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4. 
Detailed Implementation 

4.1.  
EKF SLAM 

The Extended Kalman Filter (EKF) fuses all available information about the 

system’s state to compute a state estimate. This is accomplished through a 

recursive three-stage cycle consisting of prediction, observation and update steps. 

 

1. Prediction 

This step involves computing 
tλ  and tΣ .  

As seen in eq. (3.20), 
tλ depends on ut and λt-1. Using a naïve example, 

the control ut could be one of two types: the first specifies the 

translational and rotational velocities, and the second specifies odometry 

information (such as distance traveled, angle turned). That is: 
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 (4.1) 

 

Thus, the uncertainty of the control ut is given by its covariance matrices: 
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 (4.2) 

 

Using a landmark map representation, λt-1 is a vector containing the robot 

and landmark positions at one time step earlier. That is: 

 
[ ]Ttntntttttt yLxLyLxLRRyRx 1111111111 ... −−−−−−−− = θλ

 

        
 Robot position           Landmark 1 position          Landmark n position

 

 (4.3) 
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Figure 4.1 shows the robot position at the previous time step, t−1, and the 

predicted robot position made by the odometry information in a Cartesian 

plane. The predicted state vector
tλ is given by  
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 (4.4) 

 

 

 

Figure 4.1: Robot position (red fill circle) at time t−1 , and predicted robot position 

(white filled circle). 

 

Notice however, that it is not necessary to predict landmark positions. 

Thus, the predicted state vector 
tλ is now 

[ ]Tnnt yLxLyLxLyLxLRyRxR ...2211θλ =  

where 

[ ] [ ]Ttntntttt

T

nn yLxLyLxLyLxLyLxLyLxLyLxL 11121211112211 ...... −−−−−−=  

 

In order to compute the predicted covariance
tΣ , as in eq. (3.21), Ft is 

given by:  
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Notice that Ft is a matrix of size m x m, where m is the dimension of the 

state vector (3+2n), being n the number of landmarks. However since the 

environment is stationary, again, movement of landmarks does not need 

to be predicted, thus the remaining elements in Ft are zero. 

Pt is given by eq. (4.6) where U was described in eq. (4.2) and 
tuJf is 

given by:  
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 (4.6) 

 
 

 

 T

t tutu JfUJfP =

 
 (4.7) 

 

In the same way, 
tuJf is of size m x 2; however the elements related to 

landmarks are zero. Thus the mean
tλ is the predicted state vector of size 

(3+2n) x 1 and 
tΣ the predicted covariance matrix of size (3+2n) x 

(3+2n). 

 

2. Observation 

The observation step computes the innovation vector and the innovation 

covariance, that is [ ])( tt hz λ−  and ( )QHH
T

ttt +Σ
 
in the eq. (3.23) 

and eq. (3.22), respectively. 

The perception function, )( th λ , that represents the predicted landmark 

position seen from the predicted robot position is shown in Figure 4.2. 
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Figure 4.2: Predicted landmark position seen from the predicted robot position 

 

In the same Cartesian plane, the predicted distance and angle ( l and α ) 

from the predicted robot position to the landmark L1, is given by eq. 

(4.8): 
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Note that )( th λ shown in eq. (4.8) is written for the Landmark 1, in the 

same way it must be computed for the n landmarks. Thus, the size of the 

vectors )( th λ  and the zt is 2n. 

To compute the matrix Ht, the Jacobian of h at tλ
 
is given by 
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where 

 
1 1and

x
d L x Rx dy L y Ry= − = −    

 

Notice however, that eq. (4.9) shows Ht using only the Landmark 1, thus 

the true size of Ht is 2 x (3+2n). 
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and Qt represents the covariance matrix for the sensor noise: 
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 (4.11) 

 

 

3. Update 

Finally, this last step computes the desired λt and Σt, using eq. (3.22), 

eq. (3.23) and eq. (3.24). 

It is important to point out that in the beginning, where the robot starts the 

mapping process, it may not see all landmarks, or not even one. Therefore, as the 

robot moves through the environment, the state vector λt grows. Thus, when a new 

landmark is acquired, the state vector is augmented. Figure 4.3 shows how the 

robot sees a new landmark (p) at distance l and at angle α; eq. (4.12) and eq. 

