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3. 
SLAM Solutions 

3.1.  
Gaussian Filter SLAM Solutions 

“Historically, Gaussian Filters constitute the earliest tractable 

implementations of the Bayes Filter for continuous spaces”. It could say that they 

are also by far the most popular family of techniques to date – despite a number of 

limitations [1]. 

Gaussian assumes the idea that beliefs are represented by multivariate 

normal distributions: 

  )}()(exp{)2det()( 1

2
12

1

λλπ −Σ−−Σ= −
−

xxxp
T   (3.1) 

 

The distribution over the variable x is characterized by two sets of 

parameters: the mean λ and the covariance Σ. The mean has the same 

dimensionality of the state x. The covariance is a symmetric quadratic matrix, 

positive semi-definite, and its dimension is the dimensionality of the state x 

squared. Hence, the dimension of the covariance matrix depends quadratically on 

the dimension of the state vector x. 

 

3.1.1.  
Kalman Filter SLAM 

“Probably the best studied technique for implementing Bayes filter is the 

Kalman Filter” [1]. “The Kalman Filter (KF) was developed by R.E. Kalman, 

whose prominent paper on the subject was published in 1960” [4].   

The KF is an algorithm which processes data and estimates variable values. 

In SLAM context, the variable values to be estimated consist of the robot position 
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and landmark locations. The data to be processed may be actuator inputs, range 

sensor readings, motion sensors and digital cameras of the mobile robot. Thus, the 

KF utilizes all available data to simultaneously estimate robot position and 

generate a landmark map. In [23] it is explained that KF is a set of mathematical 

equations that provides an efficient computational (recursive) mean to estimate 

the estate of a process, in a way that minimizes the mean of the squared error. 

 “Under certain conditions, the estimates made by a KF are very good; in 

fact, they are in a sense “optimal” ” [4].  

The Kalman Filter represents probability distributions at time t by the mean 

λt and the covariance Σt. Thus, posterior distributions are Gaussian if the following 

three properties are fulfilled, in addition to the Markov assumptions of the Bayes 

filter [1]. 

1. the next state probability (or motion model), p(xt|ut ,x t -1) in eq. (2.3), 

must be a linear function in its arguments with added Gaussian noise [1]. 

This is expressed by the following equation:  

 tttttt uBxAx ε++= −1  (3.2) 

 

where xt  and xt-1 are state vectors, and ut is the control vector at time t, 

given by 
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At is a square matrix of size m x m, where m is the dimension of the state 

vector xt. Bt is of size m x q, where q is the dimension of the control 

vector ut. The random variable, εt in eq.(3.2), is a Gaussian random 

vector of size m, that models the uncertainty in the state transition. Its 

mean is zero and its covariance is denoted by Pt. A state transition of the 
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form in eq.(3.2) is called a linear Gaussian, “to reflect the fact that it is 

linear in its arguments with additive Gaussian noise” [1]. 

The probability p(xt |ut ,x t - 1) is obtained by plugging eq.(3.2) into the 

multivariate normal distribution, eq. (3.1). The mean of the posterior 

state is given by Atxt-1+Btut  and the covariance by Pt, thus 

 ),|( 1−ttt xuxp   

 )}()(exp{)2det( 1

1

12
12

1

tttttt

T

tttttt uBxAxPuBxAxP −−−−−= −

−

−

−

π

 

 (3.4) 

 

2. the measurement probability (or perception model), p(z t|x t) in eq. (2.3),  

must also be linear in its arguments, with added Gaussian noise [1]: 

 tttt xHz δ+=   (3.5) 

 

Ht is a matrix of size k x m, where k is the dimension of the 

measurement vector zt. The vector δt describes the measurement noise 

with a multivariate Gaussian with zero mean and covariance Qt. In this 

way the measurement probability is given by the following multivariate 

normal distribution [1]: 

 )}()(exp{)2det()|( 1

2
12

1

tttt

T

tttttt xHzQxHzQxzp −−−= −
−

π
  (3.6) 

 

3. finally, the initial probability p(x0) must be normally distributed and, 

denoted by the mean λ0 and the covariance Σ0 [1]: 

 )}()(exp{)2det()( 00

1

0002
12

1
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T

  (3.7) 

 

These three assumptions are sufficient to ensure that the posterior p(xt) is 

always a Gaussian, for any point in time [1].  
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As described above, the Kalman Filter represents probability distributions at 

time t by the mean λt and the covariance Σt.  The equations of the Kalman Filter 

algorithm are depicted in Table 3.1. The inputs of the Kalman Filter is the 

distribution at time t−1, represented by λt-1 and Σt-1, the control ut, and the 

measurement zt. The output is the distribution at time t, represented by λt and Σt. 

 

Table 3.1: The Kalman Filter Algorithm [1]. 

 Kalman_filter_algorithm ( tttt zu ,,, 11 −− Σλ  )   

 1: 
ttttt uBA += −1λλ   (3.8) 

 2: 
t

T

tttt PAA +Σ=Σ −1  (3.9) 

 3: ( ) 1−
+ΣΣ= t

T

ttt

T

ttt QHHHK   (3.10) 

 4: [ ]tttttt HzK λλλ −+=   (3.11) 

 5: 
ttttt HK Σ−Σ=Σ   (3.12) 

 6: return 
 tt Σ,λ

  

 

Let’s describe some of the parameters in above equations.  

