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2. 
Theoretical Basis 

2.1.  
Probabilistic Robotics 

“The key idea of Probabilistic Robotics is to represent uncertainty explicitly, 

using the calculus of probability theory” [1]. In other words, instead of relying on 

a single “best guess” probabilistic algorithms represent information by 

probabilistic distributions. By doing so, probabilistic robotics can mathematically 

represent ambiguity and degree of belief, enabling them to accommodate all 

sources of uncertainty. 

The advantage of probabilistically programming robots, compared to other 

approaches that do not explicitly represent uncertainty, is simply because:  

“A robot that carries a notion of its own uncertainty and that acts 

accordingly is superior to one that does not.” [1].  

Probabilistic approaches are typically more robust under sensor limitation, 

sensor noise, environment dynamics, and so on. They are well suited to complex 

and unstructured environments, where the ability to deal with uncertainty is quite 

important. “Probabilistic algorithms are broadly applicable to virtually every 

problem involving perception and action in the real world” [1]. 

All these advantages, however, come at a price. The two most cited 

limitations of probabilistic algorithms are: a need to approximate and 

computational inefficiency. Because probabilistic algorithms consider entire 

probability densities, they are less efficient than non-probabilistic ones. 

Computing exact posterior distributions is typically infeasible, since distributions 

over the continuum possess infinitely many dimensions (most robot worlds are 

continuous). Sometimes, uncertainty can be approximated with a compact 

parametric model (e.g. discrete distributions or Gaussians); in other cases, a more 

complicated representations most be employed. 
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“At the core of probabilistic robotics is the idea of estimating state from 

sensor data” [1]. This sensor data are not directly observable, but that can be 

inferred. A robot has to rely on its sensors to gather information, while this 

information is only partial, and corrupted by noise. Thus, state estimation seeks to 

recover state variables from data.  

 

2.1.1.  
Bayes Filter and SLAM 

In Probabilistic Robotics, all quantities related in estimation such as sensor 

measurements, controls, state of the robot and its environment might be modeled 

as random variables. Random variables can take on multiple values, and they 

behave according to probabilistic laws. Probabilistic inference is the process of 

calculating these laws. 

“Bayes rule is the archetype of probabilistic inference” [5]. It plays a 

predominant role in probabilistic robotics. Therefore, it is the basic principle 

underlying virtually every single successful SLAM algorithm. The Bayes rule is 

stated as [1]: 

 

 ( ) )(|)|( xpxdpdxp η=  (2.1) 

 

If the quantity to learn is x (e.g. a map), using measurement data d (e.g. 

odometry, range scans), then Bayes rule tells that the estimation problem can be 

solved by multiplying two terms: p(x|d) and p(x). The term p(x|d) is a 

generative model, it describes the process of generating sensor measurements 

under different worlds x . The term p(x) is called the prior. It specifies the 

willingness before the arrival of any data. Finally, η is a normalizer that is 

necessary to ensure that the left- hand side of Bayes rule is indeed a valid 

probability distribution [5]. 

In robotic mapping there are two different types of data: sensor 

measurements and controls. Let´s denote sensor measurement (e.g. camera 
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images, LRF scans) by the variable z, and the control (e.g. motion command, 

odometry) by u. Let us assume that the data is collected in alternation: 

 ...,,,, 2211 uzuz  (2.2) 

 

where subscripts are used as time index.  

“In the field of robot mapping, the single dominating scheme for integrating 

such temporal data is known as Bayes Filter” [5].  

The Bayes Filter is the extension of Bayes rule to temporal estimation 

problems [5]. It is a recursive estimator to compute posterior probability 

distributions over quantities that cannot be observed directly – such as a map or 

robot position. Let’s call this unknown quantity the state xt, where t is the time 

index. The generic Bayes filter calculates a posterior probability over the state xt 

using the recursive equation [1]: 

 ∫ −
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t dxuzxpxuxpxzpuzxp η  (2.3) 

 

where the superscript 
t
 refers to all data leading up to time t, that is: 

 },...,,{ 21 tt zzzz =  (2.4) 

 },...,,{ 21 tt uuuu =  (2.5) 

Note that Bayes filter is recursive, that is, the posterior probability 

p(x t |z
t
,u

t
) is calculated from the same probability one time step earlier. The 

initial probability at time t = 0 is p(x0 |z
0
,u

0
) = p(x0).  

In the context of robotic mapping the state x t  contains all unknown 

quantities that are typically two: the map and the robot’s pose in the environment. 

