

Mario Domingues de Paula Simões

Ensaios sobre o Risco de Previsão de Preços de Energia Elétrica e Modelagem de Carga Demandada a uma Distribuidora de Eletricidade

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Administração de Empresas da PUC-Rio como requisito parcial para obtenção do título de Doutor em Administração de Empresas.

Orientador: Prof. Marcelo Cabus Klotzle Co-orientador: Prof. Leonardo Lima Gomes

Mario Domingues de Paula Simões

Ensaios sobre o Risco de Previsão de Preços de Energia Elétrica e Modelagem de Carga Demandada a uma Distribuidora de Eletricidade

Tese apresentada como requisito parcial para obtenção do título de Doutor em Administração de Empresas pelo Programa de Pós-Graduação em Administração de Empresas da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marcelo Cabus Klotzle

Orientador

Departamento de Administração - PUC-Rio

Prof. Leonardo Lima Gomes

Co-orientador

Departamento de Administração - PUC-Rio

Prof. Antonio Carlos Figueiredo Pinto

Departamento de Administração – PUC-Rio

Prof Luiz Eduardo Brandão

Departamento de Administração - PUC-Rio

Prof. Eduardo Kazuo Kayo

FEA - USP

Prof. Fernanda Finotti Perobelli

UFJF

Prof. Marco Antonio de Oliveira

UFRJ

Profa. Mônica Herz

Vice-Decano de Pós-Graduação do CCS - PUC-Rio

CC3 - PUC-RIO

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Mario Domingues de Paula Simões

Graduado em Engenharia Química na Escola de Química da Universidade Federal do Rio de Janeiro, em 1979, em seguida obteve o título de Master of Science in Chemical Engineering Practice pelo Massachusetts Institute of Technology, em 1982, é Mestre em Administração de Empresas pelo IAG/PUC-Rio, em 2009, e continuou no Programa de Pós-Graduação em Administração da PUC-Rio, em 2010. Trabalhou na iniciativa privada por mais de 25 anos e nos últimos 10 anos tem se dedicado a atividades de consultoria na área de sistemas e TI. É consultor independente de várias empresas.

Ficha Catalográfica

Simões, Mario Domingues de Paula

Ensaios sobre o risco de previsão de preços de energia elétrica e modelagem de carga demandada a uma distribuidora de eletricidade / Mario Domingues de Paula Simões; orientador: Marcelo Cabus Klotzle, co-orientador: Leonardo Lima Gomes. – 2013.

116 f: il. (color.); 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

Inclui bibliografia

1. Administração – Teses. 2. Energia elétrica. 3. Teoria de Valores Extremos. 4. Previsão. 5. Preços. 6. Demanda. 7. Modelos não lineares. I. Klotzle, Marcelo Cabus. II. Gomes, Leonardo Lima. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Administração. IV. Título.

CDD: 658

Agradecimentos

Ao meu orientador, professor Marcelo Cabus Klötzle pelo incentivo e apoio sempre presentes mesmo nas situações difíceis.

Ao meu co-orientador, professor Leonardo Lima Gomes, sempre ajudando e produzindo alternativas de estudo.

Aos meus professores do IAG, particularmente Antonio Carlos Figueiredo, Diana de Macedo Soares, Luiz Eduardo Brandão e Paulo Cesar Motta, pelo exemplo e orientação.

À minha banca de tese, pelas suas observações e sugestões que certamente melhoraram este trabalho.

Aos funcionários do IAG, sempre presentes e dispostos a ajudar quando preciso.

À CAPES pelo auxílio concedido e à PUC-Rio pelo ambiente acadêmico e facilidades de pesquisa.

Resumo

Simões, Mario Domingues de Paula; Klotzle, Marcelo Cabus; Ensaios sobre o Risco de Previsão de Preços de Energia Elétrica e Modelagem de Carga Demandada a uma Distribuidora de Eletricidade. Rio de Janeiro, 2012. 116p. Tese de Doutorado — Departamento de Administração, Pontifícia Universidade Católica do Rio de Janeiro