• tt λ,Σ are the predicted covariance and median, representing  

∫ −
−−

−− 1

11

11 ),|(),|( t

tt

tttt dxuzxpxuxp
 
in eq. (2.3), obtained by incorporating 

the control ut one step later, but before incorporating the measurement zt. 

• At is called the state transition matrix; it describes how one thinks the state 

will change due to factors not associated with control input. One very nice 

convention in SLAM is that landmarks will remain stationary. Except for 

the first row which correspond to changes in robot position, At will therefore 

appear as a diagonal matrix with each diagonal entry containing identity 

matrices (otherwise At would change location of landmarks, which are 

known to be stationary) [4]. If the robot can have a non-zero velocity at time 

step t, then the state may change even with no actuator input, and the first 

column of At can account for this. To simplify the analysis, let’s assume that 

the robot comes to a halt after each time step. In this case, the actuator input 
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fully specifies the most likely new location of the robot. This means that At 

is just the identity matrix, which could be disregarded. 

• Bt is a matrix that translates control input into a predicted change in state. Its 

values will depend on the representation of the control input. It will vary 

depending on the physical construction of the robot. Because the landmarks 

will remain stationary the only interesting entries of Bt will be in the first 

row. Thus, the idea of eq. (3.8) is that the best guess for the new state will 

be described exactly by the old robot position and how one believes the 

actuators will change this position. 

• Pt is the covariance of the process noise. It accounts for how moving will 

change the confidence on each individual pair of landmarks as well as robot-

landmarks pairs. The entries of Pt will depend on the distance landmarks are 

away from the robot and other known particularities of the environment 

and/or state [4].  

• Qt is the covariance matrix for the range sensor noise, it is used to keep 

track of one’s confidence in the range sensor readings. 

• Ht transforms one’s previous state estimate into a representation used by the 

sensors. In other words, if the sensors had perceived the world state exactly 

as predicted by 
tλ , they would have returned this information in the form

ttH λ . Note that the purpose of Ht is very similar to that of Bt. 

• Finally, Kt is called the Kalman gain. It specifies the degree to which the 

measurement is incorporated into the new state estimate. The magnitudes of 

the values in Kt depend on the predicted covariance
tΣ , relative to the 

combined values of the predicted covariance and sensor uncertainty Qt. 

The Kalman filter is a technique for filtering and prediction in linear 

systems. However, in most real world SLAM situations there will be some non-

linear aspect one might wish to account for. “For example, a robot that moves 

with constant translational and rotational velocity typically moves on a circular 

trajectory, which cannot be described by linear next estate transitions” [1]. Thus 
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the plain Kalman Filters, as discussed above is inapplicable to all but the most 

trivial robotics problems. 

 

3.1.2.  
Extended Kalman Filter SLAM 

The Extended Kalman Filter (EKF) overcomes the linearity assumption [1]. 

Here, in EKF, the assumption is that the next state probability p(xt |ut ,x t - 1), and 

the measurement probability p(z t|x t), are ruled by nonlinear functions f and h, 

respectively. 

 ε+= − ),( 1ttt xufx   (3.13) 

   

 δ+= )( tt xhz

 

(3.14) 

 

This model is a generalization of the linear Gaussian model underlying 

Kalman filters, as stated in eq. (3.2) and eq. (3.5). The function f replaces the 

matrices At and Bt in eq.(3.2) and h replaces Ht in eq. (3.5) [1]. However, the 

distribution is not longer a Gaussian when it is used nonlinear functions, f and h. 

In this way, the distribution update does not possess a closed-form solution. 

Therefore, the EKF calculates an approximation of the true distribution. “Thus, 

the EKF inherits from the Kalman filter the basic belief representation, but it 

differs in that this belief is only approximate, not exact as it was the case in linear 

Kalman Filters” [1].  

To manage this approximation EKF utilizes a (first order) Taylor expansion. 

The Taylor expansion constructs a linear approximation to a function f from its 

value and slope. The slope is given by the following partial derivative [1]:  

 ( )
1

1
1

),(
:,'

−

−
−

∂

∂
=

t

tt
tt

x

xuf
xuf   (3.15) 
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Both the value of f and its slope depend on the argument of f.. Thus f is 

approximated by its value at λt-1 (and at ut), and the linear extrapolation is 

achieved by a term proportional to the gradient of f at λt-1 and ut [1]: 

 
))(,('),(),( 11111 −−−−− −+≈ tttttttt xufufxuf λλλ

 
tF:=  

 

 )(),(),( 1111 −−−− −+= ttttttt xFufxuf λλ  (3.16) 

 

Written in form of Gaussians, the next state probability is approximated by: 

 ),|( 1−ttt xuxp

 

 

 T
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12
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−−−
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−−−−≈ λλπ   

 )]}(),([ 111

1

−−−

−
−−− ttttttt xFufxP λλ

 
 (3.17) 

 

The matrix Ft is often called the Jacobian. The value of the Jacobian 

depends on ut and λt-1, thus it differs for different time points. 

