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Abstract

Schmidt Bazzi, Marisa; da Silveira Carvalho, Márcio (Advisor).
Breakup dynamics of non-Newtonian thin liquid sheets. Rio
de Janeiro, 2018. 109p. Dissertação de Mestrado – Departamento
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio
de Janeiro.

Thin free liquid sheets are ubiquitous in many industrial processes,
such as atomization and curtain coating. Liquid sheets are susceptible to
instabilities at the interface, which can grow, triggering a breakup process.
This process can be divided into two different stages: the rupture stage and
retraction. The first, driven by van der Waals force, occurs when a small ins-
tability grows until it pinches-off the sheet. The second, driven by capillary
forces, induces the growth of the hole caused by the pinch-off, leading to
the full disintegration of the liquid sheet. The stability of a liquid sheet de-
pends on disturbance characteristics, sheet thickness, and fluid properties.
Experimental analyses have shown that thinner stable liquid curtain can
be obtained with viscoelastic liquids. The underlyning physical mechanisms
associated with increased stability are, however, not fully understood. This
work presents a theoretical and numerical analysis of the effect of visco-
elasticity on the stability of a thin liquid sheet during both stages of the
breakup process. We first analyze the rupture dynamics, deriving linear sta-
bility criteria for both planar and axisymmetric perturbations of Newtonian
and Oldroyd-B liquids. The time evolution of planar and axisymmetric per-
turbations in an Oldroyd-B liquid sheet is evaluated using the asymptotic
expansion of the flow variables and a fully-implicit time integration scheme.
The rupture time and retraction velocity are calculated as a function of the
viscoelastic properties. The results show that the liquid rheological beha-
vior does not influence the linear stability criterion. Nevertheless, it has a
strong effect on the growth rate of the disturbance and retraction velocity,
increasing, thus, the breakup time. The results show that elastic forces act
to hinder the rupture and retraction stages. Analysis of the temporal evo-
lution of the thickness profile reveals that liquid rheological behavior also
affects the shape of the liquid sheet. For low viscosity regime, the elastic for-
ces damp the capillary waves that arise during the retraction of Newtonian
sheets.
Keywords

Oldroyd-B model; Stability analysis; Numerical Simulation; Liquid
sheet breakup.
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Resumo

Schmidt Bazzi, Marisa; da Silveira Carvalho, Márcio.Dinâmica da
quebra de filmes finos não Newtonianos. Rio de Janeiro, 2018.
109p. Dissertação de Mestrado – Departamento de Engenharia
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Filmes finos de líquidos estão presentes em uma gama de aplicações
industriais, como processos de atomização e revestimento de substrato. O
processo de quebra pode ser divido em duas etapas: o estágio de ruptura,
e o estágio de retração. O primeiro, movido pelas forças de van der Waals,
ocorre quando uma pequena perturbação cresce e provoca o aparecimento
de um pequeno furo no filme. O segundo, movido por forças capilares, pro-
voca o crescimento desse furo levando à desintegração do filme de líquido.
A estabilidade de uma cortina de líquido depende das características da
perturbação, da espessura do filme e das propriedades do fluido. Análi-
ses experimentais mostraram que uma cortina super fina pode ser obtida
pela utilização de fluidos viscoelásticos. Os mecanismos físicos associados
à esta estabilidade, contudo, não são totalmente compreendidos. Este tra-
balho apresenta um estudo numérico e teórico dos efeitos das propriedades
viscoelásticas na estabilidade de uma cortina de fluido, englobando ambos
os estágio do processo. As análises numéricas foram desenvolvidas através
da expansão assintótica das variáveis do escoamento com aplicação de um
esquema de integração no tempo totalmente implícito. A partir da análise
teórica da dinâmica de ruptura foi possível obter um critério de estabilidade
linear para perturbações planares e axissimétricas em fluidos Newtonianos
e não-Newtonianos. O tempo de ruptura e a velocidade de retração do filme
foram calculados numericamente como função das propriedades viscoelás-
ticas do líquido. Resultados mostraram que as forças elásticas atuam de
forma a dificultar o processo de quebra e retração. Análises da evolução
da espessura mostraram que as propriedades reológicas do fluído também
interferem no formato que o filme de fluido assume durante o processo de
retração. Para regimes de baixa viscosidade, as forças elásticas atuaram evi-
tando a formação de ondas capilares observadas em fluidos Newtonianos.

Palavras-chave
Modelo Oldroyd-B; Análise de estabilidade; Simulação Numérica;

Quebra de filme de liquido.
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1
Introduction

1.1
Motivation

Thin liquid sheets or curtains are ubiquitous in a wide range of natural
and industrial applications, making their study interest to both scientist and
engineers. The breakup of a liquid sheet is desirable in myriad applications,
such as atomization process, ink-jet printers, microfluidic, novel devices, liquid
propellant combustion in the aerospace industry as well as geophysical balances
and ocean-atmosphere exchanges [1]. Conversely, the instabilities leading to
the breakup process can be very damaging in other applications such as in
curtain coating, where the stability of liquid curtain formed is crucial for the
effectiveness of the coating process [2].

Seminal analyses on instability of thin liquid sheets were conducted by
Lord Rayleigh in the nineteenth century. Based on Fourier’s theorem, he
determined the displacement of surfaces of thin jets moving in a still fluid
with the same viscosity [8]. More than half a century later, in a sequence
of three contributions, Taylor studied the formation [9], the propagation of
waves [10] and the disintegration of liquid sheets [11]. Afterwards, motivated
by curtain coating process, Brown [12] experimentally studied the shape and
stability of a falling liquid curtain. By comparing the momentum flux pushing
down a hole that may appear in the curtain with capillary force that tends
to open the hole, he proposed a simple stability criterion which defines a
critical Weber number, below which the curtain breaks. The Weber number is
a dimensionaless parameter defined as the ratio between inertial and surface
tension forces

We = ρqU

2σ ,

where ρ is the fluid density, q is the flow rate per unit width, U is curtain
velocity and σ is the surface tension. He observed that q has to be high enough
such that We > 1 to prevent curtain breakup. This simple criterion is not
satisfied in some cases reported in the literature. Lin [13] showed that a falling
curtain of finite length is linearly stable at all conditions. Finnicum et al.[14]
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were able to obtain stable curtain in flow conditions that violate Brown’s
criteria. Further experimental analysis of the flow response under a localized
perturbation were presented by Roche et al. [15] and de Lucca [16]. Karim et
al.[17] showed that viscous forces delay the retraction speed of the rim of a
hole that is formed in the curtain, stabilizing the liquid curtain.

For complex fluids, as most coating liquids, the force balance that
governs the flow and evolution of disturbances in a liquid sheet becomes more
complicated. For liquids that contain dissolved long flexible polymer molecules,
viscoelastic tensile stresses may appear because of the strong extensional flow
that occurs near to the rupture region and affect the growth rate of any
perturbation. Becerra and Carvalho [18] studied curtain breakup of dilute high
molecular weight polymer solutions and showed that viscoelastic stresses delay
the onset of curtain breakup. To understand the mechanism of atomization
of gel propellants, Yang et al.[19] investigated the breakup characteristics
of a power-law liquid sheet using a linear stability model applied to a two
dimensional planar flow. They observed that as shear viscosity rises, the
disturbance growth rate falls. Hence, the viscous dissipation substantially
affects the flow stability. Non-Newtonian properties may play an important
role in the stabilization of a thin liquid sheet, but little is known about the
physical mechanisms associated with the stabilization.

The breakup process of a liquid sheet can be separated in two distinct and
consecutive steps: the growth of a small perturbation until the sheet pinches-
off forming a hole and the hole expansion until the complete disintegration
of the liquid sheet. The two steps are governed by different flow mechanisms
with capillary forces having different roles. The flow that may lead to the sheet
pinch-off is driven by van der Walls attraction and resisted by capillary and
viscous forces. The growth of a hole that eventually may lead to the curtain
breakup is driven by surface tension forces acting on the rim.

1.2
Literature review

1.2.1
Sheet rupture

A free liquid film is composed by a thin liquid sheet sandwiched between
two fluid bulk phases. This is vulnerable to the existence of spontaneous
fluctuations and waves at its surfaces. In very thin layers, van der Walls
attraction becomes strong enough that even those small fluctuation can
destabilize the liquid sheet, leading to its complete breakup. Rupture of soap
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Chapter 1. Introduction 18

films, coalescence of emulsions and fusion os lipid bilayers or of biological
membranes all involve such a rupture process.

Lifshitz [20] developed a macroscopic theory of the attractive van der
Waals force between bodies of large characteristic dimensions compared to
interatomic distances. In his studies, he concludes that the force of mutual
attraction on the surface of each body is inversely proportional to h3, where h

is the film thickness. Based on the quantum field theory method, Dzyaloshinskii
and Pitaevskii have found a general formula for the calculations of the van der
Waals force for an arbitrary inhomogeneous medium [21] and later extended
the theory of Lifshitz to study liquid films [22].

Theoretical analysis has been presented seeking the fundamental under-
standing of the dynamics of free thin liquid sheets rupture driven by van der
Waals attraction. Vrij [23] investigated the stability of free a thin liquid sheet
against small and spontaneous thickness fluctuations. Based on simple pres-
sure balance and mass conservation, he proposed that films are unstable with
respect to fluctuations with wavelength larger than a critical value given by
αc = [(2π2σ)/(d2Φ

dh2 )]1/2 where φ is the potencial associated with van der Waals
force. He also calculated a lifetime and critical thickness of an unstable film.

Given that free boundaries further increase the complexity of the prob-
lem, mathematical tools have been incorporated in the studies. Taking the ad-
vantage that thin liquid sheets have the distinct characteristic of being slender,
the long wavelength theory can be used to simplify equations. A remarkable
and seminal work using this tool was developed by Prevost and Gallez [24];
they took into account the long-wave nature of the response of liquid film
under a periodic disturbance and derived a partial differential equation to de-
scribe the interface shape evolution subjected to viscous force, surface tension
and van der Waals force. Based on this simplification, they performed a non-
linear stability analysis to explore the effect of hydrodynamics nonlinearities
on the rupture process of a thin free film. Results showed that nonlinearities
accelerate the rupture process.

