
31

2.
Theoretical Basis

2.1.
Probabilistic Robotics

“The key idea of Probabilistic Robotics is to represent uncertainty explicitly,

using the calculus of probability theory” [1]. In other words, instead of relying on

a single “best guess” probabilistic algorithms represent information by

probabilistic distributions. By doing so, probabilistic robotics can mathematically

represent ambiguity and degree of belief, enabling them to accommodate all

sources of uncertainty.

The advantage of probabilistically programming robots, compared to other

approaches that do not explicitly represent uncertainty, is simply because:

“A robot that carries a notion of its own uncertainty and that acts

accordingly is superior to one that does not.” [1].

Probabilistic approaches are typically more robust under sensor limitation,

sensor noise, environment dynamics, and so on. They are well suited to complex

and unstructured environments, where the ability to deal with uncertainty is quite

important. “Probabilistic algorithms are broadly applicable to virtually every

problem involving perception and action in the real world” [1].

All these advantages, however, come at a price. The two most cited

limitations of probabilistic algorithms are: a need to approximate and

computational inefficiency. Because probabilistic algorithms consider entire

probability densities, they are less efficient than non-probabilistic ones.

Computing exact posterior distributions is typically infeasible, since distributions

over the continuum possess infinitely many dimensions (most robot worlds are

continuous). Sometimes, uncertainty can be approximated with a compact

parametric model (e.g. discrete distributions or Gaussians); in other cases, a more

complicated representations most be employed.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

32

“At the core of probabilistic robotics is the idea of estimating state from

sensor data” [1]. This sensor data are not directly observable, but that can be

inferred. A robot has to rely on its sensors to gather information, while this

information is only partial, and corrupted by noise. Thus, state estimation seeks to

recover state variables from data.

2.1.1.
Bayes Filter and SLAM

In Probabilistic Robotics, all quantities related in estimation such as sensor

measurements, controls, state of the robot and its environment might be modeled

as random variables. Random variables can take on multiple values, and they

behave according to probabilistic laws. Probabilistic inference is the process of

calculating these laws.

“Bayes rule is the archetype of probabilistic inference” [5]. It plays a

predominant role in probabilistic robotics. Therefore, it is the basic principle

underlying virtually every single successful SLAM algorithm. The Bayes rule is

stated as [1]:

 ())(|)|(xpxdpdxp η= (2.1)

If the quantity to learn is x (e.g. a map), using measurement data d (e.g.

odometry, range scans), then Bayes rule tells that the estimation problem can be

solved by multiplying two terms: p(x|d) and p(x). The term p(x|d) is a

generative model, it describes the process of generating sensor measurements

under different worlds x . The term p(x) is called the prior. It specifies the

willingness before the arrival of any data. Finally, η is a normalizer that is

necessary to ensure that the left- hand side of Bayes rule is indeed a valid

probability distribution [5].

In robotic mapping there are two different types of data: sensor

measurements and controls. Let´s denote sensor measurement (e.g. camera

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

33

images, LRF scans) by the variable z, and the control (e.g. motion command,

odometry) by u. Let us assume that the data is collected in alternation:

 ...,,,, 2211 uzuz (2.2)

where subscripts are used as time index.

“In the field of robot mapping, the single dominating scheme for integrating

such temporal data is known as Bayes Filter” [5].

The Bayes Filter is the extension of Bayes rule to temporal estimation

problems [5]. It is a recursive estimator to compute posterior probability

distributions over quantities that cannot be observed directly – such as a map or

robot position. Let’s call this unknown quantity the state xt, where t is the time

index. The generic Bayes filter calculates a posterior probability over the state xt

using the recursive equation [1]:

 ∫ −
−−

−−= 1

11

11),|(),|()|(),|(t

tt

tttttt

tt

t dxuzxpxuxpxzpuzxp η (2.3)

where the superscript
t
 refers to all data leading up to time t, that is:

 },...,,{ 21 tt zzzz = (2.4)

 },...,,{ 21 tt uuuu = (2.5)

Note that Bayes filter is recursive, that is, the posterior probability

p(x t |z
t
,u

t
) is calculated from the same probability one time step earlier. The

initial probability at time t = 0 is p(x0 |z
0
,u

0
) = p(x0).

In the context of robotic mapping the state x t contains all unknown

quantities that are typically two: the map and the robot’s pose in the environment.

