [1]

 Sample Motion Model_algorithm (Rt-1, ut)

 1:)||||(ˆ
11 ttt vsamplevv ωαα ++=

 2:)||||(ˆ
43 ttt vsample ωααωω ++=

 3:)||||(ˆ
65 ttvsample ωααγ +=

 4:)ˆsin()sin(1ˆ
ˆ

1ˆ
ˆ

1 tRRRxRx t
v

t
v

tt ∆++−= −−− ωθθ ωω

 5)ˆcos()cos(1ˆ
ˆ

1ˆ
ˆ

1 tRRRyRy t
v

t
v

tt ∆+−+= −−− ωθθ ωω

 6: ttRR tt ∆+∆+= − γωθθ ˆˆ
1

 7: return Rt=(Rxt, Ryt,Rθt)

Figure 4.4 illustrates the outcome of this sampling routine. A temporal

particle set },...,{ˆ 21 p

ttt RRR=Φ containing all the samples is created,

where p is the number of samples (particles).

Figure 4.4: Sampling. Each black dot represents a possible robot position.

2. Update the estimation of landmarks, using the EKF, the set Φ̂ of robot

poses samples created in step 1, and the landmark measurements zt.

Because the j
th

 landmark positions (1−t
i

j xL , 1−t

i

j yL) is known at time t−1

as well as the poses (t

i
xR , t

i
yR) and rotations (t

i
R θ) of each particle

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

97

(obtained in step 1), it is possible to compute the distance and angle

between them, as shown in Figure 4.5, where
i

jr̂
 and

i

jφ̂ are the distance

and angle between particle i and landmark j.

Figure 4.5: Distance and rotation between particle i and landmark j.

Thus, function h used by the EKF is given by:

















−−−

−+−
=














=

−−

−−

t

i

t

i

t

i

jt

i

t

i

j

t

i

t

i

jt

i

t

i

j

i

j

i

j
i

j

RxRxLyRyL

yRyLxRxLr

h

θφ))/()arctan((

)()(

ˆ

ˆ

11

2

1

2

1

 (4.22)

and the Jacobian of
i

jh , named
i

jH , is



















++

−
++=



















∂

∂

∂

∂

∂

∂

∂

∂

=
∂

∂
=

−−

−−

−
2222

2222

ˆˆ

ˆˆ

11

11

1,

ba

a

ba

b
ba

b

ba

arr
h

H
i

j

yL

i

j

xL

i

j

yL

i

j

xL

L

i

ji

j

tjtj

tjtj

tj φφ

(4.23)

where

 t

i

t

i

jt

i

t

i

j yRyLbxRxLa −=−= −− 11

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

98

In addition, the covariance of the landmark positions i

tj 1, −Σ is known.

Thus, the landmark updates are computed as follows:

 QHHS
Ti

j

i

tj

i

j

i

j +Σ= −1, (4.24)

1

1,

−
−Σ= i

j

Ti

j

i

tj

i

j SHW (4.25)

i

jtj hzZ −= , (4.26)

 ZW
ii

tj

i

tj 21,, += −λλ (4.27)

Ti

j

i

j

i

j

i

tj

i

tj WSW−Σ=Σ −1,, (4.28)

where tjz , is the j
th

 landmark sensor observation in zt and Q represents

the covariance matrix for the sensor noise, that is:














=

φσ

σ

0

0d

Q

(4.29)

The following figure shows the updated landmark j for the particle i,

namely
i

tjL , , represented by the blue arrow.

Figure 4.6: Updated landmark j for the particle i.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

99

Note that this update is made for landmark j and particle i, thus it must

be repeated n x p times, being n the number of observed landmarks at

time t (the unobserved landmarks are not updated) and p the number of

particles.

This set of median and covariance are added to the temporal particles

set, as follows:

},,...,,,

,,,...,,,

,,,...,,,{ˆ

,,,1,1

2

,

2

,

2

,1

2

,1

2

1

,

1

,

1

,1

1

,1

1

p

tn

p

tn

p

t

p

t

p

t

tntnttt

tntnttt

R

R

R

ΣΣ

ΣΣ

ΣΣ=Φ

λλ

λλ

λλ

 (4.30)

3. Assign the weight for each particle. Using the measurement vector zt,

each particle of the temporal particle set Φ̂ is evaluated.