Following this work, Erneux and Davis [25] used the full Navier-Stokes
equations for free films with an extra term to incorporate the van der Waals at-
traction to derive a two coupled nonlinear evolution equations for longitudinal
component of velocity (u) and thickness of the film (h)

∂h

∂t
+ ∂

∂x
(uh) = 0 (1-1)

∂u

∂t
+ u

∂u

∂x
+ ∂Φ

∂x
− 3S ∂3h

∂x3
− 4

h

∂

∂x

(
h

∂u

∂x

)
= 0 (1-2)
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where Φ = A(2πh)−3 is the van der Waals potencial, A is the non-dimensional
van der Waals coefficient and S is non-dimensional surface tension.

Using the set of Eqs. 1-1 and 1-2, they first performed the linear stability
analysis, which consists of finding a characteristic equation for the growth
rate, ω, of an imposed perturbation. For a Newtonian fluid under a planar
perturbation, it is given by

ω2 + 4α2ω + 3
2α2(Sα2 − 2Â) = 0. (1-3)

The critical parameters that mark the transition from stable to unstable
films are those that make ω = 0 in Eq. 1-3. For a critical wave number1 αc = π,
the linear stability criterion proposed by Erneux Davis [25] is given by the ratio
between surface tension and van der Waals forces

S

Â
= 2

π2
(1-4)

Based on this results, they used S as the bifurcation point and investigated the
nonlinear problem in the vicinity of this point and confirmed that nonlinear
terms contribute to the acceleration of the rupture phenomenon, as suggested
by Prevost and Gallez [24].

Effects of surface tension gradient on the rupture dynamics were investi-
gated by Wit and Gallez [54]. Extending the analysis presented by Erneux and
Davis [25], they studied the planar rupture of a free film with insoluble surfac-
tants. From a linear stability analysis, they concluded that Marangoni effect
does not affect the stability criterion, however increasing the surfactant con-
centration, the growth rate of the instabilities decreases and thus increases the
rupture time of the film. Results were also observed in the numerical solution
of the full set of equations.

Looking to delineate the influence of different nonlinearities, Sharma et
al. [55] investigated the dynamics of free film rupture in a simplified Erneux
and Davis’s [25] equations, where inertia and unsteady effects were neglected.
They concluded that the influence of inertia and nonlinear viscous correction
are found not to be very significant for small amplitudes, and so the simplified
model is useful since it reduces the computational time by orders of magnitude.
However, for relatively large amplitude disturbances and close to the critical
wave number, they observed that destabilization due to inertia and nonlinearity
of van der Waals forces plays an important role.

A more general and realistic approach was used by Shugai et al. [56];
1Critical wave number is the wave number that admits ω = 0.
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waves were treated as packets localized in space rather than monochromatic
waves prescribed by temporal stability approach. Based on Erneux and Davis’s
equations [25], they rewrote evolution equations in an equivalent form by in-
troducing disjoining pressure instead of van der Waals potential. Performing
a spacial-temporal stability analysis, they observed that, even in linear ap-
proximation, the long-range intermolecular forces strongly affect the evolution
of initially localized disturbances; a negative disjoining pressure caused by
van der Waals forces strongly promotes instability. Consequently, the absolute
growth rate and speed of spreading of disturbances increase as the thickness
of undisturbed film decreases.

Presence of chemical reactions in a liquid film gives rise to variations
in density and viscosity since these properties depend on the components
concentration and temperature of the liquid. Matar and Spelt [57] explored
the dynamics of thin free films with reaction-driven density and viscosity
variations and observed the existence of a number of competing effects; the
heat released during the reactions processes decreases the density and viscosity
of the liquid and gives rise to thermocapillary effects. Viscosity reduction and
thermocapillary effects are destabilizing, promoting film thinning and van der
Waals-driven rupture. However, the decrease in density leads to film expansion
to satisfy mass conservation, which is stabilizing mechanism.

Effects of non-newtonian properties on the stability of thin free liquid
sheets were recently investigated by Yang et al. [19]. Performing a linear sta-
bility analysis and numerical investigation in a power-law fluid, they observed
that increasing non-Newtonian properties caused two different impacts in sheet
instability; velocity at the interface increases with non-Newtonian effects, and
larger velocities augment aerodynamics instabilities, in the other hand, distur-
bances can be damped out due by the viscous dissipation effects. The resulting
effect of non-Newtonian properties on the liquid sheet stability depends on the
combination of two aspects.

Self-similarity analysis is another important mathematical tool to study
long wavelength models for van der Waals-driven rupture of free thin liquid
sheets. Using this tool, Vaynblat et al. [43] investigated the influence of
disturbances type in the rupture sheet dynamics. They performed an analysis
of planar and axisymmetric perturbation evolution near a rupture singularity
and were able to obtain the corresponding similarity solutions. From this
analysis, they observed that van der Waals forces, viscosity, and inertia are
asymptotically significant, but the action of surface tension is negligible near
to rupture point.

Based on the set of equations proposed by Erneux and Davis [25], Ida
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and Miksis [27] studied the dominant force balances in the evolution equation
using similarity-type solution in the temporal and spatial vicinity of rupture.
Assuming that close to breaking point van der Waals and viscous forces are
dominant, with inertia and surface tension being negligible, they found an
analytical result for values of the exponents for the similarity solutions.They
were able to confirm this assumption by solving numerically the set of partial
differential equations; by examining the relative size of each term of equation
near to breaking, they observed that van der Waals and viscous forces dominate
the evolution.

Self-similarity analyses for non-Newtonian fluids were addressed by Thete
et al. [44]. They investigated the evolution of a power-law liquid film toward the
space-time singularity and were able to determine scaling exponent governing
the time evolution of the film thickness based on non-Newtonian properties of
the fluid. From the analysis, they were able to construct similarity profiles for
the interface shape close to rupture point.

Complementing Vaynblat et al. [43] work, Thete et al. [58] recently
studied the dynamics of film rupture in two limit case; inertialess and inviscid
flow regime. The analysis revealed that the scaling exponents for the self-
similarity solution of the film thickness in any of three regimes, i.e Stokes,
inertial or inertial-viscous, has the same value regardless of the disturbance
type - planar or axisymmetric. They also observed that inviscid limit agrees
with Thete et al. [44] results for a power-law fluid under non-Newtonian
conditions where viscous forces become negligible.

1.2.2
Sheet retraction

After the pinch-off, a small hole (axisymmetric perturbation) or straight
line (planar perturbation) appears in the liquid curtain, which may grow with
time and lead it to full disintegration of the sheet as shown in the snapshot
sequence presented by Karim et al. [17] during an experimental investigation
of the effect of viscosity on liquid curtain stability.
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Figure 1.1: Desintegration process in a Newtonian liquid sheet caused by the
growth of a small role due to action of surface tension [17].

Pioneer studies of film retraction were developed by Dupré [60] in the
nineteenth century. Based on the assumption that surface energy is purely
converted into kinetic energy, he deduced the retraction speed of the film.
Later, using global mass and momentum balance, Taylor [9] and Cullick [62]
independently studied the motion of the free edge of a circular hole in a liquid
sheet. They calculate the film retraction speed, Uc, which was a factor of

√
2

smaller than the velocity predicted by Dupré [60]

Uc =
√
2σ
ρH

. (1-5)

Experimental results obtained by McEntee and Mysels [63] for soap film with
a thickness greater than 0.1 μm confirmed Cullick-Taylor theory.

Seeking to understand the effect of viscosity on film retraction, Debrégeas
et al. [65] experimentally investigated the bursting of a very viscous free liquid
film, with the absence of any surfactant. Experiments were performed by
forming circular suspended films of polymer polydimethylsiloxane (PDMS).
They observed that the retraction speed was not constant, rather the hole
radius grows exponentially

r0(t) = R0exp
(

t

τ

)
, (1-6)

here R0 is initial size of the role and τ = 1.4μH/2σ is defined as the exponential
rise time. Debrégeas et al. [65] also observed that the fluid is no longer collected
by the rim, which is a new behavior in the thin liquid films retraction. They
attributed the absence of the rim and the exponential behavior of retraction
velocity to the viscoelastic behavior of the fluid.

Following this work, Brenner and Gueyffier [66] have numerically investi-
gated the planar retraction of thin free planar films. The mathematical formu-
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lation was based on Erneux and Davis’s equation [25] modified to include the
complete formula for the mean curvature. Three distinct regimes were studied:
low viscosity, intermediate viscosity (viscosity equals to twenty times of the wa-
ter) and high viscosity (viscosity equal to one million times of the water). They
observed that for the low viscosity case, the retraction speed was constant and
agreed with Taylor-Culick law, also there was the formation of a cylindrical
rim and capillary wave disturbances are generated ahead of the rim. For the
case of intermediate viscosity, they observed that, after a transient period, the
retraction velocity reached Taylor-Culick law, and there was a non-cylindrical
rim formation with the absence of capillary waves. In this case, they noted
that the rim presented a horizontal length prportional to the characteristic
dimension μ/ρU0. In the case of very high viscosity, as previously observed by
Debrégeas et al [65], the rim completely disappeared. However, they were not
able to find the exponential retraction velocity as proposed by Debrégeas et
al. [65].

Song and Tryggvason [67] numerically studied the influence of surround-
ing fluid in the film retraction dynamics. They observed that for a finite-size
domain, there is a reduction in the edge velocity as the rim grows, however, for
a larger domain, the retraction velocity was not affected by the surrounding
fluid.