When using probabilistic techniques, the mapping problem is one where both the 

map and the robot pose have to be estimated in the same time altogether. Using m 

to denote the map and R for the robot’s pose, the following Bayes Filter is 

obtained [1]: 
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(2.6) 

 

If assumed a static world, the time index can be omitted when referring to 

the map m. Also, most approaches assume that the robot motion is independent of 

the map. And finally, using the Markov assumption, which postulates that past 

and future data are independent if one knows the current state xt, the state xt can be 

estimated using only the state xt-1 one step earlier. This results in a convenient 

form of the Bayes Filter for the robot mapping problem [5]: 

 ),|,( tt
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(2.7) 

 

This estimator does not require integration over maps m, as it was the case 

for the previous one from eq. (2.6). The static world assumption is quite 

important, because such integration is difficult due to the high dimensionality of 

the space of all maps. 

In eq. (2.7) two distributions probabilities have to be specified: p(Rt|ut, Rt-1) 

and  p(zt|Rt,m). Both are generative models of the robot and its environment. 

The probability distribution p(Rt|ut, Rt-1), often called to as motion model, 

specifies the effect of the control u on the state. It describes the probability that 

the control u, if executed at the world state Rt-1, leads to the state Rt. 

The probability p(zt|Rt,m), often called to as perception model, describes in 

probabilistic terms how sensor measurements z are generated for different poses 

Rt and maps m.  

However, eq. (2.7) cannot be implemented on a digital computer in its 

general stated form. This is because the posterior over the space of all maps and 

robot poses is a probability distribution over a continuous space, hence possesses 

infinitely many dimensions. Therefore, any working mapping algorithm has to 

take additional assumptions. These assumptions and their implications on the 
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resulting algorithms and maps constitute the main differences between the 

different solutions to the SLAM. 

Figure 2.1 shows a generative probabilistic model (dynamic Bayes network) 

that underlies the essential of SLAM. 

 

 

Figure 2.1: SLAM like a Dynamic Bayes Network 

 

In particular, the robot poses, denoted by R1, R2, …, Rt, evolve over time as 

a function of the controls, denoted by u1, u2, …, ut. The map is composed (as it 

will be seen later) by landmarks and each measurement of them, denoted by z1, z2, 

…, zt, which are a function of its position L1, L2, …, Ln and of the robot pose at the 

time the measurement was taken. 

Note that in this SLAM equation analysis the odometery ut is assumed to be 

known, and this assumption will be kept till the Section 4.5.1 where odometry is 

replaced by Scan Matching. 

 

2.1.2.  
Motion Model  

“Robot motion models play an important role in modern robotics 

algorithms” [6]. The main purpose of a motion model is to model the relationship 

between a control input to the robot and a change in the robot´s configuration, 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



36 

 

pose and map. Good models will capture not only systematic errors, but it will 

also capture the stochastic nature of the motion. The same control input will 

almost never produce the same result. “Thus, the effects of a robot’s action are, 

therefore, best described as distributions” [6].  

This thesis focuses entirely on kinematics for mobile robots operating in 

planar environments. Kinematics describes the effect of control actions on the 

configuration of a robot. A rigid mobile robot is commonly described by six 

variables, its three-dimensional Cartesian coordinates and its three Euler angles 

(roll, pitch, yaw) referred to an external coordinate frame. But in a planar 

environment, the position of a mobile robot is summarized by three variables: its 

two-dimensional planar coordinates referred to an external coordinate frame, 

along with its angular orientation.  

 
















=

θR

Ry

Rx

R  

 

 

(2.8) 

 

Figure 2.2 illustrates a robot pose in a plane. 

 

 

Figure 2.2: Robot pose 

 

The orientation of a robot is often called bearing, or heading direction. 
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The probabilistic kinematic model, or motion model, plays the role of the 

state transition model in Mobile Robotics. As described in the previous section, 

this model is the probability distribution: 

 ),|( 1−ttt RR up
 

 (2.9) 

 

Figure 2.3 shows two examples that illustrate the motion model for a rigid 

mobile robot in a planar environment.  The robot’s initial pose,  in both cases, is 

Rt-1. The distribution p(Rt|ut, Rt-1) is visualized in the form of a gray shaded area: 

darker areas mean more probability in robot position. In both figures, the robot 

moves forward some distance, during which it may accumulate translational and 

rotational errors. The right figure shows a larger spread of uncertainty due to a 

more complicated motion. 

 

 

 

 

 

 

 

Figure 2.3: The motion model, showing posterior distributions of the robot’s pose 

after executing the motion command ut (red striped line). The darker a location, the 

more likely it is. 