(4.13) show how this is modeled. 
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Figure 4.3: New landmark Lp, is added to the state vector. 
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(4.12) 
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 (4.13) 

 

As it was seen in Section 3.2.2, the covariance matrix Σt, represents the 

relationships landmarks-robot and landmarks-landmarks (because the robot’s pose 

uncertainty correlates landmark positions), these relationships are shown in eq. 

(4.14). 

  (4.14) 
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In the same way the covariance matrix Σt grows in dimension to include the 

new landmark. To do this, the covariance matrices, CLpLp (Lp to Lp), CRLp (robot to 

Lp) and CL1Lp … CLnLp (all old landmarks L1… Ln to Lp) are computed by eq. 

(4.15), eq. (4.16) and eq. (4.17), respectively. 
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where Jzp are the Jacobians: 
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 (4.19) 

 

Finally, the augmented covariance matrix looks like eq. (4.20), representing 

now: n:=n+1 landmarks. 
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 (4.20) 

   

4.2. 
FastSLAM 

The Fast Slam algorithm receives as input the previous distribution p(xt-1), 

as a particle set }...1/{: 11 Nis
i

tt ==Φ −− , the odometry (or control) information 

ut, and the landmark measurements zt. From the idea exposed in Section 2.2.4, the 

FastSLAM algorithm uses the following steps. 

1. Each particle i representing the robot position at time t−1, i

tR 1− , from the 

set Φt-1, is moved following the control vector ut and the motion model.  

 
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(4.21) 

 

Table 4.1 shows an algorithm [1] for sampling from the motion model 

p(R t | u t ,R t -1) to generate a random pose i

tR . Lines 1 and 2 perturb the 

commanded control parameters with noise, drawn from the error 

parameters α1 to α6 (a detailed explanation of these error parameters can 

be found in [1]). The noise values are then used to generate the sample’s 

new pose in lines 4 through 7. 
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Table 4.1: Sample Motion Model Algorithm [1]  

 Sample Motion Model_algorithm (Rt-1, ut )   

 1: )||||(ˆ
11 ttt vsamplevv ωαα ++=    

 2: )||||(ˆ
43 ttt vsample ωααωω ++=    

 3: )||||(ˆ
65 ttvsample ωααγ +=    

 4:  )ˆsin()sin( 1ˆ
ˆ

1ˆ
ˆ

1 tRRRxRx t
v

t
v

tt ∆++−= −−− ωθθ ωω    

 5 )ˆcos()cos( 1ˆ
ˆ

1ˆ
ˆ

1 tRRRyRy t
v

t
v

tt ∆+−+= −−− ωθθ ωω    

 6: ttRR tt ∆+∆+= − γωθθ ˆˆ
1    

 7: return Rt=(Rxt, Ryt,Rθt)   

 

Figure 4.4 illustrates the outcome of this sampling routine. A temporal 

particle set },...,{ˆ 21 p

ttt RRR=Φ  containing all the samples is created, 

where p is the number of samples (particles). 

 

 

Figure 4.4: Sampling. Each black dot represents a possible robot position. 

 

2. Update the estimation of landmarks, using the EKF, the set Φ̂  of robot 

poses samples created in step 1, and the landmark measurements zt.  

Because the j
th

 landmark positions ( 1−t
i

j xL , 1−t

i

j yL ) is known at time t−1 

as well as the poses ( t

i
xR , t

i
yR ) and rotations ( t

i
R θ ) of each particle 
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(obtained in step 1), it is possible to compute the distance and angle 

between them, as shown in Figure 4.5, where 
i

jr̂
 and 

i

jφ̂  are the distance 

and angle between particle i and landmark j. 

 

 

Figure 4.5: Distance and rotation between particle i and landmark j. 

 

Thus, function h used by the EKF is given by: 
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and the Jacobian of 
i

jh , named
i

jH , is 
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(4.23) 

where 

 t

i
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i

jt
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t
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j yRyLbxRxLa −=−= −− 11   
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In addition, the covariance of the landmark positions i

tj 1, −Σ  is known. 