The same linearization is used for the measurement function h. Where, the 

Taylor expansion is developed around 
tλ , the state regarded most likely by the 

robot at the time when it linearizes h [1]: 

 

 
))((')()( ttttt xhhxh λλλ −+≈

 
tH:=  

 

 )()()( ttttt xHhxh λλ −+=   (3.18) 

 

where 
t

t

x

)h(x

∂

∂
=)(' txh . Written in form of Gaussian, one gets: 
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 )|( tt xzp

 

 

 T

tttttt xHhzQ )]()([exp{)2det(
2
12

1

λλπ −−−−≈
−

  

 )]}()([1

tttttt xHhzQ λλ −−−−

 (3.19) 

 

Table 3.2 depicts the Extended Kalman Filter algorithm.  

 

Table 3.2: The EKF Algorithm [1] 

 EKF_algorithm (
tttt zu ,,, 11 −− Σλ )  

 1: ),( 1−= ttt uf λλ  
 (3.20) 

 2: 
t

T

tttt PFF +Σ=Σ −1  
 (3.21) 

 3: ( ) 1−
+ΣΣ= t

T

ttt

T

ttt QHHHK  
 (3.22) 

 4: [ ])( ttttt hzK λλλ −+=  
 (3.23) 

 5: 
ttttt HK Σ−Σ=Σ  

 (3.24) 

 6: return 
 tt Σ,λ

 
 

 

In some ways, the EKF is similar to the (linear) Kalman Filter. The 

difference is that the linear equations in Kalman Filters are replaced by their non-

linear generalization in EKFs. 

A detailed implementation of the EKF algorithm is shown in Section 4.1. 

 

3.2.   
Particle Filter SLAM Solutions 

 

3.2.1.  
Particle Filter Overview 

Particle Filters (PF) are alternatives to Gaussian techniques. They do not 

rely on a fixed functional form of the posterior distribution, such as Gaussians. 
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Instead, they approximate these posterior distributions by a finite number of 

values, each harshly corresponding to a region in state space.  

“The key idea of the PF is that any posterior distribution p(xt) can be 

represented by a set of random state samples drawn from this posterior” [1]. 

Figure 3.1 shows this idea for a Gaussian; instead of representing the distribution 

by a parametric form (the mean and covariance that defines the exponential of a 

normal distribution), PF represents it by a set of samples drawn from this 

Gaussian. As the number of samples goes to infinity, PF tends to converge 

uniformly to the correct posterior distribution. Thus this method can represent any 

arbitrary shape of distribution, making it good for non-Gaussian, multimodal 

distributions. 

 

 

Figure 3.1: Representation of a Gaussian by a set of particles 

 

In PF, the samples are called particles, thus the posterior p(xt) is represented 

by N weighted particles: 

 }...1/,{: Niwx
i

t

i

tt ==Φ  (3.25) 

 

The correspondence between the Bayes Filters and the approximation made 

by particles is given by 

 
ttxp Φ≈)(   (3.26) 

 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



67 

 

In this way, to compute p(xt) it is necessary to find Φt at each time, that is to 

find all values of
i

tx
 
and 

i

tw . As a Bayes Filter algorithm, the PF algorithm 

constructs the distribution p(xt) recursively from the distribution p(xt-1) one time 

step earlier. Thus, PF constructs the particle set Φt recursively from the set Φt-1. 

In Probabilistic Robotics, the process to generate samples 
i

tx  is achieved 

using the prior Φt-1 and the most recent control ut. The desired weight 
i

tw of each 

particle is given using the most recent measurement zt. Table 3.3 shows the most 

basic variant of the PF algorithm[1]. 

 

Table 3.3: Particle Filter Algorithm [1] 

   Particle Filter_algorithm (Φt-1, ut , zt) 

 

 1: 0=Φ=Φ tt  

 2: for  i = 1  to  N  do
 

 3: sample i

tx ~ p(xt | ut ,
i

tx 1− ) 

 4:  i

tw = p(zt |
i

tx ) 

 5: 
i

t

i

ttt wx ,+Φ=Φ  

 6: end for 

 7: for  i = 1  to  N  do 

 8: draw  i  with probability 
i

tw∝  

 9: add i

tx  to 
tΦ  

 10: end for 

 11: return 
tΦ  

 

The algorithm first samples by processing each particle 
i

tx 1−  in the input 

particle set Φt-1 as follows: 

1. Line 3 of table Table 3.3 generates a estimate 
i

tx  for time t based on the 

particle 
i

tx 1−  and the control ut. This step involves sampling for the next 

state transition p(x|ut ,xt-1). Thus the set of particles resulting from 

iterating line 3 N times represents the distribution 

∫ −
−−

−− 1

11

11 ),|(),|( t

tt

tttt dxuzxpxuxp
 
in eq. (2.3). 
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2. Line 4 computes for each particle 
i

tx  the corresponding weight 

(importance factor) 
i

tw using the measurement zt. Thus, each 
i

tw  is the 

probability of the measurement zt under the particle
i

tx , in the way of 

)|( i

t

i

t xzpw t= . 