 

There are two motion models usually used. “The first model assumes that 

the motion data ut specifies the velocity commands given to the robot’s motors” 

[1]. Many commercial mobile robots (e.g. differential drive, synchro drive) are 

actuated by independent translational and rotational velocities. The second model, 

which is used in this work, assumes that ut contains odometry information 

(distance traveled, angle turned). 
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However, odometry is only available as the robot moves. Hence it cannot be 

used for motion planning, such as collision avoidance [1]. “Technically, odometry 

are sensor measurements, not controls” [1]. But it is common to simply consider 

odometry as if it was a control input signal. 

 

2.1.3.  
Perception Model 

“The perception model comprises the second domain-specific model in 

probabilistic robotics, next to the motion model” [1]. In probabilistic terms, the 

Perception Model describes how sensor measurements z are generated for 

different poses R and maps m. As described before, this is modeled by: 

 ),|( mRzp tt  (2.10) 

 

The Perception Model account for the uncertainty in the robot’s sensors. 

Thus, it explicitly models noise in sensor measurement. It could say that better 

results are acquired by a more accurate Perception Model. However, it is almost 

impossible to accurately model a sensor; reference [1] gives two primarily 

reasons[1]: “First, developing an accurate perception model can be extremely 

time-consuming; and second, an accurate model may require state variables that 

are not known, such as the surface material” [1]. In this way Probabilistic 

Robotics, instead of modeling the Perception Model by a deterministic function 

z=f(x), accommodates the inaccuracies of Perception Model by a conditional 

probability density, p(z|x). “Herein lies a key advantage of probabilistic 

techniques over classical robotics” [1].  

Figure 2.4 shows a robot in an environment getting measurements from its 

Laser Range Finder (LRF). Given a position and the map of the environment, it is 

possible to use ray-tracing to get expected measurements for each rangefinder 

angle.   

The result of modeling the sensor is shown in Figure 2.5. For a particular 

expected distance, the sensor will give a value near that distance with some 
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probability.  So, given an actual measurement and an expected distance, it is 

possible to find the probability of getting that measurement using the graph from 

Figure 2.5. 

 

 

Figure 2.4: Robot in a map getting measurements from its LRF. 

 

 

Figure 2.5: Given an actual measurement and an expected distance, the probability 

of getting that measurement is given by the red line in the graph. 
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Today’s robots use a variety of sensor types, such as tactile sensors, range 

finder sensors, sonar sensors or cameras. The model specifications depend on the 

sensor type. 

 

2.2.  
Map Representation 

There are many reasons to have a representation of the robot’s environment. 

Some of the purposes of having a map are listed in the following: 

• Localization. The robot localization is possible making a correspondence 

between a given map and the observation of the robot’s environment. 

• Motion planning. Once the robot is located and given a target position, all 

necessary movements in the map can be compute to successfully move to the 

target.  

• Collision avoidance. Using a map and robot’s localization the navigation is 

possible without collisions. 

• Human use. The map constructed by the robot can be used for exploration 

tasks in potentially hazardous environments. 

In general, the map representation can be grouped into three main types: 

Geometric, Topological and Hybrid. However the general tendency in SLAM is to 

use geometric representation. Thus, this representation has also a subdivision: 

Landmark (or feature maps) and Grid maps. 

 

2.2.1. 
Landmark Maps 

The landmark-based maps consist of a set of distinctive point localizations 

that are referred to a global reference system. In structured domains such as 

indoor environments, landmarks are usually modeled as geometric primitives such 

as points, lines or surfaces. 
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 The main advantage of landmark-base maps is their representation 

compactness. By contrast, this kind of map requires the existence of structures or 

objects that are distinguishable enough from each other. Thus, an extra algorithm 

for recognizable and repeatedly detectable landmark extraction is needed. 

In practice, good landmarks may have similar traits, which often make them 

difficult to distinguish from each other. When this happens the problem of data 

association, also known as the correspondence problem, has to be addressed. “The 

correspondence problem is the problem of determining if sensor measurements 

taken at different points in time correspond to the same physical object in the 

world” [5]. It is a difficult problem, because the number of possible hypotheses 

can grow exponentially. 

Figure 2.6 shows a simulated landmark-based map, where the blue asterisks 

represent the landmarks and the small triangle the robot position. 

 

 

Figure 2.6: Simulated Landmark Map  
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2.2.2.  
Grid Maps 

A grid map, or occupancy grid, is a popular and intuitive method to describe 

an environment. Occupancy grids were originally developed at Carnegie Mellon 

University in 1983 for sonar navigation within a lab [7].  