When using probabilistic techniques, the mapping problem is one where both the

map and the robot pose have to be estimated in the same time altogether. Using m

to denote the map and R for the robot’s pose, the following Bayes Filter is

obtained [1]:

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

34

),|,(tt

tt uzmp R

 ∫∫ −−
−−

−−−−= 11

11

1111),|,(),,|,(),|(tt

tt

tttttttttt dmduzmpmumpmzp RRRRRη

(2.6)

If assumed a static world, the time index can be omitted when referring to

the map m. Also, most approaches assume that the robot motion is independent of

the map. And finally, using the Markov assumption, which postulates that past

and future data are independent if one knows the current state xt, the state xt can be

estimated using only the state xt-1 one step earlier. This results in a convenient

form of the Bayes Filter for the robot mapping problem [5]:

),|,(tt

t uzmp R

 ∫ −
−−

−−= 1

11

11),|,(),|(),|(t

tt

tttttt RRRRR duzmpupmzpη

(2.7)

This estimator does not require integration over maps m, as it was the case

for the previous one from eq. (2.6). The static world assumption is quite

important, because such integration is difficult due to the high dimensionality of

the space of all maps.

In eq. (2.7) two distributions probabilities have to be specified: p(Rt|ut, Rt-1)

and p(zt|Rt,m). Both are generative models of the robot and its environment.

The probability distribution p(Rt|ut, Rt-1), often called to as motion model,

specifies the effect of the control u on the state. It describes the probability that

the control u, if executed at the world state Rt-1, leads to the state Rt.

The probability p(zt|Rt,m), often called to as perception model, describes in

probabilistic terms how sensor measurements z are generated for different poses

Rt and maps m.

However, eq. (2.7) cannot be implemented on a digital computer in its

general stated form. This is because the posterior over the space of all maps and

robot poses is a probability distribution over a continuous space, hence possesses

infinitely many dimensions. Therefore, any working mapping algorithm has to

take additional assumptions. These assumptions and their implications on the

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

35

resulting algorithms and maps constitute the main differences between the

different solutions to the SLAM.

Figure 2.1 shows a generative probabilistic model (dynamic Bayes network)

that underlies the essential of SLAM.

Figure 2.1: SLAM like a Dynamic Bayes Network

In particular, the robot poses, denoted by R1, R2, …, Rt, evolve over time as

a function of the controls, denoted by u1, u2, …, ut. The map is composed (as it

will be seen later) by landmarks and each measurement of them, denoted by z1, z2,

…, zt, which are a function of its position L1, L2, …, Ln and of the robot pose at the

time the measurement was taken.

Note that in this SLAM equation analysis the odometery ut is assumed to be

known, and this assumption will be kept till the Section 4.5.1 where odometry is

replaced by Scan Matching.

2.1.2.
Motion Model

“Robot motion models play an important role in modern robotics

algorithms” [6]. The main purpose of a motion model is to model the relationship

between a control input to the robot and a change in the robot´s configuration,

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

36

pose and map. Good models will capture not only systematic errors, but it will

also capture the stochastic nature of the motion. The same control input will

almost never produce the same result. “Thus, the effects of a robot’s action are,

therefore, best described as distributions” [6].

This thesis focuses entirely on kinematics for mobile robots operating in

planar environments. Kinematics describes the effect of control actions on the

configuration of a robot. A rigid mobile robot is commonly described by six

variables, its three-dimensional Cartesian coordinates and its three Euler angles

(roll, pitch, yaw) referred to an external coordinate frame. But in a planar

environment, the position of a mobile robot is summarized by three variables: its

two-dimensional planar coordinates referred to an external coordinate frame,

along with its angular orientation.

=

θR

Ry

Rx

R

(2.8)

Figure 2.2 illustrates a robot pose in a plane.

Figure 2.2: Robot pose

The orientation of a robot is often called bearing, or heading direction.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

37

The probabilistic kinematic model, or motion model, plays the role of the

state transition model in Mobile Robotics. As described in the previous section,

this model is the probability distribution:

),|(1−ttt RR up

 (2.9)

Figure 2.3 shows two examples that illustrate the motion model for a rigid

mobile robot in a planar environment. The robot’s initial pose, in both cases, is

Rt-1. The distribution p(Rt|ut, Rt-1) is visualized in the form of a gray shaded area:

darker areas mean more probability in robot position. In both figures, the robot

moves forward some distance, during which it may accumulate translational and

rotational errors. The right figure shows a larger spread of uncertainty due to a

more complicated motion.