3. Finally lines 7 to 11 implement as the so-called resampling or 

importance resampling. This lines draw with replacement N particles 

from the temporary set tΦ . The probability of drawing each particle is 

given by its importance factor (weight). The resulting set, Φt, is a set of 

N particles distributed according to the desired p(xt). 

Figure 3.2 shows the Particle Filter algorithm idea. The desired p(xt) is 

shown as a red line and the samples 
i

tx  as blue lines. 

 

 

Figure 3.2: Particle Filter idea. 

 

The PF computes the Bayes filter stated in eq. (2.3) from right to left, as 

shown in the following equation: 
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 ∫ −
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tttttt

tt

t dxuzxpxuxpxzpuzxp η
 

 (3.27) 

  

 

 

 

 

 

3.2.2.  
Fast SLAM 

The Fast SLAM was developed by Montemerlo, Thrun, Koller and 

Wegbreit [24]. Fast SLAM exploits the condition independence properties of the 

SLAM model to break up the problem of localizing and mapping into many 

separate problems. 

As it was seen in Section 3.1, the dimension of the covariance matrix Σt is 

the dimensionality of the state x squared. Thus, the number of elements in the 

covariance matrix depends quadratically on the number of elements in the state 

vector x. This is because the robot’s position uncertainty correlates landmark 

locations, as Figure 3.3 shows. Supposing an observation (L1, L2) made by the 

robot, then, through another observation for L1, one ends up to another position 

for L2. Now, if the assumption on L1 is again different, the conclusion on L2 also 

is. This is the consequence of not knowing the robot’s position precisely. As a 

result, this lack of knowledge on the robot’s position correlates the location of the 

landmarks.  

 

generating samples 
i

tx  from 

the prior distribution p(xt-1) 

using the motion model 

computing  the 

weights
i

tw  using 

the perception 

model 

resampling to 

obtain the 

desired 

distribution p(xt) 

prior distribution from 

the last step ( Φt-1 ) 

motion 

model  

perception 

model  

desired 

distribution ( Φt ) 
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Figure 3.3: Landmark correlation 

 

In this way, if one could know exactly the robot position, there should be no 

predictable relationship between the landmark observations. An important  point 

in SLAM is that the exact robot pose is not known, but insight of conditional 

independence of landmarks, given the pose, is enough to motivate FastSLAM,  

which manages each landmark separately [4] - decoupling into n (number of 

landmarks) independent estimation problems, one for each landmark. Thus, Fast 

SLAM decomposes the SLAM problem into a robot position problem, and a set of 

landmark location estimation problems that are conditioned on the robot position 

estimated. 

Mathematically, decorrelation of the landmark locations leads to a factored 

representation as following: 

 ),|,...,,(),|,( 1

tt

n

tt
uzLLpuzmp

t
R

t
R =   

 ∏=
n

ttt

n

ttttt

n uzRLpuzRpuzLLp t
R ),,|(),|(),|,...,,( 1   (3.28) 

 

This factorization is exact and always applicable to the SLAM problem 

[24]. It decomposes the posterior over robot paths and maps into n+1 recursive 

estimators: one estimator over robot pats p(R
t
| z

t
, u

t
) and n separated landmark 

pose estimators p(Ln|z
t
,u

t
,R

t
)  conditioned on each hypothetical path. 

FastSLAM keeps track of many possible paths simultaneously (superscript t 

of the robot pose R
t
), as opposed to the traditional Kalman Filter, “which does not 

even keep track of a single path, but rather updates a single robot pose” [4]. Thus, 
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Fast SLAM records paths and when the algorithm terminates there will be a 

record of where the robot has been. 

Fast SLAM uses a modified PF for implementing the path estimator, 

p(R
t
| z

t
, u

t
), and the landmark pose estimators ),,|( ttt

n RuzLp  are realized by 

Kalman Filters, using separate filters for different landmarks. Because landmark 

estimation is conditioned on path estimation, each particle in PF has its own local 

landmark estimations. At time t, the i-th particle contains 

      
},...,,,,,,,{: ,,,2,2,1,1

, i

tn

i

tn

i

t

i

t

i

t

i

t

tii

t

i

t Rws ΣΣΣ= λλλ  (3.29) 

 
 

 

 

 

 

where 
i

tn ,λ and 
i

tn ,Σ , are the Gaussian parameters (mean and covariance 

respectively) related with the landmark position i

tnL ,
. To update the landmark-

map for a given path R
i,t

 each observed landmark is processed individually as an 

EKF measurement update from a known robot pose (unobserved landmarks are 

unchanged). 

Bearing the distribution at time t−1 as a set of particles, one gets: 

 }...1/{: 11 Nis i

tt ==Φ −−
  (3.30) 

 

The first version of Fast SLAM algorithm [1] follows the following steps: 

1. for each particle extend its path, R
i,t-1

, to generate a new pose using the 

control ut and the motion model p(R t | u t ,R t - 1).  Mathematically this 

means that the distribution at time t−1, p(R
t - 1

| z
t - 1

, u
t - 1

) becomes 

p(R
t
| z

t - 1
, u

t
). A set of temporal particles is obtained. 