A presente tese trata da avaliação do risco associado à incerteza presente na previsão dos preços de energia elétrica, bem como os aspectos de incerteza associados à previsão de demanda da carga de energia elétrica exigida de uma distribuidora de eletricidade. O primeiro trabalho trata do risco associado à previsão dos preços da energia elétrica, partindo do conhecido fato de que os vários modelos de previsão destes preços são sabidamente imprecisos; assim sendo, qual deve ser o risco incorrido ao se utilizar determinada técnica de modelagem, considerando-se que provavelmente estaremos fazendo uma previsão errônea. A abordagem utilizada é a modelagem dos erros de previsão com a Teoria de Valores Extremos, que se mostra bastante segura para modelagens dos quantis extremos da distribuição dos resíduos, desde 98% até acima de 99,5%, para diferentes frequências de amostragem dos dados. No capítulo seguinte, é feita uma avaliação da carga elétrica а uma distribuidora, primeiramente considerando a demandada abordagem utilizando modelos do tipo ARMA e ARMAX, buscando avaliar sua eficiência preditiva. Estes modelos são sabidamente apropriados para previsões no curto prazo, e mostramos através de simulações de Monte Carlo, que sua extensão para previsões de longo prazo torna inócua a busca de sofisticação através do trabalho de incorporação de variáveis exógenas. O motivo é que dado que o erro incorrido em quaisquer destas previsões mais longas com tais modelos é tão grande, ainda que sejam

modelos mais ou menos sofisticados, com variáveis exógenas ou não, um modelo simples produzirá o mesmo efeito do que aquele de maior sofisticação, em termos de confiança na previsão média obtida. Finalmente, o último trabalho aborda o tema de possíveis não linearidades no processo de geração de dados da carga elétrica demandada de uma distribuidora, admitindo não ser este um processo apenas linear. Para tal são usados modelos não lineares auto-regressivos de mudança de regimes, que se mostram vantajosos por serem inerentemente resistentes a possíveis quebras estruturais na série de carga utilizada, além de serem particularmente apropriados para modelar assimetrias no processo gerador de dados. Mostramos que mesmo modelos do tipo TAR simples, com apenas dois regimes e auto excitados, isto é, não incorporando quaisquer variáveis exógenas, podem ser mais apropriados do que modelos lineares auto-regressivos, demonstrando melhor capacidade de previsão fora-da-amostra. Ao mesmo tempo tais modelos tem relativa facilidade de cálculo, não exigindo sofisticados recursos computacionais.

Palavras-chave

energia elétrica; Teoria de Valores Extremos; previsão; preços; demanda; modelos não lineares

Abstract

Simões, Mario Domingues de Paula; Klotzle, Marcelo Cabus (Advisor); Essays on the Risk Associated to Forecasting Electricity Prices and on Modeling the Demand of Energy from an Electricity Distributor. Rio de Janeiro, 2012. 116p. Doctoral Thesis – Departamento de Administração, Pontifícia Universidade Católica do Rio de Janeiro

This present thesis discusses the risk associated to the uncertainty that is present in the process of forecasting electricity prices, as well as the aspects of uncertainty in the forecast of electrical energy loads required from an electricity distributor. The first essay deals with the risk inherent to the forecast of electricity prices, bearing in mind that the various existing models are notoriously imprecise. Therefore, we attempt to determine what the forecast risk is, given that a certain forecasting technique is used and that it will probably inaccurate. The approach used is through the modeling of forecast residues with the Extreme Value Theory, which proves itself to be satisfactorily accurate for the modeling of the distribution of residues at such extreme quantiles as from 98% up to over 99,5%, for different data sampling frequencies. The following next chapter shows the evaluation of the electricity load required from a distributor, first by using such models as ARMA and ARMAX, trying to evaluate their predictive efficiency. These models are known to be appropriate for short term predictions, and we show by means of Monte Carlo simulations that their extended use for long term forecasts will render useless any attempt to sophisticate such models by means of incorporating exogenous variables. This is due to the fact that since the error from such longer forecasts will be so large one way or the other, with exogenous variables or not, a simpler model will be as useful as any in terms of the error in the mean prediction. Finally, the last work discusses the possibility of nonlinear effects being present in the data generating process of electrical load demanded from an energy distributor, admitting this process being just linear. To accomplish this task, we use nonlinear auto-regressive regime switching models, which are shown to be inherently resistant to possible structural breaks in the load series data used, at the same time that they are particularly appropriated to modeling asymmetries in the data generating process. We show that even relatively simple self-excited TAR models with only two regimes, that is, not resorting to any exogenous variables, can be more appropriate than linear auto-regressive models, sporting better out-of-sample forecast results. At the same time, such models are relatively simple to calculate, not requiring any sophisticated computational means.