Thus, the landmark updates are computed as follows: 

 QHHS
Ti
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1

1,

−
−Σ= i

j

Ti

j

i

tj

i

j SHW  (4.25) 

   

 
i

jtj hzZ −= ,  (4.26) 

   

 ZW
ii

tj

i

tj 21,, += −λλ  (4.27) 

   

 
Ti

j

i

j

i

j

i

tj

i

tj WSW−Σ=Σ −1,,  (4.28) 

 

where tjz ,  is the j
th

 landmark sensor observation in zt and Q represents 

the covariance matrix for the sensor noise, that is: 
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(4.29)
 

 

The following figure shows the updated landmark j for the particle i, 

namely 
i

tjL , , represented by the blue arrow. 

 

 

Figure 4.6: Updated landmark j for the particle i.  
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Note that this update is made for landmark j and particle i, thus it must 

be repeated n x p times, being n the number of observed landmarks at 

time t (the unobserved landmarks are not updated) and p the number of 

particles. 

This set of median and covariance are added to the temporal particles 

set, as follows: 
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 (4.30) 

 

3. Assign the weight for each particle. Using the measurement vector zt, 

each particle of the temporal particle set Φ̂  is evaluated. 

Because the j
th

 updated landmark positions (
t

i

j xL , 
t

i

j yL ) and  the poses 

( t

i
xR , t

i
yR ) and rotations ( t

i
R θ ) of each particle is known (obtained in 

the 1), it is possible, once more, to compute the distance and angle 

between them, as shown in Figure 4.7, where 
i

jr
 and 

i

jφ
 are the distance 

and angle between particle i and the updated landmark j. 

 

 

Figure 4.7: Distance and rotation between particle i and updated landmark j. 
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Now, the function 
i

jh
 
is 
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and the Jacobian of 
i

jh , defined as
i

jH , becomes 

 



















++

−
++=

∂

∂
=

2222

2222

,

ba

a

ba

b
ba

b

ba

a

h
H

tjL

i

ji

j   (4.32) 

 

where 

 t

i

t

i

jt

i

t

i

j yRyLbxRxLa −=−=   

 

The updated covariance of the landmark positions i

tj ,Σ  is also known. 

Thus, the importance factors (weights) can be computed, as follows: 

 

Table 4.2: Compute weights algorithm; 

 Compute weights_algorithm (Φ̂ , zt ) 

 1: for  i =1 to p  do
 

  

 2: 1=i

tw    

 3:      for  j=1 to n  do
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where, once again, tjz ,  is the j
th

 landmark sensor observation. This set of 

importance factors is added to the temporal particles set: 
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(4.33) 

 

4. Finally, resample. Each particle, in the temporal particle set, is drawn 

(with replacement) with a probability proportional to its importance 

factor. 

Prior to resampling, the weights of particles should be normalized such 

that they sum up to one. Then, compute the cumulative probability 

density function (cdf) which defines intervals that reflect each particle 

“share” of the total probability, as illustrated Figure 4.8. Draw p times 

one particle by generating p independent uniformly distributed random 

numbers r in the interval [0,1]; obviously the “heaviest” particles are 

more likely to be drawn. 

 

 

Figure 4.8: Cumulative probability distribution and a random number r. 

 

The output of resampling step is a new set Φt that possesses many 

duplicates, since particles are drawn with replacement. This new set is 

distributed according to the desired posterior p(xt). 

5. If the measurement vector zt, introduces a new landmark never seen 

before, this needs to be included into the set of particles, as follows. 
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The new observed landmark in zt consist of its distance rq and its angle 

ϕq referenced to the unknown true robot position, as shown in Figure 4.9 

and eq. (4.34).  

 

 

Figure 4.9: New observed landmark Lq. 
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The new landmark Lq must be included within each particle in the 

particle set through its mean and covariance. Thus, for each particle, 

function 
i

qh  and its Jacobian 
i

qH  are given by: 
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The mean is
 

i

j

i

tq h=,λ and the covariance, i

tq ,Σ , is computed using the 

covariance matrix for the sensor noise Q: 
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(4.37) 

 

Now the particle set Φt has a new landmark incorporated, making the 

number of total landmarks become n:=n+1. 

 

4.3.  
Simulator 

To test the grid mapping algorithm, it is necessary to acquire data from a 

LRF mounted on a robot that moves along a structured environment. It is also 

possible to evaluate the algorithm from simulations of both the environment and 

the LRF readings, as long as noise is introduced in the process. 

The simulation of the robot perception based on LRF provides several 

advantages. First of all, it is cheaper than experimenting with a real device. The 

simulator gives the opportunity to concentrate more on the intelligence algorithms 

such as localization and mapping (SLAM). Developing the simulator is easier 

than building a new robot or perception system [30], due to the testability of many 

configurations. 