Because the j
th

 updated landmark positions (
t

i

j xL ,
t

i

j yL) and the poses

(t

i
xR , t

i
yR) and rotations (t

i
R θ) of each particle is known (obtained in

the 1), it is possible, once more, to compute the distance and angle

between them, as shown in Figure 4.7, where
i

jr
 and

i

jφ
 are the distance

and angle between particle i and the updated landmark j.

Figure 4.7: Distance and rotation between particle i and updated landmark j.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

100

Now, the function
i

jh

is

















−−−

−+−
=














=

t

i

t

i

t

i

jt

i

t

i

j

t

i

t

i

jt

i

t

i

j

i

j

i

j
i

j

RxRxLyRyL

yRyLxRxLr

h

θφ))/()arctan((

)()(22

 (4.31)

and the Jacobian of
i

jh , defined as
i

jH , becomes



















++

−
++=

∂

∂
=

2222

2222

,

ba

a

ba

b
ba

b

ba

a

h
H

tjL

i

ji

j (4.32)

where

 t

i

t

i

jt

i

t

i

j yRyLbxRxLa −=−=

The updated covariance of the landmark positions i

tj ,Σ is also known.

Thus, the importance factors (weights) can be computed, as follows:

Table 4.2: Compute weights algorithm;

 Compute weights_algorithm (Φ̂ , zt)

 1: for i =1 to p do

 2: 1=i

tw

 3: for j=1 to n do

 4

QHHU
Ti

j

i

tj

i

j

i

j +Σ= ,

 5:

)}()(exp{)2det(: ,

1

,2
12

1

i

jtj

i

j

Ti

jtj

i

j

i

t

i

t hzUhzUww −−−∗= −
−

π

 6: end for

 7: end for

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

101

where, once again, tjz , is the j
th

 landmark sensor observation. This set of

importance factors is added to the temporal particles set:

},,...,,,,

,,,...,,,,

,,,...,,,,{ˆ

,,,1,1

2

,

2

,

2

,1

2

,1

22

1

,

1

,

1

,1

1

,1

11

p

tn

p

tn

p

t

p

t

p

t

p

t

tntntttt

tntntttt

Rw

Rw

Rw

ΣΣ

ΣΣ

ΣΣ=Φ

λλ

λλ

λλ

(4.33)

4. Finally, resample. Each particle, in the temporal particle set, is drawn

(with replacement) with a probability proportional to its importance

factor.

Prior to resampling, the weights of particles should be normalized such

that they sum up to one. Then, compute the cumulative probability

density function (cdf) which defines intervals that reflect each particle

“share” of the total probability, as illustrated Figure 4.8. Draw p times

one particle by generating p independent uniformly distributed random

numbers r in the interval [0,1]; obviously the “heaviest” particles are

more likely to be drawn.

Figure 4.8: Cumulative probability distribution and a random number r.

The output of resampling step is a new set Φt that possesses many

duplicates, since particles are drawn with replacement. This new set is

distributed according to the desired posterior p(xt).

5. If the measurement vector zt, introduces a new landmark never seen

before, this needs to be included into the set of particles, as follows.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

102

The new observed landmark in zt consist of its distance rq and its angle

ϕq referenced to the unknown true robot position, as shown in Figure 4.9

and eq. (4.34).

Figure 4.9: New observed landmark Lq.














=

q

q

q

r

L
φ

(4.34)

The new landmark Lq must be included within each particle in the

particle set through its mean and covariance. Thus, for each particle,

function
i

qh and its Jacobian
i

qH are given by:















++

++
=














=

)sin(

)cos(

qt

i

qt

i

qt

i

qt

i

i

q

i

q
i

q

RryR

RrxR

y

x

h

φ

φ

θ

θ

(4.35)















++

+−+
=

∂

∂
=

)cos()sin(

)sin()cos(

qt

i

nqt

i

qt

i

nqt

i

L

i

qi

q

RrR

RrRh
H

q
φφ

φφ

θθ

θθ

(4.36)

The mean is

i

j

i

tq h=,λ and the covariance, i

tq ,Σ , is computed using the

covariance matrix for the sensor noise Q:

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

103

Ti

q

i

q

i

tq HQH=Σ ,

(4.37)

Now the particle set Φt has a new landmark incorporated, making the

number of total landmarks become n:=n+1.

4.3.
Simulator

To test the grid mapping algorithm, it is necessary to acquire data from a

LRF mounted on a robot that moves along a structured environment. It is also

possible to evaluate the algorithm from simulations of both the environment and

the LRF readings, as long as noise is introduced in the process.