Keywords

electricity; Extreme Value Theory; forecast; prices; load; nonlinear models

Sumário

1	INTRODUÇÂO	16
2	ESTUDO DO RISCO DE PREVISÃO DO PREÇO DA	
ENER	RGIA ELÉTRICA USANDO A TEORIA DE VALORES	
EXTR	EMOS	21
2.1	Introdução	21
2.2	Referencial Teórico	25
2.2.1	VaR e CVaR	25
2.2.2	Teoria dos Valores Extremos	27
2.3	Metodologia	32
2.3.1	Observação dos Preços	32
2.3.2	Cálculo dos Retornos	35
2.3.3	Modelagem dos Retornos	36
2.3.4	Tratamento dos Resíduos	39
2.4	Resultados e Discussão	45
2.4.1	Observação dos Preços	46
2.4.2	Observação dos Resíduos Diários	47
2.4.3	Observação dos Resíduos Intra-diários	50
2.5	Conclusão	53
2.6	Anexos	56
2.6.1	Estatísticas Ljung-Box para Resíduos Diários	56
2.6.2	Gráficos para determinação do limite (threshold) -	
resídu	uos diários	57
2.6.3	Teste BDS para resíduos diários acima do limite	
0,22		59
2.6.4	Gráficos para determinação do limite (threshold) -	
resídu	uos intra-diários (limites 0,63, 0,7, 0,75, 0,8, 0,82, 0,85 e	

1,2)		59
2.6.5	Teste BDS para resíduos intra-diários acima dos	
limites	s 0,75, 0,84, 0,85, 0,90 e 1,2	61
3	CARGA DE UMA DISTRIBUIDORA DE ENERGIA	
ELÉT	RICA COM MODELOS ARMA	62
3.1	Introdução	63
3.2	Referencial Teórico	65
3.2.1	Trabalhos Desenvolvidos	65
3.2.2	Séries Estacionárias por Tendência vs Diferenciação	66
3.2.3	Manipulação da Amostra	67
3.3	Metodologia	69
3.3.1	Qualificação dos Dados	70
3.3.2	Regressão das Variáveis	73
3.3.3	Avaliação do Desempenho Preditivo	75
3.3.4	Observação da Propagação do Erro	77
3.4	Discussão dos Resultados	79
3.5	Conclusão	82
4	NÃO LINEARIDADE NA MODELAGEM DE CARGA	
DE UI	MA DISTRIBUIDORA DE ENERGIA ELÉTRICA	83
4.1	Introdução	83
4.2	Metodologia	86
4.2.1	Modelos Lineares e não lineares de regressão	86
4.2.2	Dados de Carga e Análise Preliminar	90
4.2.3	Teste para presença de não linearidade	93
4.2.4	Ajuste dos Modelos	94
4.3	Resultados e Discussão	100
4.4	Conclusão	103
5	CONCLUSÃO	105
6	REFERÊNCIAS BIBLIOGRÁFICAS	108

Lista de Figuras

Figura 2-1 – Preços diários e intra-diários	34
Figura 2-2 – Auto-correlação (ACF) e auto-correlação parcial	
(PACF) – Retornos Diários	41
Figura 2-3 – Auto-correlação (ACF) e auto-correlação parcial	
(PACF) – Resíduos Diários	42
Figura 2-4 – Auto-correlação e auto-correlação parcial –	
Retornos Intra-diários	43
Figura 2-5 – Auto-correlação (ACF) e auto-correlação parcial	
(PACF) – Resíduos Intra-diários	44
Figura 2-6 – Distribuição Simples e Cumulativa de Resíduos	
Diários	46
Figura 2-7 – Distribuição Simples e Cumulativa de Resíduos	
Intra-Diários	47
Figura 2-8 – VaR para Resíduos Diários	48
Figura 2-9 – CVaR para Resíduos Diários	49
Figura 2-11 – CVaR para Resíduos Intra-diários	52
Figura 2-12 – MRLPlot – Resíduos Diários	57
Figura 2-13 – TCPlot (escala) – Resíduos Diários	57
Figura 2-14 – TCPlot (forma) – Resíduos diários	58
Figura 2-15 – MEFPlot – Resíduos Diários	58
Figura 2-16 – MRLPlot – Resíduos Intra-diários	59
Figura 2-17 – TCPlot (escala) – Resíduos Intra-diários	60
Figura 2-18 – TCPlot (forma) – Resíduos Intra-diários	60
Figura 2-19 – MEFPlot – Resíduos Intra-diários	61
Figura 3-1 – Previsão da Carga por Múltiplos Modelos	78
Figura 3-2 – Extensão da Previsão da Carga	79
Figura 4-1 – Série de Cargas Demandadas	90
Figura 4-2 – Estatísticas Descritivas da Série de Cargas	91