Figure 2.3: The motion model, showing posterior distributions of the robot’s pose

after executing the motion command ut (red striped line). The darker a location, the

more likely it is.

There are two motion models usually used. “The first model assumes that

the motion data ut specifies the velocity commands given to the robot’s motors”

[1]. Many commercial mobile robots (e.g. differential drive, synchro drive) are

actuated by independent translational and rotational velocities. The second model,

which is used in this work, assumes that ut contains odometry information

(distance traveled, angle turned).

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

38

However, odometry is only available as the robot moves. Hence it cannot be

used for motion planning, such as collision avoidance [1]. “Technically, odometry

are sensor measurements, not controls” [1]. But it is common to simply consider

odometry as if it was a control input signal.

2.1.3.
Perception Model

“The perception model comprises the second domain-specific model in

probabilistic robotics, next to the motion model” [1]. In probabilistic terms, the

Perception Model describes how sensor measurements z are generated for

different poses R and maps m. As described before, this is modeled by:

),|(mRzp tt (2.10)

The Perception Model account for the uncertainty in the robot’s sensors.

Thus, it explicitly models noise in sensor measurement. It could say that better

results are acquired by a more accurate Perception Model. However, it is almost

impossible to accurately model a sensor; reference [1] gives two primarily

reasons[1]: “First, developing an accurate perception model can be extremely

time-consuming; and second, an accurate model may require state variables that

are not known, such as the surface material” [1]. In this way Probabilistic

Robotics, instead of modeling the Perception Model by a deterministic function

z=f(x), accommodates the inaccuracies of Perception Model by a conditional

probability density, p(z|x). “Herein lies a key advantage of probabilistic

techniques over classical robotics” [1].

Figure 2.4 shows a robot in an environment getting measurements from its

Laser Range Finder (LRF). Given a position and the map of the environment, it is

possible to use ray-tracing to get expected measurements for each rangefinder

angle.

The result of modeling the sensor is shown in Figure 2.5. For a particular

expected distance, the sensor will give a value near that distance with some

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

39

probability. So, given an actual measurement and an expected distance, it is

possible to find the probability of getting that measurement using the graph from

Figure 2.5.

Figure 2.4: Robot in a map getting measurements from its LRF.

Figure 2.5: Given an actual measurement and an expected distance, the probability

of getting that measurement is given by the red line in the graph.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

40

Today’s robots use a variety of sensor types, such as tactile sensors, range

finder sensors, sonar sensors or cameras. The model specifications depend on the

sensor type.

2.2.
Map Representation

There are many reasons to have a representation of the robot’s environment.

Some of the purposes of having a map are listed in the following:

• Localization. The robot localization is possible making a correspondence

between a given map and the observation of the robot’s environment.

• Motion planning. Once the robot is located and given a target position, all

necessary movements in the map can be compute to successfully move to the

target.

• Collision avoidance. Using a map and robot’s localization the navigation is

possible without collisions.

• Human use. The map constructed by the robot can be used for exploration

tasks in potentially hazardous environments.

In general, the map representation can be grouped into three main types:

Geometric, Topological and Hybrid. However the general tendency in SLAM is to

use geometric representation. Thus, this representation has also a subdivision:

Landmark (or feature maps) and Grid maps.

2.2.1.
Landmark Maps

The landmark-based maps consist of a set of distinctive point localizations

that are referred to a global reference system. In structured domains such as

indoor environments, landmarks are usually modeled as geometric primitives such

as points, lines or surfaces.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

41

 The main advantage of landmark-base maps is their representation

compactness. By contrast, this kind of map requires the existence of structures or

objects that are distinguishable enough from each other. Thus, an extra algorithm

for recognizable and repeatedly detectable landmark extraction is needed.

In practice, good landmarks may have similar traits, which often make them

difficult to distinguish from each other. When this happens the problem of data

association, also known as the correspondence problem, has to be addressed. “The

correspondence problem is the problem of determining if sensor measurements

taken at different points in time correspond to the same physical object in the

world” [5]. It is a difficult problem, because the number of possible hypotheses

can grow exponentially.

Figure 2.6 shows a simulated landmark-based map, where the blue asterisks

represent the landmarks and the small triangle the robot position.

Figure 2.6: Simulated Landmark Map

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

42

2.2.2.
Grid Maps

A grid map, or occupancy grid, is a popular and intuitive method to describe

an environment. Occupancy grids were originally developed at Carnegie Mellon

University in 1983 for sonar navigation within a lab [7].