Complementing Brenner and Gueyffier [66] and Song and Tryggvason
[67] studies, Sunderhauf et al. [41] numerically investigated the acceleration
of the rim during the planar retraction process for inertia- and viscosity-
dominated flow regimes. Looking to capture more detailed flow information
in the transient region, they performed the numerical studies for full Navier-
Stokes equations. The inverse of the Ohnesorge (Oh) number was used to
characterize the flow

Γv =
1

Oh
=

√
2ρHσ

μ2
. (1-7)

They observed that in high viscosity regimes, or for a small Γv, the motion of
the rim affects a large mass of liquid, which slows down the rim acceleration.
They also observed that considering a long time limit, all cases reached the
Taylor-Cullick velocity.

Through lubrication theory, Savva and Bush [31] examined the influence
of viscosity and geometry in the transient phase of film retraction. Using the
Ohnesorge number (Oh) as the main flow parameter, they were able to identify
the three regimes presented Brenner and Gueyffier [66] in the planar geometry.
Based on this results, they proposed an analytical prediction for the temporal
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edge speed (u0) and displacement (x0) in high Oh condition for planar sheet
retraction

u0(t) = Uc

√
t

πτvis

, (1-8)

x0(t) =
2

3
√

π

(
t

τvis

)3/2
H, (1-9)

here τvis = OhH/Uc is the characteristic retraction time, for high Oh regime.
They also observed that the maximum film thickness had linear temporal
growth regardless of Oh number.

For a circular geometry, Savva and Bush [31] observed that the retraction
dynamics are markedly different, which confirms the relevance of geometry in
sheet retraction. In high Oh limit, they found an analytical expression for the
temporal displacement of the hole (r0) in the early stages of retraction:

r0(t) = R0exp
(

t

2τvis

)
. (1-10)

The expression proposes an exponential behavior for the hole growth, as
predicted by Debregeas et al.’s studies. In this sense, this behavior is not
associated with viscoelasticity as reported Debregeas et al., but a generic
feature of the hole expansion in a viscous liquid sheet. The difference between
Eqs. 1-9 and 1-10 lies on the contribution of surface tension coming from the
extra curvature in the azimuthal direction; the extra curvature opposes to
expansion during the early stage of retraction.

Gordillo et al. [70] studied numerically and analytically the capillary
retraction phenomenon of a viscous fluid in a film surrounded by a viscous and
an inviscid gas. They performed the numerical simulation for full Navier-Stokes
equations and for an approximation using long wavelength theory. Results
showed a good agreement between both methods. Based on the asymptotic
method, they developed an analytical solution for the interface shape for
viscous and inviscid surrounding.

Recently, through finite element numerical simulation, Vilonne et al. [68]
investigated the retraction of a circular viscoelastic liquid film for confined and
unconfined geometry. Three constitutive models were evaluated: Oldroyd-B,
Giesekus, and Phan-Thien-Tanner. Results for the Oldroyd-B model showed
that, when inertia is relevant, the absence of wall effects caused moderate
viscoelasticity influence and the film retraction dynamics tends to Taylor-
Cullick law. However, in the presence of wall-effects oscillations appeared in
the flow which enhanced viscoelasticity effects. For viscous dominant flows,
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the unconfined geometry tends to dynamics predicted by Debregeas et al. with
some deviation due to viscoelasticity effects. In the case of confined geometry,
viscous dominant flow presented the absence of oscillations, with the hole speed
going through a maximum and then monotonically decaying to zero. Models
that took into account non-constant viscosity, such as Geisekus and Phan-
Thien-Tanner, showed no significant difference in the dynamics of the film
retraction compared to Oldroyd-B model.

1.3
Dissertation goals

Most of the available studies on the stability of thin liquid sheets consider
the liquid as Newtonian. In the case of non-Newtonian fluids, analyses were
limited to power-law fluids, especially in the rupture process.

In this sense the goal of this work is to provide a complete study
of the breakup process of viscoelastic thin liquid sheets. The investigation
is performed for both stages; perturbations growth in the liquid sheet and
subsequent sheet retraction process. For the first stage, the investigation of
perturbation growth, the goals of this work are:

– Develop a linear stability analysis and propose a stability criterion for
axisymmetric perturbations in a Newtonian fluid film based on Erneux
and Davis’s work [25].

– Solve the full set of the evolution equation numerically, find the stability
criteria for planar and axisymmetric perturbation and compare the pre-
diction with the analytical results of linear stability analysis. Also analyze
theoretically and numerically the effects of non-Newtonian properties on
the stability criteria, for both types of perturbations.

– Investigate the nonlinear influence of non-Newtonian properties in the
perturbation growth rate and rupture time.

– Study the effect of non-Newtonian properties on the self-similarity solu-
tion.

For the sheet retraction, the objectives of this work are:

– Develop a mathematical formulation based on long-wavelength approxi-
mation taking into account the non-Newtonian properties of the fluids.

– Implement a numerical methodology based on Finite Difference Method
to solve the set of equations.

– Investigate the influence of non-Newtonian properties in the retraction
speed and in the thickness profile.
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1.4
Scope of work

This work is organized in Part I and Part II. Part I is devoted to present
the dynamics of rupture of non-Newtonian thin free liquid sheets. This part is
divided into chapters as follow: Chapter §2 presents the complete mathematical
formulation of the problem. Chapter §3 describes the stability analysis for
the Newtonian axisymmetric and non-Newtonian planar problem. Chapter §4
describes the aspects of the numerical methodology employed. And Chapter
§5 presents and discusses extensively the results obtained in this part of the
research.

Part II is devoted to present the dynamics of the retraction of a non-
Newtonian liquid sheet. It is split into following chapters: Chapter §6 presents
the mathematical formulation used to describe the problem. Chapter §7 brings
numerical strategy necessary to solve the retraction problem, given that the
velocity boundary condition at the tip is part of the solution. And Chapter §7
presents and discusses the results obtained in this part.

Finally, Chapter §9 presents the general conclusion and suggestions for
future works.
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Rupture process
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2
Mathematical modeling

Flows of non-Newtonian fluids, such as viscoelastic fluids, have a very
particular dynamics. The complexity associated with the stress field and the
vast number of different mechanical responses to imposed rate-of-strains do
not allow a single and simple mathematical formulation to describe the flow
behavior of non-Newtonian fluids. In this sense, the choice of a suitable model
becomes essential for the correct flow description and model. This chapter
describes the mathematical formulation used to describe the rupture of a thin
liquid sheet, which includes the mass and momentum conservation equations,
stress tensor model with the associated boundary and initial conditions.

2.1
Conservations equations

A liquid sheet, bounded by a passive gas, is considered thin enough that
van der Waals forces are significant, while thick enough that continuum hy-
pothesis is valid. The flow, considered two-dimensional and isothermal, is de-
scribed by the mass and momentum conservation equations for incompressible
liquids

∇ · u = 0, (2-1)

and

ρ
Du
Dt

= ∇ · T + ∇Φ, (2-2)

ρ is the liquid density, and u is the velocity field. The van der Waals potential
Φ is defined as

Φ = A

2πh3
,

A is the Hamaker constant and h is the film thickness.
The stress tensor T = −pI+τ is split into an isotropic 1 and a deviatoric

component. The isotropic component −pI is the mechanical pressure and
1Isotropic component is invariant under rotation of the axes of reference [26].
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defined as p = −1/3tr(T). The non-isotropic or deviatoric stress tensor has
the distinctive property of being due entirely to the existence of the motion
of the fluid [26]. For Newtonian fluids the deviatoric component is linearly
proportional to the rate-of-strain tensor γ̇

τ = μγ̇, (2-3)

where μ is a parameter of proportionality between rate-of-strain and stress
tensor called viscosity, which depends significantly on the temperature; for
isothermal flow it becomes a constant [26].

The Newtonian constitutive equation is the simplest equation for a vis-
cous fluid and accurately describes the rheological behavior of low molecular
weight liquids and even high polymers at a very slow rate of deformation
[48]. However, for liquids of complex molecular structure, especially for those
consisting in long molecular chains, some emulsion and mixtures, the Newto-
nian expression (2-3) is not accurate to represent the deviatoric stress at only
moderate rate of deformation. Stress anisotropy, flow deformation history, and
strain rate-dependent viscosity are flow characteristics that invalidate the lin-
ear Newtonian behavior.

A large number of constitutive models have been proposed in order to
incorporate non-Newtonian rheological behavior of fluids in the stress tensor.
Developing a constitutive model is a combination of art and science to look for
an appropriate tensorial expression for stress as a function of deformation to
match observed behavior, where there is no recipe to follow, however, there are
some constraints to ensure the physical sense of the equations. The constraints
are [49];

– Stress is independent of the coordinate system used to describe it, thus,
the stress is a second-order tensor where the constitutive equation must
be frame invariant.

– The stress tensor is symmetric for most materials and for all conventional
polymer melts and solutions;

– The response of a material to imposed stress or to imposed deformation
is the same for all observers, thus there is a requirement of material
objectivity.

Section 2.1.1 presents one model where using a minor modification of
the Newtonian fluid constitutive equation, one can include the idea of rate-
of-deformation dependent viscosity in the stress tensor. Although this model
cannot describe memory flow effect and time-dependent elastic effects, there
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are many industrial flow problems in which the non-Newtonian viscosity effects
are of paramount importance, and hence the model is useful [39].

Section 2.1.2 presents a simple, although still complex, model to describe
the rheological behavior of a viscoelastic fluid. As viscoelastic liquids have a
more convoluted molecular structure, a more complex stress tensor models is
required in order to include memory flow effect and stress anisotropy.

2.1.1
Generalized Newtonian model

For many engineering problems, the most important property of macro-
molecular fluid is the dependence of viscosity to the deformation rate. Given
that viscosity can change up to two orders of magnitude with the rate of strain,
it cannot be ignored in flow calculations, lubrications problems, extruder oper-
ations and polymer processing calculations. Therefore, one earliest empiricism
to be introduced was a modification of Newton’s law of viscosity, where vis-
cosity is allowed to vary with the rate-of-strain, called Generalized Newtonian
model, GNM. GNM is phenomenological model that assumes that applied flow
only changes the dissipation rate in the fluid [69] i.e, its viscosity, and does
not change the tensorial structure of the Newtonian constitutive model, so the
constitutive law can be written as:

T = −pI + ηγ̇. (2-4)

Here η is the viscosity written as a function of magnitude of rate-of-strain
tensor γ̇, i.e η = η(γ̇), were γ̇ is second tensorial invariant of rate of strain
tensor II.