Figura 4-3 – Série de Cargas Demandadas expurgada a	
Tendência	91
Figura 4-4 – Estatísticas Descritivas da Série de Cargas	
expurgada a Tendência	92
Figura 4-5 - Gráfico de auto-pares entre defasagem 0 e	
defasagem 3 da série de cargas	95
Figura 4-6 – Comparação de Previsões dos Modelos	
lineares e não lineares	99
Figura 4-7 – Erros de Previsão MAPE	99
Figura 4-8 – Superposição da série completa de cargas e	
daquela do regime superior	101

Lista de Tabelas

Tabela 2-1 – Comparação de preços diários médios	33
Tabela 2-2 – Estatísticas descritivas da série de preços diários	33
Tabela 2-3 – Estatísticas descritivas da série de preços intra-	
diários	34
Tabela 2-4 – Testes de Estacionaridade – retornos de preços	
diários	37
Tabela 2-5 – Testes de Estacionaridade – retornos de preços	
intra-diários	37
Tabela 2-6 – Teste de Efeitos ARCH para Retornos Diários	38
Tabela 2-7 – Teste de Efeitos ARCH para Retornos Intra-diários	38
Tabela 2-8 – Modelagem dos Retornos Diários	39
Tabela 2-9 – Modelagem dos Retornos Intra-diários	40
Tabela 2-10 – Ajuste GPD – Resíduos Diários	43
Tabela 2-11 – Ajuste GPD – resíduos intra-diários	45
Tabela 2-12 - VaR para Resíduos Diários	49
Tabela 2-13 - CVaR para Resíduos Diários	50
Tabela 2-14 - VaR para Resíduos Intra-diários	52
Tabela 2-15 - CVaR para Resíduos Intra-diários	53
Tabela 2-16 – Estatisticas Ljung-Box para Resíduos Diários	56
Tabela 2-17 - Estatística BDS	59
Tabela 2-18 - Estatística BDS	61
Tabela 2-19 - Estatística BDS	62
Tabela 2-20 - Estatística BDS	62
Tabela 2-21 - Estatística BDS	62
Tabela 2-22 - Estatística BDS	62
Tabela 3-1 – Estatísticas Descritivas das Séries de Dados	70
Tabela 3-2 – Testes de Estacionaridade da Carga, PIB e	
Temperatura	71

Tabela 3-3 – Teste de Raiz Unitária da Carga, PIB e Temperatura	71
Tabela 3-4 – Resultado da Regressão da Temperatura	72
Tabela 3-5 – Resultado da Regressão do IBC-Br	74
Tabela 3-6 – Regressão da Carga vs temperatura e IBC-Br	75
Tabela 3-7 – Regressão da Carga vs temperatura	76
Tabela 3-8 – Regressão da Carga vs IBC-Br	76
Tabela 3-9 – Regressão da Carga com diferenciação	76
Tabela 3-10 – Regressão da Carga com tendência	77
Tabela 3-11 – Erros de Regressão para Previsões de Carga	77
Tabela 3-12 - Previsão Estendida da Carga (MWh)	80
Tabela 4-1 – AR(p) "embranquecedor" da série de carga	93
Tabela 4-2 – Modelo AR(p) ajustado dentro-da-amostra	94
Tabela 4-3 – Modelo SETAR	95
Tabela 4-4 – Modelo LSTAR	96
Tabela 4-5 – Modelo LSTAR mesmo limite	97
Tabela 4-6 – Erros de Previsão MAPE	98
Tabela 4-7 – Estatísticas do Teste de Estabilidade Estrutural de	
Chow	100
Tabela 4-8 – Erros MAPE Cumulativos por períodos de previsão	102