Occupancy grids divide the environment up into a regular grid square, all of

equal size. “Each of these grid squares correspond to a physical area in the

environment and, as such, each square contains a different set of objects or

portions of an object” [6]. An occupancy grid is an ideal representation of the

environment, containing information on whether a square in the real environment

is occupied or not.

The occupancy grid representation can be generalized into two types:

deterministic and stochastic [6], described as follows.

• Deterministic map grids are the simplest representation, having two values for

each grid square. Typically squares are considered as either Empty or

Occupied, also sometimes is include a value for Unknown (or Unobserved).

However, this representation is an exaggerated simplification for the sensors,

since almost never a sensor will see a square of the environment which is both

completely occupied and accurately observed.

• Stochastic maps, besides of Occupied and Empty, have a gradual scale of

various degrees of occupancy. What percentage of the square is believed to be

occupied, or how transparent the object is to the sensor are some factors that

affect the occupancy value. The stochastic representation and the

corresponding observation model need to be properly tuned for the sensor

used.

Figure 2.7 shows a stochastic grid map, where the occupancy of each square

is given in gray scale color, and darkest squares mean high probability of

occupancy.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

specifically stochastic occupancy grid map

2.3.
Scan Matching

or to match a range scan to a map”

sensor

noise in

two positions

is a reference pose)

static environment to a new pose

scan matching seeks the

translation and rotation)

Figure 2.7: Grid Map

areas, and darker gray to black represent increasingly occupied areas

This work uses occupancy grid map

specifically stochastic occupancy grid map

2.3.
Scan Matching

“Many SLAM algorithms are based on the ability to match two range scans

or to match a range scan to a map”

sensors to get the input for

noise in many situations.

The goal of

two positions at w

reference pose)

static environment to a new pose

scan matching seeks the

translation and rotation)

: Grid Map: White

areas, and darker gray to black represent increasingly occupied areas

s work uses occupancy grid map

specifically stochastic occupancy grid map

Scan Matching

“Many SLAM algorithms are based on the ability to match two range scans

or to match a range scan to a map”

to get the input for

situations.

The goal of scan matching

at which the scans were taken.

reference pose), takes a scan

static environment to a new pose

scan matching seeks the difference of

translation and rotation) by

: White regions mean unknown areas, light gray

areas, and darker gray to black represent increasingly occupied areas

s work uses occupancy grid map

specifically stochastic occupancy grid map

“Many SLAM algorithms are based on the ability to match two range scans

or to match a range scan to a map”

to get the input for scan matching

scan matching is to find the relative

hich the scans were taken.

takes a scan Sr (reference scan)

static environment to a new pose Pn

difference of

by aligning the two scans.

regions mean unknown areas, light gray

areas, and darker gray to black represent increasingly occupied areas

s work uses occupancy grid maps for environment representation,

specifically stochastic occupancy grid maps.

“Many SLAM algorithms are based on the ability to match two range scans

 [9]. Laser R

scan matching, since their high reliability and their low

is to find the relative

hich the scans were taken. If a

(reference scan)

 and takes another scan

difference of position P

aligning the two scans.

regions mean unknown areas, light gray

areas, and darker gray to black represent increasingly occupied areas

for environment representation,

“Many SLAM algorithms are based on the ability to match two range scans

Range Fiders (LRF)

their high reliability and their low

is to find the relative displacement

a robot starts at

(reference scan), after that

and takes another scan

Pn from pos

aligning the two scans.

regions mean unknown areas, light gray

areas, and darker gray to black represent increasingly occupied areas [8]

for environment representation,

“Many SLAM algorithms are based on the ability to match two range scans

Fiders (LRF) are popular

their high reliability and their low

displacement between the

robot starts at position

, after that it moves through a

and takes another scan Sn (new scan)

posistion Pr (the relative

43

regions mean unknown areas, light gray unoccupied

[8].

for environment representation,

“Many SLAM algorithms are based on the ability to match two range scans

are popular

their high reliability and their low

between the

ition Pr (which

moves through a

(new scan), then

(the relative

unoccupied

for environment representation,

“Many SLAM algorithms are based on the ability to match two range scans

are popular

their high reliability and their low

between the

(which

moves through a

(the relative

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

44

“The basis of most successful algorithms is the establishment of

correspondences between primitives of the two scans” [9], i.e. point-to-point or

feature-to-feature.