The simulation of the robot perception based on LRF provides several

advantages. First of all, it is cheaper than experimenting with a real device. The

simulator gives the opportunity to concentrate more on the intelligence algorithms

such as localization and mapping (SLAM). Developing the simulator is easier

than building a new robot or perception system [30], due to the testability of many

configurations.

The simulator used in this work is implemented on Matlab®, explaining as

follows.

4.3.1.
3D Environment Simulation

The element used in the simulator to represent the structured environment is

the plane. All structured environment elements are approximated using planes;

straight walls, curved walls, doors, windows, floors, ceilings, etc, can be modeled

using a group of rectangles. Figure 4.10 shows an environment constructed in

such a way.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

104

Each rectangle in this simulator is defined by four points, from which their

equation obtained. Thus taking, three points (a,b,c) of the four given points, the

equation of the plane that contains this rectangle is given by:

 0)()()(=−+−+− zzyyxx aznaynaxn (4.38)

where

































−

















×
































−

















=−×−=

















z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

a

a

a

c

c

c

a

a

a

b

b

b

n

n

n

)()(acab (4.39)

Figure 4.10: Simulated structured environment using rectangles.

4.3.2.
LRF Simulation

The working principle of the LRF, also known as a LIDAR, is shown in

Figure 4.11. In the presented simulation, laser ray data are assumed 1° apart, from

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

105

-90° to 90°. Note that these values are adjustable parameters in the simulator,

which can vary depending on the simulated LRF model.

Figure 4.11: Laser ray from a simulated LRF.

Other adjustable parameters from the simulator are shown in Table 4.3.

Table 4.3: Adjustable parameters on simulated LRF.

Parameter Units

Field of view ± rad

Operating range m

Angular resolution rad

Statistical Error ± mm, ±%, stdv (mm)

To acquire 3D data, the simulated LRF can be routed along its axis X, from

0° to 90° as shown in Figure 4.12, emulating a rotational support for the 2D LRF.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

106

Figure 4.12: Simulated LRF rotation to acquire 3D data

Each measured laser ray is modeled as a vector in the polar system (r, α, β),

with the origin as the point where the rays come from, where r represents the

measured range, the rotation in the Z axis is given by α, and the rotation in X is

given by β.

Simulated measurements are obtained by merging the simulated LRF

routines with the models of the simulated environment. The point that defines the

position of the LRF in the environment is the same point where the rays come

from. Thus, the position and rotation of the LRF (in the environment and therefore

in a global coordinate system) is given by four variables: x, y, z and θ, where θ is

the rotation on an axis parallel to the Z axis of the global coordinate system.

With the LRF’s rays and its position and rotation in the global coordinate

system, the equation for each ray vector is constructed. Using the two points (a

and b) that define a ray vector, the line equation in 3D is given by

z

z

y

y

x

x

c

az

c

ay

c

ax)()()(−
=

−
=

−
 (4.40)

where

































−

















=−=

















z

y

x

z

y

x

z

y

x

a

a

a

b

b

b

c

c

c

)(ab (4.41)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

107

Finally, virtual data is acquired equating the line equation (of each ray

vector) and the plane equation (of each plane), solving it to find the intersection

points, and then computing the distances r, between these points and the LRF.

Figure 4.13 and Figure 4.14 show a scan where the position of the virtual

LRF sensor is x = 2.0, y = 12.3, z = 0.4 and θ= 30° while the angle α ranges from -

90° to 90° (181 rays), with a constant angle β= 10°.

Figure 4.13: Virtual LRF readings in a simulated environment (top view).

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

108

Figure 4.14: Virtual LRF readings in a simulated environment, from two different

points of view.

4.3.3.
Error introduction in virtual data

The LRF suffers from two types of errors: systematic and statistical.

Systematic error can be reduced to acceptable limits by a good calibration or

replacing the faulty sensor. However statistical errors are always present in the

measurements. Thus for LRFs, each manufacturer gives in general the following

three ways to represent the statistical error:

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

109

• By standard deviation. The standard deviations (stdv) of the

measurements are given. For example the LRF SICK, model LMS200,

has a stdv of 5mm, and the model LMS291 has a stdv of 10mm.

• By a percentage of the measurement or by a fixed number. For

instance, the LRF SICK, model LMS291-S05 has an error of +/- 10mm.