γ̇ =
√
1
2II (2-5)

Typically, polymer solutions have a viscosity that falls with increasing
shear rate, which is called shear-thinning behavior. For flows where there is
no shear stress, the rate-of-strain γ̇ reduces to a rate-of-extension. Usually, the
extensional viscosity of polymer solutions increases with the rate-of-extension,
which is called an extensional-thickening behavior. The empirical viscosity
model presented in Eq. 2-6 describes that behavior.

η(ε̇) = η∞ + (η0 − η∞)(1 + (λε̇)2)n−1
a (2-6)

Thus viscosity model interpolates between the zero-extensional-rate vis-
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cosity η0 to the infinity-extensional-rate viscosity η∞. A relaxation time λ sets
the crossover extensional rate, n is the power-law index and the constant a sets
the size and the curvature of the crossover region from the Newtonian-plateau
with viscosity η0 to a high-viscosity-plateau η∞, as sketched in Fig. 2.1.
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Figure 2.1: Sketch of the rheological behavior of Generalized Newtonian model
under an extensional flow.

Generalized Newtonian model is a simple extension of the linear rela-
tion between the stress and the velocity gradient in the classical Newtonian
constitutive law.

2.1.2
Oldroyd-B model

For a viscoelastic material, constitutive equations are mathematical
relationships that allow one to calculate the stress in a liquid, given the
flow history. They are often derived from constitutive models, i.e a set of
assumptions and idealizations about the molecular or structural forces and
motions that produces stress. By comparing a constitutive equation derived
from a given model with measured stresses, it is possible to test the model and
further use it to predict a flow or test ideas of polymer molecular physics [46].

An idealization of a viscoelastic fluid was proposed by Maxwell over a
century ago [39]. In his theory, Newton’s law of viscosity and Hooke’s law
of elasticity are combined to arrive at a simple equation that describes a
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viscoelastic liquid, which in simple shear flow is given as

τxy +
μ

G

∂τxy

∂t
= μγ̇xy (2-7)

where γ̇xy is xy-component of the rate-of-strain tensor, μ is the fluid viscosity
and G is the elastic modulus. For steady-state flow this equation simplifies
into the Newtonian fluid with viscosity μ, i.e τxy = −μγ̇xy. For sudden changes
in stress, time derivative term dominates, and one has an expression that,
integrated with respect to time, gives the Hookean solid with elastic modulus
G, i.e τxy = −Gγxy.

Equation 2-7 can be generalized and written in the tensor form, where μ

is replaced by η0, which is the zero-shear-rate viscosity and μ/G is by a time
constant λ, often called relaxation time

τ + λ
∂

∂t
τ = η0γ̇. (2-8)

However, Hooke’s law is valid only for infinitesimal displacement gradi-
ents, in this sense it is reasonable to expect that Maxwell’s equation is sub-
jected to the same restriction. For large strain rates, Eq. 2-8 fails in taking into
account the principle of frame invariance (one of the constrains presented in
the begin of this section), which is one of chief among of principles of contin-
uum mechanics. The frame invariance requires that the relationship between
the stress tensor and deformation gradient tensor be independent of any ro-
tation of the body or the observer [46]. In this sense, Oldroyd proposed that
the frame independence could be recovered by writing the Maxwell’s equation
2-8 in a frame of reference that is convected or deformed with the material
element. To do so, one must reinterpret the time derivative ∂/∂t as a time
derivative in a convected coordinate system. There are two simple convected
coordinate systems; one where the base coordinate vectors are parallel to ma-
terial lines, or contravariant base vectors, an other the set of base vectors are
normal to material planes, or covariant base vectors. The contravariant base
vector, also named upper-convected derivative is, in general, preferable since
it has molecular basis and a better agreement with experimental data [46]. In
this sense, time derivative of Eq. 2-8 is rewritten as

∂τ

∂t
= ∇

τ = D

Dt
τ − (τ · ∇u)T − (τ · ∇u). (2-9)

Writing the deviatoric stress tensor τ as a superposition of solvent and
polymer contributions, τ= τs + τp, gives rise to the simplest, yet complex,
model that introduces memory and stress anisotropy and also maintains
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the independence of the framework: the Oldroyd-B model. In this model,
the solvent constitutive equation follows Newton’s law, τs = ηsγ̇, and the
polymeric term is given by Eq. 2-8 written in a convected coordinate system
described in Eq. 2-9 named the upper-convected Maxwell model (UCM) [46]

τ p + λ
∇
τ p= ηpγ̇, (2-10)

where ηp is the polymeric viscosity.

2.2
Boundary conditions

Equations (2-1, 2-2 and 2-10) are solved using Cartesian coordinate sys-
tem for planar perturbation, and cylindrical coordinate system for axisymmet-
ric perturbation, as sketched in Figs 2.2 and 2.3. The local sheet thickness is
defined by the function h = h(x, t) for the planar case and h = h(r, t) for the
axisymmetric problem.

Figure 2.2: Sketch of flow domain and force balance for planar perturbation
type.
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Figure 2.3: Sketch of flow domain and force balance for axisymmetric pertur-
bation type.

Boundary conditions along the liquid-gas interface are defined at z = h

and correspond to force balance along the normal and tangential directions,
and kinematic condition, as sketched in Fig 2.4.

Figure 2.4: Sketch of orientation of normal unit vector n and tangential unit
vector t for stress balance equation at interface of the fluid.

For force balance, considering that the gas viscosity is much smaller than
liquid viscosity, thus μgas/μliquid ≈ 0, and free of inertial effects, the shear
stress at gas-liquid interface is zero and hence the normal liquid stress must
be balanced with capillarity stress.

n · (n · T) = σκ, (2-11)
t · (n · T) = 0. (2-12)
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Here σ is the surface tension, which is assumed to be constant, κ is the
curvature of the free surface. Kinematic condition imposes that there is no
flow through the liquid-gas interface in such way that the surface must be
moving with the liquid velocity along the free surface:

n · u = ∂h

∂t
(2-13)

n and t are the normal and tangential unit vectors, which for the axisymmetric
problem, are written as:

t =

⎡
⎢⎣

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

er,
∂h

∂r

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

ez

⎤
⎥⎦

n =

⎡
⎢⎣−∂h

∂r

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

er,

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

ez

⎤
⎥⎦ . (2-14)

The initial condition assumes a stationary sheet of constant thickness H,
which is perturbed by a cosine function with amplitude H ′ and wavelength L,
centered at x = 0 or r = 0:

h(x, t = 0) = H − H ′cos
(

πx

L

)
(2-15)

2.3
Lubrication approximation

The presence of free boundaries increases the complexity of the math-
ematical problem. However, the slenderness of the fluid film leads to a large
ratio of characteristics lengths along the directions parallel and perpendicular
to the flow. In this sense, the system of equations can be simplified using long
wavelength asymptotic expansions [42, 31].

Section 2.3.1 describes the mathematical procedures for planar pertur-
bation model, based on the two-dimensional Cartesian conservation equations
and 2.3.2 for axisymmetric perturbation model, based on the two-dimensional
cylindrical conservations equations.
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2.3.1
Planar model

For a two dimensional planar flow, Eqs.(2-1) and (2-2) in Cartesian
coordinates are written as:

∂U

∂x
+ ∂V

∂y
= 0 (2-16)

ρ

(
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y

)
= −∂P

∂x
− ∂Φ

∂x
+ ∂Txx

∂x
+ ∂Txy

∂y
(2-17)

ρ

(
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y

)
= −∂P

∂y
− ∂Φ

∂y
+ ∂Txy

∂x
+ ∂Tyy

∂y
. (2-18)

For an planar slender sheet, symmetric about y = 0, all the fields can be
expanded about y = 0 [31]:

U(x, y, t) = u(x, t) + u2(x, t)y2 + ...

V (x, y, t) = v1(x, t)y + v3(x, t)y3 + ...

P (x, y, t) = p(x, t) + p2(x, t)y2 + ...

Φ(x, y, t) = φ(x, t) + φ2(x, t)y2 + ...

Txx(x, y, t) = τxx(x, t) + τxx,2(x, t)y2 + ...

Txy(x, y, t) = τxy(x, t)y + τxy,2(x, t)y3 + ...