Different routines are developed to use point-to-point matching approaches

such as the Iterative Closest Point (ICP) and the Iterative Dual Correspondence

(IDC), both proposed by Lu and Milios [10]; and another, The Iterative Closest

Line (ICL) proposed by Alshawa [11].

In [12] it is proposed a method that searches for features like corners and

jump-edges from raw range scans. Another method based on feature extraction is

HAYAI proposed in [13]. This method solves the self-localization problem for

high speed robots.

One method that does not use correspondences between scans is the Normal

Distribution Transform proposed in [9]. This method transforms the discrete set

of 2D points reconstructed from a single scan into a piecewise continuous

differentiable probability density defined on the 2D plane.

This work uses the NDT for scan matching but without using odometry

information. But before getting to it; let’s briefly review some of methods used for

scan matching including NTD.

2.3.1.
Point to Point Correspondence Methods.

• The Iterative Closest Point (ICP)

The most general matching point to point approach was introduced

by Lu and Milios in [10]. This is essentially a variant of the ICP (Iterative

Closest Point) algorithm applied to laser scan matching.

A scan is a sequence of points which represent a 2D plane contour of

the local environment. “Due to the existence of random sensing noise and

self-occlusion, it may be impossible to align two scans perfectly” [10].

Thus this method assumes two types of discrepancies between scans:

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

45

o in the first type, there are small deviations of scan points from the true

contour due to random sensing noise, and

o the other type of discrepancy is the gross difference between the scans

caused by occlusion. These discrepancy types are called outliers.

Adopting these criterions, ICP finds the best alignment of the

overlapping part in the sense of minimum least-square errors, while

ignoring the outlier parts. That is way ICP also need of correspondence

search and outlier detection algorithms.

Lu and Milios [10] present two scan matching methods based on

ICP. The first considers the two components (rotational and translational)

separately; alternately fixing one, then optimizing the other. Given the

rotation, least-square optimization is used to acquire translation.

Their second method called Iterative Dual Correspondence (IDC)

combines two ICP-like algorithms with different point-matching

heuristics.

• The Iterative Closest Line (ICL)

“ICL is similar to ICP, except that instead of matching query points

to reference points, the query points are matched to lines extracted from

the reference points” [14].

2.3.2.
Feature to Feature Correspondence Methods.

• Feature Based Laser Scan Matching for Accurate and high speed

Mobile Robot Localization.

Proposed by Aghamohammadi et al. [12]. This method divides the

features into two types: features corresponding to the jump-edges and

those corresponding to the corners detected in the scan.

In order to detect jump-edges, this method uses the natural

consecutive order of points in the scan. Thus it defines a dth which is the

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

46

maximum distance between two consecutive scan points. Beyond dth these

two consecutive points can be considered as jump-edges.

To obtain the second class of features, the corners, this method uses

a line fitting algorithm. Thus the split-and-merge algorithm is used but

only for line fitting. In this way, using two points taken of two consecutive

lines, it searches for the farthest point to the straight line joining these two

points.

Finally, after extracting features for two consecutive scans, a

matching algorithm, based on a dissimilarity function is calculated.

This method is fast and it can be used for high speed mobile robot,

but it suffers when the environment does not have corners or when it has

circular walls, because no corners could be extracted and false jump-edges

could be acquired.

• The Highspeed and Yet Accurate Indoor/outdoor-tracking (HAYAI)

HAYAI was proposed by Lingemann et al. [13]. This uses the

inherent order of the scan data, allowing the application of linear filters for

fast reliable feature detection.

Thus, this method chooses extrema in the polar representation of a

scan as natural features. These extrema correlate to corners and jump-

edges in Cartesian space. The usage of polar coordinates implicates a

reduction by one dimension, since all operations deployed for feature

extraction are fast linear filters.

For feature detection, HAYAI filters the scan signal using three one

dimensional filters ψ= [ψ-1, ψ0, ψ+1].The first one sharpens the data in

order to emphasize the significant parts of the scan. The second one

computes the derivation signal using a gradient filter. And, the last one

smoothes the gradient signal to simplify the detection of zero crossing

using a softening filter.

After generating the sets of features from both scans, the matching

between both sets is calculated. But instead of solving the hard

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

47

optimization problem of searching for an optimal match, HAYAI uses a

heuristic approach, utilizing inherent knowledge about the problem of

matching features, e.g., “the fact that the features topology cannot change

fundamentally from one scan to the following” [13].