• By a fixed number until a certain range, and beyond that by a

percentage. For instance, the LRF HOKUYO, model URG-04LX, has an

error of +/- 10mm in the range from 0 to 1m and, beyond that, 1% of the

measurement. The model URG-04LX-UG01 has an error of +/- 30mm in

the range from 0 to 1m and beyond that, 3% of the measurement.

These ways of expressing the error can be simulated and introduced in the

distances r, virtually measured from the presented simulator.

The above presented simulator description just focused in its basic

functionalities, however there are innumerable improvements that can be made,

especially regarding the performance in time response. Solving equations for

many planes/rectangles and lines is computationally expensive. Reference [31] a

simulated 3D laser measurement system is presented, based on LMS SICK 200

mounted on a rotational platform. This simulator uses multi core processing

power to generate 3D data. In [32] a simulator for airborne altimetric LIDAR is

presented. This simulator is conceived having three components: terrain

component, sensor component and platform component.

4.4.
Scan Matching

One of the objectives of this work is to map an environment without using

odometry information. Thus, the unique available information is taken from the

scans made by the Laser Range Finder (LRF). To estimate the robot movement,

the alignment of two consecutive scans needs to be performed.

It is important to notice that the scan matching searches for the displacement

between two consecutive scans, but this displacement is not necessarily the robot

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

110

displacement, since LRF may be mounted away from the robot center. To

calculate the robot movement it is necessary to know where the LRF is situated on

the robot, specifically where the LRF is located with respect to the coordinate

system of the robot.

As described in Section 2.3.3, the scan matching method used in this work

is the Normal Distribution Transform (NDT). This method was selected basically

because it has a featureless representation of the environment, consequently it

doesn’t need search for correspondences in the scans.

NDT uses Newton´s algorithm to minimize the function f = −score. In most

systems, the initial estimate of the solution is given by odometry information. But

large error in the initial position estimate can contribute to the non-convergence of

the algorithm.

Therefore, to generate a robust algorithm, in this work a Genetic Algorithm

(GA) is used for optimization, from the Differential Evolution routines described

in Section 2.4.5.

4.4.1.
Differential Evolution Optimization for NDT

First, let’s rewrite eq. (2.15)

 ∑ 






 −′−′
−=

−

i

iiii qxqx
score

2

)(Σ)(
exp)(

1

i

T

p (4.42)

The outline of this optimization, given two scans (the first and the second

one), is as follows:

1. Build the NDT of the first scan, as described in Section 2.3.3.

2. Use the first scan to evaluate the distribution of its points using eq.

(4.42). This means that the vector of parameters must be p =[0 0 0]
T
 and

the score(p) will give a value that is the maximum possible. This is,

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

111

because the same scan is used to build the NDT and to evaluate the

score. Let’s call this maximum value A.

3. Filter the second scan, in order to eliminate regions with high density

readings (this will be explained in Section 4.4.3).

4. Initialize the ED algorithm, giving it the filtered second scan and the

function A−−−−score(p) as the fitness function. That is, ED should minimize

this function, estimating the vector p and evaluating the filtered second

scan into the NDT of the first scan.

The use of ED is robust and useful to estimate the vector p, which in this 2D

case is composed by the translation (∆x, ∆y) and rotation (∆θ) between scans. This

tree displacement values are the variables to be codified; thus, one chromosome is

composed as:

Figure 4.15: Chromosome composition

and are represented by real numbers. The fitness function, as exposed above, is

given by:

 ∑ 






 −′Σ−′
−−=

−

i

i

T

Fitness
2

)()(
exp

1

iiii qxqx
A (4.43)

• The Stopping Criterion

The stopping criterion used in this optimization is given by two values.

The first is the Fitness value; thus, the optimizations stops if the fitness values

is less than 1.0 (this value was acquired empirically). The second stopping

criterion is the number of generations, established in 50 generations; although

this criterion value is varied for analysis purposes in Section 5.1.1.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

112

• The Search Space

Looking up in real data, references [8] and [33], most robot

displacements are in its face direction; lateral movements are minimal because

they are due to sliding. Another behavior in robots movements is that backward

displacements are few and short. Thus, the search space for the three variables

in the estimated vector p is:

Table 4.4: Search space for vector p

Variable Min value Max value

∆x -0.25 m 0.25 m

∆y -0.50 m 1.00 m

∆θ -20.00 ° 20.00 °

In this way, the translation and rotation between two scans is limited by

this search space. These values were empirically defined such that they

guarantee enough similar information in two consecutive scans in order to

mach them.

