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Abstract

Jardim, Felipe Schoemer; Epprecht, Eugenio Kahn (Advisor); Chakraborti,
Subhabrata (Co-advisor). Xbar Chart with Estimated Parameters: The
Average Run Length Distribution and Corrections to the Control
Limits. Rio de Janeiro, 2018. 202p. Tese de Doutorado — Departamento de
Engenharia Industrial, Pontificia Universidade Catdlica do Rio de Janeiro.

Control charts are among the indispensable tools for monitoring process
performance in various industries. When parameter estimation is needed to design
these charts, their performance is affected due to parameter estimation errors. To
overcome this problem, in the past, researchers have evaluated the performance of
control charts and designed them in terms of the expectation of the realized in-
control (IC) average run length (CARL,). But, as pointed recently, this solution does
not account for what is known as the practitioner-to-practitioner variability (i.e., the
variability of CARL,). So, a recent idea emerged where control chart performance
is measured by the probability of the CARL, being greater than a specified value —
which must be close to the nominal desired one. This is called the Exceedance
Probability Criterion (EPC). To apply the EPC, the cumulative distribution function
(c.d.f.) of the CARL, is required. However, for the most well-known control chart,
named the two-sided Shewhart Xbar (or simply X) Chart (under normality
assumption), the mathematical c.d.f. expression of the CARL, is not available in the
literature. As a contribution in this respect, the present work presents the derivation
of the exact c.d.f. expression of the CARL,, for three cases of parameters estimation:
(1) when both the process mean and standard deviation are unknown, (2) when only
the mean is unknown and (3) when only the standard deviation is unknown. Using
these key results, it was possible to calculate the exact minimum number of initial
(Phase 1) samples (m) that guarantees a desired in-control performance in terms of
the EPC. These results show that m can be prohibitively large (such as 3.000
samples). As a solution to this problem, two new equations are derived here to
adjust the control limits to guarantee a desired in-control performance in terms of
the EPC for any given value of m. The advantage of these equations (compared to
the existing adjustments methods) is that one provides exact results and the other

one does not require too many computational resources to perform the calculations.
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A further study about the impact of these adjustments on the out-of-control (OOC)
performance provides useful tables to decide the appropriate amount of data and
the adjustments that corresponds to a user preferred tradeoff between the IC and
OOC performances of the chart. Practical recommendations for using these findings

are also provided in this research work.

Keywords
Xbar Control Chart Performance, Conditional Performance, Exceedance
Probability Criterion, Control Limits Adjustments, Guaranteed In-Control

Performance
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Resumo

Jardim, Felipe Schoemer; Epprecht, Eugenio Kahn (Orientador);
Chakraborti, Subhabrata (Co-orientador). Grafico Xbarra com
Parametros Estimados: A Distribuicdo da Taxa de Alarmes e Correcdes
nos Limites. Rio de Janeiro, 2018. 202p. Tese de Doutorado -
Departamento de Engenharia Industrial, Pontificia Universidade Cat6lica
do Rio de Janeiro.

Os graficos de controle estdo entre as ferramentas indispensaveis para
monitorar o desempenho de um processo em varias industrias. Quando estimativas
de pardmetros sdo necessarias para projetar esses graficos, seu desempenho é
afetado devido aos erros de estimacdo. Para resolver esse problema, no passado,
pesquisadores avaliavam o desempenho desses métodos em termos do valor
esperado do numero médio de amostras até um alarme falso condicionado as
estimativas dos parametros (denotado por CARL,). No entanto, esta solucdo nédo
considera a grande variabilidade do CARL, entre usuarios. Entdo, recentemente,
surgiu a ideia de medir o desempenho dos graficos de controle usando a
probabilidade de 0 CARL, ser maior do que um valor especificado — que deve estar
préximo do desejado nominal. Isso € chamado de Exceedance Probability Criterion
(EPC). Para aplicar o EPC, a fungéo de distribuicdo acumulada (c.d.f.) do CARL,
é necessaria. No entanto, para um dos gréaficos de controle mais utilizados, o gréafico
Xbarra, também conhecido como grafico X (sob a suposicdo de distribuicio
normal), a expressdo matematica da c.d.f. ndo esta disponivel na literatura. Como
contribuicdo nesse sentido, o presente trabalho apresenta a derivagdo exata da
expressdo matematica da c.d.f. do CARL, para trés possiveis casos de estimacao de
parametros: (1) quando a média e o desvio-padrdo sdo desconhecidos, (2) quando
apenas a média é desconhecida e (3) quando apenas o desvio-padrdo €
desconhecido. Assim, foi possivel calcular o nimero minimo de amostras iniciais,
m, que garantem um desempenho desejada do grafico em termos de EPC. Esses
resultados mostram que m pode assumir valores consideravelmente grandes (como,
por exemplo, 3.000 amostras). Como solucdo, duas novas equacdes sdo derivadas

aqui para ajustar os limites de controle garantindo assim um desempenho desejado
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para qualquer valor de m. A vantagem dessas equacdes é que uma delas fornece
resultados exatos enquanto a outra dispensa avancados softwares de computador
para os calculos. Um estudo adicional sobre o impacto desses ajustes no
desempenho fora de controle (OOC) fornece tabelas que ajudam na decisdo do
melhor tradeoff entre quantidade adequada de dados e desempenhos IC e OOC
preferenciais do grafico. Recomendacgdes préaticas para uso desses resultados sdo

aqui também fornecidas.

Palavras-Chave
Desempenho do Gréfico de Controle Xbarra, Desempenho Condicional, Ajuste
nos Limites de Controle, Desempenho em Controle Garantido
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1
Introduction

1.1.
Motivation and Objectives

Control charts, created by Walter A. Shewhart while working for Bell Labs
in the 1920s and first published in a book in 1931, are still one of the most used
tools for monitoring the quality characteristics of a process. The most usual control
chart to monitor a process mean, namely the X control chart, is also widely used in
practice in many different areas such as manufacturing industries and medicine. The
in-control process mean and standard deviation are important parameters for
designing the X control chart. Usually these parameters are unknown and must be
estimated from m historical samples each of size n collected when process is
presumably in control. This is called Phase | Analysis in Statistical Process Control
(SPC). For an overview of the Phase I, the reader is referred to Chakraborti et al.
(2009) and Jones-Farmer et al. (2014). Then, the chart’s control limits may be
established using these estimates in the prospective process monitoring (called
Phase 11), where samples (also of size n) are collected at regular intervals. These
samples are used to calculate the plotting statistic [i.e., the sample mean (X)] to be
compared with the control limits. If the plotting statistic is outside the control limits,
the probability that something has changed with the process mean must be high and
the manager must find and correct the possible problem.

In the past, most of the research involving the development and performance
evaluation of the Phase Il control charts assumed that the in-control process
parameters were known [see, for example the literature review in this topic by
Jensen et al. (2016)]. l.e., for the X chart, the in-control process mean (denoted p,)
and the in-control process standard deviation (denoted o,) were assumed to be
known. This is because this assumption simplifies the design and performance
evaluation of the chart. For example, in this situation, the number of samples until

an alarm (the so-called run length) follows the well-known geometric distribution.
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However, in practice, as noted above, these parameters are usually unknown
and must be estimated in Phase I. When these estimates are used in place of known
parameters, their variability can result in chart performance that differs from that of
charts designed with known parameters. For example, the run length does not
follow a geometric distribution anymore and the actual probability of a false alarm
[also named the false alarm rate (FAR)] may be larger than the nominal desired one.
Many false alarms generate unnecessary costs to the process. For example, the
unnecessary waste of time that the manager will have to check for a nonexistent
failure pausing the process and decreasing its productivity. Since Shewhart (1939,
p. 76), this problem has been pointed out and analyzed by several authors. Thus,
when designing a control chart, the manager must consider the effect of parameter
estimation on the chart performance to avoid unnecessary costs. Four cases are
conceivably possible in the designing of the X control chart when parameters are

estimated. These cases arise when:

a) the in-control process mean and standard deviation (u, and o,) are
unknown. This situation is known as “Case UU”, which stands for mean Unknown
and standard deviation Unknown [see Quesenberry (1993)]. This state is also

known as the standard unknown case. This is the most common case in practice;

b) the process mean is considered known, and the standard deviation is
unknown (and needs to be estimated in Phase I). This is Case KU (mean Known,
standard deviation Unknown). This case is less common in practice (compared to
case UU), however it appears in some situations, for instance, according to
Montgomery (2009; p. 243), “in processes where the mean of the quality
characteristic is controlled by adjustments to the machine, standard or target
values of the mean (i.e., no estimation of the process mean and only estimation of
the process standard deviation to calculate the control limits) are sometimes helpful

in achieving management goals with respect to process performance”;

c) the in-control process mean is unknown (and needs to be estimated in Phase
I) and the standard deviation is known (Case UK, mean Unknown, standard
deviation Known). This case is not common in practice, however it may appear
when the mean may change but the variability around it is known to be considerably

stable;
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d) the in-control process mean and standard deviation are both known (this
case is called “Case KK”, mean Known, standard deviation Known, or “standard
known” case). This case is the simplest case where the performance of he X control

chart can be easily studied and measured.

Usually the X chart performance in the ideal case KK is the practitioner
desired chart performance. However, as noted above, the Phase Il X chart
performance in cases UU, KU and UK may be considerable different compared to
Case KK.

The realized probability of a signal (CPS) [or, if the process is in control, the
conditional false alarm rate (CFAR)] and the realized average number of samples
until a signal [which is usually known as the conditional average run length
(CARL)] are the most popular performance measures of any control chart. When
parameters are estimated, CFAR (or CPS) and CARL are random variables because
they are conditioned on the estimated parameters, which are also random variables.
So, these measures alone, cannot be used when parameters are estimated because
they vary. Then, in cases UU, KU and UK the performance was usually measured
using the expectation of CFAR and CARL [i.e., E(CFAR) and E(CARL)]. This is
known as the “unconditional perspective” and it will be explained in more detail in
Chapter 2. The fact is that, when parameters are estimated with insufficient Phase |
data, E(CFAR) and E(CARL) may be different, respectively, from the false alarm
rate (FAR) or the average run length (ARL) in the ideal case KK. Given this, if more
Phase | samples are not available, some authors suggested adjusting the control
limits in order to make E(CFAR) and E(CARL) equal to the values of FAR and
ARL in case KK. However, more recently, a great number of researcher advocated
against the use of E(CFAR) and E(CARL) as chart performance measures, because
the overall expectation does not account for the practitioner-to-practitioner
variability (i.e., each practitioner chart will have one different value of CFAR and
CARL which will most likely not be equal or close to the E(CFAR) and E(CARL),
their means. This is because, as noted by them, the variability of CFAR and CARL
is often large even for a relatively large amount of Phase | data, even if the chart is
adjusted to have a desired specific value of E(CFAR) and E(CARL).
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So, recently, some authors recommended to measure control charts with the
probability of CARL or CFAR be greater than a specified value (close to the nominal
desired value). This is known as the Exceedance Probability Criterion (EPC)
proposed by Albers and Kallenberg (2005) and Albers et al. (2005). These authors
recommended adjusting the control limits or finding the appropriate amount of
Phase | data using the EPC as a performance measure, instead of E(CFAR) and
E(CARL). So, note that to use the EPC, the knowledge of the cumulative
distribution functions of CARL or CFAR are required. Despite of the long list of
works in the literature regarding the performance of the X control chart with
estimated parameters (under normality assumption), the exact mathematical c.d.f.
expressions of CARL and CPS (or CFAR) were unknown in the cases where
parameters are estimated. As we will see during this work, the exact expressions of
the CARL and CPS (or CFAR) c.d.f’s provides to the practitioners and researchers
a better understanding of the effect of parameter estimation on the X control chart
performance by helping them in the calculation of some important CARL and CPS
(or CFAR) properties (such as quantiles, mean, median and variance) and, more
important, these c.d.f.”s (of CARL and CPS [or CFAR]) also help the practitioner
and researcher to calculate the exact minimum number of Phase | samples and the
exact adjustments to the control limits in order to guarantee an in-control
performance in terms of the Exceedance Probability Criterion (EPC). Since the
exact distributions of CARL and CPS (or CFAR) were unknown, previous authors,
for Case UU only, relied on approximations or simulations in order to study the

performance of the X control chart and design it in terms of the EPC.

With this background as motivation, the present work has the following
objectives for the cases UU, KU and UK of the X chart:

1. Derive the mathematical expressions of the c.d.f. of the conditional average
run length (CARL) and its reciprocal, the conditional probability of a signal
(CPS) of the X chart for the first time in the literature. Previous authors

relied on simulations and approximations to study such distributions;

2. With the aforementioned distributions, calculate the exact required numbers

of Phase | samples that guarantee a desired conditional in-control
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performance in terms of the EPC for the first time in the literature. Previous
authors calculated these numbers based on the unconditional perspective or
based on the achievement of some desired value for the variability of the
CARL, (i.e., not in terms of the EPC);

Derive new simple equations to adjust the control limits to guarantee a
desired in-control performance (in terms of the EPC) which provides exact
or accurate results. The existing adjustment equations in the literature do not
provide exact results and their calculations are rather complicated requiring

computers for the calculation of several integrals and derivatives;

Study and analyze the effect of the adjustment of the limits on the out-of-
control performance of the chart in detail to provide some practical
recommendations for the users. Previous authors have tackled this issue
only very briefly and focusing mainly on the unconditional out-of-control
run length. This is an important information for the user, who needs to
consider the tradeoff between the number of Phase | samples to consider,
the risks of a false alarm rate higher than desired and the possible
deterioration in the out-of-control performance regarding the relevant shifts
to be detected with minimum delay. Since the adjustments required (and
their effects on the OOC performance of the chart, that depend on the size
of the relevant shift) are milder with larger numbers of Phase | samples, only
a more comprehensive analysis of the OOC CARLs of the chart with
adjusted limits for different numbers of Phase | samples and for different
shifts in the mean can provide the user with the “big picture” needed in order
to make an informed decision on the number and size of Phase | samples

and adjustments to adopt;

Figure 1 shows a summary of the basic ideas presented in this thesis.
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Derivation of the cumulative distribution function (c.d.f) of the
conditional probability of a signal (CPS) or the conditional average
run length (CARL)

Calculation of the exact one-sided prediction intervals (quantiles)
for the CPS and the CARL using the cdf above

— Calculation of the exact minimum number of Phase | samples (m)
X Chart with to guarantee a desired in-control performance in terms of the
estimated Exceedance Probability Criterion (EPC)

parameters

Derivation of new adjustments to the control limits to correct for
the effect of parameter estimation when the number (m) and size
(n) of Phase | samples are small

An out-of-control analysis after the adjusments where practical
recommendations for the user regarding the amount of Phase |
data and adjusted limits, balancing in- and out-of-control chart
performance is given

Figure 1. Summary of the scope of the present thesis

1.2.
Methodology of this work

To accomplish the objectives of the present work, first a literature review was
made where were verified that the mathematical expressions of the c.d.f. of the
conditional average run length (CARL) and, its reciprocal, the conditional
probability of a signal (CPS) of the X chart under normality assumption were
unknown. Given this, with probability and statistical techniques, such as the
conditional-unconditional method and the distribution function technique, these
c.d.f.”s were derived analytically for the first time in the literature. With these
mathematical c.d.f.”s expressions, it was possible to derive new exact equations to:
(1) calculate the prediction bounds of the in-control CARL and CPS; (2) calculate
the exact minimum amount of Phase | samples to achieve a desired in-control
performance in terms of the Exceedance Probability Criterion (EPC); and (3) adjust
the control limits in order to achieve a desired in-control performance in terms of
the EPC with a pre-established amount of Phase | data. Some of these exact
equations do not have a close-form solution, so in order to find the answers for these

cases, two approaches were adopted:
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1 — The use of a search algorithm, known as the secant method. This method
provides extremely accurate result, which can be considered exact. This is because,
one can specify the desired accuracy for the search algorithm in order to find a result
that is exact up to a specified number of significant digits. Details of this method

are in Appendix B.

2 — The analytical derivation of new approximate formulas. To this end, it
was used approximate techniques, such as the one-step and two-steps Taylor
approximations and an approximation for the c.d.f. of a non-central chi-square
distribution derived by Cox and Reid (1987). Details of these approximate formulas

derivations are in Appendixes C and D.

To perform all the above-mentioned calculations, programs were written using
the R language. In particularly two R-packages were used: cubature (to compute

double integrals) and numDeriv (to compute numerical derivations).

1.3
Organization of the Thesis

In order to achieve the objectives of this research, the remainder of this work

is organized as follows:

e In Chapter 2, there is a section of a literature review on the previous works
regarding to the effect of parameters estimations on the control charts
performance, especially on the X control chart and the very recent works in
this topic. Another section presents the basic concepts and formulas of the
X control limits and the parameters estimators used in them. For the three
cases (UU, KU and UK), the formulas of the conditional average run length
(CARL) and conditional probability of a signal (CPS) are also derived and
explained. Some plots of CARL and CPS curves are presented along with

some analyses.

e In Chapter 3, there are detailed derivations of the cumulative distribution
functions (c.d.f.) of CARL and CPS (or CFAR) for all the 3 cases (UU, KU
and UK). Plots of the c.d.f. and the probability density function are
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presented. In two sections of this chapter, some properties of the
distributions of the CARL are calculated, such as their means, standard

deviations and quantiles (prediction bounds). Some analyses are provided.

e In Chapter 4, equations (based on the c.d.f’s derived in Chapter 3) to
calculate the minimum number of Phase | samples in order to guarantee an
in-control performance in term of the EPC are derived for all three case UU,

KU and UK. Some results are tabulated and analyzed.

e In Chapter 5, equations which provide exact and approximate adjustments
in the control limits (to guarantee an in-control performance in terms of the
EPC) are derived. In this chapter, it is shown that these new equations
provide accurate results compared to the already existing ones for Case UU.
Also, further in this chapter, an out-of-control analysis after the adjustments

is made.

e In Chapter 6, the conclusions and some practical recommendations are

presented.

To support the understanding of the contents in this work, in appendices some
extra derivations to some of the formulas used here are presented along to some
extra figures and plots. The codes in R language are also in Appendix. Finally, from
some of the contents of this work, three papers were written and submitted to
international journals. One of them is already accepted. These papers are in

Annexes in the end of this work.
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Literature review and basic concepts

2.1.
Previous works

The undesired effect of estimating parameters with limited amount of Phase
| data on the performance of control charts has long been documented in the
literature. Shewhart (1939, p.76) already showed this concern when he wrote “In
the majority of practical instances, the most difficult job of all is to choose the
sample that is to be used as the basis for establishing the tolerance range (control
limits)". However, mostly after Queensberry (1993) and Woodall and Montgomery
(1999), who emphasized the relevance of this research topic, a large number of
papers which studied and proposed solution for the effect of parameter estimation
on the performance of control charts have emerged [this is summarized in the
literature reviews made by Jensen et al. (2006) and Psarakis et al. (2014)]. The fact
is that the performance measures of control charts have been the subject of much
debate in the last 20 years or so.

Many researchers who studied the effect of parameter estimation on the
performance of control charts have focused on the marginal distribution of the
number of observations (or samples) until an alarm (the well-known run length,
denoted RL — see, for example, Moskowitz et al. (1994)] and especially on its
expected value, the so-called unconditional average run length, denoted ARL [see
for example, Quesenberry (1993), Chen (1997), Chakraborti (2000, 2006 and 2007)
and Goedhart et al. (2016a)]. They focused almost exclusively on the in-control
performance, i.e., they considered the in-control run length (RL,) distribution, its
mean (ARL,) and its the standard deviation (SDRL,). The RL, distribution is
obtained by averaging over the distribution of the parameter estimators, thus, a
performance given by ARL, or SDRL, is an “average” performance over an infinite
number of possible control charts, each one constructed with a possible value of an

infinite set of estimated parameters, rather than a performance of a specific control
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chart. Like noted in the introduction, this is denoted as “the unconditional
perspective”. Thus the ARL, and SDRL, does not account for what is called the
practitioner-to-practitioner variability. This is a subject of much debate in the
literature, see for example, Trietsch and Bischak (1998), Albers and Kallenberg
(2004a,b, and 2005), Albers et al. (2005), Bischak and Trietsch (2007), Kumar and
Chakraborti (2014), Saleh et al (2015a,b), Epprecht et al. (2015), Faraz et al. (2015),
Goedhart et al (2017 and 2018).

In any real application, where the user has just one set of reference samples
to estimate the chart parameters and calculate its control limits, the realized average
number of samples until a false alarm will not actually be the ARL,. The realized
number of samples until a false alarm will be conditioned on the parameters
estimates (this is denoted CRL,) and so its average, denoted as CARL,. Recently
[see, for example, Saleh et al (2015a,b), Epprecht et al. (2015)] authors recognized
that the CARL,, in fact, is the “real/actual” average number of samples until a false
alarm, and, different from the ARL,, it is a random variable that will most probably
not assume its expectation (which is also the ARL,, i.e., E(CARL,y) = ARL, =
E(RL,)), since its variability, as also noted by them, is often large (especially if the
amount of Phase | data to estimate the chart parameters is not very large, such as
three thousands). This alternative and new point of view is known as “the
conditional perspective”. A detailed comparison between the conditional and
unconditional perspectives is presented in Jardim et al. (2017a) — a resulting paper
of the present thesis (see Annex A).

As noted in Chapter 1, recognizing that the CARL, (or its reciprocal, the
conditional false alarm rate, denoted, CFAR) is a random variable, Albers et al.
(2005) proposed to measure and set up control chart limits so as to guarantee that a
given tolerated value for the CARL, had only a large (specified) probability (e.g.
90%) of being exceeded, the Exceedance Probability Criterion (EPC). Thus, it is
evident that, to use the EPC, it is necessary to deal with the distribution of CARL,.
When it comes to the possibly most well-known control chart of all, the X control
chart under normality assumption, the exact c.d.f. expression of the CARL, was
unknown until the present work. So, most authors studying and proposing solutions

to the negative effect of parameter estimation on the performance of the X charts
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using the EPC relied in simulations, bootstrap methods, and approximations for the
distribution of the CARL,, (as it will be seen next).

It has been found by several authors [see, for example, Quesenberry (1993)
and Chakraborti (2000) for the X chart] that while estimating parameters, the
unconditional perspective leads to requiring larger amounts of Phase | data for
parameters estimation so that some nominal in-control chart performance (in terms
of the ARL and SDRL) can be achieved as in the known parameters case (case KK).
This required amount of data is much larger than traditionally recommended which
is m = 25 or 30 Phase | subgroups each of size n = 5 given by the usual manuals
and books in this topic [see, for example, Montgomery (2013)]. On the other hand,
focusing on the conditional perspective, Saleh et al. (2015a,b), for the X, X and the
EWMA charts, showed that using the standard deviation of the CARL, distribution,
in addition to the average (ARL,), as a performance measure, better accounts for
practitioner-to-practitioner variability and leads to a requiring even larger amounts
of Phase | reference data (i.e., even larger values of m). Although this is technically
sound advice, it has been noted that such huge amounts of data that require very
large values of m (several hundreds or even some thousands), may be typically
infeasible in routine control charting applications. Similar findings were made by
Loureiro et al. (2017), Epprecht et al. (2015) and Kumar and Chakraborti (2014)
who considered, respectively, the joint X-S control charts, the one-sided S charts
and Shewhart charts for monitoring times between events following an exponential
distribution. Using the EPC, their findings of the required numbers of Phase |
samples to guarantee a specified nominal in-control performance, were much larger
than found by previous authors who based their analyses on the unconditional
performance measures (ARL and SDRL). It is important to note that, until the
present work, the minimum number of reference sample to achieve the in-control
performance of the X chart in terms of the EPC wasn’t presented (calculated) in the
literature.

Given the finding that under both perspectives (the unconditional and
conditional), large, often impractical, amounts of Phase | data are required to
guarantee some in-control performance of the Phase I X chart, some authors have
considered using adjustments to the control limits to properly compensate for the

effects of parameter estimation and to guarantee a desired in-control performance
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with the available amount of data. Such control limits are called adjusted limits and
this adjustment consists of replacing the limit factor (L) (usually equal to 3 in the
traditional Shewhart X chart), by a new (or corrected or adjusted) limit factor (L*),
which vyields a specified nominal in-control performance. For example, in the
unconditional perspective, the constant 3 in the traditional “3-sigma limits” may be
replaced (or adjusted) by a constant (L* = 3.15, say), to guarantee that the ARL,
has a desired nominal value. On the other hand, in the conditional perspective, one
recognizes that the CARL, is a random variable with a distribution and thus one
uses the EPC and replaces the traditional limit factor (L) by an adjusted limit factor
(L"), to guarantee that with a high probability, the CARL, is greater than a specified
value, say, 370.4. Of course, any adjustment to the control limits also impacts the
chart’s out-of-control performance and one must carefully balance the gains and
losses on both fronts. The convention in SPC has been to weigh the chart’s in-
control performance more heavily, so that not too many false alarms are seen
relative to what is nominally expected, but this must also be balanced so that the
chart’s shift detecting ability is not highly compromised.

To underscore the keen interest in this area of research, note that several
articles have about adjustments of control limits for the X chart have appeared in
major journals over the last decade. These include Chakraborti (2006), Gandy and
Kvalgy (2013), Saleh et al. (2015b), Goedhart et al. (2016 and 2017), Jardim et al.
(2017a and 2017b) and Faraz et al. (2017). These efforts are described next.

Chakraborti (2006) and Jardim et al. (2017b) [another resulting paper of this
work, see Annex B] derived formulas for L*, using the unconditional and the
conditional perspectives, respectively and the exact distributions formulas for the
in-control marginal run length and conditional average run length in each case.
Although these distributions and the resulting equations are not in a closed form,
they can be easily solved numerically, using many available software packages, for
example, such as the R language. Since these methods are based on an exact
distribution and yields very accurate results easily, using numerical methods to
solve the integrals involved, these are henceforth called “the Exact Methods”.

On the other hand, Goedhart et al. (2016 and 2017a), derived formulas for the
adjusted limit factor under the unconditional and the conditional perspective,

respectively, using sophisticated approximations for the CFAR c.d.f. Furthermore,
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realizing the complexity of the approximations, Goedhart et al. (2018) presented an
alternative and simpler approximate formula for the conditional perspective
solution based on the theory of tolerance intervals [see Krishnamoorthy and
Mathew (2009)]. However, this simpler formula requires the quantile of a non-
central chi-square distribution, which is not tabulated in many textbooks and is not
provided in a popular software like MSExcel, so its calculation may still require
relatively advanced statistical skills. Given this, in the present work, like mentioned
in Chapter 1, as an aside, it is derived an even simpler approximate formula in which
the quantile of the non-central chi-square distribution is replaced by a central chi-
square quantile [using a result given by Cox and Reid (1987)], which is more readily
available. All these methods are called “the Approximate Methods” to emphasize
the fact that they are derived using some approximations (to the distribution of the
CFAR or CARLy).

In addition to the exact and the approximate methods, there are adjustments
to the X chart control limits considered by Saleh et al. (2015b) under the conditional
perspective and the EPC using the bootstrap approach proposed by Gandy and
Kvaloy (2013). Finally, Faraz et al. (2017) also proposed a method to adjust the X
chart, however, their adjustment was not based in the EPC, instead, it was based on
the equal-tailed tolerance interval together with the Bonferroni Inequality [see
Krishnamoorthy and Mathew (2009, p. 4 and p.10)], which generates wider
adjusted control limits if compared to the adjusted limits derived under the EPC.
Faraz et al. (2017) defined their method as “exact”, however it is not actually exact,
since it is based in an inequality. Also, their results are extremely different from all
the other methods under the conditional perspective, but this is still included in this
work for comparison (and it is called here as “Exact Method”, since this was the
definition used by them).

Figure 2 shows a flowchart for the current state of the art regarding the
adjustment of Phase Il control limits to achieve some desired nominal in-control

performance for the X chart in the face of parameter estimation with Phase | data.
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Exact Method: Chakraborti (2006)
(Derivation of an exact equation and numerical
N solution of it)
— Solution:
X Chart with Adjustment on the
estimated limits focusing on Approximation Method: Goedhart et al (2016)
parameters. the unconditional (Derivation of an approximate formula)
Problem: perspective.
Performance with -
large variability ) E‘xact Method: Jardim n-et al (2017) .
induced by (Derivation of an.exact‘equ?tlon and numerical
parameters solution of it using EPC)
estimation. As
result, many data Er?ct Method: Fa.raz et al (2017) _
are needed for (Equal-tailed tolerance {nterual t.ogether with
chart’s performance Solution: the Bonferroni Inequality )
be similar to the Adjustment on the Approximation Methods: Goedhart et al (2017
known parameter limits focusing on and 2018)
case. the conditional (Derivation of an approximate formula using
perspective. EPC)
Bootstrap Method: Gandy and Kvaloy (2013)
and Saleh et al. (2015)
(Bootstrap simulation method using EPC)

Figure 2. Adjusting the X chart control limits for a guaranteed in-control

performance

2.2.
The Control Limits of the X Chart

In the present work, the observations of the process quality variable (X) are
considered i.i.d. and normally distributed, like is traditionally done for the X
Control Chart. When the process is in control, X~N (uo, 62); when the process is
out of control, X~N(uy, ), with u; # u,. Thus, the process standard deviation is
assumed to remain at the in-control value a,, consistently with the purpose of
detecting a shift in the mean. In the ideal case (KK), the in-control process mean
(uo) and standard deviation (o) are both known or specified. In this situation, the
upper and lower control limits (UCL and LCL) of the L-sigma X Control Chart with

subgroups of size n are given, respectively by

UCL = py + Lj—% 1)
and
LCL = py —L%, (2)

where the control limit factor L is either a value such as 3 (the widely used “3 sigma

limits”) or is chosen so as to provide a nominal in-control average run length such
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as 370.4 or a false-alarm rate a. In the latter case, we have L =z,,, =
®1(1 — a/2), where ®(-) denotes the standard normal c.d.f. Thus, the usual 3-
sigma limits correspond to a nominal false alarm rate of « = 0.0027. However, as
noted in the beginning of the Chapter and in Chapter 1, in practice u, or o, are
usually unknown and need to be estimated from a Phase | data, consisting of m

subgroups of size n, taken from the process when it is in control.

In Cases UU and UK, the most common estimator for the mean y, is the X,

the grand mean of the m Phase | samples:
= 1 —
X = ;Zﬁ1xi’ 3)

where X; =% Xy, i=12,..,m, j=12,..,n and X;; denotes the j-th
observation of the i-th Phase | sample. In cases UU and KU, a highly recommended
estimator for the standard deviation is the pooled sample standard deviation (S,),
which is given by the square root of the average of the sample variances of the

Phase | samples. Thus,

1 1 %)
Sp = |~ m_S2 where Sl-2 = j=1(Xi,j_Xi) )

i=1%1i"

Mahmoud et al. (2010) showed that, among multi-sample estimators of the
standard deviation, S,, is preferable to a more traditional estimator, like S/cap
where §=YM",S;/n and c,, is the unbiasing constant defined as [see,
Montgomery (2013)]:

_ _ [r®/2)v2]
“4b = r(o-1)/2vb-1 ©)

Where b = m(n — 1) + 1 and I' is the gamma function. So, in the present work,
the X and S, are considered (instead of S/c4p,)- In the literature, two other pooled
estimators of the standard deviation have been also considered, the unbiased
Sp/cqp and the biased, but minimum mean squared error, estimator c, S, (see
Mahmoud et al., 2010 and Saleh et al., 2015a,b). Since these three estimators
provide similar results as c, = 1 for relatively small values of m and n [such as
m =25 and n =4 — again, see Mahmoud et al. (2010) for a quantitative

comparison], in the present work, we consider just the S,, estimator. Note that it is
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not considered here the range-based estimators since some authors have
recommended against their use because of lack of robustness (see again Mahmoud
et al., 2010). Anyway, all the formulas and results presented here can be easily

modified for other estimators of standard deviation.

When p, or g, are estimated, most authors recommended replacing the
constant L in equations (1) and (2) by a constant L*called the adjusted control limit
factor that needs to be found so that a desired nominal in-control chart performance,
defined in terms of a suitable performance criterion, is achieved, for a chosen set of
estimators and given the available amount of Phase | data. This means that, different
from L, L* may vary depending on the amount of data (m and n) available to estimate
Uo and g, and the type (unbiased, biased, minimum variance, etc.) of estimators (i,
and &,) one uses to estimate the parameters. When the amount of Phase | data is
sufficiently large (i.e., when m and or n tend to infinity), L* is expected to be equal

to (converge to) L.

In order to study the effects of the estimation of the process parameter(s) on
the performance of a control chart in general, it is convenient to begin with a study
of the Phase Il probability of a signal given the estimator(s), the so-called
conditional probability of a signal (CPS), as noted in Chapter 1. Note again that
when the process is in-control, a signal represents a false alarm and its probability
is called the false alarm rate. As noted earlier, the conditional false alarm rate is

denoted CFAR. These are discussed in the next section.

2.3.
The Conditional Probability of a Signal and the Conditional False
Alarm Rate

A signal occurs when, in a given Phase |1 sample, the average X lies outside
the control limits. Given the expressions for the control limits (Eq. 1 and Eq. 2) and
replacing p, and g, by X and S, when appropriate, the conditional probability of a
signal (CPS) for any Phase Il sample can be written, respectively, for Case UU KU
and UK are

CPSsuy = P(SignallX,$,) =1-P(f-LE<X <X +L7) ©)

)
Vn Vn
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P = (Signalls) = 1Pt BT 2m s 1) 0
and
CPSsux = P(Signal|lX) =1 -P(X-LE <X <X +1%). @®)

In the remainder of this work, subscripts UU, KU and KU will be used when
necessary to indicate the cases, as above. It is then evident (as denoted in the left-
hand member of (6), (7) and (8)) that the probability of a signal in Phase Il is

conditioned on the value of the estimators X and S, in (6), estimator S, in (7) and

estimator X in (8). Before proceeding, it is convenient to define some notations. Let
u denote the actual process mean in Phase 11 (being it in control or out of control).

Let’s also define the scaled shift of the mean as

S = “_#0. (9)

0o
When u = uy, § = 0 and the process mean is in control. Whenu = u, #

Uo, & # 0 and the process mean is out of control. Also, it is known that Y =

m(n —1) S} /o follows a chi-square distribution with m(n — 1) degrees of

freedom and Z = (X;” °) vmn follows a standard normal distribution (see
0
Chakraborti, 2000). Note that Y and Z are proportional to the estimation errors
defined respectively as 55/002 and (%) Recalling that X~N (u, 62) implies that
0

X~N(u,cé/n) where u = u, + 8o, (see Eq. 9), the conditional probability of a
signal (CPS) for any Phase Il sample, can be written, for Case UU, KU and UK

CPS 5 yy = P(Signal|Z,Y,8)

=1—[CD<\/%+L ! —&/ﬁ)—cb(%—L r —5%)],(10)

m(n—1) m(n-1)

CPS s xy = P(SignallY, 6)

=1- [CD (L m<:—1> B 6‘5) - (_L\/m<:—1> - &/Z)] (11

and

CPS s yx = P(Signal|Z, 5)
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=1-|o(&+L-8vn)-0(&-L-svn)]| (12)

Expressions (10), (11) and (12) are convenient because they express the
conditional probability of a signal in terms of two random variables with well-
known distributions, namely a standard normal distribution and a chi-square
distribution. These general expressions apply to both in-control and out-of-control
situations. As noted, in the in-control case § = 0, whereas in the out-of-control case
6 # 0. Hence in the in-control situation, the conditional probability of a signal,
namely, the Conditional False Alarm Rate, CFAR, is expressed for Case KU and
Case UU by:

CFARUU = CPSO,UU = P(Slgna”Z, Y,6 = O)

=1- [CD (J% + L\/#—n) -® (v% —L m(;—1)>]’ (13)

CFARyy = CPS oy = P(SignallY,s = 0) = 2 (—L 4 ) (14)

m(n-1)

and

CFARUK = CPSO,UK = P(Slgnal|Z,5 = O)

VA VA
_1—[¢(ﬁ+L)—¢(ﬁ—L)]. (15)
respectively. Given that the in-control conditional run length (RL,) distribution of
the X chart is geometric with parameter CFAR (see, for example, Chakraborti
(2000)), then its expected value, the conditional in-control average run length
CARL,, is:

CARLy=——, 0<CFAR<1. (16)

Also, let CARLyyy, CARLyky and CARL, yx denote the conditional in-
control average run lengths in Case UU, Case KU and Case UK respectively.
Henceforth, when CARL,, CFAR or CPSs in a given equation do not receive a
subscript UU, KU or UK, this means that the equation is general for the 3 cases (as
in Eq. 16). Also, let’s define the CARLg as the notation of the conditional average
run length in general, i.e., for the in-control and out-of-control situations. So, note
that CARLs = 1/CPS;.
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Figure 3 shows a 3D contour plot of CFARy; in function of Z and Y when
m = 30,n=>5and a = 0.0027 (i.e., L = 3). Note that the values of CFARy; can
be significantly different from 0.0027 for many combinations of Z and Y. When
parameters are estimated, the false alarm rate conditioned on the estimates
(CFARyy) can assume very large values such as 0.02 a values more than 7 times

larger than the nominal 0.0027.

0035
CFARyy
*®  CFAR
0025 uu
003-0035
002z
W 0025-0.03
0015 ™ 0020025
001 ™ 0015-0.02
— ® 001-0015
£ = 0005-0.01
W 0-0005

Figure 3. CFARyy as functionof Zand Ywhenm =30, n=5and a =
0.0027 (ie., L = 3).

To visualize the effect of the number of Phase | samples, m, Figure 4 next
presents the CFARy, curves parametrized by m by plotting CFARg, as a function
of the order (u) of the quantiles of Y. One way to do this is using the probability
integral transformation, which yields the fact that the c.d.f. of Y (Fxrzn(n—l) (Y)) has

the same distribution of a random variable U, uniformly distributed between 0 and
1. In fact, it is not correct to construct a graph of CFARg directly in function of
the random variable Y when the graph is parametrized by m. This is because the
values of Y also depend on values of m since Y follows a chi-square distribution
with m(n — 1) degrees of freedom. Figure 4 illustrates the curves of CFARgy X u
forn =5, m =10, 20,50,100,500 and « = 0.0027 (i.e., L = 3).
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CFARyy
0.02 11
1
' — m=10
— Mm=20
0-015 T .. ........... ?n: 50
' --=-- Mm=100
M =500
CFARy,, =0.0027
0.01 -

I
|
|
|
|
|
|
I.
|
1]

Figure 4. CFARy as function of u forn = 5, m = 10,20,50,100,500
and a = 0.0027 (i.e,, L = 3).

Figure 4 clearly shows the effect of the number of Phase | samples m on the
performance of the X control chart when the process standard deviation is
estimated. The horizontal line corresponds to the value of the false alarm rate in
Case KK and can be considered the target when the 3-Sigma limits are used. So, it
can be seen, for n = 5, that the curves of CFARg, are significantly closer to the
horizontal line (the target) when m, the number of initial reference samples, is larger
(compare for example the curves for m = 10 and for m = 500). This means that the
difference between the target and the actual conditional false alarm rate is
considerably more likely to be larger when m is small. It is also interesting to note
that the effect is different on the two sides of u = 0.5 (the 0.5 quantile of Y). This
is caused by the skewness of the distribution of CFARg; which is derived in
Chapter 3.

Using Equation (16) it is also possible to plot curves of the conditional in-
control average run length in Case KU (CARL ky), this is showed in Figure A.1 in
Appendix A. The conclusions are similar to the one explained above and can been
checked in more detail in an resulting paper of this thesis [Jardim et al. (2017b)] in
Annex B. Using the same procedure, and the same values for a, m and n, Figure 5

shows the CFARx curves.
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CFARyy

00100

0.0080
m=10

m=20

m =50

m =100

m = 500
CFARUK =0.0027

0.0080

0.0040 I

00027

00020 —

0.0000 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. CFARy as function of u forn = 5, m = 10,20,50,100,500
and a = 0.0027 (i.e,, L = 3).

An interesting behavior of the CFARyk can be observed in Figure 5: the
minimum possible value of CFARx is the exact nominal desired value in case KK
(i.e., 0.0027, for L = 3). The fact that CFAR; x cannot be smaller than the its
nominal value is a particular and remarkable property of case UK. Similar
conclusion can be made for the CARL, yx curves which is showed in Figure A.2 in
Appendix A.

Figures 3, 4 and 5 provide good insights of the conditional false alarm rate
(CFAR) behavior when the process mean or the process standard deviation are
estimated (such as the minimum possible value of CFAR or “how distant” is it
curve from the nominal line). However, they do not clear provide the distributions
of this random variable. In the next chapter, the distributions of CFAR and CARL,
are derived. These distributions clearly show the effect of parameters estimation on
the X chart performance. They are also essential to calculate exact results for the

Exceedance Probability Criterion (EPC), as noted in the Introduction.
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Derivation of the cumulative distribution functions of the
CARL, and CFAR

As explained in the introduction, the control chart’s performance is
commonly measure by the probability of the CARL, (or CFAR) exceeding a
specified value. This is called the Exceedance Probability Criterion (EPC). Thus, it
Is evident that, to use the EPC, it is necessary to know the c.d.f. of the CARL, and
CFAR. When it comes to the possibly most well-known control chart of all, the X
control chart under the normality assumption, the exact c.d.f. expressions of the
CARL, and CFAR are unknown. Given this, in this chapter, we derive the exact
c.d.f. expression of the CARL, (and CFAR) of the X control chart for the 3 possible
parameters case estimation (UU, KU and KU). To do this end, we first derive the
c.d.f. expression of the conditional probability of a signal, CPSs, which works for
the in-control and out-of-control situations (see Equations 10, 11 and 12) and its
reciprocal, the conditional average run length CARLgs. With this c.d.f’s, we also
calculate some important properties of the CARL,, such as the mean and standard

deviation.

Before proceeding, note that, as shown in Equation (16), CARL, is a
monotonic decreasing function of CFAR, so the cumulative distribution function
(c.d.f.) of CFAR (Fcrag) is related to the c.d.f of CARL, (Fcag.,) @s shown below:

Fearr,(W) = P(CARLy <w) = P(1/CFAR < w)
= P(CFAR = W_l) =1- FCFAR(W—l)l w = 1. (17)

Of course, given that CARLs = 1/CPSg the same works for the general notations
CPSsand CARLg, i.e.:

=P(CPSsz2w™) =1—Feps,(w™H), w21 (18)


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

40

3.1.
C.d.f of CFAR (or CPSs) and CARL, (or CARLg) in Case UU

In Case UU, the CPSs yy is a function of two random variables (Y and Z),
so the derivation of an exact close expression of Fgpg, . requires using the

distribution function technique and the conditioning-unconditioning technique [see
Chakraborti (2000)], by first conditioning on Z (see Equation 10) using the

following conditional expectation:

Fepsspy(t) = P(CPSsy < t) = E; (P(CPS5yy S t|Z = 2))
= |, P(CPSsuy < t|Z = 2)fz(2)dz,

(19)

where f, denotes the probability density function (p.d.f.) of Z.

The next step is to derive an expression of P(CPSsyy < t|Z = z). Note
that, given z, P(CPSsyy < t|Z = z) is a function of only the chi-square random

variable Y. So, from Equation (10) one can write:

P(CPSsyy < t|Z =2)

_P(l_[cb( +L\/m<n D 6‘/_> <_m_L m(z—n_a‘m)]gt)
=P(P(\/—E—L/m(n S 6\/_<Zl<\/—_+L (n_l)—ax/ﬁ)z1—t>,

(20)

where Z; also follows a standard normal distribution. So,

P(CPSsyy < t|Z =2)

’m(n—l)_ +6\/_<L‘m(n—1)

2

z 2 , Y
=P| P (Zl—\/—ﬁ+6\/ﬁ) <|L m >1—-t]. (21)
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2
Given that (21 — % + 6\/5) follows a non-central qui-square distribution with 1

2
degree of freedom and non-centrality parameter given by (\/% - dx/ﬁ) , One can

define (21 - %)2 = xi[(\/%_wﬁ)z], and

P(CPSsyy <t|Z=2z)=P|P|x T G
S, UU = 1’[(L_5\/ﬁ) ] = m(n — 1) =
Vm
mn-1)F (1-t)
X1,[(‘/%—6w/ﬁ)2]
=1-Fe k - l (22)

2
_1 H __Z =
where in[i] denotes the inverse of the c.d.f. of (21 \/_+6\/n) =

X, 21. Using Equation (22) on Equation (19), we have the final exact
1[( 6\/5) ]

1\Wm
expression for the c.d.f. of CPSs yy :
m(n-1)F?}
2

27(1-1)
3 % Xl'[(\/_ﬁ_aﬁ) ]
FCPS&UU(t) =1- f_m Fan(n-ly 2 fz(2)dz. (23)

When 6 = 0, as noted earlier, CPS, yy is the conditional false alarm rate

CFARyy, so the exact c.d.f. of CFARy is expressed as

m(n—1)F ] E )2](1 - t)\‘
© X1\ 7=
Ferary, () =1 —f Fan(n—n sz/ﬁ fz(2)dz.  (24)

Using Equation (23) on Equation (18), one has the exact c.d.f. expression of
the general conditional average run length, CARLs yy (for the in-control and out-

of-control situations) as show below:
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FCARL&UU (w)
\/ﬁ

- J._oo Fxfn(n—l) \ L2

Using § = 0, the exact c.d.f. expression of the in-control conditional

/ m(n — 1)F‘ _M)Z] (1- %)\

)fz(z)dz- (25)

average run length, CARLs yy, is expressed as:

[m]

m(n — 1)F_ (1-w™b

FCARLO,UU(W) :f I fz(2)dz. (26)

Xm(n-1)

Note that Expressions (23), (24), (25) and (26) for the c.d.f’s in Case UU
are exact, however their evaluation involves calculating the integral using some
numerical method, since there is no closed-form solution for this integral. This is
not difficult since there are plenty of software that precisely calculate integral
numerically (such as MATLAB and R). In this work, the R language is used.
Indeed, many well-known c.d.f.’s are expressed in terms of integrals, including the

one for the celebrated normal distribution.

Figure 6 and 7 show, respectively, the c.d.f. of the CFAR,; and the
CARLyyy, calculated using Equation (24) and (26), for n=5, m=
10,20,50,100,500 and @ = 0.0027 (i.e., L = 3). Note that the vertical lines show
the nominal false alarm rate 0.0027 (Figure 6) and the in-control average run length
370.4 (Figure 7). The impact of m on the distributions is clear. When m is small
(such as m = 10), chances are high that the realized false alarm rate is higher than
the nominal one. For example, from Figure 6, form = 10, P(CFARyy = 0.006) =
40% , so that there is a 40% chance that the conditional false alarm rate is 122%
higher than the nominal 0.0027. Also note the significant difference between the
vertical line and the c.d.f. curve for smaller values of m. When m gets larger (such
as m = 500), the c.d.f curves are much “closer” to the vertical line, meaning that
in these cases, the CFARyy is likely to be not much different from 0.0027. Similar

conclusions hold for CARL, ;i Curves.
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Feparyy (£)

e

— e - e -
- .

0.8
L

0.2
1

0.0

== = T T T
0 0.001 0.0027 0.004 0.006 0.008 0.01

Figure 6. c.d.f. of CFARyy forn =5, m = 10,20,50,100,500 and a =
0.0027 (ie., L = 3).
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Figure 7. c.d.f. of CARLg yy for n = 5, m = 10,20,50,100,500 and & =
0.0027 (i.e., L = 3).

To provide further insight, in Figure 8 and 9, it is displayed the p.d.f. of
CARLo,yy (fearLeyy) @ CFARyy (feraryy) respectively, calculated by taking the
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numerical derivatives of the corresponding c.d.f. This was done in the R language
using the package “numDeriv” (for details of the codes, see Appendix H). The
fearLy yy PlOt shows the large density at values well below 370.4 (including the
position of the modes), meaning that when parameters are estimated, in practice,
there is a large probability that the CARL,yy is substantially smaller (and the
CFARyy is substantially larger) than the nominal value, even with a number of
Phase | samples quite larger than the usually recommended 25, 30 or 50 Phase |
samples. This is reflected in the long right tails of the density functions of CFAR
and CARLg yy.

fCARLO.UU )

---- m=100
------- M =500

T < T T
200 370.4 600 800 1000

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
L L L 1 L L 1

Figure 8. p.d.f. of CARLg yy forn = 5, m = 10,20,50,100,500 and
a=0.0027 (L = 3).
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Figure 9. p.d.f. of CFARyy forn =5, m = 10,20,50,100,500 and a =
0.0027 (L = 3).

3.2.
C.d.f of CFAR (or CPSs) and CARL, (or CARLg) in Case KU

From Equation (11), the c.d.f. of the general conditional probability of a
signal in case KU (CPS;s k) can be obtained similarly to case UU in section 3.1.
However, note that in this case, CPSs xy is a function of only one random variable
(which is Y), so, the conditioning-unconditioning method is not required and the

distribution function technique is enough in this case. From Eq. (11) one has

Feps 5y (8) = P(CPS sy < t)

’ Y , Y
=P|l1—-d|L m—é\\/ﬁ —&d| —-L m—é\\/ﬁ <t
= Y SVn<Z, < i Svn | =
=P| P|—-L m— Tl_Zl_L m— nl|l=>1-—t , (27)

where Z; also follows a standard normal distribution. So

Feps sy () = P(CPSsky <'t)
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’m(n—l)_zl+6\/_<L‘ (n—1)

Y
=p|P (Zl+6\/ﬁ) < m(n 5 >1—t | (28)

Given that (21 + 6\/5)2 follows a non-central qui-square distribution with 1 degree

of freedom and non-centrality parameter given by (6\/5)2, one can define

(7 - v%)z = Xi[(amz]’ and

2

Y
Feps gy (&) =P P X[(&/—)]_ L’m >1-—t

2

’ Y
=P Fz[(a\/_)] L m =>1—t]. (29)

Rearranging the terms, the final exact expression of the c.d.f. of CPS 5k is

F 2 1-1v)
[(5\/—) ]
LZ

FCPS&KU(t) = P Y 2 m(n - 1)

F 2 1-1v)
[(&/—) ]
LZ

=1—F, N m(n—1)

Xm(n—

(30)

According to Equation (18), the exact c.d.f. of the general conditional average run
length (CARLs ky) is:

1
FCARL&KU(W) = FX?n(n—n km(n - 1) L2 ) (31)

When § = 0, the exact c.d.f. of the conditional false alarm rate (CFARgy =

CPS o ky) is expressed as
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F>r(1 - t)) 2)

— X
FCFARKU(t) =1- FX12’n(n—1) (m(n - 1) 1 LZ

2
Given Equation (14) or the fact that FX‘%l(l —t) = (CD‘1 (%)) , it is also possible

to derive an alternative exact formula for the c.d.f. of the conditional false alarm

rate CFARgy as shown below.

Fepargy (t) = P(CFARyy < t) = P (zqn (—L /m <Z_1)> < t)
=P <—L /m(:_l) < o1 (g)) =1-Fg _ |mn- 1)@ (33)

Figure 10 shows curves of the c.d.f. CFARky (Fcpar,,) Calculated by

Equations (32) and (33) for values of n =5, m = 10,20, 50,100, 500 and a =
0.0027 (i.e., L = 3). Figure 11 clearly show the effect of the number of samples m
on CFAR distribution. It is interesting that the curves of Fgryg,,, are very similar to
the curves of Fepag,,,, (compare Figure 10 with Figure 6).

H:F.".ﬂ‘pqu{r}
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000 0.002 0.004 0.006 0.008 0.010

Figure 10. c.d.f. of CFARgy form =5, m = 10,20,50,100,500 and a =
0.0027 (i.e,, L = 3).

Using the relationship presented in Equation (17), the exact c.d.f. of the in-

control (i.e., 6§ = 0) conditional average run length (CARL k) is expressed as
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Fat(1- l)

X1,
FCARLO,KU(W) = Fan(n m(n— 1) - (34)

_1)

2
or, given that Fx‘f(l —t) = (d)‘l G)) , the Fearp, ., €aN also be expressed as:

() )
)

Figure 11 shows the curves of the c.d.f of CARLoxuy (Fcariexy(t))

FearsoryW) =Fpz | mn—1) (35)

calculated using Equations (34) and (35) for the same values of m and L used in
Figure 10. Again, the conclusion is similar to Case UU (compare Figure 12 with
Figure 8).

FearLoyy (O

=]

=

0.8

06

0.4

0.2

0.0

500 1000 1500 2000

Figure 11. c.d.f. of CARLg xy forn = 5, m = 10,20,50,100,500 and a =
0.0027 (i.e., L = 3).

Figure 12 and 13 display the p.d.f. of CFARky (fcrary, (t)) and CARLg ky

(fcarLoxy (t)) calculated by taking the numerical derivative of (32) and (34)

respectively. Like in case UU, these probability density functions have a long right
tail for small values of m, meaning that when parameters are estimated in practice

there is a large probability of CFAR being substantially larger than 0.0027 (and
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CARL, substantially smaller than 370.4), even with numbers of Phase | samples

already quite larger than the usually recommended 25, 30 or 50 Phase | samples.

This is a concern in terms of practical consequences, as noted in Chapter 1.

I;'.'F.ek;_-l- (t)
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Figure 12. p.d.f of of CFARgy for n =5, m = 10,20,50,100,500 and
a = 0.0027 (ie, L = 3).

|
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Figure 13. p.d.f. of CARL( gy forn = 5, m = 10,20,50,100,500 and a =

0.0027 (ie, L = 3).
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3.3.
C.d.f of CFAR (or CPSs) and CARL, (or CARLg) in Case UK

In case UK, according to Equation (12), the general conditional probability
of a signal (CPSs yk) is a function of only the random variable Z. Because of this,

it is not possible to derive an exact expression for the c.d.f. of CPSs yx (Feps )

using the distribution function method or the conditioning-unconditioning method
like was done for cases UU and KU. Given this, in this section, it is presented

equations to calculate exact values of Fepg, . With a search algorithm and also a

formula to calculate approximate values of Fepg, . -

As noted in the introduction, the search algorithm provides extremely
accurate result, since the user can specify the desired accuracy in order to find a
result that is exact up to a specified number of significant digits. In Appendix B, the
search algorithm is explained in more detail. For now, the expression of the c.d.f.

of CPSs,uk (Fcpsg ) can be expressed as:

0, t <0.0027
Fepsg i (8) = P(CPSsyx < t) = {(D(Zz) — ®(zy), 0.0027 <t <1,
1, t>1

(36)

where z; and z, are the only two solutions, according to Equation (12), of

1- [@(\/%+L—6\/ﬁ)—®<\/%—L—6\/ﬁ>] =t,
for Z, being z; < 5vmn < z, . Note again that z; and z, can be precisely found
using the search algorithm called the secant method (see Appendix B).

Equation (36) can be explained as follows: there are only two solutions for
Z of CPSs yx = t (from Equation (12), see also figure 5 for CPS, y, i.e., CFARyx)
because CPSs yx as a function of Z is decreasing on (—o, §v/mn] and increasing
on [8vmn, ©) so that CPSs i varies in the interval (min(CPSsyx) = 0.0027,
1]. The value of CPSsyx tends to one when Z tends to —oo or co. Thus, the
probability that CPSs yx < t (i.e., the c.d.f. of CPS; k) is the probability that Z

belongs to the interval between z; and z,.


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

51

The approximate formula for Fepsg e CaN be derived starting from Equation (12)

also. The details of this derivation are in Appendix C. The final expression is:

Fepss i (O) = P(CPSsyx <'t)

mlL?
Far(1-1)
1

mlL2

—Fx_%l(l e 1]. (37)

~ 6\/mn+\/ —1]—@ 6\/mn—\/

When 6§ = 0, i.e., for the conditional false alarm rate (CPS, yx = CFARyg), an
even simpler approximate formula for Fepag,,, can be derived. The final result is

below (for more details on this derivation, see Appendix C).

LZ
F, t) = P(CFARyx <t)=F ——1] . 38
CFARUK( ) ( UK ) 2 m<Fx_§1(1 D > (38)
Using equation (18), the approximate formula for the c.d.f. of the general
conditional average run length (CARLs yx) and the approximate formula for the
c.d.f of the in-control average run length (CARL, yx) can be derived, respectively,

as:

Fearts yeW) = P(CARLs yi < w)

mlL? mlL?
~®| svmn+ |——— - 1\ —o| svmn— |————— 1\ (39)

and

Fx? (1 _%)

The cd.f’s and p.df’s of the CFARyx and CARLoyx for m =

v \
FeartoyxW) = P(CARLg gy < w) =~ Felm|———<-1 / (40)

{10,20,50,200,500}, n = 5 and a = 0.0027 are shown in Figures 14, 15, 16 and

17. Exact values are calculated according to Equation (36), in grey, and the


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

52

approximate values are calculated according to Equations (37), (38), (39) and (40)
in black. Note that the approximate formulas provides very accurate results.

From these figures, it is evident the difference between the shape of the
distributions (either way cdf’s and pdf’s) in case UK and the other cases (UU and
KU). However, the impact of m on the CFARyx and CARL, yy distributions is also
clear. Similarly, to the other cases, when m gets larger (such as m = 500), the c.d.f.
curves are much “closer” to the vertical line of the nominal value of 0.0027 or
370.4. Note that the p.d.f’s in case UK have a cut (“break™) in the nominal values,

differently from the p.d.f.”s in cases UU and KU.

F (w)
CARL(),UK
— m=10 — Exact
™ — m=20 Approximation
< - m=50 e

-= m=100
== m=3500

08

Figure 14. c.d.f. of CARLy yx forn = 5, m = 10,20,50,100,500 and a =
0.0027 (i.e, L = 3).
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Figure 15. c.d.f. of CFARyg forn =5, m = 10,20,50,100,500 and a =

0.0027 (ie, L = 3).
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Figure 16. p.d.f. of CARLg yx forn = 5, m = 10,20,50,100,500 and & =
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0.0027 (ie, L = 3).
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Figure 17. p.d.f. of CFARyg forn =5, m = 10,20,50,100,500 and a =
0.0027 (i.e, L = 3).

3.4.
The mean and standard deviation of CFAR and CARL,

As explained in Chapters 1 and 2, the mean of the in-control conditional
average run length (CARL,) is denoted as the unconditional in-control average run
length (ARL,) and it was one of the most used in-control performance measure of
a control chart when parameters are estimated. Given that CARL is a non-negative
random variable, its mean and standard deviation can be easily calculated using its

c.d.f. derived in the previous sections of this chapter. The ARL, (i.e., the E[CARL;])
can be expressed as:

1

E[CARLy] = ARL, = f (1 — Feru, (w)) dw. (41)

0

Moreover, the standard deviation of CARL, (denoted here as SDARL,) can be
expressed as

SDARLy = +[V[CARL,] = \/E[CARL%] — (E[CARL,])? (42)
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where,

E[CARLE] =2 [} w (1 = Feas, (W) ) dw (43)

Equation (43) is a special case of the expression kfgow"‘l(l — F(w))dw
which is the k-th central moment of a nonnegative continuous random variable in
terms of its c.d.f. This formula is given in Feller (1966), Hong (2012, 2015) and
Nadarajah and Mitov (2003), the latter also derived the multivariate analogue.
However, an analogue of Formula (43) for a discrete non-negative integer-valued
random variable was not formally proved in the literature. Thus, as an extension of
the present work, we derived this analogue formula and published it in one of the

most recognized journals in statistics: The American Statistician (see Annex C).

For the 3 cases (UU, KU and UK), the unconditional in-control average run
length (i.e., E[CARL,] = ARL,) and the standard deviation of the CARL, [i.e., the
SDARLy = SD(CARL,)] are presented in Table 1 for some values of m and n and
a = 0.0027 (i.e., L = 3). The difference in the performance (in terms of SDARL,
and ARL,) between these cases are significant: in the cases UU and KU, the ARL,
for n = 5 are always larger than its nominal value (370.4), and in case UK (and
also for cases UU when n = 9), the ARL, values are always smaller than 370.4.
For case UK, ARL, and SDARL, results are invariant in respect to the values of for
n [what is expected given Eq. (15)]. Between cases UU and KU, surprisingly, the
ARL, and SDARL, are larger in case KU than in Case UU. This is an interesting
behavior because only one parameter is estimated in case KU (contrasting with the
two parameters estimations in case UU, which would make one to think that the

variability in case UU would be larger, but it is not).

As the amount of Phase | samples (m) increases, the ARL, in cases UU and
KU decreases and converges to 370.4 (for n = 5), while, in case UK (or in cases
UU for n =9), the ARL, increases and converges to 370.4. Note that the
convergence of the ARL,yx is faster than the convergence of ARLgyy and
ARLgy, 1.., the ARL, yi reaches a value close to the nominal 370.4 with much
less Phase | data than the ARL, yy and ARL k. Furthermore, according to the
values of the SDARL,, the variability of the CARL, yy and CARL ky are much
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larger than that for the CARL yx (i.e., SDARLq xky > SDARLy yy > SDARLg y).

The values of ARL,and SDARL, in Table 1 are exact (calculated numerically using
Equations (41) and (42)).

Table 1 - SDARL, and ARL values for cases UU, KU and UU for several values
of values of mand nand ¢ = 0.0027 (i.e., a nominal ARL of 370.4)

ARLy, = E(CARL,) SDARLy = SD(CARL,)
m N Case UU Case KU Case UK Case UU Case KU Case UK
3 605.6 748.0 311.0 1565.1 1975.0 61.7
20 5 422.4 511.4 311.0 460.3 550.9 61.7
9 360.3 432.5 311.0 240.0 275.1 61.7
3 536.9 637.3 319.7 964.3 1159.2 54.6
25 5 407.5 477.5 319.7 367.9 425.8 54.6
9 359.6 418.9 319.7 207.1 231.0 54.6
3 436.3 477.5 340.9 388.1 425.8 35.1
50 5 384.2 418.9 340.9 214.1 231.0 35.1
9 361.6 393.5 340.9 137.3 144.7 35.1
3 399.8 418.9 354.2 220.3 231.0 20.7
100 5 375.9 393.5 354.2 139.2 144.7 20.7
9 364.8 381.7 354.2 94.2 96.5 20.7
3 379.4 385.6 364.6 111.8 113.6 7.9
300 5 371.9 377.9 364.6 76.3 77.3 7.9
9 368.2 374.1 364.6 53.3 53.7 7.9
3 373.0 374.9 368.6 58.7 59.0 2.5
1000 5 370.8 372.6 368.6 41.1 41.2 2.5
9 369.7 3715 368.6 28.9 29.0 2.5
3.5.

Prediction Bounds for CFAR and CARL,

Since CFAR and CARL, are both random variables that depend on the
parameter estimates, it will be of interest to the practitioner to know how far they
can be from the nominal desired values. For example, it is of interest to know, in a
given Phase Il application, what value (named a,,) will be an upper bound to the
CFAR, with a certain (high) probability (1 — p). This upper prediction bound to the
CFAR will provide a lower bound to the CARL,, both of which can be useful to the
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practitioner in understanding the in-control chart performance under estimated
parameters. Put another way, for a given m and n, it is of practical interest to find
the value of CFAR, a,, such that

P(CFAR > a,)=p (44)

This means that the required a,, is the (1 — p)-quantile of the distribution of
CFAR. According to Equation (17), this problem is equivalent to finding the value
1/a, such that P(CARL, < 1/a,) = p, that is, to finding the p-quantile of
CARL,.

In Case UU, to find a,, one just must, in equation (26), replace t by a,, and

make it equal to 1 — p and solve for a,,. l.e., a,, yy is the solution to the equation

—_— _1 —_—
m(n 1)FX2 , (1-apuv)

z
(o) ‘Im

f_oo szn(n—l) 12 /fZ(Z)dZ =D, (45)

for given values of L, m, n and p. It is not possible to obtain a closed-form solution
to a, yy, because Equation (45) involves an integral over the distribution of Z
which can’t be solved analytically [see also Equation (26)]. However, it can be
solved numerically in a straightforward way, using a simple search method (like the
Secant Method) since Fcpag,,(t) is a monotonic increasing function of t.
Moreover, a simple approximate expression for a,, ;;, shown in equation (46) next,
can be obtained from Equations (26) using the one-step Taylor approximation and
an approximation for the c.d.f. of a non-central chi-square distribution derived by
Cox and Reid (1987). Details of the derivation of this approximation can be found

in Appendix D.

Fx_f:( N (®)
~ 1 — 2_mn-1)
ap,UU ~ 1 FX% L (m+1)(n_1) . (46)

In Case KU, using Equation (33), an exact expression of a,xy, can be

obtained by solving the following equation for a;, xy:
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Ftneny (m(n -1 <_ w> ) =P (47)

Rearranging the terms in Equation (47), a,, xy can be expressed as

Fo' )

_ Xm(n—l)
ap'KU—ZCD —L W . (48)

In Case UK, one can use Equation (36) for 6 =0 and find a,;x by

numerically solving the following system of equations:

O(z2) = 0(z)) =1-p

CI)(\/Z—%+L)—(D(\/Z—%— )=1-apue i=12

(49)

for, z,, z; and @, yk. Note again that z,, z; and a,, ;x can be found via a search
algorithm, such as the secant method. From Equation (38) is also possible to derive

an approximate formula for a,, ,;; as show below (for more details see Appendix

D):

(e )

~1-F 50
o.UK K kFx_zl(l —-p) ) (>0
A 41

m

Table 2 shows the values of a,, and 1/«,, for p = 0.05 (i.e., the 0.95 quantile
of CFAR and the 0.05 quantile of CARL,) and p = 0.1 (the 0.9 quantile of CFAR

and the 0.1 quantile of CARL,) for some values of m and n in Cases UU, KU and
UK. For Cases UU and UK, the exact values were calculated numerically using
Equations (45) and (49) and a search method (respectively) and — in bold — the
values obtained using the simple approximations given by Equations (46) and (50).
We considered a = 0.0027 (L = 3). Table 1 shows that when m and/or n are small,
the values of CFAR that are exceeded only with a probability of 5% or 10% are
much higher than the desired a. For example, in Case UU, for m = 25andn =5

(values suggested in many manuals and textbooks, see Montgomery, 2009), a o5 =
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0.0098 — more than 3 times the nominal false alarm rate of 0.0027. This means
that, for a small amount of Phase | data, such as m = 25 and n = 5, if the 3-Sigma
limits are used, the spreads of CFAR and CARL, are large, meaning that the
realization of these random variables may be very different from the nominal values
of the false alarm rate or average run length (0.0027 and 370.4, respectively). Also

note that the approximation works well for m > 50 in Cases UU and UK.

In cases UU and KU, the values of a, and 1/a, are not so close to the
nominal ones, even for large values of m. For example, form = 300 andn = 5, in
both cases (UU and KU), ay 05 = 0.0037 (a value more than 37% larger than
0.0027) and 1/ o5 < 267 (a value 30% smaller than the desired nominal value of
370.4). It is also interesting to note that the higher quantiles of CFAR (or lower
quantiles of CARL,) in Case KU are smaller (or larger, for CARL,) compared to
those in Case UU. Also, for Case UK, the quantiles of CFAR and CARL, are
invariant with respect to the values of n (note that for the X chart n must be greater
than 1) and, compared to cases UU and KU, are much closer to the nominal desired
values (0.0027 and 370.4 respectively). These results open the question as to the
minimum number of Phase | samples (n) required to guarantee a desired quantile
for CFAR and CARLy,. In the next chapter this problem is addressed.
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0.5), the 0.9 quantile of CFAR and the 0.1 quantile of CARLy (p = 0.1) fora =
0.0027 (L = 3).
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Observation: For Case UU and UK, the values in bold were obtained using
the approximate formulas, the other values are exact
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Number of Phase | samples required for a guaranteed in-
control performance

In the context of parameter estimation and control charting, another relevant
question for the practitioner is the amount of the Phase | data, without adjusting the
control limits, that can ensure a “satisfactory” performance of the chart both in
terms of in-control robustness. Epprecht et al. (2015), formulated this problem and
derived the minimum number m of Phase | reference samples that guarantees with
a specified high probability 1 —p (say, 0.9), that the CFAR does not exceed a
nominal a by more than a given percentage ¢ (e.g. 20%) for the S and S? charts.
As noted in previous chapters, this is called the Exceedance Probability Criterion
(EPC). The quantity & provides some flexibility, as an allowance, for the user to
guarantee the minimum performance (lower bound) for the CFAR. Indeed, for all
cases, it would be impossible to guarantee a high probability that CFAR does not
exceed the exact nominal values « (i.e., for € = 0), which is its median (the 0.5-
guantile) when m is infinite and thus cannot be a different quantile of it (other than
the median), no matter the number of Phase | samples for cases UU and KU. This
behavior can be verified in the CFAR c.d.f.s figures for Cases UU and KU in
Chapter 2. For case UK, since the minimum possible value of CFAR is a, CFAR
will be equal or exceed the nominal a with 100% of probability no matter the

number of Phase | samples.

Thus, for £ > 0, the following formulation to the X chart, in cases UU, KU
and UK is considered: Given the values of n, a, € and p, find the minimum number

of in-control Phase | samples, m, such that
P(CFAR<(1+4+8)a)=1-p. (51)

This problem is like the one in section 2.5, with the difference that now «a,, is

given and is equal to a tolerated upper bound to the false alarm rate (that is, a, =
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aror, = (1 + €)a) and m is the unknown that needs to be found. Note that, since m
Is an integer, a perfect match is generally not possible, so, re-stating the problem,
m should be the smallest integer such that P(CFAR < (1 + €)a) = 1 — p is true.
Also, note that this problem is equivalent to finding the smallest m such that
P(CARLy < 1/((1 + &)a) < p istrue.

In order to find the value of m in all cases (UU, KU and UK), an exact formula
IS not available. For cases UU and KU, this is because the c.d.f’s of CFAR involve
a quantile of a chi-square variable whose number of degrees of freedom is also a
function of the unknown m. For case UK, this is because the c.d.f. of CFAR can’t
be expressed in a closed form expression (as shown on Chapter 3). However, for all
cases, m can be found using a simple search method (as the Secant Method, for
example) since F.p4r (t) is @ monotonic increasing function of m. Basically, this

means that for Cases UU, KU and UU, we need to solve, respectively,

mn-1DF  (1-(1+&)a)
X 22
. [ )

f—oo FX?n(n—l) \ 12 /fZ(Z)dZ =P (51)

@1 ()’
Py | M= 1) (——) =7 (52)

and

{(D(Zz) —®(z))=1-p

O(L+L)-0(L-L)=1-(1+8)a, i=12 (53)

Vm Vm

for m, z, and z;. For case UK, using Equations (38) and (51), rearranging the terms,

it is also possible to derive an approximate formula for the minimum m, which is

Fz'(1-p) l
L? 1 ’
_%1(1 -(1+9a) |

(54)

mzl[
|5,

where [a] denotes the smallest integer greater or equal to a.
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Table 3, for cases UU, KU and UK shows the exact minimum number of in-
control Phase | samples, m, for ¢ =0.1,0.2,0.3,0.4,0.5, « = 0.0027, p =
5%, 10%, 15%, and n = 5, 10, 20 and 25. For case UK, Table 3 also shows the
results for the approximate formula (54). As it can be seen, for small values of n,
one needs a large number of reference samples (m) to guarantee such conditional
performance for most of the cases. Also note that, in case KU, m is invariant with

respect of n and the approximate formula (54) works well.

Table 3. Minimum number of in control Phase | samples, m, required for
P(CFAR<(1+4+¢&a)=1—p or P(CARLy<1/(1+¢&)a) =p with a=
0.0027 (L = 3).

e=10% e=20% e =30% e =40% e=50%
Case n p- 005 010 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15
5 3687 2285 1536 1029 649 446 507 324 226 314 203 144 219 144 103
uu 10 1701 1077 742 492 321 229 250 167 122 159 108 80 114 78 59
20 871 571 409 270 185 138 145 102 77 97 68 52 72 51 39
25 717 477 346 230 160 120 126 89 69 85 61 47 64 46 36
5 3588 2185 1435 975 595 393 468 287 190 283 174 116 194 120 80
KU 10 1595 971 638 433 265 175 208 128 85 126 78 52 87 53 36
20 756 460 303 206 126 83 99 61 40 60 37 25 41 26 17
25 598 365 240 163 100 66 78 48 32 48 29 20 33 20 14
UK X‘l Exact 191 135 103 97 68 53 65 46 36 50 35 27 40 28 22
= Approx. 195 138 105 101 71 54 69 49 37 53 37 29 43 31 24

The results from Table 3 are quite interesting. We see that in some cases (for
example, when € = 0.1 and n = 5), the minimum numbers of reference samples
required are much larger than the 25 or 30 subgroups, which are the numbers
usually proposed in most manuals and textbooks (see Montgomery, 2009); they can
also be larger than the 200 or 300 samples proposed by authors who focused on the
unconditional ARL, (see Quesenberry, 1993 and others) and even larger than the
recent number proposed by Saleh et al. (2015), who focused on the standard
deviation of CARL, as an additional performance metric (they recommended using
m = 1200 when a = 0.0027 is used). One can see, as might be expected, that in

Case UU, more Phase | samples are needed than in Case KU.

It is also interesting to note that the minimum total amount of data (m x n)
required has a different behavior in each case (KU and UU) as n increases. For Case
UU, when n increase, for many of the situations, the total amount of data needed

increases (although doesn’t increase much), while in the Case KU, for the majority
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of the situations, the total amount of data decreases with n (again, although doesn’t

decrease much). This means that, for Case UU, in most of the situations, increasing

n, also increases the cost to design the control chart, since a few more Phase |

observations will need to be collected. Note that, in case UU, for e = 20% and p =

0.05 the total amount of Phase | data required for n = 5 is 5145 and for n = 25 is

5750 (both large values). For case KU, the total amount of Phase 1 data is much

smaller compared to the other cases.

Table 4. Minimum total amount of Phase | observations, (m x n), required for
or P(CARLy<1/(1+¢&)a)=p with a=

P(CFAR<(1+8a)=1-p

0.0027 (L = 3).
e=10% e =20% £ =30% e =40% e=50%

Case n p—- 005 010 015 0.05 0.10 0.15 0.05 0.10 015 0.05 0.10 0.15 0.05 0.10 0.15
5 18435 11425 7680 5145 3245 2230 2535 1620 1130 1570 1015 720 1095 720 515
uu 10 17010 10770 7420 4920 3210 2290 2500 1670 1220 1590 1080 800 1140 780 590
20 17420 11420 8180 5400 3700 2760 2900 2040 1540 1940 1360 1040 1440 1020 780
25 17925 11925 8650 5750 4000 3000 3150 2225 1725 2125 1525 1175 1600 1150 900
5 17940 10925 7175 4875 2975 1965 2340 1435 950 1415 870 580 970 600 400
KU 10 15950 9710 6380 4330 2650 1750 2080 1280 850 1260 780 520 870 530 360
20 15120 9200 6060 4120 2520 1660 1980 1220 800 1200 740 500 820 520 340
25 14950 9125 6000 4075 2500 1650 1950 1200 800 1200 725 500 825 500 350
UK 7\‘| Exact 382 270 206 194 136 106 130 92 72 100 70 54 80 56 44
= Approx. 390 276 210 202 142 108 138 98 74 106 74 58 86 62 48

In case the required m for the tolerated o, value and the specified p is not

feasible and relaxing the value of either & or p or both is unacceptable on practical

grounds, a possible solution is to change the value of the control limit factor L

(instead of using L = 3 — the most common 3-sigma limits), given a fixed value of

m and n, at hand, in order to satisfy the exceedance probability criterion in the in-

control situation. This is discussed in the next chapter.
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Adjustment of the limits for a guaranteed conditional in-
control performance

In the previous chapter, we saw that the minimum numbers of reference
samples required to guarantee some conditional in-control performances can be
very large and may be infeasible in many practical situations. Given this practical
hurdle, in this chapter, for all cases (UU, KU and UK), it is presented the exact
adjusted control limits for the X chart (for any values of m and n) that limit to a low
value, p, the probability that the conditional false alarm rate (CFAR) exceeds a
tolerated value (a;,;) in the spirit of the EPC. Remember that a;,, is greater than
a by a percentage €. So basically, the idea is to replace the limit factor L in
Equations (1) and (2) by L*, where L* represents the value of the control limit factor

that guarantees that
P(CFAR = a;,) =p or P(CARLy = 1/a;) = 1 —p, (55)

for a given value of a;,; = (1 + €)a, m and n. This means that by using L*, instead
of L (the unadjusted limit factor), the user can guarantee that the probability of the
conditional false alarm rate being greater than a specified tolerated bound (a;,;), is
small (p). Note that L is constant and L* can change according to the values of «,

p, &, mand n.

Adjustment for the case UU is presented in section 5.1. Also in this section,
there is a comparison between the adjustment proposed here and other adjustments
methods presented in the literature. Adjustments for cases KU and UU are

respectively in sections 5.2 and 5.1.

5.1
Adjustment in Case UU

In the literature three main group of methods to adjust the X chart control

limits in terms of EPC are proposed: One is called the “exact methods”, another
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group is called “approximate methods” and the third, composed of only one
method, is called “bootstrap method”. In next sections these adjustments methods

will be explained in more details.

5.1.1.
Exact Methods

From Equation (55), it is clear that the c.d.f. of CARL, is needed to apply the
EPC. So, using the c.d.f. of CARL, derived in Chapter 2 [Equation 24] and
replacing [(1 + &)a]~? for t, the exact adjusted control limit factor (L*) can be
obtained by solving the following equation for given values of a, m, n, € and p.

m(n — 1)F_21 1-1+98a)

72

] T r. Al ¢(2)dz = p (56)
—eo m(n-1) L** '

This solution is denoted L (CE stands for Conditional Exact) and can be
obtained with a software like R. Equation (56) is exact, since the formula for the
c.d.f. is exact, but the solution L* must be found using numerically, since there is
no closed form solution for the integral in (56). This type of an analysis goes back
to Chakraborti (2006), who adjusted the control limits of the X chart under the
unconditional perspective. This is also similar to the adjustment methods proposed
by Diko et. al. (2015) in the context of using the X and S charts jointly to monitor
the mean and Diko et al. (2017) for various spread charts under the unconditional
perspective. In some of these papers, this method has been referred to as the
“numerical method” but the fact is that the method is exact since the expression for
the c.d.f. is exact and numerical refers to the solution that is obtained by solving the
equation that involves the c.d.f. which involves calculating the integral using some
numerical methods. This is indeed the case for many c.d.f.’s of distributions
including the one for the celebrated normal distribution. Also, Equation (56) relates
to the theory of Tolerance Intervals. Krishnamoorthy and Mathew (2009, p. 30)
give an equation which is equivalent to Eq. (56) where the single-sample estimators

S and X are used instead of S, and X respectively. But, they did not make the

relationship with the X control chart.
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Faraz et al. (2017) also proposed an, what they called, “exact method” to
adjust the X chart, however, their adjustment was not based in the EPC and, instead,
it was based on the on the equal-tailed tolerance interval together with the
Bonferroni Inequality [see Krishnamoorthy and Mathew (2009, p. 4 and p.10)],
which generates wider adjusted control limits if compared to the adjusted limits
derived under the EPC. The final formula for L* is denoted by L5, (CE?2 stands for

Conditional Exact 2) and is given by

t 1
(I—E,n(m— 1)'21_(128)0()

* J—
CE2 \/ﬁ )

(57)

Where, t< ) is the (1 —%)—quantile of a non-central t-

1-—n(m-1),z
P ( ) 1_(1+2£)o.'

student distribution with n(m — 1) degrees of freedom and non-centrality

parameter Z,_a+oa, which is the (1 — (H;)“)-quantile of a standard normal
2

distribution. For more details of the derivation of L, see Faraz et al. (2017).

5.1.2.
Approximate Methods

Goedhart et al. (2017) derived an approximate formula for L* by finding an
approximate distribution of CFAR. This was accomplished by expressing the
CFAR, using a two-step Taylor approximation, as approximately a linear
combination of a scaled chi and a chi-square random variable. Considering the fact

that the chi-square part was more dominant, they approximated the distribution of

2
CFAR by the distribution of a a% random variable. After this, they applied the

Wilson-Hilferty approximation to a chi-square to achieve normality. Finally, to
solve the resulting equation for L*, they applied a one-step Taylor approximation.
The final approximate formula for L* is denoted by L;,; (CA1l stands for

Conditional Approximation 1) and it is given by

o1 -p)—gL)
g'(L)

Legs = L+

(58)
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Here g(L) and g'(L) are functions of the expectation and the variance of
CFAR and their derivatives, respectively. The complete expressions of g(L) and
g' (L) are presented in Appendix E. From the expression of CFAR in Equation (13),
it is possible to derive an alternative and simpler approximate formula for L*,

denoted here by Li4,, which is given by

Fx_zl[i](l -1+ 9a)
taz~ [mn—1)—"— , (59)
F%fn(n—n ()

where Fx_zl( )(p) denotes the p-quantile of a central chi-square distribution with
m(n—1

n

m(n —1) degrees of freedom and szl[l](l—(1+e)a) denotes the (1 —

1lm
(1 + &)a)-quantile of a non-central chi-square distribution with 1 degree of

freedom and non-centrality parameter % Formula (59) is given by Goedhart et al.

(2018), but they started its proof from an already existing result given by
Krishnamoorthy and Mathew (2009). Given this, in the Appendix D, we provide a
detailed derivation of (59) starting from Equation (13). Note that L4, requires a
non-central chi-square quantile, which (as noted in the Introduction) is not tabulated
in most textbooks in Statistics and not available in popular software such as Excel,
so its calculation will require relatively advanced statistical skills. Given this, and
using (15), in this work, we proposed the following even simpler approximate

formula for L* (here denoted by Li43).

FX"%l(l —(1+9a)
Loz = [(n—1D(m+1) —
Fxfn (»)
(n-1)

(60)

Note that there is no non-centrality parameter in (60), since FX‘%l(l—

(14 &)a) is the (1 — (1 + &)a)-quantile of a central chi-square distribution with

1 degree of freedom. Derivation of (60) is also provided in Appendix D.
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5.1.3.
Bootstrap Method

Saleh et al. (2015) suggested finding the adjusted limit factor L* under the
conditional perspective, using the EPC and the bootstrap approach of Gandy and
Kvalgy (2013). In order to do this, the users, with the help of software (like SAS,

R, etc.), should generate B bootstrap estimates of the in-control process mean and

the standard deviation (uj, oz), k = 1,2,...,B, with ui ~N(X,S%2/nm), o ~

2 =
/S,% );—" and v = m(n — 1). Note that, with this, the idea is to consider that X and

S, are respectively the real in-control process mean and standard deviation, which
are estimated respectively by u; and o, for each k. By considering a very large
value for B, let say B = 1000, we have “access to the (bootstrap) population of 1,

(w1, U3, .., up) and oy (01,03, ..., 0)".

Recalling that Y = m(n — 1) S} /0§ and Z = (%) vmn, using Equation
0

(13), the CFAR can be written as

_ X — S
CFAR(X,Sp)zl—dJ( ”"\/E+L*—”>
0o 0o

+¢<X_“°\/Z—L*i>. (61)
0o

Op

Considering that X and Sp/cq are respectively the true in-control process

mean and standard deviation and u; and oy, are respectively the estimators X and
S, (according to the bootstrap method), for each u;, and oy (k = 1,2, ..., b), the user

must find the value of L, that satisfies the following equation:

¢ Ok P —X T
o Use \/H_l_l:;(_k Lo M \/H—L}k(—k =1+ 9)a. (62)
Sp Sp Sp Sp

The solution to Equation (62) is given by
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Sp\/Flﬂ* . 20— +ea)

L, = , k=1.2,..,B (63)

where F~ %
A

distribution of a non-central qui-square random variable with 1 degree of freedom

2(1 = (14 ¢&)a) denotes the (1 — (1 + e)a)-quantile of the

«_ 5 2
and non-centrality parameter given by (”’;—X\/H) . This formula is derived in
14

Appendix F. Note that Saleh et al. (2015b) provided a rather complicated
approximate method to find the values of L,. However, we argue that no
approximation is needed since one can derive the exact formula for L; shown in
Equation (63). Finally, the required L*, here denoted by L}, is found as the (1 —

*

p)-quantile of the collection of bootstrap estimators (L3, L5, ..., Lg).

The method described in this section is often named as the parametric
bootstrap, since the underline distribution is known. This method can also be

considered a Monte Carlo simulation.

5.1.4.
Adjustment Results and Discussion in Case UU

Table 5 presents the adjusted control limit factors (L*) obtained under the
conditional perspective for e = 0% and p = 5%, i.e., the values of Ly , Ltgs, Leaqs
caz» Leas and Ly,,; that make P(CARLy = 370.4), equal or close to 95%. The
Leg, Legs Lears Leazs Leas and Ly, values are obtained using the methods
presented in Sections 5.1.1, 5.1.2 and 5.1.3. i.e., the exact adjusted limit factors L
and L, are calculated according to Equation (56) and Equations (57). The
approximate adjusted limit factors L4, L4, and L5 are calculated according to
Formulas (58), (59) and (60). The adjusted limit factor obtained from the bootstrap
method, Lj,,:, 1S also calculated considering B = 1,000 bootstrap simulations
implemented in R. Also, for comparison purposes, the first four columns in gray
show the results for the unadjusted limit factor (L* = L = 3) and for each L, Ly,
y Leats Leaz, Leas and Ly, Table 5 shows the exact unconditional ARL, value

calculated according to Equation (41), the SDARL,, calculated according to
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Equation (42), and the exact P(CARL, = 370.4) calculated according to Equation
(25).

From Table 5, excepted for Lgg,, all methods yield very similar
P(CARL, = 370.4) values, close to the target. l.e., for all values of Lyg , Ligq,
Ltazy Leas and Ly, the probability P(CARL, = 370.4) is very close to 95%,
being the formula for Lz (the one proposed in this work) the most precise one,
giving a P(CARL, = 370.4) of exactly 95%. As noted in the introduction, since

cg2 1S not based on the EPC, it results are quite different compared to the other
methods: this adjustment factor (Lgg,) is always much larger than the other,
generating very larger values of of P(CARL, = 370.4), not even closer to the goal
which is 95% for p = 0.05.

Also from Table 5, for all cases and values of L¢g , Legs, Leais Leazs Leas
and L}, the values of the unconditional ARL, are seen to be much larger than
370.4, often more than 3 times larger. This is also true for the SDARL, values. For
example, for m =25, n =5 and L; = 3.47, one has SDARL, = 3630.2 and
ARL, = 2552.5. The large variability is compensated by the large expectation
resulting in getting the desired exceedance probability (equal or close to 95%). This
means that, despite taking into account the mean and the variability of CARL,, the
conditional perspective with the exceedance probability criterion (EPC) does not

control these popular aspects of the conditional run length distribution.

Since the adjusted limits are wider than the unadjusted limits (note that L* >
3 for all cases in Table 2), this may give the impression that the out-of-control
performance may be deteriorated after the adjustments. However, as will be shown
in Chapter 6, this is true just for small values of m and n (like m = 25 and n = 5)
in Case UU, but for most of the other cases, the out-of-control performance will be
similar to the one with unadjusted limits (especially for m > 50, n = 5, p = 0.1).
If the practitioner is still not satisfied with the very large values of ARL, and
SDARL, [such concern is evident in Saleh et al. (2015a,b) who focused mainly on
the SDARL, as the performance measure] in the latter case, he/she can increase the
value of € or p (accepting a smaller lowest tolerated bound for CARL or a smaller
P(CARL, = 370.4)). This will decrease the value of ARL, and SDARL, while the
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amount of data remains the same. The possibility of this allowance or practical
trade-off is a remarkable “feature” of the conditional perspective. To visualize the
trade-off, Tables 5 and 6 show the adjusted control limit factors (L*) under the
conditional perspective, respectively, for the pair ¢ = 20% and p = 5%, and the
pair € =20% and p = 20%, i.e., the values of L* that make, respectively,
P(CARL, = 308.6) = P(CFAR < 0.0031) = 95% and P(CARL, = 308.6) =
P(CFAR < 0.0031) = 80%. Note that in these cases, the values of ARL, and
SDARL, are much smaller compared with the values in Table 5 for the same amount
of data. For example, for m =50 and n =5, considering the exact method
proposed here (L¢g) in Table 5 (i.e., for e = 0% and p = 5%), the ARL, = 1157.1
and the SD(CARL,) = 807.6, now, considering the same amount of data (m = 50
and n = 5), from Table 6 (i.e., for e = 20% and p = 20%), one has ARL, = 561.0
and SD(CARL,) = 338.7: areduction of 51.52% in the expectation and 58.06% in
the standard deviation. Note that the unconditional ARL, is still much larger than
the nominal (370.4). Under the ECP, it is unlike that the unconditional ARL will
be close to the nominal value (unless € or p are extremely large, such as € = 50%
or p = 40%). This can be seen as a negative point of the ECP, since most
practitioners are used to work with the nominal values when parameters are known.
But keep in mind that the unconditional ARL, being larger than the nominal 370.4
is the inevitable counterpart of guaranteeing with a high probability that the CARL,
will not be below the minimum tolerated value. So, given that the OOC
performance of the chart is not significantly affected, the large values of ARL,, is

not something necessarily bad.
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Table 5. Values of L*when L* = L, L* = L¢g, L* = Lgygq, L = Lggp, L =
Li43, L* = L}, and their corresponding ARLy, SDARL, and P(CFAR <
a(1+¢))for L=3,a=0.0027, &= 0% and p = 5% for Case UU

UnadjustedLiimits Exact Method Aproximate Method 1 Aproximate Method 2
[Our Proposal] [Goedhart et al. (2017)] [Goedhart et al. (2018)]
£=0% e=0% e=0% e=0%
L' ARLy SDARL, P(CFAR<0.0027) L° ARL, SDARL, P(CFAR <0.0027) L* ARL, SDARL, P(CFAR <0.0027) L° ARL, SDARL, P(CFAR < 0.0027)
m n Z E(L‘A_RL,,) SD(C;RLH) P(L‘ARL,,_z 370.4) Ly E(CARLy) SD(CARLy) P(CARL, >370.4) at  E(CARL,) SD(CARLy) P(CARLy=370.4) L;,, E(CARLo) SD(CARL,) P(CARLy = 370.4)
3 3.00 569.5 1045.9 42.70% 3.66 11547.4 86932.1 95.00% 3.64 10670.9 76617.4 94.62%  3.65 11010.6 80579.9 94.77%
25 5 3.00 4185 380.3 40.50% 347 25525 36302 95.00% 3.47 2596.6 3708.6 95.15%  3.45 23942 33519 94.41%
9 3.00 364.2 210.3 37.70% 3.35 1278.9 951.7 95.00% 3.36 1309.6 979.0 95.31%  3.33 1168.7 8549 93.66%
3 3.00 4482 4013 4446% 343 23279 31267 95.00% 343 2356.0 3173.8 95.11% 342 2283.7 3053.1 94.82%
50 5 3.00 389.1 2174 4269% 331 1157.1 8076 95.00% 3.31 1165.5 8146 95.11% 330 11259 7816 94.57%
9 3.00 363.8 138.3 40.35%  3.23 790.5 348.2 95.00% 3.23 7927 3493 95.06% 3.22 760.1 3324 94.06%
3 3.00 4183 278.6 4535%  3.34 14332 1244.6 95.00% 3.34 1446.1 1258.1 95.11%  3.33 14174 1228.0 94.86%
75 5 3.00 381.6 166.8 4382%  3.24 8795 4525 95.00% 3.24 8810 4534 95.03% 3.24 8655 4440 94.67%
9 3.00 365.0 110.4 41.76%  3.18 662.9 224.3 95.00% 3.18 6623 224.0 9497% 3.17 6477 2182 94.28%
3 3.00 4049 2238 4591%  3.28 11199 7619 95.00% 3.29 11255 766.4 95.08% 3.28 11116 7551 94.88%
100 5 [3.00 3783 140.2 4454%  3.20 759.9 322.0 95.00% 320 759.6 3218 9499% 320 7517 3179 94.73%
9 3.00 365.9 94.6 4267% 3.15 602.6 170.9 95.00% 315 6014 1705 94.93% 314 5932 1678 94.42%
3 3.00 3925 170.1 46.61% 323 864.1 436.8 95.00% 3.23 864.7 437.2 95.02%  3.23 860.4 434.7 94.91%
150 5 /3.00 375.3 1113 45.45% 3.16 648.3 2131 95.00% 3.16 647.1 212.6 9494% 316 644.3 2115 94.81%
9 3.00 367.1 76.3 43.84% 3.12 542.6 117.8 95.00% 312 5414 1175 9490% 3.11 537.7 116.5 94.59%
3 3.00 386.6 142.3 47.04% 319 7513 314.1 95.00% 3.19 750.5 313.7 9497% 319 749.2 313.0 94.93%
200 5 3.00 373.9 95.0 46.02% 3.14 5938 164.5 95.00% 3.14 5925 164.1 94.92% 3.14 5914 163.7 94.85%
9 3.00 367.8 65.7 44.59% 3.10 5117 97.2 95.00% 3.10 510.7 97.0 94.90%  3.10 508.7 96.5 94.68%
3 3.00 383.2 1247 47.34% 3.17 686.7 249.7 95.00% 3.17 685.5 249.2 94.95%  3.17 685.3 249.1 94.94%
250 5 3.00 373.2 84.3 46.41% 3.12 560.7 136.7 95.00% 3.12 559.5 136.3 9491%  3.12 559.1 136.2 94.88%
9 3.00 368.3 58.6 45.11% 3.09 4924 82.7 95.00% 3.09 4915 825 94.90%  3.09 490.3 82.2 94.74%
. L Aproximate Method 3 Bootstrap Method Exact Method 2
Unadjusted Limits [Our Proposal] [Saleh et al. (2015)] [Faraz et al. (2017)]
£=0% £=0% £=0% £=0%
E‘ ARL, SDARL, P(CFAR < 0.0027) L° ARL, SDARL, P(CFAR <0.0027) L' ARL, SDARLo P(CFAR < 0.0027) L* ARLy SDARLy  P(CFAR < 0.0027)
m n L E(CARL) SD(CARLy) P(CARL,>370.4) Lias E(CARLy) SD(CARLy) P(CARLy>370.4) Lioo: E(CARL,) SD(CARLy) P(CARLy > 370.4) Liza E(CARLy) SD(CARLy) P(CARL, > 370.4)
3 3.00 569.5 1045.9 42.70% 3.65 11166.2 82383.7 94.84%  3.70 14172.0 121042.0 95.87%  3.85 27414.8 >10000 97.76%
25 5 3.00 4185 380.3 40.50% 346 24194 3395.9 9451% 349 2746.6 39774 95.60% 3.64 4933.0 8261.1 98.49%
9 3.00 364.2 210.3 37.70% 3.33 1179.4 864.2 93.81% 3.35 1263.8 938.3 94.84% 3.52 23975 2006.2 99.15%
3 3.00 448.2 401.3 44.46% 342 22899 30634 94.84%  3.40 2076.8 2713.0 93.83% 3,57 3921.3 5983.3 98.18%
50 5 3.00 389.1 217.4 42.69% 3.30 1128.6 783.8 9461%  3.32 1203.0 845.9 9556% 3.44 18522 1413.8 98.93%
9 3.00 363.8 138.3 40.35% 322 761.7 333.3 9412% 3.22 783.3 3445 9479% 336 12775 612.1 99.54%
3 3.00 4183 278.6 45.35% 3.33 1419.0 12297 9487%  3.32 13339 11413 94.00% 345 2165.6 2046.1 98.37%
75 5 3.00 381.6 166.8 43.82% 3.24 866.4 4445 94.69%  3.24 8788 452.0 94.98% 335 1299.1 7174 99.11%
9 3.00 365.0 1104 41.76% 3.17 6484 218.5 94.31% 3.18 67338 228.6 95.46% 3.29 995.5 361.6 99.67%
3 3.00 4049 223.8 45.91% 3.28 11123 755.7 94.89% 331 12312 8531 96.31% 3.39 15948 1161.0 98.48%
100 5 3.00 378.3 140.2 44.54% 320 7521 318.1 94.75%  3.20 7495 316.8 94.66% 3.30 1069.2 481.6 99.21%
9 3.00 365.9 94.6 42.67% 3.14 5935 167.9 94.44% 3.15 608.8 173.0 95.35% 3.25 863.5 260.8 99.74%
3 3.00 3925 170.1 46.61% 3.23 860.6 434.8 94.92%  3.23 865.3 437.6 95.03% 3.31 11504 612.9 98.60%
150 5 3.00 375.3 111.3 45.45% 3.16 6445 211.6 9481% 3.16 6429 211.0 94.74% 3.24 860.1 297.3 99.32%
9 3.00 367.1 76.3 43.84% 3.11 5379 116.6 94.60% 3.12 5431 1179 95.05% 321 733.1 172.9 99.81%
3 3.00 386.6 1423 47.04% 319 7493 313.1 9493% 319 7451 311.0 94.79% 3.27 967.4 4233 98.72%
200 5 3.00 373.9 95.0 46.02% 314 5914 163.8 9485%  3.13 5824 160.8 9425% 3.21 761.6 220.6 99.39%
9 3.00 367.8 65.7 44.59% 3.10 508.7 96.6 9469% 311 5254 100.3 96.25% 3.18 666.9 132.8 99.84%
3 3.00 3832 124.7 4734% 317 6854 249.1 9495%  3.17 6741 2443 9445% 324 860.1 325.6 98.76%
250 5 3.00 3732 843 46.41% 312 559.1 136.2 9488% 3.12 566.6 1384 9542% 319 7012 1778 99.42%
9 3.00 368.3 58.6 4511% 3.09 490.3 822 94.74%  3.09 489.3 82.1 9461% (316 6254 1095 99.86%


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

74

Table 6. Values of L*when L* = L, L* = Lgg, L* = Lgygq, L = Lggp, L™ =
Li43, L* = L}, and their corresponding ARLy, SDARL, and P(CFAR <
a(l+¢))for L=3,a=0.0027, &= 20%and p = 5% for Case UU

Unadjusted Limits Exact Method Aproximate Method 1 Aproximate Method 2
[Our Proposal] [Goedhart et al. (2017)] [Goedhart et al. (2018)]
£=20% £=20% &=20% £=20%
L' ARL, SDARLy, P(CFAR < 0.0032) L ARL,y SDARL, P(CFAR <0.0032) | p* ARL, SDARL, P(CFAR <0.0032) L' ARL, SDARL, P(CFAR < 0.0032)
m n Z E(CA_RL,,) SD(CARLy) P(CARL, > 308.6) Leyp  E(CARLy) SD(CARLy) P(CARL, >308.6) | Lean E(CARLy) SD(CARLy) P(CARL, >308.6) L;,, E(CARLy) SD(CARL,) P(CARL, = 308.6)
3 3.00 569.5 10459 49.99% 3.59 81205 49788.3 95.00% 3.58 7836.0 47093.1 94.82% 358 7747.0 46262.7 94.77%
25 5 3.00 4185 3803 50.61% 341 19594 26113 95.00% 341 20046 2686.6 95.20% 3.39 1839.3 24136 94.40%
9 3.00 364.2 2103 51.49% 3.29 10158 7231 95.00% 3.30 1036.8 7411 95.28% 327 9295 650.4 93.63%
3 3.00 4482 4013 54.87% 3.36 17925 2259.1 95.00% 3.37 1820.0 23022 95.15%  3.36 1759.1 2206.8 94.81%
50 5 3.00 389.1 2174 57.21% 324 9216 615.2 95.00% 325 9252 6181 95.06%  3.24 897.2 5957 94.56%
9 300 3638 1383 60.33% 3.17 6402 2714 95.00% 317 6394 2710 9497% 316 616.1 2593 94.05%
3 3.00 4183 278.6 58.11% 3.27 1129.9 933.9 95.00% 3.28 11375 9415 95.09% 3.27 11177 9217 94.85%
75 5 3.00 3816 166.8 61.60% 3.18 708.8 350.2 95.00% 3.18 707.3 349.3 94.95% 3.18 697.8 343.7 94.66%
9 3.00 365.0 1104 66.20% 3.12 540.7 176.3 95.00% 3.12 538.3 175.3 94.87% 3.11 528.6 1716 94.28%
3 3.00 4049 2238 60.61% 3.22 893.0 581.1 95.00% 322 8942 582.0 95.02% 322 8865 576.0 94.88%
100 5 3.00 3783 140.2 64.98% 3.14 616.2 251.1 95.00% 3.14 6137 249.9 94.90% 3.14 609.7 248.0 94.73%
9 3.00 3659 94.6 70.63% 3.09 4933 134.9 95.00% 3.09 4909 1341 9482%  3.08 485.8 1325 94.42%
3 300 3925 170.1 64.48% 3.17 696.8 338.2 95.00% 3.17 6946 337.0 9493% 316 6939 3366 94.91%
150 5 3.00 3753 1113 70.11% 3.10 529.1 167.5 95.00% 3.10 5265 1665 9484%  3.10 5259 1663 94.81%
9 3.00 367.1 76.3 77.11% 3.06  445.9 96.2 95.00% 3.06  444.0 95.7 94.80% 3.06 4421 95.2 94.58%
3 3.00 386.6 1423 67.48% 3.13 609.4 245.1 95.00% 3.13 606.7 243.8 94.88% 3.13 607.8 2443 94.93%
200 5 3.00 373.9 95.0 73.98% 3.08 486.3 129.9 95.00% 3.08 484.0 129.2 94.82% 3.08 4844 129.3 94.85%
9 3.00 367.8 65.7 81.71% 3.04 4215 773 95.00% 3.04 4199 76.9 94.80% 3.04 419.0 76.7 94.68%
3 3.00 3832 1247 69.97% 3.11 559.1 195.7 95.00% 3.11 556.3 194.6 94.85% 3.11 558.0 195.3 94.94%
250 5 3.00 373.2 84.3 77.08% 3.06 460.2 108.2 95.00% 3.06 4582 107.6 94.81% 3.06 4589 107.8 94.88%
9 3.00 3683 58.6 85.17% 3.03 406.1 65.8 95.00% 3.03 404.9 65.6 9480%  3.03 4045 65.5 94.74%
. o Aproximate Method 3 Bootstrap Method Exact Method 2
Unadjusted Limits [Our Proposal] [Saleh et al. (2015)] [Faraz et al. (2017)]
L ARL, SDARL, P(L‘F:R_Szg.n/(.;oiiz) L ARL, SDARL, P(CFAR;6.3332) L ARL, SDARL, p(cp;,z;zl%nggz) L ARL, SDARL, p(CF;);S 0.0027)
m n L E(CARLy) SD(CARLy) P(CARL, >308.6) Lgsz E(CARLy) SD(CARLg) P(CARL, = 308.6) Lyoor E(CARLy)  SD(CARLy) P(CARL, > 308.6) Lgg; E(CARL;)  SD(CARLy) P(CARL, > 370.4)
3 3.00 569.5 10459 49.99% 3.58 78458 47184.6 94.83% 3.57 73729 428295 94.51% 3.79 18866.1 >40000 97.80%
25 5 3.00 4185 3803 50.61% 3.39 1857.0 24424 94.49% 342 2063.2 27848 95.45% 3.58 3761.3 5887.3 98.54%
9 3.00 3642 2103 51.49% 3.27 9373 656.8 93.78% 3.32 11342 8249 96.32% 3.47 1898.8 1522.1 99.20%
3 3.00 4482 4013 54.87% 3.36 17634 2213.6 9484% 336 17542 2199.2 94.79% 351 2992.8 4273.9 98.22%
50 5 3.00 389.1 2174 57.21% 3.24 899.1 597.2 9460% 324 9053 6022 94.71%  3.38 1469.0 1073.3 98.98%
9 3.00 3638 1383 60.33% 3.16 617.3 259.9 94.10% 3.16 6304 266.5 94.64% 3.30 1031.9 476.6 99.57%
3 3.00 4183 2786 58.11% 3.27 1118.8 922.8 94.87% 3.31 1321.0 1128.0 96.73% 3.39 16964 1525.1 98.41%
75 5 3.00 3816 166.8 61.60% 3.18 698.4 3441 94.69% 3.18 7103 351.0 95.04% 329 10433 5539 99.15%
9 3.00 365.0 1104 66.20% 3.11 529.0 171.8 94.30% 3.11 5285 1716 94.27% 324 809.8 283.9 99.70%
3 3.00 4049 2238 60.61% 3.22 887.0 576.4 94.89% 322 897.7 584.7 95.09% 3.33 12648 881.0 98.52%
100 5 3.00 378.3 140.2 64.98% 3.14 610.0 248.1 94.74% 3.13 590.0 238.5 93.81% 324 864.3 374.8 99.25%
9 3.00 3659 94.6 70.63% 3.09 486.0 132.5 9444% 309 5014 1375 9557% 320 705.1  205.6 99.77%
3 300 3925 1701 64.48% 3.16 694.1 336.7 94.92%  3.18 7251 3546 95.79% 325 923.8 4729 98.65%
150 5 3.00 3753 111.3 70.11% 3.10 526.1 166.4 9481%  3.09 5015 157.2 93.02% 3.19 700.0 2333 99.36%
9 3.00 367.1 76.3 77.11% 3.06 442.1 95.2 94.59% 3.06  447.1 96.5 95.12% 3.15 601.2 136.9 99.83%
3 3.00 386.6 1423 67.48% 3.13 607.8 2443 94.93% 3.14 6238 252.0 95.57% 321 7817 329.2 98.76%
200 5 3.00 373.9 95.0 73.98% 3.08 4844 129.3 94.85% 3.07 4774 127.1 94.25% 315 6221 173.8 99.42%
9 3.00 367.8 65.7 81.71% 3.04 4191 76.8 94.68% 3.05 4294 79.0 95.94% 3.12 5482 105.4 99.86%
3 3.00 3832 1247 69.97% 3.11 558.0 195.3 94.94% 3.12 568.0 199.4 95.45% 3.18 697.9 254.5 98.80%
250 5 3.00 3732 843 77.08% 3.06 458.9 107.8 9488%  3.06 459.3 107.9 9491% 313 5742 1406 99.46%
9 3.00 3683 58.6 85.17% 3.03 4045 65.5 94.74%  3.03 4126 67.0 9591% 3.10 514.8 87.1 99.88%
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Table 7. Values of L*when L* = L, L* = L¢g, L* = Lgygq, L = Lggp, L™ =
Li43, L* = L}, and their corresponding ARLy, SDARL, and P(CFAR <
a(l1+¢)for L=3,a=0.0027, &= 20%and p = 20% for Case UU

Unadjusted Limits Exact Method Aproximate Method 1 Aproximate Method 2
[Our Proposal] [Goedhart et al. (2017)] [Goedhart et al. (2018)]
£=20% £=20% £=20% £=20%
L ARL, SDARL, P(CFAR < 0.0032) L ARL,y SDARL,  P(CFAR < 0.0032) L ARLgy SDARL, P(CFAR <0.0032) L ARLy SDARL, P(CFAR < 0.0032)
m n ; E(C/;RL‘,) SD(L‘;RLO) P(EARL;E 308.6) Lyy  E(CARLy) SD(CARLy) P(CARL, = 308.6) Lear E(CARL,) SD(CARL,) P(CARL, > 308.6) Lgy, E(CARLy) SD(L‘;RLD) P(CARL, = 308.6)
3 3.00 5695 10459 49.99% 3.28 18474 54537 80.00% 3.30 20156 6182.0 81.48%  3.28 18384 54157 79.91%
25 5 3.00 4185 380.3 50.61% 319 8529 926.5 80.00% 321 9149 10112 82.00% 3.19 8435 913.7 79.67%
9 3.00 3642 2103 51.49% 3.14 5844 3726 80.00% 315 616.2 397.2 82.24% 3.13 5746 365.1 79.24%
3 3.00 4482 4013 54.87% 316 817.1 849.9 80.00% 3.18 867.6 915.7 81.80% 3.16 8135 845.2 79.86%
50 5 3.00 389.1 2174 57.21% 3.11 561.0 338.7 80.00% 311 579.0 351.8 81.47% 310 5571 3358 79.66%
9 3.00 3638 138.3 60.33% 3.07 4555 181.0 80.00% 3.07 4644 185.2 81.32% 3.06 451.0 178.9 79.31%
3 3.00 4183 278.6 58.11% 3.12 6310 460.4 80.00% 3.13 655.7 482.5 81.54% 312 629.0 458.7 79.87%
75 5 3.00 381.6 166.8 61.60% 3.07 484.6 2224 80.00% 3.08 4935 227.3 81.11% 3.07 4824 2211 79.71%
9 3.00 3650 1104 66.20% 3.04 4158 129.0 80.00% 3.04 4201 130.6 80.91% 3.04 4131 1280 79.42%
3 3.00 4049 2238 60.61% 3.09 5527 326.2 80.00% 3.10 567.8 337.1 81.31% 3.09 5514 325.3 79.89%
100 5 3.00 378.3 140.2 64.98% 3.05 4483 1719 80.00% 3.05 4538 1744 80.89% 3.05 4468 171.2 79.75%
9 3.00 365.9 94.6 70.63% 3.02 395.7 103.8 80.00% 3.03 398.3 104.6 80.69% 3.02 3939 103.2 79.50%
3 300 3925 170.1 64.48% 3.06 480.7 217.1 80.00% 3.06 4885 2213 81.00%  3.06 4800 216.7 79.91%
150 5 3.00 375.3 1113 70.11% 3.03 4121 124.4 80.00% 3.03 4149 125.4 80.63% 3.03 4112 124.1 79.80%
9 3.00 367.1 76.3 77.11% 3.01 3748 78.3 80.00% 3.01 376.2 78.6 80.46% 3.01 3737 78.0 79.61%
3 3.00 386.6 1423 67.48% 3.04 446.0 168.9 80.00% 3.05 450.9 1711 80.81% 3.04 4455 168.7 79.92%
200 5 3.00 3739 95.0 73.98% 3.02 3934 100.9 80.00% 3.02 3952 1015 80.50%  3.01 3928 100.8 79.84%
9 3.00 3678 657 81.71% 3.00 3637 64.8 80.00%  3.00 3645 65.0 80.36%  3.00 3629 64.7 79.68%
3 3.00 3832 1247 69.97% 3.03 425.1 141.2 80.00% 3.03 4285 1426 80.68% 3.03 4248 1411 79.94%
250 5 3.00 3732 84.3 77.08% 3.01 3817 86.6 80.00% 3.01 383.0 86.9 80.41% 3.01 3813 86.5 79.86%
9 3.00 368.3 58.6 85.17% 299 356.5 56.4 80.00% 299 357.1 56.5 80.30% 299 356.0 56.3 79.73%
. o Aproximate Method 3 Bootstrap Method Exact Method 2
Unadjusted Limits [Our Proposal] [Saleh et al. (2015)] [Faraz et al. (2017)]
£=20% £=20% £=20% £=20%
L ARLy SDARL, P(CFAR <0.0032)  L* ARL, SDARL, P(CFAR <0.0032) L" ARL,y SDARL, P(CFAR < 0.0032) L' ARL, SDARL; P(CFAR < 0.0027)
m n L E(CA_RL.,) SD(CARLy) P(CARLy >308.6) Lgyz E(CARLy) SD(CARLy) P(CARLy =308.6) Lj,, E(CARLy) 5D(CARL0)P(CARL;2 308.6) Ler.z  E(CARLg)  SD(CARLg) P(CARLn_Z37DV4)
3 3.00 5695 10459 49.99% 3.28 1857.2 54953 80.09%  3.27 17824 5180.9 79.36% 3.47 38106 >5000 89.67%
25 5 3.00 4185 380.3 50.61% 3.19 850.6 923.3 79.92% 321 906.3 999.4 81.74% 3.35 1453.7 1800.6 91.52%
9 3.00 3642 2103 51.49% 3.13 579.0 368.4 79.58% 3.14 598.1 383.2 81.00% 3.28 9439 662.4 93.89%
3 3.00 448.2 4013 54.87% 3.16 815.3 847.5 79.93% 317 8271 862.8 80.37% 3.30 1302.6 1518.9 90.90%
50 5 3.00 389.1 2174 57.21% 3.10 558.2 336.6 79.76%  3.11 5682 3439 80.60% 322 8260 5395 93.00%
9 3.00 363.8 1383 60.33% 3.06 4519 179.3 79.45% 3.07  460.2 183.2 80.71% 3.18 656.2 279.4 95.54%
3 3.00 4183 278.6 58.11% 3.12 629.6 459.2 79.91% 3.13 658.1 484.7 81.68% 323 918.2 726.4 91.48%
75 5 3.00 3816 166.8 61.60% 3.07 4828 2213 79.76% 3.07 486.0 2231 80.17% 3.17 669.1 326.9 93.67%
9 3.00 3650 1104 66.20% 3.04 4134 128.1 7949% 305 4288 133.8 82.63% 313 5665 186.3 96.25%
3 3.00 4049 2238 60.61% 3.09 551.7 325.5 79.91% 3.10 565.7 335.5 81.13% 3.19 764.0 481.9 91.83%
100 5 3.00 378.3 140.2 64.98% 3.05 4470 1713 79.78% 3.04 4385 167.4 78.32% 3.14 595.2 241.0 94.07%
9 3.00 365.9 94.6 70.63% 3.02 394.1 103.3 79.55% 3.02  395.0 103.6 79.80% 311 5204 143.7 96.65%
3 300 3925 170.1 64.48% 3.06 480.1 216.8 79.92% 306 4831 2211 80.95% 314 6263 297.9 92.24%
150 5 3.00 375.3 1113 70.11% 3.03 4113 124.1 79.82% 3.03 4127 124.6 80.14% 3.10 521.6 164.1 94.52%
9 3.00 367.1 76.3 77.11% 3.01 37338 78.0 79.64% 3.01 375.0 78.3 80.05% 3.08 471.7 102.8 97.10%
3 3.00 386.6 1423 67.48% 3.04 4456 168.7 79.93% 3.05 4554 1731 81.52% 311 561.7 2224 92.52%
200 5 3.00 3739 95.0 73.98% 3.01 3929 100.8 79.85% 3.02 396.9 102.0 80.94% 3.08 4838 129.1 94.80%
9 3.00 3678 657 81.71% 3.00 363.0 64.7 79.70% 299 360.2 64.1 7845%  3.06 4452 825 97.35%
3 3.00 3832 1247 69.97% 3.03 4248 1411 79.94% 3.04 4317 143.8 81.28% 3.09 5227 180.7 92.68%
250 5 3.00 373.2 84.3 77.08% 3.01 3813 86.5 79.87% 3.01 3832 87.0 80.47% 3.06 459.9 108.1 94.97%
9 3.00 368.3 58.6 85.17% 299 356.0 56.3 79.74% 299 3586 56.7 80.99% 3.05 4281 70.0 97.51%
5.2.

Adjustment in Case KU

In Case KU, since the expression for the c.d.f. of CARL, is in a simple closed
form given by Eq. (35), one can derive a closed-form expression for L},,. Using Eq.

(35), replacing L by L%, and rearranging the terms, one has:
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-1 ((1 +2£)a>

F2*  (p)

2
Xm(n—l)

m(n—1)

(64)

*
Lyy =

Table 8 shows the exact values of Ly, in case KU for some values of m and
n, forp = 5%, 10%, 15% and 20%, € = 0%, 10% and 20%, and @ = 0.0027. As
noted earlier, this means that the values of Ly, used in the control limits, provide
P(CFAR>=(1+¢&)a)=1—p or P(CARLy=1/(1+¢&)a) =1—p. So, for
example, if the user has 25 reference samples each one with size 9 from a Phase |
analysis, then to guarantee P(CARL, = 370.4) = 90%, he/she should replace L by
L* = 3.21 in case KU in Equations (1) and (2).

Since there is no other method in the literature to find Ly, to be compared
with Equation (63) and this equation already gives exact results with a very simple
formula, Table 8 does not show other properties of CARL, as in Tables 5, 6 and 7
[such as the ARL, and the SD(CARL,)]. As in case UU, for most of the
combinations of parameters, Ly, is larger than 3. This makes the control limits
wider, so the out-of-control performance may be severely affected (since wider
control limits causes true alarms to take longer to signal). This will be seen in more

detail in Section 5.4.
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Table 8. Values of Ly to achieve P(CFAR> (1+&g)a)=1—por
P(CARLy>1/(1+&)a)=1—-pforn=3,51915¢=0,0.10,0.20, p =
0.05,0.1,0,15,0.2 and m = 25,50,250,500,1000 in Case KU

m

25 50 100 250 500 1000

p ne—-0 01 02 0 01 02 0 01 02 0 01 02 0 01 02 0 01 0.2
n 3 3.60 3.56 3.53 3.40 3.37 3.33 3.27 3.24 3.21 3.17 3.13 3.11 3.11 3.08 3.06 3.08 3.05 3.02
2 5 3.40 3.37 3.33 3.27 3.24 3.21 3.19 3.16 3.13 3.11 3.08 3.06 3.08 3.05 3.02 3.06 3.03 3.00
9 3.27 3.24 321 3.19 3.16 3.13 3.13 3.10 3.07 3.08 3.05 3.02 3.06 3.03 3.00 3.04 3.01 2.98
S 15 3.20 3.17 3.14 3.14 3.11 3.08 3.10 3.07 3.04 3.06 3.03 3.00 3.04 3.01 2.99 3.03 3.00 2.97
- 3 3.46 3.42 3.39 3.31 3.27 3.24 3.21 3.18 3.15 3.13 3.10 3.07 3.09 3.06 3.03 3.06 3.03 3.01
S 5 3.31 3.27 3.24 3.21 3.18 3.15 3.14 3.11 3.09 3.09 3.06 3.03 3.06 3.03 3.01 3.04 3.01 2.99
l 9 3.21 3.18 3.15 3.14 3.11 3.09 3.10 3.07 3.04 3.06 3.03 3.01 3.04 3.01 2.99 3.03 3.00 2.97
15 3.15 3.12 3.10 3.11 3.08 3.05 3.07 3.04 3.02 3.05 3.02 2.99 3.03 3.00 2.98 3.02 2.99 2.97
wn 3 3.36 3.33 3.30 3.25 3.21 3.18 3.17 3.14 3.11 3.10 3.07 3.05 3.07 3.04 3.01 3.05 3.02 2.99
= 5 3.25 3.21 3.18 3.17 3.14 3.11 3.12 3.09 3.06 3.07 3.04 3.01 3.05 3.02 2.99 3.04 3.01 2.98
9 3.17 3.14 3.11 3.12 3.09 3.06 3.08 3.05 3.02 3.05 3.02 2.99 3.04 3.01 2.98 3.02 3.00 2.97
8 15  3.12 3.09 3.07 3.09 3.06 3.03 3.06 3.03 3.00 3.04 3.01 2.98 3.03 3.00 2.97 3.02 2.99 2.96
3 3.29 3.26 3.23 3.20 3.17 3.14 3.14 3.11 3.08 3.08 3.05 3.03 3.06 3.03 3.00 3.04 3.01 2.98
S 5 3.20 3.17 3.14 3.14 3.11 3.08 3.09 3.06 3.04 3.06 3.03 3.00 3.04 3.01 2.98 3.03 3.00 2.97
9 3.14 3.11 3.08 3.09 3.06 3.04 3.07 3.04 3.01 3.04 3.01 2.98 3.03 3.00 2.97 3.02 2.99 2.96
S 15 3.0 3.07 3.04 3.07 3.04 3.01 3.05 3.02 2.99 3.03 3.00 2.97 3.02 2.99 2.97 3.02 2.99 2.96
5.3.

Adjustment in Case UK

In case UK, since there is no closed-form solution for the expression of the
c.d.f. of CARL, and CFAR, one can find L* by solving the following system of

equations:

O(z2) = @(z)) =1-p

[q)(\/z_%+L>;1K>_q)(\/_m_ UK)] =1-(1+8a, i=1.2

(65)

for L}k, z, and z;. This can be done numerically with a search algorithm. Using
the approximate formula for the c.d.f. of CARL, and CFAR given by Equation (40),

one can also derive the following approximate formula for Ly :

Fz'(1-p)

Lyg = +1 Fx"%l(l —(1+8&)a) (66)

Table 9 shows the exact [using Equation (65)] and approximate [in bold,

using equation (66)] values of L7 in case UK for some values of m (note that L},
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iIs invariant with respect to n), for &=0,0.050.1,0.150.2, p=
0.05,0.1,0,15,0.2 and @ = 0.0027. As can be seen in Table 9, the approximate

formula (66) provides accurate results.

Since the adjustments based on the EPC of the X control chart for the 3 cases
(UU, KU and UK) in most of the parameters combinations make the limits wider
than the 3-sigma limits (note that often L* > 3), arises the question of the impact
this will have on the out-of-control performance of the chart when these adjusted

limits are used. In the next section, we analyze this question.

Table 9. Values of L* to achieve P(CFAR > (1+ &)a) =1—por
P(CARLy>1/(1+&)a)=1—pfore=0,0.05,0.1,0.15,0.2,p =
0.05,0.1,0,15, 0.2 and some values of m in CASE UK

£
0 0.05 0.1 0.15 0.2
m Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx
= 0.05 3.19 3.22 3.18 3.21 3.16 3.19 3.15 3.18 3.14 3.16
‘n‘ 0.1 3.14 3.16 3.13 3.14 3.11 3.13 3.10 3.11 3.09 3.10
£ 0.15 3.11 3.12 3.10 3.11 3.08 3.09 3.07 3.08 3.06 3.06
0.2 3.09 3.10 3.08 3.08 3.06 3.07 3.05 3.05 3.03 3.04
° 0.05 3.11 3.11 3.09 3.10 3.08 3.08 3.06 3.07 3.05 3.06
‘-lfl’ 0.1 3.08 3.08 3.06 3.06 3.05 3.05 3.03 3.04 3.02 3.02
£ 0.15 3.06 3.06 3.04 3.05 3.03 3.03 3.02 3.02 3.00 3.00
0.2 3.05 3.05 3.03 3.03 3.02 3.02 3.00 3.01 2.99 2.99
o 0.05 3.07 3.08 3.06 3.06 3.04 3.05 3.03 3.03 3.02 3.02
'W 0.1 3.05 3.05 3.04 3.04 3.02 3.02 3.01 3.01 2.99 3.00
c 0.15 3.04 3.04 3.02 3.03 3.01 3.01 3.00 3.00 2.98 2.98
0.2 3.03 3.03 3.02 3.02 3.00 3.00 2.99 2.99 2.98 2.98
o 0.05 3.05 3.06 3.04 3.04 3.03 3.03 3.01 3.01 3.00 3.00
S 0.1 3.04 3.04 3.02 3.03 3.01 3.01 3.00 3.00 2.98 2.98
g 0.15 3.03 3.03 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97
0.2 3.02 3.02 3.01 3.01 2.99 3.00 2.98 2.98 2.97 2.97
o 0.05 3.04 3.04 3.02 3.02 3.01 3.01 2.99 2.99 2.98 2.98
3 0.1 3.03 3.03 3.01 3.01 3.00 3.00 2.98 2.98 297 2.97
; 0.15 3.02 3.02 3.01 3.01 2.99 2.99 2.98 2.98 2.96 2.96
0.2 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96
o 0.05 3.03 3.03 3.01 3.01 3.00 3.00 2.98 2.99 297 2.97
< 0.1 3.02 3.02 3.00 3.01 2.99 2.99 2.98 2.98 2.96 2.96
g 0.15 3.02 3.02 3.00 3.00 2.99 2.99 2.97 297 2.96 2.96
0.2 3.01 3.01 3.00 3.00 2.98 2.98 2.97 2.97 2.96 2.96
o 0.05 3.02 3.02 3.01 3.01 2.99 2.99 2.98 2.98 297 2.97
Q 0.1 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96
; 0.15 3.01 3.01 3.00 3.00 2.98 2.98 2.97 297 2.96 2.96
0.2 3.01 3.01 2.99 2.99 2.98 2.98 2.97 2.97 2.95 2.95
o 0.05 3.01 3.01 3.00 3.00 2.98 2.98 2.97 2.97 2.96 2.96
B 0.1 3.01 3.01 2.99 2.99 2.98 2.98 2.97 2.97 2.95 2.95
g 0.15 3.01 3.01 2.99 2.99 2.98 2.98 2.96 2.96 2.95 2.95
0.2 3.00 3.00 2.99 2.99 2.98 2.98 2.96 2.96 2.95 2.95
= 0.05 3.01 3.01 2.99 2.99 2.98 2.98 2.96 2.96 2.95 2.95
S 0.1 3.00 3.00 2.99 2.99 297 297 2.96 2.96 2.95 2.95
I 0.15 3.00 3.00 2.99 2.99 2.97 297 2.96 2.96 2.95 2.95
E 0.2 3.00 3.00 2.99 2.99 297 297 2.96 2.96 2.95 2.95
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54
Out-of-control Performance Analysis after the Adjustments

In this section, we analyze the impact of the adjustments proposed in this
work on the out-of-control performance of the X chart for the three cases (UU, KU
and UK). As we noted is the last sections, in most situations the adjustment leads
to widening the interval between the control limits (see Table 5,6,7,8 and 9 where
often L* > 3). Inthese cases, the out-of-control conditional ARL (i.e., the CARLs yy
with § # 0) will be larger with the adjusted limits than with the unadjusted limits.
This is the price to pay for guaranteeing a desired in-control performance. So, it is
important to assess the deterioration in the CARLs yy due to the adjustment. This
assessment will enable the user to choose an appropriate compromise, in terms of
m,n, g, and p, since the out-of-control performance deterioration is lesser with
larger m and n, and also with larger values of ¢ and p. For example, for m = 25 and
n =5 (a typical amount of reference data in practice and according to traditional
recommendations), the adjustments proposed in the last sections enable achieving
the desired conditional in-control performance in terms of the EPC (for example,
P(CARLy > 370.4) = 90%), however they may produce the undesirable effect of
deteriorating the out-of-control performance. Still considering this typical amount
of data (i.e., m = 25 and n = 5), to detect a shift in the process mean of the size of
one process standard deviation (i.e., |6] = 1), with no adjustment, the chart in case
UU, for example, will have P(CARLLUU > 7.25) = 10%, which means that the
average number of samples until a true alarm will be most likely below 10 samples.
However, with the adjustment (in order to achieve P(CARLyyy > 370.4) =
90%), the chart will have P(CARL, y, > 15.98) = 10%: a difference of 8.23
(more than 100%) on the 0.9-quantile of the CARL, ;. Note that an out-of-control
ARL of 15.98 may be unacceptable for the practitioner. However, with m = 50 and
n = 5, with no adjustment P(CARLLUU > 6.55) = 10% and with adjustment,
P(CARLyyy > 9.99) = 10%. So, with m =50 and n = 5, either with or without the
adjustment, the CARL, iy Will most likely be below 10 samples, however, only with
the adjustment one can guarantee that P(CARLO,UU > 370.4) = 90%. Also, the
difference between the 0.9-quantiles of the CARL,yy with and without the
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adjustment, is 3.44 (about 50%). So, a particular user may consider adjusting the
limits with m =50 and n = 5 a good compromise solution between the number and
size of subgroups to collect in Phase I, a desired nominal in-control performance

and a reasonable out-of-control performance of the X chart.

It becomes evident from the above example that knowing the prediction
bound for the CARLg, with adjusted and with unadjusted limits, is useful for
assessing the deterioration (increase) in the CARLs due to the adjustments. The
lower prediction bound for CARLs can be calculated similarly as presented in
Section 3.5 for bounds for CARL in the in-control situation. That is, for given §,
m and n, we can use the distributions of CARLs for all the three cases (UU, KU
and UK) derived in Chapter 3 and use them to find a lower bound (denoted Q)
that has only a low (specified) probability pyoc (e.g. 0.10) of being exceeded.

Formally: for a given pyoc and § # 0, one must find Q. for

P(CARL(S,UU > onoc) = Pooc (67)

Thus, Qp,,. i the (1 — pgoc)-quantile of the CARLg, distribution. Since the
CARLs is the realized average number of samples until a true alarm, the smaller the
Qpyoc the better the chart’s OOC performance. Table 10, 11 and 12, respectively
for cases UU, KU and UU presents the values of Q,,,. with the adjusted limits
(proposed in the last sections) for e = 0 and p = 0.1 (in grey) and with unadjusted
limits, L = 3 (in white), for the same values of m and n, for mean shifts |§| = 0.5,
|6] =1 and |§| = 1.5 and for pyoc = 0.05 and pyoc = 0.1. Also, these tables
show the differences (in bold) between the @, . values with the adjusted and the

unadjusted limits, respectively, to enable a direct performance comparison.

An examination of Table 10, for Case UU, shows that for |§| = 1 (a shift in
the mean of one standard deviation) and pyoc = 0.05, m = 25 and n = 5, the
difference between the @y, values, with and without the adjustment, is of 10.87
samples on average. This is a difference of about 100%, but note that we are
considering a 0.95 quantile, a small sample size and a very small number of initial

samples. If one increases just the number of samples making m = 50 (and
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maintaining n =5, pgoc = 0.05, |8 = 1) the difference between the Q,,,.
values, with and without the adjustment, reduces to just 4.12 samples in average (a
good improvement). Moreover, if one just increases the sample size by making n =
10 (and maintaining m = 25, pyoc = 0.05, |6] = 1) the difference between the
Qp,oc Values, with and without the adjustment, reduces to just 0.86 samples in
average. This means that for “n = 10 and m = 25” or “n = 5 and m = 50” (i.e.,
a total amount pf Phase | data of 250 observations) the impact of the adjustments
(for e =0 and p = 0.1) in the OOC performance is not so large when |§| =1

(compared to when n = 5 and m = 25).

For a larger shift, say |§| = 1.5, the difference between the values of @, .
with and without adjustment is only 1.14 samples on average makingn =5, m =
25 and pyoc = 0.05. So, for shifts of this magnitude or larger (i.e., || = 1.5), the
impact of the adjustment on the out-of-control performance is small for any value
of n and m. However, for a smaller shift, say |6 = 0.5, the Q. is large in most
cases. For example, for ppoc = 0.05, m =25 and n =5, Qp,,. i 107.85 and
351.98 with unadjusted and adjusted limits, respectively. That is an increase of
244.13 samples on average after the adjustments. This shows that, for smaller shifts
(such as |§] = 0.5), the impact of the adjustment on the OOC performance is
significantly negative. However, this is not a surprise since the X chart is usually
not recommended for signaling mean shifts smaller than |§| = 1 standard deviation

(even in Case KK).

As can be seen in Tables 11 and 12, for case KU and UK the situations are
slightly different when |§| = 1. For these shift size, the maximum difference
between the Q,,,,. values, with and without the adjustment, is of 6.12 samples on
average (this is for ppoc = 0.05, m = 25 and n = 5, a small number and size of
samples). If the user considers that an increase of less than 10 samples on average
on the @y, a satisfactory impact on the OOC performance, in cases KU and UK,
the impact when |§| = 1 is satisfactory for any value of n and m. When |6] = 0.5

and |6] = 1.5 the conclusion for cases KU and UU is similar for cases UU.
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Table 10. The 0.95 and 0.9 quantiles of CARL yy With adjusted limits (a =
0.0027, p = 0.1 and € = 0) in grey and unadjusted limits (L = 3) in white for

25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.1 p=0.1 p=0.1 p=0.1 p=0.1
8 Pooc n unadj. &£=0 difference unadj. =0  difference unadj. =0  difference unadj. £=0 difference unadj. e=0  difference
8 5 221 3.36 1.14 1.97 2.47 0.50 1.83 2.09 0.26 171 1.82 0.11 1.64 1.69 0.05
T- 10 1.10 1.17 0.07 1.08 111 0.03 1.07 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00
w g 15 101 1.01 0.01 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00
:‘_'I S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
o 5 202 2.95 0.93 1.86 2.30 0.44 1.76 2.00 0.23 1.67 1.78 0.10 1.62 1.67 0.05
© T 10 1.08 1.14 0.06 1.07 1.10 0.03 1.06 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00
§ 15 101 1.01 0.01 1.00 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
2 5 927 20.14 10.87 7.37 11.50 4.12 6.33 8.27 1.95 5.45 6.21 0.77 4.99 5.32 0.34
ﬁ 10 246 3.32 0.86 2.21 2.62 0.40 2.06 2.28 0.21 1.93 2.02 0.09 1.85 1.90 0.04
g 15 145 1.66 0.22 1.37 1.48 0.11 1.33 1.38 0.06 1.29 131 0.03 1.26 1.27 0.01
TS 20 115 1.23 0.08 1.13 1.16 0.04 111 1.13 0.02 1.09 1.10 0.01 1.09 1.09 0.00
L ; 5 775 15.98 8.23 6.55 9.99 3.44 5.84 7.56 1.72 5.21 593 0.72 4.87 5.19 0.32
n 10 227 3.00 0.73 2.10 2.46 0.36 1.99 2.19 0.20 1.89 1.98 0.09 1.84 1.88 0.04
S 15 139 1.58 0.19 1.34 1.43 0.10 131 1.36 0.05 1.27 1.30 0.02 1.26 1.27 0.01
< 20 113 1.20 0.07 111 1.15 0.03 1.10 1.12 0.02 1.09 1.10 0.01 1.08 1.09 0.00
& 5 107.85 351.98 24413 7524 151.07 75.83 58.80 90.45 31.65 46.05| 57.15 1110  39.75 4430 4.55
|°|- 10 29.02 56.41 2739 2255 3335 10.80 18.99 24.16 5.17 16.03  18.06 2.04 1447 15.36 0.89
w8 151334 21.55 8.21 10.90  14.40 3.50 9.50 11.25 1.75 8.30 9.01 0.72 7.65 7.97 0.32
3 £ 20 772 11.23 3.51 6.52 8.08 1.56 5.82 6.61 0.80 5.20 5.53 0.33 4.86 5.01 0.15
1= 5 8129 249.12 167.82 6214 121.44 59.30 5159  78.40 26.82 42.82 | 52.94 1013  38.23 4256 4.33
© ﬁ 10 23.89 4511 2122 19.77  28.88 9.11 17.35 21.95 4.60 1524 17.15 1.91 1408  14.94 0.86
S 15 1142 18.08 6.65 9.81 12.85 3.04 8.84 10.43 1.59 7.97 8.65 0.68 7.49 7.80 0.31
S 20 6.78 9.71 2.92 5.98 7.35 1.38 5.48 6.21 0.73 5.03 585 0.32 4.78 4.92 0.14
Table 11. The 0.95 and 0.9 quantiles of CARL s x with adjusted limits (a =
0.0027, p = 0.1 and € = 0) in grey and unadjusted limits (L = 3) in white for
different values of m, n and 6§ (Case KU)
m
25 50 100 300 1000
adj. adj. adj. adj. adj.
=0.1 =0.1 =0.1 =0.1 =0.1
8 n_unadj. ps =0  difference unadj. pe =0  difference unadj. pe =0  difference unadj. pe =0  difference unadj. IL =0 difference
8 5 199 2.70 0.72 1.84 2.20 0.36 1.75 1.96 0.21 1.67 1.76 0.10 1.62 1.67 0.05
'ﬁ 10 1.07 111 0.04 1.06 1.08 0.02 1.05 1.07 0.01 1.05 1.06 0.01 1.05 1.05 0.00
w g 15 100 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
:_‘, S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
o 5 187 2.48 0.61 177 2.10 0.33 1.70 1.90 0.19 1.64 1.73 0.09 1.61 1.65 0.05
© ﬁ 10 1.06 1.10 0.03 1.06 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.01 1.05 1.05 0.00
§ 15 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
| 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
S 5 748 13.60 6.12 6.39 9.22 2.83 5.74 7.25 151 5.16 5.83 0.67 4.85 5.16 0.31
‘ﬁ 10 212 2.56 0.45 2.00 2.26 0.26 1.93 2.09 0.16 1.86 1.94 0.08 1.82 1.86 0.04
g 15 133 1.43 0.10 1.30 1.36 0.06 1.28 1.32 0.04 1.26 1.28 0.02 1.25 1.26 0.01
TR 20 110 1.14 0.03 1.10 111 0.02 1.09 1.10 0.01 1.08 1.09 0.01 1.08 1.08 0.00
‘2 ; 5 6.60 11.56 4.96 5.87 8.33 2.46 5.42 6.80 1.38 5.00 5.64 0.63 4.76 5.07 0.30
10 203 243 0.40 1.94 2.18 0.24 1.89 2.04 0.15 1.84 1.91 0.08 181 1.85 0.04
3 15 1.30 1.40 0.10 1.28 1.34 0.06 1.27 131 0.04 1.25 1.27 0.02 1.25 1.26 0.01
< 20 1.10 1.13 0.03 1.09 1.11 0.02 1.09 1.10 0.01 1.08 1.09 0.01 1.08 1.08 0.00
g 5 7710 19557 118.47 59.81  107.25 47.44 5020  73.35 2316 4214 5151 9.37 37.90 42.06 4.16
‘ﬁ 10 20.21 31.86 11.65 17.62 23.67 6.05 16.02 19.50 3.48 14.57 16.20 1.64 13.75 14.54 0.79
w 8 15 945 12.69 3.24 8.62 10.46 1.84 8.08 9.20 112 7.58 8.14 0.56 7.29 7.57 0.28
‘f. £ 20 562 6.94 1.32 5.25 6.04 0.78 5.02 5.51 0.49 4.79 5.04 0.25 4.65 4.78 0.13
o= 5 6299 @ 15239 89.41 5214 9150 39.36 4568  66.09 2041  39.98 4871 8.73 36.84  40.85 4.01
© f 10 18.15 28.13 9.97 16.37 21.82 5.45 1523 18.46 3.24 1415 15.73 1.57 1353 1431 0.78
s 15 8.80 11.70 2.90 8.20 9.91 171 7.81 8.87 1.06 7.43 7.98 0.54 7.21 7.49 0.28
R 20 534 6.54 121 5.07 5.81 0.74 4.89 5.37 0.47 4.72 4.97 0.25 4.62 4.74 0.13
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Table 12. The 0.95 and 0.9 quantiles of CARLs yx with adjusted limits (a =
0.0027, p = 0.1 and € = 0) in grey and unadjusted limits (L = 3) in white for
different values of m, n and § (Case UK)

m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.1 p=0.1 p=0.1 p=0.1 p=0.1
8 n unadj. &£=0  difference unadj. e=0  difference unadj. e=0  difference unadj. =0 difference unadj.. £=10 difference
S 5 19% 221 0.25 1.82 1.93 0.11 174 1.79 0.05 1.66 1.67 0.01 1.62 1.62 0.00
T' 10 1.09 111 0.03 1.07 1.08 0.01 1.06 1.07 0.01 1.05 1.05 0.00 1.05 1.05 0.00
w g 15 101 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
b S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
% 5 186 2.08 0.22 1.76 1.86 0.10 1.70 174 0.05 1.64 1.65 0.01 161 161 0.00
© T 10 1.07 1.10 0.02 1.06 1.07 0.01 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.05 0.00
‘é 15 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
S 5 729 625 1.96 6.27 7.06 0.79 5.66 6.00 0.34 512 5.22 0.10 4.82 4.85 0.03
ﬁ 10 231 2.64 0.34 212 2.26 0.14 2.00 2.07 0.06 1.90 1.92 0.02 1.84 1.84 0.01
g 15 142 1.53 0.11 1.35 1.40 0.05 131 1.34 0.02 1.28 1.29 0.01 1.26 1.26 0.00
T £ 2 114 1.19 0.04 1.12 1.14 0.02 111 111 0.01 1.09 1.09 0.00 1.08 1.09 0.00
,'Q' ; 5 6.50 8.18 1.68 5.80 6.51 0.71 5.37 5.69 0.32 4.97 5.07 0.09 4.75 4.78 0.03
y 10 216 2.46 0.30 2.03 2.16 0.13 1.95 2.01 0.06 1.87 1.89 0.02 1.82 1.83 0.01
S 15 137 1.47 0.10 132 1.37 0.04 1.30 1.32 0.02 127 1.28 0.01 1.25 1.26 0.00
£ 20 113 117 0.04 111 113 0.02 110 111 0.01 1.09 1.09 0.00 1.08 1.08 0.00
2 5 7359 107.39 3380 57.88 70.07 1220  49.04  53.96 492 4158 4291 133 3762 37.97 0.35
ﬁ 10 2485 3415 9.30 20.28  23.79 3.52 17.65  19.11 1.46 15.38  15.78 0.41 1415 14.26 0.11
w8 15 12211 16.07 3.85 10.26 | 11.77 1.50 9.11 9.75 0.64 8.11 8.29 0.18 7.56 7.61 0.05
f‘ £ 20 729 9.25 1.96 6.27 7.06 0.79 5.66 6.00 0.34 5.12 5.22 0.10 4.82 4.85 0.03
I = 5 6135 88.67 2732 5106 6161 1055 4496 4941 4.45 39.59  40.84 1.26 36.64  36.98 0.34
© T 10 21.30 | 29.01 7.71 1825 21.35 3.09 16.41 1 17.75 134 1476 = 15.15 0.39 1384 13.95 0.11
§ 15 10.70  13.95 3.25 9.38 10.72 1.34 8.57 9.16 0.59 7.83 8.01 0.17 7.42 7.47 0.05
& 20 6.50 8.18 1.68 5.80 6.51 0.71 5.37 5.69 0.32 4.97 5.07 0.09 4.75 4.78 0.03

Finally, note that a small difference in Q,, .. values means that the adjustment
guarantees the in-control performance as specified and does not significantly
deteriorate the OOC performance of the chart. If we consider Q. =~ 10 to be an
acceptable OOC performance, Table 10, for case UU, shows that both the
unadjusted and the adjusted limits do not work well for |§] = 1 when n =5 and
m = 25. But in all other cases, for example, when |§| = 1 and n = 10 or when
|6] = 1 and m = 50, the @, Values are either less than or close to 10 with the
adjusted limits, which means the adjustment works well. For cases KU and UK,
still considering Q,,,,. =~ 10 a good performance, from Tables 10 and 11, one can
see that the adjustment works well for any values of n and m for [§| = 1 . The
analysis can be easily replicated for other values of a, p, pooc and €. In Appendix
G, it is shown tables for adjustments with the combination € = 0.20 and p = 0.1
and the combination € = 0.20 and p = 0.2 for the three cases (UU, KU and UK).

The conclusions are similar,

Hence, the adjusted limits are recommended for “n > 10 and m > 25 or for

“n >5andm > 50”in case UU and for “n > 5and m > 25” in cases KU and UU


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

84

in order to guarantee a high probability (such as 0.9) that the conditional in-control
average run length is greater than a nominal in-control average run length value

(such as 370.4) and to guarantee that a @, ~ 10.
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Conclusions and recommendations

Recently in the literature, the performance of the X control chart under
normality when parameters are estimated (i.e., when the in-control process mean or
the in-control standard deviation are estimated) has been measured based on the
conditional in-control average run length (CARL,) or the conditional false alarm
rate (CFAR). This is because CARL, and CFAR take into account what is called
practitioner-to-practitioner variability. Since CFAR and CARL, are random
variables (conditioned on the parameter estimates, i.e., changing from practitioners
to practitioner), some authors suggested measuring the performance of the control
charts according to the probability of the CARL, (or the CFAR) being at least (or at
most) equal to some specified nominal value [this is the Exceedance Probability
Criterion (EPC)].

In this work, the effects of parameters estimation on the two-sided Phase 11 X
control chart was analyzed by deriving the exact CARL, and CFAR distributions
(c.d.f.) in 3 cases: when both the process mean and standard deviation of the process
are unknown and need to be estimated (case UU), when only the process standard
deviation is estimated (case KU; IC mean specified/known) and when only the
process mean is estimated (case UK; IC standard deviation specified/known). For
these three cases, previous authors did not provide the exact distributions of these
random variables, but instead (just for case UU), they relied on simulations and
approximations. The X chart in cases KU and UK has not been analyzed so far in

this context of the effect of parameter estimation on the conditional performance.

Using the expressions of the c.d.f. of CARL, and CFAR derived here, the
exact upper quantiles of CFAR (and lower quantiles of CARL,) of the X chart,
which constitute prediction bounds for the CFAR and CARL, respectively, were
calculated and tabulated for the three cases of parameter estimations (UU, KU and

UK). These results show that when m or n are small, the values of CFAR that are
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exceeded (or the values of CARL, that are not attained) with a small probability of
5% or 10% are much higher (lower) than the desired (nominal) false alarm rate (or
than the nominal ARL,), meaning that the realized false alarm rate may be much
larger than expected (or the CARL, much smaller than expected) when the X chart

Is designed with estimated parameters.

In order to avoid unacceptably low (high) CARL, (CFAR) values, exact
expressions were derived, based on the c.d.f.”s derived here, in order to calculate
the value of m (the number of Phase | samples) required to guarantee a desired in-
control performance in terms of the EPC for some Phase | sample sizes (n) for the
three cases: UU, KU and UK. These results showed that depending on the
practitioner’s tolerances and on the subgroups size (n), m can be very large, such
as 2,000 samples of size 5 (i.e., a total of 10,000 Phase | data points). This number
is larger than the ones recommended in most textbooks and manuals of Statistical
Process Control (SPC), and even larger than the numbers recommended by some
recent authors who focused on the mean and standard deviation of CARL, and
CFAR.

Given the unpractically large numbers (m) of Phase | samples required, in
this work, we derived corrections to control limits so that some desired in-control
performance in terms of the EPC is achieved. Unlike other authors, who use
approximations or bootstrapping to propose new adjustment factors for Case UU
only, our results were based on the exact c.d.f. of the CARL, and CFAR for all 3
cases: UU, KU and UK. Moreover, for case UU a detailed comparison between the
existing adjustment methods in the literature (approximate formulas and
bootstrapping) and the methods proposed in this work was presented. The
conclusion is that all of the adjusted methods generate very similar results.
Therefore, the recommendation is to use the easiest one. The approximate method
derived in this work is the simplest one because, different than the others, it just
depends on the quantiles of central chi-square distributions which is tabulated in all
text books in statistics. All other adjustment methods will require more advanced
statistical skills, like the calculation of the quantile of a non-central chi-square
distribution or bootstrapping. However, the solution provided by the exact

equations also derived in this work, may be more attractive to be incorporate in a
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software to calculate the control limits, since this solution yields exact results

without requiring much computational time.

The impact of these corrections on the chart’s conditional out-of-control
performance was also analyzed in this work. Previous authors have tackled this
issue only very briefly and focusing mainly only on the unconditional out-of-control
run length. Here, the out-of-control performance with and without adjustments were
based on some quantiles of the conditional out-of-control average run length. As
expected, the deterioration is more severe for smaller sample sizes (n) and smaller
number of Phase | samples (m), for example n =5 and m = 25. It is also
substantial for smaller shifts in the mean (such as § = 0.5 stnadard deviations).
Note, however, that the X chart should not be used to detect such small shifts and
that even in the ideal (and most often unrealistic) “standards known” case (case
KK), its out-of-control average run length is unacceptably large. On the other hand,
if one considers a 1 or more standard deviation shift in the mean (6 = 1 or more),
the impact on the out-of-control performance is not that substantial in most
situations for the 3 cases (UU, KU and UK). This impact is reduced with larger
sample sizes and larger numbers of Phase | samples. For case UU, the results
presented here leads to a recommendation of using the adjusted limits for at least
“n=10and m = 25” or “n = 5 and m = 507, that is, for at least 250 reference
data points (note that this required minimum total number of data points is much
smaller than in the case of unadjusted limits). For cases KU and UU, the
recommendation is using at least n = 5 and m = 25 to estimate the parameters
(125 reference data points). With these recommended amounts of data and the
adjusted limits, the user can strike a balance between a desired nominal in-control

conditional performance and a reasonable out-of-control shift detection capability.

Finally, based on the results presented in this work, it seems that, when
constructing control charts with estimated control limits, the Exceedance
Probability Criterion (EPC) has some imperfections which the practitioners should
be aware of. The EPC, controls the probability that the CARL, is greater than some
tolerated value. This approach implicitly considers the variability of CARL, but it
neither controls this variability nor the expected value of CARL, (the ARL,), which

can also assume extremely large values. Adjusting the limits under the EPC, the
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large variability of CARL, is compensated by its large expectation resulting in the
desired large probability that the lowest tolerated CARL, value is exceeded. In
conclusion, there is still room for improvement when it comes to designing the
Shewhart control charts with unknown parameters. For example, finding a method
that controls the EPC together with the variability and the expectation of CARL,.

One can most likely say the same thing for other types of control charts.
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Appendix A - Extras Plots of the CARL, Curves
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Figure A. 1. CARL gy as function of u forn = 5, m =
10,20,50,100,500 and a = 0.0027 (i.e., L = 3).
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Figure A. 2. CARL yk as functionof uforn =5, m =
10,20,50,100,500 and ¢ = 0.0027 (i.e., L = 3).
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Appendix B — The Search Algorithm

The search algorithm used to determine the solution of several equations in
this work is the secant method, which is used to find the root of a monotonic
univariate function. Let f(x) be a monotonic univariate function (note that this is
the case of CARL yy, CARL, ky and all the c.d.f.”s). Given a value b, one often has
to solve an equation such as:

f&x)=b (B.1)
for x*. Note that the solution of the Eq. (B.1) is equivalent in finding the root of the
function g(x) = f(x) — b. Because of this, the secant method can be used to find

the root of g(x) which is equivalent in finding the x*for
gx) =f(x)-b=0 (B.2)

So, using Eq. (B.2), the secant method can be applied using the following steps:

1- Starting with initial values xg and x7 where, x; < x* < x7, one construct a line
through the points (xg, g(x3)) and (x7, g(x7))). In slope-intercept form, this
line has the equation:

(x1)—-g(xp) X N
y= % (x —x7) + g(x7). (B.3)

—to
2- One finds the root of this line — the value of x such that y = 0 — by solving the
following equation for x3:

_ 9(D-g(xp)

1 0
which is
x5 = x) — g(xg) -2 _ (B.5)

9(x-g(x5)

3- One then repeat step 1 using x; and x; (if f(x) is a monotonic increasing
function) or using x; and x5 (if f(x) is a monotonic decreasing function)
instead of x; and x7. One continues this process, solving for x3, x;, etc., until
one reaches a sufficiently high level of precision (a sufficiently small difference

between x; and x,,_).
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Appendix C — Derivation of the approximate formula for
Fcpsg (B

To derive an approximate formula for Fps, . (¢), note from Equation (11)

that

CPS&UKz1—[@(\/%+L—6\/H)—®<\/%—L—6\/H>]. (€.1)

Given that Feps, . (t) = P(CPSsyx < t), one has

Fepssuiyy, () = P(CPSs.ux < t)

:p(1_[@(\/%+L—6\/H)—(D<\/%—L—6\/ﬁ>]St>, (C.2)

where Z; follows a standard normal distribution, so

Fepss i (t) = P(CPSsyx <'t)

Z Z
=P(P(——L—6\/ﬁszls—+L—6\/E)21—t>

Vm Vm
=P(P(—LSZl—<\/%—6\/ﬁ)S+L>21—t)
=pP|P (zl—(\/%—&/ﬁ)fsﬁ >1-—t|. (C.3)

2
Note that (21 — (\/% — 5\/H)> is a random variable in which the distribution
is a non central chi-square distribution with 1 degree of freedom (d.f.) and non-

2
centrality parameter (\/% - 5\/5) . Let’s define
2
(z (Z 5{)) 2 (C.4)
1—|—=—90vn =%X"1/ 5 21 .
Vm 1f(&-o7) |
So, continuing the derivation, one has:

Fepssyx (1) = P(CPSsyx < t) =P P %%, , a<I?2|>1-¢t| (C.5
, —5\/5) ]

e
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Cox and Reid (1987) derived the following simple approximation for a non-

(e

Pl q<L?|=P| ¥ <

(G| \ 14 (\/% _ ax/ﬁ)z )

where 2 follows a central chi-square distribution with 1 d.f. So, one has

central chi square distribution.

(C.6)

LZ
FCPSJ,UK(t) = P(CPS&UK S t) ~P (P (Xi = H(—> =>1- t).

Zooi)
(C.7)
Rearranging the terms in C.7:
e )
Fepsg () = P(CPSsyg < t) = P Fz . S|=1-¢|
k kl + (\/—E - 6\/5) / /

—o| vm|svn+ |—o——1||-o| vm|svn—- |—o——1]|(c.8)

FX_%l(l—t) o Fxél(l—t) a
Rearranging the terms in C.8 again, finally:
Fepss i (0) = P(CPSsyx <'t)
mlL? mlL?
= o 6\/mn+ m————1]—® 6\/mn— ———1].(C.9
J FX;1 1—1t) \/szl(l —t) (€.9)
1 1

Note that if 6§ =0, CPSyyx = CFARyg. Using C.7, an alternatively

approximate formula for the c.d.f. of CFAR;, can be derived as follows
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LZ
Ferary(t) = P(CFARyg < t) = P| P| % < —2\ >1- t\‘

LZ
sz (1 - t)
1
Finally, since Z?2 also follows a chi-square distribution with 1 d.f., one has

(eti=s)
Lz )
(C.10)
)

Ferary(t) = P(CFARyx <t) = P 42 <
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Appendix D - Derivation of the Approximate Equations of
@, yu Lcaz @and Lgyz for case UU

Here we derive a,, yy, Lgaz and Li43 for case UU. Note that, from Equation
(13), CFAR, given z, is a function of the chi-square random variable Y. So, from
Equation (13) one can write the c.d.f of CFAR conditioned on Z = z as:
P(CFAR < t|Z = 2)

=Pl1—-|D L+L* L - i—L’k L <t
- w0\ ma-n )| =
=P|P z - L Y <Z; < z + LF Y =>1—-t D.1
h vm mn—-1""1" ym mn—1) |~ - (D)

where Z; also follows a standard normal distribution. So
P(CFAR < t|Z = 2)

L Y <7 z <[ Y
mn—-—1) "~ 1_\/_ﬁ_ m(n —1)
2
=P| P||Z z 2< L* Y =1 D.2
-\l (a-) 5|V pems) |21 e) @2

2
Given that (21 - \/%) follows a non-central chi-square distribution with 1

. z?2 . z \?
degree of freedom and non-centrality parameter —, One can define (21 — \/—ﬁ) =

X: [ﬁ

'|m

],SO

P(CFARSt|Z=Z)=P< < []_ m(nY_1)>21—t> (D.3)

This leads to
1)F
P(CFAR<t|Z=2)=1—-F,

[m] (D.4)

Xom(n—1) 12
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where Z is a standard normal random variable, m is the number of Phase |

samples, n is the size of each sample, Fx/?n(n_l) is the cumulative distribution

function of a chi-square distribution with m(n — 1) degrees of freedom, and

F‘21[ZZ](1 —t) is the (1 — t)-quantile of the distribution of a non-central chi-square
Xl’ E

2
distribution with 1 degree of freedom and non-centrality parameter %

Let w = z?/m, so one has

P(CFAR<t|Z=2)=1—F, /m(n _ DFXE}W}G _ t)\ =gw). (D.5)
= Xfm(n—l)\ (CL* )2 / gw). .
4,b

Thus, using the one-step Taylor approximation for g(w) around the point%

gives

1

P(CFAR<t|Z=2)=gw)~g (%) + (W_E)

dg(w)
dx

(D.6)

el
“m

Taking the expectation in respect to Z on both sides, one has the cumulative
distribution function of CFAR as shown below and also an approximation for it.

P(CFAR < t) = E;(P(CFAR < t|Z = 7))

(s
SoE)ent-DEY L on

Note that E(W) = £ (2) = 2E(Z2) = 2 (V(2) + E2(2)) = (1 +0) =

1 . 1 .
—. This leadsto P(CFAR <t) = g (Z) So finally,

m(n — 1)F‘21H(1 —t)

Lim

1
P(CFAR<t)=g (E) =1- sz( Y (D.8)

L*?

To find an approximation for L*, since the goal is P(CFARyy < (1 + &)a) =

1 — p, we just need to solve the following approximation for L*

m(n — 1)F‘211 1-0+9a)
1—F_2 X1,[ﬁ]

Xm(n-1) ( L* )2

Cap

~1-—np. (D.9)
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1-(1+9)a)

2
Solving for L*, we get L* = Ly, = C4,b\/m(n )& [m] =

Xm(n 1)
Cox and Reid (1987) obtained the following approximation for the c.d.f. of

a non-central chi-square distribution:

a

~Fpe|— (D.10)
P 1
1+ m
Given this approximation, one can write
1
Frin®) = (1 + ) F3(b). (D.11)

. -1 1 -1
Replacing b by 1 — (1 + €)a, and in[%](l —(1+¢&)a) by (1 + Z) FX-{ (b)

In L 45, the final simpler approximation formula is given by:

Xl(l—(1+e)a)
cas ™ [(n—1D(m+1)—— (D.12)

F3l
s ()

Replacing Lgas by L, (1 + €)a by a,, yy and rearranging the terms, one has

the final expression for a,, ;-

-1
2 Fe ) (»)
m+1)(n—-1)
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Appendix E - Expressions of g(L) and g'(L)

Here the expressions of g(L) and g'(L) to calculate the approximation
shown in (57) are presented. They were derived by Goedhart et al. (2017).

fE@PE o @) 1fv@W?

o2 3 r,wi T e ad

g(L) =31+ 9a

FEWFy WY 2= fpL)Fv W) ™Y2 (L)
fv@) '

g9'(L) =3+ &)aB — 3C + 5D with € =

B - SFEWVR W (Y2 =Wy ()72 (L)
B fr@W) ’

ey (V2R W FEWL) - FrL)Y2fL
p = PO RSO OVRW s pcraR), (L) =

fE(L)z ) ( )
p dE(CFAR dv(CFAR
V(CFAR), fg(L) = and fy (L) = ———

Below, we present the expressions of E(CFAR), V(CFAR), fz(L) and f,(L).
Considering the expression of CFAR given by Equation (13), E(CFAR) can be
calculated by

E(CFAR) = f f (CFAR) ¢(2)fy(y) dy dz. (E.1)
—oo Y0
V(CFAR) is given by V(CFAR) = E(CFAR?) — E2(CFAR), where
E(CFAR?) = f f (CFAR)? ¢(2)f, (y) dy dz. (E.2)
—oo Y0

Since fE(L) = M, one has: fe(l) =

o0y =~ s 6 0@ () dy dz

Z L Y Z L Y
where G = ¢ (\/_ﬁ + E,b\’m(n—l)) + ¢ (\/_ﬁ a E,b\' m(n—l))'

dV(CFAR) dE(CFARZ)

Finally, fy(L) = m TR 2 E(CFAR)fz(L),
where 245 _ [ [ 5cFAR (—— L )qb(z) () dy dz.
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Appendix F - Derivation of Formula (63) for the Bootstrap
Method

Here it is derived the exact Formula (62) for L, which is the solution of
Equation (61) of the bootstrap method. Rearranging the left hand side of Equation
(61), we get

*

.ul*c_)? Ok
Vn—-L,—<Z _< )x/ﬁ+L*
(p/ 4b> S ! Sp/c4,b § Sp

=2(1-®(L))(1 +e). (F1)

A

Where Z; follows a standard normal distribution. So

oy C X Oy
P(—L’,; K 4”’szl—<“" )x/HSL’,; ")
Sp Sp Sp

_ ((21 - (siH) \/5)2 < (1 %1)2> = 2(1- W) +e). (F2)

Sp

* S 2

Defining W = (21 - (“’;_X) \/H) and recognizing that W follows a non-
14

central qui-square distribution with 1 degree of freedom and non-centrality

parameter n (“’;—f)z we can write
p (W < (L* a:)2> _F, <(L 0k>2> =2(1- &)1 +¢). (F.3)

2
where F,, denotes the c.d.f. of W. Thus 1— Fy <(L “k) ): 2(1-

d(L))(1 + &).

Solving this last equation for L, we get

Sp\/FM_,l (1 —2(1 - o)+ e))

L, = p (F.5)
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Table G. 1. The 0.95 and 0.9 quantiles of CARL s ;;y With adjusted limits (a =
0.0027, p = 0.1 and € = 0.2) in grey and unadjusted limits (L = 3) in white for
different values of m, n and § (Case UU)

m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.1 p=0.1 p=0.1 =0. =0.1

5 Pow n unadj. £=0.2 difference unadj. ¢ = 0,2  difference unadj. ¢ = 9,2, difference unadj. ¢ = . difference unadj. ¢ = 0.2 difference
Lé’_ 5 221 311 0.89 1.97 2.33 0.36 1.83 1.99 0.15 171 1.74 0.03 1.64 1.63 -0.01
ﬁ 10 1.10 1.15 0.05 1.08 1.10 0.02 1.07 1.07 0.01 1.05 1.05 0.00 1.05 1.05 0.00
n § 15 1.01 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
j. & 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
o 5 2.02 2.75 0.73 1.86 217 0.31 1.76 1.90 0.14 1.67 1.71 0.03 1.62 1.61 -0.01
© T 10 1.08 1.13 0.04 1.07 1.09 0.02 1.06 1.07 0.01 1.05 1.05 0.00 1.05 1.04 0.00
s 15 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
< 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
2_ 5 927 17.53 8.26 7.37 | 10.25 2.88 6.33 7.48 1.16 5.45 5.69 0.24 4.99 491 -0.08
ﬁ 10 2.46 3.09 0.63 221 247 0.25 2.06 2.16 0.10 1.93 1.93 0.00 1.85 1.82 -0.03
g 15 145 1.60 0.15 1.37 1.43 0.06 1.33 1.35 0.02 1.29 1.28 0.00 1.26 1.25 -0.01
:I S 20 115 1.21 0.05 1.13 1.15 0.02 111 1.12 0.01 1.09 1.09 0.00 1.09 1.08 -0.01
L o 5 775 14.04 6.29 6.55 8.95 2.40 5.84 6.86 1.02 521 5.44 0.23 4.87 4.79 -0.08
10 227 2.80 0.54 2.10 2.32 0.23 1.99 2.08 0.09 1.89 1.89 0.00 1.84 1.80 -0.03
§ 15 1.39 1.52 0.13 1.34 1.39 0.05 131 1.32 0.02 1.27 1.27 0.00 1.26 124 -0.01
& 20 113 1.18 0.04 1.11 1.13 0.02 1.10 111 0.01 1.09 1.09 0.00 1.08 1.08 -0.01
2 5 107.85 286.20 178.35 7524 | 126.44 5121 5880 77.06 18.26  46.05  49.47 342 3975 3869 -1.06
‘I'f 10 29.02 48.33 19.32 22.55 29.09 6.54 18.99 21.31 2.32 16.03 16.09 0.07 14.47 13.77 -0.71
n o 151334 1896 563 1090 12.85 1.95 950 = 10.13 0.63 8.30 8.18 -0.11 7.65 7.27 -0.38
3 S 20 7.72 10.07 2.35 6.52 7.33 0.82 5.82 6.05 0.23 5.20 5.10 -0.10 4.86 4.64 -0.23
1 ; 5 8129 204.79 12350 62.14 102.35 40.21 51.59 67.10 1551  42.82 45.94 3.12 38.23 37.22 -1.01
“© 0 10 2389 3891 1502 19.77  25.30 553  17.35 1942 206 1524 1530 0.06  14.08 13.40 -0.68
§ 15 11.42 16.00 457 9.81 11.51 1.70 8.84 9.42 0.57 7.97 7.87 -0.11 7.49 7.12 -0.37
® 20 6.78 8.75 1.97 5.98 6.70 0.72 5.48 5.70 0.22 5.03 4.93 -0.10 4.78 4.56 -0.22

Table G. 2. The 0.95 and 0.9 quantiles of CARL s ;;y With adjusted limits (a =
0.0027, p = 0.2 and € = 0.2) in grey and unadjusted limits (L = 3) in white for
different values of m, n and § (Case UU)

m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.2 p=0.2 p=0.2 p=02 p=0.1

8 Pooc n unadj. &=0.2 difference unadj. £=0.2 difference unadj. £=0.2 difference unadj. e=0.2 difference unadj. &=0.2 difference
3 5 221 2.72 0.51 1.97 217 0.20 1.83 191 0.08 171 171 0.00 1.64 1.61 -0.03
ﬁ 10 1.10 1.13 0.03 1.08 1.09 0.01 1.07 1.07 0.00 1.05 1.05 0.00 1.05 1.05 0.00
w g 15 101 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
:’, S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
%5 202 2.44 0.42 1.86 2.03 0.17 176 1.83 0.07 1.67 1.68 0.00 1.62 1.60 -0.03
© ? 10 1.08 111 0.03 1.07 1.08 0.01 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00
§ 15 101 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
2 5 927 13.79 4.52 7.37 8.94 1.56 6.33 6.88 0.56 5.45 5.46 0.01 4.99 4.81 -0.18
‘ﬁ 10 2.46 2.83 0.37 221 2.35 0.13 2.06 2.10 0.04 1.93 1.90 -0.02 1.85 1.81 -0.05
¢ 15 145 1.54 0.09 1.37 1.40 0.03 133 1.33 0.00 1.29 1.27 -0.01 1.26 1.25 -0.02
TS 20 115 1.18 0.03 113 1.14 0.01 111 111 0.00 1.09 1.09 0.00 1.09 1.08 -0.01
L ; 5 775 11.22 3.47 6.55 7.86 131 5.84 6.33 0.50 5.21 5.22 0.01 4.87 4.70 -0.17
y 10 227 2.58 0.31 2.10 2.22 0.12 1.99 2.02 0.03 1.89 1.87 -0.02 1.84 1.79 -0.05
§ 15 139 1.47 0.08 1.34 1.37 0.03 131 131 0.00 1.27 1.26 -0.01 1.26 1.24 -0.02
£ 20 113 1.16 0.03 111 1.12 0.01 1.10 1.10 0.00 1.09 1.08 0.00 1.08 1.08 -0.01
2 5 107.85 199.14 9129 7524 102.07 26.84 5880 67.43 8.63  46.05 46.21 0.16  39.75 37.37 -2.39
ﬁ 10 29.02 = 39.83 10.82 2255 25.94 340 1899 19.84 085 16.03 1552 -0.51 1447 1351 -0.96
» S 151334 1653 3.19 10.90 | 11.87 0.97 9.50 9.65 0.15 8.30 7.98 -0.31 7.65 7.18 -0.47
3" & 20 772 9.05 1.33 6.52 6.90 0.38 5.82 5.83 0.02 5.20 5.00 -0.20 4.86 4.59 -0.27
i~ 5 8129 14526 6397 6214 8331 2117 5159 58.93 735 4282 4296 0.14 3823 3596 -2.28
© T 10 2389 = 3234 8.45 19.77 | 22,64 287 1735 1811 076 1524 1476 -048 1408 1316 -0.93
g 15 1142  14.03 2.60 9.81 10.66 0.84 8.84 8.98 0.13 7.97 7.68 -0.30 7.49 7.03 -0.46
£ 20 678 7.90 111 5.98 6.32 0.34 5.48 5.50 0.02 5.03 4.84 -0.19 4.78 452 -0.26

Table G. 3. The 0.95 and 0.9 quantiles of CARL s k; With adjusted limits (a =
0.0027, p = 0.1 and € = 0.2) in grey and unadjusted limits (L = 3) in white for
different values of m, n and § (Case KU)
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m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.1 p=0.1 p=01 p=0.1 p=0.1

8 n unadj. e=0.2 difference unadj. &=0.2 difference unadj. e=0.2 difference unadj. £=0.2 difference unadj. e=0.2 difference
8 5 199 2.52 0.54 184 2.09 0.25 1.75 1.87 0.12 1.67 1.69 0.03 1.62 161 -0.01
‘I-'I': 10 1.07 1.09 0.02 1.06 1.07 0.01 1.05 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00
w g 15 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
‘;j. S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
o 5 187 2.33 0.46 177 1.99 0.22 1.70 1.81 0.11 1.64 1.67 0.03 1.61 159 -0.01
© T 10 1.06 1.08 0.02 1.06 1.07 0.01 1.05 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00
§ 15 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
S 5 748 11.96 4.48 6.39 8.26 1.87 5.74 6.58 0.84 5.16 5E 0.18 4.85 4.76 -0.09
ﬁ 10 212 241 0.30 2.00 2.14 0.14 1.93 1.99 0.06 1.86 1.85 0.00 1.82 1.78 -0.04
g 15 133 1.39 0.06 1.30 1.32 0.03 1.28 1.29 0.01 1.26 1.25 -0.01 1.25 1.23 -0.01
TS 20 110 1.12 0.02 1.10 1.10 0.01 1.09 1.09 0.00 1.08 1.08 0.00 1.08 1.07 -0.01
L ;j 5 6.60 10.24 3.65 5.87 7.51 1.63 5.42 6.18 0.76 5.00 5.18 0.17 4.76 4.68 -0.09
10 203 229 0.27 1.94 2.07 0.13 1.89 1.95 0.05 1.84 1.83 0.00 1.81 177 -0.04
§ 15 1.30 1.36 0.06 1.28 131 0.03 1.27 1.28 0.01 1.25 1.25 -0.01 1.25 1.23 -0.01
)& 20 1.10 111 0.02 1.09 1.10 0.01 1.09 1.09 0.00 1.08 1.08 0.00 1.08 1.07 -0.01
2 5 7710 160.71 8361 59.81 90.28 3047 50.20  62.69 1249 4214 4465 251 37.90  36.75 -1.15
‘ﬁ 10 20.21 = 27.62 7.41 17.62 20.79 3.17 16.02 | 17.27 1.25 1457 | 14.46 -0.10 1375 13.04 -0.71
" 15 9.45 1131 1.86 8.62 9.41 0.79 8.08 8.33 0.25 7.58 7.41 -0.17 7.29 6.91 -0.38
S 20 5.62 6.30 0.68 5.25 5.53 0.27 5.02 5.06 0.05 4.79 4.65 -0.13 4.65 4.43 -0.22

5 6299 | 126.49 6350 5214 7751 2537 4568 56.72 1103 3998 4232 234 3684 3574 -1.11
10 18.15 | 24.52 6.36 16.37  19.23 2.86 1523 16.39 1.16 1415 14.06 -0.10 1353 1284 -0.69
15 8.80 10.47 1.67 8.20 8.93 0.73 7.81 8.04 0.23 7.43 7.27 -0.17 721 6.84 -0.37
20 5.34 5.96 0.63 5.07 5.33 0.26 4.89 4.94 0.05 4.72 4.59 -0.13 4.62 4.39 -0.22

)
Pooc = 0.1 | Pooc

Table G. 4. The 0.95 and 0.9 quantiles of CARL g x; With adjusted limits (a =
0.0027, p = 0.2 and € = 0.2) in grey and unadjusted limits (L = 3) in white for
different values of m, n and 6§ (Case KU)

m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=02 p=02 p=02 p=02 p=0.2

8 n unadj. e=0.2 difference unadj. e=0.2 difference unadj. e=0.2 difference unadj.. £=0.2 difference unadj. e=0.2 difference
8 5 199 2.26 0.28 184 1.96 0.12 175 1.80 0.05 1.67 1.66 0.00 1.62 1.59 -0.03
‘ﬁ 10 1.07 1.08 0.01 1.06 1.06 0.00 1.05 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00
w g 15 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
:‘_’, S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
= 5 187 211 0.24 177 1.88 0.11 1.70 1.75 0.04 1.64 1.64 0.00 1.61 1.58 -0.03
© f 10 1.06 1.07 0.01 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.05 0.00 1.05 1.04 0.00
§ 15 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
= 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
S 5 748 9.71 2.23 6.39 7.29 0.90 5.74 6.08 0.34 5.16 5.13 -0.03 4.85 4.66 -0.18
f 10 212 2.26 0.14 2.00 2.06 0.05 1.93 1.94 0.01 1.86 1.83 -0.03 1.82 177 -0.05
g 15 133 135 0.03 1.30 1.30 0.01 1.28 1.27 0.00 1.26 1.25 -0.01 1.25 123 -0.02
TR 20 110 111 0.01 1.10 1.10 0.00 1.09 1.09 0.00 1.08 1.08 -0.01 1.08 1.07 -0.01
g at 5 6.60 8.42 1.82 5.87 6.66 0.79 5.42 5.73 0.31 5.00 4.97 -0.03 4.76 4.58 -0.18
10 203 2.15 0.13 1.94 1.99 0.05 1.89 1.90 0.01 1.84 1.81 -0.03 181 1.76 -0.05
§ 15 1.30 1.33 0.02 128 1.29 0.01 1.27 1.26 0.00 1.25 124 -0.01 1.25 1.23 -0.02
& 20 110 1.10 0.01 1.09 1.09 0.00 1.09 1.08 0.00 1.08 1.08 -0.01 1.08 1.07 -0.01
g 5 7710  116.30 39.20 59.81 73.94 1413 50.20 55.15 4.95 42.14 41.75 -0.39 37.90 35.50 -2.40
|°|- 10 20.21 23.65 3.44 17.62 18.82 1.20 16.02 16.17 0.15 1457 13.96 -0.60 13.75 12.80 -0.94
w 8 15 945 10.24 0.79 8.62 8.81 0.20 8.08 7.98 -0.11 7.58 7.23 -0.35 7.29 6.83 -0.46
3 S 20 5.62 5.87 0.25 5.25 5.28 0.02 5.02 4.91 -0.11 4.79 4.58 -0.21 4.65 4.39 -0.26
i = 5 6299  93.05 30.06 52.14  63.96 11.82 4568  50.06 438 3998 39.61 -0.37  36.84 3453 -2.31
© |°| 10 18.15 21.11 2.96 16.37 17.45 1.08 15.23 15.37 0.14 14.15 13.57 -0.58 13.53 12.61 -0.92
§ 15 8.80 9.50 0.71 8.20 8.39 0.18 7.81 7.71 -0.10 7.43 7.10 -0.34 7.21 6.76 -0.46
]& 20 534 5.57 0.23 5.07 5.09 0.02 4.89 4.79 -0.10 4.72 4.51 -0.21 4.62 4.36 -0.26

Table G. 5. The 0.95 and 0.9 quantiles of CARLs yx with adjusted limits (a =
0.0027, p = 0.1 and € = 0.2) in grey and unadjusted limits (L = 3) in white for
different values of m, n and § (Case UK)
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m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.1 p=0.1 p=01 p=0.1 p=0.1

8 n unadj. e=0.2 difference unadj. &=0.2 difference unadj. e=0.2 difference unadj. £=0.2 difference unadj. e=0.2 difference
8 5 19 2.10 0.14 1.82 1.85 0.03 1.74 1.72 -0.02 1.66 1.62 -0.04 1.62 157 -0.05
‘I-'I': 10 1.09 1.10 0.02 1.07 1.07 0.00 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.04 -0.01
w g 15 101 1.01 0.00 101 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
‘;j. S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
% 5 186 1.98 0.13 1.76 1.78 0.02 1.70 1.68 -0.02 1.64 1.60 -0.04 1.61 1.56 -0.05
© T 10 1.07 1.09 0.01 1.06 1.07 0.00 1.06 1.05 0.00 1.05 1.05 0.00 1.05 1.04 -0.01
§ 15 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
2 5 729 8.38 1.09 6.27 6.45 0.18 5.66 5.52 -0.14 5.12 4.83 -0.30 4.82 4.50 -0.33
ﬁ 10 231 2.50 0.19 212 2.15 0.03 2.00 1.98 -0.03 1.90 1.84 -0.06 1.84 177 -0.07
g 15 142 1.48 0.06 1.35 1.36 0.01 131 1.31 -0.01 1.28 1.26 -0.02 1.26 1.24 -0.02
T2 2 114 1.17 0.02 1.12 1.13 0.00 1.11 1.10 0.00 1.09 1.08 -0.01 1.08 1.08 -0.01
L ;j 5 6.50 7.44 0.94 5.80 5.97 0.17 537 5.24 -0.13 4.97 4.69 -0.29 4.75 4.43 -0.32
10 216 2.33 0.17 2.03 2.06 0.03 1.95 1.92 -0.03 1.87 181 -0.06 1.82 1.76 -0.07
§ 15 1.37 1.42 0.06 132 1.33 0.01 1.30 1.29 -0.01 1.27 1.25 -0.02 1.25 1.23 -0.02
)& 20 113 1.15 0.02 111 111 0.00 1.10 1.10 0.00 1.09 1.08 -0.01 1.08 1.07 -0.01
2 5 7359 9198 1839 57.88  60.66 2.78 49.04  47.03 -2.02 4158 37.61 -396  37.62 33.39 -4.23
‘ﬁ 10 24.85 | 29.97 5.12 20.28  21.09 0.81 1765 17.04 -0.61 1538 14.15 -1.22 1415 12.82 -1.33
n o 15 1221 1435 2.14 10.26  10.61 0.35 9.11 8.85 -0.27 8.11 7.56 -0.55 7.56 6.96 -0.60
3 S 20 7.29 8.38 1.09 6.27 6.45 0.18 5.66 5.52 -0.14 5.12 4.83 -0.30 4.82 4.50 -0.33
I = 5 6135 76.24 1489 51.06 5347 241 4496 = 43.14 -1.82 3959 3584 -3.74 36.64 3253 -4.11
© f 10 21.30 | 25.55 4.25 18.25 1897 0.71 16.41 15.86 -0.55 1476 | 13.60 -1.16 1384 1255 -1.29
§ 15 10.70 | 1251 1.81 9.38 9.69 0.31 8.57 8.32 -0.25 7.83 7.31 -0.52 7.42 6.83 -0.59
& 20 6.50 7.44 0.94 5.80 5.97 0.17 5.37 5.24 -0.13 4.97 4.69 -0.29 4.75 4.43 -0.32

Table G. 6. The 0.95 and 0.9 quantiles of CARL s yx With adjusted limits (a =
0.0027, p = 0.2 and € = 0.2) in grey and unadjusted limits (L = 3) in white for
different values of m, n and 6 (Case UK)

m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=0.2 p=0.2 p=02 p=02 p=0.2

é n unadj. e=0.2 difference unadj. &=0.2 difference unadj. e=0.2 difference unadj. £=0.2 difference unadj. e=0.2 difference
8 1.96 2.01 0.05 182 1.81 -0.01 1.74 1.70 -0.04 1.66 1.61 -0.05 1.62 157 -0.05
‘ﬁ 10 1.09 1.09 0.01 1.07 1.07 0.00 1.06 1.06 0.00 1.05 1.05 -0.01 1.05 1.04 -0.01
w g 15 101 1.01 0.00 101 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
‘j. S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
< 5 186 1.90 0.05 1.76 1.75 -0.01 1.70 1.66 -0.04 1.64 1.59 -0.05 1.61 155 -0.05
© T 10 1.07 1.08 0.01 1.06 1.06 0.00 1.06 1.05 0.00 1.05 1.04 -0.01 1.05 1.04 -0.01
§ 15 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
2 5 729 7.70 0.41 6.27 6.18 -0.09 5.66 5.40 -0.26 5.12 4.79 -0.33 4.82 4.49 -0.34
|°|- 10 231 2.38 0.07 212 2.10 -0.02 2.00 1.95 -0.05 1.90 1.83 -0.07 1.84 1.77 -0.07
g 15 142 1.44 0.02 135 1.35 -0.01 131 1.30 -0.02 1.28 1.26 -0.02 1.26 124 -0.02
:| S 20 114 1.15 0.01 112 1.12 0.00 111 1.10 -0.01 1.09 1.08 -0.01 1.08 1.08 -0.01
,: ; 5 6.50 6.85 0.35 5.80 5.72 -0.08 5.37 5.13 -0.24 4.97 4.66 -0.32 4.75 4.42 -0.33
y 10 216 2.23 0.06 2.03 2.02 -0.02 1.95 1.90 -0.05 1.87 1.80 -0.06 1.82 1.76 -0.07
s 15 137 1.39 0.02 132 1.32 -0.01 1.30 1.28 -0.02 1.27 1.25 -0.02 1.25 1.23 -0.02
2 20 113 113 0.01 111 111 0.00 1.10 1.09 -0.01 1.09 1.08 -0.01 1.08 1.07 -0.01
2 5 7359 8030 6.71 57.88 56.53 -1.34  49.04 45.38 -3.67 4158 37.17 -441 3762 3327 -4.35
ﬁ 10 2485  26.74 1.89 20.28 19.88 -0.39  17.65  16.55 -1.10 1538 14.02 -1.36 1415 12.79 -1.36
w S 151221 1301 0.79 10.26 | 10.09 -0.17 9.11 8.63 -0.49 8.11 7.50 -0.61 7.56 6.94 -0.62
3 S 20 7.29 7.70 0.41 6.27 6.18 -0.09 5.66 5.40 -0.26 5.12 4.79 -0.33 4.82 4.49 -0.34
i+ 5 6135 66.79 544  51.06 49.90 -1.15 4496 4165 -3.31 3959 3542 -416  36.64 3242 -4.22
© f 10 21.30 | 2287 1.57 18.25  17.91 -0.35  16.41 1540 -1.01 1476 @ 1347 -129 1384 1252 -1.33
§ 15 10.70 | 11.37 0.67 9.38 9.23 -0.15 8.57 8.12 -0.45 7.83 7.25 -0.58 7.42 6.81 -0.61
& 20 6.50 6.85 0.35 5.80 5.72 -0.08 5.37 5.13 -0.24 4.97 4.66 -0.32 4.75 4.42 -0.33
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Appendix H - Codes in R Language

R CODES FOR CASE UU

# before running the codes below, please, download the packages cubature and
numDeriv

library(cubature) # this package helps compute double integrals
library(numDeriv) # this package helps compute numerical derivations

# the function secantc below was created to find the root of a monotonic increasing
function. Note that the precision is up to 10 decimal places.

secantc <- function(fun, x0, x1, tol=1e-10, niter=100000){
for (iin 1:niter ) {
funx1 <- fun(x1)
funx0 <- fun(x0)
X2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 )
funx2 <- fun(x2)
if (abs(funx2) < tol) {
return(x2)
1
if (funx2 < 0)
x0 <-x2
else
x1 <-x2
1

stop("exceeded allowed number of iteractions")

}

# the functions CPS and CARL below computes the Conditional Average Run Length
(CARL) and the Conditional Probability of a Sighal of the Xbar chart in Case UU for a
given values of Z (standard normal random variable), Y (chi-square random variable with
n*(m-1) d.f.), limit factor (L), scaled shift in the process mean (delta), number (m) and
size (n) of Phase | samples. Note that when delta = 0, CARL will return the in-control
CARL (i.e., the CARLO).

CPS <- function (Z,Y,delta,L,m,n) {

a<- 1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+(L*sqrt(Y/(m*(n-1)))),0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))+2)-(L*sgrt(Y/(m*(n-1)))),0,1)

return(a)

}

CARL <- function (Z,Y,delta,L,m,n) {


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

109

a<-1/(1 - pnorm((-delta*sqgrt(n))+((1/sqrt(m))*Z)+(L*sqrt(Y/(m*(n-1)))),0,1) + pnorm((-
delta*sqgrt(n))+((1/sqrt(m))+2Z)-(L*sqrt(Y/(m*(n-1)))),0,1))
return(a)

}

# the functions CDFCPS and CDFCARL (below) computes, respectively, the c.d.f. (for any
value t) of the Conditional Probability of a Signal (CPS) and CARL of the Xbar chart for a
given limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of
Phase | samples. Note that when delta = 0, CDFCPS and CDFCARL will return the in-
control c.d.f. of the CPS and CARL (i.e., cdf of the CFAR, the conditional False Alarm Rate
and CARLO).

CDFCPS <- function (t,delta,L,m,n) {
CFAR <- function (U) {
a<-1- pchisq((m*(n-1)*qchisq(1-t, df=1, ncp = ((gnorm(U)/sqrt(m))-
(delta*sqrt(n)))*2))/((L)*2),m*(n-1))
return(a)
!
d <- integrate(CFAR,0,1)Sval
return(d)

}

CDFCARL <- function (t,delta,L,m,n) {
CARL <- function (U) {
a<-pchisq((m*(n-1)*qchisq(1-(1/t), df=1, ncp = ((gnorm(U)/sqrt(m))-
(delta*sqrt(n)))”2))/(L2),m*(n-1))
return(a)
1
d <- integrate(CARL,0,1)Sval
return(d)

}

# the functions ARL, ARL2, VARL, SDARL2 and quantileCARL (below) compute,
respectively, the mean, the central second moment, the variance, the standard
deviation and the p-quantile of the CARLO of the Xbar chart in case UU for a given limit
factor (L), scaled shift in the process mean (delta), number (m) and size (n) of Phase |
samples. Note that if delta = 0, the function returns the in-control values.

ARL <- function (delta,L,m,n) {

CARL <- function (U) {
a<-1/(1-pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*gnorm(U[1],0,1))+(L*sqgrt(gchisq(U[2],m*(n-1))/(m*(n-
1)))),0,1) + pnorm((-delta*sqgrt(n))+((1/sqrt(m))*gnorm(U[1],0,1))-
(L*sqrt(qchisq(U[2],m*(n-1))/(m*(n-1)))),0,1))
return(a)
}
a <- adaptintegrate(CARL, lowerLimit = ¢(0, 0), upperLimit = ¢(1, 1))Sintegral
return (a)
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ARL2 <- function (delta,L,m,n) {

CARL <- function (U) {
a<-(1/(1 - pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*gnorm(U[1],0,1))+(L*sqgrt(gchisq(U[2],m*(n-1))/(m*(n-
1)))),0,1) + pnorm((-delta*sqgrt(n))+((1/sqrt(m))*gnorm(U[1],0,1))-
(L*sqrt(qchisq(U[2],m*(n-1))/(m*(n-1)))),0,1)))"2
return(a)
}
a <- adaptintegrate(CARL, lowerLimit = ¢(0, 0), upperLimit = ¢(1, 1))Sintegral
return (a)

}

VARL <- function (delta,L,m,n) {
a <- ARL2(delta,L,m,n) - (ARL(delta,L,m,n))"2
return (a)

}

SDARL <- function (delta,L,m,n) {
a <- sqrt( ARL2(delta,L,m,n) - (ARL(delta,L,m,n))"2)
return (a)

}

qguantileCARL <-function (p,delta,L,m,n) {
CDFm <- function (a) {
a <- CDFCPS(a,delta,L,m,n) - (1-p)
return(a)
1
g<-1/secantc(CDFm,0.002,0.01)
return(g)

}

# the functions plotCDFCARL (below) plots the c.d.f of the CARLO of the Xbar chart in
case UU for a given limit factor (L), scaled shift in the process mean (delta), number (m)
and size (n) of Phase | samples. Note that if delta = 0, the function returns the in-control
results.

plotCDFCARL <- function (delta,L,m,n) {

if (delta == 0) {

CDFCARL12 <- Vectorize(CDFCARL)

curve(CDFCARL12(x,delta,L,m,n),1,2000
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type=
" yaxt="n")

title(main=paste("P(IC CARL <=t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ),
line=+2.5)

xvalues<-¢(0,200,400,600,800,1000,1200,1400,1600,1800,2000)

yvalues<-c(0,0.2,0.4,0.6,0.8,1)

axis(1,at=xvalues,cex.axis=1.5,las=1)

axis(2,at=yvalues,cex.axis=1.5,las=1)

Jty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
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ARLr <- round(ARL(delta,L,m,n),2)

CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")
abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)

CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1, line=1)
axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")
abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red")
legend(1250, 0.4, c( paste("MCARL =", Median), paste("ARL =", ARLr)), cex=1,

Ity=c(5.5,5.5),Iwd=c(1,1),col=c("red","blue"))

}

else{

CDFCARL12 <- Vectorize(CDFCARL)
curve(CDFCARL12(x,delta,L,m,n),1,100

,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="1",Ilty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
Il'yaxt=llnll)

title(main=paste("P( OOC CARL <=t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ),

line=+2.5)

xvalues<-c(0,20,40,60,80,100)
yvalues<-c(0,0.2,0.4,0.6,0.8,1)
axis(1,at=xvalues,cex.axis=1.5,las=1)
axis(2,at=yvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)

CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),Ity=5.5,col="blue")
abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)

CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1, line=1)
axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")
abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red")
legend(60, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1,

Ity=c(5.5,5.5),lwd=c(1,1),col=c("red","blue"))

}

}

dev.new()
plotCDFCARL(0,3,25,5)
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dev.new()
plotCDFCARL(0.5,3,25,5)

# the function plotPDFCARL (below) plots the p.d.f of the CARLO of the Xbar chart in case
UU for a given limit factor (L), scaled shift in the process mean (delta), number (m) and
size (n) of Phase | samples. Note that if delta = 0, the function returns the in-control
results.

plotPDFCARL <- function (delta,L,m,n) {

if (delta == 0) {

CDF <- function (h) {
g <- CDFCARL(h,delta,L,m,n)
return(g)

}

PDF <- function (x) {
f <- grad(CDF, x)
return(f)

}
PDF2 <- Vectorize(PDF)

curve(PDF2,1.01,2000,xlab="t",ylab="",n=100,cex.axis=1.5,type="1",Ity=1,lwd=3,yaxs="i",
xaxs="i",xaxt="n")
title(main=paste("pdf of the IC CARL","for", "L=",L, "m=",m, "n=",n ), line=+2.5)
xvalues<-¢(0,200,400,600,800,1000,1200,1400,1600,1800,2000)

axis(1,at=xvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)

axis(1,Median,cex.axis=1,las=1,line=1)

abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red")
!

else {

CDF <- function (h) {
g <- CDFCARL(h,delta,L,m,n)
return(g)
}
CDF2 <- Vectorize(CDF )
PDF <- function (x) {
f <- grad(CDF2, x)
return(f)

}
PDF2 <- Vectorize(PDF)

curve(PDF2,1.01,100,n=100,xlab="t",ylab="",cex.axis=1.5,type="1",lty=1,lwd=3,yaxs="i",x

mn:n n II)

axs="1 ,xaxt="n
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title(main=paste("pdf of the OOC CARL","for", "L=",L, "m=",m, "n=",n,"delta=", delta
), line=+2.5)

xvalues<-c(0,20,40,60,80,100)

axis(1,at=xvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1,line=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")

}
}

dev.new()
plotPDFCARL(0,3,25,5)
dev.new()
plotPDFCARL(0.5,3,25,5)

# the codes below generate a table with the unconditional ARL values for a set of values
of n (row) and m (column), given a value of the scaled shift (delta) and limit factor (L)

m<-c(25,50,75,100,150,200,250)

n<-c(3,5,9)

delta<-0

L<-3

ARLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
ARLtable[i,j] <- ARL(delta,L,m[j],n[i])
cat(ARLtable[i,j]," ")
}

}
ARLtable

# the codes below generate a table with the SDARL values for a set of values of n (row)
and m (column), given a value of the scaled shift (delta) and limit factor (L)

m<-c(25,50,75,100,150,200,250)

n<-c(3,5,9)

delta<-0

L<-3

SDARLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
SDARLtableli,j] <- SDARL(delta,L,m[j],n[i])
cat(SDARLtable[i,j]," ")
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}

}
SDARLtable

# the codes below generate a table with the p-quantile values of the CARLO for a set of
values of n (row) and m (column), given a value of the scaled shift (delta) and limit factor

(L)

m<-c(25,50,100,300,1000)

n<-c(5,10,20,25)

delta<-0

L<-3

p<-0.1

quantileTABLE<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
quantileTABLE[i,j]<-quantileCARL(p,delta,L,m[j],n[i])
cat(quantileTABLE[i,jl," ")
!

!
guantileTABLE

# the codes below generate a table with tht minimum values of m, which generates
P(CFAR<(1+e)*alpha)=1-p for a set of values of n (row) and m (e), given a value of the
scaled shift (delta), p, nominal alpha and limit factor (L)

e<-c(0.1,0.2,0.3,0.4,0.5)

n<-c(5,10,20,25)

L<-3

p <-0.15

alpha<-0.0027

delta<-0

MINIMUMMTABLE<-matrix(,nrow = length(n), ncol = length(e))

for (i in 1:length(e)){
for (j in 1:length(n)){
CDFm <- function (m) {
a <- CDFCPS((1+e[i])*alpha,delta,L,m,n[j]) - (1-p)
return(a)
}
MINIMUMmMTABLEJj,i]<-ceiling(secantc(CDFm,30,4000))
cat(MINIMUMmMTABLE[j,il," ")
!

}
MINIMUMmMTABLE

# the codes below generate a table with the adjusted value of L, which generates
P(CFAR<(1+e)alpha)=1-p for a set of values of n (row) and m (column), given a value of
the scaled shift (delta), p, nominal alpha and e
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m<-c(25,50,100,300,1000)

n<-c(5,10,20,25)

alpha <- 0.0027

p<-0.05

e<-0.2

delta<-0

adjLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1L:length(n)){
for (j in 1L:length(m)){
CDFaux <- function (s) {
a <- CDFCPS((1+e)*alpha,delta,s,m[j],n[i])-(1-p)
return (a)
!
adjLtableli,jl<-secantc(CDFaux,2.1,3.9)
cat(adjLtableli,jl, " ")
!

!
adjLtable

R CODES FOR CASE KU

# before running the codes below, please, download the packages cubature and
numDeriv

library(cubature) # this package helps compute double integrals
library(numDeriv) # this package helps compute numerical derivations

# the function secantc below was created to find the root of a monotonic increasing
function. Note that the precision is up to 10 decimal places.

secantc <- function(fun, x0, x1, tol=1e-10, niter=100000){
for (iin 1:niter ) {
funx1 <- fun(x1)
funx0 <- fun(x0)
X2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 )
funx2 <- fun(x2)
if (abs(funx2) < tol) {
return(x2)
}
if (funx2 < 0)
x0 <- x2
else
x1 <-x2
}

stop("exceeded allowed number of iteractions")

}

# the function CARL and CPS below computes the Conditional Average Run Length
(CARL) and the Conditional Probability of a signal of the Xbar chart in Case KU for a given
of Y (chi-square random variable with n*(m-1) d.f., but note that Y = qchisq(U,m*(n-1)),
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so the function below is actually in fucntion of qchisq(U,m*(n-1)) what is in function of
U), limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of
Phase | samples. Note that when delta = 0, CARL will return the in-control CARL (i.e., the
CARLO).

CPS <- function (U,delta,L,m,n) {

a <- 1-pnorm((-delta*sqrt(n))+(L*sqrt(gchisq(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqgrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)

return(a)

}

CARL <- function (U,delta,L,m,n) {

a <- 1/(1-pnorm((-delta*sqgrt(n))+(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1))

return(a)

}

# the functions plotCPS and plotCARL below create, respectively, plots of the CPS and
CARLO curves for various values of m, n=5 and L=3 in function of U. Please, use delta
between 0.5 and 1.5.

plotCPS <- function (delta,L,m,n) {
if (delta==0) {

curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,0.02),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.

,yaxt="n

5,type="1",Ity=1,col="black",yaxs="i",xaxs="i",ylab=
curve(CPS(x,delta,L,20,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=1,lwd=3,col="black")
curve(CPS(x,delta,L,50,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")
curve(CPS(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")
curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=3,
Iwd=3,col="black")
yvalues<-c(0,0.0027,0.005,0.01,0.015,0.02)
axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1)
abline(a =0.0027, b = 0,Ity=5.5)
legend(0.4, 0.0155, c("m =10","m = 20","m = 50","m = 100","m = 500", "CFAR =
0.0027"), cex=1.5, Ity=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0));
title(main=paste("CFAR curves","for", "L=",L, "n=",n,"delta=", delta ))
}
else {
| <- 0.75*delta - 0.225

curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,l),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.5,ty
pe="1",Ity=1,col="black",yaxs="i",xaxs="i",ylab="")
curve(CPS(x,delta,L,20,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=1,lwd=3,col="black")
curve(CPS(x,delta,L,50,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")
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curve(CPS(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")

curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="1",lty=3,
Iwd=3,col="black")

legend(0.4, |, c("m = 10","m = 20","m = 50","m = 100","m = 500"), cex=1.5,
Ity=c(1,1,2,2,3,5.5),Iwd=c(3,3,3,3,3,0));

title(main=paste("CPS curves","for", "L=",L, "n=",n,"delta=", delta ))

}

}

plotCARL <- function (delta,L,m,n) {
if (delta == 0) {

curve(CARL(x,delta,L,10,n),0,1,ylim=c(0,2000),cex.axis=1.5,yaxt="n",xlab="u",yaxs="i",xa
xs="i",ylab="",type="1",Ity=1)
curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",lty=1,lwd=3)
curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=2)
curve(CARL(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=2,Ilwd=3)
curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="1",Ity=3,
Iwd=3)
yvalues<-c(0,370.4,500,1000,1500,2000)
axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1)
abline(a =370.4, b =0,lty=5.5)
legend(0.2, 1500, ¢("m = 10","m =20","m = 50","m = 100","m = 500", "CFAR = 370.4"),
cex=1.5, Ity=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0));
title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta ))
1
else {
| <- (-76*delta) + 118
curve(CARL(x,delta,L,10,n),0,1,ylim=c(1,1),cex.axis=1.5,xlab="u",yaxs="i",xaxs="i",ylab=
,type="1",Ity=1)
curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ilty=1,lwd=3)
curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",lty=2)
curve(CARL(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=2,lwd=3)
curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="1",Ity=3,
Iwd=3)
legend(0.2, I, ¢("m =10","m =20","m = 50","m = 100","m = 500", "CFAR = 370.4"),
cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0));
title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta ))
!
!

dev.new()
plotCPS(0,3,25,5)
dev.new()
plotCARL(0,3,25,5)
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# the functions CDFCPS and CDFCARL (below) computes, respectively, the c.d.f. (for any
value t) of the Conditional Probability of a Signal (CPS) and CARL of the Xbar chart for a
given limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of
Phase | samples. Note that when delta = 0, CDFCPS and CDFCARL will return the in-
control c.d.f. of the CPS and CARL (i.e., cdf of the CFAR, the conditional False Alarm Rate
and CARLO).

CDFCPS <- function (t,delta,L,m,n) {
a <- 1 - pchisq((m*(n-1)*qchisq(1-t, df=1, ncp = (delta®2)*n))/(L*2),m*(n-1))
return(a)

}

CDFCARL <- function (t,delta,L,m,n) {
a <- pchisq((m*(n-1)*qchisq(1-(1/t), df=1, ncp = (delta”2)*n))/(L*2),m*(n-1))
return(a)

}

# the functions ARL, ARL2, VARL, SDARL2 and quantileCARL (below) compute,
respectively, the mean, the central second moment, the variance, the standard
deviation and the p-quantile of the CARLO of the Xbar chart in case KU for a given limit
factor (L), scaled shift in the process mean (delta), number (m) and size (n) of Phase |
samples. Note that if delta = 0, the function returns the in-control values.

ARL <- function (delta,L,m,n) {
CARL <- function (U) {
a <-1/(1-pnorm((-delta*sqgrt(n))+(L*sqrt(gchisg(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqgrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1))
return(a)
1
a <- integrate(CARL,0,1)Sva
return(a)

}

ARL2 <- function (delta,L,m,n) {
CARL <- function (U) {
a <- (1/(1-pnorm((-delta*sqrt(n))+(L*sqrt(gchisg(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)))*2
return(a)
}
a <- integrate(CARL,0,1)$va
return(a)

}

VARL <- function (delta,L,m,n) {
a <- ARL2(delta,L,m,n) - (ARL(delta,L,m,n))"2
return (a)

}

SDARL <- function (delta,L,m,n) {
a <- sqrt( ARL2(delta,L,m,n) - (ARL(delta,L,m,n))"2)
return (a)
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}

quantileCARL <-function (p,delta,L,m,n) {
g <- 1/(1-pchisq((((L*2)*qchisq(p,m*(n-1)))/(m*(n-1))), df=1, ncp = (delta”2)*n))
return(g)

}

# the functions plotCDFCARL (below) plots the c.d.f of the CARLO of the Xbar chart in
case KU for a given limit factor (L), scaled shift in the process mean (delta), number (m)
and size (n) of Phase | samples. Note that if delta = 0, the function returns the in-control
results.

plotCDFCARL <- function (delta,L,m,n) {

if (delta == 0) {

CDFCARL12 <- Vectorize(CDFCARL)

curve(CDFCARL12(x,delta,L,m,n),1,2000
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="1",Ity=1,Ilwd=3,yaxs=
" yaxt="n")

title(main=paste("P(IC CARL <=t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ),
line=+2.5)

xvalues<-c(0,200,400,600,800,1000,1200,1400,1600,1800,2000)

yvalues<-c(0,0.2,0.4,0.6,0.8,1)

axis(1,at=xvalues,cex.axis=1.5,las=1)

axis(2,at=yvalues,cex.axis=1.5,las=1)

i" xaxs="i",xaxt="n

ARLr <- round(ARL(delta,L,m,n),2)

CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")
abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1, line=1)
axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red")
abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red")
legend(1250, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1,

Ity=c(5.5,5.5),lwd=c(1,1),col=c("red","blue"))

}

else {

CDFCARL12 <- Vectorize(CDFCARL)

curve(CDFCARL12(x,delta,L,m,n),1,100
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type=
" yaxt="n")

title(main=paste("P( OOC CARL <=t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ),
line=+2.5)

xvalues<-c(0,20,40,60,80,100)

Lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
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yvalues<-c(0,0.2,0.4,0.6,0.8,1)
axis(1,at=xvalues,cex.axis=1.5,las=1)
axis(2,at=yvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)

CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")
abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1, line=1)
axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")
abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red")
legend(60, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1,

Ity=c(5.5,5.5),Iwd=c(1,1),col=c("red","blue"))

!
!

dev.new()
plotCDFCARL(0,3,25,3)
dev.new()
plotCDFCARL(0.5,3,25,5)

# the function plotPDFCARL (below) plots the p.d.f of the CARLO of the Xbar chart in case
KU for a given limit factor (L), scaled shift in the process mean (delta), number (m) and
size (n) of Phase | samples. Note that if delta = 0, the function returns the in-control
results.

plotPDFCARL <- function (delta,L,m,n) {

if (delta ==0) {

CDF <- function (h) {
g <- CDFCARL(h,delta,L,m,n)
return(g)

}

PDF <- function (x) {
f <- grad(CDF, x)
return(f)

}
PDF2 <- Vectorize(PDF)

curve(PDF2,1.01,2000,xlab="t",ylab="",n=100,cex.axis=1.5,type="1",Ity=1,lwd=3,yaxs="i",
xaxs="i",xaxt="n")
title(main=paste("pdf of the IC CARL","for", "L=",L, "m=",m, "n=",n ), line=+2.5)
xvalues<-¢(0,200,400,600,800,1000,1200,1400,1600,1800,2000)

axis(1,at=xvalues,cex.axis=1.5,las=1)
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ARLr <- round(ARL(delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)

axis(1,Median,cex.axis=1,las=1,line=1)

abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")
}

else {

CDF <- function (h) {
g <- CDFCARL(h,delta,L,m,n)
return(g)
}
CDF2 <- Vectorize(CDF)
PDF <- function (x) {
f <- grad(CDF2, x)
return(f)

}
PDF2 <- Vectorize(PDF)

curve(PDF2,1.01,100,n=100,xlab="t",ylab="",cex.axis=1.5,type="1",lty=1,lwd=3,yaxs="i",x
axs="i",xaxt="n")

title(main=paste("pdf of the OOC CARL","for", "L=",L, "m=",m, "n=",n,"delta=", delta
), line=+2.5)

xvalues<-c(0,20,40,60,80,100)

axis(1,at=xvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1,line=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red")

}
}

dev.new()
plotPDFCARL(0,3,25,5)
dev.new()
plotPDFCARL(0.5,3,25,5)

# the codes below generate a table with the unconditional ARL values for a set of values
of n (row) and m (column), given a value of the scaled shift (delta) and limit factor (L)

m<-c(25,50,75,100,150,200,250)
n<-c(3,5,9)
delta<-0
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L<-3
ARLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1L:length(n)){
for (j in 1L:length(m)){
ARLtableli,j] <- ARL(delta,L,m[j],nli])
cat(ARLtableli,j]," ")
}

}
ARLtable

# the codes below generate a table with the SDARL values for a set of values of n (row)
and m (column), given a value of the scaled shift (delta) and limit factor (L)

m<-c(25,50,75,100,150,200,250)

n<-c(3,5,9)

delta<-0

L<-3

SDARLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
SDARLtableli,j] <- SDARL(delta,L,m[j],nli])
cat(SDARLtable[i,j]," ")
1

}
SDARLtable

# the codes below generate a table with the p-quantile values of the CARLO for a set of
values of n (row) and m (column), given a value of the scaled shift (delta) and limit factor

(L)

m<-c(25,50,100,300,1000)

n<-c(5,10,20,25)

delta<-0

L<-3

p<-0.1

quantileTABLE<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
quantileTABLE[i,j]<-quantileCARL(p,delta,L,m[j],n[i])
cat(quantileTABLE[i,j], " ")
}

}
quantileTABLE

# the codes below generate a table with tht minimum values of m, which generates
P(CFAR<(1+e)*alpha)=1-p for a set of values of n (row) and m (e), given a value of the
scaled shift (delta), p, nominal alpha and limit factor (L)
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e<-c(0.1,0.2,0.3,0.4,0.5)

n<-c(5,10,20,25)

L<-3

p <-0.15

alpha<-0.0027

delta<-0

MINIMUMmMTABLE<-matrix(,nrow = length(n), ncol = length(e))

for (iin 1:length(e)){
for (j in 1:length(n)){
CDFm <- function (m) {
a <- CDFCPS((1+e[i])*alpha,delta,L,m,n[j]) - (1-p)
return(a)
!
MINIMUMmMTABLE[j,i]<-ceiling(secantc(CDFm,5,4000))
cat(MINIMUMMTABLE[j,i]," ")
!