2. update the estimation of landmarks, through the EKF 

 ),,|(),|(),,|( 111 −−−= ttt

ntnt

ttt

n uzRLpRLzpuzRLp η  (3.31) 

 

weight robot’s 
path 

landmark 
1 

landmark 
2 

landmark 
n 
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and, using the new poses generated in the step 1 and the measurement zt, 

compute the new set of 
,

i

n t
λ and 

,

i

n t
Σ . This set of means and covariances 

are added to the temporal particles set. 

3. assign the weight for each particle. This is computed using the result of 

step 1, p(R
t
| z

t - 1
, u

t
), where the measurement zt was not included, and 

using the distribution p(R
t
| z

t
, u

t
), where zt is included 

 
),|(

),|(
1,

,

ttit

ttit
i

t
uzRp

uzRp
w

−
=   (3.32) 

 

after some considerations and probabilistic transformations, the above 

equation is given by: 
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−
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 QHHU
i

t

i

nt

Ti

t

i

t +Σ= − ,1  
(3.34) 

 

where zt is the sensor observation. Note that 
i

tẑ  is the predicted 

observation computed using the landmark position estimated in step 2 

and the robot poses generated in step 1. i

tH
 
is the Jacobian of the 

perception model. This set of importance factors (weights) are added to 

the temporal particles set. 

4. finally, resample. Each particle, in the temporal particle set, is drawn 

(with replacement) with a probability proportional to its importance 

factor. 

A detailed implementation of the Fast Slam 1.0 algorithm is shown in 

Section 4.2. 
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3.2.3. 
DP-SLAM 

The Fast SLAM is a good solution to the SLAM problem when there are 

thousands of landmarks that can be tracked accurately. However tracking 

landmarks is actually very difficult, particularly in environments with 

monochromatic areas or repeating patterns.  

If the robot is using a LRF, the map generated by the laser has no 

landmarks; is rather an occupancy grid, as described in Section 2.2.2. “The robot 

cannot use the range finder to relocate individual points in the grid. However with 

enough data, the robot might not need to worry about reacquiring landmarks in the 

first place” [4]. For example, if there was a contoured object in the environment, 

the robot might align entire occupancy maps by matching up the contour of that 

object. Distributed Particle SLAM (DP-SLAM) [6] attacks SLAM from this 

occupancy grid approach, while simultaneously utilizing the conditional 

independence insight discussed in Fast SLAM. 

“One of the steps in the Fast SLAM algorithm was to generate a new pose 

prediction and a corresponding map prediction” [4]. Thus, the new map prediction 

was based on the previous pose and the control input ut. It cannot predict how 

landmarks will move with respect to the robot anymore because landmarks are not 

dealt with. However it is possible to make a prediction as to how the occupancy 

grid will change. Figure 3.4 shows an example of occupancy grid prediction based 

on a movement of one cell to the right. 

 

 

Figure 3.4: Occupancy grid prediction based on a movement of one cell to the right. 
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Similarly to Fast SLAM, DP-SLAM uses PF, generating new particles 

(poses) by applying probabilistically generated movement vectors to old poses. 

Thus DP-SLAM uses the same method to generate samples based on the motion 

model and the control vector ut. 

However, because the map representation is an occupancy grid, the 

perception model is quite different consequently, the way to assign weights, and 

the map update are quite different too. 

 

3.2.3.1.  
DP-SLAM Map Representation 

DP-SLAM uses an occupancy grid mapping representation, specifically 

stochastic maps, where each square has a sliding scale of various degrees of 

occupancy, as it was seen in Section 2.2.2. 

“The idea of using probabilistic map representation is possibly as old as the 

topic of robotic mapping itself” [6]. Most of the earliest SLAM methods used 

probabilistic occupancy grids and were especially useful for sonar sensors 

susceptible to noisy and/or spurious measurements [6]. 

However, DP-SLAM concentrates on a model for Laser Range Finder. It 

has a method for representing uncertainty in the map, which takes into account the 

distance the laser travels through each grid square.  

Earlier approaches, to estimating the total probability of the scan, would 

trace the scan through the map, giving a weight to the measurement error 

associated with each potential obstacle by the probability that the scan has 

actually reached the obstacle [6]. “In an occupancy grid with partial occupancy, 

each cell is a potential obstacle” [6].  

Thus each grid square has the probability of stopping a laser ray, 

represented by [6]  

 
i

ix

iic exP
ρρ

−

−=1),(  (3.35) 
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where xi is the distance that the laser ray travels through the square i and ρi is 

called the opacity of the square, as shown in Figure 3.5. 

 

 

Figure 3.5: Square representation  

 

The probability that an entire laser ray will have been stopped at some point 

along its trajectory is therefore the cumulative probability that the laser ray is 

interrupted by squares up to and including the last square, n, it reaches: 

 ∑ ∏
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−

=

−===
n

ρx,
1

1

1
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i

i

j
jjciicc xPxPPtruestoppedP ρρ   (3.36) 

 

 

where xi is the traveled distance (the laser ray travels through the square) and ρi 

the opacity of the square i, as shown in Figure 3.6. 