Tyy(x, y, t) = τyy(x, t) + τyy,2(x, t)y2 + ... (2-19)

Replacing the above expansions in Eqs.(2-16), (2-17) and (2-38), match-
ing the powers of y and taking only the leading order terms, the equations are
reduced to:

v1 = −∂u

∂x
, (2-20)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
− ∂φ

∂x
+ ∂τxx

∂x
+ τyx. (2-21)

Combining Taylor expansions with Eqs.(2-11), (2-12) and (2-13), using
unit normal n and tangential t defined in 2-14, the boundary conditions along
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the free surface are written as:
⎡
⎣(

∂h

∂x

)2
(τxx − p) + ∂h

∂r
τyxh + τyy − p

⎤
⎦

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦−1

= σκ, (2-22)

⎡
⎣−∂h

∂x
τxx +

⎡
⎣1 −

(
∂h

∂x

)2⎤⎦ τyxh + ∂h

∂x
τyy

⎤
⎦

⎡
⎣1 +

(
∂h

∂x

)2⎤⎦−1

= 0, (2-23)

∂h

∂t
+ u

∂h

∂x
− v1h = 0. (2-24)

Given a slender liquid sheet, the long wavelength approximation leads to(
∂h

∂r

)2
≈ 0, consequentially

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦ ≈ 1, hence Eqs. 2-22 and 2-23 can

be simplified to

−p = σκ − ∂h

∂r
τyxh − τyy (2-25)

τyxh = ∂h

∂x
(τxx − τyy) . (2-26)

Pressure gradient can be found by combining the derivative of Eqs. 2-25
and 2-26

−∂p

∂x
= σ

∂κ

∂x
− ∂τyy

∂x
. (2-27)

Replacing Eqs. 2-26 and 2-27 into 2-21 one can find the lubrication
equation for radial velocity

∂u

∂t
+ u

∂u

∂x
− σ

ρ

∂κ

∂x
+ 1

ρ

∂φ

∂x
− 1

ρ

∂τxx

∂x
+ 1

ρ

∂τyy

∂ x
− 1

ρh

∂h

∂x
(τxx − τyy) = 0 (2-28)

In the long wave expansion, curvature κ is approximated as:

κ = ∂2h

∂x2

⎛
⎝1 +

(
∂h

∂x

)2⎞⎠−3/2

≈ ∂2h

∂x2
. (2-29)

Combining Eqs.(2-20) and (2-24) one can find the thickness evolution
equation

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 (2-30)

Equations 2-28 and 2-30 form the general lubrication system that can be
applied to any type of fluid. Using Oldroyd-B model presented in subsection
2.1.2, one can split the stress tensor into the solvent component τ s and a
polymeric stress τ p.
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The set of equations may be written in terms of the following dimension-
less variables:

x∗ = x

L
, h∗ = h

H
, u∗ = u

ηs

ρL

, t∗ = t

ρL2

ηs

τ p
xx

∗ = τ p
xx

η2s
ρL

, τ p
yy

∗ =
τ p

yy

η2s
ρL

. (2-31)

Dropping the ∗ to simplify the notation, the evolution equations for
dimensionless longitudinal velocity u, film thickness h and polymeric stress
tensor components are:

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (2-32)

∂u

∂t
+ u

∂u

∂x
− 3S ∂3h

∂x3
− 3Â
8h4

∂h

∂x
− 4

h

∂h

∂x

∂u

∂x
− 4∂2u

∂x2
− ∂τ p

xx

∂x

+
∂τ p

yy

∂x
− τ p

xx

h

∂h

∂x
+

τ p
yy

h

∂h

∂x
= 0, (2-33)

τ p
xx + De

(
∂τ p

xx

∂t
+ u

∂τ p
xx

∂x
− 2τ p

xx

∂u

∂x

)
= −2ηr

∂u

∂x
, (2-34)

τ p
yy + De

(
∂τ p

yy

∂t
+ u

∂τ p
yy

∂x
+ 2τ p

yy

∂u

∂x

)
= 2ηr

∂u

∂x
(2-35)

The problem is governed by the following dimensionless parameters: (a)
S = σHρ

6η2s
that represents the ratio of capillary and inertial to viscous forces;

(b) Â = Aρl2

6πH3η2s
that represents the ratio of van der Walls to viscous forces; (c)

Deborah number De = ληs

L2ρ
, which measures the ratio of the liquid relaxation

time to a characteristic time of the flow, and (d) ηr = ηp

ηs

that is the ratio
of the polymeric and solvent viscosity. Newtonian flow is recovery by setting
De = 0 and ηr = 0.
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2.3.2
Axisymmetric model

For a two dimensional axisymmetric flow, Eqs.(2-1) and (2-2) in cylin-
drical coordinates are written as:

∂

∂r
(Ur) + ∂

∂z
(V r) = 0, (2-36)

ρ

(
∂U

∂t
+ U

∂U

∂r
+ V

∂U

∂z

)
= −∂P

∂r
− ∂Φ

∂r
+ 1

r

∂

∂r
(rTrr) +

∂

∂z
Tzr − Tθθ

r
,(2-37)

ρ

(
∂V

∂t
+ U

∂V

∂r
+ V

∂V

∂z

)
= −∂P

∂z
− ∂Φ

∂z
+ 1

r

∂

∂r
(rTzr) +

∂

∂z
Tzz. (2-38)

Following the approached detailed in subsection 2.3.1, now for an ax-
isymmetric slender sheet, symmetric about z = 0, where expansion for Trr is
equal to expansion for Txx and Trz is equal to Txy, it is possible to replace the
expansions in Eqs.(2-36), (2-37) and (2-38), match powers of z and take the
lowest order terms, to reduce equations as following:

v1 = −∂u

∂r
− u

r
, (2-39)

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
− ∂φ

∂r
+ 1

r

∂

∂r
(rτrr) + τzr − τθθ

r
. (2-40)

Similarly to subsection 2.3.1, boundary conditions along the free surface
are written as:

⎡
⎣(

∂h

∂r

)2
(τrr − p) + ∂h

∂r
τzrh + τzz − p

⎤
⎦

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦−1

= σκ, (2-41)

⎡
⎣∂h

∂r
τrr +

⎡
⎣1 −

(
∂h

∂r

)2⎤⎦ τrzh − ∂h

∂r
τzz

⎤
⎦

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦−1

= 0, (2-42)

∂h

∂t
+ u

∂h

∂r
− v1h = 0. (2-43)

In the long wavelength limit,
(

∂h

∂r

)2
≈ 0, therefore Eqs.(2-41) and (2-42)

can be written as:

−p = σκ − τzz (2-44)

τrz =
1
h

∂h

∂r
(τrr − τzz) . (2-45)

Taking the derivative of Eq. 2-44 and plugging it and Eq. 2-45 into Eq.
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2-40, the radial velocity is described by the following transport equation

∂u

∂t
+ u

∂u

∂r
− σ

ρ

∂κ

∂r
+ 1

ρ

∂φ

∂r
− 1

rρ

∂

∂r
(rτrr) +

1
ρ

∂τzz

∂r

−τrr

hρ

∂h

∂r
+ τzz

hρ

∂h

∂r
+ τθθ

r
= 0, (2-46)

where the curvature κ is approximated to

κ = ∂2h

∂r2

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−3/2

− ∂h

∂r

⎡
⎢⎣r

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠1/2
⎤
⎥⎦

−1/2

,

κ ≈ ∂2h

∂r2
− 1

r

∂h

∂r
. (2-47)

Equation(2-39) combined with Eq. (2-43) give the thickness time evolu-
tion of the liquid sheet

∂h

∂t
+ h

∂u

∂r
+ u

∂h

∂r
+ hu

r
= 0 (2-48)

Equations 2-46 and 2-48 form the general set of lubrication equations
for an axisymmetric flow. The Oldroyd-B model is used to describe the stress
field.

The set of equations can be written in terms of the following dimension-
less variables:

r∗ = r

L
, h∗ = h

H
, u∗ = u

ηs

ρL

, t∗ = t
ρL2

ηs

,

τ p
rr

∗ = τ p
rr

η2
s

ρL

, τ p
zz

∗ = τ p
zz

η2
s

ρL

, τ p
θθ

∗ = τ p
θθ

η2
s

ρL

. (2-49)

Dropping the ∗ to simplify the notation, the evolution equations for
dimensionless longitudinal velocity u, film thickness h and polymeric stress
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tensor components are:

∂h

∂t
+ 1

r

∂

∂r
(hru) = 0 (2-50)

∂u

∂t
+ u

∂u

∂r
− 3S

(
∂3h

∂r3
+ 1

r

∂2h

∂r2
− 1

r2
∂h

∂r

)
− 4

h

[
∂

∂r

(
h

r

∂

∂r
(ur)

)
− u

2r
∂h

∂r

]

− 3Â
8h4

∂h

∂r
+ 1

r

∂

∂r
(hτ p

zz) − 1
hr

∂

∂r
(hrτ p

rr) +
τ p

θθ

r
= 0 (2-51)

τ p
rr + De

(
∂τ p

rr

∂t
+ u

∂τ p
rr

∂r
− 2τ p

rr

∂u

∂r

)
= 2ηr

∂u

∂r
(2-52)

τ p
zz + De

(
∂τ p

zz

∂t
+ u

∂τ p
zz

∂r
+ τ p

zz

r

∂

∂r
(ru)

)
= −2ηr

r

∂

∂r
(ru) (2-53)

τ p
θθ + De

(
∂τ p

θθ

∂t
+ u

∂τ p
θθ

∂r
− 2τ p

θθ

u

r

)
= 2ηr

u

r
. (2-54)

Dimensionless parameters that govern the axisymmetric flow, S, Â, De

and ηr, are the same ones that govern the planar flow and defined in section
2.3.1.
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3
Linear stability

Linear stability analysis is usually the first step taken to investigate flow
stability. This analysis helps to understand the dynamics of the linearized flow.
It results in the determination of a critical parameter that determines whether
the perturbation grows with time or ultimately decays to zero.

Erneux and Davis [25] have performed the stability analysis for New-
tonian sheet subjected to a small perturbations, and they have shown that
a uniform thickness sheet of a Newtonian liquid is linearly stable to planar
perturbation when the capillary forces are strong enough when compared to
the van der Waals forces. Following the same procedure, section 3.1 presents
an evaluation of the linear stability analysis for a viscoelastic fluid under a
planar perturbations, and section section 3.2 for Newtonian fluid under an
axisymmetric perturbations.

3.1
Planar model

The first approach to perform linear stability analysis is to consider the
steady-state solutions of the problem; radial velocity ū, thickness profile h̄ and
stress components τ̄xx, τ̄yy. Steady-state solutions only depend on axial position
and satisfy the governing equations. Afterwards, a time- and spatial-dependent
perturbation of some type is added in such way that solutions are represented
as

h(x, t) = h̄(x) + h′(x, t),
u(x, t) = ū(x) + u′(x, t),
τxx(x, t) = τ̄xx(x) + τ ′

xx(x, t),
τyy(x, t) = τ̄yy(x) + τ ′

yy(x, t).

For this problem, stability analysis is performed for an static film
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submitted to an infinitesimal disturbance. The steady-state solution is:

ū = 0, ,

h̄ = 1
2 ,

τ̄xx = τ̄yy = 0.