The simulator used in this work is implemented on Matlab®, explaining as 

follows. 

 

4.3.1. 
3D Environment Simulation 

The element used in the simulator to represent the structured environment is 

the plane. All structured environment elements are approximated using planes; 

straight walls, curved walls, doors, windows, floors, ceilings, etc, can be modeled 

using a group of rectangles. Figure 4.10 shows an environment constructed in 

such a way.  
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Each rectangle in this simulator is defined by four points, from which their 

equation obtained. Thus taking, three points (a,b,c) of the four given points, the 

equation of the plane that contains this rectangle is given by: 

 0)()()( =−+−+− zzyyxx aznaynaxn   (4.38)
 

 

where
 

 

































−

















×
































−

















=−×−=

















z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

a

a

a

c

c

c

a

a

a

b

b

b

n

n

n

)()( acab   (4.39) 

 

 

 

 

Figure 4.10: Simulated structured environment using rectangles. 

  

4.3.2. 
LRF Simulation 

The working principle of the LRF, also known as a LIDAR, is shown in 

Figure 4.11. In the presented simulation, laser ray data are assumed 1° apart, from 
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-90° to 90°.  Note that these values are adjustable parameters in the simulator, 

which can vary depending on the simulated LRF model. 

 

 

 

Figure 4.11: Laser ray from a simulated LRF. 

 

Other adjustable parameters from the simulator are shown in Table 4.3.  

 

Table 4.3: Adjustable parameters on simulated LRF. 

Parameter Units 

Field of view ± rad 

Operating range m 

Angular resolution rad 

Statistical Error ± mm, ±%, stdv (mm) 

 

 

To acquire 3D data, the simulated LRF can be routed along its axis X, from 

0° to 90° as shown in Figure 4.12, emulating a rotational support for the 2D LRF. 
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Figure 4.12: Simulated LRF rotation to acquire 3D data 

 

Each measured laser ray is modeled as a vector in the polar system (r, α, β), 

with the origin as the point where the rays come from, where r represents the 

measured range, the rotation in the Z axis is given by α, and the rotation in X is 

given by β.  

Simulated measurements are obtained by merging the simulated LRF 

routines with the models of the simulated environment. The point that defines the 

position of the LRF in the environment is the same point where the rays come 

from. Thus, the position and rotation of the LRF (in the environment and therefore 

in a global coordinate system) is given by four variables: x, y, z and θ, where θ is 

the rotation on an axis parallel to the Z axis of the global coordinate system. 

With the LRF’s rays and its position and rotation in the global coordinate 

system, the equation for each ray vector is constructed. Using the two points (a 

and b) that define a ray vector, the line equation in 3D is given by 
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Finally, virtual data is acquired equating the line equation (of each ray 

vector) and the plane equation (of each plane), solving it to find the intersection 

points, and then computing the distances r, between these points and the LRF. 

Figure 4.13 and Figure 4.14 show a scan where the position of the virtual 

LRF sensor is x = 2.0, y = 12.3, z = 0.4 and θ= 30° while the angle α ranges from -

90° to 90° (181 rays), with a constant angle β= 10°. 

 

 

Figure 4.13: Virtual LRF readings in a simulated environment (top view). 
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Figure 4.14: Virtual LRF readings in a simulated environment, from two different 

points of view. 

 

4.3.3.  
Error introduction in virtual data 

The LRF suffers from two types of errors: systematic and statistical. 

Systematic error can be reduced to acceptable limits by a good calibration or 

replacing the faulty sensor. However statistical errors are always present in the 

measurements. Thus for LRFs, each manufacturer gives in general the following 

three ways to represent the statistical error: 
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• By standard deviation. The standard deviations (stdv) of the 

measurements are given. For example the LRF SICK, model LMS200, 

has a stdv of 5mm, and the model LMS291 has a stdv of 10mm. 

• By a percentage of the measurement or by a fixed number. For 

instance, the LRF SICK, model LMS291-S05 has an error of +/- 10mm.  

• By a fixed number until a certain range, and beyond that by a 

percentage. For instance, the LRF HOKUYO, model URG-04LX, has an 

error of +/- 10mm in the range from 0 to 1m and, beyond that, 1% of the 

measurement. The model URG-04LX-UG01 has an error of +/- 30mm in 

the range from 0 to 1m and beyond that, 3% of the measurement.  