 

 

Figure 3.6: Interaction between the laser ray and the square representation 

 

Inside the summation in eq. (3.36), the first term is the probability that the 

laser ray would be obstructed in the square n. The second term represents the 

probability that each previous square did not obstruct the laser. 

Thus the probability that the laser ray will be interrupted a grid square j is 

P(stop=j), which is computed as the probability that the laser has reached square 

j−1 and then stopped at j : 
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 )),(1)(()|( 1:11:1 −−−== jjcjjc P,ρxPjstopP ρxρx,   (3.37) 

 

where 1:1 −jx
 
and 1:1 −jρ  have interpretations as fragments of the x  and ρ  vectors. 

Figure 3.7 illustrates this, where j=3, the vector },...,{ 21 nxxx=x , and 

},...,{ 21 nρρρ=ρ .  

 

[ ][ ]),(1),(1)1()),(1)(,(),|3( 22112:12:133
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−

ρρ xx  

Figure 3.7: Example of application of eq. (3.37) for a given square j=3. 

 

DP-SLAM also defines a vector δ as a vector of differences, such that δi is 

the distance between the laser distance measurement (the stopping point) and grid 

square i along the trace of the laser ray. Thus, the conditional probability of the 

measurement, given that the laser ray that was interrupted in square i, is 

PL(δi|stop=i), for which  is made the assumption of normally distributed 

measurement noise. Notice that δi terms are only defined if the laser measurement 

observes a specific stopping point, as shown in Figure 3.8; eq. (3.38) is used to 

compute this probability. 

 

 

Figure 3.8: Distance between the square i and the stopping point of the laser ray 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



77 

 

 

 2

2

2

2

1
)|( σ

δ

πσ
δ

i

eistopP iL

−

==   (3.38) 

 

where σ is the standard deviation of the laser measurement. 

Clearly in eq.  (3.38), the lower distance δi (which means that square i is 

closer to the stopping point) the higher the probability. Basically, the idea of this 

vector of differences δ, is to create a probability distribution as shown in Figure 

2.5. 

Finally the probability of the laser measurement L, with an observed 

stopping point, is then the sum, over all grid squares in the range of the laser ray, 

of the product of the conditional probability of the measurement given that the ray 

has stopped at that point, and the probability that the ray stopped in each square: 

 ∑
=

====
n

i
iL istopPistopPtruestoppedLP

1

),|()|(),( ρxδ   (3.39) 

 

To sum it all in a nutshell, DP-SLAM creates two Gaussians. The first 

Gaussian computes the probability distribution of stopping the laser ray by all 

squares along its trajectory (note that measurement zt must be extended by an 

arbitrary extra distance). The second Gaussian computes the probability 

distribution of the measurement zt (as shown in Figure 2.5) according to the 

distance between the stopping point and all squares along its trajectory. Finally 

the weight of this laser ray is obtained by multiplying both distributions.  Thus, 

the weight of an entire scan is the sum of all individual laser ray weight. 

To show how this perception model works, let’s discuss an example. 

Suppose that at time t−1 two equals particles p1 and p2 (supposing that they were 

selected by resampling and hence they are copies of one particle at time t−2), 

having same map m1 and m2 and having the same estimated robot pose R1 and R2 

as shown in the Figure 3.9 (a). 
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Figure 3.9: Example of computing the probability of a laser ray given two sampled 

robot poses. 

 

Now suppose that the robot performs a movement ut and then does a ray 

measurement zt. Using the motion model each estimated robot pose R1 and R2 has 

a new different location (predicted), as shown in Figure 3.9 (b) and (c). Weights 

are acquired by  putting the measurement zt (extending the measurement by an 

arbitrary extra distance – yellow line in the Figure 3.9 (b) and (c)) into the 

predicted robot positions R1 and R2  and then evaluating using eq. (3.39). 
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As illustrated in Figure 3.9 (b) and (c); the sampled robot pose R1 has a 

higher probability (or weight) than the sampled robot R2, as shown in the result 

(dark blue line) of multiplying )|( istopP iL =δ (light blue line) and 

),|( ρxistopPL =  (green line). More details about the opacity parameter, ρ, and 

how the unknown squares (unobserved previously) are treated, can be found in 

[6].  

“DP-SLAM implements a PF over maps and robot poses, using an 

occupancy grid to represent the map to track the placement of objects in the 

environment” [6]. Thus, for a PF to properly track this joint distribution, each 

particle needs to maintain a separated, complete map. During the resampling in 

this PF, each particle could be resampled, and consequently copied, multiple 

times. However, because operations must be performed merely copying maps, a 

direct approach to this method, where a complete map is assigned to each particle, 

is impractical. “For a number of particles sufficient to achieve precise localization 

in a reasonably sized environment, this naïve approach would require gigabytes 

worth of data movement per update” [6]. 

 

3.2.3.2.  
Ancestry Tree 

The greater contribution of DP-SLAM is an efficient representation of the 

map, making map copying more efficient, reducing the memory required to 

represent large numbers of occupancy grids. DP-SLAM achieves this through a 

method called: Distributed Particle Mapping (DP-Mapping), “which exploits the 

significant redundancies between the different maps” [6]. 