The perturbed time-dependent solutions are written as:

h(x, t) = 1
2 + h′(x, t)

u(x, t) = u′(x, t)
τxx(x, t) = τ ′

xx(x, t)
τyy(x, t) = τ ′

yy(x, t)

In linear theory, perturbations h′, u′, τ ′
xx and τ ′

yy are taken to have much
smaller amplitudes than mean quantities 1, i.e |h̄| >> |h′| 2. Substituting
the perturbed solutions into the set of Eqs. 2-32 to 2-35, one have a system
that describe the evolution of the perturbations. Doing that, products of
perturbated terms emerge in the equations (for instance u′∂h′/∂r), however,
as the amplitude of perturbations are considered small 3 those terms are
discarded, and the set of equations are written as

∂h′

∂t
+ h̄

∂u′

∂x
= 0, (3-1)

∂u′

∂t
− 3S ∂3h′

∂x3
− 3
8

A

h̄4
∂h′

∂x
− 4∂2u′

∂x2
− τ ′p

xx

∂x
+

∂τ ′p
yy

∂x
= 0, (3-2)

τ ′p
xx + De

∂τ ′p
xx

∂t
= −2ηr

∂u′

∂x
, (3-3)

τ ′p
yy + De

∂τ ′p
yy

∂t
= 2ηr

∂u′

∂x
. (3-4)

Eqs. 3-1 to 3-4 form the linearized system for perturbed quantities which
is the base of linear stability. Since it came from the hypothesis of small
perturbations, the solutions of the linear set of equations is only valid in
the beginning of growth of any disturbances, a large perturbation amplitudes

1When mean quantities are not zero due to the problem dynamics.
2Another way to represent the small amplitude of perturbations that can be found in the

literature is including a parameter ε << 1 in front of the perturbed term of the equation, i.e
h(x, t) = h̄(x)+εh′(x, t). However, as we work only to first order term of ε, for simplification,
we choose to neglect the parameter ε.

3Thinking in terms of ε, product of perturbations are of order of ε2, in this sense those
terms are approximated zero and so can be negligible.
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invalidates the theory.
Since the set of equations is linear, the disturbances can be decomposed

into normal modes. For static flow, the normal-mode disturbances are given
by a stationary wave. Taking the dominant mode, the set of equations allow
solutions in the form:

(h′, u′, τ ′
xx, τyy′) = (h0, u0, τxx0, τyy0)eωt+iαx (3-5)

where h0, u0, τxx0 and τyy0 are eigenfunctions from the solution of this
eigenvalue problem , α is the wavenumber in x-direction and ω is represented
here as temporal growth/decay rate. For the stability question, the most
important quantity is Re(ω), which is the real part of the exponential function.
Small disturbances grow if Re(ω) > 0 and decay if Re(ω) < 0; ω = 0 impose a
neutrally stable condition, marking the boundary between stable and unstable
condition.

Replacing 3-5 into the set of linear Eqs. 3-1 to 3-4 one can find the
algebraic characteristic equations for the growth rate of perturbations

ω2 +
(
4α2 + 4ηr

1 + Deω
α2

)
ω + 3

2α2
(
Sα2 − 2Â

)
= 0, (3-6)

which admits a root ω = 0 if the last coefficient is equal to zero. In this
condition there is a “cutoff” wave number at which the perturbation is neutrally
stable:

αc =

√
2Â
S

. (3-7)

For a bounded domain −1 ≤ x ≤ 1, with periodic boundary conditions,
the wavenumber α only takes distinct values given by α = nπ where (n =
1, 2, ..). Assuming the parameter S as the bifurcation parameter3 [25], one
can find the stability criterion, that for αc = π, is given by S = 2Âπ−2,
which is exactly the same condition derived by Erneux and Davis [25] for
a Newtonian liquid. Here it is important to note that the non-Newtonian
parameters, Deborah number De and polymer-to-solvent viscosity ratio ηr,
only appear in the term that multiplies ω and therefore have no effect on the
critical stability condition.

3A bifurcation occurs when a change in a parameter causes a change in the stability
of system in equilibrium. In continuous systems, this corresponds to the real part of an
eigenvalue of the system passing through zero [47]; the parameter responsible for causes the
change is call bifurcation parameter.
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3.2
Axisymmetric model

In order to investigate the affect of perturbation type on linear stability
criterion, the same procedure presented in section 3.1 is used in this section to
performance a linear stability analysis for axisymmetric perturbations. Using
the same thickness and radial velocity for the steady-state solutions of section
3.1, the linearized evolution equations for Newtonian liquids are:

∂h′

∂t
+ h̄

∂u′

∂r
= 0 (3-8)

∂u′

∂t
− 3S

(
∂3h′

∂r3
+ 1

r

∂2h′

∂r2
− 1

r2
∂h′

∂r

)
− 3A
8h4

∂h′

∂r
− 4∂2h′

∂r2
− 4

r

∂u′

∂r
= 0.(3-9)

Similarly to section 3.1, Eqs. (3-8) and (3-9) accept solutions of the form:

(h′, u′) = (h0, u0)eωt+iαr, (3-10)

which can be substituted in the evolution equations and, taking the real part,
an algebraic equation for the growth rate ω for a Newtonian fluid under an
axisymmetric perturbation is obtained:

ω2 + 4ωα2 + 3
2α2

(
Sα2 + 4S

L2
− 2Â

)
= 0. (3-11)

The root of Eq. 3-11, ω = 0, only exist if the last coefficient is equal to zero,
so the “cutoff” wave number at which the perturbation is neutrally stable is:

αc =

√
2Â
S

− 4
L2

. (3-12)

A critical ratio of capillary to van der Waals force S/Â can be derived as
a function of the perturbation wave number αc, and for αc = π is given by:

S

Â
= 2

π2 + 4
L2

. (3-13)

The additional term that appears in the denominator in the axisymmetric
problem is associated to the azimuthal curvature of the free surface. The results
suggests that a smaller surface tension is needed to stabilize an axisymmetric
perturbation.
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4
Solution method

This chapter presents the numerical methodology used to solve the full set
of coupled non-linear equations that describes the rupture process. A second-
order finite difference method was used to discretize the spacial derivatives and
an implicit Crank-Nicholson method to discretize the time derivative terms.
The result is a sparse set of coupled, nonlinear algebraic system equations,
which was solved using Newton’s method, at each time step.

4.1
Finite difference method

The Finite Difference Method (thereafter FDM) is the oldest method
for numerical solution of partial difference equations (PDE’s), believed to have
been introduced by Euler [28] in the eighteenth century. The method consist on
covering the solution domain with a grid and, at each grid point, approximate
the derivatives using truncated Taylor series expansion.

A staggered mesh over the interval 0 < x < 1 or 0 < r < 1 was used
to avoid spurious oscillations in the curvature term in the long-time limit, as
suggested by Savva and Bush [31]; the values of hi, τrr,i, τzz,i and τθθ,i are
prescribed at ri and the values of ui are prescribed at ri+1/2 = (ri + ri+1)/2,
as sketched in Fig 4.1.
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Figure 4.1: Staggered grid used to solve the rupture problem. The values
of hi are prescribed at mesh points ri, and values of ui are prescribed at
ri+1/2 = (ri + ri+1)/2.

Taylor series expansion is used to obtain approximations to first and
second derivative of the variable in respect to the spatial coordinate. To
performance the expansions, we consider u(x, t), h(r, t), τrr(r, t) and τzz(r, t)
as continuous differentiable function, so they can be, in the vicinity of ri,
expressed as [28]:

u(r) = u(ri+1/2) + (r − ri+1/2)
(

∂u

∂r

)
i+1/2

+ (r − ri+1/2)2
2

(
∂2u

∂r2

)
i+1/2

+ O

h(x) = h(xi) + (r − ri)
(

∂h

∂r

)
i

+ (r − ri)2
2

(
∂2h

∂r2

)
i

+ O

τrr(x) = τrr(xi) + (r − ri)
(

∂τrr

∂r

)
i

+ (r − ri)2
2

(
∂2τrr

∂r2

)
i

+ O

τzz(x) = τzz(xi) + (r − ri)
(

∂τzz

∂r

)
i

+ (r − ri)2
2

(
∂2τzz

∂r2

)
i

+ O

τθθ(x) = τθθ(xi) + (r − ri)
(

∂τθθ

∂r

)
i

+ (r − ri)2
2

(
∂2τθθ

∂r2

)
i

+ O

where O represents higher order terms. Replacing r by ri+1 and ri−1, for h,
τrr, τzz and τθθ, and ri+3/2 and ri−1/2, for u, one can obtain expressions for
the derivative values at these points. The same can be extended to any other
point, such as ri−2 and ri+2. Expansion for ui+1 and ui−1 can be combined
to create a central-difference scheme (CDS). Given a staggered grid, first and
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second derivatives for u and h are written as:(
∂u

∂r

)
i+1/2

= ui+1 − ui−1
dri+1/2 + dri+1/2(

∂2u

∂r2

)
i+1/2

= dri+1/2ui+1 + (dri+1/2 + dri+3/2)ui − dri+3/2ui−1
dr2i+1/2dri+3/2 + dri+1/2dr2i+3/2(

∂h

∂r

)
i

= hi+1 − hi−1
dri−1 + dri(

∂2h

∂r2

)
i

= drihi+1 + (dri + dri+1)hi − dri+1hi−1
dr2i dri+1 + dridr2i+1

Terms that were deleted from the right side of the expansions are called
truncation errors; they measure the accuracy of the approximations and at
which rate the error decreases as the spacing between two points is reduced
[28]. However, truncation error depends not only on grid spacing but also on
the derivative of the variables. Non-uniform grid uses a smaller dr in regions
where the derivative of the functions are large and larger dr in regions where
the function is smooth to obtain a more accurate approximation. In the present
problem, the mesh was concentrated in the region near to the rupture point
r = 0, by using the function

ri = 1 −
[

N − i

N − 1

]a

where a is the parameter that controls the nodal points distribution; a = 1
recovers an uniform mesh and a < 1 leads to a concentrated mesh in the
vicinity of r = 0.