These ways of expressing the error can be simulated and introduced in the 

distances r, virtually measured from the presented simulator. 

The above presented simulator description just focused in its basic 

functionalities, however there are innumerable improvements that can be made, 

especially regarding the performance in time response. Solving equations for 

many planes/rectangles and lines is computationally expensive. Reference [31] a 

simulated 3D laser measurement system is presented, based on LMS SICK 200 

mounted on a rotational platform. This simulator uses multi core processing 

power to generate 3D data. In [32] a simulator for airborne altimetric LIDAR is 

presented. This simulator is conceived having three components: terrain 

component, sensor component and platform component. 

 

4.4.  
Scan Matching 

One of the objectives of this work is to map an environment without using 

odometry information. Thus, the unique available information is taken from the 

scans made by the Laser Range Finder (LRF). To estimate the robot movement, 

the alignment of two consecutive scans needs to be performed.  

It is important to notice that the scan matching searches for the displacement 

between two consecutive scans, but this displacement is not necessarily the robot 
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displacement, since LRF may be mounted away from the robot center. To 

calculate the robot movement it is necessary to know where the LRF is situated on 

the robot, specifically where the LRF is located with respect to the coordinate 

system of the robot. 

As described in Section 2.3.3, the scan matching method used in this work 

is the Normal Distribution Transform (NDT). This method was selected basically 

because it has a featureless representation of the environment, consequently it 

doesn’t need search for correspondences in the scans. 

NDT uses Newton´s algorithm to minimize the function  f = −score. In most 

systems, the initial estimate of the solution is given by odometry information. But 

large error in the initial position estimate can contribute to the non-convergence of 

the algorithm. 

Therefore, to generate a robust algorithm, in this work a Genetic Algorithm 

(GA) is used for optimization, from the Differential Evolution routines described 

in Section 2.4.5. 

 

4.4.1.  
Differential Evolution Optimization for NDT 

First, let’s rewrite eq. (2.15)  

 ∑ 






 −′−′
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−
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iiii qxqx
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2
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1

i

T

p   (4.42) 

 

The outline of this optimization, given two scans (the first and the second 

one), is as follows: 

1. Build the NDT of the first scan, as described in Section 2.3.3. 

2. Use the first scan to evaluate the distribution of its points using eq. 

(4.42). This means that the vector of parameters must be p =[0 0 0]
T
 and 

the score(p) will give a value that is the maximum possible. This is, 
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because the same scan is used to build the NDT and to evaluate the 

score. Let’s call this maximum value A. 

3. Filter the second scan, in order to eliminate regions with high density 

readings (this will be explained in Section 4.4.3). 

4. Initialize the ED algorithm, giving it the filtered second scan and the 

function A−−−−score(p) as the fitness function. That is, ED should minimize 

this function, estimating the vector p and evaluating the filtered second 

scan into the NDT of the first scan. 

The use of ED is robust and useful to estimate the vector p, which in this 2D 

case is composed by the translation (∆x, ∆y) and rotation (∆θ) between scans. This 

tree displacement values are the variables to be codified; thus, one chromosome is 

composed as: 

 

 

Figure 4.15: Chromosome composition 

 

and are represented by real numbers. The fitness function, as exposed above, is 

given by: 

 ∑ 
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• The Stopping Criterion 

The stopping criterion used in this optimization is given by two values. 

The first is the Fitness value; thus, the optimizations stops if the fitness values 

is less than 1.0 (this value was acquired empirically). The second stopping 

criterion is the number of generations, established in 50 generations; although 

this criterion value is varied for analysis purposes in Section 5.1.1. 
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• The Search Space 

Looking up in real data, references [8] and [33], most robot 

displacements are in its face direction; lateral movements are minimal because 

they are due to sliding. Another behavior in robots movements is that backward 

displacements are few and short.  Thus, the search space for the three variables 

in the estimated vector p is: 

 

Table 4.4: Search space for vector p 

Variable Min value Max value 

∆x -0.25 m 0.25 m 

∆y -0.50 m 1.00 m 

∆θ -20.00 °  20.00 ° 

 

In this way, the translation and rotation between two scans is limited by 

this search space. These values were empirically defined such that they 

guarantee enough similar information in two consecutive scans in order to 

mach them. 