A particle from the distribution at time t−1 is called a “parent” and its 

successor (sampled particle) at time t is called “child”, while two children with the 

same parent are “siblings”. If a LRF sweeps out an area of size A << M (where M 

is the area of the total map) and if there are two siblings s1 and s2 (each one with a 

different pose), each sibling will make updates in at most an area of size A to the 

map it inherits form its parent. Thus the maps for s1 and s2 can differ of their 

parent in at most an area of size A, the remainder area of the map is identical. 
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Then DP-SLAM proposes recording a list of changes that each particle makes to 

its parent. 

 

Figure 3.10: Example of particle ancestry tree maintenance  

 

Thus DP-SLAM maintains a so called: particle ancestry tree, that does not 

forget the old particles, because to construct the entire map it is necessary not only 

one particle but also its ancestors. However this creates a new problem: the height 

of the particle ancestry tree will be linear with respect to the amount of iterations 

(each iteration will create a new set of particles). DP-SLAM solves this problem 

by defining a method of collapsing certain branches of the tree. Any particle that 
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does not produce any surviving children can simply be removed; this may cause a 

series of ancestor nodes removal. Additionally, when a particle has only a single 

child, it is possible to merge this particle child with the particle parent and can be 

treated as a single particle. This “pruning” technique is explained in Figure 3.10.  

Figure 3.10 (a) depicts the beginning of the process. At the top of the figure 

is a single particle, where the robot’s pose is represented by a red square, and the 

current map in gray scale. This one particle is resampled many times, to give a 

number of identical children. The, these new particles are each propagated 

forward using the motion model. Thus, in Figure 3.10 (b), each particle represents 

a different pose, and each has a different set of map updates. Then these particles 

are weighed, based on how well the new updates are in agreement with the 

existing map, and finally, the particles are randomly resampled proportionately 

based on these weights, see Figure 3.10 (c).  

At this point some particles have greater weight than others, and therefore 

were resampled more than once. Because the number of particles at each iteration 

is kept constant, consequently there are other particles which were not resampled. 

These particles (childless particles), can be removed from the ancestry tree, due to 

they will have no influence on any future particles, see Figure 3.10 (d). 

 In Figure 3.10 (e) and (f), the new set of particles are again propagated 

forward, and then weighed and resampled. However, on the right of Figure 3.10 

(f), there is a pair of childless particles which can be removed and when this is 

done, their common parent will no longer have any children. Thus, this older 

ancestor can also be removed, as shown in Figure 3.10 (g). Also on the left of 

Figure 3.10 (f), if the childless ancestor particle is removed, there will be a chain 

of ancestor particles (on the left of Figure 3.10 (g)), each with one child. 

Therefore, these nodes can all be merged into a single ancestor particle and 

consequently collapsing the chain (on the left of Figure 3.10 (h)). 

Maintaining the particle ancestry tree in this manner it is guaranteed that the 

tree will have a branching factor of at least two, and the depth of the tree will be 

no greater than the number of particles in each generation [6].  
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3.2.3.3.  
Hierarchical SLAM 

The DP-SLAM provides an accurate and efficient method for building 

maps. However, there are some trajectories, which cover a sufficient amount of 

distance before completing a cycle, for which the accuracy of the map can 

degrade [6]. Small errors are accumulated over several iterations, and although the 

resulting map may look locally consistent, there is a large total error, which is 

more evident when the robot closes a large loop. This behavior over large 

distances is known as “drift”. It is a significant problem faced by essentially all 

current SLAM algorithms [6]. 

As a consequence of violated assumptions or as a consequence of particle 

filtering it is hard to avoid drift. Errors come from three sources: insufficient 

number of particles, coarse precision, and resampling itself (particle depletion). 

The consequence of these errors is a gradual but inevitable accumulation resulting 

from faults to sample, differentiate, or remember a state vector that is sufficiently 

close to the true state.  

 

 

 

 

 

Figure 3.11: Simulated environment (60 x 40 m).  
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Figure 3.11 shows a loop-closed simulated environment. This map consists 

of 183 LRF scans. It was build using DP-SLAM (without hierarchical SLAM) 

with 2800 particles. This loop is large enough that particle diversity is insufficient 

to correct the small errors that occur.  

The reason that a non-hierarchical method cannot manage this data is the 

extreme longevity of the uncertainty. In a large loop, small ambiguities in the 

beginning of the map are not resolved for many thousand iterations [6]. Non 

hierarchical DP-SLAM requires a huge number of particles to maintain this early 

particle diversity. 

 

3.2.3.4.  
Hierarchical Algorithm 

DP-SLAM uses two levels Hierarchical-SLAM where the lowest level 

models the physical process (SLAM itself), while the higher level models errors 

in the lower level. 

“Since the total drift over trajectory is assumed to be a summation of many 

small, largely independent sources of error, it can be well approximated by 

Gaussian distribution” [6].  Thus DP-SLAM states that the effects of drift on low 

level maps can be precisely approximated by perturbations on the robot’s 

trajectory endpoints used to construct a low level map. 