For a matter of definitions, Eqs. 2-50 to 2-54 are written as

∂h

∂t
= −H(r, t) (4-1)

∂u

∂t
= −U(r, t) (4-2)

∂τrr

∂t
= −R(r, t) (4-3)

∂τzz

∂t
= −Z(r, t) (4-4)

∂τθθ

∂t
= −T (r, t) (4-5)

where R, U , R, Z and T are functions where the derivatives are computed in
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terms of mesh points values of the functions, as follows

H = ûi
hi+1 − hi−1
dri + dri+1

+ hi
ui − ui−1

dri + dri+1
+ ûi

ri

,

U = ui
ui+1 − ui−1

dri−1/2 + dri+1/2
− 3S

(
κi+1 − κi

dri

)
+ 3
8

Â

ĥi

(
hi+1 − hi

dri

)
+ τ̂zz,i

ĥi

(
hi+1 − hi

dri

)

+τzz,i+1 − τzz,i

dri

− τ̂rr,i

ri+1/2
− τ̂rr,i

ĥi

(
hi+1 − hi

dri

)
− τθθ,i+1 − τθθ,i

dri

− 4
ri+1/2

(
ui+1 − ui−1

dri−1/2 + dri+1/2

)
− 4

ĥi

(
hi+1 − hi

dri

) (
ui+1 − ui−1

dri−1/2 + dri+1/2

)

+4
⎛
⎝dri+1/2ui+1 + (dri+1/2 + dri+3/2)ui − dri+3/2ui−1

dr2i+1/2dri+3/2 + dri+1/2dr2i+3/2

⎞
⎠ + 4ui

r2i+1/2

− 2ui

ĥri+1/2

(
hi+1 − hi

dri

)
,

R = 2 ηr

De

(
ui − ui−1
dri−1/2

)
− τrr,i

De
− ûi

(
τrr,i+1 − τrr,i−1

dri+1 + dri

)
+ 2τrr,i

(
ui − ui−1
dri−1/2

)
,

Z = −2 ηr

De

(
ui − ui−1
dri−1/2

+ ûi

ri

)
− τzz,i

De
− ûi

(
τzz,i+1 − τzz,i−1

dri+1 + dri

)
− τzz,i

(
ui − ui−1
dri−1/2

+ ûi

ri

)
,

T = 2 ηr

De

ûi

ri

− τθθ,i

De
− ûi

(
τθθ,i+1 − τθθ,i−1

dri+1 + dri

)
+ 2τrr,i

ûi

ri

.

here û, ĥ, τ̂rr, τ̂zz and τ̂θθ are linear interpolated values of u, h, τrr, τzz and τθθ

at ri and ri+1/2, respectively.

4.2
Crack-Nicholson method

In computing unsteady flows, time derivatives also need to be discretized.
A "time grid", with discrete points in time, can be used to perform the dis-
cretization using the finite difference approach. The major difference between
space and time coordinates lies in the direction at which information is propa-
gated; whereas a force at any spatial location may affect (in elliptic problems)
all extension of the flow, forcing in a given instant affect only in the future
- there is no backward influence. Therefore, unsteady flows are parabolic-like
in time, which means that no conditions can be imposed on the solution (ex-
cept at the boundaries) at any time after the initialization, which has a strong
influence on the choice of solution strategy [28]. The time discretization was
performed with the implicit Crank-Nicholson method, which is a second order
accuracy of the trapezoidal rule method. This scheme is a mix of first-order
explicit and implicit Euler method.

Performing the described space and time discretization schemes in Eqs.
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Eqs. 2-50 to 2-54 we have:

ht
i − ht−1

i

Δt
+ 1
2Hi(ht, ut) + 1

2Hi(ht−1, ut−1) = 0,

ut
i − ut−1

i

Δt
+ 1
2Ui(ht, ut, τrr

t, τzz
t, τθθ

t) + 1
2Ui(ht−1, ut−1, τrr

t−1, τzz
t−1, τθθ

t−1) = 0,

τ p,t
rr,i − τ p,t−1

rr,i

Δt
+ 1
2Ri(ut, τrr

t) + 1
2Ri(ut−1, τrr

t−1) = 0,

τ p,t
zz,i − τ p,t−1

zz,i

Δt
+ 1
2Zi(ut, τzz

t) + 1
2Zi(ut−1, τzz

t−1) = 0,

τ p,t
θθ,i − τ p,t−1

θθ,i

Δt
+ 1
2Ri(ut, τθθ

t) + 1
2Ti(ut−1, τθθ

t−1) = 0.

where ht, ut, τrr
t, τzz and τθθ

t correspond to the solution vectors at time t,
Δt is the time step of the computation.

4.3
Newton’s method

The discretization leads to a sparse set of coupled, nonlinear algebraic
equations, that need to be solve at each time step. The method of choice to
solve nonlinear system equations is Newton’s method. The method consists
of using the first two terms of multiple-variable Taylor series to linearize the
functions.

Suppose f(x1, x2, ...xn) is a set of non-linear equations that one need to
find the roots, i.e, f(x1, x2, ...xn) = 0, which can be approximated in term of
first two terms of the Taylor series;

fi(x1, x2, ..., xn) ≈ fi(xk
1, xk

2, ..., xk
n) +

n∑
j=1

(xk+1
j − xk

j )
∂fi(xk

1, xk
2, ..., xk

n)
∂xj

= 0,

for i = 1, 2..., n. The system can be written as

n∑
j=1

Ai,j(xk+1
j − xk

j ) = −fi(xk
1, xk

2, ..., xk
n)

The term fi(xk
1, xk

2, ..., xk
n) = Ri is the residual of the system and Ai,j is the

matrix of the system composed by the set of partial derivatives and also called
Jacobian matrix:

Ai,j =
∂fi(xk

1, xk
2, ..., xk

n)
∂xj

.

For an initial estimative close to the solution, the method converges
quadratically, i.e, the error at each iteration k+1 is proportional to the square
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of the error at iteration k [28].
The Jacobian matrix was compute numerically via central-difference

scheme

Ji,j(x) =
Ri(x + εej) − Ri(x − εej)

2ε , (4-6)

where ε is a small positive number used to perturb the residual forward and
backward. The tolerance on the L2-norm of the residual was set to 10−6.

4.3.1
Validation

In order to validate our numerical procedure, we compare our numerical
prediction of the evolution of a planar perturbation in a stationary Newtonian
liquid sheet with the benchmark results presented by Ida and Miksis [27] at
S

Â
= 1

π2
. Figure 4.2 shows the free surface profile at different times. At this

value of S

Â
, the sheet is unstable and the perturbation grows until it pinches-off

the liquid sheet. The numerical solution proceeds until h(x = 0, t) < 0.01. This
time is considered the breakup time tp. In the case shown in Fig.4.2, tb = 1.52.
The time-evolution of the film thickness at x = 0 is presented in Fig.4.3 for
different number of discretization nodes. The plot also shows the predictions
of Ida and Miksis as basis for comparison. For a number of nodes larger than
200 and with a parameter that controls the nodal points distribution a = 0.5,
the solution shows to be mesh independent and able to recover the literature
data.
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Figure 4.2: Thickness evolution profile of a Newtonian sheet under a planar
perturbation at S/A = 1/π2. The initial perturbation grows over time leading
to a sheet rupture at t = 1.52.
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Figure 4.3: Evolution of sheet thickness at x = 0 for different meshes at
S/A = 1/π2, The results recover predictions of Ida and Miksis [27].

DBD
PUC-Rio - Certificação Digital Nº 1612780/CA



5
Results and discussion

This chapter presents the results of this work concerning to the analysis
of time evolution of Newtonian and non-Newtonian thin liquids sheets under
planar and axisymmetric perturbations. The dynamics can be represented in
terms of the evolution of the film thickness variations with respect to the
steady-state value at the perturbation point x = 0 or r = 0

ζ(t) = h̄ − h(t, r = 0),

where h̄ is the steady-state uniform film thickness. The response of stationary
liquid curtains under both type of disturbances with an initial amplitude equal
to two percent of liquid sheet thickness, ζ0 = ζ(t = 0) = 0.02, are investigated.

Complementing the theoretical analysis developed in Chapter 3, and
looking to evaluate how precise is the linear stability analysis in predicting the
stability criteria, Section 5.1 presents the results of numerical investigation of
the stability criteria for Newtonian liquid sheet under planar and axysimmetric
perturbations. The investigation is performed by varing the parameter S/A.
Temporal evolution of perturbations are presented in terms of the initial
perturbation, i.e ε(t) = ζ(t) − ζ0, as illustrated in Fig. 4.2. Thus, if ε(t) > 0,
the perturbation grows over time, and the liquid curtain ruptures in a finite
time.

Section 5.2 presents the results for non-Newtonian liquids. Generalized
Newtonian Model (GNM) and Oldroyd-B model are used to describe different
non-Newtonian behaviors. Based on those models, stability criteria and growth
rate are analysed for planar and axisymmetric perturbations.

Finally, in section 5.3 we briefly discuss non-Newtonian effects on simi-
larity solution.

5.1
Numerical determination of stability criterion

In chapter 3 we discussed stability criteria using linear stability analysis
as proposed by Erneux and Davis [25]. Using this analysis we were able to find
a critical ratio between capillary and van der Waals forces S/A at which the
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flow changes from stable to unstable. Athought linear stability analysis can
provide good insights about the flow behavior under certain flow conditions,
one should carefully evaluate the results, due to the method limitations:
results are based on linear equation, and negleting non-linear effects can lead
to inaccurrate conclusion. In this section we numerically solve the full non-
linear lubrication equations derivated in Section 2 to examine the effect of the
parameter S/Â = 3πσH4/L2A on the growth rate of the imposed disturbances
in the early stage of the transient process. We propose a stability criterion
based on these numerical predictions and compare it with the results from
linear stability analysis.