Occupancy grids divide the environment up into a regular grid square, all of 

equal size. “Each of these grid squares correspond to a physical area in the 

environment and, as such, each square contains a different set of objects or 

portions of an object” [6]. An occupancy grid is an ideal representation of the 

environment, containing information on whether a square in the real environment 

is occupied or not.  

The occupancy grid representation can be generalized into two types: 

deterministic and stochastic [6], described as follows. 

• Deterministic map grids are the simplest representation, having two values for 

each grid square. Typically squares are considered as either Empty or 

Occupied, also sometimes is include a value for Unknown (or Unobserved). 

However, this representation is an exaggerated simplification for the sensors, 

since almost never a sensor will see a square of the environment which is both 

completely occupied and accurately observed.  

• Stochastic maps, besides of Occupied and Empty, have a gradual scale of 

various degrees of occupancy. What percentage of the square is believed to be 

occupied, or how transparent the object is to the sensor are some factors that 

affect the occupancy value. The stochastic representation and the 

corresponding observation model need to be properly tuned for the sensor 

used. 

Figure 2.7 shows a stochastic grid map, where the occupancy of each square 

is given in gray scale color, and darkest squares mean high probability of 

occupancy. 

 

 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



specifically stochastic occupancy grid map

2.3.
Scan Matching

or to match a range scan to a map”

sensor

noise in 

two positions

is a reference pose)

static environment to a new pose 

scan matching seeks the 

translation and rotation) 

 

Figure 2.7: Grid Map

areas, and darker gray to black represent increasingly occupied areas

 

This work uses occupancy grid map

specifically stochastic occupancy grid map

 

2.3. 
Scan Matching

“Many SLAM algorithms are based on the ability to match two range scans 

or to match a range scan to a map”

sensors to get the input for 

noise in many situations. 

The goal of 

two positions at w

reference pose)

static environment to a new pose 

scan matching seeks the 

translation and rotation) 

: Grid Map: White 

areas, and darker gray to black represent increasingly occupied areas

s work uses occupancy grid map

specifically stochastic occupancy grid map

Scan Matching 

“Many SLAM algorithms are based on the ability to match two range scans 

or to match a range scan to a map”

to get the input for 

situations.  

The goal of scan matching

at which the scans were taken. 

reference pose), takes a scan

static environment to a new pose 

scan matching seeks the difference of 

translation and rotation) by 

: White regions mean unknown areas, light gray 

areas, and darker gray to black represent increasingly occupied areas

s work uses occupancy grid map

specifically stochastic occupancy grid map

“Many SLAM algorithms are based on the ability to match two range scans 

or to match a range scan to a map” 

to get the input for scan matching

scan matching is to find the relative

hich the scans were taken. 

takes a scan Sr (reference scan)

static environment to a new pose Pn 

difference of 

by aligning the two scans.

regions mean unknown areas, light gray 

areas, and darker gray to black represent increasingly occupied areas

s work uses occupancy grid maps for environment representation, 

specifically stochastic occupancy grid maps. 

“Many SLAM algorithms are based on the ability to match two range scans 

 [9]. Laser R

scan matching, since their high reliability and their low 

is to find the relative

hich the scans were taken. If a 

(reference scan)

 and takes another scan

difference of position P

aligning the two scans.

regions mean unknown areas, light gray 

areas, and darker gray to black represent increasingly occupied areas

for environment representation, 

“Many SLAM algorithms are based on the ability to match two range scans 

Range Fiders (LRF)

their high reliability and their low 

is to find the relative displacement

a robot starts at 

(reference scan), after that

and takes another scan

Pn from pos

aligning the two scans. 

regions mean unknown areas, light gray 

areas, and darker gray to black represent increasingly occupied areas [8]

for environment representation, 

“Many SLAM algorithms are based on the ability to match two range scans 

Fiders (LRF) are popular 

their high reliability and their low 

displacement between the 

robot starts at position

, after that it moves through a 

and takes another scan Sn (new scan)

posistion Pr (the relative 

43 

regions mean unknown areas, light gray unoccupied 

[8]. 

for environment representation, 

“Many SLAM algorithms are based on the ability to match two range scans 

are popular 

their high reliability and their low 

between the 

ition Pr (which 

moves through a 

(new scan), then 

(the relative 

 

 

unoccupied 

for environment representation, 

“Many SLAM algorithms are based on the ability to match two range scans 

are popular 

their high reliability and their low 

between the 

(which 

moves through a 

 

(the relative 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



44 

 

“The basis of most successful algorithms is the establishment of 

correspondences between primitives of the two scans” [9], i.e. point-to-point or 

feature-to-feature. 