“Although this method is a fast and feature based method for scan

matching, it suffers from the lack of satisfying robustness property of

feature extraction. It is well-suited for high range sensors” [12].

2.3.3.
The Normal Distribution Transform

The assumed correspondences between two scans captured from two

different poses of the robot are generally not true. That is why Biber [9] proposed

a new method that does not need correspondences. Thus NDT makes an

occupancy grid and subdivide the 2D plane into cells. To each cell, it assigns a

normal distribution, which models the probability of measuring a point. “The

result of the transform is a piecewise continuous and differentiable probability

density, that can be used to match another scan using Newton’s algorithm” [9].

This work uses the NDT for scan matching, which will be explained in

detail next.

 The NDT representation of one scan is built as follows: first, it subdivides

regularly into cells of constant size the 2D space around the robot. Then, for each

cell that contains at least three points:

1. collects all 2D-Points xi=1…n contained in this cell.

2. calculates the mean:

 ∑=
i

ix
n

1
q (2.11)

3. calculates the covariance matrix

 ∑ −−=Σ
i

T

ii xx
n

))((
1

qq (2.12)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

48

The probability of a 2D-point x contained in this cell is now modeled by the

normal distribution N(q,∑):

 −Σ−
−

−

2

)()(
exp~)(

1 qq xx
xp

T

 (2.13)

Unlike to occupancy grid that represents the probability of a cell being

occupied, the NDT represents the probability of measuring a point for each

position within the cell. NDT proposes a cell size of 1000 mm by 1000 mm and

this value will be adopted in this work.

To minimize discretization effects, NDT uses four overlapping grids as

follows: one grid with side length l of a single cell is place first, then a second

one, shifted by half cell horizontally, a third one, shifted by half vertically and

finally a fourth one, shifted by half horizontally and vertically. In this way, each

2D point falls into four cells. Thus, if the probability density of a point is

calculated the densities of all four cells are evaluated and the result is summed up.

Figure 2.8 shows an example laser scan and a visualization of the resulting

NDT. This visualization is created by evaluating a fine mesh of points; bright

areas indicate high probability of being occupied.

Figure 2.8: An example of NTD: the original laser scan (left) and the resulting

probability density (right).

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

49

The spatial transformation T between two robot positions is given by:

+

 −
=

y

x

t

t

y

x

y

x
T

φφ

φφ

cossin

sincos

'

'
:

(2.14)

where tx and ty describes the translation and ϕ the rotation between the two

positions. As described in Section 2.3 the goal of the scan matching is to recover

these values using the laser scans taken at two positions. The outline of NTD,

given two scans, is as follows:

1. first, the NDT of the first is built;

2. a estimate for the variables (tx ,ty ,ϕ), is initialized (by zero or by using

odometry data);

3. for each point of the second scan: a reconstructed 2D point into the

coordinate frame of the first scan is mapped, according to the value of

variables;

4. the corresponding normal distribution for each mapped point is

determined;

5. the score for the variables is determined by evaluating the distribution for

each mapped point and summing the result;

6. a new estimate for variables are calculated by trying to optimize the score,

this is done by performing one step of Newton’s Algorithm, and

7. go to step 3 until a convergence criterion is met.

The steps one to four are straightforward. The remaining is described using

the following notation:

• p = (tx ,ty ,ϕ)
T

: the vector of the variables to estimate.

• xi : the reconstructed 2D point of laser scan point i of the second scan in

the coordinate frame of the second scan.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

50

• ix′ : the point xi mapped into the coordinate frame of the first scan

according to the vector p, that is ix′ = T (xi , p)

• iΣ , qi : the covariance matrix and the mean of the corresponding normal

distribution to point ix′ looked up in the NDT of the first scan.

“The mapping according to p could be considered optimal, if the sum

evaluating the normal distribution of all points ix′ with parameters iΣ and qi is a

maximum” [9]. NDT calls this sum the score of p, defined as:

 ∑

 −′−′
−=

−

i

iiii qxqx
score

2

)(Σ)(
exp)(

1

i

T

p (2.15)

NDT normalization problems are described as minimization problems, thus

NDT adopts its notation to this convention. Therefore the function to minimize is

the negative of score.