This search space and the LRF’s scanning frequency (which will be

discussed later) therefore might limit the maximum lineal and angular velocity

of the robot. However, the LRF’s scans are sufficiently fast for most achievable

robot speeds for non-airborne systems. Therefore, the search space plays a

minor role in limiting the robot speed.

• DE Parameters

The following parameters used in DE for scan matching optimization

were empirically acquired.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

113

Table 4.5: DE Optimization Parameters.

Parameter Value

Population size (NP) 100

Number of generations 50

Scaling Factor (F) 1.00

Crossover constant (CR) 0.95

Some consideration should be taken into account before using this ED

optimization, as explained next.

4.4.2.
Parameters and Considerations

a. Environment considerations

The environment to be mapped needs variety. E.g. long corridors

without doors or any wall-shape variations will lead to poor scan

matching performance, the ED will result in an estimated vector

[0 0 0]=p . How long these corridors can be without compromising

scan matching depends on the LRF’s maximum range, e.g., if the LRF’s

range is 8m, then the length of such corridor should be less than this

value. But note that there are LRFs such as SICKs that have more than

50 meters in range.

In the same way, the width of these corridors should be less than LRF’s

range, to ensure that the robot will pickup data from both sides (left and

right) of the sensor position.

b. LRF Considerations

Perhaps the most known LRF in Robotic is the SICK. SICK has a set of

LRFs for many applications, and the most popular being the family of

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

114

LMS-200. Thus, for example, the SICK LMS-200-3016 model has the

following main features [34]:

Table 4.6: SICK LMS-200-3016 features.

Field of view 180 °

Scanning Frequency 75 Hz

Operating range 0 m … 80 m

Angular resolution 0.25° , 0.5°, 1.0°

Systematic Error +/- 15mm

Statistical Error +/- 5mm

The scanning frequency of the above SICK is 75Hz, meaning 13.33 ms

per scan. Thus with such data, it is possible to calculate the maximum

linear and angular velocity of the LRF in order to guarantee that the

movement of the robot does not affect the LRF’s readings.

The following simplified equations could help to estimate these

maximum speed as a function of the LRF’s scanning frequency.

 st fv *max ε= (4.44)

 sr f*max εω = (4.45)

where fs is the scanning frequency of the LRF, and the parameters εt and

εr are the maximum error introduced by the robot’s movement into the

scan readings. For example, if the desired error must be at most 5mm in

translation, and the scanning frequency of the LRF is 75 Hz, then the

maximum speed of the LRF is vmax = 0.375 m/s, while for a desired

error of up to 0.25° in rotation, then wmax = 0.327 rad/s.

Note that this maximum values in translation are referred to LRF

speeds, which are not necessarily the same as the robot speed,

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

115

depending on where the LRF is mounted on the robot and if the robot is

making a turn.

4.4.3.
Scan Filtering

The value of eq. (4.42) is influenced by the density of the readings. Regions

with higher reading density are produced when the robot is close to a wall, thus

eq. (4.42) results in higher values in this regions, see Figure 4.16. This situation is

not desirable, as seen in [35]. The ED optimization could give us mismatched

scans, as Figure 4.17, since such oversampling in one small region could

negatively affect the matching of regions further away.

Figure 4.16: Density regions produced by a robot situated close to the right wall.

Region with
higher density
of readings

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

116

Figure 4.17: Mismatched scans, showing the NDT of a first scan (grayscale) and a

second scan (red dots). The right-bottom wall produces a high number of readings,

bringing down the second scan and compromising the match.

To overcome this situation this work uses the approach used by [35],

replacing small clouds of close points by their center of gravity. This has the

effect of smoothing the distribution of points over the scan. It also greatly reduces

the number of scan points, without loosing too much information.

The idea behind this filter is to move a circular window with fixed radius

over the scan and to replace the readings inside the window with their center of

gravity. The radius of the window defines the minimum distance between the

points in the filtered scan. This radius has to be defined experimentally. Low

values for this parameter do not solve the influence of the readings density, while

high values may render the resulting scan too sparse. In this work, this parameter

is set to 10 cm.

Figure 4.18 shows the same scan points of Figure 4.16, before filtering (left)

and after filtering (right). Reducing the number of scan points also improves the

speed of the ED optimization.