Different routines are developed to use point-to-point matching approaches 

such as the Iterative Closest Point (ICP) and the Iterative Dual Correspondence 

(IDC), both proposed by Lu and Milios [10]; and another, The Iterative Closest 

Line (ICL) proposed by Alshawa [11].   

In [12] it is proposed a method that searches for features like corners and 

jump-edges from raw range scans. Another method based on feature extraction is 

HAYAI proposed in [13]. This method solves the self-localization problem for 

high speed robots. 

One method that does not use correspondences between scans is the Normal 

Distribution Transform proposed in [9].  This method transforms the discrete set 

of 2D points reconstructed from a single scan into a piecewise continuous 

differentiable probability density defined on the 2D plane.  

This work uses the NDT for scan matching but without using odometry 

information. But before getting to it; let’s briefly review some of methods used for 

scan matching including NTD.  

 

2.3.1.  
Point to Point Correspondence Methods. 

• The Iterative Closest Point (ICP) 

The most general matching point to point approach was introduced 

by Lu and Milios in [10]. This is essentially a variant of the ICP (Iterative 

Closest Point) algorithm applied to laser scan matching. 

A scan is a sequence of points which represent a 2D plane contour of 

the local environment. “Due to the existence of random sensing noise and 

self-occlusion, it may be impossible to align two scans perfectly” [10]. 

Thus this method assumes two types of discrepancies between scans: 
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o in the first type, there are small deviations of scan points from the true 

contour due to random sensing noise, and 

o the other type of discrepancy is the gross difference between the scans 

caused by occlusion. These discrepancy types are called outliers. 

Adopting these criterions, ICP finds the best alignment of the 

overlapping part in the sense of minimum least-square errors, while 

ignoring the outlier parts. That is way ICP also need of correspondence 

search and outlier detection algorithms.  

Lu and Milios [10] present two scan matching methods based on 

ICP. The first considers the two components (rotational and translational) 

separately; alternately fixing one, then optimizing the other. Given the 

rotation, least-square optimization is used to acquire translation.  

Their second method called Iterative Dual Correspondence (IDC) 

combines two ICP-like algorithms with different point-matching 

heuristics. 

• The Iterative Closest Line (ICL) 

“ICL is similar to ICP, except that instead of matching query points 

to reference points, the query points are matched to lines extracted from 

the reference points” [14].  

 

2.3.2.  
Feature to Feature Correspondence Methods. 

• Feature Based Laser Scan Matching for Accurate and high speed 

Mobile Robot Localization. 

Proposed by Aghamohammadi et al. [12].  This method divides the 

features into two types: features corresponding to the jump-edges and 

those corresponding to the corners detected in the scan. 

In order to detect jump-edges, this method uses the natural 

consecutive order of points in the scan. Thus it defines a dth which is the 
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maximum distance between two consecutive scan points. Beyond dth these 

two consecutive points can be considered as jump-edges. 

To obtain the second class of features, the corners, this method uses 

a line fitting algorithm. Thus the split-and-merge algorithm is used but 

only for line fitting. In this way, using two points taken of two consecutive 

lines, it searches for the farthest point to the straight line joining these two 

points. 

Finally, after extracting features for two consecutive scans, a 

matching algorithm, based on a dissimilarity function is calculated. 

This method is fast and it can be used for high speed mobile robot, 

but it suffers when the environment does not have corners or when it has 

circular walls, because no corners could be extracted and false jump-edges 

could be acquired. 

• The Highspeed and Yet Accurate Indoor/outdoor-tracking (HAYAI)  

HAYAI was proposed by Lingemann et al. [13]. This uses the 

inherent order of the scan data, allowing the application of linear filters for 

fast reliable feature detection. 

Thus, this method chooses extrema in the polar representation of a 

scan as natural features. These extrema correlate to corners and jump-

edges in Cartesian space. The usage of polar coordinates implicates a 

reduction by one dimension, since all operations deployed for feature 

extraction are fast linear filters. 

For feature detection, HAYAI filters the scan signal using three one 

dimensional filters ψ= [ψ-1, ψ0, ψ+1].The first one sharpens the data in 

order to emphasize the significant parts of the scan. The second one 

computes the derivation signal using a gradient filter. And, the last one 

smoothes the gradient signal to simplify the detection of zero crossing 

using a softening filter.  

After generating the sets of features from both scans, the matching 

between both sets is calculated. But instead of solving the hard 
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optimization problem of searching for an optimal match, HAYAI uses a 

heuristic approach, utilizing inherent knowledge about the problem of 

matching features, e.g., “the fact that the features topology cannot change 

fundamentally from one scan to the following” [13]. 

“Although this method is a fast and feature based method for scan 

matching, it suffers from the lack of satisfying robustness property of 

feature extraction. It is well-suited for high range sensors” [12]. 