DP-SLAM uses a standard SLAM algorithm for the low level mapping 

process. The low level algorithm input is a small portion of the robot’s trajectory, 

along with the associated observations (range scans). This low level SLAM 

process runs normally, and its output (a trajectory) is treated as distribution over 

motions (motion model) in the higher level SLAM process, to which additional 

noise from drift is added. So the output from each of small mapping is the input 

for a new SLAM process, working at a higher level of time steps.  

Because the sampled trajectory is treated as an atomic motion, this defines 

the placement of the associated observation. “The observation model at the high 
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level is then just the collection of observations that were made at each step along 

this trajectory” [6]. 

The high level SLAM loop for each high level particle is summarized as 

follows [6]: 

1. Sample a high level SLAM state (high level map and robot state). 

2. Perturb the sampled robot state by adding random drift. 

3. Sample a low level trajectory from the distributions over trajectories 

returned by the low level SLAM process. 

4. Compute a high-level weight by evaluating the trajectory and robot 

observations against the sampled high level map, starting from the 

perturbed robot state. 

5. Update the high level map based upon the new observations. 

Figure 3.12 shows an example of hierarchical SLAM. The entire map is 

divided into 10 small maps (light green and light blue to distinguish between 

them). Notice that when the loop is closing, the best path until there (represented 

by red lines) has a misalignment. This means that there is something wrong in its 

trajectory. Because it is using hierarchical DP-SLAM there is enough particle 

diversity and the ambiguities in the beginning of the map can be resolved for, 

now, 9 iterations (10 small maps). 

Thus, resolving ambiguities leads to the map from Figure 3.13. Here the 

best path (red lines) is different one and therefore the map it carries, a better one, 

is different too.  
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Figure 3.12: Mapping closing a loop. Each black dot is the perturbed endpoints of 

trajectories. 

 

 

 

Figure 3.13: Map after ambiguities are resolved. 

 

It is possible to implement the hierarchical SLAM for multiple levels for 

providing more robustness. This idea of hierarchical SLAM is not restricted to be 

used solely with DP-SLAM; this method could be effective when used with any 

other SLAM method [6]. 
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3.3. 
3D SLAM Review 

Existing SLAM methods produce a two-dimensional cross section of the 

world, and robot motion is restricted to motion within this plane. However the 

assumption of a 2D world is unrealistic: wheeled robots traveling across uneven 

terrain and underwater autonomous vehicles, can all move with six degrees of 

freedom, three translational and three angular. For robots to operate in this 

environment, it is not only need to track these three new degrees of motion, but 

also to maintain a three dimensional representation of the environment.   

3D mapping has some advantages compared with 2D [1]: 

• 3D maps facilitate navigation. Many robot environments possess significant 

variation in occupancy in the vertical dimension. Modeling this can greatly 

reduce the danger of colliding with an obstacle. 

• Many robot tasks require three-dimensional information, such as tasks 

involving the localization and retrieval of objects or people. 

• 3D maps carry much information for a potential user of the maps. If one 

builds a map only for the sake or robot navigation, then the SLAM 

enforcements would be very few. However, if the map is acquired for later 

use by a person, 3D information can be absolutely critical. 

Some methods exist for three-dimensional motion. They tend to represent 

the world in terms of a few sparse, pint-sized landmarks. These maps, while 

useful for localization, and possible for navigation, give very little information 

about the presence of objects in the world. In [25] a SLAM framework based on 

3D landmarks for indoor environment with stereo vision is shown. Reference [26] 

shows a real-time 3D SLAM is constructed using wide-angle vision. 

Carnegie Mellon University´s Mine Mapping project is a notable example 

of volumetric three dimensional maps, using a series of LRF set at different angles 

[27]. Using a combined method of both local and global scan matching 

techniques, a two-dimensional occupancy grid is created. Thus, with the 

corresponding trajectory from the robot, the remaining three-dimensional data are 
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filled in to create the volumetric maps. Reference [28] presents an EKF-based 3D 

SLAM, which uses planar features probabilistically extracted from dense three-

dimensional point clouds generated by a rotated 2D LRF. A similar work [29] 

presents SLAM from visual landmarks and 3D planes, modeling the environment 

as a set of planar surfaces and lines. These planar surfaces and lines are extracted 

by fusing data from a camera and a 3D LRF.  

Also DP-SLAM [6] proposes a 3D grid map representation. This 

representation brings two types of challenges, technical and dimensional. The 

technical problems are mainly issues of sensing. In particular, odometry is unable 

to detect any motion in the three new degrees of freedom. The dimensional 

challenges arise from a new dimension added to the problem. The resources 

needed to deal with SLAM grow exponentially, so that merely extending previous 

methods is infeasible on any computer architecture. 

However, this thesis is focused in indoor structured environments. 

Assuming a flat terrain, the localization given by the 2D DP-SLAM, can be used 

to project the corresponding 3D points. Thus a 3D map is constructed, composed 

by a set of points (a point cloud). This proposed method has similarities with the 

one presented in [27] where 3D maps are obtained by using the 2D pose 

information via the geometric projections. 

Chapter 5 will show some results by applying DP-SLAM in simulated data. 

After creating a 2D map, the DP-SLAM algorithm gives the best estimated path. 

Using this, the corresponding 3D points are projected. The implemented simulator 

is discussed in detail in the next chapter. 
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