This search space and the LRF’s scanning frequency (which will be 

discussed later) therefore might limit the maximum lineal and angular velocity 

of the robot. However, the LRF’s scans are sufficiently fast for most achievable 

robot speeds for non-airborne systems. Therefore, the search space plays a 

minor role in limiting the robot speed. 

 

• DE Parameters 

The following parameters used in DE for scan matching optimization 

were empirically acquired. 
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Table 4.5: DE Optimization Parameters. 

Parameter Value 

Population size (NP) 100 

Number of generations 50 

Scaling Factor (F) 1.00 

Crossover constant (CR) 0.95 

 

Some consideration should be taken into account before using this ED 

optimization, as explained next. 

 

4.4.2.  
Parameters and Considerations 

 

a. Environment considerations  

The environment to be mapped needs variety. E.g. long corridors 

without doors or any wall-shape variations will lead to poor scan 

matching performance, the ED will result in an estimated vector

[0 0 0]=p . How long these corridors can be without compromising 

scan matching depends on the LRF’s maximum range, e.g., if the LRF’s 

range is 8m, then the length of such corridor should be less than this 

value. But note that there are LRFs such as SICKs that have more than 

50 meters in range. 

In the same way, the width of these corridors should be less than LRF’s 

range, to ensure that the robot will pickup data from both sides (left and 

right) of the sensor position.  

 

b. LRF Considerations  

Perhaps the most known LRF in Robotic is the SICK. SICK has a set of 

LRFs for many applications, and the most popular being the family of 
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LMS-200. Thus, for example, the SICK LMS-200-3016 model has the 

following main features [34]: 

 

Table 4.6: SICK LMS-200-3016 features. 

Field of view 180 ° 

 

Scanning Frequency 75 Hz 

Operating range 0 m … 80 m 

Angular resolution 0.25° , 0.5°, 1.0°  

Systematic Error +/- 15mm 

Statistical Error +/- 5mm 

 

The scanning frequency of the above SICK is 75Hz, meaning 13.33 ms 

per scan. Thus with such data, it is possible to calculate the maximum 

linear and angular velocity of the LRF in order to guarantee that the 

movement of the robot does not affect the LRF’s readings. 

The following simplified equations could help to estimate these 

maximum speed as a function of the LRF’s scanning frequency. 

 st fv *max ε=  (4.44) 

 sr f*max εω =  (4.45) 

 

where fs is the scanning frequency of the LRF, and the parameters εt and 

εr are the maximum error introduced by the robot’s movement into the 

scan readings. For example, if the desired error must be at most 5mm in 

translation, and the scanning frequency of the LRF is 75 Hz, then the 

maximum speed of the LRF is vmax = 0.375 m/s, while for a desired  

error of up to 0.25° in rotation, then wmax = 0.327 rad/s. 

Note that this maximum values in translation are referred to LRF 

speeds, which are not necessarily the same as the robot speed, 
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depending on where the LRF is mounted on the robot and if the robot is 

making a turn.  

 

4.4.3.  
Scan Filtering 

The value of eq. (4.42) is influenced by the density of the readings. Regions 

with higher reading density are produced when the robot is close to a wall, thus 

eq. (4.42) results in higher values in this regions, see Figure 4.16. This situation is 

not desirable, as seen in [35]. The ED optimization could give us mismatched 

scans, as Figure 4.17, since such oversampling in one small region could 

negatively affect the matching of regions further away.  

 

 

Figure 4.16: Density regions produced by a robot situated close to the right wall. 

 

 

 

 

Region with 
higher density 
of readings 
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Figure 4.17: Mismatched scans, showing the NDT of a first scan (grayscale) and a 

second scan (red dots). The right-bottom wall produces a high number of readings, 

bringing down the second scan and compromising the match.  

 

To overcome this situation this work uses the approach used by [35], 

replacing small clouds of close points by their center of gravity. This has the 

effect of smoothing the distribution of points over the scan. It also greatly reduces 

the number of scan points, without loosing too much information.  

The idea behind this filter is to move a circular window with fixed radius 

over the scan and to replace the readings inside the window with their center of 

gravity. The radius of the window defines the minimum distance between the 

points in the filtered scan. This radius has to be defined experimentally. Low 

values for this parameter do not solve the influence of the readings density, while 

high values may render the resulting scan too sparse. In this work, this parameter 

is set to 10 cm.  

Figure 4.18 shows the same scan points of Figure 4.16, before filtering (left) 

and after filtering (right). Reducing the number of scan points also improves the 

speed of the ED optimization. 

 

Region with 
higher density 
of readings 
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Figure 4.18: Scan filtering. Original scan with 171 points (left) and filtered scan with 

59 points (right). 

 

4.5. 
DP-SLAM 

The DP-SLAM algorithm is presented in this work in the form of 

flowcharts. The detailed implementation of DP-SLAM is too extensive to be 

presented here. However the code used in this work is free, available to download 

from [8]. This code was modified in this work to include scan matching as a 

motion model, as explained later. 

As explained in Section 3.2.3, DP-SLAM uses a hierarchical algorithm. The 

relationships between the low and high levels are shown in Figure 4.19. Here, the 

input data is composed by the odometry and the range scans. Thus, each position, 

estimated by the odometry reading, has attached its range scan. A piece of data is 

used as input to low level SLAM. The output is the best estimated trajectory 

attached with its corresponding range scans. 
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Figure 4.19: DP-SLAM flow chart 

 

Figure 4.20 shows the low SLAM flowchart. Notice that, in the beginning, 

all los particles are located in an initial position, and using the firs data scan a low-

map is printed. This initial position and low-map is used by the subsequent t+1 

iteration. 
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Figure 4.20: Low (level) DP-SLAM flow chart 

 

As show in Section 3.2.3, DP-SALAM uses a particle filter to track the 

robot position. Thus the motion model is used to predict (i.e. generate samples) 

and the perception model is used for particles weighing. A low-map is printed 

each iteration, using the best particle and its ancestors. Note that the best particle 

at iteration t, may not be a child of the best particle at iteration t−1.  

The output of the Low SLAM (LSLAM) is used by the High SLAM 

(HSLAM), as shown in the Figure 4.19. Note that HSLAM is slightly similar to 

LSLAM, but instead of sampling robot positions, HSLAM samples robot 
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trajectories. Also both low an high, use the same perception model, but their laser 

variances are different. The LSLAM is the basic SLAM algorithm, working 

unperturbed while the HSLAM is working with slightly different data and as such, 

requires a different laser noise model. With a “rigid” trajectory passed up from the 

LSLAM, there is less room for minor perturbations, and certain amount of 

assumed drift. All of this is included in the high level laser variance, which needs 

to be correspondingly larger [6]. Empirical results show that using a standard 

deviation of 7cm at the higher level works well [6]. 

Finally the High SLAM output is the best High Map and robot path. 

 

4.5.1.  
Motion Model 

The motion model proposed by Eliazar [6], is shown in eq. (4.46).  
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The new position Rt=[Rxt , Ryt , Rθt] depends on the last robot position Rt-1 

and the parameters B, C and D. The value (Rθt-1 + B/2) is called the major axis 

movement, and both B and D are expected to be distributed normally distributed 

with respect to the reported odometry values b and d (amount of rotational and 

translational movement, respectively). But the mean of each B and D will scale 

linearly with both b and d, while the variance will scale with b
2
 and d

2
. C is an 

extra lateral translation term, which is present to model shift in the orthogonal 

direction of the major axis. This axis, called minor axis, is at angle (Rθt-1 + 

(B+π)/2). In this view, B, C and D are all conditionally Gaussian given b and d:  
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where µAx is the coefficient for the contribution of the odometry term x to the 

mean of the distribution over A. DP-SLAM uses an automatic parameter estimator 

to obtain these µAx.  

Note that the above implementations assume that odometry readings are 

available. This work, on the other hand, does not make use of odometry 

information. This is obtained instead from scan matching. In this way, the “scan 

odometry” consist of tree displacements: ∆x, ∆y, ∆θ, displacements that are 

referenced to the current robot position. Because scan matching is used, no extra 

lateral displacement needs to be considered. In the implemented approach, two 

consecutive scans are taken from two different points in the environment, as 

shown in Figure 4.21. 

 

 

  

Figure 4.21: Two consecutive robot positions in an environment.  

 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



122 

 

 

Figure 4.22: Environment seen from the current robot position (left) and second 

robot position (right).  