NDT uses Newton’s algorithm iteratively to find the vector p = (tx ,ty ,ϕ)
T

that minimizes the function f = –score. Each iteration solves the equation:

 gp −=∆H (2.16)

where g is the transposed gradient of f with entries

i

i
p

f
g

∂

∂
= (2.17)

and H is the Hessian of f with entries

ji

ji
pp

f
H

∂∂

∂
= (2.18)

The solution of this linear system is an increment p∆ which is added to the

current estimate:

 ppp ∆+← (2.19)

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

51

2.4.
Genetic Algorithms

The Genetic Algorithm (GA) is a search heuristic that imitates the process

of natural evolution; this heuristic is routinely used to generate useful solutions to

optimization and search problems. Problem solving using genetic algorithms isn´t

new, the pioneering work of J. H. Holland in the 1970’s [15] showed significant

contribution for engineering applications.

GA´s are inspired by a biological process in which best individuals are

likely to be the winners in a competing environment. The potential solution of a

problem is an individual which can be represented by a set of variables. These

variables are considered as the genes of a chromosome and they are usually

structured by a sequence of bits. A positive value (known as fitness value),

obtained by a Fitness Function, reflects the degree of “quality” of the

chromosome in order to solve the problem, and this value is narrowly related to its

objective value.

In the process of a genetic evolution, a chromosome with high quality has

the tendency to produce good-quality offsprings, which means better solutions to

the problem. “In a practical application of GA, a population pool of chromosomes

has to be installed, which can be randomly set initially” [16]. In each cycle of

genetic process, a subsequent generation is created from the best chromosomes in

the current population. This group of chromosomes, generally called “parents”,

are selected via a specific selection routine. The roulette wheel selection [17] is

one of the most commonly used techniques to provide selection mechanism; this

selection is based on the fitness value of chromosomes.

The parents are mixed and recombined to produce offsprings for the next

generation. From this process of evolution, it is expected that the best

chromosomes will create more offsprings, and thus having a higher probability of

surviving in the subsequent generation. This emulates the survival-of-the-fittest

mechanism in nature. The evolution cycle is repeated until a desired termination

criterion is reached. The criterion used could be the number of evolution cycles,

the amount of variation of individuals between different generations, or a

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

52

predefined fitness value. In order to achieve a GA evolution cycle, two

fundamental operators, crossover and mutation, are required.

The procedure described above can be applied in many different ways to

solve a wide range of problems.

However, in the design of a GA to solve a specific problem, there are

always two major decisions: specifying the mapping between the chromosome

structure and candidate solutions (representation problem) and defining a concrete

fitness function.

2.4.1.
Chromosome Representation

“Bit-string encoding is the most classical approach used by GA researchers

because of its simplicity and traceability” [16]. A slight modification is the use of

Gray code in the binary coding; “in practice, Gray-coded representation if often

more successful for multi-variable function optimization applications” [18].

Real-valued chromosomes were introduced to deal with real variable

problems. “Many works indicate that the floating point representation would be

faster in computation” [16].

2.4.2.
The Fitness Function

“The Fitness Function is at the heart of an evolutionary computing

application” [19]. It determines which solutions within a population are better at

solving the particular problem [19], being an important link between GA and the

system. The Fitness Function takes a chromosome as an input and outputs a

number which represents the measure of the chromosome performance.

An ideal fitness function correlates closely with the algorithm goal, and

besides may be computed quickly. Speed of execution is very important, thus, a

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

53

typical GA must be iterated many, many times, in order to produce a usable result

for a non-trivial problem.

Definition of the Fitness Function is not straightforward in many cases, and

it is often performed iteratively if the solutions produced by GA are not what it is

desired.

2.4.3.
Fundamental Operators

The crossover operator is shown in Figure 2.9. The portion of the two

chromosomes beyond the crossover point to the right is exchanged to form the

offspring. An operation rate (pc) with a typical value between 0.6 - 1.0 is normally

used as the probability of crossover.

Figure 2.9: The crossover operator

Although one-point crossover was inspired by biological processes, it has

one major drawback in the certain combination of schema (encoded form of the

chromosome): sets of strings that have one or more features in common cannot be

combined in some situations. “A multipoint crossover can be introduced to

overcome this problem” [16]. As a result, the generating offspring performance is

much improved.

The mutation operator, on the other hand, is applied to each offspring

individually after the crossover exercise. Figure 2.10 shows the mutation process.

It commutes each bit randomly with a probability pm with a typical value of less

than 0.1 [16].

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

54

Figure 2.10: The mutation operator

The choice value of pm and pc can be a complex, nonlinear operation

problem; furthermore, their settings are critically dependent upon the nature of the

fitness function [16].