 

2.3.3.  
The Normal Distribution Transform 

The assumed correspondences between two scans captured from two 

different poses of the robot are generally not true. That is why Biber [9] proposed 

a new method that does not need correspondences. Thus NDT makes an 

occupancy grid and subdivide the 2D plane into cells. To each cell, it assigns a 

normal distribution, which models the probability of measuring a point. “The 

result of the transform is a piecewise continuous and differentiable probability 

density, that can be used to match another scan using Newton’s algorithm” [9]. 

This work uses the NDT for scan matching, which will be explained in 

detail next. 

 The NDT representation of one scan is built as follows: first, it subdivides 

regularly into cells of constant size the 2D space around the robot. Then, for each 

cell that contains at least three points: 

1. collects all 2D-Points  xi=1…n  contained in this cell. 

2. calculates the mean: 

 ∑=
i

ix
n

1
q  (2.11) 

3. calculates the covariance matrix 

 ∑ −−=Σ
i

T

ii xx
n

))((
1

qq   (2.12) 
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The probability of a 2D-point x contained in this cell is now modeled by the 

normal distribution N(q,∑): 
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Unlike to occupancy grid that represents the probability of a cell being 

occupied, the NDT represents the probability of measuring a point for each 

position within the cell. NDT proposes a cell size of 1000 mm by 1000 mm and 

this value will be adopted in this work. 

To minimize discretization effects, NDT uses four overlapping grids as 

follows: one grid with side length l of a single cell is place first, then a second 

one, shifted by half cell horizontally, a third one, shifted by half vertically and 

finally a fourth one, shifted by half horizontally and vertically. In this way, each 

2D point falls into four cells. Thus, if the probability density of a point is 

calculated the densities of all four cells are evaluated and the result is summed up. 

Figure 2.8 shows an example laser scan and a visualization of the resulting 

NDT. This visualization is created by evaluating a fine mesh of points; bright 

areas indicate high probability of being occupied.  

 

 

Figure 2.8: An example of NTD: the original laser scan (left) and the resulting 

probability density (right). 

 

DBD
PUC-Rio - Certificação Digital Nº 0912538/CA



49 

 

The spatial transformation T between two robot positions is given by: 

 
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where tx and ty describes the translation and ϕ the rotation between the two 

positions. As described in Section 2.3 the goal of the scan matching is to recover 

these values using the laser scans taken at two positions. The outline of NTD, 

given two scans, is as follows: 

1. first,  the NDT of the first is built; 

2. a estimate for the variables (tx ,ty ,ϕ), is initialized (by zero or by using 

odometry data); 

3. for each point of the second scan: a reconstructed 2D point into the 

coordinate frame of the first scan is mapped, according to the value of 

variables; 

4. the corresponding normal distribution for each mapped point is 

determined; 

5. the score for the variables is determined by evaluating the distribution for 

each mapped point and summing the result; 

6. a new estimate for variables are calculated by trying to optimize the score, 

this is done by performing one step of Newton’s Algorithm, and 

7. go to step 3 until a convergence criterion is met. 

The steps one to four are straightforward. The remaining is described using 

the following notation: 

• p = (tx ,ty  ,ϕ)
T 

: the vector of the variables to estimate. 

• xi : the reconstructed 2D point of laser scan point i of the second scan in 

the coordinate frame of the second scan. 
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• ix′ : the point xi mapped into the coordinate frame of the first scan 

according to the vector p, that is ix′ = T (xi , p) 

• iΣ , qi : the covariance matrix and the mean of the corresponding normal 

distribution to point ix′  looked up in the NDT of the first scan. 

“The mapping according to p could be considered optimal, if the sum 

evaluating the normal distribution of all points ix′  with parameters iΣ and qi is a 

maximum” [9]. NDT calls this sum the score of p, defined as: 

 ∑ 






 −′−′
−=

−

i

iiii qxqx
score

2

)(Σ)(
exp)(

1

i

T

p   (2.15) 

 

NDT normalization problems are described as minimization problems, thus 

NDT adopts its notation to this convention. Therefore the function to minimize is 

the negative of score. 