 

Thus, the scan matching process searches for an alignment of both scans, by 

rotating and translating the second scan onto the first scan coordinate system, to 

obtain the actual robot displacements ∆x, ∆y, ∆θ. The aligned scans are shown in 

Figure 4.23.  

 

 

 

Figure 4.23: Aligned scans in a global coordinate system, displacements ∆yR, ∆xR 

and ∆θR are related to the first scan coordinate system. 
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Assuming a perfect scan matching, eq. (4.47) gives the new robot position 

by 
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where: 

 22 )()( yxd ∆+∆=
   

and
    21 atan2( , )i

t
R y xπθα −= − + ∆ ∆  

 
 

 

However, because the scan matching process isn’t perfect, it will give us an 

approximation of ∆x, ∆y, and ∆θ. It is expected that these approximations are 

distributed according to a distribution shape. The shape of this distribution must 

be acquired empirically by comparing the approximated displacement, after 

convergence of the scan matching, with actual position (estimated or simulated), 

as explained in Chapter 5. Table 4.7 shows an algorithm to sample from this scan 

matching motion model, (R t | u t ,R t -1), to generate a random poses i

tR . Lines 1 

through 3 perturb the “scan odometry” parameters with noise, drawn from the 

error parameters vx, vy and vθ (they will be explained in Chapter 5). The noise 

values are then used to generate the new sample pose in lines 4 through 8. of the 

algorithm. 

 

Table 4.7: Sample scan matching motion model algorithm, where atan2(∆y, ∆x) is 

defined as the generalization of the arc-tangent function of ∆y/∆x over [0, 2π]. 

 Sample SM Motion Model algorithm (Rt-1, ut )   

 1: )(ˆ
xvsamplexx +∆=∆    

 2: )(ˆ
yvsampleyy +∆=∆    

 3: )(ˆ
θθθ vsample+∆=∆    

 4: 22 )ˆ()ˆ( yxd ∆+∆=
 

  

 5: )ˆ,ˆ(atan221 xyR t ∆∆+−= −
πθα

   

 6: )cos(1 αdRxRx tt += −    

 7: )sin(1 αdRyRy tt += −    

 8: θθθ ˆ
1 ∆+= −tt RR

 
  

 9: return Rt=(Rxt, Ryt,Rθt)   
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Finally, the LSLAM output in Figure 4.20, using the proposed motion 

model, is a set of changes between positions zyx ˆ,ˆ,ˆ ∆∆∆  and its corresponding 

range scans. 

 

4.5.2.  
High Motion Model 

As seen in Section 3.2.3.4, DP-SLAM states that the effects of drift on low 

level maps can be accurately approximated by perturbations to the endpoints of 

the robot trajectory used to construct a low level map.  

By sampling drift only at endpoints, it will fail to sample some of the 

internal structure that is possible in drifts, e.g., it will fail to distinguish between a 

linear drift and a spiral drift pattern with the same endpoints. However, the 

existence of significant, complicated drift patterns within a map segment would 

violate the assumption of moderate accuracy and local consistency within the low 

level mapper [6].  

The “motion” model in high SLAM is assumed to be Gaussian, and evenly 

distributed about the lateral axes. The specific values for these variances are 

highly mutable, affected by the specific SLAM algorithm used at the low level, 

and the amount of resources used, as well as elements from the robot or the 

environment [6].  

Figure 4.24 shows how the high motion model works. As shown in Figure 

4.19 the first set of data received from the low SLAM is simply printed in the high 

map at zero position. This is shown in the Figure 4.24, the first set of data is a set 

of variables ,ˆ,ˆ,ˆ zyx ∆∆∆  (represented by a red line) along with its scans 

(represented by the green region of the figure).  
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Figure 4.24: High Motion Model 

 

The second set of data received from the low SLAM (black line) is not 

connected with the endpoint of the first set (red dot). Instead, it is linked with 

many samples (black dots), generated by applying the high motion model at the 

first endpoint (red dot). Notice, however, that Figure 4.24 shows the second set of 

scans (piece of map in blue color) only for one sample (the best sample); thus it is 

understood that high SLAM keeps a different map for each sample. Note that the 

motion model generates samples not only disturbing the endpoint position, but 

also the endpoint rotation. 

In the next chapter the presented algorithms are evaluated, both using 

simulated data and real experimental data taken from the literature. 
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