2.4.4.
Genetic Algorithms to Solve Problems

Arguably the most obvious application of GA is the multi-variable function

optimization. By searching for some optimal value, many problems can be

formulated; where the value is a complicated function of its input parameters. In

some cases, the interest is on variable settings that lead to the greatest value of the

function. In other cases, the exact optimum is not required, just a near optimum,

or inclusive a value that represents an improvement over the previously best

known value [18].

2.4.5.
Differential Evolution

Differential Evolution (DE), like GA, owned to the family of Evolutionary

Computation. It is an optimization technique that uses an exceptionally simple

evolution strategy, being significantly faster and robust at numerical optimization.

It is more likely to find a function’s true global optimum.

 “DE uses real coding of floating point numbers” [20], and the population is

represented by NP individuals, where an individual is formed by a vector of D real

variables, where D is the number of problem’s variables.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

55

DE uses both, crossover and mutation operators. However, both operations

are redefined in its context. DE creates a vector 'cx , a mutated form of any

individual
cx (an individual randomly picked from the initial population NP),

using the vector difference between two other randomly picked individuals
ax

and bx
 such that:)(bacc xxFxx ' −+= , where F is an user-supplied scaling factor.

The optimal value of F for most functions lies in the range of 0.4 to 1.0 [21]. This

operation is known as mutating with vector differentials.

After that, the crossover is applied between any individual member of the

population xi and the mutated vector 'cx , by swapping the vector elements in the

corresponding locations. Like GA, this is also done probabilistically, and the

decision of performing (or not performing) crossover is determined by a crossover

constant CR in the range 0 to 1.

The new vector xt produced is known as the trial vector. “Thus, the trial

vector is the child of two parents, a noisy random vector 'cx and the target vector

xi, against which it must compete” [20]. CR represents the probability that the

child vector inherits the parameter values from the noisy random vector 'cx . When

CR= 1, for example, every trial vector parameter comes from 'cx . If CR= 0, all but

one trial vector parameter comes from the target vector xt. To ensure that xt differs

from xi by at least one parameter, the final trial vector parameter always comes

from the noisy random vector, even when CR= 0, so that it does not become an

exact replica of the original parent vector. Thus, the trial vector is allowed to pass

on the next generation if and only if, its fitness is higher than that of its parent

vector xi, otherwise the parent vector yields to the next generation. Figure 2.11

shows the process of DE.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

56

Figure 2.11: Differential Evolution Process [22]

Among all, just three factors control evolution under DE: the population

size NP, the weight F applied to the random differential, and the crossover

constant CR.

2.4.6.
Different Strategies of DE

Depending on the type of problem, different strategies can be adopted in the

DE algorithm. “The strategies can vary based on the vector to be perturbed,

number of difference vectors considered for perturbation, and finally the type of

crossover used” [20]. The following are the 10 different working strategies

proposed by Price and Storn [22].

1. DE/best/1/exp

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

57

2. DE/rand/1/exp

3. DE/rand-to-best/1/exp

4. DE/best/2/exp

5. DE/rand/2/exp

6. DE/best/1/bin

7. DE/rand/1/bin

8. DE/rand-to-best/1/bin

9. DE/best/2/bin

10. DE/rand/2/bin

The convention used above is DE/x/y/z. DE means Differential Evolution, x

denotes a string representing the vector to be perturbed, y is the number of

difference vectors used for perturbation of x, and z denotes the type of crossover

being used (exp: exponential, bin: binomial).

For perturbation with a single vector difference, out of the three distinct

randomly chosen vectors, the weighted vector differential of any two vectors is

added to the third one. In the same way for perturbation with two vector

differences, five distinct vectors, other than the target vector, are chosen randomly

from the current population. Out of these, the weighted vector difference of each

pair of any four vectors is added to the fifth one for perturbation.

In exponential crossover, the crossover is performed on the D variables in

one loop until it is within the CR bound. In binomial crossover, the crossover is

performed on each of the D variables whenever a randomly picked number

between 0 and 1 is within the CR value. So, for high values of CR, the exponential

and binomial crossovers yield similar results. In the binomial case, the last

variable always comes from a random noisy vector to ensure that is different from

the target vector, and hence the above procedure is applied up to D – 1 variables.

“The strategy to be adopted for each problem is to be determined separately

by trial and error” [20]. The best strategy for a given problem may not work well

when applied to a different problem.

In the next chapter, the presented analytical background is applied to the

SLAM problem.

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA

