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Abstract 
 
Jardim, Felipe Schoemer; Epprecht, Eugenio Kahn (Advisor); Chakraborti, 

Subhabrata (Co-advisor). Xbar Chart with Estimated Parameters: The 

Average Run Length Distribution and Corrections to the Control 

Limits. Rio de Janeiro, 2018. 202p. Tese de Doutorado – Departamento de 

Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro. 

 
 

 

Control charts are among the indispensable tools for monitoring process 

performance in various industries. When parameter estimation is needed to design 

these charts, their performance is affected due to parameter estimation errors. To 

overcome this problem, in the past, researchers have evaluated the performance of 

control charts and designed them in terms of the expectation of the realized in-

control (IC) average run length (𝐶𝐴𝑅𝐿0). But, as pointed recently, this solution does 

not account for what is known as the practitioner-to-practitioner variability (i.e., the 

variability of 𝐶𝐴𝑅𝐿0). So, a recent idea emerged where control chart performance 

is measured by the probability of the 𝐶𝐴𝑅𝐿0 being greater than a specified value – 

which must be close to the nominal desired one. This is called the Exceedance 

Probability Criterion (EPC). To apply the EPC, the cumulative distribution function 

(c.d.f.) of the 𝐶𝐴𝑅𝐿0 is required. However, for the most well-known control chart, 

named the two-sided Shewhart Xbar (or simply 𝑋̅) Chart (under normality 

assumption), the mathematical c.d.f. expression of the 𝐶𝐴𝑅𝐿0 is not available in the 

literature. As a contribution in this respect, the present work presents the derivation 

of the exact c.d.f. expression of the 𝐶𝐴𝑅𝐿0 for three cases of parameters estimation: 

(1) when both the process mean and standard deviation are unknown, (2) when only 

the mean is unknown and (3) when only the standard deviation is unknown. Using 

these key results, it was possible to calculate the exact minimum number of initial 

(Phase I) samples (m) that guarantees a desired in-control performance in terms of 

the EPC. These results show that m can be prohibitively large (such as 3.000 

samples). As a solution to this problem, two new equations are derived here to 

adjust the control limits to guarantee a desired in-control performance in terms of 

the EPC for any given value of m. The advantage of these equations (compared to 

the existing adjustments methods) is that one provides exact results and the other 

one does not require too many computational resources to perform the calculations. 
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A further study about the impact of these adjustments on the out-of-control (OOC) 

performance provides useful tables to decide the appropriate amount of data and 

the adjustments that corresponds to a user preferred tradeoff between the IC and 

OOC performances of the chart. Practical recommendations for using these findings 

are also provided in this research work. 

 

Keywords 

Xbar Control Chart Performance, Conditional Performance, Exceedance 

Probability Criterion, Control Limits Adjustments, Guaranteed In-Control 

Performance 
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Resumo 
 

Jardim, Felipe Schoemer; Epprecht, Eugenio Kahn (Orientador); 

Chakraborti, Subhabrata (Co-orientador). Gráfico Xbarra com 

Parâmetros Estimados: A Distribuição da Taxa de Alarmes e Correções 

nos Limites. Rio de Janeiro, 2018. 202p. Tese de Doutorado – 

Departamento de Engenharia Industrial, Pontifícia Universidade Católica 

do Rio de Janeiro. 

 

 
 

Os gráficos de controle estão entre as ferramentas indispensáveis para 

monitorar o desempenho de um processo em várias indústrias. Quando estimativas 

de parâmetros são necessárias para projetar esses gráficos, seu desempenho é 

afetado devido aos erros de estimação. Para resolver esse problema, no passado, 

pesquisadores avaliavam o desempenho desses métodos em termos do valor 

esperado do número médio de amostras até um alarme falso condicionado às 

estimativas dos parâmetros (denotado por 𝐶𝐴𝑅𝐿0). No entanto, esta solução não 

considera a grande variabilidade do 𝐶𝐴𝑅𝐿0 entre usuários. Então, recentemente, 

surgiu a ideia de medir o desempenho dos gráficos de controle usando a 

probabilidade de o 𝐶𝐴𝑅𝐿0 ser maior do que um valor especificado –  que deve estar 

próximo do desejado nominal. Isso é chamado de Exceedance Probability Criterion 

(EPC). Para aplicar o EPC, a função de distribuição acumulada (c.d.f.) do 𝐶𝐴𝑅𝐿0 

é necessária. No entanto, para um dos gráficos de controle mais utilizados, o gráfico 

Xbarra, também conhecido como gráfico 𝑋̅ (sob a suposição de distribuição 

normal), a expressão matemática da c.d.f. não está disponível na literatura. Como 

contribuição nesse sentido, o presente trabalho apresenta a derivação exata da 

expressão matemática da c.d.f. do 𝐶𝐴𝑅𝐿0 para três possíveis casos de estimação de 

parâmetros: (1) quando a média e o desvio-padrão são desconhecidos, (2) quando 

apenas a média é desconhecida e (3) quando apenas o desvio-padrão é 

desconhecido. Assim, foi possível calcular o número mínimo de amostras iniciais, 

m, que garantem um desempenho desejada do gráfico em termos de EPC. Esses 

resultados mostram que m pode assumir valores consideravelmente grandes (como, 

por exemplo, 3.000 amostras). Como solução, duas novas equações são derivadas 

aqui para ajustar os limites de controle garantindo assim um desempenho desejado 
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para qualquer valor de m. A vantagem dessas equações é que uma delas fornece 

resultados exatos enquanto a outra dispensa avançados softwares de computador 

para os cálculos. Um estudo adicional sobre o impacto desses ajustes no 

desempenho fora de controle (OOC) fornece tabelas que ajudam na decisão do 

melhor tradeoff entre quantidade adequada de dados e desempenhos IC e OOC 

preferenciais do gráfico. Recomendações práticas para uso desses resultados são 

aqui também fornecidas. 

 

Palavras-Chave  

Desempenho do Gráfico de Controle Xbarra, Desempenho Condicional, Ajuste 

nos Limites de Controle, Desempenho em Controle Garantido 
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𝜇 Phase II process mean (can be in control or out of control) 

n Size of each Phase I and Phase II sample 

OOC Out of Control 

𝑝 Complement of the desired Exceedance Probability  

𝜙 Probability density function of a standard normal random variable 

𝑄𝑝𝑂𝑂𝐶 (1 − 𝑝𝑂𝑂𝐶)-quantile of the out-of-control 𝐶𝐴𝑅𝐿 

𝜎0 In-Control process standard deviation 

𝜎̂0 An estimator for the in-control process standard deviation 

SPC Statistical Process Control  

𝑆𝑝 Multi-sample estimators of the standard deviation 

𝑆𝐷𝐴𝑅𝐿 Standard Deviation of the CARL 

𝑡 A possible value of CFAR  

𝑡(𝑎,𝑏,𝑐) 𝑎-quantile of a non-central 𝑡 distribution with 𝑏 degrees of freedom 

and non-centrality parameter 𝑐 

𝑈 Uniform random variable between 0 and 1 

𝑢 A value of 𝑈. It also refers here to the order of the quantiles of 𝑌 

and 𝑍 

𝑤 A possible value of CARL 

𝑋̅ Sample mean 

𝑋̿ The grand mean of the m Phase I samples estimator 

χ𝑐
2 Central chi-square random variable with 𝑐 d.f. 

χ𝑐,[𝑑]
2  Non-central chi-square random variable with 𝑐 d.f. and non-

centrality parameter 𝑑 

𝑌 Chi-square random variable  
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𝑍 Standard Normal Random Variable  

𝑍1 Standard Normal Random Variable 
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1 
Introduction 

1.1. 
Motivation and Objectives 

Control charts, created by Walter A. Shewhart while working for Bell Labs 

in the 1920s and first published in a book in 1931, are still one of the most used 

tools for monitoring the quality characteristics of a process. The most usual control 

chart to monitor a process mean, namely the 𝑋̅ control chart, is also widely used in 

practice in many different areas such as manufacturing industries and medicine. The 

in-control process mean and standard deviation are important parameters for 

designing the 𝑋̅ control chart. Usually these parameters are unknown and must be 

estimated from 𝑚 historical samples each of size 𝑛 collected when process is 

presumably in control. This is called Phase I Analysis in Statistical Process Control 

(SPC). For an overview of the Phase I, the reader is referred to Chakraborti et al. 

(2009) and Jones-Farmer et al. (2014). Then, the chart’s control limits may be 

established using these estimates in the prospective process monitoring (called 

Phase II), where samples (also of size 𝑛) are collected at regular intervals. These 

samples are used to calculate the plotting statistic [i.e., the sample mean (𝑋̅)] to be 

compared with the control limits. If the plotting statistic is outside the control limits, 

the probability that something has changed with the process mean must be high and 

the manager must find and correct the possible problem. 

In the past, most of the research involving the development and performance 

evaluation of the Phase II control charts assumed that the in-control process 

parameters were known [see, for example the literature review in this topic by 

Jensen et al. (2016)]. I.e., for the 𝑋̅ chart, the in-control process mean (denoted 𝜇0) 

and the in-control process standard deviation (denoted 𝜎0) were assumed to be 

known. This is because this assumption simplifies the design and performance 

evaluation of the chart. For example, in this situation, the number of samples until 

an alarm (the so-called run length) follows the well-known geometric distribution. 
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However, in practice, as noted above, these parameters are usually unknown 

and must be estimated in Phase I. When these estimates are used in place of known 

parameters, their variability can result in chart performance that differs from that of 

charts designed with known parameters. For example, the run length does not 

follow a geometric distribution anymore and the actual probability of a false alarm 

[also named the false alarm rate (FAR)] may be larger than the nominal desired one. 

Many false alarms generate unnecessary costs to the process. For example, the 

unnecessary waste of time that the manager will have to check for a nonexistent 

failure pausing the process and decreasing its productivity. Since Shewhart (1939, 

p. 76), this problem has been pointed out and analyzed by several authors. Thus, 

when designing a control chart, the manager must consider the effect of parameter 

estimation on the chart performance to avoid unnecessary costs. Four cases are 

conceivably possible in the designing of the 𝑋̅ control chart when parameters are 

estimated. These cases arise when: 

a) the in-control process mean and standard deviation (𝜇0 and 𝜎0) are 

unknown. This situation is known as “Case UU”, which stands for mean Unknown 

and standard deviation Unknown [see Quesenberry (1993)]. This state is also 

known as the standard unknown case. This is the most common case in practice;  

b) the process mean is considered known, and the standard deviation is 

unknown (and needs to be estimated in Phase I). This is Case KU (mean Known, 

standard deviation Unknown). This case is less common in practice (compared to 

case UU), however it appears in some situations, for instance, according to 

Montgomery (2009; p. 243), “in processes where the mean of the quality 

characteristic is controlled by adjustments to the machine, standard or target 

values of the mean (i.e., no estimation of the process mean and only estimation of 

the process standard deviation to calculate the control limits) are sometimes helpful 

in achieving management goals with respect to process performance”;  

c) the in-control process mean is unknown (and needs to be estimated in Phase 

I) and the standard deviation is known (Case UK, mean Unknown, standard 

deviation Known). This case is not common in practice, however it may appear 

when the mean may change but the variability around it is known to be considerably 

stable; 
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d) the in-control process mean and standard deviation are both known (this 

case is called “Case KK”, mean Known, standard deviation Known, or “standard 

known” case). This case is the simplest case where the performance of he 𝑋̅ control 

chart can be easily studied and measured.  

Usually the 𝑋̅ chart performance in the ideal case KK is the practitioner 

desired chart performance. However, as noted above, the Phase II 𝑋̅ chart 

performance in cases UU, KU and UK may be considerable different compared to 

Case KK.  

The realized probability of a signal (CPS) [or, if the process is in control, the 

conditional false alarm rate (CFAR)] and the realized average number of samples 

until a signal [which is usually known as the conditional average run length 

(CARL)] are the most popular performance measures of any control chart. When 

parameters are estimated, CFAR (or CPS) and CARL are random variables because 

they are conditioned on the estimated parameters, which are also random variables. 

So, these measures alone, cannot be used when parameters are estimated because 

they vary. Then, in cases UU, KU and UK the performance was usually measured 

using the expectation of 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿 [i.e., 𝐸(𝐶𝐹𝐴𝑅) and 𝐸(𝐶𝐴𝑅𝐿)]. This is 

known as the “unconditional perspective” and it will be explained in more detail in 

Chapter 2. The fact is that, when parameters are estimated with insufficient Phase I 

data, 𝐸(𝐶𝐹𝐴𝑅) and 𝐸(𝐶𝐴𝑅𝐿) may be different, respectively, from the false alarm 

rate (FAR) or the average run length (ARL) in the ideal case KK. Given this, if more 

Phase I samples are not available, some authors suggested adjusting the control 

limits in order to make 𝐸(𝐶𝐹𝐴𝑅) and 𝐸(𝐶𝐴𝑅𝐿) equal to the values of FAR and 

ARL in case KK. However, more recently, a great number of researcher advocated 

against the use of 𝐸(𝐶𝐹𝐴𝑅) and 𝐸(𝐶𝐴𝑅𝐿) as chart performance measures, because 

the overall expectation does not account for the practitioner-to-practitioner 

variability (i.e., each practitioner chart will have one different value of CFAR and 

CARL which will most likely not be equal or close to the 𝐸(𝐶𝐹𝐴𝑅) and 𝐸(𝐶𝐴𝑅𝐿), 

their means. This is because, as noted by them, the variability of CFAR and CARL 

is often large even for a relatively large amount of Phase I data, even if the chart is 

adjusted to have a desired specific value of 𝐸(𝐶𝐹𝐴𝑅) and 𝐸(𝐶𝐴𝑅𝐿). 
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So, recently, some authors recommended to measure control charts with the 

probability of CARL or CFAR be greater than a specified value (close to the nominal 

desired value). This is known as the Exceedance Probability Criterion (EPC) 

proposed by Albers and Kallenberg (2005) and Albers et al. (2005). These authors 

recommended adjusting the control limits or finding the appropriate amount of 

Phase I data using the EPC as a performance measure, instead of 𝐸(𝐶𝐹𝐴𝑅) and 

𝐸(𝐶𝐴𝑅𝐿). So, note that to use the EPC, the knowledge of the cumulative 

distribution functions of CARL or CFAR are required. Despite of the long list of 

works in the literature regarding the performance of the 𝑋̅ control chart with 

estimated parameters (under normality assumption), the exact mathematical c.d.f. 

expressions of CARL and CPS (or CFAR) were unknown in the cases where 

parameters are estimated. As we will see during this work, the exact expressions of 

the CARL and CPS (or CFAR) c.d.f´s provides to the practitioners and researchers 

a better understanding of the effect of parameter estimation on the 𝑋̅ control chart 

performance by helping them in the calculation of some  important CARL and CPS 

(or CFAR) properties (such as quantiles, mean, median and variance) and, more 

important, these c.d.f.´s (of CARL and CPS [or CFAR]) also help the practitioner 

and researcher to calculate the exact minimum number of Phase I samples and the 

exact adjustments to the control limits in order to guarantee an in-control 

performance in terms of the Exceedance Probability Criterion (EPC). Since the 

exact distributions of CARL and CPS (or CFAR) were unknown, previous authors, 

for Case UU only, relied on approximations or simulations in order to study the 

performance of the 𝑋̅ control chart and design it in terms of the EPC.  

With this background as motivation, the present work has the following 

objectives for the cases UU, KU and UK of the 𝑋̅ chart: 

1. Derive the mathematical expressions of the c.d.f. of the conditional average 

run length (CARL) and its reciprocal, the conditional probability of a signal 

(CPS) of the 𝑋̅ chart for the first time in the literature. Previous authors 

relied on simulations and approximations to study such distributions; 

 

2. With the aforementioned distributions, calculate the exact required numbers 

of Phase I samples that guarantee a desired conditional in-control 
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performance in terms of the EPC for the first time in the literature. Previous 

authors calculated these numbers based on the unconditional perspective or 

based on the achievement of some desired value for the variability of the 

𝐶𝐴𝑅𝐿0 (i.e., not in terms of the EPC); 

 

3. Derive new simple equations to adjust the control limits to guarantee a 

desired in-control performance (in terms of the EPC) which provides exact 

or accurate results. The existing adjustment equations in the literature do not 

provide exact results and their calculations are rather complicated requiring 

computers for the calculation of several integrals and derivatives; 

 

4. Study and analyze the effect of the adjustment of the limits on the out-of-

control performance of the chart in detail to provide some practical 

recommendations for the users. Previous authors have tackled this issue 

only very briefly and focusing mainly on the unconditional out-of-control 

run length. This is an important information for the user, who needs to 

consider the tradeoff between the number of Phase I samples to consider, 

the risks of a false alarm rate higher than desired and the possible 

deterioration in the out-of-control performance regarding the relevant shifts 

to be detected with minimum delay. Since the adjustments required (and 

their effects on the OOC performance of the chart, that depend on the size 

of the relevant shift) are milder with larger numbers of Phase I samples, only 

a more comprehensive analysis of the OOC CARLs of the chart with 

adjusted limits for different numbers of Phase I samples and for different 

shifts in the mean can provide the user with the “big picture” needed in order 

to make an informed decision on the number and size of Phase I samples 

and adjustments to adopt; 

Figure 1 shows a summary of the basic ideas presented in this thesis. 
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Figure 1. Summary of the scope of the present thesis 

 

1.2. 
Methodology of this work 

To accomplish the objectives of the present work, first a literature review was 

made where were verified that the mathematical expressions of the c.d.f. of the 

conditional average run length (CARL) and, its reciprocal, the conditional 

probability of a signal (CPS) of the 𝑋̅ chart under normality assumption were 

unknown. Given this, with probability and statistical techniques, such as the 

conditional-unconditional method and the distribution function technique, these 

c.d.f.´s were derived analytically for the first time in the literature. With these 

mathematical c.d.f.´s expressions, it was possible to derive new exact equations to: 

(1) calculate the prediction bounds of the in-control CARL and CPS; (2) calculate 

the exact minimum amount of Phase I samples to achieve a desired in-control 

performance in terms of the Exceedance Probability Criterion (EPC); and (3) adjust 

the control limits in order to achieve a desired in-control performance in terms of 

the EPC with a pre-established amount of Phase I data. Some of these exact 

equations do not have a close-form solution, so in order to find the answers for these 

cases, two approaches were adopted:  
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1 – The use of a search algorithm, known as the secant method. This method 

provides extremely accurate result, which can be considered exact. This is because, 

one can specify the desired accuracy for the search algorithm in order to find a result 

that is exact up to a specified number of significant digits. Details of this method 

are in Appendix B. 

 

2 – The analytical derivation of new approximate formulas. To this end, it 

was used approximate techniques, such as the one-step and two-steps Taylor 

approximations and an approximation for the c.d.f. of a non-central chi-square 

distribution derived by Cox and Reid (1987). Details of these approximate formulas 

derivations are in Appendixes C and D. 

 

To perform all the above-mentioned calculations, programs were written using 

the R language. In particularly two R-packages were used: cubature (to compute 

double integrals) and numDeriv (to compute numerical derivations). 

  

1.3 
Organization of the Thesis 

In order to achieve the objectives of this research, the remainder of this work 

is organized as follows: 

• In Chapter 2, there is a section of a literature review on the previous works 

regarding to the effect of parameters estimations on the control charts 

performance, especially on the 𝑋̅ control chart and the very recent works in 

this topic. Another section presents the basic concepts and formulas of the 

𝑋̅ control limits and the parameters estimators used in them. For the three 

cases (UU, KU and UK), the formulas of the conditional average run length 

(CARL) and conditional probability of a signal (CPS) are also derived and 

explained. Some plots of CARL and CPS curves are presented along with 

some analyses. 

•  In Chapter 3, there are detailed derivations of the cumulative distribution 

functions (c.d.f.) of CARL and CPS (or CFAR) for all the 3 cases (UU, KU 

and UK). Plots of the c.d.f. and the probability density function are 
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presented. In two sections of this chapter, some properties of the 

distributions of the CARL are calculated, such as their means, standard 

deviations and quantiles (prediction bounds). Some analyses are provided. 

• In Chapter 4, equations (based on the c.d.f´s derived in Chapter 3) to 

calculate the minimum number of Phase I samples in order to guarantee an 

in-control performance in term of the EPC are derived for all three case UU, 

KU and UK. Some results are tabulated and analyzed. 

• In Chapter 5, equations which provide exact and approximate adjustments 

in the control limits (to guarantee an in-control performance in terms of the 

EPC) are derived. In this chapter, it is shown that these new equations 

provide accurate results compared to the already existing ones for Case UU. 

Also, further in this chapter, an out-of-control analysis after the adjustments 

is made.  

• In Chapter 6, the conclusions and some practical recommendations are 

presented. 

To support the understanding of the contents in this work, in appendices some 

extra derivations to some of the formulas used here are presented along to some 

extra figures and plots. The codes in R language are also in Appendix. Finally, from 

some of the contents of this work, three papers were written and submitted to 

international journals. One of them is already accepted. These papers are in 

Annexes in the end of this work.  
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2 
Literature review and basic concepts 

2.1. 
Previous works 

The undesired effect of estimating parameters with limited amount of Phase 

I data on the performance of control charts has long been documented in the 

literature. Shewhart (1939, p.76) already showed this concern when he wrote “In 

the majority of practical instances, the most difficult job of all is to choose the 

sample that is to be used as the basis for establishing the tolerance range (control 

limits)". However, mostly after Queensberry (1993) and Woodall and Montgomery 

(1999), who emphasized the relevance of this research topic, a large number of 

papers which studied and proposed solution for the effect of parameter estimation 

on the performance of control charts have emerged [this is summarized in the 

literature reviews made by Jensen et al. (2006) and Psarakis et al. (2014)]. The fact 

is that the performance measures of control charts have been the subject of much 

debate in the last 20 years or so. 

Many researchers who studied the effect of parameter estimation on the 

performance of control charts have focused on the marginal distribution of the 

number of observations (or samples) until an alarm (the well-known run length, 

denoted RL – see, for example, Moskowitz et al. (1994)] and especially on its 

expected value, the so-called unconditional average run length, denoted ARL [see 

for example, Quesenberry (1993), Chen (1997), Chakraborti (2000, 2006 and 2007) 

and Goedhart et al. (2016a)]. They focused almost exclusively on the in-control 

performance, i.e., they considered the in-control run length (𝑅𝐿0) distribution, its 

mean (𝐴𝑅𝐿0) and its the standard deviation (𝑆𝐷𝑅𝐿0). The 𝑅𝐿0 distribution is 

obtained by averaging over the distribution of the parameter estimators, thus, a 

performance given by 𝐴𝑅𝐿0 or 𝑆𝐷𝑅𝐿0 is an “average” performance over an infinite 

number of possible control charts, each one constructed with a possible value of an 

infinite set of estimated parameters, rather than a performance of a specific control 
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chart. Like noted in the introduction, this is denoted as “the unconditional 

perspective”. Thus the 𝐴𝑅𝐿0 and 𝑆𝐷𝑅𝐿0 does not account for what is called the 

practitioner-to-practitioner variability. This is a subject of much debate in the 

literature, see for example, Trietsch and Bischak (1998), Albers and Kallenberg 

(2004a,b, and 2005), Albers et al. (2005), Bischak and Trietsch (2007), Kumar and 

Chakraborti (2014), Saleh et al (2015a,b), Epprecht et al. (2015), Faraz et al. (2015), 

Goedhart et al (2017 and 2018). 

In any real application, where the user has just one set of reference samples 

to estimate the chart parameters and calculate its control limits, the realized average 

number of samples until a false alarm will not actually be the 𝐴𝑅𝐿0. The realized 

number of samples until a false alarm will be conditioned on the parameters 

estimates (this is denoted 𝐶𝑅𝐿0) and so its average, denoted as 𝐶𝐴𝑅𝐿0. Recently 

[see, for example, Saleh et al (2015a,b), Epprecht et al. (2015)] authors recognized 

that the 𝐶𝐴𝑅𝐿0, in fact, is the “real/actual” average number of samples until a false 

alarm, and, different from the 𝐴𝑅𝐿0, it is a random variable that will most probably 

not assume its expectation (which is also the 𝐴𝑅𝐿0, i.e., 𝐸(𝐶𝐴𝑅𝐿0) = 𝐴𝑅𝐿0 =

𝐸(𝑅𝐿0)), since its variability, as also noted by them, is often large (especially if the 

amount of Phase I data to estimate the chart parameters is not very large, such as 

three thousands). This alternative and new point of view is known as “the 

conditional perspective”. A detailed comparison between the conditional and 

unconditional perspectives is presented in Jardim et al. (2017a) – a resulting paper 

of the present thesis (see Annex A). 

As noted in Chapter 1, recognizing that the 𝐶𝐴𝑅𝐿0 (or its reciprocal, the 

conditional false alarm rate, denoted, 𝐶𝐹𝐴𝑅) is a random variable, Albers et al. 

(2005) proposed to measure and set up control chart limits so as to guarantee that a 

given tolerated value for the 𝐶𝐴𝑅𝐿0 had only a large (specified) probability (e.g. 

90%) of being exceeded, the Exceedance Probability Criterion (EPC). Thus, it is 

evident that, to use the EPC, it is necessary to deal with the distribution of 𝐶𝐴𝑅𝐿0. 

When it comes to the possibly most well-known control chart of all, the 𝑋̅ control 

chart under normality assumption, the exact c.d.f. expression of the 𝐶𝐴𝑅𝐿0 was 

unknown until the present work. So, most authors studying and proposing solutions 

to the negative effect of parameter estimation on the performance of the 𝑋̅ charts 
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using the EPC relied in simulations, bootstrap methods, and approximations for the 

distribution of the 𝐶𝐴𝑅𝐿0 (as it will be seen next).  

It has been found by several authors [see, for example, Quesenberry (1993) 

and Chakraborti (2000) for the 𝑋̅ chart] that while estimating parameters, the 

unconditional perspective leads to requiring larger amounts of Phase I data for 

parameters estimation so that some nominal in-control chart performance (in terms 

of the ARL and SDRL) can be achieved as in the known parameters case (case KK). 

This required amount of data is much larger than traditionally recommended which 

is 𝑚 = 25 or 30 Phase I subgroups each of size 𝑛 = 5 given by the usual manuals 

and books in this topic [see, for example, Montgomery (2013)]. On the other hand, 

focusing on the conditional perspective, Saleh et al. (2015a,b), for the 𝑋̅, 𝑋 and the 

EWMA charts, showed that using the standard deviation of the 𝐶𝐴𝑅𝐿0 distribution, 

in addition to the average (𝐴𝑅𝐿0), as a performance measure, better accounts for 

practitioner-to-practitioner variability and leads to a requiring even larger amounts 

of Phase I reference data (i.e., even larger values of 𝑚). Although this is technically 

sound advice, it has been noted that such huge amounts of data that require very 

large values of 𝑚 (several hundreds or even some thousands), may be typically 

infeasible in routine control charting applications. Similar findings were made by 

Loureiro et al. (2017), Epprecht et al. (2015) and Kumar and Chakraborti (2014) 

who considered, respectively, the joint 𝑋̅-𝑆 control charts, the one-sided S charts 

and Shewhart charts for monitoring times between events following an exponential 

distribution. Using the EPC, their findings of the required numbers of Phase I 

samples to guarantee a specified nominal in-control performance, were much larger 

than found by previous authors who based their analyses on the unconditional 

performance measures (ARL and SDRL). It is important to note that, until the 

present work, the minimum number of reference sample to achieve the in-control 

performance of the 𝑋̅ chart in terms of the EPC wasn’t presented (calculated) in the 

literature.   

Given the finding that under both perspectives (the unconditional and 

conditional), large, often impractical, amounts of Phase I data are required to 

guarantee some in-control performance of the Phase II 𝑋̅ chart, some authors have 

considered using adjustments to the control limits to properly compensate for the 

effects of parameter estimation and to guarantee a desired in-control performance 
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with the available amount of data. Such control limits are called adjusted limits and 

this adjustment consists of replacing the limit factor (𝐿) (usually equal to 3 in the 

traditional Shewhart 𝑋̅ chart), by a new (or corrected or adjusted) limit factor (𝐿∗), 

which yields a specified nominal in-control performance. For example, in the 

unconditional perspective, the constant 3 in the traditional “3-sigma limits” may be 

replaced (or adjusted) by a constant (𝐿∗ = 3.15, say), to guarantee that the 𝐴𝑅𝐿0 

has a desired nominal value. On the other hand, in the conditional perspective, one 

recognizes that the 𝐶𝐴𝑅𝐿0 is a random variable with a distribution and thus one 

uses the EPC and replaces the traditional limit factor (𝐿) by an adjusted limit factor 

(𝐿∗), to guarantee that with a high probability, the 𝐶𝐴𝑅𝐿0 is greater than a specified 

value, say, 370.4. Of course, any adjustment to the control limits also impacts the 

chart’s out-of-control performance and one must carefully balance the gains and 

losses on both fronts. The convention in SPC has been to weigh the chart’s in-

control performance more heavily, so that not too many false alarms are seen 

relative to what is nominally expected, but this must also be balanced so that the 

chart’s shift detecting ability is not highly compromised. 

To underscore the keen interest in this area of research, note that several 

articles have about adjustments of control limits for the 𝑋̅ chart have appeared in 

major journals over the last decade. These include Chakraborti (2006), Gandy and 

Kvaløy (2013), Saleh et al. (2015b), Goedhart et al. (2016 and 2017), Jardim et al. 

(2017a and 2017b) and Faraz et al. (2017). These efforts are described next.  

Chakraborti (2006) and Jardim et al. (2017b) [another resulting paper of this 

work, see Annex B] derived formulas for 𝐿∗, using the unconditional and the 

conditional perspectives, respectively and the exact distributions formulas for the 

in-control marginal run length and conditional average run length in each case. 

Although these distributions and the resulting equations are not in a closed form, 

they can be easily solved numerically, using many available software packages, for 

example, such as the R language. Since these methods are based on an exact 

distribution and yields very accurate results easily, using numerical methods to 

solve the integrals involved, these are henceforth called “the Exact Methods”.   

On the other hand, Goedhart et al. (2016 and 2017a), derived formulas for the 

adjusted limit factor under the unconditional and the conditional perspective, 

respectively, using sophisticated approximations for the CFAR c.d.f.  Furthermore, 
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realizing the complexity of the approximations, Goedhart et al. (2018) presented an 

alternative and simpler approximate formula for the conditional perspective 

solution based on the theory of tolerance intervals [see Krishnamoorthy and 

Mathew (2009)]. However, this simpler formula requires the quantile of a non-

central chi-square distribution, which is not tabulated in many textbooks and is not 

provided in a popular software like MSExcel, so its calculation may still require 

relatively advanced statistical skills. Given this, in the present work, like mentioned 

in Chapter 1, as an aside, it is derived an even simpler approximate formula in which 

the quantile of the non-central chi-square distribution is replaced by a central chi-

square quantile [using a result given by Cox and Reid (1987)], which is more readily 

available. All these methods are called “the Approximate Methods” to emphasize 

the fact that they are derived using some approximations (to the distribution of the 

CFAR or 𝐶𝐴𝑅𝐿0).  

In addition to the exact and the approximate methods, there are adjustments 

to the 𝑋̅ chart control limits considered by Saleh et al. (2015b) under the conditional 

perspective and the EPC using the bootstrap approach proposed by Gandy and 

Kvaloy (2013). Finally, Faraz et al. (2017) also proposed a method to adjust the 𝑋̅ 

chart, however, their adjustment was not based in the EPC, instead, it was based on 

the equal-tailed tolerance interval together with the Bonferroni Inequality [see 

Krishnamoorthy and Mathew (2009, p. 4 and p.10)], which generates wider 

adjusted control limits if compared to the adjusted limits derived under the EPC. 

Faraz et al. (2017) defined their method as “exact”, however it is not actually exact, 

since it is based in an inequality. Also, their results are extremely different from all 

the other methods under the conditional perspective, but this is still included in this 

work for comparison (and it is called here as “Exact Method”, since this was the 

definition used by them).  

Figure 2 shows a flowchart for the current state of the art regarding the 

adjustment of Phase II control limits to achieve some desired nominal in-control 

performance for the 𝑋̅ chart in the face of parameter estimation with Phase I data.   
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Figure 2. Adjusting the 𝑿̅ chart control limits for a guaranteed in-control 

performance 

 

2.2. 

The Control Limits of the 𝑿̅ Chart  

In the present work, the observations of the process quality variable (X) are 

considered i.i.d. and normally distributed, like is traditionally done for the 𝑋̅ 

Control Chart. When the process is in control, 𝑋~𝑁(𝜇0, 𝜎0
2); when the process is 

out of control, 𝑋~𝑁(𝜇1, 𝜎0
2), with 𝜇1 ≠ 𝜇0. Thus, the process standard deviation is 

assumed to remain at the in-control value 𝜎0, consistently with the purpose of 

detecting a shift in the mean. In the ideal case (KK), the in-control process mean 

(𝜇0) and standard deviation (𝜎0) are both known or specified. In this situation, the 

upper and lower control limits (𝑈𝐶𝐿 and 𝐿𝐶𝐿) of the 𝐿-sigma 𝑋̅ Control Chart with 

subgroups of size n are given, respectively by 

𝑈𝐶𝐿 = 𝜇0 + 𝐿
𝜎0 

√𝑛
                                                  (1) 

and 

𝐿𝐶𝐿 = 𝜇0 − 𝐿
𝜎0 

√𝑛
,                                                   (2) 

where the control limit factor L is either a value such as 3 (the widely used “3 sigma 

limits”) or is chosen so as to provide a nominal in-control average run length such 
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as 370.4 or a false-alarm rate 𝛼. In the latter case, we have 𝐿 = 𝑧𝛼 2⁄ =

Φ−1(1 − 𝛼 2⁄ ), where Φ(∙) denotes the standard normal c.d.f. Thus, the usual 3-

sigma limits correspond to a nominal false alarm rate of 𝛼 = 0.0027. However, as 

noted in the beginning of the Chapter and in Chapter 1, in practice 𝜇0 or 𝜎0 are 

usually unknown and need to be estimated from a Phase I data, consisting of m 

subgroups of size n, taken from the process when it is in control.  

In Cases UU and UK, the most common estimator for the mean 𝜇0 is the 𝑋̿, 

the grand mean of the m Phase I samples: 

 𝑋̿ =
1

𝑚
∑ 𝑋̅𝑖
𝑚
𝑖=1 ,                                                          (3)  

where 𝑋̅𝑖 =
1

𝑛
∑ 𝑋𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 and 𝑋𝑖𝑗 denotes the 𝑗-th 

observation of the 𝑖-th Phase I sample. In cases UU and KU, a highly recommended 

estimator for the standard deviation is the pooled sample standard deviation (𝑆𝑝), 

which is given by the square root of the average of the sample variances of the 

Phase I samples. Thus,  

𝑆𝑝 = √
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1 , where 𝑆𝑖

2 =
1

𝑛−1
∑ (𝑋𝑖,𝑗 − 𝑋̅𝑖)

2𝑛
𝑗=1                         (4)  

Mahmoud et al. (2010) showed that, among multi-sample estimators of the 

standard deviation, 𝑆𝑝 is preferable to a more traditional estimator, like  𝑆̅ 𝑐4,𝑏,⁄  

where 𝑆̅ = ∑ 𝑆𝑖
𝑚
𝑖=1 𝑛⁄  and 𝑐4,𝑏 is the unbiasing constant defined as [see, 

Montgomery (2013)]:  

𝑐4,𝑏 =
[𝛤(𝑏 2⁄ )√2]

𝛤((𝑏−1) 2⁄ )√𝑏−1
.                                                    (5) 

Where 𝑏 = 𝑚(𝑛 − 1) + 1 and 𝛤 is the gamma function. So, in the present work, 

the 𝑋̿ and 𝑆𝑝 are considered (instead of 𝑆̅ 𝑐4,𝑏,⁄ ). In the literature, two other pooled 

estimators of the standard deviation have been also considered, the unbiased 

𝑆𝑝 𝑐4,𝑏⁄  and the biased, but minimum mean squared error, estimator 𝑐4,𝑏𝑆𝑝 (see 

Mahmoud et al., 2010 and Saleh et al., 2015a,b). Since these three estimators 

provide similar results as 𝑐4 ≈ 1 for relatively small values of 𝑚 and 𝑛 [such as 

𝑚 = 25 and 𝑛 = 4 ⎯ again, see Mahmoud et al. (2010) for a quantitative 

comparison], in the present work, we consider just the 𝑆𝑝 estimator. Note that it is 
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not considered here the range-based estimators since some authors have 

recommended against their use because of lack of robustness (see again Mahmoud 

et al., 2010). Anyway, all the formulas and results presented here can be easily 

modified for other estimators of standard deviation.  

 When 𝜇0 or 𝜎0 are estimated, most authors recommended replacing the 

constant 𝐿 in equations (1) and (2) by a constant 𝐿∗called the adjusted control limit 

factor that needs to be found so that a desired nominal in-control chart performance, 

defined in terms of a suitable performance criterion, is achieved, for a chosen set of 

estimators and given the available amount of Phase I data. This means that, different 

from 𝐿, 𝐿∗ may vary depending on the amount of data (m and n) available to estimate 

𝜇0 and 𝜎0 and the type (unbiased, biased, minimum variance, etc.) of estimators (𝜇̂0 

and 𝜎̂0) one uses to estimate the parameters. When the amount of Phase I data is 

sufficiently large (i.e., when m and or n tend to infinity), 𝐿∗ is expected to be equal 

to (converge to) 𝐿. 

In order to study the effects of the estimation of the process parameter(s) on 

the performance of a control chart in general, it is convenient to begin with a study 

of the Phase II probability of a signal given the estimator(s), the so-called 

conditional probability of a signal (CPS), as noted in Chapter 1. Note again that 

when the process is in-control, a signal represents a false alarm and its probability 

is called the false alarm rate. As noted earlier, the conditional false alarm rate is 

denoted CFAR. These are discussed in the next section. 

 

2.3. 
The Conditional Probability of a Signal and the Conditional False 
Alarm Rate  

A signal occurs when, in a given Phase II sample, the average 𝑋̅ lies outside 

the control limits. Given the expressions for the control limits (Eq. 1 and Eq. 2) and 

replacing 𝜇0 and 𝜎0 by 𝑋̿ and 𝑆𝑝 when appropriate, the conditional probability of a 

signal (𝐶𝑃𝑆) for any Phase II sample can be written, respectively, for Case UU KU 

and UK are 

𝐶𝑃𝑆𝛿,𝑈𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑋̿, 𝑆𝑝) = 1 − 𝑃 (𝑋̿ − 𝐿
𝑆𝑝 

√𝑛
≤ 𝑋̅ ≤ 𝑋̿ + 𝐿

𝑆𝑝 

√𝑛
),                   (6)     
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𝐶𝑃𝑆𝛿,𝐾𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑆𝑝) = 1 − 𝑃 (𝜇0 − 𝐿
𝑆𝑝 

√𝑛
≤ 𝑋̅ ≤ 𝜇0 + 𝐿

𝑆𝑝 

√𝑛
)                      (7) 

and                   

𝐶𝑃𝑆𝛿,𝑈𝐾 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑋̿) = 1 − 𝑃 (𝑋̿ − 𝐿
𝜎0 

√𝑛
≤ 𝑋̅ ≤ 𝑋̿ + 𝐿

𝜎0 

√𝑛
).                         (8) 

In the remainder of this work, subscripts 𝑈𝑈, 𝐾𝑈 and 𝐾𝑈 will be used when 

necessary to indicate the cases, as above. It is then evident (as denoted in the left-

hand member of (6), (7) and (8)) that the probability of a signal in Phase II is 

conditioned on the value of the estimators 𝑋̿ and 𝑆𝑝 in (6), estimator 𝑆𝑝 in (7) and 

estimator 𝑋̿ in (8). Before proceeding, it is convenient to define some notations. Let 

𝜇 denote the actual process mean in Phase II (being it in control or out of control). 

Let’s also define the scaled shift of the mean as 

𝛿 =
𝜇−𝜇0

𝜎0
.                                                           (9) 

When 𝜇 = 𝜇0, 𝛿 = 0 and the process mean is in control. When 𝜇 = 𝜇1 ≠

𝜇0, 𝛿 ≠ 0 and the process mean is out of control. Also, it is known that 𝑌 =

𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄  follows a chi-square distribution with 𝑚(𝑛 − 1) degrees of 

freedom and 𝑍 = (
𝑋̿−𝜇0

𝜎0
)√𝑚𝑛 follows a standard normal distribution (see 

Chakraborti, 2000). Note that Y and Z are proportional to the estimation errors 

defined respectively as 𝑆𝑝
2 𝜎0

2⁄  and (
𝑋̿−𝜇0

𝜎0
). Recalling that 𝑋~𝑁(𝜇, 𝜎0

2) implies that 

𝑋̅~𝑁(𝜇, 𝜎0
2 𝑛⁄ ) where 𝜇 = 𝜇0 + 𝛿𝜎0 (see Eq. 9), the conditional probability of a 

signal (𝐶𝑃𝑆) for any Phase II sample, can be written, for Case UU, KU and UK 

𝐶𝑃𝑆 𝛿,𝑈𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑍, 𝑌, 𝛿) 

   = 1 − [Φ(
𝑍

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛) − Φ(

𝑍

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛)],(10) 

𝐶𝑃𝑆 𝛿,𝐾𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑌, 𝛿) 

    = 1 − [Φ(𝐿√
𝑌

𝑚(𝑛−1)
− 𝛿√𝑛) − Φ(−𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛)]                (11) 

and 

𝐶𝑃𝑆 𝛿,𝑈𝐾 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑍, 𝛿) 
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   = 1 − [Φ (
𝑍

√𝑚
+ 𝐿 − 𝛿√𝑛) − Φ (

𝑍

√𝑚
− 𝐿 − 𝛿√𝑛)].                            (12) 

Expressions (10), (11) and (12) are convenient because they express the 

conditional probability of a signal in terms of two random variables with well-

known distributions, namely a standard normal distribution and a chi-square 

distribution. These general expressions apply to both in-control and out-of-control 

situations. As noted, in the in-control case 𝛿 = 0, whereas in the out-of-control case 

𝛿 ≠ 0.  Hence in the in-control situation, the conditional probability of a signal, 

namely, the Conditional False Alarm Rate, 𝐶𝐹𝐴𝑅, is expressed for Case KU and 

Case UU by: 

𝐶𝐹𝐴𝑅𝑈𝑈 = 𝐶𝑃𝑆 0,𝑈𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑍, 𝑌, 𝛿 = 0) 

    = 1 − [Φ(
𝑍

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
) − Φ(

𝑍

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
)],                               (13) 

𝐶𝐹𝐴𝑅𝐾𝑈 = 𝐶𝑃𝑆 0,𝐾𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑌, 𝛿 = 0) = 2Φ(−𝐿√
𝑌

𝑚(𝑛−1)
)                    (14) 

and   

𝐶𝐹𝐴𝑅𝑈𝐾 = 𝐶𝑃𝑆 0,𝑈𝐾 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑍, 𝛿 = 0) 

                = 1 − [Φ(
𝑍

√𝑚
+ 𝐿) − Φ(

𝑍

√𝑚
− 𝐿)].                                                   (15) 

respectively. Given that the in-control conditional run length (𝑅𝐿0) distribution of 

the 𝑋̅ chart is geometric with parameter 𝐶𝐹𝐴𝑅 (see, for example, Chakraborti 

(2000)), then its expected value, the conditional in-control average run length 

𝐶𝐴𝑅𝐿0, is: 

 𝐶𝐴𝑅𝐿0 =
1

𝐶𝐹𝐴𝑅
,      0 ≤ 𝐶𝐹𝐴𝑅 ≤ 1.                              (16) 

Also, let 𝐶𝐴𝑅𝐿0,𝑈𝑈, 𝐶𝐴𝑅𝐿0,𝐾𝑈 and 𝐶𝐴𝑅𝐿0,𝑈𝐾 denote the conditional in-

control average run lengths in Case UU, Case KU and Case UK respectively. 

Henceforth, when 𝐶𝐴𝑅𝐿0, 𝐶𝐹𝐴𝑅 or 𝐶𝑃𝑆𝛿 in a given equation do not receive a 

subscript 𝑈𝑈, 𝐾𝑈 or 𝑈𝐾, this means that the equation is general for the 3 cases (as 

in Eq. 16). Also, let’s define the 𝐶𝐴𝑅𝐿𝛿 as the notation of the conditional average 

run length in general, i.e., for the in-control and out-of-control situations. So, note 

that 𝐶𝐴𝑅𝐿𝛿 = 1 𝐶𝑃𝑆𝛿⁄ . 
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Figure 3 shows a 3D contour plot of 𝐶𝐹𝐴𝑅𝑈𝑈 in function of 𝑍 and 𝑌 when 

𝑚 = 30, 𝑛 = 5 and 𝛼 = 0.0027 (i.e., 𝐿 = 3). Note that the values of  𝐶𝐹𝐴𝑅𝑈𝑈 can 

be significantly different from 0.0027 for many combinations of 𝑍 and 𝑌. When 

parameters are estimated, the false alarm rate conditioned on the estimates 

(𝐶𝐹𝐴𝑅𝑈𝑈) can assume very large values such as 0.02 a values more than 7 times 

larger than the nominal 0.0027. 

 

Figure 3. 𝑪𝑭𝑨𝑹𝑼𝑼 as function of 𝒁 and 𝐘 when 𝒎 = 𝟑𝟎, 𝒏 = 𝟓 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑).  

To visualize the effect of the number of Phase I samples, 𝑚, Figure 4 next 

presents the 𝐶𝐹𝐴𝑅𝐾𝑈 curves parametrized by 𝑚 by plotting 𝐶𝐹𝐴𝑅𝐾𝑈 as a function 

of the order (𝑢) of the quantiles of 𝑌. One way to do this is using the probability 

integral transformation, which yields the fact that the c.d.f. of 𝑌 (𝐹𝜒𝑚(𝑛−1)
2 (𝑌)) has 

the same distribution of a random variable 𝑈, uniformly distributed between 0 and 

1. In fact, it is not correct to construct a graph of 𝐶𝐹𝐴𝑅𝐾𝑈 directly in function of 

the random variable Y when the graph is parametrized by 𝑚. This is because the 

values of Y also depend on values of 𝑚 since Y follows a chi-square distribution 

with 𝑚(𝑛 − 1) degrees of freedom. Figure 4 illustrates the curves of 𝐶𝐹𝐴𝑅𝐾𝑈 × 𝑢 

for 𝑛 = 5, 𝑚 = 10, 20, 50, 100, 500 and 𝛼 = 0.0027 (i.e., 𝐿 = 3).  
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Figure 4. 𝑪𝑭𝑨𝑹𝑲𝑼 as function of 𝒖 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 

and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

Figure 4 clearly shows the effect of the number of Phase I samples 𝑚 on the 

performance of the 𝑋̅ control chart when the process standard deviation is 

estimated. The horizontal line corresponds to the value of the false alarm rate in 

Case KK and can be considered the target when the 3-Sigma limits are used. So, it 

can be seen, for 𝑛 = 5, that the curves of 𝐶𝐹𝐴𝑅𝐾𝑈 are significantly closer to the 

horizontal line (the target) when m, the number of initial reference samples, is larger 

(compare for example the curves for m = 10 and for m = 500). This means that the 

difference between the target and the actual conditional false alarm rate is 

considerably more likely to be larger when 𝑚 is small. It is also interesting to note 

that the effect is different on the two sides of 𝑢 = 0.5 (the 0.5 quantile of 𝑌). This 

is caused by the skewness of the distribution of 𝐶𝐹𝐴𝑅𝐾𝑈 which is derived in 

Chapter 3. 

Using Equation (16) it is also possible to plot curves of the conditional in-

control average run length in Case KU (𝐶𝐴𝑅𝐿0,𝐾𝑈), this is showed in Figure A.1 in 

Appendix A. The conclusions are similar to the one explained above and can been 

checked in more detail in an resulting paper of this thesis [Jardim et al. (2017b)] in 

Annex B. Using the same procedure, and the same values for 𝛼, 𝑚 and 𝑛, Figure 5 

shows the 𝐶𝐹𝐴𝑅𝑈𝐾 curves. 
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Figure 5. 𝑪𝑭𝑨𝑹𝑼𝑲 as function of 𝒖 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 

and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

An interesting behavior of the 𝐶𝐹𝐴𝑅𝑈𝐾 can be observed in Figure 5: the 

minimum possible value of 𝐶𝐹𝐴𝑅𝑈𝐾 is the exact nominal desired value in case KK 

(i.e., 0.0027, for 𝐿 = 3). The fact that 𝐶𝐹𝐴𝑅𝑈𝐾 cannot be smaller than the its 

nominal value is a particular and remarkable property of case UK. Similar 

conclusion can be made for the 𝐶𝐴𝑅𝐿0,𝑈𝐾 curves which is showed in Figure A.2 in 

Appendix A.  

Figures 3, 4 and 5 provide good insights of the conditional false alarm rate 

(𝐶𝐹𝐴𝑅) behavior when the process mean or the process standard deviation are 

estimated (such as the minimum possible value of  𝐶𝐹𝐴𝑅 or “how distant” is it 

curve from the nominal line). However, they do not clear provide the distributions 

of this random variable. In the next chapter, the distributions of 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0 

are derived. These distributions clearly show the effect of parameters estimation on 

the 𝑋̅ chart performance. They are also essential to calculate exact results for the 

Exceedance Probability Criterion (EPC), as noted in the Introduction. 
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3 
Derivation of the cumulative distribution functions of the 
𝑪𝑨𝑹𝑳𝟎 and 𝑪𝑭𝑨𝑹 

As explained in the introduction, the control chart´s performance is 

commonly measure by the probability of the 𝐶𝐴𝑅𝐿0 (or 𝐶𝐹𝐴𝑅) exceeding a 

specified value. This is called the Exceedance Probability Criterion (EPC). Thus, it 

is evident that, to use the EPC, it is necessary to know the c.d.f. of the 𝐶𝐴𝑅𝐿0 and 

𝐶𝐹𝐴𝑅. When it comes to the possibly most well-known control chart of all, the 𝑋̅ 

control chart under the normality assumption, the exact c.d.f. expressions of the 

𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 are unknown. Given this, in this chapter, we derive the exact 

c.d.f. expression of the 𝐶𝐴𝑅𝐿0 (and 𝐶𝐹𝐴𝑅) of the 𝑋̅ control chart for the 3 possible 

parameters case estimation (UU, KU and KU). To do this end, we first derive the 

c.d.f. expression of the conditional probability of a signal, 𝐶𝑃𝑆𝛿, which works for 

the in-control and out-of-control situations (see Equations 10, 11 and 12) and its 

reciprocal, the conditional average run length 𝐶𝐴𝑅𝐿𝛿. With this c.d.f´s, we also 

calculate some important properties of the 𝐶𝐴𝑅𝐿0, such as the mean and standard 

deviation. 

Before proceeding, note that, as shown in Equation (16), 𝐶𝐴𝑅𝐿0 is a 

monotonic decreasing function of 𝐶𝐹𝐴𝑅, so the cumulative distribution function 

(c.d.f.) of 𝐶𝐹𝐴𝑅 (𝐹𝐶𝐹𝐴𝑅) is related to the c.d.f of 𝐶𝐴𝑅𝐿0 (𝐹𝐶𝐴𝑅𝐿0) as shown below:      

𝐹𝐶𝐴𝑅𝐿0(𝑤) = 𝑃(𝐶𝐴𝑅𝐿0 ≤ 𝑤) = 𝑃(1 𝐶𝐹𝐴𝑅⁄ ≤ 𝑤) 

                   = 𝑃(𝐶𝐹𝐴𝑅 ≥ 𝑤−1) = 1 − 𝐹𝐶𝐹𝐴𝑅(𝑤
−1),      𝑤 ≥ 1.                          (17)  

Of course, given that 𝐶𝐴𝑅𝐿𝛿 = 1 𝐶𝑃𝑆𝛿⁄  the same works for the general notations 

𝐶𝑃𝑆𝛿 and 𝐶𝐴𝑅𝐿𝛿, i.e.: 

𝐹𝐶𝐴𝑅𝐿𝛿(𝑤) = 𝑃(𝐶𝐴𝑅𝐿𝛿 ≤ 𝑤) = 𝑃(1 𝐶𝑃𝑆𝛿⁄ ≤ 𝑤) 

                   = 𝑃(𝐶𝑃𝑆𝛿 ≥ 𝑤
−1) = 1 − 𝐹𝐶𝑃𝑆𝛿(𝑤

−1),         𝑤 ≥ 1.                            (18) 
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3.1. 
C.d.f of 𝑪𝑭𝑨𝑹 (or 𝑪𝑷𝑺𝜹) and 𝑪𝑨𝑹𝑳𝟎 (or 𝑪𝑨𝑹𝑳𝜹) in Case UU 

In Case UU, the 𝐶𝑃𝑆𝛿,𝑈𝑈 is a function of two random variables (Y and Z), 

so the derivation of an exact close expression of 𝐹𝐶𝑃𝑆𝛿,𝑈𝑈  requires using the 

distribution function technique and the conditioning-unconditioning technique [see 

Chakraborti (2000)], by first conditioning on 𝑍 (see Equation 10) using the 

following conditional expectation: 

𝐹𝐶𝑃𝑆𝛿,𝑈𝑈(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡) = 𝐸𝑍 (𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧)) 

        = ∫ 𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧)𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
,                                                           

(19) 

where 𝑓𝑍 denotes the probability density function (p.d.f.) of 𝑍. 

The next step is to derive an expression of 𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧). Note 

that, given 𝑧, 𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧) is a function of only the chi-square random 

variable 𝑌. So, from Equation (10) one can write: 

𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧) 

= 𝑃 (1 − [Φ(
𝑧

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛) − Φ(

𝑧

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛)] ≤ 𝑡). 

= 𝑃 (𝑃 (
𝑧

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛 ≤ 𝑍1 ≤

𝑧

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛) ≥ 1 − 𝑡),                     

(20) 

where 𝑍1 also follows a standard normal distribution. So, 

𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧) 

= 𝑃(𝑃(−𝐿√
𝑌

𝑚(𝑛 − 1)
≤ 𝑍1 −

𝑧

√𝑚
+ 𝛿√𝑛 ≤ 𝐿√

𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡) 

= 𝑃(𝑃((𝑍1 −
𝑧

√𝑚
+ 𝛿√𝑛)

2

≤ (𝐿√
𝑌

𝑚(𝑛 − 1)
)

2

) ≥ 1 − 𝑡).                       (21) 
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Given that (𝑍1 −
𝑧

√𝑚
+ 𝛿√𝑛)

2

 follows a non-central qui-square distribution with 1 

degree of freedom and non-centrality parameter given by (
𝑧

√𝑚
− 𝛿√𝑛)

2

 , one can 

define (𝑍1 −
𝑧

√𝑚
)
2

= χ
1,[(

𝑧

√𝑚
−𝛿√𝑛)

2
]

2 , and 

𝑃(𝐶𝑃𝑆𝛿,𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧) = 𝑃(𝑃(χ
1,[(

𝑧

√𝑚
−𝛿√𝑛)

2

]

2 ≤ 𝐿2
𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡) 

                            = 1 − 𝐹χ𝑚(𝑛−1)
2

(

 
 

𝑚(𝑛−1)𝐹
χ

1,[(
𝑧

√𝑚
−𝛿√𝑛)

2
]

2
−1 (1−𝑡)

𝐿2

)

 
 
,              (22) 

where 𝐹
χ1,
2 [
𝑧2

𝑚
]

−1  denotes the inverse of the c.d.f. of (𝑍1 −
𝑧

√𝑚
+ 𝛿√𝑛)

2

=

χ
1,[(

𝑧

√𝑚
−𝛿√𝑛)

2
]

2 . Using Equation (22) on Equation (19), we have the final exact 

expression for the c.d.f. of 𝐶𝑃𝑆𝛿,𝑈𝑈 : 

𝐹𝐶𝑃𝑆𝛿,𝑈𝑈(𝑡) = 1 − ∫ 𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛−1)𝐹
χ1,
2 [(

𝑧

√𝑚
−𝛿√𝑛)

2
]

−1 (1−𝑡)

𝐿2
)𝑓𝑍(𝑧)𝑑𝑧

∞

−∞
.                   (23) 

When 𝛿 = 0, as noted earlier, 𝐶𝑃𝑆0,𝑈𝑈 is the conditional false alarm rate 

𝐶𝐹𝐴𝑅𝑈𝑈, so the exact c.d.f. of 𝐶𝐹𝐴𝑅𝑈𝑈 is expressed as 

𝐹𝐶𝐹𝐴𝑅𝑈𝑈(𝑡) = 1 − ∫ 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)𝐹

χ1,
2 [(

𝑧

√𝑚
)
2

]

−1 (1 − 𝑡)

𝐿2

)

 
 
𝑓𝑍(𝑧)𝑑𝑧

∞

−∞

.       (24) 

Using Equation (23) on Equation (18), one has the exact c.d.f. expression of 

the general conditional average run length, 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 (for the in-control and out-

of-control situations) as show below: 
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𝐹𝐶𝐴𝑅𝐿𝛿,𝑈𝑈(𝑤)

= ∫ 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)𝐹

χ1,
2 [(

𝑧

√𝑚
−𝛿√𝑛)

2

]

−1 (1 −
1
𝑤)

𝐿2

)

 
 
𝑓𝑍(𝑧)𝑑𝑧

∞

−∞

.                          (25) 

Using 𝛿 = 0, the exact c.d.f. expression of the in-control conditional 

average run length, 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 is expressed as:  

𝐹𝐶𝐴𝑅𝐿0,𝑈𝑈(𝑤) = ∫ 𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛 − 1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − 𝑤−1)

𝐿2
)𝑓𝑍(𝑧)𝑑𝑧

∞

−∞

.            (26) 

Note that Expressions (23), (24), (25) and (26) for the c.d.f’s in Case UU 

are exact, however their evaluation involves calculating the integral using some 

numerical method, since there is no closed-form solution for this integral. This is 

not difficult since there are plenty of software that precisely calculate integral 

numerically (such as MATLAB and R). In this work, the R language is used. 

Indeed, many well-known c.d.f.’s are expressed in terms of integrals, including the 

one for the celebrated normal distribution. 

Figure 6 and 7 show, respectively, the c.d.f. of the 𝐶𝐹𝐴𝑅𝑈𝑈 and the 

𝐶𝐴𝑅𝐿0,𝑈𝑈, calculated using Equation (24) and (26), for 𝑛 = 5, 𝑚 =

10, 20, 50, 100, 500 and 𝛼 = 0.0027 (i.e., 𝐿 = 3). Note that the vertical lines show 

the nominal false alarm rate 0.0027 (Figure 6) and the in-control average run length 

370.4 (Figure 7). The impact of 𝑚 on the distributions is clear. When 𝑚 is small 

(such as 𝑚 = 10), chances are high that the realized false alarm rate is higher than 

the nominal one. For example, from Figure 6, for 𝑚 = 10, 𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≥ 0.006) ≈

40% , so that there is a 40% chance that the conditional false alarm rate is 122% 

higher than the nominal 0.0027. Also note the significant difference between the 

vertical line and the c.d.f. curve for smaller values of 𝑚. When 𝑚 gets larger (such 

as 𝑚 = 500), the c.d.f curves are much “closer” to the vertical line, meaning that 

in these cases, the 𝐶𝐹𝐴𝑅𝑈𝑈 is likely to be not much different from 0.0027. Similar 

conclusions hold for 𝐶𝐴𝑅𝐿0,𝑈𝑈 curves.  
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Figure 6. c.d.f. of 𝑪𝑭𝑨𝑹𝑼𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

 

Figure 7. c.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑼𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

To provide further insight, in Figure 8 and 9, it is displayed the p.d.f. of 

𝐶𝐴𝑅𝐿0,𝑈𝑈 (𝑓𝐶𝐴𝑅𝐿0,𝑈𝑈) and 𝐶𝐹𝐴𝑅𝑈𝑈 (𝑓𝐶𝐹𝐴𝑅𝑈𝑈), respectively, calculated by taking the 
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numerical derivatives of the corresponding c.d.f. This was done in the R language 

using the package “numDeriv” (for details of the codes, see Appendix H). The 

𝑓𝐶𝐴𝑅𝐿0,𝑈𝑈 plot shows the large density at values well below 370.4 (including the 

position of the modes), meaning that when parameters are estimated, in practice, 

there is a large probability that the 𝐶𝐴𝑅𝐿0,𝑈𝑈 is substantially smaller (and the 

𝐶𝐹𝐴𝑅𝑈𝑈 is substantially larger) than the nominal value, even with a number of 

Phase I samples quite larger than the usually recommended 25, 30 or 50 Phase I 

samples. This is reflected in the long right tails of the density functions of 𝐶𝐹𝐴𝑅𝑈𝑈 

and 𝐶𝐴𝑅𝐿0,𝑈𝑈.  

 

Figure 8. p.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑼𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 

𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (𝑳 = 𝟑). 
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Figure 9. p.d.f. of 𝑪𝑭𝑨𝑹𝑼𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (𝑳 = 𝟑). 

 

3.2. 
C.d.f of 𝑪𝑭𝑨𝑹 (or 𝑪𝑷𝑺𝜹) and 𝑪𝑨𝑹𝑳𝟎 (or 𝑪𝑨𝑹𝑳𝜹) in Case KU  

From Equation (11), the c.d.f. of the general conditional probability of a 

signal in case KU (𝐶𝑃𝑆𝛿,𝐾𝑈) can be obtained similarly to case UU in section 3.1. 

However, note that in this case, 𝐶𝑃𝑆𝛿,𝐾𝑈 is a function of only one random variable 

(which is 𝑌), so, the conditioning-unconditioning method is not required and the 

distribution function technique is enough in this case. From Eq. (11) one has  

𝐹𝐶𝑃𝑆 𝛿,𝐾𝑈(𝑡) = 𝑃(𝐶𝑃𝑆 𝛿,𝐾𝑈 ≤ 𝑡) 

= 𝑃(1 − Φ(𝐿√
𝑌

𝑚(𝑛 − 1)
− 𝛿√𝑛) − Φ(−𝐿√

𝑌

𝑚(𝑛 − 1)
− 𝛿√𝑛) ≤ 𝑡) 

= 𝑃(𝑃(−𝐿√
𝑌

𝑚(𝑛 − 1)
− 𝛿√𝑛 ≤ 𝑍1 ≤ 𝐿√

𝑌

𝑚(𝑛 − 1)
− 𝛿√𝑛) ≥ 1 − 𝑡),   (27) 

where 𝑍1 also follows a standard normal distribution. So 

𝐹𝐶𝑃𝑆 𝛿,𝐾𝑈(𝑡) = 𝑃(𝐶𝑃𝑆 𝛿,𝐾𝑈 ≤ 𝑡) 
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                        = 𝑃 (𝑃(−𝐿√
𝑌

𝑚(𝑛 − 1)
≤ 𝑍1 + 𝛿√𝑛 ≤ 𝐿√

𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡) 

                        = 𝑃(𝑃((𝑍1 + 𝛿√𝑛)
2
≤ (𝐿√

𝑌

𝑚(𝑛 − 1)
)

2

) ≥ 1 − 𝑡).           (28) 

Given that (𝑍1 + 𝛿√𝑛)
2
 follows a non-central qui-square distribution with 1 degree 

of freedom and non-centrality parameter given by (𝛿√𝑛)
2
, one can define 

(𝑍1 −
𝑧

√𝑚
)
2

= χ
1,[(𝛿√𝑛)

2
]

2 , and 

𝐹𝐶𝑃𝑆 𝛿,𝐾𝑈(𝑡) = 𝑃(𝑃(χ1,[(𝛿√𝑛)
2
]

2 ≤ (𝐿√
𝑌

𝑚(𝑛 − 1)
)

2

) ≥ 1 − 𝑡) 

                       = 𝑃(𝐹χ
1,[(𝛿√𝑛)

2
]

2 ((𝐿√
𝑌

𝑚(𝑛 − 1)
)

2

) ≥ 1 − 𝑡).                           (29) 

Rearranging the terms, the final exact expression of the c.d.f. of 𝐶𝑃𝑆 𝛿,𝐾𝑈 is  

𝐹𝐶𝑃𝑆 𝛿,𝐾𝑈(𝑡) = 𝑃(𝑌 ≥ 𝑚(𝑛 − 1)

𝐹
χ
1,[(𝛿√𝑛)

2
]

2
−1 (1 − 𝑡)

𝐿2
) 

                          = 1 − 𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1)

𝐹
χ
1,[(𝛿√𝑛)

2
]

2
−1 (1 − 𝑡)

𝐿2
).                            (30) 

According to Equation (18), the exact c.d.f. of the general conditional average run 

length (𝐶𝐴𝑅𝐿𝛿,𝐾𝑈) is: 

𝐹𝐶𝐴𝑅𝐿𝛿,𝐾𝑈(𝑤) = 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)

𝐹
χ
1,[(𝛿√𝑛)

2
]

2
−1 (1 −

1
𝑤)

𝐿2

)

 
 
.                                 (31) 

When 𝛿 = 0, the exact c.d.f. of the conditional false alarm rate (𝐶𝐹𝐴𝑅𝐾𝑈 =

𝐶𝑃𝑆 0,𝐾𝑈) is expressed as 
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𝐹𝐶𝐹𝐴𝑅𝐾𝑈(𝑡) = 1 − 𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1)

𝐹χ12
−1(1 − 𝑡)

𝐿2
)                                            (32) 

Given Equation (14) or the fact that 𝐹χ12
−1(1 − 𝑡) = (Φ−1 (

𝑡

2
))
2

, it is also possible 

to derive an alternative exact formula for the c.d.f. of the conditional false alarm 

rate 𝐶𝐹𝐴𝑅𝐾𝑈 as shown below. 

𝐹𝐶𝐹𝐴𝑅𝐾𝑈(𝑡) = 𝑃(𝐶𝐹𝐴𝑅𝐾𝑈 ≤ 𝑡) = 𝑃 (2Φ (−𝐿√
𝑌

𝑚(𝑛−1)
) ≤ 𝑡)  

= 𝑃 (−𝐿√
𝑌

𝑚(𝑛−1)
≤ Φ−1 (

𝑡

2
)) = 1 − 𝐹χ𝑚(𝑛−1)

2 (𝑚(𝑛 − 1)
(Φ−1(

𝑡

2
))
2

𝐿2
)        (33)  

Figure 10 shows curves of the c.d.f. 𝐶𝐹𝐴𝑅𝐾𝑈 (𝐹𝐶𝐹𝐴𝑅𝐾𝑈) calculated by 

Equations (32) and (33) for values of 𝑛 = 5, 𝑚 = 10, 20, 50, 100, 500 and 𝛼 =

0.0027 (i.e., 𝐿 = 3). Figure 11 clearly show the effect of the number of samples 𝑚 

on 𝐶𝐹𝐴𝑅 distribution. It is interesting that the curves of 𝐹𝐶𝐹𝐴𝑅𝐾𝑈  are very similar to 

the curves of 𝐹𝐶𝐹𝐴𝑅𝑈𝑈 (compare Figure 10 with Figure 6). 

 

Figure 10. c.d.f. of 𝑪𝑭𝑨𝑹𝑲𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

Using the relationship presented in Equation (17), the exact c.d.f. of the in-

control (i.e., 𝛿 = 0) conditional average run length (𝐶𝐴𝑅𝐿0,𝐾𝑈) is expressed as  
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𝐹𝐶𝐴𝑅𝐿0,𝐾𝑈(𝑤) = 𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1)

𝐹χ1,2
−1 (1 −

1
𝑤)

𝐿2
),                                            (34) 

or, given that 𝐹χ12
−1(1 − 𝑡) = (Φ−1 (

𝑡

2
))
2

, the 𝐹𝐶𝐴𝑅𝐿0,𝐾𝑈 can also be expressed as: 

𝐹𝐶𝐴𝑅𝐿0,𝐾𝑈(𝑤) = 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)

(Φ−1 (
1
2w))

2

𝐿2

)

 
 
.                                         (35) 

Figure 11 shows the curves of the c.d.f of 𝐶𝐴𝑅𝐿0,KU (𝐹𝐶𝐴𝑅𝐿0,𝐾𝑈(𝑡)) 

calculated using Equations (34) and (35) for the same values of 𝑚 and 𝐿 used in 

Figure 10. Again, the conclusion is similar to Case UU (compare Figure 12 with 

Figure 8). 

 

Figure 11. c.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑲𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

Figure 12 and 13 display the p.d.f. of 𝐶𝐹𝐴𝑅𝐾𝑈 (𝑓𝐶𝐹𝐴𝑅𝐾𝑈(𝑡)) and 𝐶𝐴𝑅𝐿0,𝐾𝑈 

(𝑓𝐶𝐴𝑅𝐿0,𝐾𝑈(𝑡)) calculated by taking the numerical derivative of (32) and (34) 

respectively. Like in case UU, these probability density functions have a long right 

tail for small values of  𝑚, meaning that when parameters are estimated in practice 

there is a large probability of 𝐶𝐹𝐴𝑅 being substantially larger than 0.0027 (and 
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𝐶𝐴𝑅𝐿0 substantially smaller than 370.4), even with numbers of Phase I samples 

already quite larger than the usually recommended 25, 30 or 50 Phase I samples. 

This is a concern in terms of practical consequences, as noted in Chapter 1. 

 

Figure 12. p.d.f of of 𝑪𝑭𝑨𝑹𝑲𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 

𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

 

Figure 13. p.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑲𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑).  
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3.3. 
C.d.f of 𝑪𝑭𝑨𝑹 (or 𝑪𝑷𝑺𝜹) and 𝑪𝑨𝑹𝑳𝟎 (or 𝑪𝑨𝑹𝑳𝜹) in Case UK 

In case UK, according to Equation (12), the general conditional probability 

of a signal (𝐶𝑃𝑆𝛿,𝑈𝐾) is a function of only the random variable 𝑍. Because of this, 

it is not possible to derive an exact expression for the c.d.f. of 𝐶𝑃𝑆𝛿,𝑈𝐾 (𝐹𝐶𝑃𝑆𝛿,𝑈𝑈) 

using the distribution function method or the conditioning-unconditioning method 

like was done for cases UU and KU. Given this, in this section, it is presented 

equations to calculate exact values of 𝐹𝐶𝑃𝑆𝛿,𝑈𝐾  with a search algorithm and also a 

formula to calculate approximate values of 𝐹𝐶𝑃𝑆𝛿,𝑈𝐾 .  

As noted in the introduction, the search algorithm provides extremely 

accurate result, since the user can specify the desired accuracy in order to find a 

result that is exact up to a specified number of significant digits. In Appendix B, the 

search algorithm is explained in more detail. For now, the expression of the c.d.f. 

of 𝐶𝑃𝑆𝛿,𝑈𝐾 (𝐹𝐶𝑃𝑆𝛿,𝑈𝐾) can be expressed as: 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) = {
0,                                                 𝑡 ≤ 0.0027
Φ(𝑧2) −Φ(𝑧1),               0.0027 < 𝑡 < 1
1,                                                             𝑡 ≥ 1

,                 

(36) 

where 𝑧1 and 𝑧2 are the only two solutions, according to Equation (12), of 

1 − [Φ (
𝑍

√𝑚
+ 𝐿 − 𝛿√𝑛) − Φ (

𝑍

√𝑚
− 𝐿 − 𝛿√𝑛)] = 𝑡, 

for 𝑍, being 𝑧1 < 𝛿√𝑚𝑛 < 𝑧2 . Note again that 𝑧1 and 𝑧2 can be precisely found 

using the search algorithm called the secant method (see Appendix B). 

Equation (36) can be explained as follows: there are only two solutions for 

𝑍 of 𝐶𝑃𝑆𝛿,𝑈𝐾 = 𝑡 (from Equation (12), see also figure 5 for 𝐶𝑃𝑆0,𝑈𝐾, i.e., 𝐶𝐹𝐴𝑅𝑈𝐾) 

because 𝐶𝑃𝑆𝛿,𝑈𝐾 as a function of 𝑍 is decreasing on (−∞, 𝛿√𝑚𝑛] and increasing 

on [𝛿√𝑚𝑛,∞) so that 𝐶𝑃𝑆𝛿,𝑈𝐾 varies in the interval (𝑚𝑖𝑛(𝐶𝑃𝑆𝛿,𝑈𝐾) = 0.0027,

1]. The value of 𝐶𝑃𝑆𝛿,𝑈𝐾 tends to one when 𝑍 tends to −∞ or ∞. Thus, the 

probability that 𝐶𝑃𝑆𝛿,𝑈𝐾 < 𝑡 (i.e., the c.d.f. of 𝐶𝑃𝑆𝛿,𝑈𝐾) is the probability that 𝑍 

belongs to the interval between 𝑧1 and 𝑧2. 
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The approximate formula for 𝐹𝐶𝑃𝑆𝛿,𝑈𝐾 can be derived starting from Equation (12) 

also. The details of this derivation are in Appendix C. The final expression is: 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) 

≈ Φ(𝛿√𝑚𝑛 + √
𝑚𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1) − Φ(𝛿√𝑚𝑛 − √
𝑚𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1).        (37) 

When 𝛿 = 0, i.e., for the conditional false alarm rate (𝐶𝑃𝑆0,𝑈𝐾 = 𝐶𝐹𝐴𝑅𝑈𝐾), an 

even simpler approximate formula for 𝐹𝐶𝐹𝐴𝑅𝑈𝐾  can be derived. The final result is 

below (for more details on this derivation, see Appendix C). 

𝐹𝐶𝐹𝐴𝑅𝑈𝐾(𝑡) = 𝑃(𝐶𝐹𝐴𝑅𝑈𝐾 ≤ 𝑡) ≈ 𝐹χ1
2 (𝑚(

𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1)).                      (38)   

Using equation (18), the approximate formula for the c.d.f. of the general 

conditional average run length (𝐶𝐴𝑅𝐿𝛿,𝑈𝐾) and the approximate formula for the 

c.d.f of the in-control average run length (𝐶𝐴𝑅𝐿0,𝑈𝐾)  can be derived, respectively, 

as: 

𝐹𝐶𝐴𝑅𝐿𝛿,𝑈𝐾(𝑤) = 𝑃(𝐶𝐴𝑅𝐿𝛿,𝑈𝐾 ≤ 𝑤) 

≈ Φ

(

 
 
𝛿√𝑚𝑛 + √

𝑚𝐿2

𝐹χ1
2
−1 (1 −

1
𝑤)
− 1

)

 
 
−Φ

(

 
 
𝛿√𝑚𝑛 − √

𝑚𝐿2

𝐹χ1
2
−1 (1 −

1
𝑤)
− 1

)

 
 
  (39) 

and 

𝐹𝐶𝐴𝑅𝐿0,𝑈𝐾(𝑤) = 𝑃(𝐶𝐴𝑅𝐿0,𝑈𝐾 ≤ 𝑤) ≈ 𝐹χ1
2

(

 𝑚(
𝐿2

𝐹χ1
2
−1 (1 −

1
𝑤)
− 1)

)

              (40) 

The c.d.f.’s and p.d.f.’s of the 𝐶𝐹𝐴𝑅𝑈𝐾 and 𝐶𝐴𝑅𝐿0,𝑈𝐾 for 𝑚 =

{10,20,50,200,500}, 𝑛 = 5 and 𝛼 = 0.0027 are shown in Figures 14, 15, 16 and 

17. Exact values are calculated according to Equation (36), in grey, and the 
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approximate values are calculated according to Equations (37), (38), (39) and (40) 

in black. Note that the approximate formulas provides very accurate results. 

From these figures, it is evident the difference between the shape of the 

distributions (either way cdf´s and pdf´s) in case UK and the other cases (UU and 

KU). However, the impact of 𝑚 on the 𝐶𝐹𝐴𝑅𝑈𝐾 and 𝐶𝐴𝑅𝐿0,𝑈𝐾 distributions is also 

clear. Similarly, to the other cases, when 𝑚 gets larger (such as 𝑚 = 500), the c.d.f. 

curves are much “closer” to the vertical line of the nominal value of 0.0027 or 

370.4. Note that the p.d.f´s in case UK have a cut (“break”) in the nominal values, 

differently from the p.d.f.´s in cases UU and KU. 

 

 

Figure 14. c.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑼𝑲 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 
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Figure 15. c.d.f. of 𝑪𝑭𝑨𝑹𝑼𝑲 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

 

Figure 16. p.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑼𝑲 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 
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Figure 17. p.d.f. of 𝑪𝑭𝑨𝑹𝑼𝑲 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 =
𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

 

3.4. 
The mean and standard deviation of 𝑪𝑭𝑨𝑹 and 𝑪𝑨𝑹𝑳𝟎 

As explained in Chapters 1 and 2, the mean of the in-control conditional 

average run length (𝐶𝐴𝑅𝐿0) is denoted as the unconditional in-control average run 

length (𝐴𝑅𝐿0) and it was one of the most used in-control performance measure of 

a control chart when parameters are estimated. Given that 𝐶𝐴𝑅𝐿𝟎 is a non-negative 

random variable, its mean and standard deviation can be easily calculated using its 

c.d.f. derived in the previous sections of this chapter. The 𝐴𝑅𝐿0 (i.e., the 𝐸[𝐶𝐴𝑅𝐿0]) 

can be expressed as: 

𝐸[𝐶𝐴𝑅𝐿0] = 𝐴𝑅𝐿0 = ∫ (1 − 𝐹𝐶𝐴𝑅𝐿0(𝑤))𝑑𝑤.                          (41)
1

0

 

Moreover, the standard deviation of 𝐶𝐴𝑅𝐿0 (denoted here as 𝑆𝐷𝐴𝑅𝐿0) can be 

expressed as 

𝑆𝐷𝐴𝑅𝐿0 = √𝑉[𝐶𝐴𝑅𝐿0] = √𝐸[𝐶𝐴𝑅𝐿0
2] − (𝐸[𝐶𝐴𝑅𝐿0])2                         (42) 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



55 
 

 

 

where,  

  𝐸[𝐶𝐴𝑅𝐿0
2] = 2∫ 𝑤 (1 − 𝐹𝐶𝐴𝑅𝐿0(𝑤))𝑑𝑤

1

0
                                 (43) 

Equation (43) is a special case of the expression 𝑘 ∫ 𝑤𝑘−1(1 − 𝐹(𝑤))𝑑𝑤
∞

0
 

which is the k-th central moment of a nonnegative continuous random variable in 

terms of its c.d.f. This formula is given in Feller (1966), Hong (2012, 2015) and 

Nadarajah and Mitov (2003), the latter also derived the multivariate analogue. 

However, an analogue of Formula (43) for a discrete non-negative integer-valued 

random variable was not formally proved in the literature. Thus, as an extension of 

the present work, we derived this analogue formula and published it in one of the 

most recognized journals in statistics: The American Statistician (see Annex C). 

For the 3 cases (UU, KU and UK), the unconditional in-control average run 

length (i.e., 𝐸[𝐶𝐴𝑅𝐿0] = 𝐴𝑅𝐿0) and the standard deviation of the 𝐶𝐴𝑅𝐿0 [i.e., the 

𝑆𝐷𝐴𝑅𝐿0 = 𝑆𝐷(𝐶𝐴𝑅𝐿0)] are presented in Table 1 for  some values of m and n and 

𝛼 = 0.0027 (i.e., 𝐿 = 3). The difference in the performance (in terms of 𝑆𝐷𝐴𝑅𝐿0 

and 𝐴𝑅𝐿0) between these cases are significant: in the cases UU and KU, the 𝐴𝑅𝐿0 

for 𝑛 = 5 are always larger than its nominal value (370.4), and in case UK (and 

also for  cases UU when 𝑛 = 9), the 𝐴𝑅𝐿0 values are always smaller than 370.4. 

For case UK, 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 results are invariant in respect to the values of for 

𝑛 [what is expected given Eq. (15)]. Between cases UU and KU, surprisingly, the 

𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 are larger in case KU than in Case UU. This is an interesting 

behavior because only one parameter is estimated in case KU (contrasting with the 

two parameters estimations in case UU, which would make one to think that the 

variability in case UU would be larger, but it is not). 

As the amount of Phase I samples (𝑚) increases, the 𝐴𝑅𝐿0 in cases UU and 

KU decreases and converges to 370.4 (for 𝑛 = 5), while, in case UK (or in cases 

UU for 𝑛 = 9), the 𝐴𝑅𝐿0 increases and converges to 370.4. Note that the 

convergence of the 𝐴𝑅𝐿0,𝑈𝐾 is faster than the convergence of 𝐴𝑅𝐿0,𝑈𝑈 and 

𝐴𝑅𝐿0,𝐾𝑈, i.e., the 𝐴𝑅𝐿0,𝑈𝐾 reaches a value close to the nominal 370.4 with much 

less Phase I data than the 𝐴𝑅𝐿0,𝑈𝑈 and 𝐴𝑅𝐿0,𝐾𝑈. Furthermore, according to the 

values of the 𝑆𝐷𝐴𝑅𝐿0, the variability of the 𝐶𝐴𝑅𝐿0,𝑈𝑈 and 𝐶𝐴𝑅𝐿0,𝐾𝑈 are much 
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larger than that for the 𝐶𝐴𝑅𝐿0,𝑈𝐾 (i.e., 𝑆𝐷𝐴𝑅𝐿0,𝐾𝑈 > 𝑆𝐷𝐴𝑅𝐿0,𝑈𝑈 ≫ 𝑆𝐷𝐴𝑅𝐿0,𝑈𝐾). 

The values of  𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 in Table 1 are exact (calculated numerically using 

Equations (41) and (42)).  

Table 1 - 𝑺𝑫𝑨𝑹𝑳𝟎 and 𝑨𝑹𝑳𝟎 values for cases UU, KU and UU for several values 

of values of m and n and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., a nominal 𝑨𝑹𝑳𝟎 of 370.4) 

 

 

 

3.5. 
Prediction Bounds for 𝑪𝑭𝑨𝑹 and 𝑪𝑨𝑹𝑳𝟎 

Since 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0 are both random variables that depend on the 

parameter estimates, it will be of interest to the practitioner to know how far they 

can be from the nominal desired values. For example, it is of interest to know, in a 

given Phase II application, what value (named 𝛼𝑝) will be an upper bound to the 

𝐶𝐹𝐴𝑅, with a certain (high) probability (1 − 𝑝). This upper prediction bound to the 

CFAR will provide a lower bound to the 𝐶𝐴𝑅𝐿0, both of which can be useful to the 

m n Case UU Case KU Case UK Case UU Case KU Case UK

3 605.6 748.0 311.0 1565.1 1975.0 61.7

5 422.4 511.4 311.0 460.3 550.9 61.7

9 360.3 432.5 311.0 240.0 275.1 61.7

3 536.9 637.3 319.7 964.3 1159.2 54.6

5 407.5 477.5 319.7 367.9 425.8 54.6

9 359.6 418.9 319.7 207.1 231.0 54.6

3 436.3 477.5 340.9 388.1 425.8 35.1

5 384.2 418.9 340.9 214.1 231.0 35.1

9 361.6 393.5 340.9 137.3 144.7 35.1

3 399.8 418.9 354.2 220.3 231.0 20.7

5 375.9 393.5 354.2 139.2 144.7 20.7

9 364.8 381.7 354.2 94.2 96.5 20.7

3 379.4 385.6 364.6 111.8 113.6 7.9

5 371.9 377.9 364.6 76.3 77.3 7.9

9 368.2 374.1 364.6 53.3 53.7 7.9

3 373.0 374.9 368.6 58.7 59.0 2.5

5 370.8 372.6 368.6 41.1 41.2 2.5

9 369.7 371.5 368.6 28.9 29.0 2.5

1000

20

25

50

100

300

𝑨𝑹𝑳𝟎 =  𝑪𝑨𝑹𝑳𝟎 𝑺𝑫𝑨𝑹𝑳𝟎 =   𝑪𝑨𝑹𝑳𝟎
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practitioner in understanding the in-control chart performance under estimated 

parameters. Put another way, for a given 𝑚 and 𝑛, it is of practical interest to find 

the value of 𝐶𝐹𝐴𝑅, 𝛼𝑝, such that  

         𝑃(𝐶𝐹𝐴𝑅 > 𝛼𝑝) = 𝑝                                             (44) 

This means that the required 𝛼𝑝 is the (1 − 𝑝)-quantile of the distribution of 

𝐶𝐹𝐴𝑅. According to Equation (17), this problem is equivalent to finding the value 

1 𝛼𝑝⁄  such that 𝑃(𝐶𝐴𝑅𝐿0 ≤ 1 𝛼𝑝⁄ ) = 𝑝, that is, to finding the 𝑝-quantile of  

𝐶𝐴𝑅𝐿0. 

In Case UU, to find 𝛼𝑝, one just must, in equation (26), replace 𝑡 by 𝛼𝑝 and 

make it equal to 1 − 𝑝 and solve for 𝛼𝑝. I.e., 𝛼𝑝,𝑈𝑈 is the solution to the equation  

∫ 𝐹χ𝑚(𝑛−1)
2

(

 

𝑚(𝑛−1)𝐹
χ

1,[
𝑧2

𝑚
]

2
−1 (1−𝛼𝑝,𝑈𝑈)

𝐿2

)

 𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
= 𝑝,                     (45) 

for given values of 𝐿, m, n and p. It is not possible to obtain a closed-form solution 

to 𝛼𝑝,𝑈𝑈, because Equation (45) involves an integral over the distribution of Z 

which can´t be solved analytically [see also Equation (26)]. However, it can be 

solved numerically in a straightforward way, using a simple search method (like the 

Secant Method) since 𝐹𝐶𝐹𝐴𝑅𝑈𝑈(𝑡) is a monotonic increasing function of 𝑡. 

Moreover, a simple approximate expression for 𝛼𝑝,𝑈𝑈, shown in equation (46) next, 

can be obtained from Equations (26) using the one-step Taylor approximation and 

an approximation for the c.d.f. of a non-central chi-square distribution derived by 

Cox and Reid (1987). Details of the derivation of this approximation can be found 

in Appendix D. 

𝛼𝑝,𝑈𝑈 ≈ 1 − 𝐹χ12 (𝐿
2
𝐹

χ𝑚(𝑛−1)
2
−1 (𝑝)

(𝑚+1)(𝑛−1)
).                                 (46) 

In Case KU, using Equation (33), an exact expression of 𝛼𝑝,𝐾𝑈 can be 

obtained by solving the following equation for 𝛼𝑝,𝐾𝑈: 
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𝐹𝜒𝑚(𝑛−1)
2 (𝑚(𝑛 − 1) (−

Φ−1(
𝛼𝑝,𝐾𝑈

2
)

𝐿
)

2

) = 𝑝                           (47) 

Rearranging the terms in Equation (47), 𝛼𝑝,𝐾𝑈 can be expressed as  

𝛼𝑝,𝐾𝑈 = 2Φ(−𝐿
√
𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

𝑚(𝑛−1)
).                                    (48) 

In Case UK, one can use Equation (36) for 𝛿 = 0 and find 𝛼𝑝,𝑈𝐾 by 

numerically solving the following system of equations: 

{
Φ(𝑧2) − Φ(𝑧1) = 1 − 𝑝                                              

Φ (
𝑧𝑖

√𝑚
+ 𝐿) − Φ (

𝑧𝑖

√𝑚
− 𝐿) = 1 − 𝛼𝑝,𝑈𝐾,    𝑖 = 1,2

                     (49) 

for, 𝑧2, 𝑧1 and 𝛼𝑝,𝑈𝐾. Note again that 𝑧2, 𝑧1 and 𝛼𝑝,𝑈𝐾 can be found via a search 

algorithm, such as the secant method. From Equation (38) is also possible to derive 

an approximate formula for 𝛼𝑝,𝐾𝑈 as show below (for more details see Appendix 

D): 

𝛼𝑝,𝑈𝐾 ≈ 1 − 𝐹χ1
2

(

 
 𝐿2

𝐹χ1
2
−1(1 − 𝑝)

𝑚 + 1
)

 
 
                                     (50) 

Table 2 shows the values of  𝛼𝑝 and 1 𝛼𝑝⁄  for 𝑝 = 0.05 (i.e., the 0.95 quantile 

of 𝐶𝐹𝐴𝑅 and the 0.05 quantile of 𝐶𝐴𝑅𝐿0) and 𝑝 = 0.1 (the 0.9 quantile of 𝐶𝐹𝐴𝑅 

and the 0.1 quantile of 𝐶𝐴𝑅𝐿0) for some values of 𝑚 and 𝑛 in Cases UU, KU and 

UK. For Cases UU and UK, the exact values were calculated numerically using 

Equations (45) and (49) and a search method (respectively) and — in bold — the 

values obtained using the simple approximations given by Equations (46) and (50). 

We considered 𝛼 = 0.0027 (𝐿 = 3). Table 1 shows that when 𝑚 and/or 𝑛 are small, 

the values of 𝐶𝐹𝐴𝑅 that are exceeded only with a probability of 5% or 10% are 

much higher than the desired 𝛼. For example, in Case UU, for  𝑚 = 25 and 𝑛 = 5 

(values suggested in many manuals and textbooks, see Montgomery, 2009), 𝛼0.05 =
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0.0098 — more than 3 times the nominal false alarm rate of 0.0027. This means 

that, for a small amount of Phase I data, such as 𝑚 = 25 and 𝑛 = 5, if the 3-Sigma 

limits are used, the spreads of 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0 are large, meaning that the 

realization of these random variables may be very different from the nominal values 

of the false alarm rate or average run length (0.0027 and 370.4, respectively). Also 

note that the approximation works well for 𝑚 ≥ 50 in Cases UU and UK. 

In cases UU and KU, the values of 𝛼𝑝 and 1 𝛼𝑝⁄  are not so close to the 

nominal ones, even for large values of 𝑚. For example, for 𝑚 = 300 and 𝑛 = 5, in 

both cases (UU and KU), 𝛼0.05 ≥ 0.0037 (a value more than 37% larger than 

0.0027) and 1 𝛼0.05⁄ < 267 (a value 30% smaller than the desired nominal value of 

370.4). It is also interesting to note that the higher quantiles of 𝐶𝐹𝐴𝑅 (or lower 

quantiles of 𝐶𝐴𝑅𝐿0) in Case KU are smaller (or larger, for 𝐶𝐴𝑅𝐿0) compared to 

those  in Case UU. Also, for Case UK, the quantiles of 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0 are 

invariant with respect to the values of  𝑛 (note that for the 𝑋̅ chart 𝑛 must be greater 

than 1) and, compared to cases UU and KU, are much closer to the nominal desired 

values (0.0027 and 370.4 respectively). These results open the question as to the 

minimum number of Phase I samples (𝑛) required to guarantee a desired quantile 

for 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0. In the next chapter this problem is addressed. 
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Table 2. The 0.95 quantile of 𝑪𝑭𝑨𝑹, the 0.05 quantile of 𝑪𝑨𝑹𝑳𝟎 (𝒑 =
𝟎. 𝟓), the 0.9 quantile of 𝑪𝑭𝑨𝑹 and the 0.1 quantile of 𝑪𝑨𝑹𝑳𝟎  (𝒑 = 𝟎. 𝟏) for 𝜶 =

𝟎. 𝟎𝟎𝟐𝟕 (𝑳 = 𝟑). 

 

Observation: For Case UU and UK, the values in bold were obtained using 

the approximate formulas, the other values are exact   
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4 
Number of Phase I samples required for a guaranteed in-
control performance 

In the context of parameter estimation and control charting, another relevant 

question for the practitioner is the amount of the Phase I data, without adjusting the 

control limits, that can ensure a “satisfactory” performance of the chart both in 

terms of in-control robustness. Epprecht et al. (2015), formulated this problem and 

derived the minimum number 𝑚 of Phase I reference samples that guarantees with 

a specified high probability 1 − 𝑝 (say, 0.9), that the 𝐶𝐹𝐴𝑅 does not exceed a 

nominal 𝛼 by more than a given percentage 𝜀 (e.g. 20%) for the S and 𝑆2 charts. 

As noted in previous chapters, this is called the Exceedance Probability Criterion 

(EPC). The quantity 𝜀 provides some flexibility, as an allowance, for the user to 

guarantee the minimum performance (lower bound) for the CFAR. Indeed, for all 

cases, it would be impossible to guarantee a high probability that 𝐶𝐹𝐴𝑅 does not 

exceed the exact nominal values 𝛼 (i.e., for 𝜀 = 0), which is its median (the 0.5-

quantile) when m is infinite and thus cannot be a different quantile of it (other than 

the median), no matter the number of Phase I samples for cases UU and KU. This 

behavior can be verified in the CFAR c.d.f.´s figures for Cases UU and KU in 

Chapter 2. For case UK, since the minimum possible value of CFAR is 𝛼, 𝐶𝐹𝐴𝑅 

will be equal or exceed the nominal 𝛼 with 100% of probability no matter the 

number of Phase I samples.  

Thus, for 𝜀 > 0, the following formulation to the 𝑋̅ chart, in cases UU, KU 

and UK is considered: Given the values of 𝑛, 𝛼, 𝜀 and 𝑝, find the minimum number 

of in-control Phase I samples, 𝑚, such that  

𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) = 1 − 𝑝.                                 (51) 

This problem is like the one in section 2.5, with the difference that now 𝛼𝑝 is 

given and is equal to a tolerated upper bound to the false alarm rate (that is, 𝛼𝑝 =
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α𝑇𝑂𝐿 = (1 + 𝜀)𝛼) and 𝑚 is the unknown that needs to be found. Note that, since 𝑚 

is an integer, a perfect match is generally not possible, so, re-stating the problem, 

𝑚 should be the smallest integer such that 𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) ≥ 1 − 𝑝 is true. 

Also, note that this problem is equivalent to finding the smallest 𝑚 such that 

𝑃(𝐶𝐴𝑅𝐿0 ≤ 1 ((1 + 𝜀)𝛼⁄ ) ≤ 𝑝 is true. 

In order to find the value of 𝑚 in all cases (UU, KU and UK), an exact formula 

is not available. For cases UU and KU, this is because the c.d.f’s of 𝐶𝐹𝐴𝑅 involve 

a quantile of a chi-square variable whose number of degrees of freedom is also a 

function of the unknown 𝑚. For case UK, this is because the c.d.f. of CFAR can´t 

be expressed in a closed form expression (as shown on Chapter 3). However, for all 

cases, 𝑚 can be found using a simple search method (as the Secant Method, for 

example) since 𝐹𝐶𝐹𝐴𝑅(𝑡) is a monotonic increasing function of 𝑚. Basically, this 

means that for Cases UU, KU and UU, we need to solve, respectively,  

∫ 𝐹χ𝑚(𝑛−1)
2

(

 

𝑚(𝑛−1)𝐹
χ

1,[
𝑧2

𝑚
]

2
−1 (1−(1+𝜀)𝛼)

𝐿2

)

 𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
= 𝑝,                     (51) 

𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1) (−

Φ−1(
(1+𝜀)𝛼

2
)

𝐿
)

2

) = 𝑝                             (52) 

and 

{
Φ(𝑧2) − Φ(𝑧1) = 1 − 𝑝                                                     

Φ (
𝑧𝑖

√𝑚
+ 𝐿) − Φ (

𝑧𝑖

√𝑚
− 𝐿) = 1 − (1 + 𝜀)𝛼,    𝑖 = 1,2

                     (53) 

for 𝑚, 𝑧2 and 𝑧1. For case UK, using Equations (38) and (51), rearranging the terms, 

it is also possible to derive an approximate formula for the minimum 𝑚, which is 

𝑚 ≈

⌈
⌈
⌈
⌈
 

𝐹χ1
2
−1(1 − 𝑝)

𝐿2

𝐹χ1
2
−1(1 − (1 + 𝜀)𝛼)

− 1
⌉
⌉
⌉
⌉
 

,                                             (54) 

where ⌈𝑎⌉ denotes the smallest integer greater or equal to 𝑎. 
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Table 3, for cases UU, KU and UK shows the exact minimum number of in-

control Phase I samples, 𝑚, for 𝜀 = 0.1, 0.2, 0.3, 0.4, 0.5, 𝛼 = 0.0027, 𝑝 =

5%, 10%, 15%, and 𝑛 = 5, 10, 20 and 25. For case UK, Table 3 also shows the 

results for the approximate formula (54). As it can be seen, for small values of 𝑛, 

one needs a large number of reference samples (𝑚) to guarantee such conditional 

performance for most of the cases. Also note that, in case KU, 𝑚 is invariant with 

respect of 𝑛 and the approximate formula (54) works well. 

Table 3. Minimum number of in control Phase I samples, 𝑚, required for 

𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)α) = 1 − 𝑝  or 𝑃(𝐶𝐴𝑅𝐿0 ≤ 1 (1 + 𝜀)𝛼⁄ ) = 𝑝 with α =
0.0027 (𝐿 = 3). 

 

The results from Table 3 are quite interesting. We see that in some cases (for 

example, when ε = 0.1 and 𝑛 = 5), the minimum numbers of reference samples 

required are much larger than the 25 or 30 subgroups, which are the numbers 

usually proposed in most manuals and textbooks (see Montgomery, 2009); they can 

also be larger than the 200 or 300 samples proposed by authors who focused on the 

unconditional 𝐴𝑅𝐿0 (see Quesenberry, 1993 and others) and even larger than the 

recent number proposed by Saleh et al. (2015), who focused on the standard 

deviation of 𝐶𝐴𝑅𝐿0 as an additional performance metric (they recommended using 

𝑚 = 1200 when 𝛼 = 0.0027 is used). One can see, as might be expected, that in 

Case UU, more Phase I samples are needed than in Case KU. 

It is also interesting to note that the minimum total amount of data (𝑚 × 𝑛) 

required has a different behavior in each case (KU and UU) as 𝑛 increases. For Case 

UU, when 𝑛 increase, for many of the situations, the total amount of data needed 

increases (although doesn´t increase much), while in the Case KU, for the majority 

Case n 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

5 3687 2285 1536 1029 649 446 507 324 226 314 203 144 219 144 103

10 1701 1077 742 492 321 229 250 167 122 159 108 80 114 78 59

20 871 571 409 270 185 138 145 102 77 97 68 52 72 51 39

25 717 477 346 230 160 120 126 89 69 85 61 47 64 46 36

5 3588 2185 1435 975 595 393 468 287 190 283 174 116 194 120 80

10 1595 971 638 433 265 175 208 128 85 126 78 52 87 53 36

20 756 460 303 206 126 83 99 61 40 60 37 25 41 26 17

25 598 365 240 163 100 66 78 48 32 48 29 20 33 20 14

Exact 191 135 103 97 68 53 65 46 36 50 35 27 40 28 22

Approx. 195 138 105 101 71 54 69 49 37 53 37 29 43 31 24

 KU

UK

 UU

𝜀 = 10% 𝜀 = 20% 𝜀 = 30% 𝜀 = 40% 𝜀 = 50%

𝑝  

𝑛
≥
2
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of the situations, the total amount of data decreases with n (again, although doesn´t 

decrease much). This means that, for Case UU, in most of the situations, increasing 

n, also increases the cost to design the control chart, since a few more Phase I 

observations will need to be collected. Note that, in case UU, for 𝜀 = 20% and  𝑝 =

0.05 the total amount of Phase I data required for 𝑛 = 5 is 5145 and for 𝑛 = 25 is 

5750 (both large values). For case KU, the total amount of Phase 1 data is much 

smaller compared to the other cases.  

Table 4. Minimum total amount of Phase I observations, (𝑚 × 𝑛), required for 

𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)α) = 1 − 𝑝  or 𝑃(𝐶𝐴𝑅𝐿0 ≤ 1 (1 + 𝜀)𝛼⁄ ) = 𝑝 with α =
0.0027 (𝐿 = 3). 

 

In case the required m for the tolerated α𝑇𝑂𝐿 value and the specified p is not 

feasible and relaxing the value of either 𝜀 or p or both is unacceptable on practical 

grounds, a possible solution is to change the value of the control limit factor 𝐿  

(instead of using 𝐿 = 3 – the most common 3-sigma limits), given a fixed value of 

𝑚 and 𝑛, at hand, in order to satisfy the exceedance probability criterion in the in-

control situation. This is discussed in the next chapter. 

 

Case n 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

5 18435 11425 7680 5145 3245 2230 2535 1620 1130 1570 1015 720 1095 720 515

10 17010 10770 7420 4920 3210 2290 2500 1670 1220 1590 1080 800 1140 780 590

20 17420 11420 8180 5400 3700 2760 2900 2040 1540 1940 1360 1040 1440 1020 780

25 17925 11925 8650 5750 4000 3000 3150 2225 1725 2125 1525 1175 1600 1150 900

5 17940 10925 7175 4875 2975 1965 2340 1435 950 1415 870 580 970 600 400

10 15950 9710 6380 4330 2650 1750 2080 1280 850 1260 780 520 870 530 360

20 15120 9200 6060 4120 2520 1660 1980 1220 800 1200 740 500 820 520 340

25 14950 9125 6000 4075 2500 1650 1950 1200 800 1200 725 500 825 500 350

Exact 382 270 206 194 136 106 130 92 72 100 70 54 80 56 44

Approx. 390 276 210 202 142 108 138 98 74 106 74 58 86 62 48

 UU

 KU

UK

𝜀 = 10% 𝜀 = 20% 𝜀 = 30% 𝜀 = 40% 𝜀 = 50%

𝑝  

𝑛
≥
2
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5 
Adjustment of the limits for a guaranteed conditional in-
control performance 

In the previous chapter, we saw that the minimum numbers of reference 

samples required to guarantee some conditional in-control performances can be 

very large and may be infeasible in many practical situations. Given this practical 

hurdle, in this chapter, for all cases (UU, KU and UK), it is presented the exact 

adjusted control limits for the 𝑋̅ chart (for any values of m and n) that limit to a low 

value, 𝑝, the probability that the conditional false alarm rate (𝐶𝐹𝐴𝑅) exceeds a 

tolerated value (𝛼𝑡𝑜𝑙) in the spirit of the EPC. Remember that 𝛼𝑡𝑜𝑙 is greater than 

𝛼  by a percentage 𝜀. So basically, the idea is to replace the limit factor 𝐿 in 

Equations (1) and (2) by 𝐿∗, where 𝐿∗  represents the value of the control limit factor 

that guarantees that 

𝑃(𝐶𝐹𝐴𝑅 ≥ 𝛼𝑡𝑜𝑙) = 𝑝 or 𝑃(𝐶𝐴𝑅𝐿0 ≥ 1 𝛼𝑡𝑜𝑙⁄ ) = 1 − 𝑝,                (55) 

for a given value of 𝛼𝑡𝑜𝑙 = (1 + 𝜀)𝛼, 𝑚 and 𝑛. This means that by using 𝐿∗, instead 

of 𝐿 (the unadjusted limit factor), the user can guarantee that the probability of the 

conditional false alarm rate being greater than a specified tolerated bound (𝛼𝑡𝑜𝑙), is 

small (𝑝). Note that 𝐿 is constant and 𝐿∗ can change according to the values of 𝛼, 

𝑝, 𝜀, 𝑚 and 𝑛.  

Adjustment for the case UU is presented in section 5.1. Also in this section, 

there is a comparison between the adjustment proposed here and other adjustments 

methods presented in the literature. Adjustments for cases KU and UU are 

respectively in sections 5.2 and 5.1. 

5.1 
Adjustment in Case UU 

In the literature three main group of methods to adjust the 𝑋̅ chart control 

limits in terms of EPC are proposed: One is called the “exact methods”, another 
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group is called “approximate methods” and the third, composed of only one 

method, is called “bootstrap method”. In next sections these adjustments methods 

will be explained in more details.  

5.1.1. 
Exact Methods  

From Equation (55), it is clear that the c.d.f. of 𝐶𝐴𝑅𝐿0 is needed to apply the 

EPC.  So, using the c.d.f. of 𝐶𝐴𝑅𝐿0 derived in Chapter 2 [Equation 24] and 

replacing [(1 + 𝜀)𝛼]−1 for 𝑡, the exact adjusted control limit factor (𝐿∗) can be 

obtained by solving the following equation for given values of  𝛼, 𝑚, 𝑛, 𝜀 and 𝑝. 

∫ 𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛 − 1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

𝐿∗2
)𝜙(𝑧)𝑑𝑧

∞

−∞

= 𝑝.              (56) 

This solution is denoted 𝐿𝐶𝐸
∗  (𝐶𝐸 stands for Conditional Exact) and can be 

obtained with a software like R. Equation (56) is exact, since the formula for the 

c.d.f. is exact, but the solution 𝐿∗ must be found using numerically, since there is 

no closed form solution for the integral in (56). This type of an analysis goes back 

to Chakraborti (2006), who adjusted the control limits of the 𝑋̅ chart under the 

unconditional perspective. This is also similar to the adjustment methods proposed 

by Diko et. al. (2015) in the context of using the 𝑋̅ and 𝑆 charts jointly to monitor 

the mean and Diko et al. (2017) for various spread charts under the unconditional 

perspective. In some of these papers, this method has been referred to as the 

“numerical method” but the fact is that the method is exact since the expression for 

the c.d.f. is exact and numerical refers to the solution that is obtained by solving the 

equation that involves the c.d.f. which involves calculating the integral using some 

numerical methods. This is indeed the case for many c.d.f.’s of distributions 

including the one for the celebrated normal distribution. Also, Equation (56) relates 

to the theory of Tolerance Intervals. Krishnamoorthy and Mathew (2009, p. 30) 

give an equation which is equivalent to Eq. (56) where the single-sample estimators 

𝑆 and 𝑋̅ are used instead of 𝑆𝑝 and 𝑋̿ respectively. But, they did not make the 

relationship with the 𝑋̅ control chart. 
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Faraz et al. (2017) also proposed an, what they called, “exact method” to 

adjust the 𝑋̅ chart, however, their adjustment was not based in the EPC and, instead, 

it was based on the on the equal-tailed tolerance interval together with the 

Bonferroni Inequality [see Krishnamoorthy and Mathew (2009, p. 4 and p.10)], 

which generates wider adjusted control limits if compared to the adjusted limits 

derived under the EPC. The final formula for 𝐿∗ is denoted by 𝐿𝐶𝐸2
∗  (𝐶𝐸2 stands for 

Conditional Exact 2) and is given by 

𝐿𝐶𝐸2
∗ =

𝑡
(1−

1
𝑝
,𝑛(𝑚−1),𝑧

1−
(1+𝜀)𝛼
2

)

√𝑚
,                                                (57) 

Where, 𝑡
(1−

1

𝑝
,𝑛(𝑚−1),𝑧

1−
(1+𝜀)𝛼
2

)
 is the (1 −

1

𝑝
)-quantile of a non-central t-

student distribution with 𝑛(𝑚 − 1) degrees of freedom and non-centrality 

parameter 𝑧
1−

(1+𝜀)𝛼

2

, which is the (1 −
(1+𝜀)𝛼

2
)-quantile of a standard normal 

distribution. For more details of the derivation of 𝐿𝐶𝐸2
∗ , see Faraz et al. (2017). 

5.1.2. 
Approximate Methods 

Goedhart et al. (2017) derived an approximate formula for 𝐿∗ by finding an 

approximate distribution of 𝐶𝐹𝐴𝑅. This was accomplished by expressing the 

𝐶𝐹𝐴𝑅, using a two-step Taylor approximation, as approximately a linear 

combination of a scaled chi and a chi-square random variable. Considering the fact 

that the chi-square part was more dominant, they approximated the distribution of 

𝐶𝐹𝐴𝑅 by the distribution of a 𝑎
𝜒𝑏
2

𝑏
 random variable. After this, they applied the 

Wilson-Hilferty approximation to a chi-square to achieve normality. Finally, to 

solve the resulting equation for 𝐿∗, they applied a one-step Taylor approximation. 

The final approximate formula for 𝐿∗ is denoted by 𝐿𝐶𝐴1
∗  (𝐶𝐴1 stands for 

Conditional Approximation 1) and it is given by 

𝐿𝐶𝐴1
∗ ≈ 𝐿 +

Φ−1(1 − 𝑝) − 𝑔(𝐿)

𝑔′(𝐿)
.                                                (58) 
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Here 𝑔(𝐿) and 𝑔′(𝐿) are functions of the expectation and the variance of 

𝐶𝐹𝐴𝑅 and their derivatives, respectively. The complete expressions of 𝑔(𝐿) and 

𝑔′(𝐿) are presented in Appendix E. From the expression of CFAR in Equation (13), 

it is possible to derive an alternative and simpler approximate formula for 𝐿∗, 

denoted here by 𝐿𝐶𝐴2
∗ , which is given by 

𝐿𝐶𝐴2
∗ ≈ √𝑚(𝑛 − 1)

𝐹
χ1,
2 [
1
𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

𝐹
χ
𝑚(𝑛−1)
2
−1 (𝑝)

,                               (59) 

where 𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝) denotes the 𝑝-quantile of a central chi-square distribution with 

𝑚(𝑛 − 1) degrees of freedom and 𝐹
χ1,
2 [

1

𝑚
]

−1 (1 − (1 + 𝜀)𝛼) denotes the (1 −

(1 + 𝜀)𝛼)-quantile of a non-central chi-square distribution with 1 degree of 

freedom and non-centrality parameter 
1

𝑚
. Formula (59) is given by Goedhart et al. 

(2018), but they started its proof from an already existing result given by 

Krishnamoorthy and Mathew (2009). Given this, in the Appendix D, we provide a 

detailed derivation of (59) starting from Equation (13). Note that 𝐿𝐶𝐴2
∗  requires a 

non-central chi-square quantile, which (as noted in the Introduction) is not tabulated 

in most textbooks in Statistics and not available in popular software such as Excel, 

so its calculation will require relatively advanced statistical skills. Given this, and 

using (15), in this work, we proposed the following even simpler approximate 

formula for 𝐿∗ (here denoted by 𝐿𝐶𝐴3
∗ ). 

𝐿𝐶𝐴3
∗ ≈ √(𝑛 − 1)(𝑚 + 1)

𝐹
χ1
2
−1(1 − (1 + 𝜀)𝛼)

𝐹
χ
𝑚(𝑛−1)
2
−1 (𝑝)

                                  (60) 

Note that there is no non-centrality parameter in (60), since 𝐹χ12
−1(1 −

(1 + 𝜀)𝛼) is the (1 − (1 + 𝜀)𝛼)-quantile of a central chi-square distribution with 

1 degree of freedom. Derivation of (60) is also provided in Appendix D. 
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5.1.3. 
Bootstrap Method 

Saleh et al. (2015) suggested finding the adjusted limit factor 𝐿∗ under the 

conditional perspective, using the EPC and the bootstrap approach of Gandy and 

Kvaløy (2013). In order to do this, the users, with the help of software (like SAS, 

R, etc.), should generate 𝐵 bootstrap estimates of the in-control process mean and 

the standard deviation (𝜇𝑘
∗ , 𝜎𝑘

∗), 𝑘 = 1,2, … , 𝐵, with 𝜇𝑘
∗  𝑁(𝑋̿, 𝑆𝑝

2 𝑛𝑚⁄ ), 𝜎𝑘
∗  

√𝑆𝑝2
𝜒𝑣
2

𝑣
 and 𝑣 = 𝑚(𝑛 − 1). Note that, with this, the idea is to consider that 𝑋̿ and 

𝑆𝑝 are respectively the real in-control process mean and standard deviation, which 

are estimated respectively by 𝜇𝑘
∗  and 𝜎𝑘

∗ for each 𝑘. By considering a very large 

value for 𝐵, let say 𝐵 = 1000, we have “access to the (bootstrap) population of 𝜇𝑘
∗  

(𝜇1
∗, 𝜇2

∗ , … , 𝜇𝐵
∗ ) and 𝜎𝑘

∗ (𝜎1
∗, 𝜎2

∗, … , 𝜎𝐵
∗)”.  

Recalling that 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄  and 𝑍 = (
𝑋̿−𝜇0

𝜎0
)√𝑚𝑛, using Equation 

(13), the 𝐶𝐹𝐴𝑅 can be written as  

𝐶𝐹𝐴𝑅(𝑋̿, 𝑆𝑝) = 1 − Φ(
𝑋̿ − 𝜇0
𝜎0

√𝑛 + 𝐿∗
 𝑆𝑝

𝜎0
)

+ Φ(
𝑋̿ − 𝜇0
𝜎0

√𝑛 − 𝐿∗
 𝑆𝑝

𝜎0
).         (61) 

Considering that 𝑋̿ and 𝑆𝑝 𝑐4,𝑏⁄  are respectively the true in-control process 

mean and standard deviation and 𝜇𝑘
∗  and 𝜎𝑘

∗ are respectively the estimators 𝑋̿ and 

𝑆𝑝 (according to the bootstrap method), for each 𝜇𝑘
∗  and 𝜎𝑘

∗ (𝑘 = 1,2, … , 𝑏), the user 

must find the value of 𝐿𝑘
∗  that satisfies the following equation: 

1 − Φ(
𝜇𝑘
∗ − 𝑋̿

𝑆𝑝
√𝑛 + 𝐿𝑘

∗
 𝜎𝑘
∗ 

𝑆𝑝
) + Φ(

𝜇𝑘
∗ − 𝑋̿

𝑆𝑝
√𝑛 − 𝐿𝑘

∗
 𝜎𝑘
∗ 

𝑆𝑝
) = (1 + 𝜀)𝛼.          (62) 

The solution to Equation (62) is given by 
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𝐿𝑘
∗ =

𝑆𝑝
√
𝐹

χ1,
2 [
𝜇𝑘
∗−𝑋̿
𝑆𝑝

√𝑛]

2
−1 (1 − (1 + 𝜀)𝛼)

𝜎𝑘
∗ ,   𝑘 = 1,2, … , 𝐵                 (63) 

where 𝐹
χ1,
2 [
𝜇𝑘
∗ −𝑋̿

𝑆𝑝
√𝑛]

2
−1 (1 − (1 + 𝜀)𝛼) denotes the (1 − (1 + 𝜀)𝛼)-quantile of the 

distribution of a non-central qui-square random variable with 1 degree of freedom 

and non-centrality parameter given by (
𝜇𝑘
∗−𝑋̿

𝑆𝑝
√𝑛)

2

. This formula is derived in 

Appendix F. Note that Saleh et al. (2015b) provided a rather complicated 

approximate method to find the values of 𝐿𝑘
∗ . However, we argue that no 

approximation is needed since one can derive the exact formula for 𝐿𝑘
∗  shown in 

Equation (63). Finally, the required 𝐿∗, here denoted by 𝐿𝑏𝑜𝑜𝑡
∗ , is found as the (1 −

𝑝)-quantile of the collection of bootstrap estimators (𝐿1
∗ , 𝐿2

∗ , … , 𝐿𝐵
∗ ).  

The method described in this section is often named as the parametric 

bootstrap, since the underline distribution is known. This method can also be 

considered a Monte Carlo simulation. 

5.1.4. 
Adjustment Results and Discussion in Case UU 

Table 5 presents the adjusted control limit factors (𝐿∗) obtained under the 

conditional perspective for 𝜀 = 0% and 𝑝 = 5%, i.e., the values of 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐸2

∗ , 𝐿𝐶𝐴1
∗ , 

𝐿𝐶𝐴2
∗ , 𝐿𝐶𝐴3

∗  and 𝐿𝑏𝑜𝑜𝑡
∗  that make 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4), equal or close to 95%. The 

𝐿𝐶𝐸
∗ , 𝐿𝐶𝐸2

∗  𝐿𝐶𝐴1
∗ , 𝐿𝐶𝐴2

∗ , 𝐿𝐶𝐴3
∗  and 𝐿𝑏𝑜𝑜𝑡

∗  values are obtained using the methods 

presented in Sections 5.1.1, 5.1.2 and 5.1.3. i.e., the exact adjusted limit factors 𝐿𝐶𝐸
∗  

and 𝐿𝐶𝐸2
∗  are calculated according to Equation (56) and Equations (57). The 

approximate adjusted limit factors 𝐿𝐶𝐴1
∗ , 𝐿𝐶𝐴2

∗  and 𝐿𝐶𝐴3
∗   are calculated according to 

Formulas (58), (59) and (60). The adjusted limit factor obtained from the bootstrap 

method, 𝐿𝑏𝑜𝑜𝑡
∗ , is also calculated considering 𝐵 = 1,000 bootstrap simulations 

implemented in R. Also, for comparison purposes, the first four columns in gray 

show the results for the unadjusted limit factor (𝐿∗ = 𝐿 = 3) and for each  𝐿𝐶𝐸
∗ , 𝐿𝐶𝐸2

∗  

, 𝐿𝐶𝐴1
∗ , 𝐿𝐶𝐴2

∗ , 𝐿𝐶𝐴3
∗  and 𝐿𝑏𝑜𝑜𝑡

∗ . Table 5 shows the exact unconditional 𝐴𝑅𝐿0 value 

calculated according to Equation (41), the 𝑆𝐷𝐴𝑅𝐿0, calculated according to 
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Equation (42), and the exact 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) calculated according to Equation 

(25).  

From Table 5, excepted for 𝐿𝐶𝐸2
∗ , all methods yield very similar 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) values, close to the target. I.e., for all values of 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐴1

∗ , 

𝐿𝐶𝐴2
∗ , 𝐿𝐶𝐴3

∗  and 𝐿𝑏𝑜𝑜𝑡
∗ , the probability 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) is very close to 95%, 

being the formula for 𝐿𝐶𝐸
∗  (the one proposed in this work) the most precise one, 

giving a 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) of exactly 95%. As noted in the introduction, since 

𝐿𝐶𝐸2
∗  is not based on the EPC, it results are quite different compared to the other 

methods: this adjustment factor (𝐿𝐶𝐸2
∗ ) is always much larger than the other, 

generating very larger values of of 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4), not even closer to the goal 

which is 95% for 𝑝 = 0.05. 

Also from Table 5, for all cases and values of 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐸2

∗ ,  𝐿𝐶𝐴1
∗ , 𝐿𝐶𝐴2

∗ , 𝐿𝐶𝐴3
∗  

and 𝐿𝑏𝑜𝑜𝑡
∗ , the values of the unconditional 𝐴𝑅𝐿0 are seen to be much larger than 

370.4, often more than 3 times larger. This is also true for the 𝑆𝐷𝐴𝑅𝐿0 values.  For 

example, for 𝑚 = 25, 𝑛 = 5 and 𝐿𝐽
∗ = 3.47, one has 𝑆𝐷𝐴𝑅𝐿0 = 3630.2 and 

𝐴𝑅𝐿0 = 2552.5. The large variability is compensated by the large expectation 

resulting in getting the desired exceedance probability (equal or close to 95%). This 

means that, despite taking into account the mean and the variability of 𝐶𝐴𝑅𝐿0, the 

conditional perspective with the exceedance probability criterion (EPC) does not 

control these popular aspects of the conditional run length distribution. 

Since the adjusted limits are wider than the unadjusted limits (note that 𝐿∗ >

3 for all cases in Table 2), this may give the impression that the out-of-control 

performance may be deteriorated after the adjustments. However, as will be shown 

in Chapter 6, this is true just for small values of 𝑚 and 𝑛 (like 𝑚 = 25 and 𝑛 = 5) 

in Case UU, but for most of the other cases, the out-of-control performance will be 

similar to the one with unadjusted limits (especially for 𝑚 ≥ 50, 𝑛 ≥ 5, 𝑝 ≥ 0.1). 

If the practitioner is still not satisfied with the very large values of 𝐴𝑅𝐿0 and 

𝑆𝐷𝐴𝑅𝐿0 [such concern is evident in Saleh et al. (2015a,b) who focused mainly on 

the 𝑆𝐷𝐴𝑅𝐿0 as the performance measure] in the latter case, he/she can increase the 

value of 𝜀 or 𝑝 (accepting a smaller lowest tolerated bound for 𝐶𝐴𝑅𝐿0 or a smaller 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4)). This will decrease the value of 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 while the 
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amount of data remains the same. The possibility of this allowance or practical 

trade-off is a remarkable “feature” of the conditional perspective. To visualize the 

trade-off, Tables 5 and 6 show the adjusted control limit factors (𝐿∗) under the 

conditional perspective, respectively, for the pair 𝜀 = 20% and 𝑝 = 5%, and the 

pair 𝜀 = 20% and 𝑝 = 20%, i.e., the values of 𝐿∗ that make, respectively, 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 𝑃(𝐶𝐹𝐴𝑅 ≤ 0.0031) ≅ 95% and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) =

𝑃(𝐶𝐹𝐴𝑅 ≤ 0.0031) ≅ 80%. Note that in these cases, the values of 𝐴𝑅𝐿0 and 

𝑆𝐷𝐴𝑅𝐿0 are much smaller compared with the values in Table 5 for the same amount 

of data. For example, for 𝑚 = 50 and 𝑛 = 5, considering the exact method 

proposed here (𝐿𝐶𝐸
∗ ) in Table 5 (i.e., for 𝜀 = 0% and 𝑝 = 5%), the 𝐴𝑅𝐿0 = 1157.1 

and the 𝑆𝐷(𝐶𝐴𝑅𝐿0) = 807.6, now, considering the same amount of data (𝑚 = 50 

and 𝑛 = 5), from Table 6 (i.e., for 𝜀 = 20% and 𝑝 = 20%), one has 𝐴𝑅𝐿0 = 561.0 

and 𝑆𝐷(𝐶𝐴𝑅𝐿0) = 338.7: a reduction of 51.52% in the expectation and 58.06% in 

the standard deviation. Note that the unconditional 𝐴𝑅𝐿0 is still much larger than 

the nominal (370.4). Under the ECP, it is unlike that the unconditional 𝐴𝑅𝐿0 will 

be close to the nominal value (unless 𝜀 or 𝑝 are extremely large, such as 𝜀 = 50% 

or 𝑝 = 40%). This can be seen as a negative point of the ECP, since most 

practitioners are used to work with the nominal values when parameters are known. 

But keep in mind that the unconditional 𝐴𝑅𝐿0 being larger than the nominal 370.4 

is the inevitable counterpart of guaranteeing with a high probability that the 𝐶𝐴𝑅𝐿0 

will not be below the minimum tolerated value. So, given that the OOC 

performance of the chart is not significantly affected, the large values of 𝐴𝑅𝐿0 is 

not something necessarily bad. 
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Table 5. Values of 𝑳∗when 𝑳∗ = 𝑳, 𝑳∗ = 𝑳𝑪 
∗ , 𝑳∗ = 𝑳𝑪𝑨𝟏

∗ , 𝑳∗ = 𝑳𝑪𝑨𝟐
∗ , 𝑳∗ =

𝑳𝑪𝑨𝟑
∗ , 𝑳∗ = 𝑳𝒃𝒐𝒐𝒕

∗  and their corresponding 𝑨𝑹𝑳𝟎, 𝑺𝑫𝑨𝑹𝑳𝟎 and 𝑷(𝑪𝑭𝑨𝑹 ≤

 𝜶(𝟏 + 𝜺)) for  𝑳 = 𝟑, 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕, 𝜺 = 𝟎% and 𝒑 = 𝟓% for Case UU 

  

m n

3 3.00 569.5 1045.9 42.70% 3.66 11547.4 86932.1 95.00% 3.64 10670.9 76617.4 94.62% 3.65 11010.6 80579.9 94.77%

5 3.00 418.5 380.3 40.50% 3.47 2552.5 3630.2 95.00% 3.47 2596.6 3708.6 95.15% 3.45 2394.2 3351.9 94.41%

9 3.00 364.2 210.3 37.70% 3.35 1278.9 951.7 95.00% 3.36 1309.6 979.0 95.31% 3.33 1168.7 854.9 93.66%

3 3.00 448.2 401.3 44.46% 3.43 2327.9 3126.7 95.00% 3.43 2356.0 3173.8 95.11% 3.42 2283.7 3053.1 94.82%

5 3.00 389.1 217.4 42.69% 3.31 1157.1 807.6 95.00% 3.31 1165.5 814.6 95.11% 3.30 1125.9 781.6 94.57%

9 3.00 363.8 138.3 40.35% 3.23 790.5 348.2 95.00% 3.23 792.7 349.3 95.06% 3.22 760.1 332.4 94.06%

3 3.00 418.3 278.6 45.35% 3.34 1433.2 1244.6 95.00% 3.34 1446.1 1258.1 95.11% 3.33 1417.4 1228.0 94.86%

5 3.00 381.6 166.8 43.82% 3.24 879.5 452.5 95.00% 3.24 881.0 453.4 95.03% 3.24 865.5 444.0 94.67%

9 3.00 365.0 110.4 41.76% 3.18 662.9 224.3 95.00% 3.18 662.3 224.0 94.97% 3.17 647.7 218.2 94.28%

3 3.00 404.9 223.8 45.91% 3.28 1119.9 761.9 95.00% 3.29 1125.5 766.4 95.08% 3.28 1111.6 755.1 94.88%

5 3.00 378.3 140.2 44.54% 3.20 759.9 322.0 95.00% 3.20 759.6 321.8 94.99% 3.20 751.7 317.9 94.73%

9 3.00 365.9 94.6 42.67% 3.15 602.6 170.9 95.00% 3.15 601.4 170.5 94.93% 3.14 593.2 167.8 94.42%

3 3.00 392.5 170.1 46.61% 3.23 864.1 436.8 95.00% 3.23 864.7 437.2 95.02% 3.23 860.4 434.7 94.91%

5 3.00 375.3 111.3 45.45% 3.16 648.3 213.1 95.00% 3.16 647.1 212.6 94.94% 3.16 644.3 211.5 94.81%

9 3.00 367.1 76.3 43.84% 3.12 542.6 117.8 95.00% 3.12 541.4 117.5 94.90% 3.11 537.7 116.5 94.59%

3 3.00 386.6 142.3 47.04% 3.19 751.3 314.1 95.00% 3.19 750.5 313.7 94.97% 3.19 749.2 313.0 94.93%

5 3.00 373.9 95.0 46.02% 3.14 593.8 164.5 95.00% 3.14 592.5 164.1 94.92% 3.14 591.4 163.7 94.85%

9 3.00 367.8 65.7 44.59% 3.10 511.7 97.2 95.00% 3.10 510.7 97.0 94.90% 3.10 508.7 96.5 94.68%

3 3.00 383.2 124.7 47.34% 3.17 686.7 249.7 95.00% 3.17 685.5 249.2 94.95% 3.17 685.3 249.1 94.94%

5 3.00 373.2 84.3 46.41% 3.12 560.7 136.7 95.00% 3.12 559.5 136.3 94.91% 3.12 559.1 136.2 94.88%

9 3.00 368.3 58.6 45.11% 3.09 492.4 82.7 95.00% 3.09 491.5 82.5 94.90% 3.09 490.3 82.2 94.74%

m n

3 3.00 569.5 1045.9 42.70% 3.65 11166.2 82383.7 94.84% 3.70 14172.0 121042.0 95.87% 3.85 27414.8 >10000 97.76%

5 3.00 418.5 380.3 40.50% 3.46 2419.4 3395.9 94.51% 3.49 2746.6 3977.4 95.60% 3.64 4933.0 8261.1 98.49%

9 3.00 364.2 210.3 37.70% 3.33 1179.4 864.2 93.81% 3.35 1263.8 938.3 94.84% 3.52 2397.5 2006.2 99.15%

3 3.00 448.2 401.3 44.46% 3.42 2289.9 3063.4 94.84% 3.40 2076.8 2713.0 93.83% 3.57 3921.3 5983.3 98.18%

5 3.00 389.1 217.4 42.69% 3.30 1128.6 783.8 94.61% 3.32 1203.0 845.9 95.56% 3.44 1852.2 1413.8 98.93%

9 3.00 363.8 138.3 40.35% 3.22 761.7 333.3 94.12% 3.22 783.3 344.5 94.79% 3.36 1277.5 612.1 99.54%

3 3.00 418.3 278.6 45.35% 3.33 1419.0 1229.7 94.87% 3.32 1333.9 1141.3 94.00% 3.45 2165.6 2046.1 98.37%

5 3.00 381.6 166.8 43.82% 3.24 866.4 444.5 94.69% 3.24 878.8 452.0 94.98% 3.35 1299.1 717.4 99.11%

9 3.00 365.0 110.4 41.76% 3.17 648.4 218.5 94.31% 3.18 673.8 228.6 95.46% 3.29 995.5 361.6 99.67%

3 3.00 404.9 223.8 45.91% 3.28 1112.3 755.7 94.89% 3.31 1231.2 853.1 96.31% 3.39 1594.8 1161.0 98.48%

5 3.00 378.3 140.2 44.54% 3.20 752.1 318.1 94.75% 3.20 749.5 316.8 94.66% 3.30 1069.2 481.6 99.21%

9 3.00 365.9 94.6 42.67% 3.14 593.5 167.9 94.44% 3.15 608.8 173.0 95.35% 3.25 863.5 260.8 99.74%

3 3.00 392.5 170.1 46.61% 3.23 860.6 434.8 94.92% 3.23 865.3 437.6 95.03% 3.31 1150.4 612.9 98.60%

5 3.00 375.3 111.3 45.45% 3.16 644.5 211.6 94.81% 3.16 642.9 211.0 94.74% 3.24 860.1 297.3 99.32%

9 3.00 367.1 76.3 43.84% 3.11 537.9 116.6 94.60% 3.12 543.1 117.9 95.05% 3.21 733.1 172.9 99.81%

3 3.00 386.6 142.3 47.04% 3.19 749.3 313.1 94.93% 3.19 745.1 311.0 94.79% 3.27 967.4 423.3 98.72%

5 3.00 373.9 95.0 46.02% 3.14 591.4 163.8 94.85% 3.13 582.4 160.8 94.25% 3.21 761.6 220.6 99.39%

9 3.00 367.8 65.7 44.59% 3.10 508.7 96.6 94.69% 3.11 525.4 100.3 96.25% 3.18 666.9 132.8 99.84%

3 3.00 383.2 124.7 47.34% 3.17 685.4 249.1 94.95% 3.17 674.1 244.3 94.45% 3.24 860.1 325.6 98.76%

5 3.00 373.2 84.3 46.41% 3.12 559.1 136.2 94.88% 3.12 566.6 138.4 95.42% 3.19 701.2 177.8 99.42%

9 3.00 368.3 58.6 45.11% 3.09 490.3 82.2 94.74% 3.09 489.3 82.1 94.61% 3.16 625.4 109.5 99.86%
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𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝑪 
∗

𝜺 = 𝟎%
𝑳∗

=

𝑳𝑪𝑨𝟏
∗

𝑳∗

=
𝑳𝑪𝑨𝟐
∗

𝑳∗

=
𝑳

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝒃𝒐𝒐𝒕
∗

𝑳∗

=
𝑳𝑪𝑨𝟑
∗

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝑪  𝒕
∗

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳

DBD
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Table 6. Values of 𝑳∗when 𝑳∗ = 𝑳, 𝑳∗ = 𝑳𝑪 
∗ , 𝑳∗ = 𝑳𝑪𝑨𝟏

∗ , 𝑳∗ = 𝑳𝑪𝑨𝟐
∗ , 𝑳∗ =

𝑳𝑪𝑨𝟑
∗ , 𝑳∗ = 𝑳𝒃𝒐𝒐𝒕

∗  and their corresponding 𝑨𝑹𝑳𝟎, 𝑺𝑫𝑨𝑹𝑳𝟎 and 𝑷(𝑪𝑭𝑨𝑹 ≤

 𝜶(𝟏 + 𝜺)) for  𝑳 = 𝟑, 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕, 𝜺 = 𝟐𝟎% and 𝒑 = 𝟓% for Case UU 

 

m n

3 3.00 569.5 1045.9 49.99% 3.59 8120.5 49788.3 95.00% 3.58 7836.0 47093.1 94.82% 3.58 7747.0 46262.7 94.77%

5 3.00 418.5 380.3 50.61% 3.41 1959.4 2611.3 95.00% 3.41 2004.6 2686.6 95.20% 3.39 1839.3 2413.6 94.40%

9 3.00 364.2 210.3 51.49% 3.29 1015.8 723.1 95.00% 3.30 1036.8 741.1 95.28% 3.27 929.5 650.4 93.63%

3 3.00 448.2 401.3 54.87% 3.36 1792.5 2259.1 95.00% 3.37 1820.0 2302.2 95.15% 3.36 1759.1 2206.8 94.81%

5 3.00 389.1 217.4 57.21% 3.24 921.6 615.2 95.00% 3.25 925.2 618.1 95.06% 3.24 897.2 595.7 94.56%

9 3.00 363.8 138.3 60.33% 3.17 640.2 271.4 95.00% 3.17 639.4 271.0 94.97% 3.16 616.1 259.3 94.05%

3 3.00 418.3 278.6 58.11% 3.27 1129.9 933.9 95.00% 3.28 1137.5 941.5 95.09% 3.27 1117.7 921.7 94.85%

5 3.00 381.6 166.8 61.60% 3.18 708.8 350.2 95.00% 3.18 707.3 349.3 94.95% 3.18 697.8 343.7 94.66%

9 3.00 365.0 110.4 66.20% 3.12 540.7 176.3 95.00% 3.12 538.3 175.3 94.87% 3.11 528.6 171.6 94.28%

3 3.00 404.9 223.8 60.61% 3.22 893.0 581.1 95.00% 3.22 894.2 582.0 95.02% 3.22 886.5 576.0 94.88%

5 3.00 378.3 140.2 64.98% 3.14 616.2 251.1 95.00% 3.14 613.7 249.9 94.90% 3.14 609.7 248.0 94.73%

9 3.00 365.9 94.6 70.63% 3.09 493.3 134.9 95.00% 3.09 490.9 134.1 94.82% 3.08 485.8 132.5 94.42%

3 3.00 392.5 170.1 64.48% 3.17 696.8 338.2 95.00% 3.17 694.6 337.0 94.93% 3.16 693.9 336.6 94.91%

5 3.00 375.3 111.3 70.11% 3.10 529.1 167.5 95.00% 3.10 526.5 166.5 94.84% 3.10 525.9 166.3 94.81%

9 3.00 367.1 76.3 77.11% 3.06 445.9 96.2 95.00% 3.06 444.0 95.7 94.80% 3.06 442.1 95.2 94.58%

3 3.00 386.6 142.3 67.48% 3.13 609.4 245.1 95.00% 3.13 606.7 243.8 94.88% 3.13 607.8 244.3 94.93%

5 3.00 373.9 95.0 73.98% 3.08 486.3 129.9 95.00% 3.08 484.0 129.2 94.82% 3.08 484.4 129.3 94.85%

9 3.00 367.8 65.7 81.71% 3.04 421.5 77.3 95.00% 3.04 419.9 76.9 94.80% 3.04 419.0 76.7 94.68%

3 3.00 383.2 124.7 69.97% 3.11 559.1 195.7 95.00% 3.11 556.3 194.6 94.85% 3.11 558.0 195.3 94.94%

5 3.00 373.2 84.3 77.08% 3.06 460.2 108.2 95.00% 3.06 458.2 107.6 94.81% 3.06 458.9 107.8 94.88%

9 3.00 368.3 58.6 85.17% 3.03 406.1 65.8 95.00% 3.03 404.9 65.6 94.80% 3.03 404.5 65.5 94.74%

m n

3 3.00 569.5 1045.9 49.99% 3.58 7845.8 47184.6 94.83% 3.57 7372.9 42829.5 94.51% 3.79 18866.1 >40000 97.80%

5 3.00 418.5 380.3 50.61% 3.39 1857.0 2442.4 94.49% 3.42 2063.2 2784.8 95.45% 3.58 3761.3 5887.3 98.54%

9 3.00 364.2 210.3 51.49% 3.27 937.3 656.8 93.78% 3.32 1134.2 824.9 96.32% 3.47 1898.8 1522.1 99.20%

3 3.00 448.2 401.3 54.87% 3.36 1763.4 2213.6 94.84% 3.36 1754.2 2199.2 94.79% 3.51 2992.8 4273.9 98.22%

5 3.00 389.1 217.4 57.21% 3.24 899.1 597.2 94.60% 3.24 905.3 602.2 94.71% 3.38 1469.0 1073.3 98.98%

9 3.00 363.8 138.3 60.33% 3.16 617.3 259.9 94.10% 3.16 630.4 266.5 94.64% 3.30 1031.9 476.6 99.57%

3 3.00 418.3 278.6 58.11% 3.27 1118.8 922.8 94.87% 3.31 1321.0 1128.0 96.73% 3.39 1696.4 1525.1 98.41%

5 3.00 381.6 166.8 61.60% 3.18 698.4 344.1 94.69% 3.18 710.3 351.0 95.04% 3.29 1043.3 553.9 99.15%

9 3.00 365.0 110.4 66.20% 3.11 529.0 171.8 94.30% 3.11 528.5 171.6 94.27% 3.24 809.8 283.9 99.70%

3 3.00 404.9 223.8 60.61% 3.22 887.0 576.4 94.89% 3.22 897.7 584.7 95.09% 3.33 1264.8 881.0 98.52%

5 3.00 378.3 140.2 64.98% 3.14 610.0 248.1 94.74% 3.13 590.0 238.5 93.81% 3.24 864.3 374.8 99.25%

9 3.00 365.9 94.6 70.63% 3.09 486.0 132.5 94.44% 3.09 501.4 137.5 95.57% 3.20 705.1 205.6 99.77%

3 3.00 392.5 170.1 64.48% 3.16 694.1 336.7 94.92% 3.18 725.1 354.6 95.79% 3.25 923.8 472.9 98.65%

5 3.00 375.3 111.3 70.11% 3.10 526.1 166.4 94.81% 3.09 501.5 157.2 93.02% 3.19 700.0 233.3 99.36%

9 3.00 367.1 76.3 77.11% 3.06 442.1 95.2 94.59% 3.06 447.1 96.5 95.12% 3.15 601.2 136.9 99.83%

3 3.00 386.6 142.3 67.48% 3.13 607.8 244.3 94.93% 3.14 623.8 252.0 95.57% 3.21 781.7 329.2 98.76%

5 3.00 373.9 95.0 73.98% 3.08 484.4 129.3 94.85% 3.07 477.4 127.1 94.25% 3.15 622.1 173.8 99.42%

9 3.00 367.8 65.7 81.71% 3.04 419.1 76.8 94.68% 3.05 429.4 79.0 95.94% 3.12 548.2 105.4 99.86%

3 3.00 383.2 124.7 69.97% 3.11 558.0 195.3 94.94% 3.12 568.0 199.4 95.45% 3.18 697.9 254.5 98.80%

5 3.00 373.2 84.3 77.08% 3.06 458.9 107.8 94.88% 3.06 459.3 107.9 94.91% 3.13 574.2 140.6 99.46%

9 3.00 368.3 58.6 85.17% 3.03 404.5 65.5 94.74% 3.03 412.6 67.0 95.91% 3.10 514.8 87.1 99.88%
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[Our Proposal]

Bootstrap Method                                           
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𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝑪 
∗

𝜺 = 𝟐𝟎%
𝑳∗

=
𝑳𝑪𝑨𝟏
∗

𝑳∗

=
𝑳𝑪𝑨𝟐
∗

𝑳∗

=
𝑳

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝒃𝒐𝒐𝒕
∗

𝑳∗

=
𝑳𝑪𝑨𝟑
∗

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝑪 𝟐
∗

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑳∗

=
𝑳

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳
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Table 7. Values of 𝑳∗when 𝑳∗ = 𝑳, 𝑳∗ = 𝑳𝑪 
∗ , 𝑳∗ = 𝑳𝑪𝑨𝟏

∗ , 𝑳∗ = 𝑳𝑪𝑨𝟐
∗ , 𝑳∗ =

𝑳𝑪𝑨𝟑
∗ , 𝑳∗ = 𝑳𝒃𝒐𝒐𝒕

∗  and their corresponding 𝑨𝑹𝑳𝟎, 𝑺𝑫𝑨𝑹𝑳𝟎 and 𝑷(𝑪𝑭𝑨𝑹 ≤

 𝜶(𝟏 + 𝜺)) for  𝑳 = 𝟑, 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕, 𝜺 = 𝟐𝟎% and 𝒑 = 𝟐𝟎% for Case UU 

 

 

5.2. 
Adjustment in Case KU 

In Case KU, since the expression for the c.d.f. of 𝐶𝐴𝑅𝐿0 is in a simple closed 

form given by Eq. (35), one can derive a closed-form expression for 𝐿𝐾𝑈
∗ . Using Eq. 

(35), replacing 𝐿 by 𝐿𝐾𝑈
∗  and rearranging the terms, one has: 

m n

3 3.00 569.5 1045.9 49.99% 3.28 1847.4 5453.7 80.00% 3.30 2015.6 6182.0 81.48% 3.28 1838.4 5415.7 79.91%

5 3.00 418.5 380.3 50.61% 3.19 852.9 926.5 80.00% 3.21 914.9 1011.2 82.00% 3.19 843.5 913.7 79.67%

9 3.00 364.2 210.3 51.49% 3.14 584.4 372.6 80.00% 3.15 616.2 397.2 82.24% 3.13 574.6 365.1 79.24%

3 3.00 448.2 401.3 54.87% 3.16 817.1 849.9 80.00% 3.18 867.6 915.7 81.80% 3.16 813.5 845.2 79.86%

5 3.00 389.1 217.4 57.21% 3.11 561.0 338.7 80.00% 3.11 579.0 351.8 81.47% 3.10 557.1 335.8 79.66%

9 3.00 363.8 138.3 60.33% 3.07 455.5 181.0 80.00% 3.07 464.4 185.2 81.32% 3.06 451.0 178.9 79.31%

3 3.00 418.3 278.6 58.11% 3.12 631.0 460.4 80.00% 3.13 655.7 482.5 81.54% 3.12 629.0 458.7 79.87%

5 3.00 381.6 166.8 61.60% 3.07 484.6 222.4 80.00% 3.08 493.5 227.3 81.11% 3.07 482.4 221.1 79.71%

9 3.00 365.0 110.4 66.20% 3.04 415.8 129.0 80.00% 3.04 420.1 130.6 80.91% 3.04 413.1 128.0 79.42%

3 3.00 404.9 223.8 60.61% 3.09 552.7 326.2 80.00% 3.10 567.8 337.1 81.31% 3.09 551.4 325.3 79.89%

5 3.00 378.3 140.2 64.98% 3.05 448.3 171.9 80.00% 3.05 453.8 174.4 80.89% 3.05 446.8 171.2 79.75%

9 3.00 365.9 94.6 70.63% 3.02 395.7 103.8 80.00% 3.03 398.3 104.6 80.69% 3.02 393.9 103.2 79.50%

3 3.00 392.5 170.1 64.48% 3.06 480.7 217.1 80.00% 3.06 488.5 221.3 81.00% 3.06 480.0 216.7 79.91%

5 3.00 375.3 111.3 70.11% 3.03 412.1 124.4 80.00% 3.03 414.9 125.4 80.63% 3.03 411.2 124.1 79.80%

9 3.00 367.1 76.3 77.11% 3.01 374.8 78.3 80.00% 3.01 376.2 78.6 80.46% 3.01 373.7 78.0 79.61%

3 3.00 386.6 142.3 67.48% 3.04 446.0 168.9 80.00% 3.05 450.9 171.1 80.81% 3.04 445.5 168.7 79.92%

5 3.00 373.9 95.0 73.98% 3.02 393.4 100.9 80.00% 3.02 395.2 101.5 80.50% 3.01 392.8 100.8 79.84%

9 3.00 367.8 65.7 81.71% 3.00 363.7 64.8 80.00% 3.00 364.5 65.0 80.36% 3.00 362.9 64.7 79.68%

3 3.00 383.2 124.7 69.97% 3.03 425.1 141.2 80.00% 3.03 428.5 142.6 80.68% 3.03 424.8 141.1 79.94%

5 3.00 373.2 84.3 77.08% 3.01 381.7 86.6 80.00% 3.01 383.0 86.9 80.41% 3.01 381.3 86.5 79.86%

9 3.00 368.3 58.6 85.17% 2.99 356.5 56.4 80.00% 2.99 357.1 56.5 80.30% 2.99 356.0 56.3 79.73%

m n

3 3.00 569.5 1045.9 49.99% 3.28 1857.2 5495.3 80.09% 3.27 1782.4 5180.9 79.36% 3.47 3810.6 >5000 89.67%

5 3.00 418.5 380.3 50.61% 3.19 850.6 923.3 79.92% 3.21 906.3 999.4 81.74% 3.35 1453.7 1800.6 91.52%

9 3.00 364.2 210.3 51.49% 3.13 579.0 368.4 79.58% 3.14 598.1 383.2 81.00% 3.28 943.9 662.4 93.89%

3 3.00 448.2 401.3 54.87% 3.16 815.3 847.5 79.93% 3.17 827.1 862.8 80.37% 3.30 1302.6 1518.9 90.90%

5 3.00 389.1 217.4 57.21% 3.10 558.2 336.6 79.76% 3.11 568.2 343.9 80.60% 3.22 826.0 539.5 93.00%

9 3.00 363.8 138.3 60.33% 3.06 451.9 179.3 79.45% 3.07 460.2 183.2 80.71% 3.18 656.2 279.4 95.54%

3 3.00 418.3 278.6 58.11% 3.12 629.6 459.2 79.91% 3.13 658.1 484.7 81.68% 3.23 918.2 726.4 91.48%

5 3.00 381.6 166.8 61.60% 3.07 482.8 221.3 79.76% 3.07 486.0 223.1 80.17% 3.17 669.1 326.9 93.67%

9 3.00 365.0 110.4 66.20% 3.04 413.4 128.1 79.49% 3.05 428.8 133.8 82.63% 3.13 566.5 186.3 96.25%

3 3.00 404.9 223.8 60.61% 3.09 551.7 325.5 79.91% 3.10 565.7 335.5 81.13% 3.19 764.0 481.9 91.83%

5 3.00 378.3 140.2 64.98% 3.05 447.0 171.3 79.78% 3.04 438.5 167.4 78.32% 3.14 595.2 241.0 94.07%

9 3.00 365.9 94.6 70.63% 3.02 394.1 103.3 79.55% 3.02 395.0 103.6 79.80% 3.11 520.4 143.7 96.65%

3 3.00 392.5 170.1 64.48% 3.06 480.1 216.8 79.92% 3.06 488.1 221.1 80.95% 3.14 626.3 297.9 92.24%

5 3.00 375.3 111.3 70.11% 3.03 411.3 124.1 79.82% 3.03 412.7 124.6 80.14% 3.10 521.6 164.1 94.52%

9 3.00 367.1 76.3 77.11% 3.01 373.8 78.0 79.64% 3.01 375.0 78.3 80.05% 3.08 471.7 102.8 97.10%

3 3.00 386.6 142.3 67.48% 3.04 445.6 168.7 79.93% 3.05 455.4 173.1 81.52% 3.11 561.7 222.4 92.52%

5 3.00 373.9 95.0 73.98% 3.01 392.9 100.8 79.85% 3.02 396.9 102.0 80.94% 3.08 483.8 129.1 94.80%

9 3.00 367.8 65.7 81.71% 3.00 363.0 64.7 79.70% 2.99 360.2 64.1 78.45% 3.06 445.2 82.5 97.35%

3 3.00 383.2 124.7 69.97% 3.03 424.8 141.1 79.94% 3.04 431.7 143.8 81.28% 3.09 522.7 180.7 92.68%

5 3.00 373.2 84.3 77.08% 3.01 381.3 86.5 79.87% 3.01 383.2 87.0 80.47% 3.06 459.9 108.1 94.97%

9 3.00 368.3 58.6 85.17% 2.99 356.0 56.3 79.74% 2.99 358.6 56.7 80.99% 3.05 428.1 70.0 97.51%
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𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝑪 
∗

𝜺 = 𝟐𝟎%
𝑳∗

=
𝑳𝑪𝑨𝟏
∗

𝑳∗

=
𝑳𝑪𝑨𝟐
∗

𝑳∗

=
𝑳

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎.𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝒃𝒐𝒐𝒕
∗

𝑳∗

=
𝑳𝑪𝑨𝟑
∗

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑳∗

=
𝑳𝑪 𝟐
∗

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟐𝟕
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑺𝑫𝑨𝑹𝑳𝟎

=
SD 𝑪𝑨𝑹𝑳𝟎

𝑷 𝑪𝑭𝑨𝑹 ≤ 𝟎. 𝟎𝟎𝟑𝟐
=   

𝑷 𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎 . 

𝑨𝑹𝑳𝟎
=

 𝑪𝑨𝑹𝑳𝟎

𝜺 = 𝟐𝟎%
𝑳∗

=
𝑳

𝑺𝑫𝑨𝑹𝑳𝟎
=

SD 𝑪𝑨𝑹𝑳𝟎
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𝐿𝐾𝑈
∗ =

Φ−1 (
(1 + 𝜀)𝛼

2 )

√
𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

𝑚(𝑛 − 1)

                                                        (64) 

Table 8 shows the exact values of 𝐿𝐾𝑈
∗  in case KU for some values of 𝑚 and 

𝑛, for 𝑝 = 5%, 10%, 15% and 20%, 𝜀 = 0%, 10% and 20%, and 𝛼 = 0.0027. As 

noted earlier, this means that the values of 𝐿𝐾𝑈
∗  used in the control limits, provide 

𝑃(𝐶𝐹𝐴𝑅 ≥ (1 + 𝜀)𝛼) = 1 − 𝑝 or 𝑃(𝐶𝐴𝑅𝐿0 ≥ 1/(1 + 𝜀)𝛼) = 1 − 𝑝. So, for 

example, if the user has 25 reference samples each one with size 9 from a Phase I 

analysis, then to guarantee 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 90%, he/she should replace 𝐿 by 

𝐿∗ = 3.21 in case KU in Equations (1) and (2). 

Since there is no other method in the literature to find 𝐿𝐾𝑈
∗  to be compared 

with Equation (63) and this equation already gives exact results with a very simple 

formula, Table 8 does not show other properties of  𝐶𝐴𝑅𝐿0 as in Tables 5, 6 and 7 

[such as the 𝐴𝑅𝐿0 and the 𝑆𝐷(𝐶𝐴𝑅𝐿0)]. As in case UU, for most of the 

combinations of parameters, 𝐿𝐾𝑈
∗  is larger than 3. This makes the control limits 

wider, so the out-of-control performance may be severely affected (since wider 

control limits causes true alarms to take longer to signal). This will be seen in more 

detail in Section 5.4. 
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Table 8. Values of 𝑳𝑲𝑼
∗  to achieve 𝑷(𝑪𝑭𝑨𝑹 ≥ (𝟏 + 𝜺)𝜶) = 𝟏 − 𝒑 or 

𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟏/(𝟏 + 𝜺)𝜶) = 𝟏 − 𝒑 for 𝒏 = 𝟑, 𝟓, 𝟗, 𝟏𝟓, 𝜺 = 𝟎, 𝟎. 𝟏𝟎, 𝟎. 𝟐𝟎, 𝒑 =
𝟎. 𝟎𝟓, 𝟎. 𝟏, 𝟎, 𝟏𝟓, 𝟎. 𝟐 and 𝒎 = 𝟐𝟓, 𝟓𝟎, 𝟐𝟓𝟎, 𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎 in Case KU  

 

5.3. 
Adjustment in Case UK 

In case UK, since there is no closed-form solution for the expression of the 

c.d.f. of 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅, one can find 𝐿∗ by solving the following system of 

equations: 

{
Φ(𝑧2) − Φ(𝑧1) = 1 − 𝑝                                                                

[Φ (
𝑧𝑖

√𝑚
+ 𝐿𝑈𝐾

∗ ) − Φ (
𝑧𝑖

√𝑚
− 𝐿𝑈𝐾

∗ )] = 1 − (1 + 𝜀)𝛼, 𝑖 = 1,2
 

                    (65) 

for 𝐿𝑈𝐾
∗ , 𝑧2 and 𝑧1. This can be done numerically with a search algorithm. Using 

the approximate formula for the c.d.f. of  𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 given by Equation (40), 

one can also derive the following approximate formula for  𝐿𝑈𝐾
∗ : 

𝐿𝑈𝐾
∗ ≈ √(

𝐹χ1
2
−1(1 − 𝑝)

𝑚
+ 1)𝐹χ1

2
−1(1 − (1 + 𝜀)𝛼)                            (66) 

 

Table 9 shows the exact [using Equation (65)] and approximate [in bold, 

using equation (66)] values of 𝐿𝑈𝐾
∗  in case UK for some values of 𝑚 (note that 𝐿𝑈𝐾

∗  

p n 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

3 3.60 3.56 3.53 3.40 3.37 3.33 3.27 3.24 3.21 3.17 3.13 3.11 3.11 3.08 3.06 3.08 3.05 3.02

5 3.40 3.37 3.33 3.27 3.24 3.21 3.19 3.16 3.13 3.11 3.08 3.06 3.08 3.05 3.02 3.06 3.03 3.00

9 3.27 3.24 3.21 3.19 3.16 3.13 3.13 3.10 3.07 3.08 3.05 3.02 3.06 3.03 3.00 3.04 3.01 2.98

15 3.20 3.17 3.14 3.14 3.11 3.08 3.10 3.07 3.04 3.06 3.03 3.00 3.04 3.01 2.99 3.03 3.00 2.97

3 3.46 3.42 3.39 3.31 3.27 3.24 3.21 3.18 3.15 3.13 3.10 3.07 3.09 3.06 3.03 3.06 3.03 3.01

5 3.31 3.27 3.24 3.21 3.18 3.15 3.14 3.11 3.09 3.09 3.06 3.03 3.06 3.03 3.01 3.04 3.01 2.99

9 3.21 3.18 3.15 3.14 3.11 3.09 3.10 3.07 3.04 3.06 3.03 3.01 3.04 3.01 2.99 3.03 3.00 2.97

15 3.15 3.12 3.10 3.11 3.08 3.05 3.07 3.04 3.02 3.05 3.02 2.99 3.03 3.00 2.98 3.02 2.99 2.97

3 3.36 3.33 3.30 3.25 3.21 3.18 3.17 3.14 3.11 3.10 3.07 3.05 3.07 3.04 3.01 3.05 3.02 2.99

5 3.25 3.21 3.18 3.17 3.14 3.11 3.12 3.09 3.06 3.07 3.04 3.01 3.05 3.02 2.99 3.04 3.01 2.98

9 3.17 3.14 3.11 3.12 3.09 3.06 3.08 3.05 3.02 3.05 3.02 2.99 3.04 3.01 2.98 3.02 3.00 2.97

15 3.12 3.09 3.07 3.09 3.06 3.03 3.06 3.03 3.00 3.04 3.01 2.98 3.03 3.00 2.97 3.02 2.99 2.96

3 3.29 3.26 3.23 3.20 3.17 3.14 3.14 3.11 3.08 3.08 3.05 3.03 3.06 3.03 3.00 3.04 3.01 2.98

5 3.20 3.17 3.14 3.14 3.11 3.08 3.09 3.06 3.04 3.06 3.03 3.00 3.04 3.01 2.98 3.03 3.00 2.97

9 3.14 3.11 3.08 3.09 3.06 3.04 3.07 3.04 3.01 3.04 3.01 2.98 3.03 3.00 2.97 3.02 2.99 2.96

15 3.10 3.07 3.04 3.07 3.04 3.01 3.05 3.02 2.99 3.03 3.00 2.97 3.02 2.99 2.97 3.02 2.99 2.96

1000

m

25 50 100 250 500

𝜺  

 

  

  

𝑝
=
0
.0
5

𝑝
=
0
.1

𝑝
=
0
.1
5

𝑝
=
0
.2
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is invariant with respect to 𝑛), for 𝜀 = 0, 0.05, 0.1, 0.15, 0.2 , 𝑝 =

0.05,0.1, 0,15,0.2 and 𝛼 = 0.0027. As can be seen in Table 9, the approximate 

formula (66) provides accurate results. 

Since the adjustments based on the EPC of the 𝑋̅ control chart for the 3 cases 

(UU, KU and UK) in most of the parameters combinations make the limits wider 

than the 3-sigma limits (note that often 𝐿∗ > 3), arises the question of the impact 

this will have on the out-of-control performance of the chart when these adjusted 

limits are used. In the next section, we analyze this question. 

Table 9. Values of 𝑳∗ to achieve 𝑷(𝑪𝑭𝑨𝑹 ≥ (𝟏 + 𝜺)𝜶) = 𝟏 − 𝒑 or 

𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟏/(𝟏 + 𝜺)𝜶) = 𝟏 − 𝒑 for 𝜺 = 𝟎, 𝟎. 𝟎𝟓, 𝟎. 𝟏, 𝟎. 𝟏𝟓, 𝟎. 𝟐 , 𝒑 =
𝟎. 𝟎𝟓, 𝟎. 𝟏, 𝟎, 𝟏𝟓, 𝟎. 𝟐 and some values of 𝒎 in CASE UK  

 

m Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx

0.05 3.19 3.22 3.18 3.21 3.16 3.19 3.15 3.18 3.14 3.16

0.1 3.14 3.16 3.13 3.14 3.11 3.13 3.10 3.11 3.09 3.10

0.15 3.11 3.12 3.10 3.11 3.08 3.09 3.07 3.08 3.06 3.06

0.2 3.09 3.10 3.08 3.08 3.06 3.07 3.05 3.05 3.03 3.04

0.05 3.11 3.11 3.09 3.10 3.08 3.08 3.06 3.07 3.05 3.06

0.1 3.08 3.08 3.06 3.06 3.05 3.05 3.03 3.04 3.02 3.02

0.15 3.06 3.06 3.04 3.05 3.03 3.03 3.02 3.02 3.00 3.00

0.2 3.05 3.05 3.03 3.03 3.02 3.02 3.00 3.01 2.99 2.99

0.05 3.07 3.08 3.06 3.06 3.04 3.05 3.03 3.03 3.02 3.02

0.1 3.05 3.05 3.04 3.04 3.02 3.02 3.01 3.01 2.99 3.00

0.15 3.04 3.04 3.02 3.03 3.01 3.01 3.00 3.00 2.98 2.98

0.2 3.03 3.03 3.02 3.02 3.00 3.00 2.99 2.99 2.98 2.98

0.05 3.05 3.06 3.04 3.04 3.03 3.03 3.01 3.01 3.00 3.00

0.1 3.04 3.04 3.02 3.03 3.01 3.01 3.00 3.00 2.98 2.98

0.15 3.03 3.03 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97

0.2 3.02 3.02 3.01 3.01 2.99 3.00 2.98 2.98 2.97 2.97

0.05 3.04 3.04 3.02 3.02 3.01 3.01 2.99 2.99 2.98 2.98

0.1 3.03 3.03 3.01 3.01 3.00 3.00 2.98 2.98 2.97 2.97

0.15 3.02 3.02 3.01 3.01 2.99 2.99 2.98 2.98 2.96 2.96

0.2 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96

0.05 3.03 3.03 3.01 3.01 3.00 3.00 2.98 2.99 2.97 2.97

0.1 3.02 3.02 3.00 3.01 2.99 2.99 2.98 2.98 2.96 2.96

0.15 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96

0.2 3.01 3.01 3.00 3.00 2.98 2.98 2.97 2.97 2.96 2.96

0.05 3.02 3.02 3.01 3.01 2.99 2.99 2.98 2.98 2.97 2.97

0.1 3.02 3.02 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96

0.15 3.01 3.01 3.00 3.00 2.98 2.98 2.97 2.97 2.96 2.96

0.2 3.01 3.01 2.99 2.99 2.98 2.98 2.97 2.97 2.95 2.95

0.05 3.01 3.01 3.00 3.00 2.98 2.98 2.97 2.97 2.96 2.96

0.1 3.01 3.01 2.99 2.99 2.98 2.98 2.97 2.97 2.95 2.95

0.15 3.01 3.01 2.99 2.99 2.98 2.98 2.96 2.96 2.95 2.95

0.2 3.00 3.00 2.99 2.99 2.98 2.98 2.96 2.96 2.95 2.95

0.05 3.01 3.01 2.99 2.99 2.98 2.98 2.96 2.96 2.95 2.95

0.1 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96 2.95 2.95

0.15 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96 2.95 2.95

0.2 3.00 3.00 2.99 2.99 2.97 2.97 2.96 2.96 2.95 2.95

m
 =

 2
5
0

m
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 1
5
0

m
 =

 2
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0 0.05 0.1 0.15 0.2

m
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m
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m
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5.4 
Out–of-control Performance Analysis after the Adjustments  

In this section, we analyze the impact of the adjustments proposed in this 

work on the out-of-control performance of the 𝑋̅ chart for the three cases (UU, KU 

and UK). As we noted is the last sections, in most situations the adjustment leads 

to widening the interval between the control limits (see Table 5,6,7,8 and 9 where 

often  𝐿∗ > 3). In these cases, the out-of-control conditional ARL (i.e., the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 

with 𝛿 ≠ 0) will be larger with the adjusted limits than with the unadjusted limits. 

This is the price to pay for guaranteeing a desired in-control performance. So, it is 

important to assess the deterioration in the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 due to the adjustment. This 

assessment will enable the user to choose an appropriate compromise, in terms of 

𝑚, 𝑛, 𝜀, and 𝑝, since the out-of-control performance deterioration is lesser with 

larger m and n, and also with larger values of 𝜀 and 𝑝. For example, for m = 25 and 

n = 5 (a typical amount of reference data in practice and according to traditional 

recommendations), the adjustments proposed in the last sections enable achieving 

the desired conditional in-control performance in terms of the EPC (for example, 

𝑃(𝐶𝐴𝑅𝐿0 > 370.4) = 90%), however they may produce the undesirable effect of 

deteriorating the out-of-control performance. Still considering this typical amount 

of data (i.e., m = 25 and n = 5), to detect a shift in the process mean of the size of 

one process standard deviation (i.e., |𝛿| = 1), with no adjustment, the chart in case 

UU, for example, will have 𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 7.25) = 10%, which means that the 

average number of samples until a true alarm will be most likely below 10 samples. 

However, with the adjustment (in order to achieve 𝑃(𝐶𝐴𝑅𝐿0,𝑈𝑈 > 370.4) =

90%), the chart will have 𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 15.98) = 10%: a difference of 8.23 

(more than 100%) on the 0.9-quantile of the 𝐶𝐴𝑅𝐿1,𝑈𝑈.  Note that an out-of-control 

ARL of 15.98 may be unacceptable for the practitioner. However, with m = 50 and 

n = 5, with no adjustment 𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 6.55) = 10% and with adjustment, 

𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 9.99) = 10%. So, with m = 50 and n = 5, either with or without the 

adjustment, the 𝐶𝐴𝑅𝐿1,𝑈𝑈 will most likely be below 10 samples, however, only with 

the adjustment one can guarantee that 𝑃(𝐶𝐴𝑅𝐿0,𝑈𝑈 > 370.4) = 90%. Also, the 

difference between the 0.9-quantiles of the 𝐶𝐴𝑅𝐿1,𝑈𝑈 with and without the 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



80 
 

 

 

adjustment, is 3.44 (about 50%). So, a particular user may consider adjusting the 

limits with m = 50 and n = 5 a good compromise solution between the number and 

size of subgroups to collect in Phase I, a desired nominal in-control performance 

and a reasonable out-of-control performance of the 𝑋̅ chart.  

It becomes evident from the above example that knowing the prediction 

bound for the 𝐶𝐴𝑅𝐿𝛿, with adjusted and with unadjusted limits, is useful for 

assessing the deterioration (increase) in the 𝐶𝐴𝑅𝐿𝛿 due to the adjustments. The 

lower prediction bound for 𝐶𝐴𝑅𝐿𝛿 can be calculated similarly as presented in 

Section 3.5 for bounds for 𝐶𝐴𝑅𝐿0 in the in-control situation. That is, for given 𝛿, 

𝑚 and 𝑛, we can use the distributions of 𝐶𝐴𝑅𝐿𝛿, for all the three cases (UU, KU 

and UK) derived in Chapter 3 and use them to find a lower bound (denoted 𝑄𝑝𝑂𝑂𝐶) 

that has only a low (specified) probability 𝑝𝑂𝑂𝐶 (e.g. 0.10) of being exceeded. 

Formally: for a given 𝑝𝑂𝑂𝐶 and 𝛿 ≠ 0, one must find 𝑄𝑝𝑂𝑂𝐶 for 

            𝑃(𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 > 𝑄𝑝𝑂𝑂𝐶) = 𝑝𝑂𝑂𝐶                                         (67) 

Thus, 𝑄𝑝𝑂𝑂𝐶 is the (1 − 𝑝𝑂𝑂𝐶)-quantile of the 𝐶𝐴𝑅𝐿𝛿, distribution. Since the 

𝐶𝐴𝑅𝐿𝛿, is the realized average number of samples until a true alarm, the smaller the 

𝑄𝑝𝑂𝑂𝐶 the better the chart’s OOC performance. Table 10, 11 and 12, respectively 

for cases UU, KU and UU presents the values of 𝑄𝑝𝑂𝑂𝐶 with the adjusted limits 

(proposed in the last sections) for 𝜀 = 0 and 𝑝 = 0.1 (in grey) and with unadjusted 

limits, 𝐿 = 3 (in white), for the same values of  𝑚 and 𝑛, for mean shifts |𝛿| = 0.5, 

|𝛿| = 1 and |𝛿| = 1.5 and for 𝑝𝑂𝑂𝐶 = 0.05 and 𝑝𝑂𝑂𝐶 = 0.1. Also, these tables 

show the differences (in bold) between the 𝑄𝑝𝑂𝑂𝐶 values with the adjusted and the 

unadjusted limits, respectively, to enable a direct performance comparison. 

An examination of Table 10, for Case UU, shows that for |𝛿| = 1 (a shift in 

the mean of one standard deviation) and 𝑝𝑂𝑂𝐶 = 0.05, 𝑚 = 25 and 𝑛 = 5, the 

difference between the 𝑄𝑝𝑂𝑂𝐶 values, with and without the adjustment, is of 10.87 

samples on average. This is a difference of about 100%, but note that we are 

considering a 0.95 quantile, a small sample size and a very small number of initial 

samples. If one increases just the number of samples making 𝑚 = 50 (and 
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maintaining 𝑛 = 5, 𝑝𝑂𝑂𝐶 = 0.05, |𝛿| = 1) the difference between the 𝑄𝑝𝑂𝑂𝐶 

values, with and without the adjustment, reduces to just 4.12 samples in average (a 

good improvement). Moreover, if one just increases the sample size by making 𝑛 =

10 (and maintaining 𝑚 = 25, 𝑝𝑂𝑂𝐶 = 0.05, |𝛿| = 1) the difference between the 

𝑄𝑝𝑂𝑂𝐶 values, with and without the adjustment, reduces to just 0.86 samples in 

average. This means that for “𝑛 = 10 and 𝑚 = 25” or “𝑛 = 5 and 𝑚 = 50” (i.e., 

a total amount pf Phase I data of 250 observations) the impact of the adjustments 

(for 𝜀 = 0 and 𝑝 = 0.1) in the OOC performance is not so large when |𝛿| = 1 

(compared to when 𝑛 = 5 and 𝑚 = 25). 

For a larger shift, say |𝛿| = 1.5, the difference between the values of 𝑄𝑝𝑂𝑂𝐶 

with and without adjustment is only 1.14 samples on average making 𝑛 = 5, 𝑚 =

25 and 𝑝𝑂𝑂𝐶 = 0.05. So, for shifts of this magnitude or larger (i.e., |𝛿| ≥ 1.5), the 

impact of the adjustment on the out-of-control performance is small for any value 

of 𝑛 and 𝑚. However, for a smaller shift, say |𝛿| = 0.5, the 𝑄𝑝𝑂𝑂𝐶 is large in most 

cases. For example, for 𝑝𝑂𝑂𝐶 = 0.05,  𝑚 = 25 and 𝑛 = 5, 𝑄𝑝𝑂𝑂𝐶 is 107.85 and 

351.98 with unadjusted and adjusted limits, respectively. That is an increase of 

244.13 samples on average after the adjustments. This shows that, for smaller shifts 

(such as |𝛿| = 0.5), the impact of the adjustment on the OOC performance is 

significantly negative. However, this is not a surprise since the 𝑋̅ chart is usually 

not recommended for signaling mean shifts smaller than |𝛿| = 1 standard deviation 

(even in Case KK). 

As can be seen in Tables 11 and 12, for case KU and UK the situations are 

slightly different when  |𝛿| = 1. For these shift size, the maximum difference 

between the 𝑄𝑝𝑂𝑂𝐶 values, with and without the adjustment, is of 6.12 samples on 

average (this is for 𝑝𝑂𝑂𝐶 = 0.05, 𝑚 = 25 and 𝑛 = 5, a small number and size of 

samples). If the user considers that an increase of less than 10 samples on average 

on the 𝑄𝑝𝑂𝑂𝐶, a satisfactory impact on the OOC performance, in cases KU and UK, 

the impact when |𝛿| = 1 is satisfactory for any value of 𝑛 and 𝑚. When |𝛿| = 0.5 

and |𝛿| = 1.5 the conclusion for cases KU and UU is similar for cases UU. 
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Table 10. The 0.95 and 0.9 quantiles of 𝑪𝑨𝑹𝑳𝜹,𝑼𝑼 with adjusted limits (𝜶 =
𝟎. 𝟎𝟎𝟐𝟕, 𝒑 = 𝟎. 𝟏 and 𝜺 = 𝟎) in grey and unadjusted limits (𝑳 = 𝟑) in white for 

different values of 𝒎, 𝒏 and 𝜹 (Case UU) 

 

Table 11. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝐾𝑈 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.1 and 𝜀 = 0) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case KU)  

 

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 2.21 3.36 1.14 1.97 2.47 0.50 1.83 2.09 0.26 1.71 1.82 0.11 1.64 1.69 0.05

10 1.10 1.17 0.07 1.08 1.11 0.03 1.07 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00

15 1.01 1.01 0.01 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 2.02 2.95 0.93 1.86 2.30 0.44 1.76 2.00 0.23 1.67 1.78 0.10 1.62 1.67 0.05

10 1.08 1.14 0.06 1.07 1.10 0.03 1.06 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00

15 1.01 1.01 0.01 1.00 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 9.27 20.14 10.87 7.37 11.50 4.12 6.33 8.27 1.95 5.45 6.21 0.77 4.99 5.32 0.34

10 2.46 3.32 0.86 2.21 2.62 0.40 2.06 2.28 0.21 1.93 2.02 0.09 1.85 1.90 0.04

15 1.45 1.66 0.22 1.37 1.48 0.11 1.33 1.38 0.06 1.29 1.31 0.03 1.26 1.27 0.01

20 1.15 1.23 0.08 1.13 1.16 0.04 1.11 1.13 0.02 1.09 1.10 0.01 1.09 1.09 0.00

5 7.75 15.98 8.23 6.55 9.99 3.44 5.84 7.56 1.72 5.21 5.93 0.72 4.87 5.19 0.32

10 2.27 3.00 0.73 2.10 2.46 0.36 1.99 2.19 0.20 1.89 1.98 0.09 1.84 1.88 0.04

15 1.39 1.58 0.19 1.34 1.43 0.10 1.31 1.36 0.05 1.27 1.30 0.02 1.26 1.27 0.01

20 1.13 1.20 0.07 1.11 1.15 0.03 1.10 1.12 0.02 1.09 1.10 0.01 1.08 1.09 0.00

5 107.85 351.98 244.13 75.24 151.07 75.83 58.80 90.45 31.65 46.05 57.15 11.10 39.75 44.30 4.55

10 29.02 56.41 27.39 22.55 33.35 10.80 18.99 24.16 5.17 16.03 18.06 2.04 14.47 15.36 0.89

15 13.34 21.55 8.21 10.90 14.40 3.50 9.50 11.25 1.75 8.30 9.01 0.72 7.65 7.97 0.32

20 7.72 11.23 3.51 6.52 8.08 1.56 5.82 6.61 0.80 5.20 5.53 0.33 4.86 5.01 0.15

5 81.29 249.12 167.82 62.14 121.44 59.30 51.59 78.40 26.82 42.82 52.94 10.13 38.23 42.56 4.33

10 23.89 45.11 21.22 19.77 28.88 9.11 17.35 21.95 4.60 15.24 17.15 1.91 14.08 14.94 0.86

15 11.42 18.08 6.65 9.81 12.85 3.04 8.84 10.43 1.59 7.97 8.65 0.68 7.49 7.80 0.31

20 6.78 9.71 2.92 5.98 7.35 1.38 5.48 6.21 0.73 5.03 5.35 0.32 4.78 4.92 0.14
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n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 1.99 2.70 0.72 1.84 2.20 0.36 1.75 1.96 0.21 1.67 1.76 0.10 1.62 1.67 0.05

10 1.07 1.11 0.04 1.06 1.08 0.02 1.05 1.07 0.01 1.05 1.06 0.01 1.05 1.05 0.00

15 1.00 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 1.87 2.48 0.61 1.77 2.10 0.33 1.70 1.90 0.19 1.64 1.73 0.09 1.61 1.65 0.05

10 1.06 1.10 0.03 1.06 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.01 1.05 1.05 0.00

15 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 7.48 13.60 6.12 6.39 9.22 2.83 5.74 7.25 1.51 5.16 5.83 0.67 4.85 5.16 0.31

10 2.12 2.56 0.45 2.00 2.26 0.26 1.93 2.09 0.16 1.86 1.94 0.08 1.82 1.86 0.04

15 1.33 1.43 0.10 1.30 1.36 0.06 1.28 1.32 0.04 1.26 1.28 0.02 1.25 1.26 0.01

20 1.10 1.14 0.03 1.10 1.11 0.02 1.09 1.10 0.01 1.08 1.09 0.01 1.08 1.08 0.00

5 6.60 11.56 4.96 5.87 8.33 2.46 5.42 6.80 1.38 5.00 5.64 0.63 4.76 5.07 0.30

10 2.03 2.43 0.40 1.94 2.18 0.24 1.89 2.04 0.15 1.84 1.91 0.08 1.81 1.85 0.04

15 1.30 1.40 0.10 1.28 1.34 0.06 1.27 1.31 0.04 1.25 1.27 0.02 1.25 1.26 0.01

20 1.10 1.13 0.03 1.09 1.11 0.02 1.09 1.10 0.01 1.08 1.09 0.01 1.08 1.08 0.00

5 77.10 195.57 118.47 59.81 107.25 47.44 50.20 73.35 23.16 42.14 51.51 9.37 37.90 42.06 4.16

10 20.21 31.86 11.65 17.62 23.67 6.05 16.02 19.50 3.48 14.57 16.20 1.64 13.75 14.54 0.79

15 9.45 12.69 3.24 8.62 10.46 1.84 8.08 9.20 1.12 7.58 8.14 0.56 7.29 7.57 0.28

20 5.62 6.94 1.32 5.25 6.04 0.78 5.02 5.51 0.49 4.79 5.04 0.25 4.65 4.78 0.13

5 62.99 152.39 89.41 52.14 91.50 39.36 45.68 66.09 20.41 39.98 48.71 8.73 36.84 40.85 4.01

10 18.15 28.13 9.97 16.37 21.82 5.45 15.23 18.46 3.24 14.15 15.73 1.57 13.53 14.31 0.78

15 8.80 11.70 2.90 8.20 9.91 1.71 7.81 8.87 1.06 7.43 7.98 0.54 7.21 7.49 0.28

20 5.34 6.54 1.21 5.07 5.81 0.74 4.89 5.37 0.47 4.72 4.97 0.25 4.62 4.74 0.13

m
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Table 12. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝑈𝐾 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.1 and 𝜀 = 0) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case UK)  

 

Finally, note that a small difference in 𝑄𝑝𝑂𝑂𝐶 values means that the adjustment 

guarantees the in-control performance as specified and does not significantly 

deteriorate the OOC performance of the chart. If we consider 𝑄𝑝𝑂𝑂𝐶 ≈ 10 to be an 

acceptable OOC performance, Table 10, for case UU, shows that both the 

unadjusted and the adjusted limits do not work well for |𝛿| = 1 when 𝑛 = 5 and 

𝑚 = 25. But in all other cases, for example, when |𝛿| ≥ 1 and 𝑛 ≥ 10 or when 

|𝛿| ≥ 1 and 𝑚 ≥ 50, the 𝑄𝑝𝑂𝑂𝐶 values are either less than or close to 10 with the 

adjusted limits, which means the adjustment works well. For cases KU and UK, 

still considering 𝑄𝑝𝑂𝑂𝐶 ≈ 10 a good performance, from Tables 10 and 11, one can 

see that the adjustment works well for any values of 𝑛 and 𝑚 for |𝛿| ≥ 1 . The 

analysis can be easily replicated for other values of 𝛼, 𝑝, 𝑝𝑂𝑂𝐶 and 𝜀.  In Appendix 

G, it is shown tables for adjustments with the combination 𝜀 = 0.20 and 𝑝 = 0.1 

and the combination 𝜀 = 0.20 and 𝑝 = 0.2 for the three cases (UU, KU and UK). 

The conclusions are similar,  

Hence, the adjusted limits are recommended for “𝑛 ≥ 10 and 𝑚 ≥ 25” or for 

“𝑛 ≥ 5 and 𝑚 ≥ 50” in case UU and for “𝑛 ≥ 5 and 𝑚 ≥ 25” in cases KU and UU 

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 1.96 2.21 0.25 1.82 1.93 0.11 1.74 1.79 0.05 1.66 1.67 0.01 1.62 1.62 0.00

10 1.09 1.11 0.03 1.07 1.08 0.01 1.06 1.07 0.01 1.05 1.05 0.00 1.05 1.05 0.00

15 1.01 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 1.86 2.08 0.22 1.76 1.86 0.10 1.70 1.74 0.05 1.64 1.65 0.01 1.61 1.61 0.00

10 1.07 1.10 0.02 1.06 1.07 0.01 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.05 0.00

15 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 7.29 9.25 1.96 6.27 7.06 0.79 5.66 6.00 0.34 5.12 5.22 0.10 4.82 4.85 0.03

10 2.31 2.64 0.34 2.12 2.26 0.14 2.00 2.07 0.06 1.90 1.92 0.02 1.84 1.84 0.01

15 1.42 1.53 0.11 1.35 1.40 0.05 1.31 1.34 0.02 1.28 1.29 0.01 1.26 1.26 0.00

20 1.14 1.19 0.04 1.12 1.14 0.02 1.11 1.11 0.01 1.09 1.09 0.00 1.08 1.09 0.00

5 6.50 8.18 1.68 5.80 6.51 0.71 5.37 5.69 0.32 4.97 5.07 0.09 4.75 4.78 0.03

10 2.16 2.46 0.30 2.03 2.16 0.13 1.95 2.01 0.06 1.87 1.89 0.02 1.82 1.83 0.01

15 1.37 1.47 0.10 1.32 1.37 0.04 1.30 1.32 0.02 1.27 1.28 0.01 1.25 1.26 0.00

20 1.13 1.17 0.04 1.11 1.13 0.02 1.10 1.11 0.01 1.09 1.09 0.00 1.08 1.08 0.00

5 73.59 107.39 33.80 57.88 70.07 12.20 49.04 53.96 4.92 41.58 42.91 1.33 37.62 37.97 0.35

10 24.85 34.15 9.30 20.28 23.79 3.52 17.65 19.11 1.46 15.38 15.78 0.41 14.15 14.26 0.11

15 12.21 16.07 3.85 10.26 11.77 1.50 9.11 9.75 0.64 8.11 8.29 0.18 7.56 7.61 0.05

20 7.29 9.25 1.96 6.27 7.06 0.79 5.66 6.00 0.34 5.12 5.22 0.10 4.82 4.85 0.03

5 61.35 88.67 27.32 51.06 61.61 10.55 44.96 49.41 4.45 39.59 40.84 1.26 36.64 36.98 0.34

10 21.30 29.01 7.71 18.25 21.35 3.09 16.41 17.75 1.34 14.76 15.15 0.39 13.84 13.95 0.11

15 10.70 13.95 3.25 9.38 10.72 1.34 8.57 9.16 0.59 7.83 8.01 0.17 7.42 7.47 0.05

20 6.50 8.18 1.68 5.80 6.51 0.71 5.37 5.69 0.32 4.97 5.07 0.09 4.75 4.78 0.03

m
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in order to guarantee a high probability (such as 0.9) that the conditional in-control 

average run length is greater than a nominal in-control average run length value 

(such as 370.4) and to guarantee that a 𝑄𝑝𝑂𝑂𝐶 ≈ 10.  
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6 
Conclusions and recommendations 

Recently in the literature, the performance of the 𝑋̅ control chart under 

normality when parameters are estimated (i.e., when the in-control process mean or 

the in-control standard deviation are estimated) has been measured based on the 

conditional in-control average run length (𝐶𝐴𝑅𝐿0) or the conditional false alarm 

rate (𝐶𝐹𝐴𝑅). This is because 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 take into account what is called 

practitioner-to-practitioner variability. Since 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0 are random 

variables (conditioned on the parameter estimates, i.e., changing from practitioners 

to practitioner), some authors suggested measuring the performance of the control 

charts according to the probability of the 𝐶𝐴𝑅𝐿0 (or the 𝐶𝐹𝐴𝑅) being at least (or at 

most) equal to some specified nominal value [this is the Exceedance Probability 

Criterion (EPC)].  

In this work, the effects of parameters estimation on the two-sided Phase II 𝑋̅ 

control chart was analyzed by deriving the exact 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 distributions 

(c.d.f.) in 3 cases: when both the process mean and standard deviation of the process 

are unknown and need to be estimated (case UU), when only the process standard 

deviation is estimated (case KU; IC mean specified/known) and when only the 

process mean is estimated (case UK; IC standard deviation specified/known). For 

these three cases, previous authors did not provide the exact distributions of these 

random variables, but instead (just for case UU), they relied on simulations and 

approximations. The 𝑋̅ chart in cases KU and UK has not been analyzed so far in 

this context of the effect of parameter estimation on the conditional performance. 

Using the expressions of the c.d.f. of 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 derived here, the 

exact upper quantiles of 𝐶𝐹𝐴𝑅 (and lower quantiles of 𝐶𝐴𝑅𝐿0) of the 𝑋̅ chart, 

which constitute prediction bounds for the 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0 respectively, were 

calculated and tabulated for the three cases of parameter estimations (UU, KU and 

UK). These results show that when 𝑚 or 𝑛 are small, the values of 𝐶𝐹𝐴𝑅 that are 
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exceeded (or the values of 𝐶𝐴𝑅𝐿0 that are not attained) with a small probability of 

5% or 10% are much higher (lower) than the desired (nominal) false alarm rate (or 

than the nominal 𝐴𝑅𝐿0), meaning that the realized false alarm rate may be much 

larger than expected (or the 𝐶𝐴𝑅𝐿0 much smaller than  expected) when the 𝑋̅ chart 

is designed with estimated parameters.  

In order to avoid unacceptably low (high) 𝐶𝐴𝑅𝐿0 (𝐶𝐹𝐴𝑅) values, exact 

expressions were derived, based on the c.d.f.´s derived here, in order to calculate 

the value of 𝑚 (the number of Phase I samples) required to guarantee a desired in-

control performance in terms of the EPC for some Phase I sample sizes (𝑛) for the 

three cases: UU, KU and UK. These results showed that depending on the 

practitioner’s tolerances and on the subgroups size (𝑛), 𝑚 can be very large, such 

as 2,000 samples of size 5 (i.e., a total of 10,000 Phase I data points). This number 

is larger than the ones recommended in most textbooks and manuals of Statistical 

Process Control (SPC), and even larger than the numbers recommended by some 

recent authors who focused on the mean and standard deviation of 𝐶𝐴𝑅𝐿0 and 

𝐶𝐹𝐴𝑅.   

Given the unpractically large numbers (𝑚) of Phase I samples required, in 

this work, we derived corrections to control limits so that some desired in-control 

performance in terms of the EPC is achieved. Unlike other authors, who use 

approximations or bootstrapping to propose new adjustment factors for Case UU 

only, our results were based on the exact c.d.f. of the 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 for all 3 

cases: UU, KU and UK. Moreover, for case UU a detailed comparison between the 

existing adjustment methods in the literature (approximate formulas and 

bootstrapping) and the methods proposed in this work was presented. The 

conclusion is that all of the adjusted methods generate very similar results. 

Therefore, the recommendation is to use the easiest one. The approximate method 

derived in this work is the simplest one because, different than the others, it just 

depends on the quantiles of central chi-square distributions which is tabulated in all 

text books in statistics. All other adjustment methods will require more advanced 

statistical skills, like the calculation of the quantile of a non-central chi-square 

distribution or bootstrapping. However, the solution provided by the exact 

equations also derived in this work, may be more attractive to be incorporate in a 
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software to calculate the control limits, since this solution yields exact results 

without requiring much computational time. 

The impact of these corrections on the chart’s conditional out-of-control 

performance was also analyzed in this work. Previous authors have tackled this 

issue only very briefly and focusing mainly only on the unconditional out-of-control 

run length. Here, the out-of-control performance with and without adjustments were 

based on some quantiles of the conditional out-of-control average run length. As 

expected, the deterioration is more severe for smaller sample sizes (𝑛) and smaller 

number of Phase I samples (𝑚), for example 𝑛 = 5 and 𝑚 = 25. It is also 

substantial for smaller shifts in the mean (such as 𝛿 = 0.5 stnadard deviations). 

Note, however, that the 𝑋̅ chart should not be used to detect such small shifts and 

that even in the ideal (and most often unrealistic) “standards known” case (case 

KK), its out-of-control average run length is unacceptably large. On the other hand, 

if one considers a 1 or more standard deviation shift in the mean (𝛿 = 1 or more), 

the impact on the out-of-control performance is not that substantial in most 

situations for the 3 cases (UU, KU and UK). This impact is reduced with larger 

sample sizes and larger numbers of Phase I samples. For case UU, the results 

presented here leads to a recommendation of using the adjusted limits for at least 

“𝑛 = 10 and 𝑚 = 25” or “𝑛 = 5 and 𝑚 = 50”, that is, for at least 250 reference 

data points (note that this required minimum total number of data points is much 

smaller than in the case of unadjusted limits). For cases KU and UU, the 

recommendation is using at least 𝑛 = 5 and 𝑚 = 25 to estimate the parameters 

(125 reference data points). With these recommended amounts of data and the 

adjusted limits, the user can strike a balance between a desired nominal in-control 

conditional performance and a reasonable out-of-control shift detection capability. 

Finally, based on the results presented in this work, it seems that, when 

constructing control charts with estimated control limits, the Exceedance 

Probability Criterion (EPC) has some imperfections which the practitioners should 

be aware of. The EPC, controls the probability that the 𝐶𝐴𝑅𝐿0 is greater than some 

tolerated value. This approach implicitly considers the variability of 𝐶𝐴𝑅𝐿0 but it 

neither controls this variability nor the expected value of 𝐶𝐴𝑅𝐿0 (the 𝐴𝑅𝐿0), which 

can also assume extremely large values. Adjusting the limits under the EPC, the 
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large variability of 𝐶𝐴𝑅𝐿0 is compensated by its large expectation resulting in the 

desired large probability that the lowest tolerated 𝐶𝐴𝑅𝐿0 value is exceeded. In 

conclusion, there is still room for improvement when it comes to designing the 

Shewhart control charts with unknown parameters. For example, finding a method 

that controls the EPC together with the variability and the expectation of 𝐶𝐴𝑅𝐿0. 

One can most likely say the same thing for other types of control charts. 
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Appendix A - Extras Plots of the  𝑪𝑨𝑹𝑳𝟎 Curves 

 

Figure A. 1. 𝑪𝑨𝑹𝑳𝟎,𝑲𝑼 as function of 𝒖 for 𝒏 = 𝟓, 𝒎 =
𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

 

Figure A. 2. 𝑪𝑨𝑹𝑳𝟎,𝑼𝑲 as function of 𝒖 for 𝒏 = 𝟓, 𝒎 =
𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 
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Appendix B – The Search Algorithm  

The search algorithm used to determine the solution of several equations in 

this work is the secant method, which is used to find the root of a monotonic 

univariate function. Let 𝑓(𝑥) be a monotonic univariate function (note that this is 

the case of 𝐶𝐴𝑅𝐿0,𝑈𝑈, 𝐶𝐴𝑅𝐿0,𝐾𝑈 and all the c.d.f.´s). Given a value 𝑏, one often has 

to solve an equation such as:  

𝑓(𝑥∗) = 𝑏                  (B.1) 

for 𝑥∗. Note that the solution of the Eq. (B.1) is equivalent in finding the root of the 

function  𝑔(𝑥) = 𝑓(𝑥) − 𝑏. Because of this, the secant method can be used to find 

the root of 𝑔(𝑥) which is equivalent in finding the 𝑥∗for  

𝑔(𝑥∗) = 𝑓(𝑥∗) − 𝑏 = 0      (B.2) 

 

So, using Eq. (B.2), the secant method can be applied using the following steps: 

 

1- Starting with initial values 𝑥0
∗ and 𝑥1

∗ where, 𝑥0
∗ ≤ 𝑥∗ ≤ 𝑥1

∗, one construct a line 

through the points (𝑥0
∗, 𝑔(𝑥0

∗)) and (𝑥1
∗, 𝑔(𝑥1

∗))). In slope-intercept form, this 

line has the equation: 

𝑦 =
𝑔(𝑥1

∗)−𝑔(𝑥0
∗)

𝑥1
∗−𝑥0

∗ (𝑥 − 𝑥1
∗) + 𝑔(𝑥1

∗).                                          (B.3) 

2- One finds the root of this line – the value of 𝑥 such that 𝑦 = 0 – by solving the 

following equation for 𝑥2
∗: 

𝑦 =
𝑔(𝑥1

∗)−𝑔(𝑥0
∗)

𝑥1
∗−𝑥0

∗ (𝑥2
∗ − 𝑥1

∗) + 𝑔(𝑥1
∗) = 0,                                (B.4) 

which is  

𝑥2
∗ = 𝑥1

∗ −  𝑔(𝑥1
∗)

𝑔𝑥1
∗−𝑥0

∗

𝑔(𝑥1
∗)−𝑔(𝑥0

∗)
.                                          (B.5) 

3- One then repeat step 1 using 𝑥1
∗ and 𝑥2

∗ (if 𝑓(𝑥) is a monotonic increasing 

function) or using 𝑥2
∗ and 𝑥0

∗ (if 𝑓(𝑥) is a monotonic decreasing function) 

instead of 𝑥0
∗ and 𝑥1

∗. One continues this process, solving for 𝑥3
∗, 𝑥4

∗, etc., until 

one reaches a sufficiently high level of precision (a sufficiently small difference 

between 𝑥𝑛
∗  and 𝑥𝑛−1

∗ ). 
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Appendix C – Derivation of the approximate formula for 
𝑭𝑪𝑷𝑺𝜹,𝑼𝑲(𝒕) 

To derive an approximate formula for  𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡),  note from Equation (11) 

that  

𝐶𝑃𝑆𝛿,𝑈𝐾 = 1 − [Φ (
𝑍

√𝑚
+ 𝐿 − 𝛿√𝑛) − Φ (

𝑍

√𝑚
− 𝐿 − 𝛿√𝑛)].                    (𝐶. 1) 

Given that 𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡), one has 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾𝑈𝐾,0
(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) 

= 𝑃 (1 − [Φ (
𝑍

√𝑚
+ 𝐿 − 𝛿√𝑛) −Φ (

𝑍

√𝑚
− 𝐿 − 𝛿√𝑛)] ≤ 𝑡),                  (𝐶. 2) 

where 𝑍1follows a standard normal distribution, so 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) 

= 𝑃 (𝑃 (
𝑍

√𝑚
− 𝐿 − 𝛿√𝑛 ≤ 𝑍1 ≤

𝑍

√𝑚
+ 𝐿 − 𝛿√𝑛) ≥ 1 − 𝑡) 

= 𝑃 (𝑃 (−𝐿 ≤ 𝑍1 − (
𝑍

√𝑚
− 𝛿√𝑛) ≤ +𝐿) ≥ 1 − 𝑡)              

= 𝑃(𝑃((𝑍1 − (
𝑍

√𝑚
− 𝛿√𝑛))

2

≤ 𝐿2) ≥ 1 − 𝑡).                                  (𝐶. 3) 

Note that (𝑍1 − (
𝑍

√𝑚
− 𝛿√𝑛))

2

 is a random variable in which the distribution 

is a non central chi-square distribution with 1 degree of freedom (d.f.) and non- 

centrality parameter (
𝑍

√𝑚
− 𝛿√𝑛)

2

. Let’s define  

(𝑍1 − (
𝑍

√𝑚
− 𝛿√𝑛))

2

= χ
1,[(

𝑍

√𝑚
−𝛿√𝑛)

2

]

2 .                             (𝐶. 4) 

So, continuing the derivation, one has: 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) = 𝑃(𝑃(χ
1,[(

𝑍

√𝑚
−𝛿√𝑛)

2

]

2 ≤ 𝐿2) ≥ 1 − 𝑡)    (𝐶. 5) 
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Cox and Reid (1987) derived the following simple approximation for a non-

central chi square distribution. 

𝑃(χ
1,[(

𝑍

√𝑚
−𝛿√𝑛)

2

]

2 ≤ 𝐿2) ≈ 𝑃

(

 
 

χ
1
2 ≤

𝐿2

1 + (
𝑍

√𝑚
− 𝛿√𝑛)

2

)

 
 
,                   (𝐶. 6) 

where χ
1
2 follows a central chi-square distribution with 1 d.f. So, one has 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) ≈ 𝑃 (𝑃 (χ
1
2 ≤

𝐿2

1+(
𝑍

√𝑚
−𝛿√𝑛)

2) ≥ 1 − 𝑡).                         

(𝐶. 7)    

 Rearranging the terms in C.7: 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) ≈ 𝑃

(

 
 
𝐹χ1

2

(

 
 𝐿2

1 + (
𝑍

√𝑚
− 𝛿√𝑛)

2

)

 
 
≥ 1 − 𝑡

)

 
 
     

= 𝑃 ((
𝑍

√𝑚
− 𝛿√𝑛)

2

≤
𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1)                                                  

= 𝑃(−√
𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1 ≤
𝑍

√𝑚
− 𝛿√𝑛 ≤ √

𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1)         

= 𝑃(√𝑚(𝛿√𝑛 − √
𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1) ≤ 𝑍 ≤ √𝑚(𝛿√𝑛 + √
𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1)) 

= Φ(√𝑚(𝛿√𝑛 + √
𝐿2

𝐹
χ1
2
−1(1−𝑡)

− 1)) −Φ(√𝑚(𝛿√𝑛 − √
𝐿2

𝐹
χ1
2
−1(1−𝑡)

− 1)) (𝐶. 8) 

Rearranging the terms in C.8 again, finally: 

𝐹𝐶𝑃𝑆𝛿,𝑈𝐾(𝑡) = 𝑃(𝐶𝑃𝑆𝛿,𝑈𝐾 ≤ 𝑡) 

≈ Φ(𝛿√𝑚𝑛 + √𝑚
𝑚𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1) − Φ(𝛿√𝑚𝑛 − √
𝑚𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1) . (𝐶. 9) 

  

Note that if 𝛿 = 0, 𝐶𝑃𝑆0,𝑈𝐾 = 𝐶𝐹𝐴𝑅𝑈𝐾. Using C.7, an alternatively 

approximate formula for the c.d.f. of 𝐶𝐹𝐴𝑅𝑈𝐾 can be derived as follows 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



99 
 

 

 

𝐹𝐶𝐹𝐴𝑅𝑈𝐾(𝑡) = 𝑃(𝐶𝐹𝐴𝑅𝑈𝐾 ≤ 𝑡) ≈ 𝑃

(

 
 
𝑃

(

 
 

χ
1
2 ≤

𝐿2

1 + (
𝑍

√𝑚
)
2

)

 
 
≥ 1 − 𝑡

)

 
 

 

 ≈ 𝑃 (𝐹χ1
2 (

𝐿2

1+
𝑍2

𝑚

) ≥ 1 − 𝑡) = 𝑃(
𝐿2

1+
𝑍2

𝑚

≥ 𝐹χ1
2
−1(1 − 𝑡)) 

= 𝑃(𝑍2 ≤ 𝑚(
𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1)) 

 

Finally, since 𝑍2 also follows a chi-square distribution with 1 d.f., one has 

𝐹𝐶𝐹𝐴𝑅𝑈𝐾(𝑡) = 𝑃(𝐶𝐹𝐴𝑅𝑈𝐾 ≤ 𝑡) ≈ 𝑃(χ
1
2 ≤ 𝑚(

𝐿2

𝐹χ1
2
−1(1 − 𝑡)

− 1))

= 𝐹χ1
2

(

 𝑚(
𝐿2

𝐹χ1
2
−1 (1 −

1
𝑡)
− 1)

)

                                                 (𝐶. 10) 
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Appendix D - Derivation of the Approximate Equations of 
𝜶𝒑,𝑼𝑼 𝑳𝑪𝑨𝟐

∗  and 𝑳𝑪𝑨𝟑
∗  for case UU 

Here we derive 𝛼𝑝,𝑈𝑈, 𝐿𝐶𝐴2
∗  and 𝐿𝐶𝐴3

∗  for case UU. Note that, from Equation 

(13), 𝐶𝐹𝐴𝑅, given 𝑧, is a function of the chi-square random variable 𝑌. So, from 

Equation (13) one can write the c.d.f of  𝐶𝐹𝐴𝑅 conditioned on 𝑍 = 𝑧  as: 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧)                                                                                                                                    

= 𝑃(1 − [Φ(
𝑧

√𝑚
+ 𝐿∗√

𝑌

𝑚(𝑛 − 1)
) − Φ(

𝑧

√𝑚
− 𝐿∗√

𝑌

𝑚(𝑛 − 1)
)] ≤ 𝑡)            

= 𝑃(𝑃(
𝑧

√𝑚
− 𝐿∗√

𝑌

𝑚(𝑛 − 1)
≤ 𝑍1 ≤

𝑧

√𝑚
+ 𝐿∗√

𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡).   (𝐷. 1) 

where 𝑍1 also follows a standard normal distribution. So 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧) 

= 𝑃(𝑃(−𝐿∗√
𝑌

𝑚(𝑛 − 1)
≤ 𝑍1 −

𝑧

√𝑚
≤ 𝐿∗√

𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡) 

= 𝑃(𝑃((𝑍1 −
𝑧

√𝑚
)
2

≤ (𝐿∗√
𝑌

𝑚(𝑛 − 1)
)

2

) ≥ 1 − 𝑡).                (𝐷. 2) 

Given that (𝑍1 −
𝑧

√𝑚
)
2

 follows a non-central chi-square distribution with 1 

degree of freedom and non-centrality parameter 
𝑧2

𝑚
, one can define (𝑍1 −

𝑧

√𝑚
)
2

=

χ
1,[
𝑧2

𝑚
]

2 , so 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧) = 𝑃 (𝑃 (χ
1,[
𝑧2

𝑚
]

2 ≤ 𝐿∗2
𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡)             (𝐷. 3) 

This leads to 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧) = 1 − 𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛 − 1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − 𝑡)

𝐿∗2
) ,                 (𝐷. 4) 
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where 𝑍 is a standard normal random variable, 𝑚 is the number of Phase I 

samples, 𝑛 is the size of each sample, 𝐹χ𝑚(𝑛−1)
2  is the cumulative distribution 

function of a chi-square distribution with 𝑚(𝑛 − 1) degrees of freedom, and 

𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − 𝑡) is the (1 − 𝑡)-quantile of the distribution of a non-central chi-square 

distribution with 1 degree of freedom and non-centrality parameter 
𝑧2

𝑚
. 

Let  𝑤 = 𝑧2 𝑚⁄ ,  so one has 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧) = 1 − 𝐹χ𝑚(𝑛−1)
2

(

 
𝑚(𝑛 − 1)𝐹

χ1,[w]
2
−1 (1 − 𝑡)

(
𝐿∗

𝐶4,𝑏
)
2

)

 = 𝑔(𝑤).     (D. 5) 

Thus, using the one-step Taylor approximation for 𝑔(𝑤) around the point 
1

𝑚
 

gives 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧) = 𝑔(𝑤) ≈ 𝑔 (
1

𝑚
) + (w −

1

𝑚
)
𝑑𝑔(𝑤)

𝑑𝑥
|
𝑤=

1
𝑚

.         (𝐷. 6) 

Taking the expectation in respect to 𝑍 on both sides, one has the cumulative 

distribution function of 𝐶𝐹𝐴𝑅 as shown below and also an approximation for it. 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡) = 𝐸𝑍(𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡|𝑍 = 𝑧))

≈ 𝐸𝑍 (𝑔 (
1

𝑚
) + (𝑊 −

1

𝑚
)
𝑑𝑔(𝑧)

𝑑𝑥
|
𝑧=
1
𝑚

) 

= 𝑔 (
1

𝑚
) + 𝐸𝑍 (𝑊 −

1

𝑚
)
𝑑𝑔(𝑍)

𝑑𝑥
|
𝑍=

1
𝑚

                (𝐷. 7) 

Note that 𝐸(𝑊) = 𝐸 (
𝑍2

𝑚
) =

1

𝑚
𝐸(𝑍2) =

1

𝑚
(𝑉(𝑍) + 𝐸2(𝑍)) =

1

𝑚
(1 + 0) =

1

𝑚
. This leads to 𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡) ≈ 𝑔 (

1

𝑚
). So finally, 

𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡) ≈ 𝑔 (
1

𝑚
) = 1 − 𝐹χ𝑚(𝑛−1)

2 (

𝑚(𝑛 − 1)𝐹
χ1,
2 [
1
𝑚
]

−1 (1 − 𝑡)

𝐿∗2
).        (𝐷. 8) 

To find an approximation for 𝐿∗, since the goal is 𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ (1 + 𝜀)𝛼) =

1 − 𝑝, we just need to solve the following approximation for 𝐿∗ 

1 − 𝐹χ𝑚(𝑛−1)
2

(

 
𝑚(𝑛 − 1)𝐹

χ1,
2 [
1
𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

(
𝐿∗

𝐶4,𝑏
)
2

)

 ≈ 1 − 𝑝.                 (𝐷. 9) 
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Solving for  𝐿∗, we get 𝐿∗ = 𝐿𝐶𝐴2
∗ ≈ 𝐶4,𝑏√𝑚(𝑛 − 1)

𝐹
χ1,
2 [
1
𝑚]

−1 (1−(1+𝜀)𝛼)

𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

.  

Cox and Reid (1987) obtained the following approximation for the c.d.f. of 

a non-central chi-square distribution:  

𝐹
χ1,
2 [
1
𝑚
]
(𝑎) ≈ 𝐹χ12 (

𝑎

1 +
1
𝑚

).                                         (𝐷. 10) 

Given this approximation, one can write 

𝐹
χ1,
2 [
1
𝑚
]

−1 (𝑏) ≈ (1 +
1

𝑚
)𝐹χ12

−1(𝑏).                                     (𝐷. 11) 

Replacing 𝑏 by 1 − (1 + 𝜀)𝛼, and 𝐹
χ1,
2 [

1

𝑚
]

−1 (1 − (1 + 𝜀)𝛼) by (1 +
1

𝑚
) 𝐹χ12

−1(𝑏) 

in 𝐿𝐶𝐴2
∗ , the final simpler approximation formula is given by: 

𝐿𝐶𝐴3
∗ ≈ √(𝑛 − 1)(𝑚 + 1)

𝐹
χ1
2
−1(1 − (1 + 𝜀)𝛼)

𝐹
χ
𝑚(𝑛−1)
2
−1 (𝑝)

.                           (𝐷. 12) 

 

Replacing 𝐿𝐶𝐴3
∗  by 𝐿, (1 + 𝜀)𝛼 by 𝛼𝑝,𝑈𝑈 and rearranging the terms, one has 

the final expression for 𝛼𝑝,𝑈𝑈: 

𝛼𝑝,𝑈𝑈 ≈ 1 − 𝐹χ12 (𝐿
2

𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

(𝑚 + 1)(𝑛 − 1)
)                               (𝐷. 13) 
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Appendix E - Expressions of 𝒈(𝑳) and 𝒈′(𝑳)  

Here the expressions of 𝑔(𝐿) and 𝑔′(𝐿) to calculate the approximation 

shown in (57) are presented. They were derived by Goedhart et al. (2017).  

𝑔(𝐿) = 3√(1 + 𝜀)𝛼
3 𝑓𝐸(𝐿)

2 3⁄

𝑓𝑉(𝐿)1 2⁄ − 3
𝑓𝐸(𝐿)

𝑓𝑉(𝐿)1 2⁄ +
1

3

𝑓𝑉(𝐿)
1 2⁄

𝑓𝐸(𝐿)
 and  

𝑔′(𝐿) = 3√(1 + 𝜀)𝛼
3

𝐵 − 3𝐶 +
1

3
𝐷 with 𝐶 =

𝑓𝐸
′(𝐿)𝑓𝑉(𝐿)

1 2⁄ −𝑓𝐸(𝐿)
1

2
𝑓𝑉(𝐿)

−1 2⁄ 𝑓𝑉
′(𝐿)

𝑓𝑉(𝐿)
, 

𝐵 =
2

3
𝑓𝐸(𝐿)

−1 3⁄ 𝑓𝐸
′(𝐿)𝑓𝑉(𝐿)

1 2⁄ −𝑓𝐸(𝐿)
2 3⁄ 1

2
𝑓𝑉(𝐿)

−1 2⁄ 𝑓𝑉
′(𝐿)

𝑓𝑉(𝐿)
, 

𝐷 =
1

2
𝑓𝑉(𝐿)

−1 2⁄ 𝑓𝑉
′(𝐿)𝑓𝐸(𝐿)−𝑓𝑉(𝐿)

1 2⁄ 𝑓𝐸
′(𝐿)

𝑓𝐸(𝐿)2
, where, 𝑓𝐸(𝐿) = 𝐸(𝐶𝐹𝐴𝑅), 𝑓𝑉(𝐿) =

𝑉(𝐶𝐹𝐴𝑅), 𝑓𝐸
′(𝐿) =

𝑑𝐸(𝐶𝐹𝐴𝑅)

𝑑𝐿
 and 𝑓𝑉

′(𝐿) =
𝑑𝑉(𝐶𝐹𝐴𝑅)

𝑑𝐿
.  

Below, we present the expressions of 𝐸(𝐶𝐹𝐴𝑅), 𝑉(𝐶𝐹𝐴𝑅), 𝑓𝐸
′(𝐿) and 𝑓𝑉

′(𝐿). 
Considering the expression of 𝐶𝐹𝐴𝑅 given by Equation (13), 𝐸(𝐶𝐹𝐴𝑅) can be 

calculated by 

𝐸(𝐶𝐹𝐴𝑅) = ∫ ∫ (𝐶𝐹𝐴𝑅)
∞

0

∞

−∞

𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧.                         (𝐸. 1) 

𝑉(𝐶𝐹𝐴𝑅) is given by 𝑉(𝐶𝐹𝐴𝑅) = 𝐸(𝐶𝐹𝐴𝑅2) − 𝐸2(𝐶𝐹𝐴𝑅), where 

𝐸(𝐶𝐹𝐴𝑅2) = ∫ ∫ (𝐶𝐹𝐴𝑅)2
∞

0

∞

−∞

𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧.                     (𝐸. 2) 

Since 𝑓𝐸
′(𝐿) =

𝑑𝐸(𝐶𝐹𝐴𝑅)

𝑑𝐿
, one has: 𝑓𝐸

′(𝐿) =

∫ ∫ −
1

𝐶4,𝑏
√

𝑌

𝑚(𝑛−1)
𝐺

∞

0

∞

−∞
𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧, 

where 𝐺 = 𝜙 (
𝑍

√𝑚
+

𝐿

𝐶4,𝑏
√

𝑌

𝑚(𝑛−1)
) + 𝜙 (

𝑍

√𝑚
−

𝐿

𝐶4,𝑏
√

𝑌

𝑚(𝑛−1)
). 

Finally, 𝑓𝑉
′(𝐿) =

𝑑𝑉(𝐶𝐹𝐴𝑅)

𝑑𝐿
=
𝑑𝐸(𝐶𝐹𝐴𝑅2)

𝑑𝐿
− 2 𝐸(𝐶𝐹𝐴𝑅)𝑓𝐸

′(𝐿), 

where 
𝑑𝐸(𝐶𝐹𝐴𝑅2)

𝑑𝐿
= ∫ ∫ 2𝐶𝐹𝐴𝑅

∞

0

∞

−∞
(−

1

𝐶4,𝑏
√

𝑌

𝑚(𝑛−1)
𝐺)𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧. 
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Appendix F - Derivation of Formula (63) for the Bootstrap 
Method 

Here it is derived the exact Formula (62) for 𝐿𝑘
∗ , which is the solution of 

Equation (61) of the bootstrap method. Rearranging the left hand side of Equation 

(61), we get 

𝑃((
𝜇𝑘
∗ − 𝑋̿

𝑆𝑝 𝑐4,𝑏⁄
)√𝑛 − 𝐿𝑘

∗
 𝜎𝑘
∗ 

𝑆𝑝
≤ 𝑍1 ≤ (

𝜇𝑘
∗ − 𝑋̿

𝑆𝑝 𝑐4,𝑏⁄
)√𝑛 + 𝐿𝑘

∗
 𝜎𝑘
∗ 

𝑆𝑝
) 

= 2(1 − Φ(𝐿))(1 + 𝜀).                                                                                      (F1) 

Where 𝑍1 follows a standard normal distribution. So 

𝑃 (−𝐿𝑘
∗
 𝜎𝑘
∗ 𝑐4,𝑏
𝑆𝑝

≤ 𝑍1 − (
𝜇𝑘
∗ − 𝑋̿

𝑆𝑝
)√𝑛 ≤ 𝐿𝑘

∗
 𝜎𝑘
∗ 

𝑆𝑝
) 

= 𝑃 ((𝑍1 − (
𝜇𝑘
∗−𝑋̿

𝑆𝑝
)√𝑛)

2

≤ (𝐿𝑘
∗  𝜎𝑘

∗  1

𝑆𝑝
)
2

) = 2(1 − Φ(𝐿))(1 + 𝜀).    (F.2) 

Defining 𝑊 = (𝑍1 − (
𝜇𝑘
∗−𝑋̿

𝑆𝑝
)√𝑛)

2

and recognizing that 𝑊 follows a non-

central qui-square distribution with 1 degree of freedom and non-centrality 

parameter 𝑛 (
𝜇𝑘
∗−𝑋̿

𝑆𝑝
)
2

, we can write 

𝑃 (𝑊 ≤ (𝐿𝑘
∗  𝜎𝑘

∗  

𝑆𝑝
)
2

) = 𝐹𝑊 ((𝐿𝑘
∗  𝜎𝑘

∗  

𝑆𝑝
)
2

) = 2(1 − Φ(𝐿))(1 + 𝜀).  (F.3) 

where 𝐹𝑊 denotes the c.d.f. of 𝑊. Thus 1 − 𝐹𝑊 ((𝐿𝑘
∗  𝜎𝑘

∗  

𝑆𝑝
)
2

) = 2(1 −

Φ(𝐿))(1 + 𝜀). 

Solving this last equation for 𝐿𝑘
∗ , we get  

𝐿𝑘
∗ =

𝑆𝑝√𝐹𝑊
−1 (1 − 2(1 − Φ(𝐿))(1 + 𝜀))

𝜎𝑘
∗                                     (F. 5) 
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Appendix G – Extra Tables of the Out-of-Control 

Table G. 1. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.1 and 𝜀 = 0.2) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case UU)  

 

Table G. 2. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.2 and 𝜀 = 0.2) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case UU)  

 

 

Table G. 3. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝐾𝑈 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.1 and 𝜀 = 0.2) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case KU)  

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 2.21 3.11 0.89 1.97 2.33 0.36 1.83 1.99 0.15 1.71 1.74 0.03 1.64 1.63 -0.01

10 1.10 1.15 0.05 1.08 1.10 0.02 1.07 1.07 0.01 1.05 1.05 0.00 1.05 1.05 0.00

15 1.01 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 2.02 2.75 0.73 1.86 2.17 0.31 1.76 1.90 0.14 1.67 1.71 0.03 1.62 1.61 -0.01

10 1.08 1.13 0.04 1.07 1.09 0.02 1.06 1.07 0.01 1.05 1.05 0.00 1.05 1.04 0.00

15 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 9.27 17.53 8.26 7.37 10.25 2.88 6.33 7.48 1.16 5.45 5.69 0.24 4.99 4.91 -0.08

10 2.46 3.09 0.63 2.21 2.47 0.25 2.06 2.16 0.10 1.93 1.93 0.00 1.85 1.82 -0.03

15 1.45 1.60 0.15 1.37 1.43 0.06 1.33 1.35 0.02 1.29 1.28 0.00 1.26 1.25 -0.01

20 1.15 1.21 0.05 1.13 1.15 0.02 1.11 1.12 0.01 1.09 1.09 0.00 1.09 1.08 -0.01

5 7.75 14.04 6.29 6.55 8.95 2.40 5.84 6.86 1.02 5.21 5.44 0.23 4.87 4.79 -0.08

10 2.27 2.80 0.54 2.10 2.32 0.23 1.99 2.08 0.09 1.89 1.89 0.00 1.84 1.80 -0.03

15 1.39 1.52 0.13 1.34 1.39 0.05 1.31 1.32 0.02 1.27 1.27 0.00 1.26 1.24 -0.01

20 1.13 1.18 0.04 1.11 1.13 0.02 1.10 1.11 0.01 1.09 1.09 0.00 1.08 1.08 -0.01

5 107.85 286.20 178.35 75.24 126.44 51.21 58.80 77.06 18.26 46.05 49.47 3.42 39.75 38.69 -1.06

10 29.02 48.33 19.32 22.55 29.09 6.54 18.99 21.31 2.32 16.03 16.09 0.07 14.47 13.77 -0.71

15 13.34 18.96 5.63 10.90 12.85 1.95 9.50 10.13 0.63 8.30 8.18 -0.11 7.65 7.27 -0.38

20 7.72 10.07 2.35 6.52 7.33 0.82 5.82 6.05 0.23 5.20 5.10 -0.10 4.86 4.64 -0.23

5 81.29 204.79 123.50 62.14 102.35 40.21 51.59 67.10 15.51 42.82 45.94 3.12 38.23 37.22 -1.01

10 23.89 38.91 15.02 19.77 25.30 5.53 17.35 19.42 2.06 15.24 15.30 0.06 14.08 13.40 -0.68

15 11.42 16.00 4.57 9.81 11.51 1.70 8.84 9.42 0.57 7.97 7.87 -0.11 7.49 7.12 -0.37

20 6.78 8.75 1.97 5.98 6.70 0.72 5.48 5.70 0.22 5.03 4.93 -0.10 4.78 4.56 -0.22

m

25 50 100 300 1000

𝒑
 
 
𝑪
=
𝟎
.𝟎
𝟓

𝒑𝒐𝒖𝒕  

𝜹
=
 
𝟏
.𝟓

𝜹
=
 
𝟏

𝜹
=
 
𝟎
.𝟓

𝒑 = 𝟎.𝟏 
𝜺 = 𝟎. 2

𝒑 = 𝟎.𝟏 
𝜺 = 𝟎.   

𝒑 = 𝟎.𝟏 
𝜺 = 𝟎.  . 

𝒑 = 𝟎.𝟏 
𝜺 = 𝟎. 

𝒑 = 𝟎.𝟏 
𝜺 = 𝟎.   

𝒑
 
 
𝑪
=
𝟎
.𝟏

𝒑
 
 
𝑪
=
𝟎
.𝟎
𝟓

𝒑
 
 
𝑪
=
𝟎
.𝟏

𝒑
 
 
𝑪
=
𝟎
.𝟎
𝟓

𝒑
 
 
𝑪
=
𝟎
.𝟏

𝜹

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 2.21 2.72 0.51 1.97 2.17 0.20 1.83 1.91 0.08 1.71 1.71 0.00 1.64 1.61 -0.03

10 1.10 1.13 0.03 1.08 1.09 0.01 1.07 1.07 0.00 1.05 1.05 0.00 1.05 1.05 0.00

15 1.01 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 2.02 2.44 0.42 1.86 2.03 0.17 1.76 1.83 0.07 1.67 1.68 0.00 1.62 1.60 -0.03

10 1.08 1.11 0.03 1.07 1.08 0.01 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00

15 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 9.27 13.79 4.52 7.37 8.94 1.56 6.33 6.88 0.56 5.45 5.46 0.01 4.99 4.81 -0.18

10 2.46 2.83 0.37 2.21 2.35 0.13 2.06 2.10 0.04 1.93 1.90 -0.02 1.85 1.81 -0.05

15 1.45 1.54 0.09 1.37 1.40 0.03 1.33 1.33 0.00 1.29 1.27 -0.01 1.26 1.25 -0.02

20 1.15 1.18 0.03 1.13 1.14 0.01 1.11 1.11 0.00 1.09 1.09 0.00 1.09 1.08 -0.01

5 7.75 11.22 3.47 6.55 7.86 1.31 5.84 6.33 0.50 5.21 5.22 0.01 4.87 4.70 -0.17

10 2.27 2.58 0.31 2.10 2.22 0.12 1.99 2.02 0.03 1.89 1.87 -0.02 1.84 1.79 -0.05

15 1.39 1.47 0.08 1.34 1.37 0.03 1.31 1.31 0.00 1.27 1.26 -0.01 1.26 1.24 -0.02

20 1.13 1.16 0.03 1.11 1.12 0.01 1.10 1.10 0.00 1.09 1.08 0.00 1.08 1.08 -0.01

5 107.85 199.14 91.29 75.24 102.07 26.84 58.80 67.43 8.63 46.05 46.21 0.16 39.75 37.37 -2.39

10 29.02 39.83 10.82 22.55 25.94 3.40 18.99 19.84 0.85 16.03 15.52 -0.51 14.47 13.51 -0.96

15 13.34 16.53 3.19 10.90 11.87 0.97 9.50 9.65 0.15 8.30 7.98 -0.31 7.65 7.18 -0.47

20 7.72 9.05 1.33 6.52 6.90 0.38 5.82 5.83 0.02 5.20 5.00 -0.20 4.86 4.59 -0.27

5 81.29 145.26 63.97 62.14 83.31 21.17 51.59 58.93 7.35 42.82 42.96 0.14 38.23 35.96 -2.28

10 23.89 32.34 8.45 19.77 22.64 2.87 17.35 18.11 0.76 15.24 14.76 -0.48 14.08 13.16 -0.93

15 11.42 14.03 2.60 9.81 10.66 0.84 8.84 8.98 0.13 7.97 7.68 -0.30 7.49 7.03 -0.46

20 6.78 7.90 1.11 5.98 6.32 0.34 5.48 5.50 0.02 5.03 4.84 -0.19 4.78 4.52 -0.26

m

25 50 100 300 1000

𝒑
 
 
𝑪
=
𝟎
.𝟎
𝟓

𝒑  𝑪 

𝜹
=
 
𝟏
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𝜹
=
 
𝟏

𝜹
=
 
𝟎
.𝟓

𝒑 = 𝟎.𝟐 
𝜺 = 𝟎. 𝟐 

𝒑 = 𝟎.𝟐 
𝜺 = 𝟎.2

𝒑 = 𝟎.𝟐 
𝜺 = 𝟎.2

𝒑 = 𝟎.𝟐 
𝜺 = 𝟎. 𝟐 

𝒑 = 𝟎.𝟏 
𝜺 = 𝟎. 𝟐 

𝒑
 
 
𝑪
=
𝟎
.𝟏

𝒑
 
 
𝑪
=
𝟎
.𝟎
𝟓

𝒑
 
 
𝑪
=
𝟎
.𝟏

𝒑
 
 
𝑪
=
𝟎
.𝟎
𝟓

𝒑
 
 
𝑪
=
𝟎
.𝟏

𝜹
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Table G. 4. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝐾𝑈 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.2 and 𝜀 = 0.2) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case KU)  

 

Table G. 5. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝑈𝐾 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.1 and 𝜀 = 0.2) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case UK)  

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 1.99 2.52 0.54 1.84 2.09 0.25 1.75 1.87 0.12 1.67 1.69 0.03 1.62 1.61 -0.01

10 1.07 1.09 0.02 1.06 1.07 0.01 1.05 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00

15 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 1.87 2.33 0.46 1.77 1.99 0.22 1.70 1.81 0.11 1.64 1.67 0.03 1.61 1.59 -0.01

10 1.06 1.08 0.02 1.06 1.07 0.01 1.05 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00

15 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 7.48 11.96 4.48 6.39 8.26 1.87 5.74 6.58 0.84 5.16 5.35 0.18 4.85 4.76 -0.09

10 2.12 2.41 0.30 2.00 2.14 0.14 1.93 1.99 0.06 1.86 1.85 0.00 1.82 1.78 -0.04

15 1.33 1.39 0.06 1.30 1.32 0.03 1.28 1.29 0.01 1.26 1.25 -0.01 1.25 1.23 -0.01

20 1.10 1.12 0.02 1.10 1.10 0.01 1.09 1.09 0.00 1.08 1.08 0.00 1.08 1.07 -0.01

5 6.60 10.24 3.65 5.87 7.51 1.63 5.42 6.18 0.76 5.00 5.18 0.17 4.76 4.68 -0.09

10 2.03 2.29 0.27 1.94 2.07 0.13 1.89 1.95 0.05 1.84 1.83 0.00 1.81 1.77 -0.04

15 1.30 1.36 0.06 1.28 1.31 0.03 1.27 1.28 0.01 1.25 1.25 -0.01 1.25 1.23 -0.01

20 1.10 1.11 0.02 1.09 1.10 0.01 1.09 1.09 0.00 1.08 1.08 0.00 1.08 1.07 -0.01

5 77.10 160.71 83.61 59.81 90.28 30.47 50.20 62.69 12.49 42.14 44.65 2.51 37.90 36.75 -1.15

10 20.21 27.62 7.41 17.62 20.79 3.17 16.02 17.27 1.25 14.57 14.46 -0.10 13.75 13.04 -0.71

15 9.45 11.31 1.86 8.62 9.41 0.79 8.08 8.33 0.25 7.58 7.41 -0.17 7.29 6.91 -0.38

20 5.62 6.30 0.68 5.25 5.53 0.27 5.02 5.06 0.05 4.79 4.65 -0.13 4.65 4.43 -0.22

5 62.99 126.49 63.50 52.14 77.51 25.37 45.68 56.72 11.03 39.98 42.32 2.34 36.84 35.74 -1.11

10 18.15 24.52 6.36 16.37 19.23 2.86 15.23 16.39 1.16 14.15 14.06 -0.10 13.53 12.84 -0.69

15 8.80 10.47 1.67 8.20 8.93 0.73 7.81 8.04 0.23 7.43 7.27 -0.17 7.21 6.84 -0.37

20 5.34 5.96 0.63 5.07 5.33 0.26 4.89 4.94 0.05 4.72 4.59 -0.13 4.62 4.39 -0.22

m
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n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 1.99 2.26 0.28 1.84 1.96 0.12 1.75 1.80 0.05 1.67 1.66 0.00 1.62 1.59 -0.03

10 1.07 1.08 0.01 1.06 1.06 0.00 1.05 1.06 0.00 1.05 1.05 0.00 1.05 1.04 0.00

15 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 1.87 2.11 0.24 1.77 1.88 0.11 1.70 1.75 0.04 1.64 1.64 0.00 1.61 1.58 -0.03

10 1.06 1.07 0.01 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.05 0.00 1.05 1.04 0.00

15 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 7.48 9.71 2.23 6.39 7.29 0.90 5.74 6.08 0.34 5.16 5.13 -0.03 4.85 4.66 -0.18

10 2.12 2.26 0.14 2.00 2.06 0.05 1.93 1.94 0.01 1.86 1.83 -0.03 1.82 1.77 -0.05

15 1.33 1.35 0.03 1.30 1.30 0.01 1.28 1.27 0.00 1.26 1.25 -0.01 1.25 1.23 -0.02

20 1.10 1.11 0.01 1.10 1.10 0.00 1.09 1.09 0.00 1.08 1.08 -0.01 1.08 1.07 -0.01

5 6.60 8.42 1.82 5.87 6.66 0.79 5.42 5.73 0.31 5.00 4.97 -0.03 4.76 4.58 -0.18

10 2.03 2.15 0.13 1.94 1.99 0.05 1.89 1.90 0.01 1.84 1.81 -0.03 1.81 1.76 -0.05

15 1.30 1.33 0.02 1.28 1.29 0.01 1.27 1.26 0.00 1.25 1.24 -0.01 1.25 1.23 -0.02

20 1.10 1.10 0.01 1.09 1.09 0.00 1.09 1.08 0.00 1.08 1.08 -0.01 1.08 1.07 -0.01

5 77.10 116.30 39.20 59.81 73.94 14.13 50.20 55.15 4.95 42.14 41.75 -0.39 37.90 35.50 -2.40

10 20.21 23.65 3.44 17.62 18.82 1.20 16.02 16.17 0.15 14.57 13.96 -0.60 13.75 12.80 -0.94

15 9.45 10.24 0.79 8.62 8.81 0.20 8.08 7.98 -0.11 7.58 7.23 -0.35 7.29 6.83 -0.46

20 5.62 5.87 0.25 5.25 5.28 0.02 5.02 4.91 -0.11 4.79 4.58 -0.21 4.65 4.39 -0.26

5 62.99 93.05 30.06 52.14 63.96 11.82 45.68 50.06 4.38 39.98 39.61 -0.37 36.84 34.53 -2.31

10 18.15 21.11 2.96 16.37 17.45 1.08 15.23 15.37 0.14 14.15 13.57 -0.58 13.53 12.61 -0.92

15 8.80 9.50 0.71 8.20 8.39 0.18 7.81 7.71 -0.10 7.43 7.10 -0.34 7.21 6.76 -0.46

20 5.34 5.57 0.23 5.07 5.09 0.02 4.89 4.79 -0.10 4.72 4.51 -0.21 4.62 4.36 -0.26
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Table G. 6. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝑈𝐾 with adjusted limits (𝛼 =
0.0027, 𝑝 = 0.2 and 𝜀 = 0.2) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 (Case UK)  

 

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 1.96 2.10 0.14 1.82 1.85 0.03 1.74 1.72 -0.02 1.66 1.62 -0.04 1.62 1.57 -0.05

10 1.09 1.10 0.02 1.07 1.07 0.00 1.06 1.06 0.00 1.05 1.05 0.00 1.05 1.04 -0.01

15 1.01 1.01 0.00 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 1.86 1.98 0.13 1.76 1.78 0.02 1.70 1.68 -0.02 1.64 1.60 -0.04 1.61 1.56 -0.05

10 1.07 1.09 0.01 1.06 1.07 0.00 1.06 1.05 0.00 1.05 1.05 0.00 1.05 1.04 -0.01

15 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 7.29 8.38 1.09 6.27 6.45 0.18 5.66 5.52 -0.14 5.12 4.83 -0.30 4.82 4.50 -0.33

10 2.31 2.50 0.19 2.12 2.15 0.03 2.00 1.98 -0.03 1.90 1.84 -0.06 1.84 1.77 -0.07

15 1.42 1.48 0.06 1.35 1.36 0.01 1.31 1.31 -0.01 1.28 1.26 -0.02 1.26 1.24 -0.02

20 1.14 1.17 0.02 1.12 1.13 0.00 1.11 1.10 0.00 1.09 1.08 -0.01 1.08 1.08 -0.01

5 6.50 7.44 0.94 5.80 5.97 0.17 5.37 5.24 -0.13 4.97 4.69 -0.29 4.75 4.43 -0.32

10 2.16 2.33 0.17 2.03 2.06 0.03 1.95 1.92 -0.03 1.87 1.81 -0.06 1.82 1.76 -0.07

15 1.37 1.42 0.06 1.32 1.33 0.01 1.30 1.29 -0.01 1.27 1.25 -0.02 1.25 1.23 -0.02

20 1.13 1.15 0.02 1.11 1.11 0.00 1.10 1.10 0.00 1.09 1.08 -0.01 1.08 1.07 -0.01

5 73.59 91.98 18.39 57.88 60.66 2.78 49.04 47.03 -2.02 41.58 37.61 -3.96 37.62 33.39 -4.23

10 24.85 29.97 5.12 20.28 21.09 0.81 17.65 17.04 -0.61 15.38 14.15 -1.22 14.15 12.82 -1.33

15 12.21 14.35 2.14 10.26 10.61 0.35 9.11 8.85 -0.27 8.11 7.56 -0.55 7.56 6.96 -0.60

20 7.29 8.38 1.09 6.27 6.45 0.18 5.66 5.52 -0.14 5.12 4.83 -0.30 4.82 4.50 -0.33

5 61.35 76.24 14.89 51.06 53.47 2.41 44.96 43.14 -1.82 39.59 35.84 -3.74 36.64 32.53 -4.11

10 21.30 25.55 4.25 18.25 18.97 0.71 16.41 15.86 -0.55 14.76 13.60 -1.16 13.84 12.55 -1.29

15 10.70 12.51 1.81 9.38 9.69 0.31 8.57 8.32 -0.25 7.83 7.31 -0.52 7.42 6.83 -0.59

20 6.50 7.44 0.94 5.80 5.97 0.17 5.37 5.24 -0.13 4.97 4.69 -0.29 4.75 4.43 -0.32

m
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n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 1.96 2.01 0.05 1.82 1.81 -0.01 1.74 1.70 -0.04 1.66 1.61 -0.05 1.62 1.57 -0.05

10 1.09 1.09 0.01 1.07 1.07 0.00 1.06 1.06 0.00 1.05 1.05 -0.01 1.05 1.04 -0.01

15 1.01 1.01 0.00 1.01 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 1.86 1.90 0.05 1.76 1.75 -0.01 1.70 1.66 -0.04 1.64 1.59 -0.05 1.61 1.55 -0.05

10 1.07 1.08 0.01 1.06 1.06 0.00 1.06 1.05 0.00 1.05 1.04 -0.01 1.05 1.04 -0.01

15 1.01 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 7.29 7.70 0.41 6.27 6.18 -0.09 5.66 5.40 -0.26 5.12 4.79 -0.33 4.82 4.49 -0.34

10 2.31 2.38 0.07 2.12 2.10 -0.02 2.00 1.95 -0.05 1.90 1.83 -0.07 1.84 1.77 -0.07

15 1.42 1.44 0.02 1.35 1.35 -0.01 1.31 1.30 -0.02 1.28 1.26 -0.02 1.26 1.24 -0.02

20 1.14 1.15 0.01 1.12 1.12 0.00 1.11 1.10 -0.01 1.09 1.08 -0.01 1.08 1.08 -0.01

5 6.50 6.85 0.35 5.80 5.72 -0.08 5.37 5.13 -0.24 4.97 4.66 -0.32 4.75 4.42 -0.33

10 2.16 2.23 0.06 2.03 2.02 -0.02 1.95 1.90 -0.05 1.87 1.80 -0.06 1.82 1.76 -0.07

15 1.37 1.39 0.02 1.32 1.32 -0.01 1.30 1.28 -0.02 1.27 1.25 -0.02 1.25 1.23 -0.02

20 1.13 1.13 0.01 1.11 1.11 0.00 1.10 1.09 -0.01 1.09 1.08 -0.01 1.08 1.07 -0.01

5 73.59 80.30 6.71 57.88 56.53 -1.34 49.04 45.38 -3.67 41.58 37.17 -4.41 37.62 33.27 -4.35

10 24.85 26.74 1.89 20.28 19.88 -0.39 17.65 16.55 -1.10 15.38 14.02 -1.36 14.15 12.79 -1.36

15 12.21 13.01 0.79 10.26 10.09 -0.17 9.11 8.63 -0.49 8.11 7.50 -0.61 7.56 6.94 -0.62

20 7.29 7.70 0.41 6.27 6.18 -0.09 5.66 5.40 -0.26 5.12 4.79 -0.33 4.82 4.49 -0.34

5 61.35 66.79 5.44 51.06 49.90 -1.15 44.96 41.65 -3.31 39.59 35.42 -4.16 36.64 32.42 -4.22

10 21.30 22.87 1.57 18.25 17.91 -0.35 16.41 15.40 -1.01 14.76 13.47 -1.29 13.84 12.52 -1.33

15 10.70 11.37 0.67 9.38 9.23 -0.15 8.57 8.12 -0.45 7.83 7.25 -0.58 7.42 6.81 -0.61

20 6.50 6.85 0.35 5.80 5.72 -0.08 5.37 5.13 -0.24 4.97 4.66 -0.32 4.75 4.42 -0.33
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Appendix H - Codes in R Language 

R CODES FOR CASE UU 

# before running the codes below, please, download the packages cubature and 
numDeriv 
 
library(cubature) # this package helps compute double integrals 
library(numDeriv) # this package helps compute numerical derivations 
 
# the function secantc below was created to find the root of a monotonic increasing 
function. Note that the precision is up to 10 decimal places. 
 
secantc <- function(fun, x0, x1, tol=1e-10, niter=100000){ 
  for ( i in 1:niter ) { 
    funx1 <- fun(x1) 
    funx0 <- fun(x0) 
    x2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 ) 
    funx2 <- fun(x2) 
    if (abs(funx2) < tol) { 
      return(x2) 
    } 
    if (funx2 < 0)  
      x0 <- x2 
    else 
      x1 <- x2 
  } 
  stop("exceeded allowed number of iteractions") 
} 
 
# the functions CPS and CARL below computes the Conditional Average Run Length 
(CARL) and the Conditional Probability of a Signal of the Xbar chart in Case UU for a 
given values of Z (standard normal random variable), Y (chi-square random variable with 
n*(m-1) d.f.), limit factor (L), scaled shift in the process mean (delta), number (m) and 
size (n) of Phase I samples. Note that when delta = 0, CARL will return the in-control 
CARL (i.e., the CARL0).  
 
CPS <- function (Z,Y,delta,L,m,n) { 
  a <- 1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+(L*sqrt(Y/(m*(n-1)))),0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))+Z)-(L*sqrt(Y/(m*(n-1)))),0,1) 
  return(a) 
} 
 
CARL <- function (Z,Y,delta,L,m,n) { 
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  a <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+(L*sqrt(Y/(m*(n-1)))),0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))+Z)-(L*sqrt(Y/(m*(n-1)))),0,1)) 
  return(a) 
} 
 
# the functions CDFCPS and CDFCARL (below) computes, respectively, the c.d.f. (for any 
value t) of the Conditional Probability of a Signal (CPS) and CARL of the Xbar chart for a 
given limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of 
Phase I samples. Note that when delta = 0, CDFCPS and CDFCARL will return the in-
control c.d.f. of the CPS and CARL (i.e., cdf of the CFAR, the conditional False Alarm Rate 
and CARL0).  
 
CDFCPS <- function (t,delta,L,m,n) { 
  CFAR <- function (U) { 
    a<-1- pchisq((m*(n-1)*qchisq(1-t, df=1, ncp = ((qnorm(U)/sqrt(m))-
(delta*sqrt(n)))^2))/((L)^2),m*(n-1)) 
    return(a) 
  } 
  d <- integrate(CFAR,0,1)$val 
  return(d) 
} 
 
CDFCARL <- function (t,delta,L,m,n) { 
  CARL <- function (U) { 
    a<-pchisq((m*(n-1)*qchisq(1-(1/t), df=1, ncp = ((qnorm(U)/sqrt(m))-
(delta*sqrt(n)))^2))/(L^2),m*(n-1)) 
    return(a) 
  } 
  d <- integrate(CARL,0,1)$val 
  return(d) 
} 
 
# the functions ARL, ARL2, VARL, SDARL2 and quantileCARL (below) compute, 
respectively, the mean, the central second moment, the variance, the standard 
deviation and the p-quantile of the CARL0 of the Xbar chart in case UU for a given limit 
factor (L), scaled shift in the process mean (delta), number (m) and size (n) of Phase I 
samples. Note that if delta = 0, the function returns the in-control values.  
 
ARL <- function (delta,L,m,n) { 
   
  CARL <- function (U) { 
    a <- 1/(1 - pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U[1],0,1))+(L*sqrt(qchisq(U[2],m*(n-1))/(m*(n-
1)))),0,1) + pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U[1],0,1))-
(L*sqrt(qchisq(U[2],m*(n-1))/(m*(n-1)))),0,1)) 
    return(a) 
  } 
  a <- adaptIntegrate(CARL, lowerLimit = c(0, 0), upperLimit = c(1, 1))$integral 
  return (a) 
   
} 
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ARL2 <- function (delta,L,m,n) { 
   
  CARL <- function (U) { 
    a <- (1/(1 - pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U[1],0,1))+(L*sqrt(qchisq(U[2],m*(n-1))/(m*(n-
1)))),0,1) + pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U[1],0,1))-
(L*sqrt(qchisq(U[2],m*(n-1))/(m*(n-1)))),0,1)))^2 
    return(a) 
  } 
  a <- adaptIntegrate(CARL, lowerLimit = c(0, 0), upperLimit = c(1, 1))$integral 
  return (a) 
} 
 
VARL <- function (delta,L,m,n) { 
  a <- ARL2(delta,L,m,n) - (ARL(delta,L,m,n))^2 
  return (a) 
} 
 
SDARL <- function (delta,L,m,n) { 
  a <- sqrt( ARL2(delta,L,m,n) - (ARL(delta,L,m,n))^2) 
  return (a) 
} 
 
quantileCARL <-function (p,delta,L,m,n) { 
  CDFm <- function (a) { 
    a <- CDFCPS(a,delta,L,m,n) - (1-p) 
    return(a) 
  } 
  g<-1/secantc(CDFm,0.002,0.01) 
  return(g) 
} 
 
# the functions plotCDFCARL (below) plots the c.d.f of the CARL0 of the Xbar chart in 
case UU for a given limit factor (L), scaled shift in the process mean (delta), number (m) 
and size (n) of Phase I samples. Note that if delta = 0, the function returns the in-control 
results.  
 
plotCDFCARL <- function (delta,L,m,n) { 
   
  if (delta == 0) { 
    CDFCARL12 <- Vectorize(CDFCARL) 
    curve(CDFCARL12(x,delta,L,m,n),1,2000 
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
",yaxt="n") 
    title(main=paste("P(IC CARL <= t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ), 
line=+2.5) 
    xvalues<-c(0,200,400,600,800,1000,1200,1400,1600,1800,2000) 
    yvalues<-c(0,0.2,0.4,0.6,0.8,1) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
    axis(2,at=yvalues,cex.axis=1.5,las=1) 
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    ARLr <- round(ARL(delta,L,m,n),2) 
    CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
    abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue") 
   
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1, line=1) 
    axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
    abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red") 
    legend(1250, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1, 
lty=c(5.5,5.5),lwd=c(1,1),col=c("red","blue")) 
  } 
   
  else {  
   
    CDFCARL12 <- Vectorize(CDFCARL) 
    curve(CDFCARL12(x,delta,L,m,n),1,100 
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
",yaxt="n") 
    title(main=paste("P( OOC CARL <= t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ), 
line=+2.5) 
    xvalues<-c(0,20,40,60,80,100) 
    yvalues<-c(0,0.2,0.4,0.6,0.8,1) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
    axis(2,at=yvalues,cex.axis=1.5,las=1) 
   
    ARLr <- round(ARL(delta,L,m,n),2) 
    CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
    abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue") 
   
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1, line=1) 
    axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
    abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red") 
    legend(60, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1, 
lty=c(5.5,5.5),lwd=c(1,1),col=c("red","blue")) 
  } 
}   
 
dev.new() 
plotCDFCARL(0,3,25,5) 
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dev.new() 
plotCDFCARL(0.5,3,25,5) 
 
# the function plotPDFCARL (below) plots the p.d.f of the CARL0 of the Xbar chart in case 
UU for a given limit factor (L), scaled shift in the process mean (delta), number (m) and 
size (n) of Phase I samples. Note that if delta = 0, the function returns the in-control 
results.  
 
plotPDFCARL <- function (delta,L,m,n) { 
 
  if (delta == 0) { 
    CDF <- function (h) { 
      g <- CDFCARL(h,delta,L,m,n) 
      return(g) 
    } 
    PDF <- function (x) { 
      f <- grad(CDF, x) 
      return(f) 
    } 
    PDF2 <- Vectorize(PDF) 
    
curve(PDF2,1.01,2000,xlab="t",ylab="",n=100,cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",
xaxs="i",xaxt="n") 
    title(main=paste("pdf of the IC CARL","for", "L=",L, "m=",m, "n=",n  ), line=+2.5) 
    xvalues<-c(0,200,400,600,800,1000,1200,1400,1600,1800,2000) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1,line=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
  } 
   
  else { 
   
    CDF <- function (h) { 
      g <- CDFCARL(h,delta,L,m,n) 
      return(g) 
    } 
    CDF2 <- Vectorize(CDF ) 
    PDF <- function (x) { 
      f <- grad(CDF2, x) 
      return(f) 
    } 
    PDF2 <- Vectorize(PDF) 
    
curve(PDF2,1.01,100,n=100,xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",x
axs="i",xaxt="n") 
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    title(main=paste("pdf of the OOC CARL","for", "L=",L, "m=",m, "n=",n,"delta=", delta   
), line=+2.5) 
    xvalues<-c(0,20,40,60,80,100) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
   
    ARLr <- round(ARL(delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
   
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1,line=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
 
  } 
} 
 
dev.new() 
plotPDFCARL(0,3,25,5) 
dev.new() 
plotPDFCARL(0.5,3,25,5) 
 
# the codes below generate a table with the unconditional ARL values for a set of values 
of n (row) and m (column), given a value of the scaled shift (delta) and limit factor (L) 
 
m<-c(25,50,75,100,150,200,250) 
n<-c(3,5,9) 
delta <- 0 
L <- 3 
ARLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    ARLtable[i,j] <- ARL(delta,L,m[j],n[i]) 
    cat(ARLtable[i,j]," ") 
  } 
} 
ARLtable 
 
# the codes below generate a table with the SDARL values for a set of values of n (row) 
and m (column), given a value of the scaled shift (delta) and limit factor (L) 
 
m<-c(25,50,75,100,150,200,250) 
n<-c(3,5,9) 
delta <- 0 
L <- 3 
SDARLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    SDARLtable[i,j] <- SDARL(delta,L,m[j],n[i]) 
    cat(SDARLtable[i,j]," ") 
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  } 
} 
SDARLtable 
 
# the codes below generate a table with the p-quantile values of the CARL0 for a set of 
values of n (row) and m (column), given a value of the scaled shift (delta) and limit factor 
(L) 
 
m<-c(25,50,100,300,1000) 
n<-c(5,10,20,25) 
delta <- 0 
L <- 3 
p <-0.1 
quantileTABLE<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    quantileTABLE[i,j]<-quantileCARL(p,delta,L,m[j],n[i]) 
    cat(quantileTABLE[i,j], "  ") 
  } 
}   
quantileTABLE 
 
# the codes below generate a table with tht minimum values of m, which generates 
P(CFAR<(1+e)*alpha)=1-p for a set of values of n (row) and m (e), given a value of the 
scaled shift (delta), p, nominal alpha and limit factor (L) 
 
e<-c(0.1,0.2,0.3,0.4,0.5) 
n<-c(5,10,20,25) 
L <- 3 
p <- 0.15 
alpha<-0.0027 
delta <- 0 
MINIMUMmTABLE<-matrix(,nrow = length(n), ncol = length(e)) 
 
for (i in 1:length(e)){ 
  for (j in 1:length(n)){    
    CDFm <- function (m) { 
      a <- CDFCPS((1+e[i])*alpha,delta,L,m,n[j]) - (1-p) 
      return(a) 
    } 
    MINIMUMmTABLE[j,i]<-ceiling(secantc(CDFm,30,4000)) 
    cat(MINIMUMmTABLE[j,i],"  ") 
  } 
} 
MINIMUMmTABLE 
 
# the codes below generate a table with the adjusted value of L, which generates 
P(CFAR<(1+e)alpha)=1-p for a set of values of n (row) and m (column), given a value of 
the scaled shift (delta), p, nominal alpha and e 
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m<-c(25,50,100,300,1000) 
n<-c(5,10,20,25) 
alpha <- 0.0027 
p<-0.05 
e<-0.2 
delta<-0 
adjLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    CDFaux <- function (s) { 
      a <- CDFCPS((1+e)*alpha,delta,s,m[j],n[i])-(1-p) 
      return (a) 
    } 
    adjLtable[i,j]<-secantc(CDFaux,2.1,3.9) 
    cat(adjLtable[i,j], " ") 
  } 
} 
adjLtable 
 

R CODES FOR CASE KU 

# before running the codes below, please, download the packages cubature and 
numDeriv 
 
library(cubature) # this package helps compute double integrals 
library(numDeriv) # this package helps compute numerical derivations 
 
# the function secantc below was created to find the root of a monotonic increasing 
function. Note that the precision is up to 10 decimal places. 
 
secantc <- function(fun, x0, x1, tol=1e-10, niter=100000){ 
  for ( i in 1:niter ) { 
    funx1 <- fun(x1) 
    funx0 <- fun(x0) 
    x2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 ) 
    funx2 <- fun(x2) 
    if (abs(funx2) < tol) { 
      return(x2) 
    } 
    if (funx2 < 0)  
      x0 <- x2 
    else 
      x1 <- x2 
  } 
  stop("exceeded allowed number of iteractions") 
} 
 
# the function CARL and CPS below computes the Conditional Average Run Length 
(CARL) and the Conditional Probability of a signal of the Xbar chart in Case KU for a given 
of Y (chi-square random variable with n*(m-1) d.f., but note that Y = qchisq(U,m*(n-1)), 
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so the function below is actually in fucntion of qchisq(U,m*(n-1)) what is in function of 
U), limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of 
Phase I samples. Note that when delta = 0, CARL will return the in-control CARL (i.e., the 
CARL0).  
 
CPS <- function (U,delta,L,m,n) { 
  a <- 1-pnorm((-delta*sqrt(n))+(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1) 
  return(a) 
} 
 
CARL <- function (U,delta,L,m,n) { 
  a <- 1/(1-pnorm((-delta*sqrt(n))+(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)) 
  return(a) 
} 
 
# the functions plotCPS and plotCARL below create, respectively, plots of the CPS and 
CARL0 curves for various values of m, n=5 and L=3 in function of U. Please, use delta 
between 0.5 and 1.5. 
 
plotCPS <- function (delta,L,m,n) { 
  if (delta == 0) { 
    
curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,0.02),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.
5,type="l",lty=1,col="black",yaxs="i",xaxs="i",ylab="",yaxt="n") 
    curve(CPS(x,delta,L,20,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3,col="black") 
    curve(CPS(x,delta,L,50,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3,col="black") 
    yvalues<-c(0,0.0027,0.005,0.01,0.015,0.02) 
    axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1) 
    abline(a = 0.0027, b = 0,lty=5.5) 
    legend(0.4, 0.0155, c("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 
0.0027"), cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0)); 
    title(main=paste("CFAR curves","for", "L=",L, "n=",n,"delta=", delta   )) 
  } 
  else { 
    l <- 0.75*delta - 0.225 
    
curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,l),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.5,ty
pe="l",lty=1,col="black",yaxs="i",xaxs="i",ylab="") 
    curve(CPS(x,delta,L,20,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3,col="black") 
    curve(CPS(x,delta,L,50,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
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    curve(CPS(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3,col="black") 
    legend(0.4, l, c("m = 10","m = 20","m = 50","m = 100","m = 500"), cex=1.5, 
lty=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0)); 
    title(main=paste("CPS curves","for", "L=",L, "n=",n,"delta=", delta   )) 
  } 
} 
 
plotCARL <- function (delta,L,m,n) { 
  if (delta == 0) { 
    
curve(CARL(x,delta,L,10,n),0,1,ylim=c(0,2000),cex.axis=1.5,yaxt="n",xlab="u",yaxs="i",xa
xs="i",ylab="",type="l",lty=1) 
    curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3) 
    curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2) 
    curve(CARL(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3) 
    curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3) 
    yvalues<-c(0,370.4,500,1000,1500,2000) 
    axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1) 
    abline(a = 370.4, b = 0,lty=5.5) 
    legend(0.2, 1500, c("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 370.4"), 
cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0)); 
    title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta   )) 
  } 
  else { 
    l <- (-76*delta) + 118 
    
curve(CARL(x,delta,L,10,n),0,1,ylim=c(1,l),cex.axis=1.5,xlab="u",yaxs="i",xaxs="i",ylab=""
,type="l",lty=1) 
    curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3) 
    curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2) 
    curve(CARL(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3) 
    curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3) 
    legend(0.2, l, c("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 370.4"), 
cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0)); 
    title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta   ))   
  } 
} 
 
dev.new() 
plotCPS(0,3,25,5) 
dev.new() 
plotCARL(0,3,25,5) 
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# the functions CDFCPS and CDFCARL (below) computes, respectively, the c.d.f. (for any 
value t) of the Conditional Probability of a Signal (CPS) and CARL of the Xbar chart for a 
given limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of 
Phase I samples. Note that when delta = 0, CDFCPS and CDFCARL will return the in-
control c.d.f. of the CPS and CARL (i.e., cdf of the CFAR, the conditional False Alarm Rate 
and CARL0).  
 
CDFCPS <- function (t,delta,L,m,n) { 
  a <- 1 - pchisq((m*(n-1)*qchisq(1-t, df=1, ncp = (delta^2)*n))/(L^2),m*(n-1)) 
  return(a) 
} 
 
CDFCARL <- function (t,delta,L,m,n) { 
  a <- pchisq((m*(n-1)*qchisq(1-(1/t), df=1, ncp = (delta^2)*n))/(L^2),m*(n-1)) 
  return(a) 
} 
 
# the functions ARL, ARL2, VARL, SDARL2 and quantileCARL (below) compute, 
respectively, the mean, the central second moment, the variance, the standard 
deviation and the p-quantile of the CARL0 of the Xbar chart in case KU for a given limit 
factor (L), scaled shift in the process mean (delta), number (m) and size (n) of Phase I 
samples. Note that if delta = 0, the function returns the in-control values.  
 
ARL <- function (delta,L,m,n) { 
  CARL <- function (U) { 
    a <- 1/(1-pnorm((-delta*sqrt(n))+(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)) 
    return(a) 
  } 
  a <- integrate(CARL,0,1)$va 
  return(a) 
} 
 
ARL2 <- function (delta,L,m,n) { 
  CARL <- function (U) { 
    a <- (1/(1-pnorm((-delta*sqrt(n))+(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)+pnorm((-
delta*sqrt(n))-(L*sqrt(qchisq(U,m*(n-1))/(m*(n-1)))),0,1)))^2 
    return(a) 
  } 
  a <- integrate(CARL,0,1)$va 
  return(a) 
} 
 
VARL <- function (delta,L,m,n) { 
  a <- ARL2(delta,L,m,n) - (ARL(delta,L,m,n))^2 
  return (a) 
} 
 
SDARL <- function (delta,L,m,n) { 
  a <- sqrt( ARL2(delta,L,m,n) - (ARL(delta,L,m,n))^2) 
  return (a) 
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} 
 
quantileCARL <-function (p,delta,L,m,n) { 
  g <- 1/(1-pchisq((((L^2)*qchisq(p,m*(n-1)))/(m*(n-1))), df=1, ncp = (delta^2)*n)) 
  return(g) 
} 
 
# the functions plotCDFCARL (below) plots the c.d.f of the CARL0 of the Xbar chart in 
case KU for a given limit factor (L), scaled shift in the process mean (delta), number (m) 
and size (n) of Phase I samples. Note that if delta = 0, the function returns the in-control 
results. 
 
plotCDFCARL <- function (delta,L,m,n) { 
   
  if (delta == 0) { 
    CDFCARL12 <- Vectorize(CDFCARL) 
    curve(CDFCARL12(x,delta,L,m,n),1,2000 
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
",yaxt="n") 
    title(main=paste("P(IC CARL <= t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ), 
line=+2.5) 
    xvalues<-c(0,200,400,600,800,1000,1200,1400,1600,1800,2000) 
    yvalues<-c(0,0.2,0.4,0.6,0.8,1) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
    axis(2,at=yvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
    abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1, line=1) 
    axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
    abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red") 
    legend(1250, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1, 
lty=c(5.5,5.5),lwd=c(1,1),col=c("red","blue")) 
  } 
   
  else {  
    CDFCARL12 <- Vectorize(CDFCARL) 
    curve(CDFCARL12(x,delta,L,m,n),1,100 
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
",yaxt="n") 
    title(main=paste("P( OOC CARL <= t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ), 
line=+2.5) 
    xvalues<-c(0,20,40,60,80,100) 
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    yvalues<-c(0,0.2,0.4,0.6,0.8,1) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
    axis(2,at=yvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
    abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1, line=1) 
    axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
    abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red") 
    legend(60, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1, 
lty=c(5.5,5.5),lwd=c(1,1),col=c("red","blue")) 
  } 
}   
 
dev.new() 
plotCDFCARL(0,3,25,3) 
dev.new() 
plotCDFCARL(0.5,3,25,5) 
 
# the function plotPDFCARL (below) plots the p.d.f of the CARL0 of the Xbar chart in case 
KU for a given limit factor (L), scaled shift in the process mean (delta), number (m) and 
size (n) of Phase I samples. Note that if delta = 0, the function returns the in-control 
results.  
 
plotPDFCARL <- function (delta,L,m,n) { 
   
  if (delta == 0) { 
    CDF <- function (h) { 
      g <- CDFCARL(h,delta,L,m,n) 
      return(g) 
    } 
    PDF <- function (x) { 
      f <- grad(CDF, x) 
      return(f) 
    } 
    PDF2 <- Vectorize(PDF) 
    
curve(PDF2,1.01,2000,xlab="t",ylab="",n=100,cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",
xaxs="i",xaxt="n") 
    title(main=paste("pdf of the IC CARL","for", "L=",L, "m=",m, "n=",n  ), line=+2.5) 
    xvalues<-c(0,200,400,600,800,1000,1200,1400,1600,1800,2000) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
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    ARLr <- round(ARL(delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1,line=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
  } 
   
  else { 
     
    CDF <- function (h) { 
      g <- CDFCARL(h,delta,L,m,n) 
      return(g) 
    } 
    CDF2 <- Vectorize(CDF ) 
    PDF <- function (x) { 
      f <- grad(CDF2, x) 
      return(f) 
    } 
    PDF2 <- Vectorize(PDF) 
    
curve(PDF2,1.01,100,n=100,xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",x
axs="i",xaxt="n") 
    title(main=paste("pdf of the OOC CARL","for", "L=",L, "m=",m, "n=",n,"delta=", delta   
), line=+2.5) 
    xvalues<-c(0,20,40,60,80,100) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1,line=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
     
  } 
} 
 
dev.new() 
plotPDFCARL(0,3,25,5) 
dev.new() 
plotPDFCARL(0.5,3,25,5) 
 
# the codes below generate a table with the unconditional ARL values for a set of values 
of n (row) and m (column), given a value of the scaled shift (delta) and limit factor (L) 
 
m<-c(25,50,75,100,150,200,250) 
n<-c(3,5,9) 
delta <- 0 
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L <- 3 
ARLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    ARLtable[i,j] <- ARL(delta,L,m[j],n[i]) 
    cat(ARLtable[i,j]," ") 
  } 
} 
ARLtable 
 
# the codes below generate a table with the SDARL values for a set of values of n (row) 
and m (column), given a value of the scaled shift (delta) and limit factor (L) 
 
m<-c(25,50,75,100,150,200,250) 
n<-c(3,5,9) 
delta <- 0 
L <- 3 
SDARLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    SDARLtable[i,j] <- SDARL(delta,L,m[j],n[i]) 
    cat(SDARLtable[i,j]," ") 
  } 
} 
SDARLtable 
 
# the codes below generate a table with the p-quantile values of the CARL0 for a set of 
values of n (row) and m (column), given a value of the scaled shift (delta) and limit factor 
(L) 
 
m<-c(25,50,100,300,1000) 
n<-c(5,10,20,25) 
delta <- 0 
L <- 3 
p <-0.1 
quantileTABLE<-matrix(,nrow = length(n), ncol = length(m)) 
 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    quantileTABLE[i,j]<-quantileCARL(p,delta,L,m[j],n[i]) 
    cat(quantileTABLE[i,j], "  ") 
  } 
}   
quantileTABLE 
 
# the codes below generate a table with tht minimum values of m, which generates 
P(CFAR<(1+e)*alpha)=1-p for a set of values of n (row) and m (e), given a value of the 
scaled shift (delta), p, nominal alpha and limit factor (L) 
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e<-c(0.1,0.2,0.3,0.4,0.5) 
n<-c(5,10,20,25) 
L <- 3 
p <- 0.15 
alpha<-0.0027 
delta <- 0 
MINIMUMmTABLE<-matrix(,nrow = length(n), ncol = length(e)) 
 
for (i in 1:length(e)){ 
  for (j in 1:length(n)){    
    CDFm <- function (m) { 
      a <- CDFCPS((1+e[i])*alpha,delta,L,m,n[j]) - (1-p) 
      return(a) 
    } 
    MINIMUMmTABLE[j,i]<-ceiling(secantc(CDFm,5,4000)) 
    cat(MINIMUMmTABLE[j,i],"  ") 
  } 
} 
MINIMUMmTABLE 
 
# the codes below generate a table with the adjusted value of L, which generates 
P(CFAR<(1+e)alpha)=1-p for a set of values of n (row) and m (column), given a value of 
the scaled shift (delta), p, nominal alpha and e 
 
m<-c(25,50,100,300,1000) 
n<-c(3,5,9,15) 
alpha <- 0.0027 
p<-0.05 
e<-0 
adjLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
adjL <- function (p,m,n,e) { 
  alfatol=(1+e)*0.0027 
  zalfatol2 <- -1*qnorm(alfatol/2) 
  g <-  zalfatol2/sqrt(qchisq(p,m*(n-1))/(m*(n-1))) 
  return(g) 
} 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    adjLtable[i,j]<-adjL(p,m[j],n[i],e) 
    cat(adjLtable[i,j], " ") 
  } 
} 
adjLtable 
 

R CODES FOR CASE UK 

# before running the codes below, please, download the packages cubature and 
numDeriv 
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library(cubature) # this package helps compute double integrals 
library(numDeriv) # this package helps compute numerical derivations 
 
# the function secantc below was created to find the root of a monotonic increasing 
function. Note that the precision is up to 10 decimal places. 
 
secantc <- function(fun, x0, x1, tol=1e-10, niter=100000){ 
  for ( i in 1:niter ) { 
    funx1 <- fun(x1) 
    funx0 <- fun(x0) 
    x2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 ) 
    funx2 <- fun(x2) 
    if (abs(funx2) < tol) { 
      return(x2) 
    } 
    if (funx2 < 0)  
      x0 <- x2 
    else 
      x1 <- x2 
  } 
  stop("exceeded allowed number of iteractions") 
} 
 
# the function CARL and CPS below computes the Conditional Average Run Length 
(CARL) and the Conditional Probability of a signal of the Xbar chart in Case KU for a given 
of Z (standard bormal random varianle, but note that Z = qnorm(U,0,1)), so the function 
below is actually in fucntion of qchisq(U,m*(n-1)) which is in function of U), limit factor 
(L), scaled shift in the process mean (delta), number (m) and size (n) of Phase I samples. 
Note that when delta = 0, CARL will return the in-control CARL (i.e., the CARL0).  
 
CPS <- function (U,delta,L,m,n) { 
  a <- 1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))-L,0,1) 
  return(a) 
} 
 
CARL <- function (U,delta,L,m,n) { 
  a <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))-L,0,1)) 
  return(a) 
} 
 
# the functions plotCPS and plotCARL below create, respectively, plots of the CPS and 
CARL0 curves for various values of m, n=5 and L=3 in function of U. Please, use delta 
between 0.5 and 1.5. 
 
plotCPS <- function (delta,L,m,n) { 
  if (delta == 0) { 
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curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,0.02),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.
5,type="l",lty=1,col="black",yaxs="i",xaxs="i",ylab="",yaxt="n") 
    curve(CPS(x,delta,L,20,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3,col="black") 
    curve(CPS(x,delta,L,50,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3,col="black") 
    yvalues<-c(0,0.0027,0.005,0.01,0.015,0.02) 
    axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1) 
    abline(a = 0.0027, b = 0,lty=5.5) 
    legend(0.4, 0.0155, c("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 
0.0027"), cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0)); 
    title(main=paste("CFAR curves","for", "L=",L, "n=",n,"delta=", delta   )) 
  } 
  else { 
    l <- 0.75*delta - 0.225 
    
curve(CPS(x,delta,L,10,n),0,1,ylim=c(0,l),xlim=c(0,1),cex.axis=1.5,xlab="u",cex.axis=1.5,ty
pe="l",lty=1,col="black",yaxs="i",xaxs="i",ylab="") 
    curve(CPS(x,delta,L,20,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3,col="black") 
    curve(CPS(x,delta,L,50,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3,col="black") 
    curve(CPS(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3,col="black") 
    legend(0.4, l, c("m = 10","m = 20","m = 50","m = 100","m = 500"), cex=1.5, 
lty=c(1,1,2,2,3,5.5),lwd=c(3,3,3,3,3,0)); 
    title(main=paste("CPS curves","for", "L=",L, "n=",n,"delta=", delta   )) 
  } 
} 
 
plotCARL <- function (delta,L,m,n) { 
  if (delta == 0) { 
    
curve(CARL(x,delta,L,10,n),0,1,ylim=c(0,400),cex.axis=1.5,yaxt="n",xlab="u",yaxs="i",xax
s="i",ylab="",type="l",lty=1) 
    curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3) 
    curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2) 
    curve(CARL(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3) 
    curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3) 
    yvalues<-c(100,200,300,370.4,400) 
    axis(2,at=yvalues,labels=yvalues,cex.axis=1.5,las=1) 
    abline(a = 370.4, b = 0,lty=5.5) 
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    legend(0.2, 1500, c("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 370.4"), 
cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0)); 
    title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta   )) 
  } 
  else { 
    l <- (-76*delta) + 118 
    
curve(CARL(x,delta,L,10,n),0,1,ylim=c(1,l),cex.axis=1.5,xlab="u",yaxs="i",xaxs="i",ylab=""
,type="l",lty=1) 
    curve(CARL(x,delta,L,20,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=1,lwd=3) 
    curve(CARL(x,delta,L,50,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2) 
    curve(CARL(x,delta,L,100,n),0,1 
,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=2,lwd=3) 
    curve(CARL(x,delta,L,500,n),0,1 ,add=TRUE,xlab="u",ylab="CFAR",type="l",lty=3, 
lwd=3) 
    legend(0.2, l, c("m = 10","m = 20","m = 50","m = 100","m = 500", "CFAR = 370.4"), 
cex=1.5, lty=c(1,1,2,2,3,5.5),lwd=c(0,3,0,3,3,0)); 
    title(main=paste("CARL curves","for", "L=",L, "n=",n,"delta=", delta   ))   
  } 
} 
 
dev.new() 
plotCPS(0,3,25,5) 
dev.new() 
plotCARL(0,3,25,5) 
 
# the functions CDFCPS and CDFCARL (below) computes, respectively, the c.d.f. (for any 
value t) of the Conditional Probability of a Signal (CPS) and CARL of the Xbar chart for a 
given limit factor (L), scaled shift in the process mean (delta), number (m) and size (n) of 
Phase I samples. Note that when delta = 0, CDFCPS and CDFCARL will return the in-
control c.d.f. of the CPS and CARL (i.e., cdf of the CFAR, the conditional False Alarm Rate 
and CARL0).  
 
CDFCARL <- function (x,delta,L,m,n) { 
  l <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))-L,0,1)) 
  CARL <- function (Z) { 
    a <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*Z)-L,0,1)) 
    return(a) 
  } 
  ARL0 <- function (t) { 
    k <- CARL(t)-x 
    return(k) 
  } 
  if (x>l) { 
    c <- 1 
  } 
  if ((x<=l) & (x>=1) ) { 
    b <- secantc(ARL0,-100,delta*sqrt(m*n)) 
    c <-  1 -  pnorm((2*(delta*sqrt(m*n)))-b,0,1) + pnorm(b,0,1)  
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  } 
  if (x<1) { 
    c <- 0 
  } 
  return(c) 
} 
 
CDFCPS <- function (t,delta,L,m,n) { 
  a <- 1 - CDFCARL(1/t,delta,L,m,n) 
  return(a) 
} 
 
# the functions ARL, ARL2, VARL, SDARL2 and quantileCARL (below) compute, 
respectively, the mean, the central second moment, the variance, the standard 
deviation and the p-quantile of the CARL0 of the Xbar chart in case KU for a given limit 
factor (L), scaled shift in the process mean (delta), number (m) and size (n) of Phase I 
samples. Note that if delta = 0, the function returns the in-control values.  
 
ARL <- function (delta,L,m,n) { 
  CARL <- function (U) { 
    a <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))-L,0,1)) 
    return(a) 
  } 
  a <- integrate(CARL,0,1)$va 
  return(a) 
} 
 
ARL2 <- function (delta,L,m,n) { 
  CARL <- function (U) { 
    a <- (1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*qnorm(U,0,1))-L,0,1)))^2 
    return(a) 
  } 
  a <- integrate(CARL,0,1)$va 
  return(a) 
} 
 
VARL <- function (delta,L,m,n) { 
  a <- ARL2(delta,L,m,n) - (ARL(delta,L,m,n))^2 
  return (a) 
} 
 
SDARL <- function (delta,L,m,n) { 
  a <- sqrt( ARL2(delta,L,m,n) - (ARL(delta,L,m,n))^2) 
  return (a) 
} 
 
quantileCARL <-function (p,delta,L,m,n) { 
  l <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))-L,0,1)) 
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  CDFm <- function (a) { 
    a <- CDFCARL(a,delta,L,m,n) - p 
    return(a) 
  } 
  g<-secantc(CDFm,1,l) 
  return(g) 
} 
 
plotCDFCARL <- function (delta,L,m,n) { 
   
  if (delta == 0) { 
    CDFCARL12 <- Vectorize(CDFCARL) 
    curve(CDFCARL12(x,delta,L,m,n),1,400 
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
",yaxt="n") 
    title(main=paste("P(IC CARL <= t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ), 
line=+2.5) 
    xvalues<-c(0,100,200,300,400) 
    yvalues<-c(0,0.2,0.4,0.6,0.8,1) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
    axis(2,at=yvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
    abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1, line=1) 
    axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
    abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red") 
    legend(1250, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1, 
lty=c(5.5,5.5),lwd=c(1,1),col=c("red","blue")) 
  } 
   
  else {  
     
    CDFCARL12 <- Vectorize(CDFCARL) 
    curve(CDFCARL12(x,delta,L,m,n),1,100 
,ylim=c(0,1),xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",xaxs="i",xaxt="n
",yaxt="n") 
    title(main=paste("P( OOC CARL <= t)","for", "L=",L, "m=",m, "n=",n,"delta=", delta ), 
line=+2.5) 
    xvalues<-c(0,20,40,60,80,100) 
    yvalues<-c(0,0.2,0.4,0.6,0.8,1) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
    axis(2,at=yvalues,cex.axis=1.5,las=1) 
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    ARLr <- round(ARL(delta,L,m,n),2) 
    CDFmeanr <-round(CDFCARL(ARL(delta,L,m,n),delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    axis(4,CDFCARL(ARL(delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
    abline(h=CDFCARL(ARL(delta,L,m,n),delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    CDFmedianr <-round(CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1, line=1) 
    axis(4,CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),cex.axis=1,las=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
    abline(h=CDFCARL(quantileCARL(0.5,delta,L,m,n),delta,L,m,n),lty=5.5,col="red") 
    legend(60, 0.4, c( paste("MCARL =", Median) , paste("ARL =", ARLr)), cex=1, 
lty=c(5.5,5.5),lwd=c(1,1),col=c("red","blue")) 
  } 
}   
 
dev.new() 
plotCDFCARL(0,3,25,5) 
dev.new() 
plotCDFCARL(0.5,3,25,5) 
 
# the function plotPDFCARL (below) plots the p.d.f of the CARL0 of the Xbar chart in case 
KU for a given limit factor (L), scaled shift in the process mean (delta), number (m) and 
size (n) of Phase I samples. Note that if delta = 0, the function returns the in-control 
results.  
 
plotPDFCARL <- function (delta,L,m,n) { 
   
  if (delta == 0) { 
    CDF <- function (h) { 
      g <- CDFCARL(h,delta,L,m,n) 
      return(g) 
    } 
    PDF <- function (x) { 
      f <- grad(CDF, x) 
      return(f) 
    } 
    PDF2 <- Vectorize(PDF) 
    
curve(PDF2,1.01,400,xlab="t",ylab="",n=100,cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",x
axs="i",xaxt="n") 
    title(main=paste("pdf of the IC CARL","for", "L=",L, "m=",m, "n=",n  ), line=+2.5) 
    xvalues<-c(0,100,200,300,400) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
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    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1,line=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
  } 
   
  else { 
     
    CDF <- function (h) { 
      g <- CDFCARL(h,delta,L,m,n) 
      return(g) 
    } 
    CDF2 <- Vectorize(CDF ) 
    PDF <- function (x) { 
      f <- grad(CDF2, x) 
      return(f) 
    } 
    PDF2 <- Vectorize(PDF) 
    
curve(PDF2,1.01,100,n=100,xlab="t",ylab="",cex.axis=1.5,type="l",lty=1,lwd=3,yaxs="i",x
axs="i",xaxt="n") 
    title(main=paste("pdf of the OOC CARL","for", "L=",L, "m=",m, "n=",n,"delta=", delta   
), line=+2.5) 
    xvalues<-c(0,20,40,60,80,100) 
    axis(1,at=xvalues,cex.axis=1.5,las=1) 
     
    ARLr <- round(ARL(delta,L,m,n),2) 
    axis(3,ARLr,cex.axis=1,las=1) 
    abline(v=ARL(delta,L,m,n),lty=5.5,col="blue") 
     
    Median <- round(quantileCARL(0.5,delta,L,m,n),2) 
    axis(1,Median,cex.axis=1,las=1,line=1) 
    abline(v=quantileCARL(0.5,delta,L,m,n) ,lty=5.5,col="red") 
     
  } 
} 
 
dev.new() 
plotPDFCARL(0,3,25,5) 
dev.new() 
plotPDFCARL(0.5,3,25,5) 
 
# the codes below generate a table with the unconditional ARL values for a set of values 
of n (row) and m (column), given a value of the scaled shift (delta) and limit factor (L) 
 
m<-c(25,50,75,100,150,200,250) 
n<-c(3,5,9) 
delta <- 0 
L <- 3 
ARLtable<-matrix(,nrow = length(n), ncol = length(m)) 
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for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    ARLtable[i,j] <- ARL(delta,L,m[j],n[i]) 
    cat(ARLtable[i,j]," ") 
  } 
} 
ARLtable 
 
# the codes below generate a table with the SDARL values for a set of values of n (row) 
and m (column), given a value of the scaled shift (delta) and limit factor (L) 
 
m<-c(25,50,75,100,150,200,250) 
n<-c(3,5,9) 
delta <- 0 
L <- 3 
SDARLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    SDARLtable[i,j] <- SDARL(delta,L,m[j],n[i]) 
    cat(SDARLtable[i,j]," ") 
  } 
} 
SDARLtable 
 
# the codes below generate a table with the p-quantile values of the CARL0 for a set of 
values of n (row) and m (column), given a value of the scaled shift (delta) and limit factor 
(L). Two axillar functions were created: CDFCARLax and quantileCARLax, for the secant 
method work properly 
 
m<-c(25,50,100,300,1000) 
n<-c(5,10,20,25) 
delta <- 0 
L <- 3 
p <-0.1 
quantileTABLE<-matrix(,nrow = length(n), ncol = length(m)) 
 
CDFCARLax <- function (x,delta,L,m,n) { 
  l <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))-L,0,1)) 
  CARL <- function (Z) { 
    a <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*Z)+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*Z)-L,0,1)) 
    return(a) 
  } 
  ARL0 <- function (t) { 
    k <- CARL(t)-x 
    return(k) 
  } 
  if (x>l) { 
    c <- 1 
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  } 
  if ((x<=l) & (x>=1) ) { 
    b <- secantc(ARL0,-400,delta*sqrt(m*n)) 
    c <-  1 -  pnorm((2*(delta*sqrt(m*n)))-b,0,1) + pnorm(b,0,1)  
  } 
  if (x<1) { 
    c <- 0 
  } 
  return(c) 
} 
 
quantileCARLax <-function (p,delta,L,m,n) { 
  l <- 1/(1 - pnorm((-delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))+L,0,1) + pnorm((-
delta*sqrt(n))+((1/sqrt(m))*(delta*sqrt(m*n)))-L,0,1)) 
  CDFm <- function (a) { 
    a <- CDFCARLax(a,delta,L,m,n) - p 
    return(a) 
  } 
  g<-secantc(CDFm,1,l) 
  return(g) 
} 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    quantileTABLE[i,j]<-quantileCARLax(p,delta,L,m[j],n[i]) 
    cat(quantileTABLE[i,j], "  ") 
  } 
}   
quantileTABLE 
 
# the codes below generate a table with tht minimum values of m, which generates 
P(CFAR<(1+e)*alpha)=1-p for a set of values of n (row) and m (e), given a value of the 
scaled shift (delta), p, nominal alpha and limit factor (L) 
 
e<-c(0.1,0.2,0.3,0.4,0.5) 
n<-c(5,10,20,25) 
L <- 3 
p <- 0.15 
alpha<-0.0027 
delta <- 0 
MINIMUMmTABLE<-matrix(,nrow = length(n), ncol = length(e)) 
 
for (i in 1:length(e)){ 
  for (j in 1:length(n)){    
    CDFm <- function (m) { 
      a <- CDFCPS((1+e[i])*alpha,delta,L,m,n[j]) - (1-p) 
      return(a) 
    } 
    MINIMUMmTABLE[j,i]<-ceiling(secantc(CDFm,5,4000)) 
    cat(MINIMUMmTABLE[j,i],"  ") 
  } 
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} 
MINIMUMmTABLE 
 
# the codes below generate a table with the adjusted value of L, which generates 
P(CFAR<(1+e)alpha)=1-p for a set of values of n (row) and m (column), given a value of 
the scaled shift (delta), p, nominal alpha and e 
 
m<-c(25,50,100,300,1000) 
n<-c(5,10,20,25) 
alpha <- 0.0027 
p<-0.05 
e<-0.2 
delta<-0 
adjLtable<-matrix(,nrow = length(n), ncol = length(m)) 
 
for (i in 1:length(n)){ 
  for (j in 1:length(m)){    
    CDFaux <- function (s) { 
      a <- CDFCPS((1+e)*alpha,delta,s,m[j],n[i])-(1-p) 
      return (a) 
    } 
    adjLtable[i,j]<-secantc(CDFaux,2.1,3.9) 
    cat(adjLtable[i,j], " ") 
  } 
} 
adjLtable 
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Abstract 

The impact of parameter estimation on control charts has been studied with 

great interest in the recent literature. The estimated control limits affect chart 

performance, often negatively.  Guided by the need to design control charts with a 

specified nominal in-control performance so as to avoid excessive false alarms, two 

major perspectives are advocated. Under the first, the so-called unconditional 

perspective, control limits are determined so that the in-control unconditional 

average run length equals a specified nominal value. However, the unconditional 

perspective does not account for the practitioner-to-practitioner variability 

inherent in using control charts based on parameter estimates. Thus, more recently, 

researchers have considered a second perspective, called the conditional 

perspective, under which the so-called exceedance probability criterion (EPC) is 

used to calculate the control limits so that the in-control conditional average run-

length is at least equal to a specified nominal value with a high probability. These 

two perspectives lead to adjusted control limits and various methods have been 

proposed for calculating these limits. In this paper, we consider the Shewhart 𝑋̅ 

chart to illustrate the two perspectives and compare the adjusted control limits 

resulting from the different adjustment methods under the two perspectives. 

Summary and recommendations are given.   

Key Words: Unconditional and Conditional Run Length and Average Run 

Length, Control Limit Adjustments, Bootstrap, False Alarm Rate, Guaranteed In-

Control Performance, Exceedance probability criterion 

1. Introduction 
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One has to wonder what may still be worth studying when it comes to the 

most well-known and celebrated control chart of all, namely the Shewhart 𝑋̅ chart. 

This chart has been around for more than sixty years, but, as a matter of fact, is that 

only fairly recently we have started to fully understand and appreciate its 

performance, particularly when the chart is used with parameters estimated with 

reference data. For reviews of some of the works on the effect on the performance 

of control charts when parameters are estimated, see Jensen et al. (2006) and 

Psarakis et al. (2014). The situation we are concerned with arises in a Phase II 

monitoring setting where the parameter estimates are obtained from reference data, 

from a Phase I analysis (with 𝑚 samples/subgroups each one of size 𝑛). For an 

overview of Phase I analysis the reader is referred to Chakraborti et al. (2009) and 

Jones-Farmer et al. (2014).  

Traditionally, researchers studying the in-control performance of the 𝑋̅ chart 

with estimated parameters have focused on the unconditional in-control run length 

distribution, especially on its expected value, the so-called unconditional in-control 

average run length (𝐴𝑅𝐿0). This is the first perspective, called the unconditional 

perspective, under which it has been seen that a large amount of Phase I data are 

required to achieve in-control performance as in the known parameters case when 

traditional control limits, like the “3-sigma limits”, are used [see, for example, 

Quesenbery (1993) and Chen (1997)]. In this context, some authors have also 

suggested examining the standard deviation of the in-control run length (𝑆𝐷𝑅𝐿0) 

distribution [see for example, Chakraborti (2007)]. Note that the unconditional run 

length distribution is obtained by averaging over the distributions of the estimators, 

so that the performance under the unconditional perspective is not for a specific 

control chart with a given set of parameter estimates from a specific Phase I sample, 

but an “average” performance over an infinite number of possible control charts, 

each corresponding to one set of parameter estimates from one Phase I sample from 

the same process (see, Chakraborti (2000)). The average performance idea may be 

unsettling to some users and thus, recently, an alternative point of view has emerged 

in the study of performance and design of control charts with estimated parameters. 

This advocates focusing on the performance of the control chart given (conditional 

on) the Phase I data from which the parameters are estimated and the control limits 

are constructed. This is the second perspective, called the conditional perspective, 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



136 
 

 

 

that argues that the in-control conditional run length distribution (and consequently 

its various attributes such as the conditional false alarm rate (𝐶𝐹𝐴𝑅) or the 

conditional in-control average run length (𝐶𝐴𝑅𝐿0)) are more meaningful in the 

context of chart design, since they take account of the practitioner-to-practitioner 

variability [see for example, Saleh et al. (2015a) and Epprecht et al. (2015)]. To this 

end, recognizing the fact that the 𝐶𝐴𝑅𝐿0 is a random variable, one performance 

measure under the conditional perspective has been the Exceedance Probability 

Criterion [Albers et al. (2005)], denoted here by EPC, under which the probability 

that the 𝐶𝐹𝐴𝑅 is smaller than some desired nominal value is set to be high.  From 

a practical standpoint, however, it may be more useful to ensure that the probability 

that the 𝐶𝐴𝑅𝐿0 is greater than some desired nominal value (such as 370.4) is high. 

This is how the exceedance probability criterion (EPC) is interpreted and used in 

this paper. Note that the 𝐶𝐹𝐴𝑅 and the 𝐶𝐴𝑅𝐿0 formulations are equivalent since 

the conditional run length distribution is geometric so that 𝐶𝐴𝑅𝐿0 is the reciprocal 

of 𝐶𝐹𝐴𝑅. 

The performance of a Phase II control chart is related to the amount of Phase 

I data used in the parameters estimation. Several authors [see, for example, 

Quesenberry (1993), Chen (1997), Chakraborti (2000, 2006) and Diko et al. (2015)] 

have noted that for the 𝑋̅ chart, with estimated parameters, the unconditional 

perspective leads to requiring a very large amount of Phase I data so that some 

nominal in-control chart performance can be achieved comparable to the known 

parameters case. In fact, the required amount of data has been shown to be much 

larger than what has been traditionally recommended, which is 𝑚 = 25 or 30 Phase 

I subgroups, each of size 𝑛 = 5. On the other hand, under the conditional 

perspective, Saleh et al. (2015a,b) and Jardim et al. (2017), for example, have 

shown that employing the EPC, the required amount of data can be even larger. 

Thus both approaches, used in conjunction with the traditional control charts, may 

be infeasible in routine control charting applications. 

So, the practitioners face a dilemma while choosing a Phase II control chart 

with estimated parameters in the control limits.  The fact that the unconditional 

perspective leads to somewhat smaller amount of required Phase I data may give 

the impression that this perspective is preferable. However, this is not true. In fact, 

adopting the unconditional 𝐴𝑅𝐿0 as a performance criterion does not reduce the 
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chance that the 𝐴𝑅𝐿0 of the Phase II chart, with the estimated control limits, may 

be unacceptably small relative to a nominal value such as 370.4. In the 

unconditional perspective, one simply does not consider this chance (risk), since 

one typically focuses on some moments of the in-control unconditional run length 

distribution, such as the expected value (which is also the expected value of the 

𝐶𝐴𝑅𝐿0 distribution), as a chart performance measure to design the chart (that is to 

calculate the control limits). The expected value measure does not account for the 

rather large variability in the 𝐶𝐴𝑅𝐿0 distribution [see for example, Saleh et al. 

(2015a) and Jardim et al. (2017)].  

Given the finding that under both perspectives, large, often impractical, 

amounts of Phase I data are required to guarantee a traditional nominal in-control 

performance of the Phase II chart comparable to the known parameter case, some 

authors have considered using adjustments to the control limits to properly 

compensate for the effects of parameter estimation and to guarantee a desired in-

control performance with the amount of data at hand. Such control limits are called 

adjusted limits and this adjustment consists of replacing the limit factor (𝐿) (usually 

equal to 3 in the traditional Shewhart 𝑋̅ chart), by a new (or corrected or adjusted) 

limit factor (𝐿∗), which yields a specified nominal in-control performance. For 

example, in the unconditional perspective, the constant 3 in the traditional “3-sigma 

limits” may be replaced (or adjusted) by a constant (𝐿∗ = 3.15, say), to guarantee 

that the 𝐴𝑅𝐿0 has a desired nominal value. On the other hand, under the conditional 

perspective, one recognizes that the 𝐶𝐴𝑅𝐿0 is a random variable with a distribution 

and thus one uses the EPC and replaces the traditional limit factor (𝐿) by an adjusted 

limit factor (𝐿∗), to guarantee that with a high probability, the 𝐶𝐴𝑅𝐿0 is greater than 

a specified value, say, 370.4. Of course, any adjustment to the control limits also 

impacts the chart’s out-of-control performance and one must carefully balance the 

gains and losses on both fronts. The conventional wisdom in SPC has been to weigh 

the chart’s in-control performance more heavily, so that too many false alarms 

relative to what is nominally expected can be avoided, but this must be balanced so 

that the chart’s shift detecting ability is not highly compromised. 

Although our discussions are general and apply to all control charts, we use 

the Shewhart 𝑋̅ chart here for illustration because of its simplicity and popularity. 

For this chart, formulas for the adjusted limit factor (𝐿∗) have been derived, methods 
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for finding the solution have been considered, and the results have been tabulated 

for many cases of interest. To underscore the keen interest in this area of research, 

note that several articles have appeared in major journals over the last decade on 

the topic of adjustment of control limits for the 𝑋̅ chart. These include Chakraborti 

(2006), Gandy and Kvaløy (2013), Saleh et al. (2015b), Goedhart et al. (2016 and 

2017) and Jardim et al. (2017). It is therefore time to examine the various issues 

and get a better and more comprehensive understanding of the proposals. To this 

end, we briefly describe these efforts before making a comparison among the 

various approaches.  

Chakraborti (2006) and Jardim et al. (2017) derived formulas for 𝐿∗, using 

the unconditional and the conditional perspective, respectively, using the exact 

distributions formulas for the in-control marginal run length and conditional 

average run length in each case. Although these distributions and the resulting 

equations are not in a closed form, they can be easily solved numerically, using 

many available software packages. Since these methods are based on an exact 

distribution and yields very accurate results fairly easily using numerical methods 

to solve the integrals involved, we call these “the Exact Methods”. On the other 

hand, Goedhart et al. (2016, 2017) for example, have derived formulas for the 

adjusted limit factor under the unconditional and the conditional perspective, 

respectively, using sophisticated approximations. Furthermore, realizing the 

complexity of the approximations, Goedhart et al. (2018) presented an alternative 

and simpler approximate formula for the conditional perspective solution, based on 

some theory of tolerance intervals available in the literature. However, this simpler 

formula requires the quantile of a non-central chi-square distribution, which is not 

tabulated in many quality control text books and is not provided in a popular 

software like Excel, so its calculation may still require relatively advanced 

statistical skills. Given this, in this paper, as an aside, we derive an even simpler 

approximate formula in terms of the central chi-square percentile. We call all these 

methods “the Approximate Methods” to emphasize the fact that they are derived 

using some approximations (to the distribution of the CARL0), and not to imply that 

they are not of good quality. In fact, the approximations yield good results, 

particularly for larger values of m, closer to the ones obtained by the exact methods. 

In addition, adjustments to the 𝑋̅ chart control limits have been considered by Saleh 
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et al. (2015b) under the conditional perspective and the EPC, using the bootstrap 

approach proposed by Gandy and Kvaloy (2013). Note that since we assume 

normality, it is possible to find the adjustments (limit factors) analytically and the 

need for bootstrapping may be questionable (as also noted in Goedhart et al. 

(2017)). Nevertheless, since bootstrap is a powerful method that can be applied 

more generally, assuming no specific distribution, we include this method and the 

resulting adjustment factors in our comparisons. Figure 1 shows a flowchart for the 

current state of the art regarding the adjustment of Phase II control limits to achieve 

some desired nominal in-control performance for the 𝑋̅ chart in the face of 

parameter estimation with Phase I data.   

 

Figure 17.  adjusting the 𝑿̅ chart control limits for a guaranteed in-

control performance 

The existence of the two perspectives and at least two different methods 

under each used to determine the adjusted control limit factors may seem 

perplexing. With this in mind, in this paper we analyze the results from each method 

under each of the two perspectives. Moreover, for further insight, the performance 

of the solutions obtained under the unconditional perspective is also examined from 

the conditional point of view under the EPC and vice versa. For example, with the 

unconditional adjusted limit factor that guarantees a nominal 𝐴𝑅𝐿0 = 370.4, we 

calculate and examine the probability that the conditional 𝐴𝑅𝐿0 (that is 𝐶𝐴𝑅𝐿0) is 

at least 370.4. Similarly, having found the adjusted limit that guarantees that the 

𝐶𝐴𝑅𝐿0 is at least 370.4 with a 95% probability (that is using the EPC), we calculate 

the associated value of the 𝐴𝑅𝐿0. This analysis sheds interesting light on the relative 
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performance of the various solutions under the two perspectives. With these results 

and comparisons, we offer some practical advice and recommendations regarding 

the design of the 𝑋̅ control chart when applied with estimated parameters. 

Before proceeding, it is important to note that for the Shewhart 𝑋̅ control 

chart, when the in-control process mean (𝜇0) and the in-control process standard 

deviation (𝜎0) of the underlying normal distribution are estimated by 𝜇̂0 and 𝜎̂0, 

respectively, the adjusted upper and lower control limits are given by 

𝑈𝐶𝐿̂ = 𝜇̂0 + 𝐿
∗
𝜎̂0

√𝑛
,                                                           (1) 

𝐿𝐶𝐿̂ = 𝜇̂0 − 𝐿
∗
𝜎̂0

√𝑛
,                                                            (2) 

where 𝐿∗ is the adjusted control limit factor that needs to be found so that a 

desired nominal in-control chart performance, defined in terms of a suitable 

performance criterion, is achieved, for a chosen set of estimators and given the 

available amount of Phase I data. This means that 𝐿∗ may vary depending on the 

amount of data (m and n) available to estimate 𝜇0 and 𝜎0 and the type (unbiased, 

minimum variance, etc.) of estimators (𝜇̂0 and 𝜎̂0) one uses to estimate the 

parameters. Note that this formulation takes account of the fact that Phase I data are 

used to estimate the unknown parameters, which are necessary to establish the 

control limits. Note that this approach is different from using a traditional control 

limit factor (𝐿) – also called uncorrected limit factor (like the “3-sigma” limits 

where 𝐿 = 3, which yields a nominal ARL0 = 370.4). The constant 𝐿 does not 

depend on the amount of Phase I data available to set up the Phase II control chart 

and thus does not take into account the estimation of parameters on the control 

limits. However, when the amount of data is large (m and or n tend to infinity), 𝐿∗ 

is expected to be equal to (converge to) 𝐿. 

The remainder of this paper is organized as follows: In Sections 2 and 3, we 

present the various adjustment methods under the unconditional and conditional 

perspectives, respectively. Some results and discussion regarding these methods 

and these two perspectives are presented in Section 4.  Finally, some conclusions 

and recommendations are provided in Section 5. 

2. Adjusted Control Limit Factors Under the Unconditional Perspective 
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Under the unconditional perspective, the adjusted limits are found by first 

finding the corrected limit factor (𝐿∗) which produces the desired nominal 𝐴𝑅𝐿0. 

Usually, the desired nominal value of the 𝐴𝑅𝐿0 is taken to be the one in the ideal 

(albeit typically unrealistic) parameters known case (𝜇0 and 𝜎0 are known) such as 

370.4 and thus, also assuming normality, 𝐴𝑅𝐿0 = (2(1 − Φ(𝐿))) ,
−1 where 𝐿 is 

the traditional or the uncorrected limit factor, set so as to give the desired nominal 

𝐴𝑅𝐿0 through the inverse relation 𝐿 = −Φ−1(1 (2𝐴𝑅𝐿0)⁄ ), where Φ is the 

cumulative distribution function (c.d.f.) of a standard normal random variable. For 

example, when the desired nominal 𝐴𝑅𝐿0 = 370.4, one has 𝐿 = 3 (the most 

commonly used 3-sigma limits). 

When the in-control process mean (𝜇0) and standard deviation (𝜎0) are 

estimated by calculating 𝜇̂0 and 𝜎̂0 from 𝑚 Phase I samples each of size 𝑛,  the 

Phase II control limits and consequently the run length distribution depends on the 

estimators 𝜇̂0 and  𝜎̂0.  Hence for given values of 𝜇̂0  and  𝜎̂0, the run length 

distribution is referred to as the conditional run length distribution, which is 

geometric with probability of success equal to the conditional probability of a 

signal, 𝐶𝑃𝑆(𝜇̂0, 𝜎̂0), is given by 

𝐶𝑃𝑆(𝜇̂0, 𝜎̂0) = 1 − 𝑃 (𝜇̂0 − 𝐿
∗
𝜎̂0

√𝑛
≤ 𝑋̅𝑙 ≤ 𝜇̂0 + 𝐿

∗
𝜎̂0

√𝑛
) 

Hence the conditional average run length 𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0) is equal to 

𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0) = (𝐶𝑃𝑆(𝜇̂0, 𝜎̂0))
−1

= [𝑃 (𝜇̂0 − 𝐿
∗
𝜎̂0

√𝑛
≤ 𝑋̅𝑙 ≤ 𝜇̂0 + 𝐿

∗
𝜎̂0

√𝑛
)]
−1

,    (3) 

where 𝑋̅𝑙 denotes the lth Phase II sample of size 𝑛. Note that Equation (3) 

applies both to the in-control and out-of-control states of the process. When the 

process is in control, the CPS is the conditional probability of a false alarm, denoted 

𝐶𝐹𝐴𝑅, and the CARL is the conditional in-control average run length, denoted 

𝐶𝐴𝑅𝐿0.  

Being a function of 𝜇̂0 and 𝜎̂0, the conditional average run length 

𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0) is a random variable and plays a crucial role in the performance of 

the control charts under both the unconditional and the conditional perspectives. 

The distribution of 𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0) is considered in Jardim et al. (2017) and the 

reader is referred to that work for interesting insights and more details. For our 
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purposes here, however, the mean and the second moment of the 𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0) 

distribution are sufficient and are given by  

𝐴𝑅𝐿 = E(𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0)) = ∫ ∫ 𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0)
∞

0

∞

−∞

𝑓𝜎̂0(𝜎̂0)𝑑𝜎̂0𝑓𝜇̂0(𝜇̂0)𝑑𝜇̂0,       (4) 

E(𝐶𝐴𝑅𝐿2(𝜇̂0, 𝜎̂0)) = ∫ ∫ 𝐶𝐴𝑅𝐿2(𝜇̂0, 𝜎̂0)
∞

0

∞

−∞

𝑓𝜎̂0(𝜎̂0)𝑑𝜎̂0𝑓𝜇̂0(𝜇̂0)𝑑𝜇̂0,               (5) 

where 𝑓𝜇̂0(𝜇̂0) and 𝑓𝜎̂0(𝜎̂0) denote the p.d.f. of 𝜇̂0 and 𝜎̂0, respectively. Note 

that 𝐴𝑅𝐿 is also the mean of the unconditional run-length distribution. Some authors 

have used the notation 𝐴𝐴𝑅𝐿 for 𝐴𝑅𝐿 but we continue to use the latter to avoid 

confusion.   

Given (4) and (5), the standard deviation of 𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0), denoted 𝑆𝐷𝐴𝑅𝐿, 

can be calculated from  

𝑆𝐷𝐴𝑅𝐿 = 𝑆𝐷(𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0))

= √E(𝐶𝐴𝑅𝐿2(𝜇̂0, 𝜎̂0)) − E2(𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0)).        (6) 

Again, note that Equations (4) and (6) apply to both in- and out-of-control 

cases.   

Typically, 𝜇̂0 is taken to be the grand mean of the m Phase I sample means 

(𝑋̿).  Thus,  𝑋̿ =
1

𝑚
∑ 𝑋̅𝑖
𝑚
𝑖=1 , where 𝑋̅𝑖 =

1

𝑛
∑ 𝑋𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 

and 𝑋𝑖𝑗 denotes the 𝑗-th observation of the 𝑖-th sample. The observations 𝑋𝑖𝑗 are 

assumed to be normally distributed with mean 𝜇0 and standard deviation σ0 where 

both are assumed unknown. For the standard deviation we consider the unbiased 

pooled estimator 𝜎̂0 = 𝑆𝑝 𝑐4,𝑏⁄ , where 𝑆𝑝 = √
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1 , 𝑆𝑖

2 =
1

𝑛−1
∑ (𝑋𝑖,𝑗 −
𝑛
𝑗=1

𝑋̅𝑖)
2
 and 𝑐4,𝑏 is the unbiasing constant for 𝑏 = 𝑚(𝑛 − 1) + 1, where 𝑐4,𝑏 =

[𝛤(𝑏 2⁄ )√2] [𝛤((𝑏 − 1) 2⁄ )√𝑏 − 1]⁄  and 𝛤 is the gamma function. A comment 

about the standard deviation is in order. The unbiased pooled estimator we use here 

has been highly recommended in the recent literature [see Mahmoud et al. (2010) 

and Saleh et al. (2015a, b)].  Other estimators of the standard deviation, based on 

the average range or the average standard deviation could also be considered, but 

we leave that for the future.  

It is known that (see, for example, Chakraborti, 2000) when the process is 

in control, (i) 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄  follows a central chi-square distribution with 
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𝑚(𝑛 − 1) d.f., (ii) 𝑍 = (
𝑋̿−𝜇0

𝜎0
)√𝑚𝑛 follows a standard normal distribution and (iii) 

𝑋̅𝑙~𝑁(𝜇0, 𝜎0
2 𝑛⁄ ). Thus the conditional false alarm rate, 𝐶𝑃𝑆(𝑋̿, 𝑆𝑝|𝐼𝐶), can be 

conveniently expressed (see, for example, Chakraborti (2000)) by: 

𝐶𝐹𝐴𝑅(𝑍, 𝑌) = 1

− (Φ(
𝑍

√𝑚
+
𝐿∗

𝑐4,𝑏
√

𝑌

𝑚(𝑛 − 1)
)

− Φ(
𝑍

√𝑚
−
𝐿∗

𝑐4,𝑏
√

𝑌

𝑚(𝑛 − 1)
)).  (7) 

The random variable 𝐶𝐹𝐴𝑅(𝑍, 𝑌) (or its inverse, the in-control conditional 

average run-length, given by 𝐶𝐴𝑅𝐿0 = [𝐶𝐹𝐴𝑅(𝑍,𝑌)]
−1) plays a key role in the 

study of the performance of the Phase II Shewhart 𝑋̅ chart with estimated 

parameters.   

Finally, using (4) and (7), the in-control (IC) unconditional average run 

length (𝐴𝑅𝐿0) can be expressed as 

                    𝐴𝑅𝐿0 = 𝐸(𝐶𝐴𝑅𝐿0) = E[𝐶𝐴𝑅𝐿(𝜇̂0, 𝜎̂0)|𝐼𝐶] 

= 𝐸[[𝐶𝐹𝐴𝑅(𝑍, 𝑌)]−1] = ∫ ∫ [𝐶𝐹𝐴𝑅(𝑧, 𝑦)]−1
∞

0

∞

−∞

𝑓𝑌(𝑦)𝑑𝑦𝜙(𝑧)𝑑𝑧 ,    (8) 

where 𝜙 denotes the p.d.f. of a standard normal distribution and 𝑓𝑌 denotes 

the p.d.f. of 𝑌, a central chi-square random variable with 𝑚(𝑛 − 1) degrees of 

freedom. Given that the desired in-control average run length is given by 

[2(1 − Φ(𝐿))]
−1

, Chakraborti (2006) proposed to obtain the adjusted limit factor 

(𝐿∗) that, used in (7), so that 

∫ ∫ [𝐶𝐹𝐴𝑅(𝑧, 𝑦)]−1
∞

0

∞

−∞

𝑓𝑌(𝑦)𝜙(𝑧) 𝑑𝑦 𝑑𝑧 = [2(1 − Φ(𝐿))]
−1
.                     (9) 

The resulting solution is called the exact unconditional 𝐿∗ and is denoted 𝐿𝑈𝐶𝐸
∗  

(where the subscript UCE stands for “UnConditional Exact”). The solution to (9) 

can be obtained using a software like R that allows numerical integration. Note that 

Diko et al. (2015 and 2017) also used this formulation to find the exact adjusted 

control limit for each of the 𝑋̅ and the 𝑆 charts when applied jointly, and for various 

spread charts, including the 𝑆 chart, respectively.   
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On the other hand, Goedhart et al. (2016), using a two-step Taylor expansion 

for 𝐶𝐹𝐴𝑅(𝑧, 𝑦), derived the following approximate formula for 𝐿∗. 

𝐿𝑈𝐶𝐴
∗ ≈ 𝐿 −

(
𝜙2(𝐿)

4Φ̅3(𝐿)
−
𝐿𝜙(𝐿)

4Φ̅2(𝐿)
) (𝐴 +

1
𝑚) +

𝜙2(𝐿)

4Φ̅3(𝐿)
(𝐴 −

1
𝑚)

2
𝜙(𝐿)

4Φ̅2(𝐿)

,                      (10) 

where 𝐴 =
𝐿2

2(𝑚(𝑛−1)+1)
 and Φ̅(𝐿) = 1 − Φ(𝐿). The factor 𝐿𝑈𝐶𝐴

∗  is referred to 

as the unconditional approximate solution (UCA standing for “UnConditional 

Approximate”). The exact and the approximate solutions will be compared in 

Section 4. 

3. Adjusted Control Limit Factors Under the Conditional Perspective 

As noted before, the 𝐶𝐴𝑅𝐿0 is a random variable when the process 

parameters are estimated. The distribution of 𝐶𝐴𝑅𝐿0 has a large variance when the 

amount of data used to estimate the parameters is small to moderate, like 𝑚 = 25  

and 𝑛 = 5  [see Saleh et al. (2015) and Jardim el al. (2017)], so any Phase II 𝑋̅ chart 

runs a considerable risk of having a very different 𝐶𝐴𝑅𝐿0 from the advertised 

nominal value, depending on the parameter estimates obtained from the reference 

samples used in the control limits. In the conditional perspective, one recognizes 

the randomness of 𝐶𝐴𝑅𝐿0 and uses the EPC, to ensure that the 𝐶𝐴𝑅𝐿0 is at least, 

370.4 (or perhaps a value slightly smaller), with a high probability (such as 0.95). 

Formally, this can be formulated as 

                     𝑃 (𝐶𝐴𝑅𝐿0 ≥
1

(1+𝜀)
(
1

𝛼
)) = 1 − 𝑝,                        (11)  

for a small value 𝑝 (such as 0.05), where 𝛼 is the nominal false alarm rate: 

(𝛼 = 2(1 − Φ(𝐿))), which is also the false alarm rate in the known parameters case 

when the uncorrected limit factor (𝐿) is used.  Note that we can directly pick an 𝛼 

suitable in a given context and use it in (11) or, as it may be more common, pick an 

𝐿 (as in an 𝐿-sigma chart), calculate the corresponding 𝛼 value and use that in (11). 

The choice is up to the user. The quantity 𝜀 is called the tolerance factor (meaning 

that the user will be willing to tolerate a 𝐶𝐴𝑅𝐿0 that is at least 100 (
𝜀

1+𝜀
)% smaller 

than the nominal 1 𝛼⁄  with a high probability (that is with a small specified p). The 

tolerance factor (𝜀) allows flexibility for the user in the face of the inherent 

uncertainty in the random variable 𝐶𝐴𝑅𝐿0. For example, in Section 4, it will be seen 
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that if the user is willing to tolerate a 𝐶𝐴𝑅𝐿0 value 10% (𝜀 = 1/9) smaller than the 

nominal (for example, 333.4 as opposed to 370.4), the required amount of Phase I 

data for achieving the same performance will be a lot less, compared to the situation 

when no tolerance is allowed (i.e. when 𝜀 = 0).     

Exact Method 

From Equation (11), it is clear that the c.d.f. of 𝐶𝐴𝑅𝐿0 is needed to apply 

the EPC.  Taking 𝜇̂0 = 𝑋̿ and 𝜎̂0 = 𝑆𝑝/𝑐4,𝑏, Jardim et al. (2017), showed that the 

exact c.d.f. of the 𝐶𝐴𝑅𝐿0 can be expressed as  

𝑃(𝐶𝐴𝑅𝐿0 ≤ 𝑡) = ∫ 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)𝐹

χ1,
2 [
𝑧2

𝑚
]

−1 (1 −
1
𝑡)

(
𝐿∗

𝐶4,𝑏
)
2

)

 
 
𝜙(𝑧)𝑑𝑧

∞

−∞

,

𝑡 ≥ 1                                                                                           (12) 

where 𝐹
χ1
2,[
𝑧2

𝑚
]

−1 (1 −
1

𝑡
) denotes the (1 −

1

𝑡
)-quantile of a non-central chi-square 

distribution with 1 degree of freedom and non-centrality parameter 
𝑧2

𝑚
 and 𝐹χ𝑚(𝑛−1)

2  

denotes the c.d.f. of a central chi-square random variable with 𝑚(𝑛 − 1) degrees of 

freedom. So, using (11), (12) and substituting [(1 + 𝜀)𝛼]−1 for 𝑡, the exact adjusted 

control limit factor (𝐿∗) can be obtained by solving the following equation, for given 

values of  𝛼, 𝑚, 𝑛, 𝜀 and 𝑝. 

∫ 𝐹χ𝑚(𝑛−1)
2

(

 

𝑚(𝑛 − 1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

(
𝐿∗

𝐶4,𝑏
)
2

)

 𝜙(𝑧)𝑑𝑧
∞

−∞

= 𝑝.               (13) 

This solution is denoted 𝐿𝐶𝐸
∗  (𝐶𝐸 stands for Conditional Exact) and can be 

obtained with a software like R. We emphasize that Equation (13) is exact, since 

the formula for the c.d.f. is exact, but the solution 𝐿∗ must be found using a computer 

code, since there is no closed form solution for the c.d.f. in (12) or the integral in 

(13). This type of an analysis goes back to Chakraborti (2006). This is also similar 

to the adjustment methods given by Diko et. al. (2015) in the context of using the 

𝑋̅ and 𝑆 charts jointly to monitor the mean and Diko et al. (2017) for various spread 

charts under the unconditional perspective. In some of these papers, this method 

has been referred to as the “numerical method” but the fact is that the method is 

exact since the expression for the c.d.f. is exact and “numerical” refers to the 
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solution that is obtained by solving the equation that involves the c.d.f. which 

involves calculating the integral using some numerical methods. This is indeed the 

case for many c.d.f.’s of distributions including the one for the celebrated normal 

distribution. 

Approximate Methods 

Goedhart et al. (2017) derived an approximate formula for 𝐿∗ by finding an 

approximate distribution of the 𝐶𝐹𝐴𝑅. Details can be found in their paper. The final 

approximate formula for 𝐿∗ is denoted by 𝐿𝐶𝐴1
∗  (𝐶𝐴1 stands for Conditional 

Approximation 1) and is given by 

𝐿𝐶𝐴1
∗ ≈ 𝐿 +

Φ−1(1 − 𝑝) − 𝑔(𝐿)

𝑔′(𝐿)
.                                                (14) 

Here 𝑔(𝐿) and 𝑔′(𝐿) are functions of the expectation and the variance of 

𝐶𝐹𝐴𝑅 and their derivatives, respectively.  

However, note that starting from (7), it is possible to derive an alternative, 

simpler approximate formula for 𝐿∗, denoted here by 𝐿𝐶𝐴2
∗ , given by 

𝐿𝐶𝐴2
∗ ≈ 𝐶4,𝑏√𝑚(𝑛 − 1)

𝐹
χ1,
2 [
1
𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

𝐹
χ
𝑚(𝑛−1)
2
−1 (𝑝)

,                               (15) 

where 𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝) denotes the 𝑝-quantile of a central chi-square distribution 

with 𝑚(𝑛 − 1) degrees of freedom and 𝐹
χ1,
2 [

1

𝑚
]

−1 (1 − (1 + 𝜀)𝛼) denotes the 

(1 − (1 + 𝜀)𝛼)-quantile of a non-central chi-square distribution with 1 degree of 

freedom and non-centrality parameter 
1

𝑚
. Formula (16) is in fact given by Goedhart 

et al. (2018), which they found by starting from an existing result in 

Krishnamoorthy and Mathew (2009). We provide a more detailed derivation of (15) 

starting from Equation (7) in the supplementary material. Note that 𝐿𝐶𝐴2
∗  requires a 

non-central chi-square quantile, which is not tabulated in many text books in 

Statistics and not available in popular software such as Excel, so its calculation will 

require some relatively advanced statistical skills of the practitioner. Given this, 

using a result from Cox and Reid (1987), we derive the following even simpler 

approximation formula for 𝐿∗ (denoted by 𝐿𝐶𝐴3
∗ ) in terms of central chi-square 

percentiles 
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𝐿𝐶𝐴3
∗ ≈ 𝐶4,𝑏√(𝑛 − 1)(𝑚 + 1)

𝐹
χ1
2
−1(1 − (1 + 𝜀)𝛼)

𝐹
χ
𝑚(𝑛−1)
2
−1 (𝑝)

                                 (16) 

Derivation of (16) is also provided in the supplementary material. 

Bootstrap Method 

Finally, Saleh et al. (2015) suggested finding the adjusted limit factor 𝐿∗ 

under the conditional perspective, using the EPC and the bootstrap approach of 

Gandy and Kvaløy (2013). In order to do this, the users, with the help of software 

(like SAS, R, etc.), should generate 𝐵 bootstrap estimates of the in-control process 

mean and the standard deviation (𝜇𝑘
∗ , 𝜎𝑘

∗), 𝑘 = 1,2, … , 𝐵, with 𝜇𝑘
∗  

𝑁(𝑋̿, 𝑆𝑝
2 𝑛𝑚𝑐4,𝑏

2⁄ ), 𝜎𝑘
∗  √𝑆𝑝2

𝜒𝑣
2

𝑣𝑐4,𝑏
2  and 𝑣 = 𝑚(𝑛 − 1). Note that, with this, the idea 

is to consider that 𝑋̿ and 𝑆𝑝 𝑐4,𝑏⁄  are respectively the real in-control process mean 

and standard deviation, which are estimated respectively by 𝜇𝑘
∗  and 𝜎𝑘

∗ for each 𝑘. 

By considering a very large value for 𝐵, let say 𝐵 = 1000, we have “access to the 

(bootstrap) population of 𝜇𝑘
∗  (𝜇1

∗, 𝜇2
∗ , … , 𝜇𝐵

∗ ) and 𝜎𝑘
∗ (𝜎1

∗, 𝜎2
∗, … , 𝜎𝐵

∗)”.  

Recalling that 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄  and 𝑍 = (
𝑋̿−𝜇0

𝜎0
)√𝑚𝑛, using (7), the 

𝐶𝐹𝐴𝑅 can be written as  

𝐶𝐹𝐴𝑅(𝑋̿, 𝑆𝑝) = 1 − Φ(
𝑋̿ − 𝜇0
𝜎0

√𝑛 + 𝐿∗
 𝑆𝑝

𝑐4,𝑏𝜎0
)

+ Φ(
𝑋̿ − 𝜇0
𝜎0

√𝑛 − 𝐿∗
 𝑆𝑝

𝑐4,𝑏𝜎0
).   (17) 

Considering that 𝑋̿ and 𝑆𝑝 𝑐4,𝑏⁄  are respectively the true in-control process 

mean and standard deviation and 𝜇𝑘
∗  and 𝜎𝑘

∗ are respectively the estimators 𝑋̿ and 

𝑆𝑝 𝑐4,𝑏⁄  (according to the bootstrap method), for each 𝜇𝑘
∗  and 𝜎𝑘

∗, the user must find 

the value of 𝐿𝑘
∗  that satisfies the following equation: 

1 − Φ(
𝜇𝑘
∗ − 𝑋̿

𝑆𝑝 𝑐4,𝑏⁄
√𝑛 + 𝐿𝑘

∗
 𝜎𝑘
∗ 𝑐4,𝑏
𝑆𝑝

) + Φ(
𝜇𝑘
∗ − 𝑋̿

𝑆𝑝 𝑐4,𝑏⁄
√𝑛 − 𝐿𝑘

∗
 𝜎𝑘
∗ 𝑐4,𝑏
𝑆𝑝

)

= (1 + 𝜀)𝛼.      (18) 

Thus, for each pair of values of  𝜇𝑘
∗  and 𝜎𝑘

∗, for each bootstrap sample (𝑘 =

1,2, … , 𝑏) the user finds the value of 𝐿𝑘
∗  that solves (18) where 𝛼 is the desired false 
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alarm rate and 𝜀 is the tolerance factor defined earlier. The solution to Equation (18) 

is given by 

𝐿𝑘
∗ =

𝑆𝑝
√
𝐹

χ1,
2 [
𝜇𝑘
∗−𝑋̿

𝑆𝑝 𝑐4,𝑏⁄ √𝑛]

2
−1 (1 − (1 + 𝜀)𝛼)

𝐶4,𝑏𝜎𝑘
∗ ,   𝑘 = 1,2, … , 𝐵                 (19) 

Note that the derivation of this formula is also presented in the supplementary 

material. This formula for 𝐿𝑘
∗  is much simpler than the rather complicated 

approximate method given in Saleh et al. (2015). However, we argue that no 

approximation is needed since one can derive the exact formula for 𝐿𝑘
∗  shown in 

Equation (19).  

Finally, the required 𝐿∗, here denoted by 𝐿𝑏𝑜𝑜𝑡
∗ , is found as the (1 − 𝑝)-

quantile of the collection of bootstrap estimators (𝐿1
∗ , 𝐿2

∗ , … , 𝐿𝐵
∗ ). 

4. Results and Discussion 

In this section, we present the adjusted limit factors under the unconditional 

perspective for a nominal 𝐴𝑅𝐿0 of 370.4 (𝛼 = 0.0027), 𝑚 =

13, 15, 20, 25, 50, 75, 100, 150, 200, 250 and 𝑛 = 3, 5, 9.  Under the conditional 

perspective, for the adjusted limit factors, using the EPC, we use 𝑃(𝐶𝐴𝑅𝐿0 ≥

370.4) = 0.95 and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 0.80 (using 𝛼 = 0.0027, 𝑝 = 5%, 20% 

and 𝜀 = 0% and 20%, respectively).  For the adjusted limit factors along with the 

unadjusted limit factor 𝐿 = 3, we calculate the corresponding exact unconditional 

𝐴𝑅𝐿0 values using Equation (8), the exact standard deviation of 𝐶𝐴𝑅𝐿0 (𝑆𝐷𝐴𝑅𝐿0) 

using Equation (6), and the exact values of 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) and 𝑃(𝐶𝐴𝑅𝐿0 ≥

308.6) using Equation (13).  

The results along with some discussion are presented in subsections 4.1 and 

4.2, for the unconditional and the conditional perspective, respectively. 

4.1 Results and Discussion Under the Unconditional Perspective 

Table 1 presents the adjusted limit factors (𝐿∗) under the unconditional 

perspective. For comparison, the first five columns in grey show the results when 

the unadjusted factor 𝐿 = 3 is used in the control limits. Note that in order to solve 

Equation (9) for 𝐿𝑈𝐶𝐸
∗ , the Secant search method implemented in R was used with 

|370.4 − 𝐴𝑅𝐿0| ≤ 10
−10 as the stopping rule. 
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From Table 1, we see that when the unadjusted limit factor (𝐿∗ = 3) is used in 

the Phase II control limits, the attained 𝐴𝑅𝐿0 differs considerably from the nominal 

𝐴𝑅𝐿0 value of 370.4 in many cases, especially when 𝑚 and 𝑛 are small. In this 

situation, it is interesting to note that, for a fixed 𝑚, the 𝐴𝑅𝐿0 values are larger than 

370.4 when 𝑛 is small (for example, 𝑛 = 3) and smaller than 370.4 when 𝑛 is large 

(for example, 𝑛 = 9). An 𝐴𝑅𝐿0 value larger than 370.4 may give the impression that 

the chart performance is better compared to the known parameters case, but, as 

Quesenberry (1993) noted, this is not true. The large unconditional 𝐴𝑅𝐿0 value for 

𝐿∗ = 3 is due to a combination of an increased rate of very short runs until a false alarm 

and just a few extremely long runs until a false alarm, and this is clearly undesirable, 

since a “quick” false alarm event is obviously unwanted. On the other hand, when the 

unadjusted limit factor (𝐿∗ = 3) is used in the control limits, under the conditional 

perspective and the exceedance probability criterion, the probability that the 𝐶𝐴𝑅𝐿0 is 

greater than 370.4 is small (below 50%) for all values of 𝑚 and 𝑛 and this may also be 

a problem for the unadjusted limit factor 𝐿∗ = 3. Even when the tolerance factor 𝜀 is 

increased to 20%, for 𝐿∗ = 3, in most of the cases, this exceedance probability is still 

small [for example, for 𝑚 = 75 and 𝑛 = 9, one has 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 66.30%]. 

This means that one can expect the attained 𝐴𝑅𝐿0 values smaller than the nominal and 

in more than 30% of the cases and that is a problem for the practical implementation. 

Only when 𝑚 and 𝑛 are large, the 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6), for 𝐿∗ = 3,increases 

considerably [for example, for 𝑚 = 250 and 𝑛 = 9, one has 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) =

85.17%]. This can be explained looking to the standard deviation of the 𝐶𝐴𝑅𝐿0 (that 

is, 𝑆𝐷𝐴𝑅𝐿0). Note that the 𝑆𝐷𝐴𝑅𝐿0 is very large for small values of 𝑚 and 𝑛 indicating 

that, in practice, the realized 𝐴𝑅𝐿0 (i.e., the 𝐶𝐴𝑅𝐿0) will not (most likely) be close to 

the unconditional 𝐴𝑅𝐿0. However, when 𝑚 and 𝑛 are large, 𝑆𝐷𝐴𝑅𝐿0 decreases and the 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) increases.  

Also from Table 1, we see that the unconditional adjusted limit factor proposed 

by Chakraborti (2006), 𝐿𝑈𝐶𝐸
∗ , achieves a precise 𝐴𝑅𝐿0 equal to 370.4 for all values of 

𝑚 or 𝑛.  On the other hand, with the approximate limit factor from formula (10), 

proposed by Goedhart et al. (2016), the adjusted limit factor 𝐿𝑈𝐶𝐴
∗  does not achieve an 
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𝐴𝑅𝐿0 close to 370.4 for small values of 𝑚. For example, for 𝑚 = 20 and 𝑛 = 5, 

𝐿𝑈𝐶𝐴
∗ =  2.98 and 𝐴𝑅𝐿0 = 400.6. However, for larger values of 𝑚 (like 𝑚 ≥ 100), the 

approximate solution does achieve results close to 370.4, indicating a satisfactory in-

control performance with respect to the nominal 𝐴𝑅𝐿0 under the unconditional 

perspective. However, it is interesting to note that the 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4), 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) and the 𝑆𝐷𝐴𝑅𝐿0 values for both of these adjusted control limits 

factors (𝐿𝑈𝐶𝐸
∗  and 𝐿𝑈𝐶𝐴

∗ ) are very similar to the respective values obtained when the 

unadjusted limit factor (𝐿∗ = 3) is used for all values of 𝑚, 𝑛 and 𝜀. This means that 

these unconditional limit factors are not satisfactory under the conditional perspective, 

since even after the adjustment of the control limits (which produces an desired 

expected value of the 𝐶𝐴𝑅𝐿0, that is the unconditional 𝐴𝑅𝐿0 gets equal or close to 

370,4), the variability of the 𝐶𝐴𝑅𝐿0 is still large (despite being a little smaller with 

𝐿∗ = 𝐿𝑈𝐶𝐸
∗  and 𝐿∗ = 𝐿𝑈𝐶𝐴

∗ , than with 𝐿∗ = 3). So, even though the 𝐴𝑅𝐿0 ≈ 370.4, for 

𝐿𝑈𝐶𝐸
∗  and 𝐿𝑈𝐶𝐴

∗ , the chances are high that in a given instance, the 𝐴𝑅𝐿0 for a Phase II 

chart for a given set of estimates from a set of Phase I reference data can be very 

different from the nominal 370.4. This may not be satisfactory.  Next, we present and 

discuss results for the conditional perspective. 

4.2 Results and Discussion Under the Conditional Perspective 

Table 2 presents the adjusted control limit factors (𝐿∗) obtained under the 

conditional perspective for 𝜀 = 0% and 𝑝 = 5%, i.e., the values of 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐴1

∗ , 𝐿𝐶𝐴2
∗ , 

𝐿𝐶𝐴3
∗  and 𝐿𝑏𝑜𝑜𝑡

∗  that make 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4), equal to 95%. Also, as in Table 1, for 

comparison purposes, the first four columns in gray show the results for the unadjusted 

limit factor (𝐿∗ = 𝐿 = 3) and for each 𝐿, 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐴1

∗ , 𝐿𝐶𝐴2
∗ , 𝐿𝐶𝐴3

∗  and 𝐿𝑏𝑜𝑜𝑡
∗ . Table 2 

shows the exact unconditional 𝐴𝑅𝐿0 value calculated according to Equation (8), the 

𝑆𝐷𝐴𝑅𝐿0 value calculated according to Equation (6), and the exact 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) 

value calculated according to Equation (12).  

From Table 2, we see that under the conditional perspective, the five methods 

presented in Section 3 yield very similar 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) values close to the target. 

i.e., for all values of 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐴1

∗ , 𝐿𝐶𝐴2
∗ , 𝐿𝐶𝐴3

∗  and 𝐿𝑏𝑜𝑜𝑡
∗ , the probability 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) is very close to the specified 95%, the method proposed by Jardim 
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et al. (2017) being the most precise one, yielding 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) exactly equql to 

95%. 

Also from Table 2, for all cases and values of 𝐿𝐶𝐸
∗  , 𝐿𝐶𝐴1

∗ , 𝐿𝐶𝐴2
∗ , 𝐿𝐶𝐴3

∗  and 𝐿𝑏𝑜𝑜𝑡
∗ , 

the values of the unconditional 𝐴𝑅𝐿0 values are seen to be much larger than 370.4, 

often more than 3 times larger. This is also true for the 𝑆𝐷𝐴𝑅𝐿0 values.  For example, 

for 𝑚 = 20, 𝑛 = 5 and 𝐿𝐽
∗ = 3.54, one has 𝑆𝐷𝐴𝑅𝐿0 = 7804.6 and 𝐴𝑅𝐿0 = 3840.8. 

The large variability is compensated by the large expectation resulting in getting the 

desired exceedance probability (equal or close to 95%). This means that, despite taking 

into account the mean and the variability of 𝐶𝐴𝑅𝐿0, the conditional perspective and the 

exceedance probability criterion does not control these popular aspects of the run-

length distribution. 

Since the adjusted limits are wider than the unadjusted limits (note that 𝐿∗ > 3 

for all cases in Table 2), this may give the impression that the out-of-control 

performance may be deteriorated after the adjustments. However, as shown by Jardim 

et al. (2017), this is true just for small values of 𝑚 and 𝑛 (like 𝑚 = 25 and 𝑛 = 5), but 

for most of the other cases, the out-of-control performance will be similar to the one 

with unadjusted limits (especially for 𝑚 ≥ 50, 𝑛 ≥ 5, 𝑝 ≥ 0.1 and 𝜀 ≥ 0%). However, 

if the practitioner is still not satisfied with the very large values of 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 

[such concern is evident in Saleh et al. (2015a,b) who focused mainly on the 𝑆𝐷𝐴𝑅𝐿0 

as the performance measure] in the latter case, he/she can increase the value of 𝜀 or 𝑝 

(accepting a smaller lowest tolerated bound for 𝐶𝐴𝑅𝐿0 or a smaller 𝑃(𝐶𝐴𝑅𝐿0 ≥

370.4)). This will decrease the value of 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 while the amount of data 

remains the same. The possibility of this allowance or practical trade-off may be a 

useful feature of the conditional perspective. To visualize the trade-off, Tables 3 and 4 

show the adjusted control limit factors (𝐿∗) under the conditional perspective, 

respectively, for the pair 𝜀 = 20% and 𝑝 = 5%, and the pair 𝜀 = 20% and 𝑝 = 20%, 

i.e., the values of 𝐿∗ that make, respectively, 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 𝑃(𝐶𝐹𝐴𝑅 ≤

0.0031) ≅ 95% and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 𝑃(𝐶𝐹𝐴𝑅 ≤ 0.0031) ≅ 20%. Note that in 

these cases, the values of 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 are much smaller compared with the 

values in Table 2 for the same amount of data. For example, for 𝑚 = 50 and 𝑛 = 5, 
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considering the exact method by Jardim et al. (2017) in Table 2 (i.e., for 𝜀 = 0% and 

𝑝 = 5%), the 𝐴𝑅𝐿0 = 1157.1 and the 𝑆𝐷(𝐶𝐴𝑅𝐿0) = 807.6, now, considering the 

same amount of data (𝑚 = 50 and 𝑛 = 5), from Table 4 (i.e., for 𝜀 = 20% and 𝑝 =

20%), one has 𝐴𝑅𝐿0 = 561.0 and 𝑆𝐷(𝐶𝐴𝑅𝐿0) = 338.7: a reduction of 48% in the 

expectation and 42% in the standard deviation. Note that the unconditional 𝐴𝑅𝐿0 is 

still much larger than the nominal (370.4). Under the EPC, it is unlikely that the 

unconditional 𝐴𝑅𝐿0 will be close to the nominal value (unless 𝜀 or 𝑝 are extremely 

large, such as 𝜀 = 50% or 𝑝 = 40%) which may raise some questions in practice.  
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5. Summary and Recommendations  

In this paper, we analyze the recently proposed methods for adjusting the 𝑋̅ 

control chart limits to achieve a desired in-control performance when parameters 

are estimated with a given amount of Phase I data, under two perspectives, called 

the unconditional and the conditional. We calculate and analyze the performance 

results for the available methods under these two perspectives. We also propose a 

new and simple approximate adjusted limit factor under the conditional perspective.  

Based on our results, it is seen that, when constructing control charts with 

estimated control limits, both perspectives have some imperfections which the 

practitioners should be aware of. While the unconditional perspective does control 

the expected value of the 𝐶𝐴𝑅𝐿0, it does not control (nor consider) the variability 

of the 𝐶𝐴𝑅𝐿0, which can be very large even for a relatively large amount of 

reference data (such as 100 samples of size 9). This means that, in these cases, 

chances may be high that for a specific application the realized 𝐶𝐴𝑅𝐿0 assumes 

undesirable small values relative to the specified nominal, which leads to many 

false alarms. On the other hand, under the conditional perspective, with the EPC, 

one can control the probability that the realized 𝐴𝑅𝐿0 is greater than some desired 

nominal value. This approach implicitly considers the variability of 𝐶𝐴𝑅𝐿0 but it 

neither controls the expected value nor the this variability of 𝐶𝐴𝑅𝐿0 (the 𝐴𝑅𝐿0), 

which can also be extremely large.   

In conclusion, there is still room for improvement when it comes to 

designing the Shewhart control charts with unknown parameters.  One can most 

likely say the same thing for control charts other than the Shewhart 𝑋̅ chart, and this 

will be examined in the future. 
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Abstract 

Performance measures of control charts with estimated parameters are 

random variables and vary from the nominal across reference samples. In this 

context, a recent idea has been to study the distribution of the realized (or the 

conditional) in-control average run length (𝐶𝐴𝑅𝐿0) [or, equivalently, the false 

alarm rate (CFAR)] for a given set of estimates from a given reference sample and 

apply the exceedance probability criterion (EPC) in order to design control charts 

that ensure desirable in-control performance. Under the EPC, te probability that the 

conditional in-control average run length (or the false alarm rate) is smaller (or not 

larger) than a specified value is guaranteed with a high probability, and this helps 

prevent too many low in-control ARL’s (or too many high false alarm rates). In 

order to apply the EPC, the c.d.f. of the conditional in-control average run length 

(or the false alarm rate) is necessary. For the two-sided Shewhart 𝑋̅ control chart, 

under normality, we derive the exact c.d.f. of the 𝐶𝐴𝑅𝐿0 and the CFAR, currently 

not available in the literature. Using these key results, we calculate the minimum 

number of Phase I samples required to guarantee a desired nominal in-control 

performance with high probability in terms of the EPC. Since the required amount 

of data can be prohibitively large, we also provide exact formulas for adjustments 

to the control limits for a given amount of Phase I data; some tabulations are 

provided. Our adjustment formulas give more accurate results compared to some 

available methods. The impact of these adjustments on the out-of-control 

performance of the chart is examined in detail. A summary and some 

recommendations are provided.  

 

 

Key Words: Average Run Length, False Alarm Rate, Conditional Run 

Length Distribution, Exceedance Probability Criterion, Guaranteed In-Control 

Performance, Out-of-Control Performance, Phase I and Phase II 
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1. Introduction 

Control charts are among the indispensable tools for monitoring process 

quality in various industries. Managers recognize their value and the importance of 

performance. The performance of a control chart is measured in terms of the number 

of observations (or samples) until an alarm (the well-known run length, denoted 

𝑅𝐿). In this setting, one important factor is whether or not the underlying parameters 

are known or whether they need to be estimated before monitoring can start. 

Traditionally, the analysis didn’t distinguish between these two cases and the focus 

has been the mean of the 𝑅𝐿 distribution. Reliance on the mean has been known to 

be problematic and researchers have suggested using the entire 𝑅𝐿 distribution and 

associated measures [see, e.g., Moskowitz et al. (1994)]. Many researchers have 

studied the effects of parameter estimation [see for example, Quesenberry (1993), 

Chen (1997), Chakraborti (2000 and 2006) and Goedhart et al. (2016)] and 

recognized the profound impact it can have on chart performance. They focused 

almost exclusively on the in-control performance. Many of these researchers have, 

to this end, considered the in-control run length (𝑅𝐿0) distribution, accounting for 

the probability distribution of the estimators, but used the mean (denoted 𝐴𝑅𝐿0) 

and the standard deviation of the “unconditional” 𝑅𝐿0 distribution, which is the in-

control run length distribution after “averaging out” the effects of the distribution 

of the estimators. This distribution is not geometric as is the case in the known 

parameter case. However, as noted by some authors [see for example, Trietsch and 

Bischak (1998), Albers and Kallenberg (2004a,b, and 2005), Albers et al. (2005), 

Bischak and Trietsch (2007), Kumar and Chakraborti (2014), Saleh et al (2015a,b), 

Epprecht et al. (2015), Faraz et al. (2015), Goedhart et al (2017a,b and 2018) and 

Jardim et al. (2017)], in a practical application, the unconditional in-control 𝑅𝐿0 

distribution or its mean, the 𝐴𝑅𝐿0, may not represent the actual performance of the 

chart. The reason is that the 𝑅𝐿0 distribution conditional on the parameter estimates 

(denoted 𝐶𝑅𝐿0) as well as the mean of this distribution, the conditional in-control 

average run length (denoted 𝐶𝐴𝑅𝐿0), are random variables. This is because they 

are function of the parameter estimates obtained from the Phase I data (reference 

sample) at hand, and thus may vary significantly from dataset to dataset (the so-

called practitioner-to-practitioner variability [see Saleh et al (2015a,b)]. Hence, 

there is little or no assurance that in a given application, the control chart will 
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maintain the nominal 𝐴𝑅𝐿0 value specified in the design of the chart. This is a very 

important point for the managers to recognize as it can influence the decision-

making process significantly.   

The reference sample typically consists of 𝑚 samples, each of size 𝑛, 

collected from a process considered to be in control in what is called the Phase I 

analysis. For an overview of Phase I Statistical Process Control, the reader is 

referred to Chakraborti et al. (2009) and Jones-Farmer et al. (2014). For reviews of 

the literature on the effects of parameter estimation on the performance of control 

charts, see for example, Jensen et al. (2006) and Psarakis et al. (2014). The false 

alarm rate for a given set of estimates is called the conditional false alarm rate 

(denoted 𝐶𝐹𝐴𝑅). It is known that the 𝐶𝑅𝐿0 distribution follows a geometric 

distribution [see Chakraborti (2000)] with a parameter 𝐶𝐹𝐴𝑅 and mean 𝐶𝐴𝑅𝐿0. 

Indeed, the 𝐶𝐹𝐴𝑅 and the 𝐶𝐴𝑅𝐿0 are both random variables with a large variability, 

so their values may be quite different from their nominal ones [see Saleh et al. 

(2015a)].  As noted already, this is a key performance issue, since even though the 

control chart may be designed to have a nominal 𝐴𝑅𝐿0 value such as 370, in a given 

application, depending on the parameter estimates, one can only say, for example, 

that the realized in-control average run-length, which is the 𝐶𝐴𝑅𝐿0, may be 

anywhere from 200 to 500. Since a lower than nominal 𝐴𝑅𝐿0 points to more false 

alarms, not properly adjusting for parameter estimation may lead to inefficiency 

and a loss of confidence in the whole charting process. Recognizing this, Albers 

and Kallenberg (2005) and Albers et al. (2005) proposed to set up the control chart 

limits so as to guarantee that the 𝐶𝐴𝑅𝐿0 has a large probability of exceeding a given 

tolerated value. This is called the exceedance probability criterion (denoted EPC); 

the tolerated value provides a lower prediction bound to the random variable 

𝐶𝐴𝑅𝐿0 . Thus, it becomes evident that, in order to use and implement the EPC, the 

distribution of 𝐶𝐴𝑅𝐿0 is needed.  However, even when it comes to the most well-

known control chart, the two-sided Shewhart 𝑋̅ control chart, under the assumption 

of normality, the exact c.d.f. of the 𝐶𝐴𝑅𝐿0 is unavailable. So, most authors studying 

the effect of parameter estimation on the performance of the 𝑋̅ charts, using the 

EPC, have relied on simulations, bootstrapping, or approximations to the 

distribution of the 𝐶𝐴𝑅𝐿0. The study of control charts has been common in the 

literature [see, for example, Schroeder et al. (2005)], however, the interest in the 
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conditional performance of control charts has been truly remarkable and deservedly 

so; we briefly summarize some recent works in this field. 

Saleh et al. (2015a,b) focused on the 𝑋̅, 𝑋 and the EWMA charts and 

proposed examining the standard deviation of the 𝐶𝐴𝑅𝐿0 distribution, in addition 

to its average (𝐴𝑅𝐿0). They showed that an impractically large number of Phase I 

samples are required in order to guarantee that the 𝐴𝑅𝐿0 is close to a nominal 𝐴𝑅𝐿0 

value and the standard deviation of the 𝐶𝐴𝑅𝐿0 is within at most 10% of the nominal 

𝐴𝑅𝐿0 value. Thus, they recommended adjusting the control limits, and suggested 

using the bootstrap approach of Gandy and Kvaloy (2013) for a given set of Phase 

I data, which guarantees a desired IC conditional performance in terms of the EPC. 

However, they did not provide any adjustments to the limits. Albers and Kallenberg 

(2004a,b and 2005) and Goedhart et al. (2017a and 2018) studied adjustments to 

the limits of the X and the 𝑋̅ chart based on the EPC and analytical approximations 

to the distribution of the 𝐶𝐴𝑅𝐿0 (rather than using simulations or the bootstrap 

approach). Other types of control charts have also been studied under the EPC. 

Epprecht et al. (2015) derived the exact c.d.f. of the 𝐶𝐹𝐴𝑅 for the one-sided 𝑆 and 

𝑆2 charts and found that the required numbers of Phase I samples were much larger 

than the ones found by previous authors who based their analyses only on the 

unconditional 𝐴𝑅𝐿0 measure. Kumar and Chakraborti (2014) made a similar 

analysis for Shewhart-type time between events charts, found the exact c.d.f. of the 

𝐶𝐴𝑅𝐿0 and obtained similar conclusions regarding the required amount of Phase I 

data. Aly et al. (2015) and Faraz et al (2015) suggested using the EPC and the 

bootstrap approach of Gandy and Kvaloy (2013) to calculate the adjusted limits for 

the adaptive EWMA chart of Capizzi and Masarotto (2003) and for the one-sided 

𝑆2 control chart, respectively. Goedhart et al. (2017b) and Faraz et al (2017) 

calculated the adjusted limits according to the EPC for the one-sided S chart, but, 

in this case, they based their analysis on the exact CFAR distribution derived by 

Epprecht et al. (2015). For the two-sided 𝑆2 control chart, Guo and Wang (2017), 

provided adjusted control limits under the EPC using a numerical approach to 

calculate the CFAR distribution. Finally, Faraz et al. (2017) also proposed an exact 

method to adjust the 𝑋̅ chart, however, their adjustment was based on the equal-

tailed tolerance interval together with the Bonferroni Inequality [see 

Krishnamoorthy and Mathew (2009, p. 4 and p.10)], which generates wider 
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adjusted control limits which of course lead to the undesirable side effect of 

increasing the out-of-control (OOC) average run length (ARL) of the chart 

compared with the adjusted limits derived under the EPC. 

Having recognized the important role the c.d.f. of 𝐶𝐴𝑅𝐿0 plays in the 

performance of charts under estimated parameters, in this paper, we first derive its 

expression for the 𝑋̅ chart. To the best of our knowledge, this result is not available 

in the literature. Using this result, we obtain the exact prediction bounds for the 

𝐶𝐴𝑅𝐿0. These prediction bounds show that when the number of reference samples 

(m) and/or the size of each reference sample (n) is small, some lower quantiles of 

the 𝐶𝐴𝑅𝐿0 (such as the 0.05 and 0.1-quantiles) distribution are much smaller than 

the typically desired (nominal) 𝐴𝑅𝐿0. As we explain in more detail in Section 5, 

this implies that the amount of reference data plays a crucial role in assuring that 

the Phase II chart performs at, or close to, the desired nominal 𝐴𝑅𝐿0. Under this 

motivation, we determine the exact number of Phase I samples needed to guarantee 

a desired in-control performance in terms of the EPC. According to our results, the 

required numbers of Phase I samples are in some cases larger than the ones given 

by Saleh et al. (2015a). Since such large amounts of Phase I data may not always 

be available in practice, we then consider adjusting the control limits and provide 

exact formulas for the adjustment factor, again based on our c.d.f. expressions, for 

a given number and size of Phase I samples at hand, so that a desired conditional 

in-control performance is guaranteed in terms of the EPC. Note that the difference 

between our adjustments and those of Goedhart et al. (2017a and 2018) and Jardim 

et al. (2017) is that while their results were based on some approximations of the 

c.d.f. of the 𝐶𝐴𝑅𝐿0 (or 𝐶𝐹𝐴𝑅) distribution, our results are based on the exact c.d.f. 

of the 𝐶𝐴𝑅𝐿0. We believe our adjustment formulas can be incorporated 

(programmed) readily and effectively in a software which makes them valuable for 

practical applications.  

Finally, while the adjustments to the control limits under the EPC criterion 

guarantee a specified in-control chart performance, in most cases, they correspond 

to widening the control limits, which of course leads to the undesirable side effect 

of increasing the out-of-control (OOC) average run length (ARL) of the chart, i.e., 

reducing its shift detection ability. So, we analyze the impact of the adjustment on 

𝐶𝐴𝑅𝐿𝛿, the conditional OOC ARL of the 𝑋̅ chart, where 𝛿 is the scaled shift in the 
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process mean. Note that some authors (Saleh et al., 2015b, and Goedhart et al., 

2017a) have also analyzed the effects of the adjustment (based on the EPC) on the 

OOC performance of the 𝑋̅ chart. However, Saleh et al. (2015b) mainly focused on 

the unconditional OOC 𝐴𝑅𝐿 (i.e., the 𝐸(𝐶𝐴𝑅𝐿𝛿)), thus disregarding the 

practitioner-to-practitioner variation and Goedhart et al. (2017a) conducted a very 

limited examination of the 𝐶𝐴𝑅𝐿𝛿 distribution by simulation, and displayed a 

boxplot for only one value of the shift 𝛿 in the process mean and for just one pair 

of values of n and m.  This does not give a complete picture of the impact. We 

examine the impact of the adjustment on the 𝐶𝐴𝑅𝐿𝛿 in much more detail, using our 

exact c.d.f., for several values of 𝛿, n and m, and calculate some exact quantiles of 

interest of 𝐶𝐴𝑅𝐿𝛿 with and without the adjustment, and make a relative comparison. 

This analysis is important for the user, who needs to balance between controlling, 

on one hand, the risk of having a false-alarm rate (or the in-control ARL) much 

higher (lower) than the nominal and, on the other hand, allowing a deterioration of 

the OOC performance. 

In addition to the most usual case of the 𝑋̅ chart with estimated process mean 

and standard deviation, we also consider the case where only the process standard 

deviation is estimated. In this case, the process is considered to be in control when 

its mean coincides with the target or nominal value 𝜇0. According to Montgomery 

(2009; p. 243), “in processes where the mean of the quality characteristic is 

controlled by adjustments to the machine, standard or target values of the mean are 

sometimes helpful in achieving management goals with respect to process 

performance”. This is equivalent to knowing the in-control mean 𝜇0, so this case is 

called “Case KU” (mean Known, standard deviation Unknown) as in Quesenberry 

(1993). The case where both the mean and the standard deviations are unknown 

(chart centered on 𝑋̿) is denoted as Case UU.  Case KU was also studied by Ghosh 

et al. (1981), but they focused on the unconditional ARL as the main performance 

measure criteria. To our knowledge, the conditional performance of the 𝑋̅ chart in 

Case KU has not been analyzed thus far. 

 The remainder of this paper is organized as follows: In Section 2 we describe 

the control limits of the 𝑋̅ chart and the estimators used while introducing some 

important notation and assumptions. In Section 3, we study the conditional in-
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control average run-length (𝐶𝐴𝑅𝐿0). In Section 4, we derive the c.d.f.’s for the 

𝐶𝐴𝑅𝐿0 and analyze the effects of the number of reference samples on this 

distribution. In Section 5, we determine prediction bounds for the 𝐶𝐴𝑅𝐿0. Sections 

6 and 7 address, respectively, the problem of finding the minimum number of 

reference samples, and the adjustment factors for the control limits that guarantee a 

specified conditional in-control performance under the 𝐸𝑃𝐶. The impact of the 

adjustment of the control limits in the out-of-control performance of the 𝑋̅ control 

chart is studied in Section 8. A summary and conclusions are offered in Section 9. 

2.  The Control Limits of the 𝑿̅ Chart 

We assume that the observations on the process quality variable (X) are i.i.d. 

and normally distributed. When the process is in control, 𝑋~𝑁(𝜇0, 𝜎0
2); when the 

process is out of control, 𝑋~𝑁(𝜇1, 𝜎0
2), with 𝜇1 ≠ 𝜇0. Thus, the process standard 

deviation is assumed to remain at the in-control value 𝜎0, consistently with the 

purpose of detecting a shift in the mean. In the ideal case, the in-control process 

mean (𝜇0) and standard deviation (𝜎0) are both known or specified (this is denoted 

Case KK: “mean Known, standard deviation Known” by Quesenberry, 1993). In 

Case KK, the upper and lower control limits (𝑈𝐶𝐿 and 𝐿𝐶𝐿) of the 𝐿-sigma 𝑋̅ 

Control Chart with subgroups of size n are given by 

𝑈𝐶𝐿 = 𝜇0 + 𝐿
𝜎0 

√𝑛
                                                           (1) 

and 

𝐿𝐶𝐿 = 𝜇0 − 𝐿
𝜎0 

√𝑛
,                                                           (2) 

where the control limit factor L is either a value such as 3 (the widely used “3 

sigma limits”) or is chosen so as to provide a nominal in-control average run length 

such as 370.4 or a false-alarm rate 𝛼. In the latter case, we have 𝐿 = 𝑧𝛼 2⁄ =

Φ−1(1 − 𝛼 2⁄ ), where Φ(∙) denotes the standard normal c.d.f. Thus, the usual 3-

sigma limits correspond to a nominal false alarm rate of 𝛼 = 0.0027. However, in 

practice 𝜇0 or 𝜎0 are usually unknown and need to be estimated from a Phase I 

analysis, consisting of m subgroups of size n, taken from the process when it is in 

control.  
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In Case UU, for the mean 𝜇0, we use the most common estimator 𝑋̿, the 

grand mean of the m Phase I samples: 𝑋̿ =
1

𝑚
∑ 𝑋̅𝑖
𝑚
𝑖=1 , where 𝑋̅𝑖 =

1

𝑛
∑ 𝑋𝑖𝑗
𝑛
𝑗=1 , 𝑖 =

1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 and 𝑋𝑖𝑗 denotes the 𝑗-th observation of the 𝑖-th Phase I 

sample. In both cases, KU and UU, we need to estimate the unknown standard 

deviation 𝜎0.  For this purpose, we choose the pooled sample standard deviation 

(𝑆𝑝), which is given by the square root of the average of the sample variances of the 

Phase I samples. Thus 𝑆𝑝 = √
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1 , where 𝑆𝑖

2 =
1

𝑛−1
∑ (𝑋𝑖,𝑗 − 𝑋̅𝑖)

2𝑛
𝑗=1 . We 

base this choice on the recommendation of Mahmoud et al. (2010), who showed 

that, among multi-sample estimators of the standard deviation, 𝑆𝑝 is preferable to a 

more traditional estimator, like  𝑆̅ 𝑐4,⁄  where 𝑆̅ = ∑ 𝑆𝑖
𝑚
𝑖=1 𝑛⁄  and 𝑐4 is the unbiasing 

constant [see, Montgomery (2009)]. Note that, in the literature, two other estimators 

have been considered, the unbiased 𝑆𝑝 𝑐4⁄  and the biased, but minimum mean 

squared error, estimator 𝑐4𝑆𝑝 (see Mahmoud et al., 2010 and Saleh et al., 2015a,b). 

Since these three estimators provide similar results as 𝑐4 ≈ 1 for relatively small 

values of 𝑚 and 𝑛 [such as 𝑚 = 25 and 𝑛 = 4 ⎯ again, see Mahmoud et al. (2010) 

for a quantitative comparison], in the present work, we consider just the 𝑆𝑝 

estimator. Note that we do not consider the range based estimators since some 

authors have recommended against their use because of lack of robustness. 

Anyway, all the formulas and results presented here can be easily modified for other 

estimators of standard deviation.  

In order to study the effects of the estimation of the process parameter(s) on 

the performance of a control chart in general, it is convenient to begin with a study 

of the Phase II probability of a signal given the estimator(s), the so-called 

conditional probability of a signal (CPS). A signal occurs when, for any sample, its 

average 𝑋̅ lies outside the control limits. When the process is in-control, a signal 

represents a false alarm and its probability is called the false-alarm rate. As noted 

earlier, the conditional false-alarm rate is denoted CFAR. These are discussed in 

the next section. 

3. The Conditional Probability of a Signal and the Conditional False 

Alarm Rate 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



169 
 

 

 

Given the control limits [Equations (1) and (2)] and replacing 𝜇0 and 𝜎0 by 

their respective estimators, 𝑋̿ and 𝑆𝑝, the conditional probabilities of a signal (𝐶𝑃𝑆), 

for Case KU and Case UU, are given by  

𝐶𝑃𝑆𝐾𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑆𝑝) = 1 − 𝑃 (𝜇0 − 𝐿
𝑆𝑝 

√𝑛
≤ 𝑋̅ ≤ 𝜇0 + 𝐿

𝑆𝑝 

√𝑛
)                      

(3a) 

and 

𝐶𝑃𝑆𝑈𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑋̿, 𝑆𝑝) = 1 − 𝑃 (𝑋̿ − 𝐿
𝑆𝑝 

√𝑛
≤ 𝑋̅ ≤ 𝑋̿ + 𝐿

𝑆𝑝 

√𝑛
),                     

(3b) 

respectively.   

From Equations (3a) and (3b) it is evident that the conditional probability 

of a signal in Phase II depends on the value of the estimator 𝑆𝑝 in Case KU and on 

𝑋̿ and 𝑆𝑝 in Case UU. Before proceeding further, let 𝜇 denote the process mean in 

Phase II.  Define the scaled shift of the mean as 

𝛿 =
𝜇−𝜇0

𝜎0
,                                                                      (4) 

where 𝜇 is the process mean in Phase II. When 𝜇 = 𝜇0, 𝛿 = 0 and the process 

mean is in control. When  𝜇 = 𝜇1 ≠ 𝜇0, 𝛿 ≠ 0, and the process mean is out of 

control. It is well-known that 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄  follows a chi-square 

distribution with 𝑚(𝑛 − 1) degrees of freedom and 𝑍 = (
𝑋̿−𝜇0

𝜎0
)√𝑚𝑛 follows a 

standard normal distribution. Recalling that 𝑋~𝑁(𝜇, 𝜎0
2) implies that 

𝑋̅~𝑁(𝜇, 𝜎0
2 𝑛⁄ ) where 𝜇 = 𝜇0 + 𝛿𝜎0, the conditional probability of a signal (𝐶𝑃𝑆) 

for cases KU and UU can be expressed respectively as 

𝐶𝑃𝑆𝐾𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑌, 𝛿) = 1 − [Φ(𝐿√
𝑌

𝑚(𝑛−1)
− 𝛿√𝑛) −

Φ(−𝐿√
𝑌

𝑚(𝑛−1)
− 𝛿√𝑛)]                 (5a) 

and 
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𝐶𝑃𝑆𝑈𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑍, 𝑌, 𝛿) = 1 − [Φ(
𝑍

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
− 𝛿√𝑛) −

Φ(
𝑍

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
) − 𝛿√𝑛].         (5b) 

These general expressions apply to both the in-control and the out-of-control 

cases.  

In the in-control case, 𝛿 = 0, and Equations (5a) and (5b) give the 

conditional false-alarm rate, 𝐶𝐹𝐴𝑅: 

𝐶𝐹𝐴𝑅𝐾𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑌, 𝛿 = 0) = 2Φ(−𝐿√
𝑌

𝑚(𝑛−1)
)                                (6a) 

and 

𝐶𝐹𝐴𝑅𝑈𝑈 = 𝑃(𝑆𝑖𝑔𝑛𝑎𝑙|𝑍, 𝑌, 𝛿 = 0) = 1 − [Φ(
𝑍

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
) −

Φ(
𝑍

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
)],                                                                                 (6b) 

in Case KU and UU, respectively.  

Given that the in-control conditional run length distribution is geometric with 

parameter 𝐶𝐹𝐴𝑅, its expected value, the conditional in-control average run length, 

𝐶𝐴𝑅𝐿0, is given by: 

𝐶𝐴𝑅𝐿0 =
1

𝐶𝐹𝐴𝑅
,                 0 ≤ 𝐶𝐹𝐴𝑅 ≤ 1.                                (7) 

From now on, when we don’t use a subscript such as  𝐾𝑈 or 𝑈𝑈 on the 𝐶𝐴𝑅𝐿0 

(or the 𝐶𝐹𝐴𝑅 or the 𝐶𝑃𝑆) as in Equation (7), it means that the expression is true in 

both case 𝐾𝑈 and 𝑈𝑈. Also, let 𝐶𝐴𝑅𝐿0,𝐾𝑈 and 𝐶𝐴𝑅𝐿0,𝑈𝑈 denote the conditional in-

control average run lengths in Case KU and UU, respectively. 

It is interesting to visualize the effect of parameter estimation through the 

number of Phase I subgroups, m, on the 𝐶𝐹𝐴𝑅 and 𝐶𝐴𝑅𝐿0. Figure 1 shows the plots 

of the 𝐶𝐹𝐴𝑅𝐾𝑈 (in Panel (a)) and 𝐶𝐴𝑅𝐿0,𝐾𝑈 (in Panel (b)) as a function of 𝑢 ∈ (0,

1) corresponding to the quantiles of 𝑌, parametrized by 𝑚 for a fixed 𝑛 = 5.  They 
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were obtained by writing 𝑌 as F
𝜒𝑚(𝑛−1)
2
−1 (𝑈) in Equation (6a), where U is a uniform 

(0, 1) random variable, since 𝑈 = 𝐹𝜒𝑚(𝑛−1)
2 (𝑌) from the probability integral 

transformation [see Epprecht et al. (2015)]. 

FIGURE 1. 𝐶𝐹𝐴𝑅𝐾𝑈 (Panel (a)) and 𝐶𝐴𝑅𝐿0,𝐾𝑈 (Panel (b)) as function of 𝑢 for 𝑛 =

5, 𝑚 = 10, 20, 50,100,500 and 𝛼 = 0.0027 (i.e., 𝐿 = 3). 

Figure 1 clearly shows the effect of the number of Phase I samples 𝒎 on the 

performance of the 𝑿̅ control chart when the process standard deviation is estimated. In 

both panels, the horizontal lines correspond to the value of the nominal false alarm rate 

0.0027 and the in-control average run length, 370.4, respectively, in Case KK, when the 3-

Sigma limits are used.  It can be seen, that for 𝒏 = 𝟓, the 𝑪𝑭𝑨𝑹𝑲𝑼 and 𝑪𝑨𝑹𝑳𝟎,𝑲𝑼 curves 

are significantly closer to the horizontal line when m, the number of reference samples, is 

large (compare for example the curves for m = 10 and m = 500).  This means that the 

difference between the nominal and the realized (conditional) false alarm rate is 

considerably more likely to be large when 𝒎 is small. It is also interesting to note that the 

effect is different on the two sides of 𝒖 = 𝟎. 𝟓 (the 0.5 quantile or the median of 𝒀).  For 

𝑪𝑭𝑨𝑹𝑲𝑼 the situation is worse for the lower quantiles whereas for 𝑪𝑨𝑹𝑳𝟎,𝑲𝑼 the reverse 

is true. This means that for smaller values of m, a lower than average estimator of the 

standard deviation would produce a higher than nominal conditional false alarm rate while 

the reverse is true for the conditional in-control average run length. This is caused by the 

skewness of the distributions of 𝑪𝑭𝑨𝑹𝑲𝑼 and 𝑪𝑨𝑹𝑳𝟎,𝑲𝑼, which will be seen more clearly 

in Section 4.   

Note that it is possible to construct similar figures in Case UU, which will 

be a three-dimensional graphic since in this case the 𝐶𝐹𝐴𝑅𝑈𝑈 (and 𝐶𝐴𝑅𝐿0,𝑈𝑈) is a 

function of two random variables (not just one).  The effect of the number of Phase 
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I samples (m) in Case UU will be clearly seen in the next section, where the 

distribution of 𝐶𝐹𝐴𝑅𝑈𝑈 and 𝐶𝐴𝑅𝐿0,𝑈𝑈 are derived, so it is omitted here. 

4. Cumulative Distribution Function of 𝑪𝑭𝑨𝑹 and 𝑪𝑨𝑹𝑳𝟎 

From Equation (6a), we can easily obtain the c.d.f. of 𝐶𝐹𝐴𝑅𝐾𝑈  

𝐹𝐶𝐹𝐴𝑅𝐾𝑈(𝑡) = 𝑃(𝐶𝐹𝐴𝑅𝐾𝑈 ≤ 𝑡) = 𝑃 (2Φ (−𝐿√
𝑌

𝑚(𝑛−1)
) ≤ 𝑡), 

= 𝑃(−𝐿√
𝑌

𝑚(𝑛−1)
≤ Φ−1 (

𝑡

2
)) = 1 − 𝐹χ𝑚(𝑛−1)

2 (𝑚(𝑛 − 1) (−
Φ−1(

𝑡

2
)

𝐿
)

2

),  

0 ≤ 𝑡 ≤ 1,          (8a)    

where 𝐹χ𝑚(𝑛−1)
2  denotes the c.d.f. of a central chi-square distribution with 

𝑚(𝑛 − 1) degrees of freedom.   

In Case UU, since the 𝐶𝐹𝐴𝑅𝑈𝑈 is a function of two random variables (Y and 

Z), the derivation of an exact closed form for expression of 𝐹𝐶𝐹𝐴𝑅𝑈𝑈  is more 

involved. To this end, we derive 𝐹𝐶𝐹𝐴𝑅𝑈𝑈 in Case UU by using the conditioning-

unconditioning technique [see Chakraborti (2000)], by first conditioning on 𝑍 [see 

Equation (6b)], calculating the conditional c.d.f., and then unconditioning, by 

taking the expectation of the conditional c.d.f. over the distribution of Z: 

𝐹𝐶𝐹𝐴𝑅𝑈𝑈(𝑡) = 𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡) = 𝐸𝑍(𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧)) 

= ∫ 𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧)𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
,                                       (8b) 

where 𝑓𝑍 denotes the probability density function (p.d.f.) of 𝑍.   

The next step is to derive the expression for the conditional c.d.f. 

𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧). Note that, given 𝑧,  𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧) is a function 

of the chi-square random variable 𝑌. So, from Equation (6b) one can write: 

𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧)

= 𝑃(1 − [Φ(
𝑧

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛 − 1)
) −Φ(

𝑧

√𝑚
− 𝐿√

𝑌

𝑚(𝑛 − 1)
)]

≤ 𝑡) 
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= 𝑃 (𝑃 (
𝑧

√𝑚
− 𝐿√

𝑌

𝑚(𝑛−1)
≤ 𝑍1 ≤

𝑧

√𝑚
+ 𝐿√

𝑌

𝑚(𝑛−1)
) ≥ 1 − 𝑡), 

where 𝑍1 also follows a standard normal distribution, independent of 𝑍 and 

𝑌. Therefore 

𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧)

= 𝑃(𝑃(−𝐿√
𝑌

𝑚(𝑛 − 1)
≤ 𝑍1 −

𝑧

√𝑚
≤ 𝐿√

𝑌

𝑚(𝑛 − 1)
) ≥ 1 − 𝑡) 

= 𝑃 (𝑃 ((𝑍1 −
𝑧

√𝑚
)
2

≤ (𝐿√
𝑌

𝑚(𝑛−1)
)
2

) ≥ 1 − 𝑡).   

  (8c) 

Now, since (𝑍1 −
𝑧

√𝑚
)
2

 follows a non-central chi-square distribution with 1 

degree of freedom and non-centrality parameter 
𝑧2

𝑚
, denoting (𝑍1 −

𝑧

√𝑚
)
2

= χ
1,[
𝑧2

𝑚
]

2 , 

Equation (8c) can be expressed as  

𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≤ 𝑡|𝑍 = 𝑧) = 𝑃 (𝑃 (χ
1,[
𝑧2

𝑚
]

2 ≤ 𝐿2
𝑌

𝑚(𝑛−1)
) ≥ 1 − 𝑡) = 1 −

𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛−1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1−𝑡)

𝐿2
),                                                                              (8d) 

where 𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − 𝑡) denotes the (1 − 𝑡)-quantile of a non-central chi-square 

distribution with 1 d.f. and non-centrality parameter 
𝑧2

𝑚
. Applying the result from 

Equation (8d) in Equation (8b), we have the final expression for the c.d.f. of 

𝐶𝐹𝐴𝑅𝑈𝑈 : 

𝐹𝐶𝐹𝐴𝑅𝑈𝑈(𝑡)

= 1 − ∫ 𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛 − 1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − 𝑡)

𝐿2
)𝑓𝑍(𝑧)𝑑𝑧

∞

−∞

.                         (8e) 

For the distribution of the conditional in-control average run-length, note that, 

in general, as shown in Equation (7), the 𝐶𝐴𝑅𝐿0 is a monotonically decreasing 

function of 𝐶𝐹𝐴𝑅, so that the c.d.f. of 𝐶𝐴𝑅𝐿0 (𝐹𝐶𝐴𝑅𝐿0) can be obtained from the 

c.d.f of 𝐶𝐹𝐴𝑅 (𝐹𝐶𝐹𝐴𝑅). Thus,      
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          𝐹𝐶𝐴𝑅𝐿0(𝑤) = 𝑃(𝐶𝐴𝑅𝐿0 ≤ 𝑤) = 𝑃(1 𝐶𝐹𝐴𝑅⁄ ≤ 𝑤) = 𝑃(𝐶𝐹𝐴𝑅 ≥

𝑤−1) = 1 − 𝐹𝐶𝐹𝐴𝑅(𝑤
−1),   𝑤 ≥ 1.    (9) 

Hence, in Case KU, 

𝐹𝐶𝐴𝑅𝐿0,𝐾𝑈(𝑤) = 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)(−

Φ−1 (
𝑤−1

2 )

𝐿
)

2

)

 
 
.                           (10a) 

In Case UU, the 𝐹𝐶𝐴𝑅𝐿0,𝑈𝑈  can be similarly obtained by using Equations (8e) 

and (9) and is given by  

𝐹𝐶𝐴𝑅𝐿0,𝑈𝑈(𝑤)

= ∫ 𝐹χ𝑚(𝑛−1)
2 (

𝑚(𝑛 − 1)𝐹
χ1,
2 [
𝑧2

𝑚
]

−1 (1 − 𝑤−1)

𝐿2
)𝑓𝑍(𝑤)𝑑𝑧

∞

−∞

.             (10b) 

Note that Expressions (8e) and (10b) for the c.d.f’s in Case UU are exact, 

however their evaluation involves calculating the integral using some numerical 

method, since there is no closed form solution. This is not difficult as will be seen 

later. Indeed, many well-known c.d.f.’s are expressed in terms of integrals, 

including the one for the celebrated normal distribution. 

Figure 2 shows the c.d.f. of the 𝐶𝐹𝐴𝑅𝑈𝑈 and the 𝐶𝐴𝑅𝐿0,𝑈𝑈, in Panel (a) and 

(b), respectively, calculated using Equation (8e) and (10b), for 𝑛 = 5, 𝑚 =

10, 20, 50, 100, 500 and 𝛼 = 0.0027 (i.e., 𝐿 = 3). Note that the vertical lines show 

the nominal false alarm rate 0.0027 (in Panel (a)) and the in-control average run 

length 370.4 (in Panel (b)). The impact of 𝑚 on the distributions is clear. When 𝑚 

is small (such as 𝑚 = 10), chances are high that the realized false alarm rate is 

higher than the nominal one. For example, from Figure 2, Panel (a), for 𝑚 = 10, 

𝑃(𝐶𝐹𝐴𝑅𝑈𝑈 ≥ 0.006) ≈ 40% , so that there is a 40% chance that the conditional 

false alarm rate is 122% higher than the nominal 0.0027. Also note the significant 

difference between the vertical line and the c.d.f. curve for smaller values of 𝑚. 

When 𝑚 gets larger (such as 𝑚 = 500), the c.d.f curves are much “closer” to the 

vertical line, meaning that in these cases, the 𝐶𝐹𝐴𝑅𝑈𝑈 is likely to be not much 
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different from 0.0027. Similar explanations hold for 𝐶𝐴𝑅𝐿0,𝑈𝑈. Figures for the 

c.d.f. of, 𝐶𝐴𝑅𝐿0,𝐾𝑈 and 𝐶𝐹𝐴𝑅𝐾𝑈 are omitted for space reasons; but the conclusions 

from them would be similar. 

 

(a) (b) 

FIGURE 2. The c.d.f. of 𝑪𝑭𝑨𝑹𝑼𝑼 (Panel (a)) and 𝑪𝑨𝑹𝑳𝟎,𝑼𝑼 (Panel (b)) for 𝒏 = 𝟓, 

𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (i.e., 𝑳 = 𝟑). 

To provide further insight, in Figure 3 we display the p.d.f. of 𝐶𝐴𝑅𝐿0,𝑈𝑈 

(𝑓𝐶𝐴𝑅𝐿0,𝑈𝑈) and 𝐶𝐹𝐴𝑅𝑈𝑈 (𝑓𝐶𝐹𝐴𝑅𝑈𝑈), in panels (a) and (b), respectively, calculated 

by taking the numerical derivatives of the corresponding c.d.f. The 𝑓𝐶𝐴𝑅𝐿0,𝑈𝑈 plot 

shows the large density at values well below 370.4 (including the position of the 

modes), meaning that when parameters are estimated, in practice, there is a large 

probability that the 𝐶𝐴𝑅𝐿0,𝑈𝑈 is substantially smaller (and the 𝐶𝐹𝐴𝑅𝑈𝑈 is 

substantially larger) than the nominal value, even with a number of Phase I samples 

quite larger than the usually recommended 25, 30 or 50 Phase I samples. This is 

reflected in the long right tails of the density functions of 𝐶𝐹𝐴𝑅𝑈𝑈 and 𝐶𝐴𝑅𝐿0,𝑈𝑈.  

Note that we also omitted the figures of the p.d.f. of 𝐶𝐴𝑅𝐿0,𝐾𝑈 and 𝐶𝐹𝐴𝑅𝐾𝑈 because 

they are similar to Figure 3.  In summary, this examination clearly raises concern 

about the realized 𝐶𝐹𝐴𝑅 (or the 𝐶𝐴𝑅𝐿0) being so much different from their nominal 

values in practical terms and will be discussed further in the next sections through 

two applications. 
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(a) (b) 

   FIGURE 3. p.d.f. of 𝑪𝑨𝑹𝑳𝟎,𝑼𝑼 and 𝑪𝑭𝑨𝑹𝑼𝑼 for 𝒏 = 𝟓, 𝒎 = 𝟏𝟎, 𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟓𝟎𝟎 and 

𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 (𝑳 = 𝟑). 

5. Prediction Bounds for 𝑪𝑭𝑨𝑹 and 𝑪𝑨𝑹𝑳𝟎 

Since the 𝐶𝐹𝐴𝑅 (and the 𝐶𝐴𝑅𝐿0) are both random variables, it is of interest 

to the practitioner to know how far they can vary from their desired nominal desired 

values. For example, since the 𝐶𝐹𝐴𝑅 can take any value between 0 and 1, it may 

be of interest to know, in a given Phase II application, what an upper bound to the 

𝐶𝐹𝐴𝑅 is, with a certain (high) probability, say (1 − 𝑝). In the same spirit as in a 

confidence bound, this upper bound, denoted 𝛼𝑝, is called an upper prediction 

bound.   

Thus, for a given 𝑚 and 𝑛, it is of interest to find 𝛼𝑝 (0 < 𝛼𝑝 < 1), for a 

small 𝑝 (0 < 𝑝 < 1) such that  

         𝑃(𝐶𝐹𝐴𝑅 ≤ 𝛼𝑝) = 𝐹𝐶𝐹𝐴𝑅(𝛼𝑝) = 1 − 𝑝                                                         (11) 

which means that 𝛼𝑝 is the (1 − 𝑝)-quantile of the in-control distribution of 

𝐶𝐹𝐴𝑅.  Note that Equation (11) can be written as 𝑃(𝐶𝐴𝑅𝐿0 ≥ 1 𝛼𝑝⁄ ) = 1 − 𝑝, so 

that 1 𝛼𝑝⁄  forms a lower prediction bound to 𝐶𝐴𝑅𝐿0 and is the 𝑝-quantile of the 

distribution of 𝐶𝐴𝑅𝐿0. Both of these bounds are useful to the practitioner.  In 

summary, the problem of finding 𝛼𝑝 reduces to finding the (1 − 𝑝)-quantile of the 

𝐶𝐹𝐴𝑅 (or the 𝑝-quantile of 𝐶𝐴𝑅𝐿0) distribution when the process is in-control and 

as it will be seen, our c.d.f. expressions, derived in Equations (8a) and (8e), are 

useful to this end.   
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For example, in Case KU, using Equation (8a), an exact expression for 

𝛼𝑝,𝐾𝑈 is obtained by solving the following equation for 𝛼𝑝,𝐾𝑈: 

𝐹𝜒𝑚(𝑛−1)
2 (𝑚(𝑛 − 1) (−

Φ−1(
𝛼𝑝,𝐾𝑈

2
)

𝐿
)

2

) = 𝑝                                         (12) 

which yields            

  𝛼𝑝,𝐾𝑈 = 2Φ(−𝐿
√
𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

𝑚(𝑛−1)
).                                                             (13) 

This exact upper bound can be easily calculated for given values of 𝐿, m, n and p.  

On the other hand, in Case UU, the required 𝛼𝑝,𝑈𝑈 is the solution to the equation  

∫ 𝐹χ𝑚(𝑛−1)
2

(

 

𝑚(𝑛−1)𝐹
χ

1,[
𝑧2

𝑚
]

2
−1 (1−𝛼𝑝,𝑈𝑈)

𝐿2

)

 𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
= 𝑝,                                  (14) 

which can be solved, for given values of 𝐿, m, n and p, using a simple search 

method (like the Secant Method). However, a simple approximate expression for 

𝛼𝑝,𝑈𝑈, can be obtained from Equations (8c) and (8d) using a one-step Taylor 

approximation and an approximation for the c.d.f. of a non-central chi-square 

distribution in terms of a central chi-square distribution given by Cox and Reid 

(1987). Details of the derivation of the approximation can be found in Jardim et al. 

(2017). 

𝛼𝑝,𝑈𝑈 ≈ 1 − 𝐹χ12 (𝐿
2
𝐹

χ𝑚(𝑛−1)
2
−1 (𝑝)

(𝑚+1)(𝑛−1)
)                                                      (15) 

The formula in (15) can be very useful in practice when one seeks a quick 

answer.   

Table 1 shows the values of  𝛼𝑝 and 1 𝛼𝑝⁄  for 𝑝 = 0.05 (i.e., the 0.95 quantile 

of 𝐶𝐹𝐴𝑅 and the 0.05 quantile of 𝐶𝐴𝑅𝐿0) and 𝑝 = 0.1 (the 0.9 quantile of 𝐶𝐹𝐴𝑅 

and the 0.1 quantile of 𝐶𝐴𝑅𝐿0) for some values of 𝑚 and 𝑛 in Case KU and Case 

UU, respectively. For Case UU we show the exact values calculated using Equation 

(13) and a search method and the values obtained using the simple approximation 
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given by Equation (15) in bold. In all cases, we consider 𝛼 = 0.0027 (𝐿 = 3). Table 

1 shows that when 𝑚 and/or 𝑛 are small, the values of 𝐶𝐴𝑅𝐿0 that are exceeded 

with a large probability of 95% or 90% are much smaller than the desired 1 𝛼⁄ . For 

example, in Case UU, for 𝑚 = 25 and 𝑛 = 5 (values suggested in many textbooks, 

see Montgomery, 2009), 1 𝛼0.05⁄ = 102.4, which is more than 3 times smaller than 

the nominal 𝐴𝑅𝐿0 of 370.4. This means that, for 𝑚 = 25 and 𝑛 = 5, if 3-Sigma 

limits are used, the variabilities of 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 are quite large, so the 

realization of these random variables may be very different from the nominal in-

control average run length and the nominal false alarm rate (370.4 and 0.0027, 

respectively). Also note that the proposed approximation works well for 𝑚 ≥ 50 in 

Case UU. 

It is also interesting to note that the lower quantiles of 𝐶𝐴𝑅𝐿0 (or higher 

quantiles of 𝐶𝐹𝐴𝑅) in Case KU are larger (or smaller, for 𝐶𝐹𝐴𝑅) than the quantiles 

in Case UU. This is due to the higher variability of the 𝐶𝐴𝑅𝐿0 and 𝐶𝐹𝐴𝑅 in Case 

UU since one additional parameter (the in-control process mean) is estimated in this 

case.  
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TABLE 1. 0.95 (0.90) quantiles of 𝐶𝐹𝐴𝑅 (𝛼𝑝) and 0.05 (0.1) quantiles of 

𝐶𝐴𝑅𝐿0 (1/𝛼𝑝) . 

 

Note: For Case UU, the values in bold were obtained using Eq. 15; the other values 

are exact, calculated numerically using Eq. 14). 

 

6. Number of Phase I Samples Required for Guaranteed In-Control 

Performance 

Case m 

n

5

10

20

25

5

10

20

25

m 

n

5

10

20

25

5

10

20

25

m 

n

5 0.0098 0.0094 102.4 106.3 0.0066 0.0064 152.5 155.4

10 0.0071 0.0067 140.1 149.7 0.0052 0.0050 193.6 199.9

20 0.0060 0.0054 167.8 186.3 0.0045 0.0043 223.1 234.6

25 0.0057 0.0051 174.5 196.6 0.0043 0.0041 230.5 244.0

5 0.0078 0.0076 128.8 131.7 0.0055 0.0055 180.2 182.4

10 0.0060 0.0058 167.2 173.8 0.0046 0.0045 218.8 223.3

20 0.0051 0.0048 195.3 207.1 0.0041 0.0039 246.1 253.5

25 0.0049 0.0046 202.4 216.2 0.0040 0.0038 252.9 261.4

m 

n

5 0.0050 0.0049 200.7 202.3 0.0038 0.0038 262.5 263.1

10 0.0042 0.0041 239.5 242.9 0.0034 0.0034 292.0 293.0

20 0.0037 0.0037 266.7 272.5 0.0032 0.0032 311.9 313.5

25 0.0037 0.0036 273.6 280.3 0.0032 0.0031 316.9 318.7

5 0.0044 0.0044 226.3 227.6 0.0035 0.0035 281.8 282.2

10 0.0038 0.0038 260.7 263.2 0.0033 0.0033 306.5 307.2

20 0.0035 0.0035 284.3 288.2 0.0031 0.0031 322.9 324.0

25 0.0034 0.0034 290.3 294.7 0.0031 0.0030 327.0 328.2

25 50

100 300

168.7

0.0045 221.1 0.0039 256.7

0.0057 176.3 0.0046 218.1

0.0039

0.0043 233.8 0.0037 267.1

0.0047 211.3

0.0065 154.4 0.0050 198.7

0.0035 285.5

0.0037 267.1

254.1

0.0049 205.8 0.0041 244.0

0.0034 293.7

0.0034 297.6

0.0041 246.7 0.0036 277.7

0.0042

0.0031 318.5

302.0 0.0030 329.2

0.0039 258.0 0.0035 286.6

0.0032

275.5 0.0032 312.10.0036

0.0031 323.8

308.9 0.0030 333.5

238.0 0.0035 286.6

25 50

0.0033

C
a

se
 U

U
C

a
se

 K
U

100 300

0.0081 123.6 0.0059
𝒑
=
𝟎
.𝟎
𝟓
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𝒑 

𝒑
=
𝟎
.𝟎
𝟓

𝒑
=
𝟎
.𝟏

0

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



180 
 

 

 

Having recognized that the Phase II false alarm rate (and the in-control 

average run length) are both random variables when parameters are estimated and 

therefore vary, sometimes substantially, from estimator to estimator (reference 

sample to reference sample, practitioner to practitioner), another important question 

is the amount of Phase I data that can ensure a “satisfactory” in-control performance 

of the 𝑋̅ chart. Epprecht et al. (2015) formulated this problem in terms of the EPC 

for the one-sided S and S2 charts, and gave formulas for the minimum number 𝑚 of 

Phase I samples that guarantees, with a specified high probability 1 − 𝑝 (say, 0.9), 

that the 𝐶𝐹𝐴𝑅 does not exceed the nominal 𝛼 by more than a user specified 

(tolerated) percentage 100𝜀 (e.g. 20%).  Following this approach, in any case, KU 

or UU, this problem is formulated as: 

Given the values of 𝑛, 𝛼, 𝜀 and 𝑝, find the minimum number of in-control 

Phase I samples, 𝑚, such that  

𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) = 1 − 𝑝,                                                  (16) 

where 100𝜀 is called the tolerance factor.  

 According to Equation (16), (1 + 𝜀)𝛼 is the (1 − 𝑝)–quantile of 𝐶𝐹𝐴𝑅, 

which plays the role of 𝛼𝑝 in the previous section. The difference is that in the 

previous section, m was given and 𝛼𝑝 was calculated, whereas now, 𝛼𝑝 is specified 

(by the practitioner) to be (1 + 𝜀)𝛼 (as the upper bound to CFAR that may be 

tolerable) and m is to be determined corresponding to that value. Note that, since 𝑚 

is an integer, a perfect match is generally not possible, so, we re-state the problem 

as finding the smallest integer 𝑚 such that 𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) ≥ 1 − 𝑝, for 

given  𝜀, 𝑝, 𝛼, 𝑚  and  𝑛. Also, note that this problem is equivalent to finding the 

smallest integer  𝑚 such that 𝑃(𝐶𝐴𝑅𝐿0 ≥ 1 [(1 + 𝜀)𝛼]⁄ ) ≥ 1 − 𝑝. A direct 

formula for m is not available because the c.d.f.’s involve a quantile of a chi-square 

variable whose number of degrees of freedom is itself a function of the unknown 

𝑚. However, 𝑚 can be found using a simple search method (as the Secant Method, 

for example) since, for large values of (1 − 𝑝),  𝐹𝐶𝐹𝐴𝑅((1 + 𝜀)𝛼) is a monotonic 

increasing function of 𝑚 (see Figure 2). Basically, this means that for Case KU and 

UU, we need to solve, respectively,  
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𝐹χ𝑚(𝑛−1)
2 (𝑚(𝑛 − 1) (−

Φ−1(
(1+𝜀)𝛼

2
)

𝐿
)

2

) = 𝑝                                       (17) 

and 

∫ 𝐹χ𝑚(𝑛−1)
2

(

 

𝑚(𝑛−1)𝐹
χ

1,[
𝑧2

𝑚
]

2
−1 (1−(1+𝜀)𝛼)

𝐿2

)

 𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
= 𝑝,                                      (18) 

for the smallest 𝑚. Note that Equations (17) and (18) follow from Eq. (12) 

and Eq. (14), respectively, when we replace 𝛼𝑝 by (1 + 𝜀)𝛼. Table 2 shows the 

minimum number of in-control Phase I samples, 𝑚, for 𝜀 = 0.1, 0.2, 0.3, 0.4, 0.5, 

𝛼 = 0.0027, 𝑝 = 5%, 10%, 15%, and 𝑛 = 5, 10, 20 and 25. As it can be seen, for 

small values of 𝑛, one needs a larger number of reference samples (𝑚) to guarantee 

such conditional performance.  

TABLE 2. Minimum number of Phase I reference samples, 𝒎, required for 

𝑷(𝑪𝑭𝑨𝑹 ≤ (𝟏 + 𝜺)𝛂) ≥ 𝟏 − 𝒑  (or 𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟏 [(𝟏 + 𝜺)𝜶]⁄ ) ≥ 𝟏 − 𝒑) for 𝛂 =

𝟎. 𝟎𝟎𝟐𝟕 (𝑳 = 𝟑) and various values of 𝛆, 𝐧 𝐚𝐧𝐝 𝒑 

 

  

From Table 2 we see that in the majority of cases (for example, when 𝜀 =

0.1 and 𝑛 = 5), the minimum numbers of reference samples required are larger than 

the 25 or 30 subgroups traditionally proposed in most manuals and textbooks (see 

Montgomery, 2009); they can also be larger than the 200 or 300 samples proposed 

by authors who focused on the unconditional 𝐴𝑅𝐿0 (see Quesenberry, 1993 and 

others) and even larger than the recent numbers recommended by Saleh et al. 

(2015), who focused on the standard deviation of 𝐶𝐴𝑅𝐿0 as an additional 

performance metric (they recommended using 𝑚 = 1200 when 𝛼 = 0.0027 is 

used). One can see that, as might be expected, in Case UU more Phase I samples 

Case n 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

5 3588 2185 1435 975 595 393 468 287 190 283 174 116 194 120 80

10 1595 971 638 433 265 175 208 128 85 126 78 52 87 53 36

20 756 460 303 206 126 83 99 61 40 60 37 25 41 26 17

25 598 365 240 163 100 66 78 48 32 48 29 20 33 20 14

5 3687 2285 1536 1029 649 446 507 324 226 314 203 144 219 144 103

10 1701 1077 742 492 321 229 250 167 122 159 108 80 114 78 59

20 871 571 409 270 185 138 145 102 77 97 68 52 72 51 39

25 717 477 346 230 160 120 126 89 69 85 61 47 64 46 36

C
as

e 
U

U
C

as
e 

K
U

𝜀 = 10% 𝜀 = 20% 𝜀 = 30% 𝜀 = 40% 𝜀 = 50%

𝒑  
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are needed than in Case KU. This happens because in Case UU the estimation of 

the in-control process mean adds more uncertainty (variation) in the performance 

of the 𝑋̅ control chart. 

In case the required m for the specified values of (1 + 𝜀)𝛼 and p is infeasible 

and yet relaxing the value of either 𝜀 or p is unacceptable on practical grounds, a 

possible solution is to change the value of the control limit factor 𝐿 (instead of using 

𝐿 = 3, the common 3-sigma limits), given the values of 𝑚 and 𝑛 at hand, in order 

to satisfy the EPC in the in-control situation. This is discussed in the next section. 

7. Adjustment of the Limits for a Guaranteed Conditional In-Control 

Performance 

In the previous section, we saw that the minimum number of reference 

samples required to guarantee a desired in-control performance under the EPC can 

be very large and may be infeasible in many practical situations. Given this practical 

hurdle, in this section, we present an exact and an approximate adjusted control 

limit for the 𝑋̅ chart (for any m and n) that guarantees a desired in-control 

performance in terms of EPC. The idea is to replace the control limit factor 𝐿 in 

Equations (1) and (2) by 𝐿(𝑝, 𝜀, 𝛼), where 𝐿(𝑝, 𝜀, 𝛼) represents the value of the 

control limit factor which guarantees that 𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) = 1 − 𝑝 (or 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 1 (1 + 𝜀)𝛼⁄ ) = 1 − 𝑝) for given values of 𝜀, 𝛼, 𝑚 and 𝑛. 

In Case KU, since the expression for the c.d.f of 𝐶𝐹𝐴𝑅 is in a simple form 

given by Equation (8a), we can derive a closed-form expression for 𝐿𝐾𝑈(𝑝, 𝜀, 𝛼). 

Using Equation (16), replacing 𝐿 by 𝐿(𝑝, 𝜀, 𝛼) in Equation (8a) and rearranging the 

terms, one has: 

𝐿𝐾𝑈(𝑝, 𝜀, 𝛼) =
Φ−1(

(1+𝜀)𝛼

2
)

√
𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

𝑚(𝑛−1)

                                                       (19) 

In Case UU, we can find 𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) by solving the following equation  
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∫ 𝐹χ𝑚(𝑛−1)
2

(

 

𝑚(𝑛−1)𝐹
χ

1,[
𝑧2

𝑚
]

2
−1 (1−(1+𝜀)𝛼)

𝐿𝑈𝑈(𝑝,𝜀,𝛼)2

)

 𝑓𝑍(𝑧)𝑑𝑧
∞

−∞
= 𝑝                           (20) 

for 𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) using a search method. Equation (20) relates to the theory of 

Tolerance Intervals. Krishnamoorthy and Mathew (2009, p. 30) give an equation 

which is equivalent to (20) where 𝑆 and 𝑋̅ are used instead of 𝑆𝑝 and 𝑋̿ respectively. 

But, they did not make the relationship with Statistical Process Control area. 

Alternatively, Jardim et al. (2017) derived the following approximate formula for 

𝐿𝑈𝑈(𝑝, 𝜀, 𝛼): 

𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) ≈ √(𝑛 − 1)(𝑚 + 1)
𝐹
χ1
2
−1(1−(1+𝜀)𝛼)

𝐹
χ𝑚(𝑛−1)
2
−1 (𝑝)

                                               (21) 

Note that, as explained in Section 1, other authors have considered 

adjustments in terms of the EPC for the 𝑋̅ chart constant in Case UU. For example, 

Saleh et al. (2015a) used bootstrapping and Goedhart et al. (2017a and 2018) 

provided approximate formulas for the correction term defined as 𝑐 =

𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) − 𝐿. Jardim et al. (2017) made a detailed comparison between all these 

methods [including the one we propose in Equation (20)] and conclude that all of 

them provide reasonably good and similar results (the one in Equation (20) being 

the most accurate one). The differences among these methods lie mainly in their 

complexity in terms of formulas and algorithms. So, here, we just show the 

approximation in (21) because, as shown by Jardim et al. (2017), this equation is 

simpler than the available approximations and provides good results — as it can be 

seen in Table 3. Nevertheless, since Equation (20) is based on the exact c.d.f., it 

provides the most accurate results, and since much of SPC is expected to be 

implemented with the help of software, we recommend it to be used and 

implemented in a SPC software.  

Table 3 shows the exact values of 𝐿𝐾𝑈(𝑝, 𝜀, 𝛼) and 𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) using 

Equations (18) and (19) and (in bold) the approximate values of 𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) given 

by Equation (20), for some values of 𝑚 and 𝑛, 𝑝 = 10%, 𝜀 = 0 and 0.2, 

respectively, and 𝛼 = 0.0027 (𝐿 = 3). This means 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 90% 

and 𝑃(𝐶𝐴𝑅𝐿0 ≥ (1 1.2⁄ )370.4 = 308.67) = 90%. So, for example, if the users 
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have 25 reference samples each with 10 observations from a Phase I analysis, then 

to guarantee that 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 90%, they should replace 𝐿 by 

𝐿𝐾𝑈(10%, 0%, 0.0027) = 3.2 in Case KU or by  𝐿𝑈𝑈(10%, 0%, 0.0027) = 3.27 

in Case UU, in Equations 1 and 2. Note that the approximation given by (21) is very 

accurate. 

TABLE 3. Values of 𝑳(𝟏𝟎%,𝟎%, 𝟎. 𝟎𝟎𝟐𝟕) and 𝑳(𝟏𝟎%,𝟐𝟎%, 𝟎. 𝟎𝟎𝟐𝟕) 

for 𝑷(𝑪𝑨𝑹𝑳𝟎 > 𝟑𝟕𝟎.  ) = 𝟗𝟎% for 𝒏 = 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝜺 = 𝟎, 𝟎. 𝟐𝟎 and 𝒎 =

𝟐𝟓, 𝟓𝟎, 𝟏𝟎𝟎, 𝟑𝟎𝟎, 𝟏𝟎𝟎𝟎 in Case KU and UU 

 

Note: For Case UU, the values in bold were obtained using Equation (21); the 

other values are exact, calculated numerically using Equation (20). 

 

From Table 3, it is seen that when 𝜀 = 0, the control limit factor is larger 

than 3 in all cases, making the control limits wider, and when  𝜀 = 0.2 this factor 

can be smaller than 3 (turning the limits narrower) only when 𝑚 is quite large. It 

should be noted that these findings contrast with the results obtained by the authors 

who adjusted the 𝑋̅ chart control limits focusing on a desired unconditional 𝐴𝑅𝐿0, 

for example, Chakraborti (2006) and Goedhart et al (2016). With the unconditional 

in-control ARL as a performance criterion, they found, in most of the cases, adjusted 

limit factors smaller than 3 for  𝛼 = 0.0027. 

Since the adjustment based on the conditional in-control performance of the 

𝑋̅ control chart in most cases results in a control limit factor greater than 3, which 

widens the interval between the control limits, the question arises about its impact 

on the out-of-control performance of the chart. In the next section, we examine this 

issue. 

8.  Out–of-control Analysis 

Case n

5

10

15

20

5 3.38 3.37 3.32 3.31 3.24 3.24 3.18 3.18 3.16 3.16 3.10 3.10 3.09 3.09 3.03 3.03 3.05 3.05 2.99 2.99

10 3.27 3.26 3.21 3.20 3.17 3.17 3.11 3.11 3.11 3.11 3.05 3.05 3.06 3.06 3.00 3.00 3.03 3.03 2.97 2.97

15 3.23 3.22 3.17 3.16 3.15 3.14 3.09 3.08 3.09 3.09 3.04 3.03 3.05 3.05 2.99 2.99 3.02 3.02 2.97 2.97

20 3.21 3.19 3.15 3.13 3.13 3.12 3.07 3.06 3.08 3.08 3.03 3.02 3.04 3.04 2.99 2.98 3.02 3.02 2.97 2.96

25 50 100 300

0.2

C
as

e 
U

U

3.31

3.20

0

3.073.15

3.13

3.24

3.14

C
as

e 
K

U

3.023.10

3.07

3.21 3.15

3.14 3.08

3.11 3.05

3.09 3.03

3.02 2.97

3.06 3.01

3.08 3.02

3.05 3.00

3.04 2.99

3.04 2.98

3.14 3.09

3.09 3.04

1000

m

3.02 2.96

0 0.2 0 0.2 0 0.2 0 0.2

3.04 2.99

3.03 2.97

  𝜺  
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In this section, we analyze the impact of the adjustments proposed in the 

previous section on the out-of-control performance of the 𝑋̅ chart for Case UU. The 

results and conclusions for Case KU are similar and are omitted. As we noted 

earlier, in most cases the adjustment leads to widening the interval between the 

control limits (see Table 3 where 𝐿𝑈𝑈(𝑝, 𝜀, 𝛼) > 3 in most cases). In these cases, 

the out-of-control conditional ARL (i.e., the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 with 𝛿 ≠ 0) will be larger 

with the adjusted limits than with the unadjusted limits. This is the price to pay for 

guaranteeing a desired in-control performance. So, it is important to assess the 

deterioration in the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 due to the adjustment. This assessment will enable 

the user to choose an appropriate compromise, in terms of 𝑚, 𝑛, 𝜀, and 𝑝, since the 

out-of-control performance deterioration is lesser with larger m and n, and also with 

larger values of 𝜀 and 𝑝. For example, for m = 25 and n = 5 (a typical amount of 

reference data in practice and according to traditional recommendations), the 

adjustments proposed in the last section enable achieving the desired conditional 

in-control performance (for example, 𝑃(𝐶𝐴𝑅𝐿0 > 370.4) = 90%, as shown in 

Table 3) in terms of the EPC, however they may produce the undesirable effect of 

deteriorating the out-of-control performance. Still considering this typical amount 

of data (i.e., m = 25 and n = 5), to detect a shift in the process mean of the size of 

one process standard deviation (i.e., |𝛿| = 1), with no adjustment, the chart will 

have 𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 7.25) = 10%, which means that the average number of 

samples until a true alarm will be most likely below 10 samples. However, with the 

adjustment (in order to achieve 𝑃(𝐶𝐴𝑅𝐿0 > 370.4) = 90%), the chart will have 

𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 15.98) = 10%: a difference of 8.23 (more than 100%) on the 0.9-

quantile of the 𝐶𝐴𝑅𝐿1,𝑈𝑈.  Note that an out-of-control ARL of 15.98 may be 

unacceptable for the practitioner. However, with m = 50 and n = 5, with no 

adjustment 𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 > 6.55) = 10% and with adjustment, 𝑃(𝐶𝐴𝑅𝐿1,𝑈𝑈 >

9.99) = 10%. So, with m = 50 and n = 5, either with or without the adjustment, the 

𝐶𝐴𝑅𝐿1,𝑈𝑈 will most likely be below 10 samples, however, only with the adjustment 

one can guarantee that 𝑃(𝐶𝐴𝑅𝐿0 > 370.4) = 90%. Also, the difference between 

the 0.9-quantiles of the 𝐶𝐴𝑅𝐿1,𝑈𝑈 with and without the adjustment, is 3.44 (about 

50%). So, a particular practitioner may consider adjusting the limits with m = 50 

and n = 5 a good compromise solution between the number and size of subgroups 
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to collect in Phase I, a desired nominal in-control performance and a reasonable 

out-of-control performance of the 𝑋̅ chart.  

It becomes evident from the above example that knowing the prediction 

bound for the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈, with adjusted and with unadjusted limits, is useful for 

assessing the deterioration (increase) in the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 due to the adjustments. The 

lower prediction bound for 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 can be calculated similarly as presented in 

Section 5 for bounds for 𝐶𝐴𝑅𝐿0 in the in-control situation. That is, for a given 𝛿, 𝑚 

and 𝑛, we can find the distribution of 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 following the same steps used for 

finding the c.d.f. of 𝐶𝐴𝑅𝐿0,𝑈𝑈 presented in Section 4, and use that to find a lower 

bound (denoted 𝑄𝑝𝑂𝑂𝐶) that has only a low (specified) probability 𝑝𝑂𝑂𝐶 (e.g. 0.10) 

of being exceeded. Formally: for a given 𝑝𝑂𝑂𝐶, 

         𝑃(𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 > 𝑄𝑝𝑂𝑂𝐶) = 𝑝𝑂𝑂𝐶                                               (22) 

Thus, 𝑄𝑝𝑂𝑂𝐶 is the (1 − 𝑝𝑂𝑂𝐶)-quantile of the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 distribution. Since 

the 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 is the realized average number of samples until a true alarm, the 

smaller the 𝑄𝑝𝑂𝑂𝐶 , the better the chart’s OOC performance. Table 4 presents the 

values of 𝑄𝑝𝑂𝑂𝐶 in Case UU with the adjusted limits from Table 3, for 𝜀 = 0 and 

𝑝 = 0.1 (in grey) and with unadjusted limits, 𝐿 = 3 (in white), for the same values 

of  𝑚 and 𝑛 presented in Table 3, for mean shifts |𝛿| = 0.5, |𝛿| = 1 and |𝛿| = 1.5 

and for 𝑝𝑂𝑂𝐶 = 0.05 and 𝑝𝑂𝑂𝐶 = 0.1. Finally, Table 4 also shows the differences 

(in bold) between the 𝑄𝑝𝑂𝑂𝐶 values with the adjusted and the unadjusted limits, 

respectively, to enable a direct performance comparison. 

An examination of Table 4 shows that for |𝛿| = 1 (a shift in the mean of 

one standard deviation) and 𝑝𝑂𝑂𝐶 = 0.05, 𝑚 = 25 and 𝑛 = 5, the difference 

between the 𝑄𝑝𝑂𝑂𝐶 values, with and without the adjustment, is of 10.87 samples on 

average. This is a difference of about 100%, but note that we are considering a 0.95 

quantile, a small sample size and a very small number of initial samples, in addition 

to the fact that a shift of 1 standard deviation in which case the efficacy of the  𝑋̅ 

chart may be questionable.  For a slightly larger shift, say |𝛿| = 1.5, the difference 

between the values of 𝑄𝑝𝑂𝑂𝐶 with and without adjustment is only 1.14 samples on 

average. So, for shifts of this magnitude or larger (i.e., |𝛿| ≥ 1.5), the impact of the 
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adjustment on the out-of-control performance is small for any value of 𝑛 and 𝑚.  

However, for a smaller shift, say |𝛿| = 0.5, the 𝑄𝑝𝑂𝑂𝐶 is large in most cases. For 

example, for 𝑝𝑂𝑂𝐶 = 0.05,  𝑚 = 25 and 𝑛 = 5, 𝑄𝑝𝑂𝑂𝐶 is 107.85 and 351.98 with 

unadjusted and adjusted limits, respectively, that is an increase of 224.13 samples 

on an average. This shows that there can be a negative impact of the adjustment on 

the OOC performance for smaller shifts. However, this is not a surprise since the 𝑋̅ 

chart is usually not recommended for signaling mean shifts smaller than 1 standard 

deviation.  

TABLE 4. The 0.95 and 0.9 quantiles of 𝐶𝐴𝑅𝐿𝛿,𝑈𝑈 with adjusted limits (𝛼 =

0.0027, 𝑝 = 0.1 and 𝜀 = 0) in grey and unadjusted limits (𝐿 = 3) in white for 

different values of 𝑚, 𝑛 and 𝛿 

 

 

Finally, note that a small difference in 𝑄𝑝𝑂𝑂𝐶 values means that the 

adjustment guarantees the in-control performance as specified and does not 

significantly deteriorate the OOC performance of the chart.  If we consider 𝑄𝑝𝑂𝑂𝐶 ≤

10 to be an acceptable OOC performance, Table 4 shows that both the unadjusted 

and the adjusted limits do not work well for |𝛿| = 1 when 𝑛 = 5 and 𝑚 = 25. But 

in all other cases, for example, when |𝛿| ≥ 1 and 𝑛 ≥ 10 or when |𝛿| ≥ 1 and 𝑚 ≥

10, the 𝑄𝑝𝑂𝑂𝐶 values are either less than or close to 10 with the adjusted limits, 

which means the adjustment works well. The analysis can be easily replicated for 

n unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference unadj.

adj.

difference

5 2.21 3.36 1.14 1.97 2.47 0.50 1.83 2.09 0.26 1.71 1.82 0.11 1.64 1.69 0.05

10 1.10 1.17 0.07 1.08 1.11 0.03 1.07 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00

15 1.01 1.01 0.01 1.01 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 2.02 2.95 0.93 1.86 2.30 0.44 1.76 2.00 0.23 1.67 1.78 0.10 1.62 1.67 0.05

10 1.08 1.14 0.06 1.07 1.10 0.03 1.06 1.08 0.02 1.05 1.06 0.01 1.05 1.05 0.00

15 1.01 1.01 0.01 1.00 1.01 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 9.27 20.14 10.87 7.37 11.50 4.12 6.33 8.27 1.95 5.45 6.21 0.77 4.99 5.32 0.34

10 2.46 3.32 0.86 2.21 2.62 0.40 2.06 2.28 0.21 1.93 2.02 0.09 1.85 1.90 0.04

15 1.45 1.66 0.22 1.37 1.48 0.11 1.33 1.38 0.06 1.29 1.31 0.03 1.26 1.27 0.01

20 1.15 1.23 0.08 1.13 1.16 0.04 1.11 1.13 0.02 1.09 1.10 0.01 1.09 1.09 0.00

5 7.75 15.98 8.23 6.55 9.99 3.44 5.84 7.56 1.72 5.21 5.93 0.72 4.87 5.19 0.32

10 2.27 3.00 0.73 2.10 2.46 0.36 1.99 2.19 0.20 1.89 1.98 0.09 1.84 1.88 0.04

15 1.39 1.58 0.19 1.34 1.43 0.10 1.31 1.36 0.05 1.27 1.30 0.02 1.26 1.27 0.01

20 1.13 1.20 0.07 1.11 1.15 0.03 1.10 1.12 0.02 1.09 1.10 0.01 1.08 1.09 0.00

5 107.85 351.98 244.13 75.24 151.07 75.83 58.80 90.45 31.65 46.05 57.15 11.10 39.75 44.30 4.55

10 29.02 56.41 27.39 22.55 33.35 10.80 18.99 24.16 5.17 16.03 18.06 2.04 14.47 15.36 0.89

15 13.34 21.55 8.21 10.90 14.40 3.50 9.50 11.25 1.75 8.30 9.01 0.72 7.65 7.97 0.32

20 7.72 11.23 3.51 6.52 8.08 1.56 5.82 6.61 0.80 5.20 5.53 0.33 4.86 5.01 0.15

5 81.29 249.12 167.82 62.14 121.44 59.30 51.59 78.40 26.82 42.82 52.94 10.13 38.23 42.56 4.33

10 23.89 45.11 21.22 19.77 28.88 9.11 17.35 21.95 4.60 15.24 17.15 1.91 14.08 14.94 0.86

15 11.42 18.08 6.65 9.81 12.85 3.04 8.84 10.43 1.59 7.97 8.65 0.68 7.49 7.80 0.31

20 6.78 9.71 2.92 5.98 7.35 1.38 5.48 6.21 0.73 5.03 5.35 0.32 4.78 4.92 0.14

m

25 50 100 300 1000
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other values of 𝛼, 𝑝, 𝑝𝑂𝑂𝐶 and 𝜀.  It was done for 𝜀 = 0.20 and the conclusions 

were similar, so these results are omitted for space considerations.  

Hence, we recommend the adjusted limits be used for 𝑛 ≥ 10 and 𝑚 ≥ 25, 

or for 𝑛 ≥ 5 and 𝑚 ≥ 50, in order to guarantee a high probability (such as 0.9) that 

the conditional in-control average run length is greater than a nominal in-control 

average run length value (370.4) and that a 𝑄𝑝𝑂𝑂𝐶 ≤ 10.  

9. Summary and Recommendations 

For the two-sided Shewhart 𝑋̅ control chart with estimated parameters, we 

derive the exact c.d.f. of the in-control conditional average run length (𝐶𝐹𝐴𝑅) and 

of its reciprocal, the conditional false alarm rate (𝐶𝐴𝑅𝐿0) assuming normality. 

These expressions, unavailable in the literature until now, enable us to examine the 

performance of the control chart more closely, in terms of guaranteeing a high 

probability of the 𝐶𝐴𝑅𝐿0 (or the 𝐶𝐹𝐴𝑅) being at least (or at most) equal to some 

specified nominal value [this is known as the Exceedance Probability Criterion 

(EPC)]. This helps the user better understand the impact of parameter estimation 

and the amount of Phase I data that should be used for establishing an 𝑋̅ control 

chart when parameters are estimated. In order to avoid unacceptably low (high) 

𝐶𝐴𝑅𝐿0 (𝐶𝐹𝐴𝑅) values, exact expressions are proposed, based on the c.d.f. derived 

here, in order to calculate the value of 𝑚 (the number of Phase I samples) required 

in order to guarantee a desired in-control performance in terms of the EPC for some 

Phase I sample sizes (𝑛) values. We  

show that depending on the practitioner’s tolerances and on the subgroups 

size, 𝑚 can be very large, such as 2000 samples of size 5 (i.e., a total of 10,000 

Phase I data points). This number is even larger than the numbers recommended by 

some recent authors.   

Given the unpractically large numbers (𝑚) of Phase I samples required, we 

propose (adjusted) control limit factors and tabulate them so that some desired in-

control nominal performance in terms of the EPC is achieved. Unlike other authors, 

who use approximations or bootstrapping to propose adjustment factors, our results 

are based on the exact c.d.f. of the 𝐶𝐴𝑅𝐿0. Moreover, according to our detailed 

analysis of the impact of these adjustments on the out-of-control performance of 
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the 𝑋̅ chart, we recommend using the adjusted limits for at least 𝑛 = 10 and 𝑚 =

25 or 𝑛 = 5 and 𝑚 = 50, that is, for at least 250 reference data points (note that 

this required minimum total number of data points is much smaller than in the case 

of unadjusted limits). With these recommended amounts of data and the adjusted 

limits, the user can strike a balance between a desired nominal in-control 

conditional performance and a reasonable out-of-control shift detection capability. 
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Abstract 

Undergraduate and graduate students in a first-year 

probability (or a mathematical statistics) course learn the important 

concept of the moment of a random variable. The moments are 

related to various aspects of a probability distribution. In this 

context, the formula for the mean or the first moment of a non-

negative continuous random variable is often shown in terms of its 

c.d.f. (or the survival function). This has been called the alternative 

expectation formula. However, higher order moments are also 

important, for example, to study the variance or the skewness of a 

distribution. In this note, we consider the rth moment of a non-

negative random variable and derive formulas in terms of the c.d.f. 

(or the survival function) paralleling the existing results for the first 

moment (the mean) using Fubini’s theorem. Both continuous and 

discrete non-negative integer-valued random variables are 

considered. These formulas may be advantageous, for example, 
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when dealing with the moments of a transformed random variable, 

where it may be easier to derive its c.d.f. using the so-called c.d.f. 

method.  

 

Keywords: Non-Negative Random Variables, Cumulative Distribution 

Function, Fubini’s Theorem, Discrete and Continuous Random Variables   

 

1. INTRODUCTION 

Moments of random variables play a key role in describing and 

understanding of probability distributions. For a continuous non-negative random 

variable 𝑋, it is well known that the mean or the first moment, when it exists, can 

be expressed as  

𝐸(𝑋) = ∫ (1 − 𝐹𝑋(𝑥))
∞

0

𝑑𝑥,                                                     (1) 

where 𝐹𝑋(𝑥) is the c.d.f. of 𝑋. The function 1 − 𝐹𝑋(𝑥), which is the 

probability that 𝑋 exceeds 𝑥, is commonly known as the survival function of 𝑋, 

which has a long history in the analysis of life tables, and has long been used in the 

actuarial, bio-statistical, demographic, and engineering applications [see, for 

example, Keyfitz (1968, page 6)]. Recently, there has been a good bit of interest in 

Formula (1), see for example, Hong (2012, 2015), who calls it the alternative 

expectation formula. It turns out that Formula (1) is a special case of a well-known 

property of the distribution function in harmonic analysis [see, for example, Stein 

(1970), as quoted in Hong (2012)]. Because the mean is one of the most important 

characteristics of a distribution, Formula (1) has received a lot of attention in the 

literature. It can be proved using Fubini’s theorem [i.e., interchanging the order of 

integration in the basic definition of the expected value in terms of the p.d.f. [see 

for example, Ross (2010)], or using integration by parts, again using the basic 

definition of the expected value in terms of the p.d.f. [see for example, Hong 

(2012)].   

Higher order (greater than the first) moments are also of great interest in the 

same context. These are needed to describe aspects of the distribution other than 

the location, for example, the variance, the skewness and the kurtosis of a 

distribution. To this end, it is known that when it exists, the 𝑟th moment about the 

origin, 𝐸(𝑋𝑟), of a continuous non-negative random variable 𝑋, is given by 
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𝐸(𝑋𝑟) = ∫ 𝑟𝑥𝑟−1(1 − 𝐹𝑋(𝑥))
∞

0

𝑑𝑥,    𝑟 ≥ 1.                                    (2) 

This formula is given in Feller (1966), Hong (2012) and Nadarajah and Mitov 

(2003), the latter also derived the multivariate analogue. Formula (2) is as important 

as Formula (1), particularly for 𝑟 up to 4, which yields the first four moments 

needed to define the variance, the skewness and the kurtosis. Hong (2012) sketched 

a proof of Formula (2), extending an argument in harmonic analysis that he 

“translated” in order to prove Formula (1). We feel this is beyond the background 

expected in a first course, both for undergraduate and graduate students on 

probability, mathematical statistics or statistical theory. The first and the second 

authors have taught these types of courses for many years for students in business 

and engineering and experience suggests that these students do not have the 

background or the training in advanced topics such harmonic analysis to fully grasp 

such proofs. Motivated by all this, we provide a simple derivation for this result 

using Fubini’s theorem, which has been used to prove Formula (1). Thus, our 

derivation can be covered in the classroom, in the same context, in a first-year 

course as indicated earlier, while discussing a derivation of Formula (1) for the first 

moment. 

Moreover, much to our surprise, we did not find an analogue of Formula (2) 

for a discrete non-negative integer-valued random variable. This should be of 

considerable importance in practice as many applications involve such variables, 

such as the binomial and the Poisson. To this end, suppose that 𝑌 is a discrete non-

negative integer-valued random variable with c.d.f. 𝐹𝑌. We show that the 𝑟𝑡ℎ 

moment of 𝑌 is given by 

𝐸(𝑌𝑟) =∑((𝑖 + 1)𝑟 − 𝑖𝑟)(1 − 𝐹𝑌(𝑖))

∞

𝑖=0

,         𝑟 ≥ 1.                      (3) 

For 𝑟 = 1, from (3), 

𝐸(𝑌) =∑(1 − 𝐹𝑌(𝑖)) =∑𝑃(𝑌 > 𝑖).

∞

𝑖=0

                                        (4)

∞

𝑖=0

 

This last Formula (4), for the first moment, is available, for example, in Karlin 

and Taylor (1975; page 33) however, the general Formula (3) is not.  

It is interesting to note the similarities between the Formulas (2) and (3), for 

the continuous and the discrete random variables. Both involve the function 
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(1 − 𝐹) which is the survival function of the underlying random variable. In the 

continuous case the term 𝑟𝑥𝑟−1, is the first derivative of 𝑥𝑟 , which can be written 

as lim
ℎ 0

(
(𝑥+ℎ)𝑟−𝑥𝑟

ℎ
) .  This looks very similar to the term  ((𝑖 + 1)𝑟 − 𝑖𝑟) in the 

discrete case, in Formula (3), which may be viewed as lim
ℎ 1

(
(𝑖+ℎ)𝑟−𝑖𝑟

ℎ
). This makes 

sense, since ℎ represents an increment in the value of the random variable, which 

in the case of a discrete integer-valued variable is equal to 1.   

The rest of the note is structured as follows. In Section 2, we prove Formula 

(2) and in Section 3, we prove Formula (3). Finally, in Section 4, we illustrate the 

use of these formulas with one example for each of them. We hope instructors and 

students will benefit from these general formulas and their simple derivations. 

 

2. PROOF OF FORMULA (2) 

Assuming that it exists, the 𝑟th moment of a continuous non-negative 

random variable 𝑋, with p.d.f. 𝑓𝑋,, is given by: 

𝐸(𝑋𝑟) = ∫ 𝑡𝑟𝑓𝑋(𝑡)𝑑𝑡
∞

0

,    𝑟 ≥ 1.                                               (5) 

Since 𝑡𝑟 = 𝑟 ∫ 𝑥𝑟−1𝑑𝑥,
𝑡

0
 the integral in (5) can be written as 

𝐸(𝑋𝑟) = 𝑟∫ (∫ 𝑥𝑟−1𝑑𝑥
𝑡

0

)𝑓𝑋(𝑡)𝑑𝑡.
∞

0

                                       (6) 

Again, assuming that 𝐸(𝑋𝑟) exists (i.e., 𝐸(𝑋𝑟) < ∞), one can interchange 

the order of integrations in (6) using Fubini’s theorem. This yields  

𝐸(𝑋𝑟) = 𝑟∫ ∫ 𝑥𝑟−1𝑓𝑋(𝑡)
∞

𝑥

𝑑𝑡
∞

0

𝑑𝑥 = 𝑟∫ 𝑥𝑟−1 (∫ 𝑓𝑋(𝑡)𝑑𝑥
∞

𝑥

)𝑑𝑡
∞

0

                      

= 𝑟∫ 𝑥𝑟−1(1 − 𝐹𝑋(𝑡))
∞

0

𝑑𝑥.                                                                          (7) 

The interchange of the order of integration in the second equality in (7) can 

be explained as follows. The domain of the double integral in Equation (6) in the x-

t plane is the region 𝐴, highlighted in grey, as shown in Figure 1, where 𝑡 varies 

from 0 to ∞ and 𝑥 varies from 0 to 𝑡. It is easy to see that this is the same region 

where 𝑡 varies from 𝑥 to ∞ and 𝑥 varies from 0 to ∞. Thus, we obtain the right side 

of the second equality in Equation (7). The third equality in (7) is merely a 

reorganization of the terms. The proof is now completed.  
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Figure 18. The domain of the double integrals showed in Equation (7). 

For 𝑟 =  1, from (7) we get the familiar Formula (1), which is available in 

the literature, including in Hong (2012) and Karlin and Taylor (1975; page 38). 

 

3. PROOF OF FORMULA (3)  

Assuming that it exists, the 𝑟-th moment of a discrete non-negative integer-

valued random variable 𝑌, with p.m.f. 𝑝𝑌, is given by  

𝐸(𝑌𝑟) =∑𝑖𝑟𝑝𝑌(𝑖)

∞

𝑖=1

,         𝑟 ≥ 1.                                   (8) 

Using the identity 𝑖𝑟 = ∑ (𝑗𝑟 − (𝑗 − 1)𝑟)𝑖
𝑗=1 , (8) reduces to  

𝐸(𝑌𝑟) =∑𝑖𝑟𝑝𝑌(𝑖)

∞

𝑖=1

=∑∑(𝑗𝑟 − (𝑗 − 1)𝑟)

𝑖

𝑗=1

𝑝𝑌(𝑖)

∞

𝑖=1

.                             (9) 

Similarly for the integrals, Fubini’s theorem gives sufficient conditions for 

the interchange of the summation in Equation (9) [see Hunter (1983, page 27) and 

references therein], which yields  

𝐸(𝑌𝑟) =∑∑(𝑗𝑟 − (𝑗 − 1)𝑟)

𝑖

𝑗=1

𝑝𝑌(𝑖)

∞

𝑖=1

=∑∑(𝑗𝑟 − (𝑗 − 1)𝑟)𝑝𝑌(𝑖)

∞

𝑖=j

∞

𝑗=1

                              

 = ∑(𝑗𝑟 − (𝑗 − 1)𝑟)∑𝑝𝑌(𝑖)

∞

𝑖=j

∞

𝑗=1

= ∑(𝑗𝑟 − (𝑗 − 1)𝑟)𝑃(𝑌 ≥ 𝑗)                           

∞

𝑗=1
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= ∑(𝑗𝑟 − (𝑗 − 1)𝑟)(1 − 𝐹𝑌(𝑗 − 1))

∞

𝑗=1

=∑(𝑖 + 1)𝑟 − i𝑟)(1 − 𝐹𝑌(𝑖))

∞

𝑖=0

.  (10) 

The change in the order of the summations in the second equality of 

Equation (10) can be explained as follows. Write all the terms (elements) in the 

double summation in (9) or in the first equality in Equation (10) in a matrix form as 

shown in Figure 2. If we sum down the columns of this matrix, we get (as shown) 

each of the terms in the sum in (8) or the first sum in (9), which defines the required 

expected value. Hence the sum of these sums is the answer. On the other hand, if 

we sum across the rows of this matrix, we get (as shown) each of the terms in the 

last summation of (10) and the sum of these sums gives the final answer on the right 

side of the last equality in (10). The point is that we are summing the same elements, 

whether across the rows or down the columns, and hence their sum must be the 

same. The proof is now completed. 

 

Figure 19. Matrix with elements being summed in Equations (9) and (10). 

 

 

 

4. EXAMPLES 

In this section, we illustrate the use of Formulas (2) and (3) with two simple 

examples.  

 

4.1. Example 1 

For the first example, suppose that the c.d.f. of 𝑋 is given by  

𝐹𝑋(𝑥) = {
0,                                      for 𝑥 < 1;
𝑙𝑛 𝑥,                        for 1 ≤ 𝑥 < 𝑒;
1,                                      for 𝑥 ≥ 𝑒.

 

In order to find the variance of 𝑋, 𝑉(𝑋), we need to find the first and second 

moments of 𝑋, i.e., 𝐸(𝑋) and 𝐸(𝑋2). Note that since 𝑋 is non-negative, according 

to Equation (1), we have  

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



200 
 

 

 

𝐸(𝑋) = ∫ (1 − 𝐹𝑋(𝑥))
∞

0

𝑑𝑥 = ∫ (1 − 𝐹𝑋(𝑥))
∞

0

𝑑𝑥

= ∫ 𝑑𝑥
1

0

+∫ (1 − 𝑙𝑛 𝑥)𝑑𝑥
𝑒

1

+ 0 

= [𝑥]0
1 + [𝑥]1

𝑒 − [𝑥𝑙𝑛 𝑥 − 𝑥]1
𝑒 = 1 +  𝑒 − 1 − 1 = 𝑒 − 1.                           

According to Formula (2), the second moment of 𝑋 is 

𝐸(𝑋2) = 2∫ 𝑥(1 − 𝐹𝑋(𝑥))𝑑𝑥
∞

0

= 2∫ 𝑥𝑑𝑥
1

0

+ 2∫ 𝑥(1 − 𝑙𝑛 𝑥)𝑑𝑥
e

1

+ 0 

= 2∫ 𝑥𝑑𝑥
1

0

+ 2∫ 𝑥𝑑𝑥
e

1

− 2∫ 𝑥𝑙𝑛 𝑥𝑑𝑥
e

1

                                

= 2 [
𝑥2

2
]
0

1

+ 2 [
𝑥2

2
]
1

𝑒

− 2 [
𝑥2𝑙𝑛 𝑥

2
−
𝑥2

4
]
1

𝑒

=
1

2
(𝑒2 − 1).    

So that finally, 𝑉(𝑋) is equal to 

𝑉(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2
=
1

2
(𝑒2 − 1) − (𝑒 − 1)2 = −

1

2
𝑒2 + 2𝑒 −

3

2

= 0.2420. 

Note that in order to find the moments using our formulas, it was not 

necessary to find the p.d.f. of 𝑋.  

For the students in the first course and for the readers in general, we would 

like to draw attention to the fact that even though the domain of the distribution of 

𝑋 in this example is between 1 and e, in order to correctly apply Formula (2) (or 

Formula (1)), the lower limit of the integral must be 0 and not 1. This is because the 

survival function is not equal to 0 between 0 and 1 (in fact it is equal to 1 and thus 

contributes to the result). The same comment applies for discrete non-negative 

integer values random variables, in which case the sum in Formula (3) must start at 

0 as shown.  Students should take note of this and thus avoid making a mistake in 

applying these useful formulas. 

 

4.2. Example 2 

As our second example, consider the following c.d.f. of a discrete random 

variable 𝑌: 

𝐹𝑌(𝑖) = {

0,                                                  for 𝑖 < 0;
1 2⁄ ,                                    for 0 ≤ 𝑖 < 1;
3 4⁄ ,                                    for 1 ≤ 𝑖 < 2;
1,                                                   for 𝑖 ≥ 2.
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In order to find 𝑉(𝑌), one just needs to use Formula (3), since 𝑌 is non-

negative. So, the first moment of 𝑌, 𝐸(𝑌), is 

𝐸(𝑌) =∑(1 − 𝐹𝑌(𝑖))

∞

𝑖=0

= (1 − 𝐹𝑌(0)) + (1 − 𝐹𝑌(1)) + (1 − 𝐹𝑌(2)) + ⋯. 

Since 1 − 𝐹𝑌(0) = 1 − 1 2⁄ = 1 2⁄ , 1 − 𝐹𝑌(1) = 1 − 3 4⁄ = 1 4⁄ , 1 −

𝐹𝑌(2) = 1 − 1 = 0 and 𝐹𝑌(𝑖) = 1 for 𝑖 ≥ 2, the rest of the terms in the summation 

are equal to 0. Thus 

𝐸(𝑌) =∑(1 − 𝐹𝑌(𝑖))

1

𝑖=0

= 1 2⁄ + 1 4⁄ = 3 4⁄ . 

According to Formula (3), the second moment of 𝑌 is 

𝐸(𝑌2) =∑((𝑖 + 1)2 − 𝑖2)(1 − 𝐹𝑌(𝑖))

∞

𝑖=0

=∑(2𝑖 + 1)(1 − 𝐹𝑌(𝑖))

1

𝑖=0

 

= (1 − 𝐹𝑌(0)) + 3(1 − 𝐹𝑌(1)) = 1 2⁄ + 3 4 = 5 4⁄⁄ .                                 

Finally, 𝑉(𝑌) is 

𝑉(𝑌) = 𝐸(𝑌2) − (𝐸(𝑌))
2
= 5 4⁄ + (3 4⁄ )2 = 29 16⁄ . 

Again, for these calculations, finding the p.m.f. of 𝑌 was not necessary, thanks 

to Formula (3).  

 

5. SUMMARY AND CONCLUSIONS 

In this note we provide proofs for some alternative formulas for the rth 

moment of a non-negative continuous and a discrete random variable, respectively, 

in terms of its c.d.f.  The proofs use Fubini’s theorem and should be useful in the 

classroom while discussing moments of random variables. 

Acknowledgements 

We are grateful to two anonymous reviewers, an associate editor and the 

editor in chief for their insightful comments which improved the presentation. This 

work was supported in part by the CNPq (Brazilian Council for Scientific and 

Technological Development) through projects 401523/2014-4 (for the first author), 

201172/2016-0 (for the second author), 308677/2015-3 (for the third author) and 

also by CAPES (Brazilian Coordination for the Improvement of Higher Education 

Personnel) with a scholarship for the second author. 

 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA



202 
 

 

 

6. REFERENCES 

Feller, W. (1966). “An Introduction to Probability Theory and Its 

Applications.”, Vol. 2. 2nd ed. New York: Wiley. 

 

Hong, L. (2012), “A Remark on the Alternative Expectation Formula”, The 

American Statistician, 66, 232–233. 

 

Hong, L (2015), “Another Remark on the Alternative Expectation Formula”, 

The American Statistician, 69:3, 157-159. 

 

Hunter, J. (1983), “Mathematical Techniques of Applied Probability - 

Discrete Time Models: Basic Theory”, Vol. 1, Academic Press: New York. 

 

Karlin, S. and Taylor, H. M. (1975). “A First Course in Stochastic Processes”, 

Academic Press: New York. 

 

Keyfitz, N. (1968). “Introduction to the Mathematics of Population”. 

Reading, MA: Addison-Wesley. 

 

Nadarajah, S. and Mitov, K.V. (2003). “Product Moments of Multivariate 

Random Vectors”. Communications in Statistics: Theory and Methods, 32(1), 47-

60 

 

Ross, S. (2010), “A First Course in Probability”, 8th Edition, Upper Saddle 

River, NJ: Prentice Hall. 

 

Stein, E. M. (1970). “Singular Integrals and Differentiability Properties of 

Functions”, Princeton, NJ: Princeton University Press. 

 

DBD
PUC-Rio - Certificação Digital Nº 1312436/CA