Region with
higher density
of readings

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

117

Figure 4.18: Scan filtering. Original scan with 171 points (left) and filtered scan with

59 points (right).

4.5.
DP-SLAM

The DP-SLAM algorithm is presented in this work in the form of

flowcharts. The detailed implementation of DP-SLAM is too extensive to be

presented here. However the code used in this work is free, available to download

from [8]. This code was modified in this work to include scan matching as a

motion model, as explained later.

As explained in Section 3.2.3, DP-SLAM uses a hierarchical algorithm. The

relationships between the low and high levels are shown in Figure 4.19. Here, the

input data is composed by the odometry and the range scans. Thus, each position,

estimated by the odometry reading, has attached its range scan. A piece of data is

used as input to low level SLAM. The output is the best estimated trajectory

attached with its corresponding range scans.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

118

Figure 4.19: DP-SLAM flow chart

Figure 4.20 shows the low SLAM flowchart. Notice that, in the beginning,

all los particles are located in an initial position, and using the firs data scan a low-

map is printed. This initial position and low-map is used by the subsequent t+1

iteration.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

119

Figure 4.20: Low (level) DP-SLAM flow chart

As show in Section 3.2.3, DP-SALAM uses a particle filter to track the

robot position. Thus the motion model is used to predict (i.e. generate samples)

and the perception model is used for particles weighing. A low-map is printed

each iteration, using the best particle and its ancestors. Note that the best particle

at iteration t, may not be a child of the best particle at iteration t−1.

The output of the Low SLAM (LSLAM) is used by the High SLAM

(HSLAM), as shown in the Figure 4.19. Note that HSLAM is slightly similar to

LSLAM, but instead of sampling robot positions, HSLAM samples robot

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

120

trajectories. Also both low an high, use the same perception model, but their laser

variances are different. The LSLAM is the basic SLAM algorithm, working

unperturbed while the HSLAM is working with slightly different data and as such,

requires a different laser noise model. With a “rigid” trajectory passed up from the

LSLAM, there is less room for minor perturbations, and certain amount of

assumed drift. All of this is included in the high level laser variance, which needs

to be correspondingly larger [6]. Empirical results show that using a standard

deviation of 7cm at the higher level works well [6].

Finally the High SLAM output is the best High Map and robot path.

4.5.1.
Motion Model

The motion model proposed by Eliazar [6], is shown in eq. (4.46).



















+

+++++

+++++

=



















−

−−−

−−−

BR

BRCBRDyR

BRCBRDxR

R

yR

xR

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

1

111

111

)2/)(sin()2/sin(

)2/)(cos()2/cos(

θ

θθ

θθ

θ

π

π

 (4.46)

The new position Rt=[Rxt , Ryt , Rθt] depends on the last robot position Rt-1

and the parameters B, C and D. The value (Rθt-1 + B/2) is called the major axis

movement, and both B and D are expected to be distributed normally distributed

with respect to the reported odometry values b and d (amount of rotational and

translational movement, respectively). But the mean of each B and D will scale

linearly with both b and d, while the variance will scale with b
2
 and d

2
. C is an

extra lateral translation term, which is present to model shift in the orthogonal

direction of the major axis. This axis, called minor axis, is at angle (Rθt-1 +

(B+π)/2). In this view, B, C and D are all conditionally Gaussian given b and d:

),(~

),(~

),(~

2222

2222

2222

DbDdDbDd

CbCdCbCd

BbBdBbBd

bdbdD

bdbdC

bdbdB

σσµµ

σσµµ

σσµµ

++

++

++

Ν

Ν

Ν

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

121

where µAx is the coefficient for the contribution of the odometry term x to the

mean of the distribution over A. DP-SLAM uses an automatic parameter estimator

to obtain these µAx.

Note that the above implementations assume that odometry readings are

available. This work, on the other hand, does not make use of odometry

information. This is obtained instead from scan matching. In this way, the “scan

odometry” consist of tree displacements: ∆x, ∆y, ∆θ, displacements that are

referenced to the current robot position. Because scan matching is used, no extra

lateral displacement needs to be considered. In the implemented approach, two

consecutive scans are taken from two different points in the environment, as

shown in Figure 4.21.

Figure 4.21: Two consecutive robot positions in an environment.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

122

Figure 4.22: Environment seen from the current robot position (left) and second

robot position (right).