NDT uses Newton’s algorithm iteratively to find the vector p = (tx ,ty ,ϕ)
T
 

that minimizes the function f = –score. Each iteration solves the equation: 

 gp −=∆H   (2.16) 

 

where g is the transposed gradient of f  with entries 

 

i

i
p

f
g

∂

∂
=   (2.17) 

 

and H is the Hessian of f  with entries 

 
ji

ji
pp

f
H

∂∂

∂
=   (2.18) 

 

The solution of this linear system is an increment p∆  which is added to the 

current estimate: 

 ppp ∆+←   (2.19) 
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2.4. 
Genetic Algorithms  

The Genetic Algorithm (GA) is a search heuristic that imitates the process 

of natural evolution; this heuristic is routinely used to generate useful solutions to 

optimization and search problems. Problem solving using genetic algorithms isn´t 

new, the pioneering work of J. H. Holland in the 1970’s [15] showed significant 

contribution for engineering applications. 

GA´s are inspired by a biological process in which best individuals are 

likely to be the winners in a competing environment. The potential solution of a 

problem is an individual which can be represented by a set of variables. These 

variables are considered as the genes of a chromosome and they are usually 

structured by a sequence of bits.  A positive value (known as fitness value), 

obtained by a Fitness Function, reflects the degree of “quality” of the 

chromosome in order to solve the problem, and this value is narrowly related to its 

objective value. 

In the process of a genetic evolution, a  chromosome with high quality has 

the tendency to produce good-quality offsprings, which means better solutions to 

the problem. “In a practical application of GA, a population pool of chromosomes 

has to be installed, which can be randomly set initially” [16]. In each cycle of 

genetic process, a subsequent generation is created from the best chromosomes in 

the current population. This group of chromosomes, generally called “parents”, 

are selected via a specific selection routine. The roulette wheel selection [17] is 

one of the most commonly used techniques to provide selection mechanism; this 

selection is based on the fitness value of chromosomes.  

The parents are mixed and recombined to produce offsprings for the next 

generation. From this process of evolution, it is expected that the best 

chromosomes will create more offsprings, and thus having a higher probability of 

surviving in the subsequent generation. This emulates the survival-of-the-fittest 

mechanism in nature. The evolution cycle is repeated until a desired termination 

criterion is reached. The criterion used could be the number of evolution cycles, 

the amount of variation of individuals between different generations, or a 
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predefined fitness value. In order to achieve a GA evolution cycle, two 

fundamental operators, crossover and mutation, are required.  

The procedure described above can be applied in many different ways to 

solve a wide range of problems.  

However, in the design of a GA to solve a specific problem, there are 

always two major decisions: specifying the mapping between the chromosome 

structure and candidate solutions (representation problem) and defining a concrete 

fitness function.  

 

2.4.1.  
Chromosome Representation 

“Bit-string encoding is the most classical approach used by GA researchers 

because of its simplicity and traceability” [16]. A slight modification is the use of 

Gray code in the binary coding; “in practice, Gray-coded representation if often 

more successful for multi-variable function optimization applications” [18]. 

Real-valued chromosomes were introduced to deal with real variable 

problems. “Many works indicate that the floating point representation would be 

faster in computation” [16]. 

 

2.4.2.  
The Fitness Function 

“The Fitness Function is at the heart of an evolutionary computing 

application” [19]. It determines which solutions within a population are better at 

solving the particular problem [19], being an important link between GA and the 

system. The Fitness Function takes a chromosome as an input and outputs a 

number which represents  the measure of the chromosome performance. 

An ideal fitness function correlates closely with the algorithm goal, and 

besides may be computed quickly. Speed of execution is very important, thus, a 
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typical GA must be iterated many, many times, in order to produce a usable result 

for a non-trivial problem.  

Definition of the Fitness Function is not straightforward in many cases, and 

it is often performed iteratively if the solutions produced by GA are not what it is 

desired.  

 

2.4.3.  
Fundamental Operators 

The crossover operator is shown in Figure 2.9. The portion of the two 

chromosomes beyond the crossover point to the right is exchanged to form the 

offspring. An operation rate (pc) with a typical value between 0.6 - 1.0 is normally 

used as the probability of crossover. 

 

 

Figure 2.9: The crossover operator 

 

Although one-point crossover was inspired by biological processes, it has 

one major drawback in the certain combination of schema (encoded form of the 

chromosome): sets of strings that have one or more features in common cannot be 

combined in some situations. “A multipoint crossover can be introduced to 

overcome this problem” [16]. As a result, the generating offspring performance is 

much improved. 

The mutation operator, on the other hand, is applied to each offspring 

individually after the crossover exercise. Figure 2.10 shows the mutation process. 

It commutes each bit randomly with a probability pm with a typical value of less 

than 0.1 [16]. 
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Figure 2.10: The mutation operator 

 

The choice value of pm and pc can be a complex, nonlinear operation 

problem; furthermore, their settings are critically dependent upon the nature of the 

fitness function [16]. 

 

2.4.4.  
Genetic Algorithms to Solve Problems 

Arguably the most obvious application of GA is the multi-variable function 

optimization. By searching for some optimal value, many problems can be 

formulated; where the value is a complicated function of its input parameters. In 

some cases, the interest is on variable settings that lead to the greatest value of the 

function. In other cases, the exact optimum is not required, just a near optimum, 

or inclusive a value that represents an improvement over the previously best 

known value [18]. 

 

2.4.5. 
Differential Evolution 

Differential Evolution (DE), like GA, owned to the family of Evolutionary 

Computation. It is an optimization technique that uses an exceptionally simple 

evolution strategy, being significantly faster and robust at numerical optimization. 

It is more likely to find a function’s true global optimum. 

 “DE uses real coding of floating point numbers” [20], and the population is 

represented by NP individuals, where an individual is formed by a vector of D real 

variables, where D is the number of problem’s variables. 
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DE uses both, crossover and mutation operators. However, both operations 

are redefined in its context. DE creates a vector 'cx , a mutated form of any 

individual 
cx  (an individual randomly picked from the initial population NP), 

using the vector difference between two other randomly picked individuals 
ax  

and bx
 such that: )( bacc xxFxx ' −+= , where F is an user-supplied scaling factor. 

The optimal value of F for most functions lies in the range of 0.4 to 1.0 [21].  This 

operation is known as mutating with vector differentials.  

After that, the crossover is applied between any individual member of the 

population xi and the mutated vector 'cx , by swapping the vector elements in the 

corresponding locations. Like GA, this is also done probabilistically, and the 

decision of performing (or not performing) crossover is determined by a crossover 

constant CR in the range 0 to 1.  

The new vector xt produced is known as the trial vector. “Thus, the trial 

vector is the child of two parents, a noisy random vector 'cx  and the target vector 

xi, against which it must compete” [20]. CR represents the probability that the 

child vector inherits the parameter values from the noisy random vector 'cx . When 

CR= 1, for example, every trial vector parameter comes from 'cx . If CR= 0, all but 

one trial vector parameter comes from the target vector xt. To ensure that xt differs 

from xi by at least one parameter, the final trial vector parameter always comes 

from the noisy random vector, even when CR= 0, so that it does not become an 

exact replica of the original parent vector. Thus, the trial vector is allowed to pass 

on the next generation if and only if, its fitness is higher than that of its parent 

vector xi, otherwise the parent vector yields to the next generation. Figure 2.11 

shows the process of DE. 
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Figure 2.11: Differential Evolution Process [22] 

 

Among all, just three factors control evolution under DE: the population 

size NP, the weight F applied to the random differential, and the crossover 

constant CR. 

 

2.4.6.  
Different Strategies of DE 

Depending on the type of problem, different strategies can be adopted in the 

DE algorithm. “The strategies can vary based on the vector to be perturbed, 

number of difference vectors considered for perturbation, and finally the type of 

crossover used” [20]. The following are the 10 different working strategies 

proposed by Price and Storn [22]. 

1. DE/best/1/exp 
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2. DE/rand/1/exp 

3. DE/rand-to-best/1/exp 

4. DE/best/2/exp 

5. DE/rand/2/exp 

6. DE/best/1/bin 

7. DE/rand/1/bin 

8. DE/rand-to-best/1/bin 

9. DE/best/2/bin 

10. DE/rand/2/bin 

 

The convention used above is DE/x/y/z. DE means Differential Evolution, x 

denotes a string representing the vector to be perturbed, y is the number of 

difference vectors used for perturbation of x, and z denotes the type of crossover 

being used (exp: exponential, bin: binomial).  

For perturbation with a single vector difference, out of the three distinct 

randomly chosen vectors, the weighted vector differential of any two vectors is 

added to the third one. In the same way for perturbation with two vector 

differences, five distinct vectors, other than the target vector, are chosen randomly 

from the current population. Out of these, the weighted vector difference of each 

pair of any four vectors is added to the fifth one for perturbation. 

In exponential crossover, the crossover is performed on the D variables in 

one loop until it is within the CR bound. In binomial crossover, the crossover is 

performed on each of the D variables whenever a randomly picked number 

between 0 and 1 is within the CR value. So, for high values of CR, the exponential 

and binomial crossovers yield similar results. In the binomial case, the last 

variable always comes from a random noisy vector to ensure that is different from 

the target vector, and hence the above procedure is applied up to D – 1 variables.  

“The strategy to be adopted for each problem is to be determined separately 

by trial and error” [20]. The best strategy for a given problem may not work well 

when applied to a different problem. 

In the next chapter, the presented analytical background is applied to the 

SLAM problem. 
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