}
MINIMUMmMTABLE

# the codes below generate a table with the adjusted value of L, which generates
P(CFAR<(1+e)alpha)=1-p for a set of values of n (row) and m (column), given a value of
the scaled shift (delta), p, nominal alpha and e

m<-c(25,50,100,300,1000)

n<-c(3,5,9,15)

alpha <- 0.0027

p<-0.05

e<-0

adjLtable<-matrix(,nrow = length(n), ncol = length(m))

adjL <- function (p,m,n,e) {
alfatol=(1+e)*0.0027
zalfatol2 <- -1*gnorm(alfatol/2)
g <- zalfatol2/sqrt(gchisq(p,m*(n-1))/(m*(n-1)))
return(g)

}

for (i in 1:length(n)){
for (j in 1:length(m)){
adjLtableli,jl<-adjL(p,m[j],n[il,e)
cat(adjLtable[i,j], " ")
!

}
adjLtable

R CODES FOR CASE UK

# before running the codes below, please, download the packages cubature and
numDeriv
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library(cubature) # this package helps compute double integrals
library(numDeriv) # this package helps compute numerical derivations

# the function secantc below was created to find the root of a monotonic increasing
function. Note that the precision is up to 10 decimal places.

secantc <- function(fun, x0, x1, tol=1e-10, niter=100000){
for (iin 1:niter) {
funx1 <- fun(x1)
funx0 <- fun(x0)
x2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 )
funx2 <- fun(x2)
if (abs(funx2) < tol) {
return(x2)
!
if (funx2 < 0)
x0 <- x2
else
x1 <-x2
!

stop("exceeded allowed number of iteractions")

}

# the function CARL and CPS below computes the Conditional Average Run Length
(CARL) and the Conditional Probability of a signal of the Xbar chart in Case KU for a given
of Z (standard bormal random varianle, but note that Z = gnorm(U,0,1)), so the function
below is actually in fucntion of qchisq(U,m*(n-1)) which is in function of U), limit factor
(L), scaled shift in the process mean (delta), number (m) and size (n) of Phase | samples.
Note that when delta = 0, CARL will return the in-control CARL (i.e., the CARLO).

CPS <- function (U,delta,L,m,n) {

a<-1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))-L,0,1)

return(a)

}

CARL <- function (U,delta,L,m,n) {

a<-1/(1 - pnorm((-delta*sqrt(n))+((1/sgrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))-L,0,1))

return(a)

}

# the functions plotCPS and plotCARL below create, respectively, plots of the CPS and
CARLO curves for various values of m, n=5 and L=3 in function of U. Please, use delta
between 0.5 and 1.5.

plotCPS <- function (delta,L,m,n) {
if (delta == 0) {
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curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,0.02),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.

’yla b=|| "'yaxtzll n ll)

5,type="1",Ity=1,col="black",yaxs="i",xaxs="i
curve(CPS(x,delta,L,20,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=1,lwd=3,col="black")
curve(CPS(x,delta,L,50,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",lty=2,lwd=3,col="black")
curve(CPS(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")
curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="1",Ity=3,
Iwd=3,col="black")
yvalues<-¢(0,0.0027,0.005,0.01,0.015,0.02)
axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1)
abline(a =0.0027, b = 0,Ity=5.5)
legend(0.4, 0.0155, c("m = 10","m =20","m = 50","m = 100","m = 500", "CFAR =
0.0027"), cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0));
title(main=paste("CFAR curves","for", "L=",L, "n=",n,"delta=", delta ))
!
else{
| <- 0.75*delta - 0.225

curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,1),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.5,ty
pe="1",lty=1,col="black",yaxs="i",xaxs="i",ylab="")
curve(CPS(x,delta,L,20,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=1,lwd=3,col="black")
curve(CPS(x,delta,L,50,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")
curve(CPS(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3,col="black")
curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=3,
Iwd=3,col="black")
legend(0.4, I, c("m = 10","m = 20","m = 50","m = 100","m = 500"), cex=1.5,
Ity=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0));
title(main=paste("CPS curves","for", "L=",L, "n=",n,"delta=", delta ))
}
}

plotCARL <- function (delta,L,m,n) {
if (delta == 0) {

curve(CARL(x,delta,L,10,n),0,1,ylim=c(0,400),cex.axis=1.5,yaxt="n",xlab="u",yaxs="i",xax
s="i",ylab="",type="1",lty=1)

curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=1,lwd=3)

curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="1",lty=2)

curve(CARL(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3)

curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=3,
Iwd=3)

yvalues<-c(100,200,300,370.4,400)

axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1)

abline(a =370.4, b =0,lty=5.5)
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legend(0.2, 1500, ¢("m =10","m = 20","m = 50","m = 100","m = 500", "CFAR = 370.4"),
cex=1.5, Ity=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0));
title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta ))
}
else {
| <- (-76*delta) + 118
curve(CARL(x,delta,L,10,n),0,1,ylim=c(1,1),cex.axis=1.5,xlab="u",yaxs="i",xaxs="i",ylab=
Stype="1",lty=1)
curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",lty=1,lwd=3)
curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR" type="1",lty=2)
curve(CARL(x,delta,L,100,n),0,1
,add=TRUE,xlab="u",ylab="CFAR" type="1",Ity=2,lwd=3)
curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR", type="1",Ity=3,
Iwd=3)
legend(0.2, I, ¢("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 370.4"),
cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0));
title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta ))
!
!

dev.new()
plotCPS(0,3,25,5)
dev.new()
plotCARL(0,3,25,5)

# the functions CDFCPS and CDFCARL (below) computes, respectively, the c.d.f. (for any
value t) of the Conditional Probability of a Signal (CPS) and CARL of the Xbar chart for a
given limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of
Phase | samples. Note that when delta = 0, CDFCPS and CDFCARL will return the in-
control c.d.f. of the CPS and CARL (i.e., cdf of the CFAR, the conditional False Alarm Rate
and CARLO).

CDFCARL <- function (x,delta,L,m,n) {
| <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*(delta*sgrt(m*n)))-L,0,1))
CARL <- function (Z) {
a<-1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*2)-L,0,1))
return(a)
}
ARLO <- function (t) {
k <- CARL(t)-x
return(k)
!
if (x>1) {
c<-1
!
if ((x<=1) & (x>=1) ) {
b <- secantc(ARLO,-100,delta*sqrt(m*n))
c<- 1- pnorm((2*(delta*sqrt(m*n)))-b,0,1) + pnorm(b,0,1)
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!

if (x<1) {
c<-0

}

return(c)

}

CDFCPS <- function (t,delta,L,m,n) {
a <-1- CDFCARL(1/t,delta,L,m,n)
return(a)

}

# the functions ARL, ARL2, VARL, SDARL2 and quantileCARL (below) compute,
respectively, the mean, the central second moment, the variance, the standard
deviation and the p-quantile of the CARLO of the Xbar chart in case KU for a given limit
factor (L), scaled shift in the process mean (delta), number (m) and size (n) of Phase |
samples. Note that if delta = 0, the function returns the in-control values.

ARL <- function (delta,L,m,n) {
CARL <- function (U) {
a<-1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*gnorm(U,0,1))-L,0,1))
return(a)
}
a <- integrate(CARL,0,1)Sva
return(a)

}

ARL2 <- function (delta,L,m,n) {
CARL <- function (U) {
a<-(1/(1 - pnorm((-delta*sqrt(n))+((1/sgrt(m))*gnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*gnorm(U,0,1))-L,0,1)))"2
return(a)
}
a <- integrate(CARL,0,1)Sva
return(a)

}

VARL <- function (delta,L,m,n) {
a <- ARL2(delta,L,m,n) - (ARL(delta,L,m,n))"2
return (a)

}

SDARL <- function (delta,L,m,n) {
a <- sqrt( ARL2(delta,L,m,n) - (ARL(delta,L,m,n))"2)
return (a)

}

quantileCARL <-function (p,delta,L,m,n) {
| <-1/(1 - pnorm((-delta*sqgrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))-L,0,1))
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CDFm <- function (a) {
a <- CDFCARL(a,delta,L,m,n) - p
return(a)

}

g<-secantc(CDFm,1,)

return(g)

}

plotCDFCARL <- function (delta,L,m,n) {

if (delta ==0) {

CDFCARL12 <- Vectorize(CDFCARL)

curve(CDFCARL12(x,delta,L,m,n),1,400
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="1",Ity=1,Ilwd=3,yaxs="i",xaxs="i"
" yaxt="n")

title(main=paste("P(IC CARL <=t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ),
line=+2.5)

xvalues<-c(0,100,200,300,400)

yvalues<-c(0,0.2,0.4,0.6,0.8,1)

axis(1,at=xvalues,cex.axis=1.5,las=1)

axis(2,at=yvalues,cex.axis=1.5,las=1)

JXaxt="n

ARLr <- round(ARL(delta,L,m,n),2)

CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")
abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1, line=1)
axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red")
abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red")
legend(1250, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1,

Ity=c(5.5,5.5),lwd=c(1,1),col=c("red","blue"))

}

else {

CDFCARL12 <- Vectorize(CDFCARL)

curve(CDFCARL12(x,delta,L,m,n),1,100
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type=
" yaxt="n")

title(main=paste("P( OOC CARL <=t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ),
line=+2.5)

xvalues<-c(0,20,40,60,80,100)

yvalues<-c(0,0.2,0.4,0.6,0.8,1)

axis(1,at=xvalues,cex.axis=1.5,las=1)

axis(2,at=yvalues,cex.axis=1.5,las=1)

Lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
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ARLr <- round(ARL(delta,L,m,n),2)

CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")
abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1, line=1)
axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")
abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red")
legend(60, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1,

Ity=c(5.5,5.5),Iwd=c(1,1),col=c("red","blue"))

!
!

dev.new()
plotCDFCARL(0,3,25,5)
dev.new()
plotCDFCARL(0.5,3,25,5)

# the function plotPDFCARL (below) plots the p.d.f of the CARLO of the Xbar chart in case
KU for a given limit factor (L), scaled shift in the process mean (delta), number (m) and
size (n) of Phase | samples. Note that if delta = 0, the function returns the in-control
results.

plotPDFCARL <- function (delta,L,m,n) {

if (delta == 0) {

CDF <- function (h) {
g <- CDFCARL(h,delta,L,m,n)
return(g)

}

PDF <- function (x) {
f <- grad(CDF, x)
return(f)

}
PDF2 <- Vectorize(PDF)

curve(PDF2,1.01,400,xlab="t",ylab="",n=100,cex.axis=1.5,type="1",Ity=1,lwd=3,yaxs="i",x
axs="i",xaxt="n")
title(main=paste("pdf of the IC CARL","for", "L=",L, "m=",m, "n=",n ), line=+2.5)
xvalues<-¢(0,100,200,300,400)

axis(1,at=xvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")
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Median <- round(quantileCARL(0.5,delta,L,m,n),2)

axis(1,Median,cex.axis=1,las=1,line=1)

abline(v=quantileCARL(0.5,delta,L,m,n) ,Ity=5.5,col="red")
}

else {

CDF <- function (h) {
g <- CDFCARL(h,delta,L,m,n)
return(g)
}
CDF2 <- Vectorize(CDF )
PDF <- function (x) {
f <- grad(CDF2, x)
return(f)

}
PDF2 <- Vectorize(PDF)

curve(PDF2,1.01,100,n=100,xlab="t",ylab="",cex.axis=1.5,type="1",Ity=1,lwd=3,yaxs="i",x
axs="i",xaxt="n")

title(main=paste("pdf of the OOC CARL","for", "L=",L, "m=",m, "n=",n,"delta=", delta
), line=+2.5)

xvalues<-c(0,20,40,60,80,100)

axis(1,at=xvalues,cex.axis=1.5,las=1)

ARLr <- round(ARL(delta,L,m,n),2)
axis(3,ARLr,cex.axis=1,las=1)
abline(v=ARL(delta,L,m,n),lty=5.5,col="blue")

Median <- round(quantileCARL(0.5,delta,L,m,n),2)
axis(1,Median,cex.axis=1,las=1,line=1)
abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red")

}
}

dev.new()
plotPDFCARL(0,3,25,5)
dev.new()
plotPDFCARL(0.5,3,25,5)

# the codes below generate a table with the unconditional ARL values for a set of values
of n (row) and m (column), given a value of the scaled shift (delta) and limit factor (L)

m<-c(25,50,75,100,150,200,250)

n<-c(3,5,9)

delta<-0

L<-3

ARLtable<-matrix(,nrow = length(n), ncol = length(m))
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for (i in 1:length(n)){
for (j in 1:length(m)){
ARLtableli,j] <- ARL(delta,L,m[j],n[i])
cat(ARLtableli,j]," ")
}

}
ARLtable

# the codes below generate a table with the SDARL values for a set of values of n (row)
and m (column), given a value of the scaled shift (delta) and limit factor (L)

m<-c(25,50,75,100,150,200,250)

n<-c(3,5,9)

delta<-0

L<-3

SDARLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
SDARLtable[i,j] <- SDARL(delta,L,mIj],n[i])
cat(SDARLtable[i,j]," ")
!

}
SDARLtable

# the codes below generate a table with the p-quantile values of the CARLO for a set of
values of n (row) and m (column), given a value of the scaled shift (delta) and limit factor
(L). Two axillar functions were created: CDFCARLax and quantileCARLax, for the secant
method work properly

m<-c(25,50,100,300,1000)

n<-c(5,10,20,25)

delta<-0

L<-3

p<-0.1

quantileTABLE<-matrix(,nrow = length(n), ncol = length(m))

CDFCARLax <- function (x,delta,L,m,n) {
I <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*(delta*sgrt(m*n)))-L,0,1))
CARL <- function (2) {
a<-1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+L,0,1) + pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*2)-L,0,1))
return(a)
!
ARLO <- function (t) {
k <- CARL(t)-x
return(k)
!
if (x>1) {
c<-1
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}
if ((x<=1) & (x>=1) ) {
b <- secantc(ARLO,-400,delta*sqrt(m*n))
c<- 1- pnorm((2*(delta*sqrt(m®*n)))-b,0,1) + pnorm(b,0,1)
}
if (x<1) {
c<-0
}

return(c)

}

qguantileCARLax <-function (p,delta,L,m,n) {
I <-1/(1 - pnorm((-delta*sqgrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqgrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))-L,0,1))
CDFm <- function (a) {
a <- CDFCARLax(a,delta,L,m,n) - p
return(a)
!
g<-secantc(CDFm,1,l)
return(g)

}

for (i in 1L:length(n)){
for (j in 1:length(m)){
quantileTABLE[i,j]<-quantileCARLax(p,delta,L,m[j],n[i])
cat(quantileTABLE[i,j], " ")
}

}
quantileTABLE

# the codes below generate a table with tht minimum values of m, which generates
P(CFAR<(1+e)*alpha)=1-p for a set of values of n (row) and m (e), given a value of the
scaled shift (delta), p, nominal alpha and limit factor (L)

e<-¢(0.1,0.2,0.3,0.4,0.5)

n<-c(5,10,20,25)

L<-3

p <-0.15

alpha<-0.0027

delta<-0

MINIMUMMTABLE<-matrix(,nrow = length(n), ncol = length(e))

for (i in 1:length(e)){
for (j in 1:length(n)){

CDFm <- function (m) {
a <- CDFCPS((1+e[i])*alpha,delta,L,m,n[j]) - (1-p)
return(a)

}

MINIMUMmMTABLE[j,i]<-ceiling(secantc(CDFm,5,4000))

cat(MINIMUMmMTABLE[j,i]," ")

}

132
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}
MINIMUMmMTABLE

# the codes below generate a table with the adjusted value of L, which generates
P(CFAR<(1+e)alpha)=1-p for a set of values of n (row) and m (column), given a value of
the scaled shift (delta), p, nominal alpha and e

m<-c(25,50,100,300,1000)

n<-c(5,10,20,25)

alpha <- 0.0027

p<-0.05

e<-0.2

delta<-0

adjLtable<-matrix(,nrow = length(n), ncol = length(m))

for (i in 1:length(n)){
for (j in 1:length(m)){
CDFaux <- function (s) {
a <- CDFCPS((1+e)*alpha,delta,s,m[j],n[i])-(1-p)
return (a)
!
adjLtableli,jl<-secantc(CDFaux,2.1,3.9)
cat(adjLtable[i,j], " ")
}

}
adjLtable
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Abstract

The impact of parameter estimation on control charts has been studied with
great interest in the recent literature. The estimated control limits affect chart
performance, often negatively. Guided by the need to design control charts with a
specified nominal in-control performance so as to avoid excessive false alarms, two
major perspectives are advocated. Under the first, the so-called unconditional
perspective, control limits are determined so that the in-control unconditional
average run length equals a specified nominal value. However, the unconditional
perspective does not account for the practitioner-to-practitioner variability
inherent in using control charts based on parameter estimates. Thus, more recently,
researchers have considered a second perspective, called the conditional
perspective, under which the so-called exceedance probability criterion (EPC) is
used to calculate the control limits so that the in-control conditional average run-
length is at least equal to a specified nominal value with a high probability. These
two perspectives lead to adjusted control limits and various methods have been
proposed for calculating these limits. In this paper, we consider the Shewhart X
chart to illustrate the two perspectives and compare the adjusted control limits
resulting from the different adjustment methods under the two perspectives.
Summary and recommendations are given.

Key Words: Unconditional and Conditional Run Length and Average Run
Length, Control Limit Adjustments, Bootstrap, False Alarm Rate, Guaranteed In-

Control Performance, Exceedance probability criterion
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One has to wonder what may still be worth studying when it comes to the
most well-known and celebrated control chart of all, namely the Shewhart X chart.
This chart has been around for more than sixty years, but, as a matter of fact, is that
only fairly recently we have started to fully understand and appreciate its
performance, particularly when the chart is used with parameters estimated with
reference data. For reviews of some of the works on the effect on the performance
of control charts when parameters are estimated, see Jensen et al. (2006) and
Psarakis et al. (2014). The situation we are concerned with arises in a Phase Il
monitoring setting where the parameter estimates are obtained from reference data,
from a Phase | analysis (with m samples/subgroups each one of size n). For an
overview of Phase I analysis the reader is referred to Chakraborti et al. (2009) and
Jones-Farmer et al. (2014).

Traditionally, researchers studying the in-control performance of the X chart
with estimated parameters have focused on the unconditional in-control run length
distribution, especially on its expected value, the so-called unconditional in-control
average run length (ARL,). This is the first perspective, called the unconditional
perspective, under which it has been seen that a large amount of Phase | data are
required to achieve in-control performance as in the known parameters case when
traditional control limits, like the “3-sigma limits”, are used [see, for example,
Quesenbery (1993) and Chen (1997)]. In this context, some authors have also
suggested examining the standard deviation of the in-control run length (SDRL)
distribution [see for example, Chakraborti (2007)]. Note that the unconditional run
length distribution is obtained by averaging over the distributions of the estimators,
so that the performance under the unconditional perspective is not for a specific
control chart with a given set of parameter estimates from a specific Phase | sample,
but an “average” performance over an infinite number of possible control charts,
each corresponding to one set of parameter estimates from one Phase | sample from
the same process (see, Chakraborti (2000)). The average performance idea may be
unsettling to some users and thus, recently, an alternative point of view has emerged
in the study of performance and design of control charts with estimated parameters.
This advocates focusing on the performance of the control chart given (conditional
on) the Phase | data from which the parameters are estimated and the control limits

are constructed. This is the second perspective, called the conditional perspective,
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that argues that the in-control conditional run length distribution (and consequently
its various attributes such as the conditional false alarm rate (CFAR) or the
conditional in-control average run length (CARL,)) are more meaningful in the
context of chart design, since they take account of the practitioner-to-practitioner
variability [see for example, Saleh et al. (2015a) and Epprecht et al. (2015)]. To this
end, recognizing the fact that the CARL, is a random variable, one performance
measure under the conditional perspective has been the Exceedance Probability
Criterion [Albers et al. (2005)], denoted here by EPC, under which the probability
that the CFAR is smaller than some desired nominal value is set to be high. From
a practical standpoint, however, it may be more useful to ensure that the probability
that the CARL, is greater than some desired nominal value (such as 370.4) is high.
This is how the exceedance probability criterion (EPC) is interpreted and used in
this paper. Note that the CFAR and the CARL, formulations are equivalent since
the conditional run length distribution is geometric so that CARL, is the reciprocal
of CFAR.

The performance of a Phase Il control chart is related to the amount of Phase
| data used in the parameters estimation. Several authors [see, for example,
Quesenberry (1993), Chen (1997), Chakraborti (2000, 2006) and Diko et al. (2015)]
have noted that for the X chart, with estimated parameters, the unconditional
perspective leads to requiring a very large amount of Phase | data so that some
nominal in-control chart performance can be achieved comparable to the known
parameters case. In fact, the required amount of data has been shown to be much
larger than what has been traditionally recommended, which is m = 25 or 30 Phase
| subgroups, each of size n =5. On the other hand, under the conditional
perspective, Saleh et al. (2015a,b) and Jardim et al. (2017), for example, have
shown that employing the EPC, the required amount of data can be even larger.
Thus both approaches, used in conjunction with the traditional control charts, may
be infeasible in routine control charting applications.

So, the practitioners face a dilemma while choosing a Phase 1l control chart
with estimated parameters in the control limits. The fact that the unconditional
perspective leads to somewhat smaller amount of required Phase | data may give
the impression that this perspective is preferable. However, this is not true. In fact,

adopting the unconditional ARL, as a performance criterion does not reduce the
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chance that the ARL, of the Phase Il chart, with the estimated control limits, may
be unacceptably small relative to a nominal value such as 370.4. In the
unconditional perspective, one simply does not consider this chance (risk), since
one typically focuses on some moments of the in-control unconditional run length
distribution, such as the expected value (which is also the expected value of the
CARL, distribution), as a chart performance measure to design the chart (that is to
calculate the control limits). The expected value measure does not account for the
rather large variability in the CARL, distribution [see for example, Saleh et al.
(2015a) and Jardim et al. (2017)].

Given the finding that under both perspectives, large, often impractical,
amounts of Phase | data are required to guarantee a traditional nominal in-control
performance of the Phase Il chart comparable to the known parameter case, some
authors have considered using adjustments to the control limits to properly
compensate for the effects of parameter estimation and to guarantee a desired in-
control performance with the amount of data at hand. Such control limits are called
adjusted limits and this adjustment consists of replacing the limit factor (L) (usually
equal to 3 in the traditional Shewhart X chart), by a new (or corrected or adjusted)
limit factor (L*), which yields a specified nominal in-control performance. For
example, in the unconditional perspective, the constant 3 in the traditional “3-sigma
limits” may be replaced (or adjusted) by a constant (L* = 3.15, say), to guarantee
that the ARL, has a desired nominal value. On the other hand, under the conditional
perspective, one recognizes that the CARL, is a random variable with a distribution
and thus one uses the EPC and replaces the traditional limit factor (L) by an adjusted
limit factor (L"), to guarantee that with a high probability, the CARL, is greater than
a specified value, say, 370.4. Of course, any adjustment to the control limits also
impacts the chart’s out-of-control performance and one must carefully balance the
gains and losses on both fronts. The conventional wisdom in SPC has been to weigh
the chart’s in-control performance more heavily, so that too many false alarms
relative to what is nominally expected can be avoided, but this must be balanced so
that the chart’s shift detecting ability is not highly compromised.

Although our discussions are general and apply to all control charts, we use
the Shewhart X chart here for illustration because of its simplicity and popularity.

For this chart, formulas for the adjusted limit factor (L*) have been derived, methods
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for finding the solution have been considered, and the results have been tabulated
for many cases of interest. To underscore the keen interest in this area of research,
note that several articles have appeared in major journals over the last decade on
the topic of adjustment of control limits for the X chart. These include Chakraborti
(2006), Gandy and Kvalgy (2013), Saleh et al. (2015b), Goedhart et al. (2016 and
2017) and Jardim et al. (2017). It is therefore time to examine the various issues
and get a better and more comprehensive understanding of the proposals. To this
end, we briefly describe these efforts before making a comparison among the
various approaches.

Chakraborti (2006) and Jardim et al. (2017) derived formulas for L*, using
the unconditional and the conditional perspective, respectively, using the exact
distributions formulas for the in-control marginal run length and conditional
average run length in each case. Although these distributions and the resulting
equations are not in a closed form, they can be easily solved numerically, using
many available software packages. Since these methods are based on an exact
distribution and yields very accurate results fairly easily using numerical methods
to solve the integrals involved, we call these “the Exact Methods”. On the other
hand, Goedhart et al. (2016, 2017) for example, have derived formulas for the
adjusted limit factor under the unconditional and the conditional perspective,
respectively, using sophisticated approximations. Furthermore, realizing the
complexity of the approximations, Goedhart et al. (2018) presented an alternative
and simpler approximate formula for the conditional perspective solution, based on
some theory of tolerance intervals available in the literature. However, this simpler
formula requires the quantile of a non-central chi-square distribution, which is not
tabulated in many quality control text books and is not provided in a popular
software like Excel, so its calculation may still require relatively advanced
statistical skills. Given this, in this paper, as an aside, we derive an even simpler
approximate formula in terms of the central chi-square percentile. We call all these
methods “the Approximate Methods” to emphasize the fact that they are derived
using some approximations (to the distribution of the CARLo), and not to imply that
they are not of good quality. In fact, the approximations yield good results,
particularly for larger values of m, closer to the ones obtained by the exact methods.

In addition, adjustments to the X chart control limits have been considered by Saleh
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et al. (2015b) under the conditional perspective and the EPC, using the bootstrap
approach proposed by Gandy and Kvaloy (2013). Note that since we assume
normality, it is possible to find the adjustments (limit factors) analytically and the
need for bootstrapping may be questionable (as also noted in Goedhart et al.
(2017)). Nevertheless, since bootstrap is a powerful method that can be applied
more generally, assuming no specific distribution, we include this method and the
resulting adjustment factors in our comparisons. Figure 1 shows a flowchart for the
current state of the art regarding the adjustment of Phase Il control limits to achieve
some desired nominal in-control performance for the X chart in the face of
parameter estimation with Phase | data.

Exact Method: Chakraborti (2006)
(Derivation of an exact equation and

_ Solution: numerical solution of it)

X Chart with Adjustment on the

estimated limits focusing on

parameters. the unconditional

Problem: perspective. Approximation Method: Goedhart et al

Performance with (2016)

large variability (Derivation of an approximate formula)

induced by
parameters
estimation. As
result, many data
are needed for
chart’s performance

Exact Method: Jardim et al (2017)
(Derivation of an exact equation and
numerical solution of it)

Solution:

be similar to the Adjustment on the Approximation Methods: Goedhart et al
known parameter limits focusing on (2017 and 2018)
case. the conditional (Derivation of an approximate formula)

perspective.

Bootstrap Method: Gandy and Kvaloy (2013)
and Saleh et al. (2015)
(Bootstrap simulation method)

Figure 17. adjusting the X chart control limits for a guaranteed in-
control performance

The existence of the two perspectives and at least two different methods
under each used to determine the adjusted control limit factors may seem
perplexing. With this in mind, in this paper we analyze the results from each method
under each of the two perspectives. Moreover, for further insight, the performance
of the solutions obtained under the unconditional perspective is also examined from
the conditional point of view under the EPC and vice versa. For example, with the
unconditional adjusted limit factor that guarantees a nominal ARL, = 370.4, we
calculate and examine the probability that the conditional ARL, (that is CARL) is
at least 370.4. Similarly, having found the adjusted limit that guarantees that the
CARL, is at least 370.4 with a 95% probability (that is using the EPC), we calculate

the associated value of the ARL,. This analysis sheds interesting light on the relative
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performance of the various solutions under the two perspectives. With these results
and comparisons, we offer some practical advice and recommendations regarding
the design of the X control chart when applied with estimated parameters.

Before proceeding, it is important to note that for the Shewhart X control
chart, when the in-control process mean (u,) and the in-control process standard
deviation (g,) of the underlying normal distribution are estimated by f, and &,,

respectively, the adjusted upper and lower control limits are given by

. 6,
UCL = o + L' —=, 1
.Uo \/H ( )
_ 6
LCL=f,— L' —<, )
Vn

where L* is the adjusted control limit factor that needs to be found so that a
desired nominal in-control chart performance, defined in terms of a suitable
performance criterion, is achieved, for a chosen set of estimators and given the
available amount of Phase | data. This means that L* may vary depending on the
amount of data (m and n) available to estimate u, and o, and the type (unbiased,
minimum variance, etc.) of estimators (f, and &,) one uses to estimate the
parameters. Note that this formulation takes account of the fact that Phase | data are
used to estimate the unknown parameters, which are necessary to establish the
control limits. Note that this approach is different from using a traditional control
limit factor (L) — also called uncorrected limit factor (like the “3-sigma” limits
where L = 3, which yields a nominal ARLo = 370.4). The constant L does not
depend on the amount of Phase | data available to set up the Phase Il control chart
and thus does not take into account the estimation of parameters on the control
limits. However, when the amount of data is large (m and or n tend to infinity), L*
Is expected to be equal to (converge to) L.

The remainder of this paper is organized as follows: In Sections 2 and 3, we
present the various adjustment methods under the unconditional and conditional
perspectives, respectively. Some results and discussion regarding these methods
and these two perspectives are presented in Section 4. Finally, some conclusions
and recommendations are provided in Section 5.

2. Adjusted Control Limit Factors Under the Unconditional Perspective


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

141

Under the unconditional perspective, the adjusted limits are found by first
finding the corrected limit factor (L*) which produces the desired nominal ARL,.
Usually, the desired nominal value of the ARL,, is taken to be the one in the ideal

(albeit typically unrealistic) parameters known case (i, and g, are known) such as
370.4 and thus, also assuming normality, ARL, = (2(1 - CID(L))),‘1 where L is

the traditional or the uncorrected limit factor, set so as to give the desired nominal
ARL, through the inverse relation L = —®~1(1/(24RL,)), where @ is the
cumulative distribution function (c.d.f.) of a standard normal random variable. For
example, when the desired nominal ARL, = 370.4, one has L = 3 (the most
commonly used 3-sigma limits).

When the in-control process mean (u,) and standard deviation (o,) are
estimated by calculating fi, and 6, from m Phase | samples each of size n, the
Phase Il control limits and consequently the run length distribution depends on the
estimators [, and &,. Hence for given values of g, and &,, the run length
distribution is referred to as the conditional run length distribution, which is
geometric with probability of success equal to the conditional probability of a
signal, CPS(fi,, 6,), is given by

0o _ 0o
CPS(ji,, 6 =1—P<A —-LI'—=<X;, <[ +L*—)
(fig, Go) Ho N 1= Ho Jn

Hence the conditional average run length CARL (i, 6,) is equal to

CARL(flo, 66) = (CPS(A0,80)) "
= [P (,20 — L*@ <X <[+ ﬁ)]_l, (3)
Vn Vn

where X, denotes the I Phase Il sample of size n. Note that Equation (3)
applies both to the in-control and out-of-control states of the process. When the
process is in control, the CPS is the conditional probability of a false alarm, denoted
CFAR, and the CARL is the conditional in-control average run length, denoted
CARL,.

Being a function of f, and &, the conditional average run length
CARL(fi,, 6,) is a random variable and plays a crucial role in the performance of
the control charts under both the unconditional and the conditional perspectives.
The distribution of CARL(f, 6,) is considered in Jardim et al. (2017) and the

reader is referred to that work for interesting insights and more details. For our
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purposes here, however, the mean and the second moment of the CARL (i, 6,)

distribution are sufficient and are given by

ARL = E(CARL(fo, 62)) = f f CARL(fo, 35) fr, (80)d60fo, (A0) o, (4)
—00 0

E(CARLZ(fo, 6)) = f f CARLZ(fo, 60) fi, (6o)dGofa, (Ro)dfis,  (5)
—o /0

where f; (do) and f5 (6,) denote the p.d.f. of i, and &, respectively. Note
that ARL is also the mean of the unconditional run-length distribution. Some authors
have used the notation AARL for ARL but we continue to use the latter to avoid
confusion.
Given (4) and (5), the standard deviation of CARL({i,, 6,), denoted SDARL,
can be calculated from
SDARL = SD(CARL(fig, 6,))

= \/E(CARLZ(ﬁo,c?O))—EZ(CARL(ﬁO,c?O)). (6)

Again, note that Equations (4) and (6) apply to both in- and out-of-control
cases.

Typically, f, is taken to be the grand mean of the m Phase | sample means

m g 7. _1lyn
it X;, where Xi==Yj1X

(X). Thus, X = i=12..,m, j=12..,n,

1
m i

and X;; denotes the j-th observation of the i-th sample. The observations X;; are
assumed to be normally distributed with mean p, and standard deviation o, where

both are assumed unknown. For the standard deviation we consider the unbiased

; A _ [Lym c2 ¢c2__1 yn
pooled estimator 6, = S,/c4p, Where S, = f; =150 S =— j=1(Xi,j_

)?l-)z and ¢, is the unbiasing constant for b = m(n—1) + 1, where c,, =

[r(b/2)V2]/[T((b—1)/2)Vb —1] and I is the gamma function. A comment
about the standard deviation is in order. The unbiased pooled estimator we use here
has been highly recommended in the recent literature [see Mahmoud et al. (2010)
and Saleh et al. (2015a, b)]. Other estimators of the standard deviation, based on
the average range or the average standard deviation could also be considered, but
we leave that for the future.

It is known that (see, for example, Chakraborti, 2000) when the process is

in control, (i) Y = m(n — 1) S;/a¢ follows a central chi-square distribution with
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mn — 1) d.f., (i) Z = ({:—“) Vmn follows a standard normal distribution and (iii)

X,~N(uo,08/m). Thus the conditional false alarm rate, CPS(X,S,|IC), can be

conveniently expressed (see, for example, Chakraborti (2000)) by:
CFAR(Z,Y) =1

ol L Y
Vm o cyp jmn—1)

ol LY ) 4
Vm ¢y (mn—1) - ()

The random variable CFAR(Z,Y) (or its inverse, the in-control conditional
average run-length, given by CARL, = [CFAR(Z, Y)]_l) plays a key role in the
study of the performance of the Phase Il Shewhart X chart with estimated
parameters.

Finally, using (4) and (7), the in-control (IC) unconditional average run
length (ARL,) can be expressed as
ARL, = E(CARLy) = E[CARL(j1y, 6,)|IC]

= E[[CFAR(Z,V)]™] = f f [CFAR(z, )] fy(0)dyd(2) dz, (8)
—oo v

where ¢ denotes the p.d.f. of a standard normal distribution and f; denotes
the p.d.f. of Y, a central chi-square random variable with m(n — 1) degrees of

freedom. Given that the desired in-control average run length is given by

[2(1- CD(L))]_l, Chakraborti (2006) proposed to obtain the adjusted limit factor
(L") that, used in (7), so that

j j [CFARGz )™ fy (0)(2) dy dz = [2(1 — o(L))] )
— 00 0

The resulting solution is called the exact unconditional L* and is denoted L7
(where the subscript UCE stands for “UnConditional Exact”). The solution to (9)
can be obtained using a software like R that allows numerical integration. Note that
Diko et al. (2015 and 2017) also used this formulation to find the exact adjusted
control limit for each of the X and the S charts when applied jointly, and for various

spread charts, including the S chart, respectively.
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On the other hand, Goedhart et al. (2016), using a two-step Taylor expansion

for CFAR(z,y), derived the following approximate formula for L*.

2 2
(o m) (4w ame ()

2532(L)
where A = Fon—DTD and ®(L) = 1 — ®(L). The factor Ly, is referred to

as the unconditional approximate solution (UCA standing for “UnConditional
Approximate™). The exact and the approximate solutions will be compared in
Section 4.
3. Adjusted Control Limit Factors Under the Conditional Perspective

As noted before, the CARL, is a random variable when the process
parameters are estimated. The distribution of CARL, has a large variance when the
amount of data used to estimate the parameters is small to moderate, like m = 25
andn = 5 [see Saleh et al. (2015) and Jardim el al. (2017)], so any Phase Il X chart
runs a considerable risk of having a very different CARL, from the advertised
nominal value, depending on the parameter estimates obtained from the reference
samples used in the control limits. In the conditional perspective, one recognizes
the randomness of CARL, and uses the EPC, to ensure that the CARL, is at least,
370.4 (or perhaps a value slightly smaller), with a high probability (such as 0.95).
Formally, this can be formulated as

p <CARL0 > ﬁ(i)) =1-p, (11)

for a small value p (such as 0.05), where «a is the nominal false alarm rate:
(a = 2(1 — ®(L))), which is also the false alarm rate in the known parameters case
when the uncorrected limit factor (L) is used. Note that we can directly pick an «
suitable in a given context and use it in (11) or, as it may be more common, pick an
L (as in an L-sigma chart), calculate the corresponding « value and use that in (11).

The choice is up to the user. The quantity ¢ is called the tolerance factor (meaning

that the user will be willing to tolerate a CARL, that is at least 100 (1%5) % smaller
than the nominal 1/« with a high probability (that is with a small specified p). The
tolerance factor (¢) allows flexibility for the user in the face of the inherent

uncertainty in the random variable CARL,. For example, in Section 4, it will be seen
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that if the user is willing to tolerate a CARL, value 10% (¢ = 1/9) smaller than the
nominal (for example, 333.4 as opposed to 370.4), the required amount of Phase |
data for achieving the same performance will be a lot less, compared to the situation
when no tolerance is allowed (i.e. when € = 0).
Exact Method
From Equation (11), it is clear that the c.d.f. of CARL, is needed to apply
the EPC. Taking f, = X and 6o = Sp/cap, Jardim et al. (2017), showed that the

exact c.d.f. of the CARL, can be expressed as

) / m(n — 1)FX";[§] (1- %)\

| p(2)dz,

P(CARLy <t) = f_m Fyz o o | ( - )2
\ (&

t>1 (12)

where F‘zl[ZZ](l - %) denotes the (1 — %)-quantile of a non-central chi-square
X1,

2
distribution with 1 degree of freedom and non-centrality parameter % and F -

Xm(n-1)
denotes the c.d.f. of a central chi-square random variable with m(n — 1) degrees of
freedom. So, using (11), (12) and substituting [(1 + &)a]~? for t, the exact adjusted
control limit factor (L*) can be obtained by solving the following equation, for given
values of a, m, n, € and p.

. m(n — 1)F‘2122 1-1+ e)a)\
LOO Fan(n-n XL[TZJ > ¢(z)dz = p. (13)
()

This solution is denoted Ly (CE stands for Conditional Exact) and can be

obtained with a software like R. We emphasize that Equation (13) is exact, since
the formula for the c.d.f. is exact, but the solution L* must be found using a computer
code, since there is no closed form solution for the c.d.f. in (12) or the integral in
(13). This type of an analysis goes back to Chakraborti (2006). This is also similar
to the adjustment methods given by Diko et. al. (2015) in the context of using the
X and S charts jointly to monitor the mean and Diko et al. (2017) for various spread
charts under the unconditional perspective. In some of these papers, this method
has been referred to as the “numerical method” but the fact is that the method is

exact since the expression for the c.d.f. is exact and “numerical” refers to the
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solution that is obtained by solving the equation that involves the c.d.f. which
involves calculating the integral using some numerical methods. This is indeed the
case for many c.d.f.’s of distributions including the one for the celebrated normal
distribution.
Approximate Methods

Goedhart et al. (2017) derived an approximate formula for L* by finding an
approximate distribution of the CFAR. Details can be found in their paper. The final
approximate formula for L* is denoted by L4, (CA1 stands for Conditional
Approximation 1) and is given by
' (1-p)—g(L)

g'(L)
Here g(L) and g'(L) are functions of the expectation and the variance of

Legs = L+

(14)

CFAR and their derivatives, respectively.
However, note that starting from (7), it is possible to derive an alternative,

simpler approximate formula for L*, denoted here by L ,,, given by

Fx_zl[i](l -1+ 9a)
taz = Cap mn— 1) —— ) (15)
Fxﬁl (»)
(n-1)

where Fxgnl( )(p) denotes the p-quantile of a central chi-square distribution
n—-1
with m(n — 1) degrees of freedom and Fxgl[i](l — (14 ¢&)a) denotes the
1,lm

(1 — (1 + &)a)-quantile of a non-central chi-square distribution with 1 degree of
freedom and non-centrality parameter % Formula (16) is in fact given by Goedhart

et al. (2018), which they found by starting from an existing result in
Krishnamoorthy and Mathew (2009). We provide a more detailed derivation of (15)
starting from Equation (7) in the supplementary material. Note that L4, requires a
non-central chi-square quantile, which is not tabulated in many text books in
Statistics and not available in popular software such as Excel, so its calculation will
require some relatively advanced statistical skills of the practitioner. Given this,
using a result from Cox and Reid (1987), we derive the following even simpler
approximation formula for L* (denoted by L¢,3) in terms of central chi-square

percentiles
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FX"%l(l -1+ 9a)
Leaz = Cup [((n—1D(m+ 1) —
Fan (»)
(n—-1)

(16)

Derivation of (16) is also provided in the supplementary material.
Bootstrap Method
Finally, Saleh et al. (2015) suggested finding the adjusted limit factor L*
under the conditional perspective, using the EPC and the bootstrap approach of
Gandy and Kvalgy (2013). In order to do this, the users, with the help of software
(like SAS, R, etc.), should generate B bootstrap estimates of the in-control process

mean and the standard deviation (uy,o0x), k=12,..,B, with py

= 2
~N(X,S2/nmcZ,), o ~ /55 vf;;b and v = m(n — 1). Note that, with this, the idea

is to consider that X and Sp/cap are respectively the real in-control process mean
and standard deviation, which are estimated respectively by u; and o;; for each k.
By considering a very large value for B, let say B = 1000, we have “access to the
(bootstrap) population of uy (13, 13, ..., ug) and oy (o1, 03, ..., 0g)".
Recalling that ¥ = m(n — 1) S2/0& and Z = (%) Vmn, using (7), the
0

CFAR can be written as

_ X - S
CFAR(X,Sp)zl—d)( U”O\/E+L* 2 )
0

) Cap0

Considering that X and Sp/cq ) are respectively the true in-control process
mean and standard deviation and u;, and o; are respectively the estimators X and
S,/ cqp (according to the bootstrap method), for each p;, and oy, the user must find

the value of L}, that satisfies the following equation:

¢ oy C X oy C
1_cb<#k Vi + L k 4,b)+q)<.uk Vi — L, k 4,b>
Sp/c4,b Sp Sp/c4,b Sp
=1+¢&a (18)

Thus, for each pair of values of p, and oy, for each bootstrap sample (k =

1,2, ..., b) the user finds the value of L}, that solves (18) where « is the desired false
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alarm rate and ¢ is the tolerance factor defined earlier. The solution to Equation (18)

IS given by

Sijl[ o \/—]2(1 —(1+e)a)
G |H—n

Sp /54,b

= , k=12,..,B 19
k Cap0y (19

Note that the derivation of this formula is also presented in the supplementary
material. This formula for L; is much simpler than the rather complicated
approximate method given in Saleh et al. (2015). However, we argue that no
approximation is needed since one can derive the exact formula for L} shown in
Equation (19).

Finally, the required L*, here denoted by L}, 1S found as the (1 — p)-
quantile of the collection of bootstrap estimators (L3, L5, ..., Lg).

4. Results and Discussion

In this section, we present the adjusted limit factors under the unconditional
perspective for a nominal ARL, of 3704 (a=0.0027), m=
13,15, 20, 25,50, 75,100, 150, 200, 250 and n = 3,5,9. Under the conditional
perspective, for the adjusted limit factors, using the EPC, we use P(CARL, =
370.4) = 0.95 and P(CARL, = 308.6) = 0.80 (using « = 0.0027, p = 5%, 20%
and € = 0% and 20%, respectively). For the adjusted limit factors along with the
unadjusted limit factor L = 3, we calculate the corresponding exact unconditional
ARL, values using Equation (8), the exact standard deviation of CARL, (SDARL,)
using Equation (6), and the exact values of P(CARL, = 370.4) and P(CARL, =
308.6) using Equation (13).

The results along with some discussion are presented in subsections 4.1 and
4.2, for the unconditional and the conditional perspective, respectively.

4.1 Results and Discussion Under the Unconditional Perspective

Table 1 presents the adjusted limit factors (L*) under the unconditional
perspective. For comparison, the first five columns in grey show the results when
the unadjusted factor L = 3 is used in the control limits. Note that in order to solve
Equation (9) for Ly g, the Secant search method implemented in R was used with
|370.4 — ARLy| < 10710 as the stopping rule.
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From Table 1, we see that when the unadjusted limit factor (L* = 3) is used in
the Phase Il control limits, the attained ARL, differs considerably from the nominal
ARL, value of 370.4 in many cases, especially when m and n are small. In this
situation, it is interesting to note that, for a fixed m, the ARL, values are larger than
370.4 when n is small (for example, n = 3) and smaller than 370.4 when n is large
(for example, n = 9). An ARL, value larger than 370.4 may give the impression that
the chart performance is better compared to the known parameters case, but, as
Quesenberry (1993) noted, this is not true. The large unconditional ARL, value for
L* = 3 is due to a combination of an increased rate of very short runs until a false alarm
and just a few extremely long runs until a false alarm, and this is clearly undesirable,
since a “quick” false alarm event is obviously unwanted. On the other hand, when the
unadjusted limit factor (L* = 3) is used in the control limits, under the conditional
perspective and the exceedance probability criterion, the probability that the CARL, is
greater than 370.4 is small (below 50%) for all values of m and n and this may also be
a problem for the unadjusted limit factor L* = 3. Even when the tolerance factor ¢ is
increased to 20%, for L* = 3, in most of the cases, this exceedance probability is still
small [for example, for m = 75 and n = 9, one has P(CARL, = 308.6) = 66.30%)].
This means that one can expect the attained ARL, values smaller than the nominal and
in more than 30% of the cases and that is a problem for the practical implementation.
Only when m and n are large, the P(CARL, = 308.6), for L* = 3,increases
considerably [for example, for m = 250 and n = 9, one has P(CARL, = 308.6) =
85.17%]. This can be explained looking to the standard deviation of the CARL, (that
is, SDARL,). Note that the SDARL, is very large for small values of m and n indicating
that, in practice, the realized ARL, (i.e., the CARL,) will not (most likely) be close to
the unconditional ARL,. However, when m and n are large, SDARL, decreases and the
P(CARL, = 308.6) increases.

Also from Table 1, we see that the unconditional adjusted limit factor proposed
by Chakraborti (2006), L7,-g, achieves a precise ARL, equal to 370.4 for all values of
m or n. On the other hand, with the approximate limit factor from formula (10),

proposed by Goedhart et al. (2016), the adjusted limit factor L}, does not achieve an
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ARL, close to 370.4 for small values of m. For example, for m = 20 and n = 5,
Lyca = 2.98and ARL, = 400.6. However, for larger values of m (like m > 100), the
approximate solution does achieve results close to 370.4, indicating a satisfactory in-
control performance with respect to the nominal ARL, under the unconditional
perspective. However, it is interesting to note that the P(CARL, = 370.4),
P(CARL, = 308.6) and the SDARL, values for both of these adjusted control limits
factors (Lycg and Lyc4) are very similar to the respective values obtained when the
unadjusted limit factor (L* = 3) is used for all values of m, n and . This means that
these unconditional limit factors are not satisfactory under the conditional perspective,
since even after the adjustment of the control limits (which produces an desired
expected value of the CARL,, that is the unconditional ARL, gets equal or close to
370,4), the variability of the CARL, is still large (despite being a little smaller with
L* = Lycg and L* = Ly¢,, than with L™ = 3). So, even though the ARL, = 370.4, for
vce and Ly 4, the chances are high that in a given instance, the ARL, for a Phase Il
chart for a given set of estimates from a set of Phase | reference data can be very
different from the nominal 370.4. This may not be satisfactory. Next, we present and
discuss results for the conditional perspective.
4.2 Results and Discussion Under the Conditional Perspective
Table 2 presents the adjusted control limit factors (L*) obtained under the
conditional perspective for e = 0% and p = 5%, i.e., the values of Ly , Lea1, Leazs
L¢43 and Ly, that make P(CARL, = 370.4), equal to 95%. Also, as in Table 1, for
comparison purposes, the first four columns in gray show the results for the unadjusted
limit factor (L* = L = 3) and for each L, Lcg , Lea1, Leaz Leas and Ly, Table 2
shows the exact unconditional ARL, value calculated according to Equation (8), the
SDARL, value calculated according to Equation (6), and the exact P(CARL, = 370.4)
value calculated according to Equation (12).
From Table 2, we see that under the conditional perspective, the five methods
presented in Section 3 yield very similar P(CARL, = 370.4) values close to the target.
i.e.,, for all values of Leg , Lca1s Lcazs Lcaz and Ly,.:, the probability

P(CARL, = 370.4) is very close to the specified 95%, the method proposed by Jardim
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et al. (2017) being the most precise one, yielding P(CARL, = 370.4) exactly equql to
95%.

Also from Table 2, for all cases and values of L5 , L1, Leazs Leas @and Ly oo
the values of the unconditional ARL, values are seen to be much larger than 370.4,
often more than 3 times larger. This is also true for the SDARL, values. For example,
form =20, n =5 and L; = 3.54, one has SDARL, = 7804.6 and ARL, = 3840.8.
The large variability is compensated by the large expectation resulting in getting the
desired exceedance probability (equal or close to 95%). This means that, despite taking
into account the mean and the variability of CARL,, the conditional perspective and the
exceedance probability criterion does not control these popular aspects of the run-
length distribution.

Since the adjusted limits are wider than the unadjusted limits (note that L* > 3
for all cases in Table 2), this may give the impression that the out-of-control
performance may be deteriorated after the adjustments. However, as shown by Jardim
et al. (2017), this is true just for small values of m and n (like m = 25 and n = 5), but
for most of the other cases, the out-of-control performance will be similar to the one
with unadjusted limits (especially form > 50,n > 5,p = 0.1 and ¢ > 0%). However,
if the practitioner is still not satisfied with the very large values of ARL, and SDARL,
[such concern is evident in Saleh et al. (2015a,b) who focused mainly on the SDARL,
as the performance measure] in the latter case, he/she can increase the value of € or p
(accepting a smaller lowest tolerated bound for CARL, or a smaller P(CARL, =
370.4)). This will decrease the value of ARL, and SDARL, while the amount of data
remains the same. The possibility of this allowance or practical trade-off may be a
useful feature of the conditional perspective. To visualize the trade-off, Tables 3 and 4
show the adjusted control limit factors (L*) under the conditional perspective,
respectively, for the pair e = 20% and p = 5%, and the pair e = 20% and p = 20%,
i.e., the values of L* that make, respectively, P(CARL, = 308.6) = P(CFAR <
0.0031) = 95% and P(CARL, = 308.6) = P(CFAR < 0.0031) = 20%. Note that in
these cases, the values of ARL, and SDARL, are much smaller compared with the

values in Table 2 for the same amount of data. For example, for m = 50 and n = 5,
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considering the exact method by Jardim et al. (2017) in Table 2 (i.e., for £ = 0% and
p = 5%), the ARL, = 1157.1 and the SD(CARL,) = 807.6, now, considering the
same amount of data (m = 50 and n = 5), from Table 4 (i.e., for e = 20% and p =
20%), one has ARL, = 561.0 and SD(CARL,) = 338.7: a reduction of 48% in the
expectation and 42% in the standard deviation. Note that the unconditional ARL is
still much larger than the nominal (370.4). Under the EPC, it is unlikely that the
unconditional ARL, will be close to the nominal value (unless € or p are extremely

large, such as e = 50% or p = 40%) which may raise some questions in practice.
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5. Summary and Recommendations

In this paper, we analyze the recently proposed methods for adjusting the X
control chart limits to achieve a desired in-control performance when parameters
are estimated with a given amount of Phase | data, under two perspectives, called
the unconditional and the conditional. We calculate and analyze the performance
results for the available methods under these two perspectives. We also propose a
new and simple approximate adjusted limit factor under the conditional perspective.

Based on our results, it is seen that, when constructing control charts with
estimated control limits, both perspectives have some imperfections which the
practitioners should be aware of. While the unconditional perspective does control
the expected value of the CARL,, it does not control (nor consider) the variability
of the CARL,, which can be very large even for a relatively large amount of
reference data (such as 100 samples of size 9). This means that, in these cases,
chances may be high that for a specific application the realized CARL, assumes
undesirable small values relative to the specified nominal, which leads to many
false alarms. On the other hand, under the conditional perspective, with the EPC,
one can control the probability that the realized ARL, is greater than some desired
nominal value. This approach implicitly considers the variability of CARL, but it
neither controls the expected value nor the this variability of CARL, (the ARL,),
which can also be extremely large.

In conclusion, there is still room for improvement when it comes to
designing the Shewhart control charts with unknown parameters. One can most
likely say the same thing for control charts other than the Shewhart X chart, and this
will be examined in the future.
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Abstract

Performance measures of control charts with estimated parameters are
random variables and vary from the nominal across reference samples. In this
context, a recent idea has been to study the distribution of the realized (or the
conditional) in-control average run length (CARL,) [or, equivalently, the false
alarm rate (CFAR)] for a given set of estimates from a given reference sample and
apply the exceedance probability criterion (EPC) in order to design control charts
that ensure desirable in-control performance. Under the EPC, te probability that the
conditional in-control average run length (or the false alarm rate) is smaller (or not
larger) than a specified value is guaranteed with a high probability, and this helps
prevent too many low in-control ARL’s (or too many high false alarm rates). In
order to apply the EPC, the c.d.f. of the conditional in-control average run length
(or the false alarm rate) is necessary. For the two-sided Shewhart X control chart,
under normality, we derive the exact c.d.f. of the CARL, and the CFAR, currently
not available in the literature. Using these key results, we calculate the minimum
number of Phase | samples required to guarantee a desired nominal in-control
performance with high probability in terms of the EPC. Since the required amount
of data can be prohibitively large, we also provide exact formulas for adjustments
to the control limits for a given amount of Phase | data; some tabulations are
provided. Our adjustment formulas give more accurate results compared to some
available methods. The impact of these adjustments on the out-of-control
performance of the chart is examined in detail. A summary and some
recommendations are provided.

Key Words: Average Run Length, False Alarm Rate, Conditional Run
Length Distribution, Exceedance Probability Criterion, Guaranteed In-Control
Performance, Out-of-Control Performance, Phase | and Phase |1
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1. Introduction

Control charts are among the indispensable tools for monitoring process
quality in various industries. Managers recognize their value and the importance of
performance. The performance of a control chart is measured in terms of the number
of observations (or samples) until an alarm (the well-known run length, denoted
RL). In this setting, one important factor is whether or not the underlying parameters
are known or whether they need to be estimated before monitoring can start.
Traditionally, the analysis didn’t distinguish between these two cases and the focus
has been the mean of the RL distribution. Reliance on the mean has been known to
be problematic and researchers have suggested using the entire RL distribution and
associated measures [see, e.g., Moskowitz et al. (1994)]. Many researchers have
studied the effects of parameter estimation [see for example, Quesenberry (1993),
Chen (1997), Chakraborti (2000 and 2006) and Goedhart et al. (2016)] and
recognized the profound impact it can have on chart performance. They focused
almost exclusively on the in-control performance. Many of these researchers have,
to this end, considered the in-control run length (RL,) distribution, accounting for
the probability distribution of the estimators, but used the mean (denoted ARL,)
and the standard deviation of the “unconditional” RL, distribution, which is the in-
control run length distribution after “averaging out” the effects of the distribution
of the estimators. This distribution is not geometric as is the case in the known
parameter case. However, as noted by some authors [see for example, Trietsch and
Bischak (1998), Albers and Kallenberg (20044a,b, and 2005), Albers et al. (2005),
Bischak and Trietsch (2007), Kumar and Chakraborti (2014), Saleh et al (2015a,b),
Epprecht et al. (2015), Faraz et al. (2015), Goedhart et al (2017a,b and 2018) and
Jardim et al. (2017)], in a practical application, the unconditional in-control RL,
distribution or its mean, the ARL,, may not represent the actual performance of the
chart. The reason is that the RL, distribution conditional on the parameter estimates
(denoted CRL,) as well as the mean of this distribution, the conditional in-control
average run length (denoted CARL,), are random variables. This is because they
are function of the parameter estimates obtained from the Phase | data (reference
sample) at hand, and thus may vary significantly from dataset to dataset (the so-
called practitioner-to-practitioner variability [see Saleh et al (2015a,b)]. Hence,

there is little or no assurance that in a given application, the control chart will
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maintain the nominal ARL, value specified in the design of the chart. This is a very
important point for the managers to recognize as it can influence the decision-
making process significantly.

The reference sample typically consists of m samples, each of size n,
collected from a process considered to be in control in what is called the Phase |
analysis. For an overview of Phase | Statistical Process Control, the reader is
referred to Chakraborti et al. (2009) and Jones-Farmer et al. (2014). For reviews of
the literature on the effects of parameter estimation on the performance of control
charts, see for example, Jensen et al. (2006) and Psarakis et al. (2014). The false
alarm rate for a given set of estimates is called the conditional false alarm rate
(denoted CFAR). It is known that the CRL, distribution follows a geometric
distribution [see Chakraborti (2000)] with a parameter CFAR and mean CARL,.
Indeed, the CFAR and the CARL, are both random variables with a large variability,
so their values may be quite different from their nominal ones [see Saleh et al.
(2015a)]. As noted already, this is a key performance issue, since even though the
control chart may be designed to have a nominal ARL, value such as 370, in a given
application, depending on the parameter estimates, one can only say, for example,
that the realized in-control average run-length, which is the CARL,, may be
anywhere from 200 to 500. Since a lower than nominal ARL, points to more false
alarms, not properly adjusting for parameter estimation may lead to inefficiency
and a loss of confidence in the whole charting process. Recognizing this, Albers
and Kallenberg (2005) and Albers et al. (2005) proposed to set up the control chart
limits so as to guarantee that the CARL, has a large probability of exceeding a given
tolerated value. This is called the exceedance probability criterion (denoted EPC);
the tolerated value provides a lower prediction bound to the random variable
CARL, . Thus, it becomes evident that, in order to use and implement the EPC, the
distribution of CARL, is needed. However, even when it comes to the most well-
known control chart, the two-sided Shewhart X control chart, under the assumption
of normality, the exact c.d.f. of the CARL,, is unavailable. So, most authors studying
the effect of parameter estimation on the performance of the X charts, using the
EPC, have relied on simulations, bootstrapping, or approximations to the
distribution of the CARL,. The study of control charts has been common in the

literature [see, for example, Schroeder et al. (2005)], however, the interest in the
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conditional performance of control charts has been truly remarkable and deservedly

so; we briefly summarize some recent works in this field.

Saleh et al. (2015a,b) focused on the X, X and the EWMA charts and
proposed examining the standard deviation of the CARL, distribution, in addition
to its average (ARL,). They showed that an impractically large number of Phase |
samples are required in order to guarantee that the ARL, is close to a nominal ARL,,
value and the standard deviation of the CARL,, is within at most 10% of the nominal
ARL, value. Thus, they recommended adjusting the control limits, and suggested
using the bootstrap approach of Gandy and Kvaloy (2013) for a given set of Phase
| data, which guarantees a desired IC conditional performance in terms of the EPC.
However, they did not provide any adjustments to the limits. Albers and Kallenberg
(2004a,b and 2005) and Goedhart et al. (2017a and 2018) studied adjustments to
the limits of the X and the X chart based on the EPC and analytical approximations
to the distribution of the CARL, (rather than using simulations or the bootstrap
approach). Other types of control charts have also been studied under the EPC.
Epprecht et al. (2015) derived the exact c.d.f. of the CFAR for the one-sided S and
S2 charts and found that the required numbers of Phase | samples were much larger
than the ones found by previous authors who based their analyses only on the
unconditional ARL, measure. Kumar and Chakraborti (2014) made a similar
analysis for Shewhart-type time between events charts, found the exact c.d.f. of the
CARL, and obtained similar conclusions regarding the required amount of Phase |
data. Aly et al. (2015) and Faraz et al (2015) suggested using the EPC and the
bootstrap approach of Gandy and Kvaloy (2013) to calculate the adjusted limits for
the adaptive EWMA chart of Capizzi and Masarotto (2003) and for the one-sided
S2 control chart, respectively. Goedhart et al. (2017b) and Faraz et al (2017)
calculated the adjusted limits according to the EPC for the one-sided S chart, but,
in this case, they based their analysis on the exact CFAR distribution derived by
Epprecht et al. (2015). For the two-sided S2 control chart, Guo and Wang (2017),
provided adjusted control limits under the EPC using a numerical approach to
calculate the CFAR distribution. Finally, Faraz et al. (2017) also proposed an exact
method to adjust the X chart, however, their adjustment was based on the equal-
tailed tolerance interval together with the Bonferroni Inequality [see
Krishnamoorthy and Mathew (2009, p. 4 and p.10)], which generates wider
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adjusted control limits which of course lead to the undesirable side effect of
increasing the out-of-control (OOC) average run length (ARL) of the chart

compared with the adjusted limits derived under the EPC.

Having recognized the important role the c.d.f. of CARL, plays in the
performance of charts under estimated parameters, in this paper, we first derive its
expression for the X chart. To the best of our knowledge, this result is not available
in the literature. Using this result, we obtain the exact prediction bounds for the
CARL,. These prediction bounds show that when the number of reference samples
(m) and/or the size of each reference sample (n) is small, some lower quantiles of
the CARL, (such as the 0.05 and 0.1-quantiles) distribution are much smaller than
the typically desired (nominal) ARL,. As we explain in more detail in Section 5,
this implies that the amount of reference data plays a crucial role in assuring that
the Phase Il chart performs at, or close to, the desired nominal ARL,. Under this
motivation, we determine the exact number of Phase | samples needed to guarantee
a desired in-control performance in terms of the EPC. According to our results, the
required numbers of Phase | samples are in some cases larger than the ones given
by Saleh et al. (2015a). Since such large amounts of Phase | data may not always
be available in practice, we then consider adjusting the control limits and provide
exact formulas for the adjustment factor, again based on our c.d.f. expressions, for
a given number and size of Phase | samples at hand, so that a desired conditional
in-control performance is guaranteed in terms of the EPC. Note that the difference
between our adjustments and those of Goedhart et al. (2017a and 2018) and Jardim
et al. (2017) is that while their results were based on some approximations of the
c.d.f. of the CARL, (or CFAR) distribution, our results are based on the exact c.d.f.
of the CARL,. We believe our adjustment formulas can be incorporated
(programmed) readily and effectively in a software which makes them valuable for
practical applications.

Finally, while the adjustments to the control limits under the EPC criterion
guarantee a specified in-control chart performance, in most cases, they correspond
to widening the control limits, which of course leads to the undesirable side effect
of increasing the out-of-control (OOC) average run length (ARL) of the chart, i.e.,
reducing its shift detection ability. So, we analyze the impact of the adjustment on
CARLg, the conditional OOC ARL of the X chart, where § is the scaled shift in the
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process mean. Note that some authors (Saleh et al., 2015b, and Goedhart et al.,
2017a) have also analyzed the effects of the adjustment (based on the EPC) on the
OOC performance of the X chart. However, Saleh et al. (2015b) mainly focused on
the unconditional OOC ARL (i.e., the E(CARLg)), thus disregarding the
practitioner-to-practitioner variation and Goedhart et al. (2017a) conducted a very
limited examination of the CARLs distribution by simulation, and displayed a
boxplot for only one value of the shift § in the process mean and for just one pair
of values of n and m. This does not give a complete picture of the impact. We
examine the impact of the adjustment on the CARLs in much more detail, using our
exact c.d.f., for several values of §, n and m, and calculate some exact quantiles of
interest of CARL s with and without the adjustment, and make a relative comparison.
This analysis is important for the user, who needs to balance between controlling,
on one hand, the risk of having a false-alarm rate (or the in-control ARL) much
higher (lower) than the nominal and, on the other hand, allowing a deterioration of
the OOC performance.

In addition to the most usual case of the X chart with estimated process mean
and standard deviation, we also consider the case where only the process standard
deviation is estimated. In this case, the process is considered to be in control when
its mean coincides with the target or nominal value u,. According to Montgomery
(2009; p. 243), “in processes where the mean of the quality characteristic is
controlled by adjustments to the machine, standard or target values of the mean are
sometimes helpful in achieving management goals with respect to process
performance”. This is equivalent to knowing the in-control mean p,, so this case is
called “Case KU” (mean Known, standard deviation Unknown) as in Quesenberry
(1993). The case where both the mean and the standard deviations are unknown
(chart centered on X) is denoted as Case UU. Case KU was also studied by Ghosh
et al. (1981), but they focused on the unconditional ARL as the main performance
measure criteria. To our knowledge, the conditional performance of the X chart in

Case KU has not been analyzed thus far.

The remainder of this paper is organized as follows: In Section 2 we describe
the control limits of the X chart and the estimators used while introducing some

important notation and assumptions. In Section 3, we study the conditional in-
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control average run-length (CARL,). In Section 4, we derive the c.d.f.’s for the
CARL, and analyze the effects of the number of reference samples on this
distribution. In Section 5, we determine prediction bounds for the CARL,. Sections
6 and 7 address, respectively, the problem of finding the minimum number of
reference samples, and the adjustment factors for the control limits that guarantee a
specified conditional in-control performance under the EPC. The impact of the
adjustment of the control limits in the out-of-control performance of the X control
chart is studied in Section 8. A summary and conclusions are offered in Section 9.
2. The Control Limits of the X Chart

We assume that the observations on the process quality variable (X) are i.i.d.
and normally distributed. When the process is in control, X~N (u,, 6&); when the
process is out of control, X~N (uy, 0&), wWith uy # uo. Thus, the process standard
deviation is assumed to remain at the in-control value o,, consistently with the
purpose of detecting a shift in the mean. In the ideal case, the in-control process
mean (u,) and standard deviation (o,) are both known or specified (this is denoted
Case KK: “mean Known, standard deviation Known” by Quesenberry, 1993). In
Case KK, the upper and lower control limits (UCL and LCL) of the L-sigma X

Control Chart with subgroups of size n are given by

UCL = po + Lj—% (1)
and
LCL = po — Lj—%, )

where the control limit factor L is either a value such as 3 (the widely used “3
sigma limits”) or is chosen so as to provide a nominal in-control average run length
such as 370.4 or a false-alarm rate . In the latter case, we have L = z,,, =
®~1(1 — a/2), where ®(-) denotes the standard normal c.d.f. Thus, the usual 3-
sigma limits correspond to a nominal false alarm rate of @ = 0.0027. However, in
practice u, or g, are usually unknown and need to be estimated from a Phase |
analysis, consisting of m subgroups of size n, taken from the process when it is in

control.


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

168

In Case UU, for the mean p,, we use the most common estimator X, the

grand mean of the m Phase | samples: X = %Z}Zl)?i, where X; =% X, i=
1,2,..,m, j=12,..,n and X;; denotes the j-th observation of the i-th Phase I
sample. In both cases, KU and UU, we need to estimate the unknown standard
deviation g,. For this purpose, we choose the pooled sample standard deviation

(Sp), which is given by the square root of the average of the sample variances of the

Phase | samples. Thus S, = /%zy;lsf, where S7 = ﬁZ}l:l(Xi,j ~-%)". We

base this choice on the recommendation of Mahmoud et al. (2010), who showed

that, among multi-sample estimators of the standard deviation, S, is preferable to a
more traditional estimator, like S/c,, where S = ¥, S;/n and c, is the unbiasing
constant [see, Montgomery (2009)]. Note that, in the literature, two other estimators
have been considered, the unbiased S,/c, and the biased, but minimum mean
squared error, estimator c,S,, (see Mahmoud et al., 2010 and Saleh et al., 2015a,b).
Since these three estimators provide similar results as c, = 1 for relatively small
values of m and n [such as m = 25 and n = 4 —again, see Mahmoud et al. (2010)
for a quantitative comparison], in the present work, we consider just the S,
estimator. Note that we do not consider the range based estimators since some
authors have recommended against their use because of lack of robustness.
Anyway, all the formulas and results presented here can be easily modified for other

estimators of standard deviation.

In order to study the effects of the estimation of the process parameter(s) on
the performance of a control chart in general, it is convenient to begin with a study
of the Phase Il probability of a signal given the estimator(s), the so-called
conditional probability of a signal (CPS). A signal occurs when, for any sample, its
average X lies outside the control limits. When the process is in-control, a signal
represents a false alarm and its probability is called the false-alarm rate. As noted
earlier, the conditional false-alarm rate is denoted CFAR. These are discussed in
the next section.

3. The Conditional Probability of a Signal and the Conditional False

Alarm Rate
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Given the control limits [Equations (1) and (2)] and replacing u, and o, by
their respective estimators, X and S, the conditional probabilities of a signal (CPS),

for Case KU and Case UU, are given by

CPSky = P(Signal|5p) =1-Pp (Ho —L\S/—’% <X <u+ L%)
(32)

and

CPSyy = P(Signal|X,s,) =1-P(X -1

il

respectively.

From Equations (3a) and (3b) it is evident that the conditional probability

of a signal in Phase Il depends on the value of the estimator S, in Case KU and on

X and S, in Case UU. Before proceeding further, let u denote the process mean in

Phase Il. Define the scaled shift of the mean as

8 = [1—[101 (4)

0o

where u is the process mean in Phase 1. When u = uy, § = 0 and the process
mean is in control. When u = u; # po, 6 # 0, and the process mean is out of

control. It is well-known that Y =m(n—1)S;/o§ follows a chi-square
distribution with m(n — 1) degrees of freedom and Z = (%) vmn follows a
0

standard normal distribution. Recalling that X~N(u,02) implies that
X~N(u,cé/n) where u = u, + 80y, the conditional probability of a signal (CPS)

for cases KU and UU can be expressed respectively as

m(n—1)

CPSyy = P(SignallY,8) = 1 — [cp (L Y _ &/ﬁ) _

CD(—L ! —5\/5)] (5a)

m(n-1)

and
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CPSyy = P(Signal|Z,Y,8) = 1 — [@( 4L /m(n . 5\/5) -
cb(%m—L /m(n 1)> 6\/—] (5b)

These general expressions apply to both the in-control and the out-of-control

cases.

In the in-control case, § =0, and Equations (5a) and (5b) give the

conditional false-alarm rate, CFAR:

. Y
CFARyy = P(SignallY,§ = 0) = 2® (—L - (n—l)) (6a)
and
. VA Y
CFARyy = P(Signal|Z,Y,6 =0) =1 — [dD (\/—m + L /m) -
Z Y
e

in Case KU and UU, respectively.

Given that the in-control conditional run length distribution is geometric with
parameter CFAR, its expected value, the conditional in-control average run length,

CARLy, is given by:

CARLy = —, 0<CFAR< 1. ©)

From now on, when we don’t use a subscript such as KU or UU on the CARL,
(or the CFAR or the CPS) as in Equation (7), it means that the expression is true in
both case KU and UU. Also, let CARL, xy and CARL ;i denote the conditional in-

control average run lengths in Case KU and UU, respectively.

It is interesting to visualize the effect of parameter estimation through the
number of Phase | subgroups, m, on the CFAR and CARL,. Figure 1 shows the plots
of the CFARgy (in Panel (a)) and CARL y (in Panel (b)) as a function of u € (0,

1) corresponding to the quantiles of Y, parametrized by m for a fixed n = 5. They
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were obtained by writing Y as F);zl( )(U) in Equation (6a), where U is a uniform
m(n-1
(0, 1) random variable, since U = FXTZn(n—l) (Y) from the probability integral

transformation [see Epprecht et al. (2015)].

CFARyy CARLg gy
0.02 17 2000
\ m=10 m=10
|
s —_ m=20 — Mm=20
e m=s0 ms=so
0.015
\\ m= 100 1500 ——-= m=100
Vo e m=so0 | || e ms= 500
N CFARy,, = 00027 CARLg ey = 3704

001

g
g

g

/

0.0 02 04 0.6 0.8 10

u

FIGURE 1. CFARyy (Panel (a)) and CARLg xy (Panel (b)) as function of u forn =
5, m = 10,20,50,100,500 and « = 0.0027 (i.e., L = 3).

Figure 1 clearly shows the effect of the number of Phase | samples m on the
performance of the X control chart when the process standard deviation is estimated. In
both panels, the horizontal lines correspond to the value of the nominal false alarm rate
0.0027 and the in-control average run length, 370.4, respectively, in Case KK, when the 3-
Sigma limits are used. It can be seen, that for n = 5, the CFARgy and CARLg gy curves
are significantly closer to the horizontal line when m, the number of reference samples, is
large (compare for example the curves for m = 10 and m = 500). This means that the
difference between the nominal and the realized (conditional) false alarm rate is
considerably more likely to be large when m is small. It is also interesting to note that the
effect is different on the two sides of u = 0.5 (the 0.5 quantile or the median of ¥). For
CFARyy the situation is worse for the lower quantiles whereas for CARL gy the reverse
is true. This means that for smaller values of m, a lower than average estimator of the
standard deviation would produce a higher than nominal conditional false alarm rate while
the reverse is true for the conditional in-control average run length. This is caused by the
skewness of the distributions of CFARky and CARL gy, which will be seen more clearly

in Section 4.

Note that it is possible to construct similar figures in Case UU, which will
be a three-dimensional graphic since in this case the CFARyy (and CARLq yy) is a

function of two random variables (not just one). The effect of the number of Phase
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I samples (m) in Case UU will be clearly seen in the next section, where the
distribution of CFARyy and CARL, yy are derived, so it is omitted here.

4. Cumulative Distribution Function of CFAR and CARL,

From Equation (6a), we can easily obtain the c.d.f. of CFARgy

Ferarey (t) = P(CFARyy < t) = P <2c1> (—L /m(:_l)) < t),
= <—L /ﬁ < 1 (%)) =1-Fa <m(n - 1) <_ ¥(§)>z>

0<t<1, (8a)

where Fxfn( ) denotes the c.d.f. of a central chi-square distribution with

m(n — 1) degrees of freedom.

In Case UU, since the CFARyy, is a function of two random variables (Y and
Z), the derivation of an exact closed form for expression of Fgpug,, is more
involved. To this end, we derive Fgrag,,, in Case UU by using the conditioning-
unconditioning technique [see Chakraborti (2000)], by first conditioning on Z [see
Equation (6b)], calculating the conditional c.d.f., and then unconditioning, by
taking the expectation of the conditional c.d.f. over the distribution of Z:

Feraryy (t) = P(CFARyy < t) = E;(P(CFARyy < t|Z = 2))
= [ P(CFARyy < t|Z = 2)f5(2)dz, (8b)
where f, denotes the probability density function (p.d.f.) of Z.

The next step is to derive the expression for the conditional c.d.f.
P(CFARyy < t|Z = z). Note that, given z, P(CFARyy < t|Z = z) is a function
of the chi-square random variable Y. So, from Equation (6b) one can write:
P(CFARyy < t|Z = z)

—Pl—CDZ+L Y —CDZ—L Y
B Vm m(n—1) ym m(n—1)



DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

173

z Y z Y
=P (P (ﬁ— L /m(n_l) SZiSs=+L /m(n_l)) >1- t),

where Z; also follows a standard normal distribution, independent of Z and
Y. Therefore

Y A Y
—plp|-1L /—sz ——SL/— >1—t
m(n—1) v Vm m(n — 1)
2

=P (P ((z1 - =) < (L m(Z_l))z) >1- t).

(8c)
2
- VA - - - - -
Now, since (21 - \/—ﬁ) follows a non-central chi-square distribution with 1
. z?2 . z \? 2
degree of freedom and non-centrality parameter - denoting (21 — \/_m) = X1,[§]’

Equation (8c) can be expressed as

m(n-1)

P(CFARUUSt|Z=z)=P<P<x2[Zz]SLZ . )21—t>=1—
Lm

22

m(n—l)F_Z1
=

X1,

(1-1)
F ]

, (8d)

X?n(n— 1) L?

1

where F~ [22](1 — t) denotes the (1 — t)-quantile of a non-central chi-square

X,
2
distribution with 1 d.f. and non-centrality parameter % Applying the result from

Equation (8d) in Equation (8b), we have the final expression for the c.d.f. of
CFARyy -

Ferary, (t)
o m(n — 1)F_2122 1-1

=1-| F 2 fz(2)dz (8e)
oy Xmen- L2 z ' ¢

For the distribution of the conditional in-control average run-length, note that,
in general, as shown in Equation (7), the CARL, is a monotonically decreasing

function of CFAR, so that the c.d.f. of CARL, (FcaryL,) Can be obtained from the
c.d.f of CFAR (Fgpag)- Thus,
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Feari, (W) = P(CARLy < w) = P(1/CFAR < w) = P(CFAR =
w ) =1—=Ferarw™), w=1. (9)

Hence, in Case KU,

Fearrg gy (W) = Fan(n-l) mn—1| - (10a)

In Case UU, the Fcygy,,,, Can be similarly obtained by using Equations (8e)

and (9) and is given by

F, CARLy yy (w)

oo
= F
f_ o Xm(n-1)

Note that Expressions (8e) and (10b) for the c.d.f’s in Case UU are exact,

1)F_[ ](1 —wD)

fz(w)dz. (10b)

however their evaluation involves calculating the integral using some numerical
method, since there is no closed form solution. This is not difficult as will be seen
later. Indeed, many well-known c.d.f.’s are expressed in terms of integrals,

including the one for the celebrated normal distribution.

Figure 2 shows the c.d.f. of the CFARyy and the CARL yy, in Panel (a) and
(b), respectively, calculated using Equation (8e) and (10b), for n =5, m =
10,20,50,100,500 and @ = 0.0027 (i.e., L = 3). Note that the vertical lines show
the nominal false alarm rate 0.0027 (in Panel (a)) and the in-control average run
length 370.4 (in Panel (b)). The impact of m on the distributions is clear. When m
is small (such as m = 10), chances are high that the realized false alarm rate is
higher than the nominal one. For example, from Figure 2, Panel (a), for m = 10,
P(CFARyy = 0.006) =~ 40%, so that there is a 40% chance that the conditional
false alarm rate is 122% higher than the nominal 0.0027. Also note the significant
difference between the vertical line and the c.d.f. curve for smaller values of m.
When m gets larger (such as m = 500), the c.d.f curves are much “closer” to the

vertical line, meaning that in these cases, the CFARyy is likely to be not much
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different from 0.0027. Similar explanations hold for CARL, ;. Figures for the
c.d.f. of, CARL xy and CFARyy are omitted for space reasons; but the conclusions

from them would be similar.

y F W
Fepary,(t) cartonu W)

o

06

04

02

0.0

s < T T T - T T
0 0.001 0.0027 0.004 0.006 0.008 0.01 200 3704 €00 800

(@) (b)
FIGURE 2. The c.d.f. of CFARyy (Panel (a)) and CARLg yy (Panel (b)) forn =5,
m =10,20,50,100, 500 and ¢ = 0.0027 (i.e., L = 3).

To provide further insight, in Figure 3 we display the p.d.f. of CARL, yy
(fearLoyy) aNd CFARyy (ferary,), in panels (a) and (b), respectively, calculated
by taking the numerical derivatives of the corresponding c.d.f. The fc4gy,,, POt
shows the large density at values well below 370.4 (including the position of the
modes), meaning that when parameters are estimated, in practice, there is a large
probability that the CARLyyy is substantially smaller (and the CFARyy is
substantially larger) than the nominal value, even with a number of Phase | samples
quite larger than the usually recommended 25, 30 or 50 Phase | samples. This is
reflected in the long right tails of the density functions of CFARyy and CARLg yy.
Note that we also omitted the figures of the p.d.f. of CARL xy and CF ARy, because
they are similar to Figure 3. In summary, this examination clearly raises concern
about the realized CFAR (or the CARL,) being so much different from their nominal
values in practical terms and will be discussed further in the next sections through

two applications.
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FIGURE 3. p.d.f. of CARL yy and CFARyy forn =5, m = 10,20, 50,100,500 and
a=0.0027 (L = 3).

5. Prediction Bounds for CFAR and CARL,

Since the CFAR (and the CARL,) are both random variables, it is of interest
to the practitioner to know how far they can vary from their desired nominal desired
values. For example, since the CFAR can take any value between 0 and 1, it may
be of interest to know, in a given Phase Il application, what an upper bound to the
CFAR is, with a certain (high) probability, say (1 — p). In the same spirit as in a
confidence bound, this upper bound, denoted a,,, is called an upper prediction

bound.

Thus, for a given m and n, it is of interest to find a,, (0 < a, < 1), for a

small p (0 < p < 1) such that
P(CFAR < @) = Fepag(ay) =1 —p (11)

which means that a,, is the (1 — p)-quantile of the in-control distribution of
CFAR. Note that Equation (11) can be written as P(CARL, = 1/a,) =1 —p, s0
that 1/a, forms a lower prediction bound to CARL, and is the p-quantile of the
distribution of CARL,. Both of these bounds are useful to the practitioner. In
summary, the problem of finding a,, reduces to finding the (1 — p)-quantile of the
CFAR (or the p-quantile of CARL,) distribution when the process is in-control and

as it will be seen, our c.d.f. expressions, derived in Equations (8a) and (8e), are

useful to this end.
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For example, in Case KU, using Equation (8a), an exact expression for

ap, ky 1S obtained by solving the following equation for a,, k-

Ftnen <m(n -1 <_ @) ) =P (12)

which yields
Fx_zl( _1)(p)
ap,KU =20 —L T—l) (13)
This exact upper bound can be easily calculated for given values of L, m, n and p.
On the other hand, in Case UU, the required a,, ;;; is the solution to the equation
/m(n—l)F;zl[zz](l—“p.UU)\
oo L
L Funeny \ 2 /fZ(Z)dZ =P (14)

which can be solved, for given values of L, m, n and p, using a simple search
method (like the Secant Method). However, a simple approximate expression for
a,yy, can be obtained from Equations (8c) and (8d) using a one-step Taylor
approximation and an approximation for the c.d.f. of a non-central chi-square
distribution in terms of a central chi-square distribution given by Cox and Reid
(1987). Details of the derivation of the approximation can be found in Jardim et al.
(2017).

Fx'f:( N ()
~ 1 — 2_"mn-1)
Olp'UU ~ 1 FX% L (m+1)(n_1) (15)

The formula in (15) can be very useful in practice when one seeks a quick

answer.

Table 1 shows the values of a, and 1/«,, for p = 0.05 (i.e., the 0.95 quantile
of CFAR and the 0.05 quantile of CARL,) and p = 0.1 (the 0.9 quantile of CFAR
and the 0.1 quantile of CARL,) for some values of m and n in Case KU and Case
UU, respectively. For Case UU we show the exact values calculated using Equation

(13) and a search method and the values obtained using the simple approximation
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given by Equation (15) in bold. In all cases, we consider &« = 0.0027 (L = 3). Table
1 shows that when m and/or n are small, the values of CARL, that are exceeded
with a large probability of 95% or 90% are much smaller than the desired 1/a. For
example, in Case UU, for m = 25 and n = 5 (values suggested in many textbooks,
see Montgomery, 2009), 1/a, o5 = 102.4, which is more than 3 times smaller than
the nominal ARL, of 370.4. This means that, for m = 25 and n = 5, if 3-Sigma
limits are used, the variabilities of CARL, and CFAR are quite large, so the
realization of these random variables may be very different from the nominal in-
control average run length and the nominal false alarm rate (370.4 and 0.0027,
respectively). Also note that the proposed approximation works well for m > 50 in
Case UU.

It is also interesting to note that the lower quantiles of CARL, (or higher
quantiles of CFAR) in Case KU are larger (or smaller, for CFAR) than the quantiles
in Case UU. This is due to the higher variability of the CARL, and CFAR in Case
UU since one additional parameter (the in-control process mean) is estimated in this

case.
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TABLE 1. 0.95 (0.90) quantiles of CFAR (a,) and 0.05 (0.1) quantiles of

CARLA (1/a.) .

Case m—> 25 50
P n 1/a a 1/a,
1 5 0.0081 123.6 0.0059 168.7
s 10 0.0057 176.3 0.0046 218.1
L 20 0.0045 221.1 0.0039 256.7
25 0.0043 233.8 0.0037 267.1
o 5 0.0065 154.4 0.0050 198.7
Z 10 0.0049 205.8 0.0041 244.0
20 0.0041 246.7 0.0036 277.7
g = 25 0.0039 258.0 0.0035 286.6
@ m — 100 300
8 P n 1/ a, a 1/ a,
oy 5 0.0047 211.3 0.0037 267.1
= 10 0.0039 254.1 0.0034 297.6
g. 20 0.0035 285.5 0.0031 318.5
25 0.0034 293.7 0.0031 323.8
o b 0.0042 238.0 0.0035 286.6
; 10 0.0036 275.5 0.0032 312.1
20 0.0033 302.0 0.0030 329.2
& 25 0.0032 308.9 0.0030 333.5
m —> 25 50
P n 1/a a 1/a,
1 5 0.0098 0.0094 102.4 106.3 0.0066 0.0064 1525 155.4
S 10 00071 00067 1401 1497 00052 0.0050 193.6  199.9
g. 20 0.0060 0.0054 167.8 186.3 0.0045 0.0043 223.1 234.6
25 0.0057 0.0051 174.5 196.6 0.0043 0.0041 2305 244.0
S 5 0.0078 0.0076 128.8 131.7 0.0055 0.0055 180.2 182.4
< 10 0.0060 0.0058 167.2 173.8 0.0046  0.0045 218.8 223.3
5 s”m 20 0.0051 0.0048 195.3 207.1 0.0041 0.0039 246.1 253.5
a 25 0.0049 0.0046 2024 216.2 0.0040 0.0038 252.9 261.4
@ m—> 100 300
© P n 1/a a 1/a
w5 00050 00049 2007 2023 00038 00038 2625 263.1
o 10 0.0042 0.0041 2395 242.9 0.0034 0.0034 292.0 293.0
120 00037 00037 2667 2725 00032 00032 311.9 3135
25 0.0037 0.0036 273.6 280.3 0.0032 0.0031  316.9 318.7
S 5 00044 0.0044 226.3 227.6 0.0035 0.0035 281.8 282.2
< 10 0.0038 0.0038 260.7 263.2 0.0033 0.0033 306.5 307.2
g_ 20 0.0035 0.0035 284.3 288.2 0.0031 0.0031 322.9 324.0
25 0.0034 0.0034 290.3 294.7 0.0031 0.0030 327.0 328.2

Note: For Case UU, the values in bold were obtained using Eq. 15; the other values

are exact, calculated numerically using Eq. 14).

6. Number of Phase | Samples Required for Guaranteed In-Control

Performance
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Having recognized that the Phase Il false alarm rate (and the in-control
average run length) are both random variables when parameters are estimated and
therefore vary, sometimes substantially, from estimator to estimator (reference
sample to reference sample, practitioner to practitioner), another important question
is the amount of Phase I data that can ensure a “satisfactory” in-control performance
of the X chart. Epprecht et al. (2015) formulated this problem in terms of the EPC
for the one-sided S and S2 charts, and gave formulas for the minimum number m of
Phase | samples that guarantees, with a specified high probability 1 — p (say, 0.9),
that the CFAR does not exceed the nominal a by more than a user specified
(tolerated) percentage 100¢ (e.g. 20%). Following this approach, in any case, KU
or UU, this problem is formulated as:

Given the values of n, a, € and p, find the minimum number of in-control

Phase | samples, m, such that
P(CFAR< (1+¢&)a)=1-p, (16)
where 100¢ is called the tolerance factor.

According to Equation (16), (1 + €)a is the (1 — p)—quantile of CFAR,
which plays the role of a,, in the previous section. The difference is that in the
previous section, m was given and a,, was calculated, whereas now, a,, is specified
(by the practitioner) to be (1 + €)a (as the upper bound to CFAR that may be
tolerable) and m is to be determined corresponding to that value. Note that, since m
is an integer, a perfect match is generally not possible, so, we re-state the problem
as finding the smallest integer m such that P(CFAR < (1 + &)a) = 1 — p, for
given ¢, p, a, m and n. Also, note that this problem is equivalent to finding the
smallest integer m such that P(CARL, = 1/[(1+¢&)a]) =1 —p. A direct
formula for m is not available because the c.d.f.’s involve a quantile of a chi-square
variable whose number of degrees of freedom is itself a function of the unknown
m. However, m can be found using a simple search method (as the Secant Method,
for example) since, for large values of (1 —p), Ferar((1+ €)a) is @ monotonic
increasing function of m (see Figure 2). Basically, this means that for Case KU and

UU, we need to solve, respectively,
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@1 (@20)’
Fnony M= D) (——) =p an

and
mn—-1)F 3 (1—(1+s)a)\
X 72
oo L
f—oo Fxfn(n—l) 12 /fZ(Z)dZ =D, (18)

for the smallest m. Note that Equations (17) and (18) follow from Eq. (12)
and Eq. (14), respectively, when we replace a, by (1 + ¢)a. Table 2 shows the
minimum number of in-control Phase | samples, m, for € = 0.1,0.2,0.3,0.4, 0.5,
a = 0.0027, p = 5%, 10%, 15%, and n = 5, 10, 20 and 25. As it can be seen, for
small values of n, one needs a larger number of reference samples (m) to guarantee

such conditional performance.

TABLE 2. Minimum number of Phase | reference samples, m, required for
P(CFAR<(1+¢&a)>1—p (orP(CARLy = 1/[(1+&)a]) =21 —p) fora =
0.0027 (L = 3) and various values of €, n and p

£ =10% £ =20% £ =30% £=40% £ =50%
Case n p—~0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15
5 3588 2185 1435 975 595 393 468 287 190 283 174 116 194 120 80
10 1595 971 638 433 265 175 208 128 85 126 78 52 87 53 36
20 756 460 303 206 126 83 99 61 40 60 37 25 41 26 17
25 598 365 240 163 100 66 78 48 32 48 29 20 33 20 14
5 3687 2285 1536 1029 649 446 507 324 226 314 203 144 219 144 103
10 1701 1077 742 492 321 229 250 167 122 159 108 80 114 78 59
20 871 571 409 270 185 138 145 102 77 97 68 52 72 51 39
25 717 477 346 230 160 120 126 89 69 85 61 47 64 46 36

KU

Case

Case UU

From Table 2 we see that in the majority of cases (for example, when & =
0.1 and n = 5), the minimum numbers of reference samples required are larger than
the 25 or 30 subgroups traditionally proposed in most manuals and textbooks (see
Montgomery, 2009); they can also be larger than the 200 or 300 samples proposed
by authors who focused on the unconditional ARL, (see Quesenberry, 1993 and
others) and even larger than the recent numbers recommended by Saleh et al.
(2015), who focused on the standard deviation of CARL, as an additional
performance metric (they recommended using m = 1200 when a = 0.0027 is

used). One can see that, as might be expected, in Case UU more Phase | samples
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are needed than in Case KU. This happens because in Case UU the estimation of
the in-control process mean adds more uncertainty (variation) in the performance

of the X control chart.

In case the required m for the specified values of (1 + )a and p is infeasible
and yet relaxing the value of either € or p is unacceptable on practical grounds, a
possible solution is to change the value of the control limit factor L (instead of using
L = 3, the common 3-sigma limits), given the values of m and n at hand, in order

to satisfy the EPC in the in-control situation. This is discussed in the next section.

7. Adjustment of the Limits for a Guaranteed Conditional In-Control

Performance

In the previous section, we saw that the minimum number of reference
samples required to guarantee a desired in-control performance under the EPC can
be very large and may be infeasible in many practical situations. Given this practical
hurdle, in this section, we present an exact and an approximate adjusted control
limit for the X chart (for any m and n) that guarantees a desired in-control
performance in terms of EPC. The idea is to replace the control limit factor L in
Equations (1) and (2) by L(p, €, a), where L(p, €, ) represents the value of the
control limit factor which guarantees that P(CFAR < (1+¢&)a)=1—p (or
P(CARLy = 1/(1 + €)a) = 1 — p) for given values of &, a, m and n.

In Case KU, since the expression for the c.d.f of CFAR is in a simple form
given by Equation (8a), we can derive a closed-form expression for L, (p, €, ).
Using Equation (16), replacing L by L(p, &, ) in Equation (8a) and rearranging the

terms, one has:

o1 (12

L ,E, Q) = ——=2—£L
xku(@ ) ] =
Xm(n-1)
m(n-1)

In Case UU, we can find Ly, (p, &, @) by solving the following equation

(19)
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z?

0o ‘Im

/m(n—l)FX_zl (1-(1+8)a)
f—oo Fxfn(n_l) \ Lyy(p.e,a)? fZ(Z)dZ =p (20)

for Ly (p, €, @) using a search method. Equation (20) relates to the theory of

Tolerance Intervals. Krishnamoorthy and Mathew (2009, p. 30) give an equation
which is equivalent to (20) where S and X are used instead of S,, and X respectively.

But, they did not make the relationship with Statistical Process Control area.

Alternatively, Jardim et al. (2017) derived the following approximate formula for

LUU(p; g, (X):

FX_21(1—(1+8)0£)
Lyy(pe,a) = |[((n—1(m+1) —;-1 (
2 p)
“m(n-1)

(21)

Note that, as explained in Section 1, other authors have considered
adjustments in terms of the EPC for the X chart constant in Case UU. For example,
Saleh et al. (2015a) used bootstrapping and Goedhart et al. (2017a and 2018)
provided approximate formulas for the correction term defined as ¢ =
Lyy(p, &, a) — L. Jardim et al. (2017) made a detailed comparison between all these
methods [including the one we propose in Equation (20)] and conclude that all of
them provide reasonably good and similar results (the one in Equation (20) being
the most accurate one). The differences among these methods lie mainly in their
complexity in terms of formulas and algorithms. So, here, we just show the
approximation in (21) because, as shown by Jardim et al. (2017), this equation is
simpler than the available approximations and provides good results — as it can be
seen in Table 3. Nevertheless, since Equation (20) is based on the exact c.d.f., it
provides the most accurate results, and since much of SPC is expected to be
implemented with the help of software, we recommend it to be used and

implemented in a SPC software.

Table 3 shows the exact values of Ly, (p,e,a) and Lyy(p, € a) using
Equations (18) and (19) and (in bold) the approximate values of Ly, (p, €, @) given
by Equation (20), for some values of m and n, p =10%, € = 0and 0.2,
respectively, and a = 0.0027 (L = 3). This means P(CARL, = 370.4) = 90%
and P(CARL, = (1/1.2)370.4 = 308.67) = 90%. So, for example, if the users
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have 25 reference samples each with 10 observations from a Phase | analysis, then
to guarantee that P(CARL, = 370.4) = 90%, they should replace L by
Lky(10%, 0%, 0.0027) = 3.2 in Case KU or by Ly;(10%,0%,0.0027) = 3.27
in Case UU, in Equations 1 and 2. Note that the approximation given by (21) is very

accurate.

TABLE 3. Values of L(10%, 0%, 0.0027) and L(10%,20%, 0.0027)
for P(CARLy > 370.4) = 90% forn = 5,10,15,20,£ = 0,0.20 and m =
25,50,100,300,1000 in Case KU and UU

m

25 50 100 300 1000
Case ne—> 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2
5 331 3.24 321 3.15 314 3.09 3.08 3.02 3.04 2.99
10 3.20 3.14 3.14 3.08 3.09 3.04 3.05 3.00 3.03 297
15 3.15 3.10 3.11 3.05 3.07 3.02 3.04 2.99 3.02 297
20 313 3.07 3.09 3.03 3.06 3.01 3.04 2.98 3.02 2.96

5 338 337 332 331 324 324 318 318 316 316 310 310 3.09 309 3.03 303 305 305 299 299
10 327 326 321 320 317 317 311 311 311 311 305 3.05 3.06 306 300 300 303 303 297 297
15 323 322 317 316 315 314 3.09 308 309 309 304 303 3.05 305 299 299 3.02 302 297 297
20 321 319 315 313 313 312 307 3.06 3.08 308 303 302 3.04 304 299 298 302 302 297 296

Case UU | Case KU

Note: For Case UU, the values in bold were obtained using Equation (21); the

other values are exact, calculated numerically using Equation (20).

From Table 3, it is seen that when & = 0, the control limit factor is larger
than 3 in all cases, making the control limits wider, and when & = 0.2 this factor
can be smaller than 3 (turning the limits narrower) only when m is quite large. It
should be noted that these findings contrast with the results obtained by the authors
who adjusted the X chart control limits focusing on a desired unconditional ARL,,
for example, Chakraborti (2006) and Goedhart et al (2016). With the unconditional
in-control ARL as a performance criterion, they found, in most of the cases, adjusted
limit factors smaller than 3 for @ = 0.0027.

Since the adjustment based on the conditional in-control performance of the
X control chart in most cases results in a control limit factor greater than 3, which
widens the interval between the control limits, the question arises about its impact
on the out-of-control performance of the chart. In the next section, we examine this

issue.

8. Out-of-control Analysis
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In this section, we analyze the impact of the adjustments proposed in the
previous section on the out-of-control performance of the X chart for Case UU. The
results and conclusions for Case KU are similar and are omitted. As we noted
earlier, in most cases the adjustment leads to widening the interval between the
control limits (see Table 3 where Ly, (p, e, @) > 3 in most cases). In these cases,
the out-of-control conditional ARL (i.e., the CARLs yy With & # 0) will be larger
with the adjusted limits than with the unadjusted limits. This is the price to pay for
guaranteeing a desired in-control performance. So, it is important to assess the
deterioration in the CARLs ;;; due to the adjustment. This assessment will enable
the user to choose an appropriate compromise, in terms of m, n, &, and p, since the
out-of-control performance deterioration is lesser with larger m and n, and also with
larger values of ¢ and p. For example, for m = 25 and n = 5 (a typical amount of
reference data in practice and according to traditional recommendations), the
adjustments proposed in the last section enable achieving the desired conditional
in-control performance (for example, P(CARL, > 370.4) = 90%, as shown in
Table 3) in terms of the EPC, however they may produce the undesirable effect of
deteriorating the out-of-control performance. Still considering this typical amount
of data (i.e., m = 25 and n = 5), to detect a shift in the process mean of the size of
one process standard deviation (i.e., |§] = 1), with no adjustment, the chart will
have P(CARLyyy > 7.25) = 10%, which means that the average number of
samples until a true alarm will be most likely below 10 samples. However, with the
adjustment (in order to achieve P(CARL, > 370.4) = 90%), the chart will have
P(CARLLUU > 15.98) = 10%: a difference of 8.23 (more than 100%) on the 0.9-
quantile of the CARL, yy. Note that an out-of-control ARL of 15.98 may be
unacceptable for the practitioner. However, with m = 50 and n = 5, with no
adjustment P(CARL,yy > 6.55) = 10% and with adjustment, P(CARL, yy >
9.99) = 10%. So, with m =50 and n = 5, either with or without the adjustment, the
CARL, yy will most likely be below 10 samples, however, only with the adjustment
one can guarantee that P(CARL, > 370.4) = 90%. Also, the difference between
the 0.9-quantiles of the CARL, yy with and without the adjustment, is 3.44 (about
50%). So, a particular practitioner may consider adjusting the limits with m = 50

and n =5 a good compromise solution between the number and size of subgroups
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to collect in Phase 1, a desired nominal in-control performance and a reasonable

out-of-control performance of the X chart.

It becomes evident from the above example that knowing the prediction
bound for the CARLs yy, With adjusted and with unadjusted limits, is useful for
assessing the deterioration (increase) in the CARLs yy; due to the adjustments. The
lower prediction bound for CARLs ;;; can be calculated similarly as presented in
Section 5 for bounds for CARL, in the in-control situation. That is, for a given §, m
and n, we can find the distribution of CARLs ;;;; following the same steps used for
finding the c.d.f. of CARL, yy, presented in Section 4, and use that to find a lower
bound (denoted @) that has only a low (specified) probability pooc (e.g. 0.10)

of being exceeded. Formally: for a given pyoc,

P(CARL6,UU > onoc) = Pooc (22)

Thus, Qp,, is the (1 — pgoc)-quantile of the CARLs yy; distribution. Since
the CARLs yy is the realized average number of samples until a true alarm, the
smaller the Qpooc the better the chart’s OOC performance. Table 4 presents the
values of @, in Case UU with the adjusted limits from Table 3, for ¢ = 0 and
p = 0.1 (in grey) and with unadjusted limits, L = 3 (in white), for the same values
of m and n presented in Table 3, for mean shifts |6| = 0.5, |6] = 1 and |§| = 1.5
and for ppoc = 0.05 and pyoc = 0.1. Finally, Table 4 also shows the differences
(in bold) between the Q,,,. Values with the adjusted and the unadjusted limits,

respectively, to enable a direct performance comparison.

An examination of Table 4 shows that for |§| = 1 (a shift in the mean of
one standard deviation) and pooc = 0.05, m = 25 and n =5, the difference
between the @y, Values, with and without the adjustment, is of 10.87 samples on
average. This is a difference of about 100%, but note that we are considering a 0.95
quantile, a small sample size and a very small number of initial samples, in addition
to the fact that a shift of 1 standard deviation in which case the efficacy of the X
chart may be questionable. For a slightly larger shift, say |§| = 1.5, the difference
between the values of Q. With and without adjustment is only 1.14 samples on

average. So, for shifts of this magnitude or larger (i.e., |§| = 1.5), the impact of the
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adjustment on the out-of-control performance is small for any value of n and m.
However, for a smaller shift, say |§| = 0.5, the Q,,,,. is large in most cases. For
example, for pooc = 0.05, m =25 and n =5, Qp,,,. is 107.85 and 351.98 with
unadjusted and adjusted limits, respectively, that is an increase of 224.13 samples
on an average. This shows that there can be a negative impact of the adjustment on
the OOC performance for smaller shifts. However, this is not a surprise since the X
chart is usually not recommended for signaling mean shifts smaller than 1 standard

deviation.

TABLE 4. The 0.95 and 0.9 quantiles of CARLs y; with adjusted limits (a =
0.0027, p = 0.1 and € = 0) in grey and unadjusted limits (L = 3) in white for

different values of m, n and )
m
25 50 100 300 1000
adj. adj. adj. adj. adj.
p=01 p=0.1 p=0.1 p=0.1 p=0.1
8 Poocn unadj. &=0 difference unadj. | &=0. difference unadj. &=0. difference unadj. '€=0 difference unadj. £=0 difference

2 5 221 3.36 114 197 247 0.50 1.83 2.09 0.26 171 1.82 0.11 1.64 1.69 0.05
ﬁ 10 110 117 0.07 1.08 111 0.03 1.07 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00
w g 15 101 1.01 0.01 101 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00
:" S 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
p = 5 2.02 2.95 0.93 1.86 2.30 0.44 176 2.00 0.23 1.67 178 0.10 1.62 167 0.05
«° T 10 1.08 1.14 0.06 1.07 1.10 0.03 1.06 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00
g 15 1.01 1.01 0.01 1.00 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00
& 20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
2 5 9.27 20.14 10.87 7.37 11.50 4.12 6.33 8.27 1.95 5.45 6.21 0.77 4.99 5.32 0.34
‘°|' 10 2.46 3.32 0.86 221 2.62 0.40 2.06 2.28 0.21 1.93 2.02 0.09 1.85 1.90 0.04
g 15 1.45 1.66 0.22 137 1.48 0.11 133 1.38 0.06 129 131 0.03 1.26 127 0.01
TS 2 115 1.23 0.08 1.13 1.16 0.04 111 113 0.02 1.09 1.10 0.01 1.09 1.09 0.00
'l - 5 7.75 15.98 8.23 6.55 9.99 3.44 5.84 7.56 172 521 5.93 0.72 4.87 5.19 0.32
T 10 2.27 3.00 0.73 2.10 2.46 0.36 1.99 2.19 0.20 1.89 1.98 0.09 1.84 1.88 0.04
g 15 1.39 1.58 0.19 1.34 143 0.10 131 1.36 0.05 127 1.30 0.02 1.26 127 0.01
& 20 113 1.20 0.07 111 1.15 0.03 1.10 112 0.02 1.09 1.10 0.01 1.08 1.09 0.00
2 5 10785 351.98 244.13 75.24 | 151.07 75.83 58.80 = 90.45 31.65 46.05 | 57.15 11.10 39.75 | 44.30 4.55
‘°|' 10 29.02 = 56.41 27.39 2255 | 33.35 10.80 18.99 = 24.16 5.17 16.03 | 18.06 2.04 14.47 | 15.36 0.89
w g 15 1334 | 2155 8.21 10.90 14.40 3.50 9.50 11.25 175 8.30 9.01 0.72 7.65 7.97 0.32
f\ S 20 7.72 11.23 3.51 6.52 8.08 1.56 5.82 6.61 0.80 5.20 5.53 0.33 4.86 5.01 0.15
y o= 5 8129 24912 167.82 62.14 | 121.44 59.30 5159 = 78.40 26.82 4282 | 52.94 10.13 38.23 | 42.56 4.33
@ 7 10 2389 @ 4511 21.22 19.77 = 28.88 9.11 1735 = 21.95 4.60 1524 = 17.15 191 14.08 = 14.94 0.86
g 15 1142 | 18.08 6.65 9.81 12.85 3.04 8.84 10.43 159 7.97 8.65 0.68 7.49 7.80 0.31
& 20 6.78 9.71 2.92 5.98 7.35 1.38 5.48 6.21 0.73 5.03 5.35 0.32 4.78 4.92 0.14

Finally, note that a small difference in Q,,,. values means that the
adjustment guarantees the in-control performance as specified and does not
significantly deteriorate the OOC performance of the chart. If we consider Q. <
10 to be an acceptable OOC performance, Table 4 shows that both the unadjusted
and the adjusted limits do not work well for |§| = 1 whenn = 5 and m = 25. But
in all other cases, for example, when |6] = 1andn > 10 orwhen |§| = 1and m >
10, the Q,,,. Vvalues are either less than or close to 10 with the adjusted limits,

which means the adjustment works well. The analysis can be easily replicated for
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other values of a, p, ppoc and €. It was done for € = 0.20 and the conclusions

were similar, so these results are omitted for space considerations.

Hence, we recommend the adjusted limits be used for n > 10 and m > 25,
or forn > 5 and m > 50, in order to guarantee a high probability (such as 0.9) that
the conditional in-control average run length is greater than a nominal in-control

average run length value (370.4) and that a @, < 10.

9. Summary and Recommendations

For the two-sided Shewhart X control chart with estimated parameters, we
derive the exact c.d.f. of the in-control conditional average run length (CFAR) and
of its reciprocal, the conditional false alarm rate (CARL,) assuming normality.
These expressions, unavailable in the literature until now, enable us to examine the
performance of the control chart more closely, in terms of guaranteeing a high
probability of the CARL, (or the CFAR) being at least (or at most) equal to some
specified nominal value [this is known as the Exceedance Probability Criterion
(EPC)]. This helps the user better understand the impact of parameter estimation
and the amount of Phase | data that should be used for establishing an X control
chart when parameters are estimated. In order to avoid unacceptably low (high)
CARL, (CFAR) values, exact expressions are proposed, based on the c.d.f. derived
here, in order to calculate the value of m (the number of Phase | samples) required
in order to guarantee a desired in-control performance in terms of the EPC for some
Phase | sample sizes (n) values. We

show that depending on the practitioner’s tolerances and on the subgroups
size, m can be very large, such as 2000 samples of size 5 (i.e., a total of 10,000
Phase | data points). This number is even larger than the numbers recommended by

some recent authors.

Given the unpractically large numbers (m) of Phase | samples required, we
propose (adjusted) control limit factors and tabulate them so that some desired in-
control nominal performance in terms of the EPC is achieved. Unlike other authors,
who use approximations or bootstrapping to propose adjustment factors, our results
are based on the exact c.d.f. of the CARL,. Moreover, according to our detailed

analysis of the impact of these adjustments on the out-of-control performance of
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the X chart, we recommend using the adjusted limits for at least n = 10 and m =
25 orn =5 and m = 50, that is, for at least 250 reference data points (note that
this required minimum total number of data points is much smaller than in the case
of unadjusted limits). With these recommended amounts of data and the adjusted
limits, the user can strike a balance between a desired nominal in-control

conditional performance and a reasonable out-of-control shift detection capability.
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Abstract

Undergraduate and graduate students in a first-year
probability (or a mathematical statistics) course learn the important
concept of the moment of a random variable. The moments are
related to various aspects of a probability distribution. In this
context, the formula for the mean or the first moment of a non-
negative continuous random variable is often shown in terms of its
c.d.f. (or the survival function). This has been called the alternative
expectation formula. However, higher order moments are also
important, for example, to study the variance or the skewness of a
distribution. In this note, we consider the rth moment of a non-
negative random variable and derive formulas in terms of the c.d.f.
(or the survival function) paralleling the existing results for the first
moment (the mean) using Fubini’s theorem. Both continuous and
discrete non-negative integer-valued random variables are

considered. These formulas may be advantageous, for example,
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when dealing with the moments of a transformed random variable,
where it may be easier to derive its c.d.f. using the so-called c.d.f.

method.

Keywords: Non-Negative Random Variables, Cumulative Distribution

Function, Fubini’s Theorem, Discrete and Continuous Random Variables

1. INTRODUCTION
Moments of random variables play a key role in describing and
understanding of probability distributions. For a continuous non-negative random
variable X, it is well known that the mean or the first moment, when it exists, can

be expressed as

EX) =f (1 - Fx(x)) dx, (1)
0

where Fy(x) is the c.d.f. of X. The function 1 — Fyx(x), which is the
probability that X exceeds x, is commonly known as the survival function of X,
which has a long history in the analysis of life tables, and has long been used in the
actuarial, bio-statistical, demographic, and engineering applications [see, for
example, Keyfitz (1968, page 6)]. Recently, there has been a good bit of interest in
Formula (1), see for example, Hong (2012, 2015), who calls it the alternative
expectation formula. It turns out that Formula (1) is a special case of a well-known
property of the distribution function in harmonic analysis [see, for example, Stein
(1970), as quoted in Hong (2012)]. Because the mean is one of the most important
characteristics of a distribution, Formula (1) has received a lot of attention in the
literature. It can be proved using Fubini’s theorem [i.e., interchanging the order of
integration in the basic definition of the expected value in terms of the p.d.f. [see
for example, Ross (2010)], or using integration by parts, again using the basic
definition of the expected value in terms of the p.d.f. [see for example, Hong
(2012)].

Higher order (greater than the first) moments are also of great interest in the
same context. These are needed to describe aspects of the distribution other than
the location, for example, the variance, the skewness and the kurtosis of a
distribution. To this end, it is known that when it exists, the rth moment about the

origin, E(X™), of a continuous non-negative random variable X, is given by
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(0]

E(X") = f rxr‘l(l — FX(x)) dx, r=>1. (2)
0

This formula is given in Feller (1966), Hong (2012) and Nadarajah and Mitov
(2003), the latter also derived the multivariate analogue. Formula (2) is as important
as Formula (1), particularly for r up to 4, which yields the first four moments
needed to define the variance, the skewness and the kurtosis. Hong (2012) sketched
a proof of Formula (2), extending an argument in harmonic analysis that he
“translated” in order to prove Formula (1). We feel this is beyond the background
expected in a first course, both for undergraduate and graduate students on
probability, mathematical statistics or statistical theory. The first and the second
authors have taught these types of courses for many years for students in business
and engineering and experience suggests that these students do not have the
background or the training in advanced topics such harmonic analysis to fully grasp
such proofs. Motivated by all this, we provide a simple derivation for this result
using Fubini’s theorem, which has been used to prove Formula (1). Thus, our
derivation can be covered in the classroom, in the same context, in a first-year
course as indicated earlier, while discussing a derivation of Formula (1) for the first
moment.

Moreover, much to our surprise, we did not find an analogue of Formula (2)
for a discrete non-negative integer-valued random variable. This should be of
considerable importance in practice as many applications involve such variables,
such as the binomial and the Poisson. To this end, suppose that Y is a discrete non-
negative integer-valued random variable with c.d.f. F,. We show that the rth

moment of Y is given by

E(Y") = Z((i +D'-iN1-F®), r=1 (3)
i=0
Forr =1, from (3),
E) = 2(1 - K@M)= z P(Y > i). (4)
i=0 i=0

This last Formula (4), for the first moment, is available, for example, in Karlin
and Taylor (1975; page 33) however, the general Formula (3) is not.
It is interesting to note the similarities between the Formulas (2) and (3), for

the continuous and the discrete random variables. Both involve the function
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(1 — F) which is the survival function of the underlying random variable. In the

continuous case the term rx" 1, is the first derivative of x”, which can be written

as }zmé (W) This looks very similar to the term ((i + 1)" —i") in the

discrete case, in Formula (3), which may be viewed as 1111“} (%) This makes

sense, since h represents an increment in the value of the random variable, which
in the case of a discrete integer-valued variable is equal to 1.

The rest of the note is structured as follows. In Section 2, we prove Formula
(2) and in Section 3, we prove Formula (3). Finally, in Section 4, we illustrate the
use of these formulas with one example for each of them. We hope instructors and

students will benefit from these general formulas and their simple derivations.

2. PROOF OF FORMULA (2)
Assuming that it exists, the rth moment of a continuous non-negative

random variable X, with p.d.f. fx , is given by:

(0]

E(XT) =] t"fx(®dt, r=1. (5)
0
Sincet” =r fot x"1dx, the integral in (5) can be written as
00 t
E(X") = rf <f xr‘ldx> fx(®)dt. (6)
0 0

Again, assuming that E(X") exists (i.e., E(X") < o0), one can interchange

the order of integrations in (6) using Fubini’s theorem. This yields

OOjmxr‘lfx(t) dtdx = TJOOO x" 1 <Jmfx(t)dx> dt

=r ijr_l(l — Fx(t)) dx. (7)
0

E(X™) = r]

0

The interchange of the order of integration in the second equality in (7) can
be explained as follows. The domain of the double integral in Equation (6) in the x-
t plane is the region A, highlighted in grey, as shown in Figure 1, where t varies
from 0 to oo and x varies from 0 to t. It is easy to see that this is the same region
where t varies from x to co and x varies from 0 to co. Thus, we obtain the right side
of the second equality in Equation (7). The third equality in (7) is merely a

reorganization of the terms. The proof is now completed.
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10

Figure 18. The domain of the double integrals showed in Equation (7).

Forr = 1, from (7) we get the familiar Formula (1), which is available in

the literature, including in Hong (2012) and Karlin and Taylor (1975; page 38).

3. PROOF OF FORMULA (3)
Assuming that it exists, the r-th moment of a discrete non-negative integer-

valued random variable Y, with p.m.f. py, is given by

oo

E(YT) = Z iy (D),  r=1. @)
i=1
Using the identity i” = ¥5_,(j" — (j — 1D"), (8) reduces to
EOM) = ipy® =) > ("= (= DDy, 9
i=1 i=1j=1

Similarly for the integrals, Fubini’s theorem gives sufficient conditions for
the interchange of the summation in Equation (9) [see Hunter (1983, page 27) and
references therein], which yields

(M) = i 20 -G = D) py (D
i=1j=1
- iio -G =D

J:l 1=

—

j=1 1= j=1
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= Y (T G- DN =FG-D) = Y G+ 17 -1 - FD). (10)
j=1 i=0

The change in the order of the summations in the second equality of
Equation (10) can be explained as follows. Write all the terms (elements) in the
double summation in (9) or in the first equality in Equation (10) in a matrix form as
shown in Figure 2. If we sum down the columns of this matrix, we get (as shown)
each of the terms in the sum in (8) or the first sum in (9), which defines the required
expected value. Hence the sum of these sums is the answer. On the other hand, if
we sum across the rows of this matrix, we get (as shown) each of the terms in the
last summation of (10) and the sum of these sums gives the final answer on the right
side of the last equality in (10). The point is that we are summing the same elements,
whether across the rows or down the columns, and hence their sum must be the

same. The proof is now completed.

(f - OT)PY(D (1T - OT)PY(Z) (1T - Or)Py(3) ] @7 - OT)(l - FY(O))

0 (27 -1py@ (27 =1)p@ |~ (27 —17)(1 - F (1))
0 0 (3 =2 |- @3 - 2)(1 - F(2))
! oo l |

1py (1) 2py(2) 3 py(3)

Figure 19. Matrix with elements being summed in Equations (9) and (10).

4. EXAMPLES

In this section, we illustrate the use of Formulas (2) and (3) with two simple

examples.
4.1. Example 1
For the first example, suppose that the c.d.f. of X is given by
0, forx < 1;
Fy(x) =1{Ilnx, forl <x<e;
1, for x > e.

In order to find the variance of X, V(X), we need to find the first and second
moments of X, i.e., E(X) and E(X?2). Note that since X is non-negative, according

to Equation (1), we have
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EX) = foo(1 — Fx(x)) dx = foo(1 — Fx(x)) dx
0 0

1 e
:fdx+f(1—lnx)dx+0
0 1

=[x+ [x]§—[xInx—x]§=1+e—-1—-1=e—1.

According to Formula (2), the second moment of X is

1

E(X?) =2 f

0

0o e
x(1 = Fy(x))dx = Zfo xdx + 2[1 x(1—Inx)dx +0

1 e e
=2fxdx+2fxdx—2fxlnxdx
0 1

1
2x21+2xze zlenx x2]°

~ 2 20 2 4
0 1 1

1
= 5(62 - 1).

So that finally, V(X) is equal to

2 1 1 3
VX)) =EX?) - (E(X)) = E(e2 —1)—-(e—-1)?%= —Ee2 +2e -3

= 0.2420.
Note that in order to find the moments using our formulas, it was not
necessary to find the p.d.f. of X.

For the students in the first course and for the readers in general, we would
like to draw attention to the fact that even though the domain of the distribution of
X in this example is between 1 and e, in order to correctly apply Formula (2) (or
Formula (1)), the lower limit of the integral must be 0 and not 1. This is because the
survival function is not equal to 0 between 0 and 1 (in fact it is equal to 1 and thus
contributes to the result). The same comment applies for discrete non-negative
integer values random variables, in which case the sum in Formula (3) must start at
0 as shown. Students should take note of this and thus avoid making a mistake in

applying these useful formulas.

4.2. Example 2
As our second example, consider the following c.d.f. of a discrete random
variable Y:
0, fori < 0;
~_ )1/2, for0<i<1;
@ =9374, for1 <i<2;

1, fori > 2.


DBD
PUC-Rio - Certificação Digital Nº 1312436/CA


PUC-Rio- CertificagaoDigital N° 1312436/CA

201

In order to find V(Y), one just needs to use Formula (3), since Y is non-

negative. So, the first moment of Y, E(Y), is
E(Y) = Z(l — Fy(®) = (1= F(0)) + (1 = Fr (1) + (1 = F(2)) + -~
i=0

Since 1-F((0)=1-1/2=1/2, 1-F(1)=1-3/4=1/4, 1-
Fy,(2) =1—-1=0andF, (i) = 1fori > 2, the rest of the terms in the summation

are equal to 0. Thus

1

E(Y) = 2(1 ~F(0))=1/2+1/4 = 3/4.

=0

According to Formula (3), the second moment of Y is
00 1
E(Y?) = Z((i +1D)?2-i)(1-F®) = z(zl' + D(1 - F (D)
i=0 i=0

=(1-F(0)+3(1-FQ1)=1/2+3/4=5/4
Finally, V(Y) is
V(Y) = E(Y?) — (E(Y))” = 5/4 + (3/4)? = 29/16.
Again, for these calculations, finding the p.m.f. of Y was not necessary, thanks

to Formula (3).

5. SUMMARY AND CONCLUSIONS
In this note we provide proofs for some alternative formulas for the rth
moment of a non-negative continuous and a discrete random variable, respectively,
in terms of its c.d.f. The proofs use Fubini’s theorem and should be useful in the
classroom while discussing moments of random variables.
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