Thus, the scan matching process searches for an alignment of both scans, by

rotating and translating the second scan onto the first scan coordinate system, to

obtain the actual robot displacements ∆x, ∆y, ∆θ. The aligned scans are shown in

Figure 4.23.

Figure 4.23: Aligned scans in a global coordinate system, displacements ∆yR, ∆xR

and ∆θR are related to the first scan coordinate system.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

123

Assuming a perfect scan matching, eq. (4.47) gives the new robot position

by



















∆+

+

+

=



















−

−

−

θθθ

α

α

1

1

1

)sin(

)cos(

t

i

t

i

t

i

t

i

t

i

t

i

R

dyR

dxR

R

yR

xR

 (4.47)

where:

 22)()(yxd ∆+∆=

and
 21 atan2(,)i

t
R y xπθα −= − + ∆ ∆

However, because the scan matching process isn’t perfect, it will give us an

approximation of ∆x, ∆y, and ∆θ. It is expected that these approximations are

distributed according to a distribution shape. The shape of this distribution must

be acquired empirically by comparing the approximated displacement, after

convergence of the scan matching, with actual position (estimated or simulated),

as explained in Chapter 5. Table 4.7 shows an algorithm to sample from this scan

matching motion model, (R t | u t ,R t -1), to generate a random poses i

tR . Lines 1

through 3 perturb the “scan odometry” parameters with noise, drawn from the

error parameters vx, vy and vθ (they will be explained in Chapter 5). The noise

values are then used to generate the new sample pose in lines 4 through 8. of the

algorithm.

Table 4.7: Sample scan matching motion model algorithm, where atan2(∆y, ∆x) is

defined as the generalization of the arc-tangent function of ∆y/∆x over [0, 2π].

 Sample SM Motion Model algorithm (Rt-1, ut)

 1:)(ˆ
xvsamplexx +∆=∆

 2:)(ˆ
yvsampleyy +∆=∆

 3:)(ˆ
θθθ vsample+∆=∆

 4: 22)ˆ()ˆ(yxd ∆+∆=

 5:)ˆ,ˆ(atan221 xyR t ∆∆+−= −
πθα

 6:)cos(1 αdRxRx tt += −

 7:)sin(1 αdRyRy tt += −

 8: θθθ ˆ
1 ∆+= −tt RR

 9: return Rt=(Rxt, Ryt,Rθt)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

124

Finally, the LSLAM output in Figure 4.20, using the proposed motion

model, is a set of changes between positions zyx ˆ,ˆ,ˆ ∆∆∆ and its corresponding

range scans.

4.5.2.
High Motion Model

As seen in Section 3.2.3.4, DP-SLAM states that the effects of drift on low

level maps can be accurately approximated by perturbations to the endpoints of

the robot trajectory used to construct a low level map.

By sampling drift only at endpoints, it will fail to sample some of the

internal structure that is possible in drifts, e.g., it will fail to distinguish between a

linear drift and a spiral drift pattern with the same endpoints. However, the

existence of significant, complicated drift patterns within a map segment would

violate the assumption of moderate accuracy and local consistency within the low

level mapper [6].

The “motion” model in high SLAM is assumed to be Gaussian, and evenly

distributed about the lateral axes. The specific values for these variances are

highly mutable, affected by the specific SLAM algorithm used at the low level,

and the amount of resources used, as well as elements from the robot or the

environment [6].

Figure 4.24 shows how the high motion model works. As shown in Figure

4.19 the first set of data received from the low SLAM is simply printed in the high

map at zero position. This is shown in the Figure 4.24, the first set of data is a set

of variables ,ˆ,ˆ,ˆ zyx ∆∆∆ (represented by a red line) along with its scans

(represented by the green region of the figure).

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

125

Figure 4.24: High Motion Model

The second set of data received from the low SLAM (black line) is not

connected with the endpoint of the first set (red dot). Instead, it is linked with

many samples (black dots), generated by applying the high motion model at the

first endpoint (red dot). Notice, however, that Figure 4.24 shows the second set of

scans (piece of map in blue color) only for one sample (the best sample); thus it is

understood that high SLAM keeps a different map for each sample. Note that the

motion model generates samples not only disturbing the endpoint position, but

also the endpoint rotation.

In the next chapter the presented algorithms are evaluated, both using

simulated data and real experimental data taken from the literature.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