For thin sheets of water-like liquids, 0.01π2 � S/Â � 10/π2, depending
on the thickness H and the wavelength L of the perturbation. Based on these
limits, we explored a range of values from S/Â = 0.1π2 to S/Â = 3/π2 in our
study.

Figure 5.1 presents the value of ε(t = 1) as a function of S/Â for
both planar and axisymmetric perturbations. The value of S/Â at which
ε(t = 1) = 0 corresponds to the neutral stability point: S/Âc ≈ 0.1442 and
S/Âc ≈ 0.2026, for axisymmetric and planar perturbations, respectively. These
values match the critical parameters predicted by the stability analysis. The
critical value of S/Â is smaller for axisymmetric disturbances; the free surface
curvature is higher in the axisymmetric case, leading to stronger capillary
forces that stabilize the liquid sheet.
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Figure 5.1: Planar and axisymmetric perturbations amplitude ε(t = 1) = ζ(t =
1) − ζ0 as a function of S/Â for Newtonian liquids. ε > 0 corresponds to
perturbations that grow and lead to sheet rupture in a finite time.

At low values of S/Â, e.g. S/Â � 0.05, the liquid curtain is unstable
for both planar and axisymmetric disturbances, and the growth rate of
axisymmetric perturbations is higher. Figure 5.2 presents the evolution of
the film thickness at x = 0 or r = 0, for both planar and axisymmetric
disturbances, for S/Â = 1/10π2. The curtain rupture time is shorter for the
axisymmetric disturbance. This may explain why thin liquid sheets pinch-off
forming a circular hole not a straight line.
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Figure 5.2: Evolution of sheet thickness at x = 0 or r = 0 at S/Â = 1/10π2

for both planar and axisymmetric perturbation.

5.2
Effect of non-Newtonian properties

5.2.1
Oldroyd-B model

Oldroyd-B model is one of the simplest models that includes anisotropy
and flow memory effects. The stress field is given by a transport equation
that respect the frame-invariance principle. The stress equations of Oldroyd-B
model must be solved coupled with radial velocity and thickness evolution.
This section presents numerical results for an Oldroyd-B fluid as follow: first,
an analysis of the effect of non-Newtonian properties in the stability criteria
and perturbation growth rate, for planar and axisymmetric perturbation is
presented, then, we investigate the influence of nonlinearities of the viscoelastic
model in the rupture dynamics.

The dimensionless parameters that characterize the viscoelastic behavior
of Oldroyd-B liquids are the Deborah number De and the polymer-to-solvent
viscosity ratio ηr = ηp/ηs. Deborah number is defined as the ratio between
the liquid relaxation time tc, or the time that a given material takes to adjust
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to an applied stress and time of observation tp, or characteristic timescale of
an experiment or simulation: De = tc/tp. De = 0 and ηr = 0 recovers the
Newtonian behavior.

In order to evaluate the effects of viscoelastic properties in the stability
criteria, values of ε(t = 1) were calculated as a function of the parameter
S/Â at different De and ηr. Figures 5.3 for planar and 5.4 for axisymmetric
perturbations show that, as revealed by the linear stability analysis, the
viscoelastic behavior of the liquid does not affect the critical value of S/Â.
However, it has a tremendous effect on the time-evolution of the imposed
perturbation. The amplitude of the perturbation at t = 1 falls significantly as
Deborah number and polymer-to-solvent viscosity ratio rise.
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Figure 5.3: Planar perturbation amplitude ε(t = 1) = ζ(1) − ζ0 as a function
of S/Â an liquid properties. ε > 0 corresponds to perturbations that grow and
lead to sheet rupture.
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Figure 5.4: Axisymmetric perturbation amplitude ε(t = 1) = ζ(1) − ζ0 as a
function of S/Â an liquid properties. ε > 0 corresponds to perturbations that
grow and lead to sheet rupture

Figures 5.3 and 5.4 clearly show that elastic forces slow down the tem-
poral growth of the perturbations. The slower growth rate of the perturbation
leads to longer sheet rupture time, as it is clear in Fig. 5.5 The plot shows the
predicted rupture time for planar perturbation as a function of the viscoelastic
parameters at S/Â = 1/π2. The rupture time at De = 1 and ηr = 10 is close to
10× the rupture time of a Newtonian liquid sheet. In curtain coating applica-
tions, if the rupture time is longer than the residence time of the liquid in the
curtain, the perturbation does not have enough time to grow and create a hole
in the curtain. This may explain the experimental observations of Becerra and
Carvalho [18] that the addition of high molecular weight polymer drastically
delays the critical condition for curtain breakup.
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Figure 5.5: Sheet rupture time as a function of liquid properties for S/Â =
1/π2.

The delay in the rupture time can be clearly observed in the thickness
evolution profiles at t = 1.5 for different values of ηr, shown in Fig 5.6. While
the curve representing the Newtonian fluid is almost at the point of sheet
pinches-off, the curve with the strong viscoelastic properties (De = 1 and
ηr = 20) is still close to the amplitude of the imposed perturbance, which
suggests a really slow growth of the perturbation.
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Figure 5.6: Thickness profile for De = 1 and different polymer-to-solvent
viscosity ratio at t=1.5.

An analysis of net force balance close to rupture time can provide inter-
esting insights about the influence of viscoelasticity on the rupture dynamics.
The terms associated with each force on the momentum conservation equation
for planar and axisymmetric flow are shown below:

∂u

∂t
+ u

∂u

∂x︸ ︷︷ ︸
Inertial

− 3S ∂3h

∂x3︸ ︷︷ ︸
Capillary

− 3Â
8h4

∂h

∂x︸ ︷︷ ︸
Van der Waals

− 4
h

∂h

∂x

∂u

∂x
− 4∂2u

∂x2︸ ︷︷ ︸
Viscous

− ∂τ p
xx

∂x
− τ p

xx

h

∂h

∂x︸ ︷︷ ︸
Tp

xx

+
∂τ p

yy

∂x
+

τ p
yy

h

∂h

∂x︸ ︷︷ ︸
Tp

yy

= 0

∂u

∂t
+ u

∂u

∂r︸ ︷︷ ︸
Inertial

− 3S
(

∂3h

∂r3
+ 1

r

∂2h

∂r2
− 1

r2
∂h

∂r

)
︸ ︷︷ ︸

Capillary

− 4
h

[
∂

∂r

(
h

r

∂

∂r
(ur)

)
− u

2r
∂h

∂r

]
︸ ︷︷ ︸

Viscous

− 3Â
8h4

∂h

∂r︸ ︷︷ ︸
Van der Waals

+ 1
r

∂

∂r
(hτ p

zz)︸ ︷︷ ︸
Tp

zz

− 1
hr

∂

∂r
(hrτ p

rr)︸ ︷︷ ︸
Tp

rr

+ τ p
θθ

r︸︷︷︸
Tp

θθ

= 0

The values of each force along the liquid sheet in the vicinity of the pinch-off
point, for a Newtonian liquid, when thickness reaches h(x = 0, t) = 0.025 for
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planar and h(r = 0, t) = 0.075 for axisymmetric are shown in Figs. 5.7 and
5.8. As proposed by Ida and Mikis [27] and Vaynblat et al. [43], tension profiles
suggest that viscous and van der Waals force dominate the dynamics in the final
stage of the rupture process in both cases. Figure 5.9 presents tension profiles
for a planar perturbation type in very viscoelastic regime, with De = 1 and
ηr = 10. One can observe that elastic force rises in the flow, and contributes
with viscous forces to hindering the perturbation growth. This behavior can
explain the increase in the rupture time observed in Fig. 5.5.
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Figure 5.7: Net force profile of Newtonian fluid under a planar perturbation
in the vicinity of rupture point when thickness reaches 5% of the undisturbed
film thickness.
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Figure 5.8: Net force profile of Newtonian fluid under an axisymmetric per-
turbation in the vicinity of rupture point when thickness reaches 15% of the
undisturbed film thickness.
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Figure 5.9: Net force profile Oldroyd fluid for a De = 1 and ηr = 10 under
a planar perturbation in the vicinity of rupture point when thickness reaches
5% of the undisturbed film thickness.
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Figure 5.10 shows the velocities profiles for Newtonian and viscoelastic
sheets subjected to planar perturbations. It is possible to observe that the
rupture dynamics is concentrated in the vicinity of the pinch-off region,
while the far-field flow remains undisturbed. Moreover, the results show that,
althought the velocity profiles have a similar behavior, the Newtonian liquid
shows a more extended region influenced by the rupture dynamics as well as
a higher value of the radial velocity.
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Figure 5.10: Velocity profile for Newtonian and Oldroyd-B fluids for planar
perturbation type. Viscoelastic parameters were set to be De = 1 and
ηr = 10. And tf represents the moment when final thickness reaches 5% of
the undisturbed film thickness.

5.3
Similarity analysis

The symmetry of certain systems allows properties to remain unchanged
under certain transformations. Scale symmetry happens when a physical
phenomenon is invariant with respect to changes in units of measurement
or with respect to the scaling of quantities themselves. Self-similarity results
when the symmetry of a physical problem leads to the reduction in the
number of independent variables, thus, achieving considerable simplification
of the problem [52]. In general, self-similar behavior occurs in the intermediate
asymptotics of physical phenomena, when initial or boundary conditions are
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no longer relevant. The characteristic of the passage to the limit that leads
to intermediate asymptotic of a given problem allows to classify similarity
solutions into two types; first-type is found when the passage to the limit is
regular, in that case, self-similar variables can be obtained by dimensional
analysis or symmetry consideration. Second-type results when the passage to
the limit is irregular that requires following the evolution of the solution until
it passes into its self-similarity asymptotics [52]. Long-wavelength models for
van der Waals driven rupture of a free thin viscous sheet give rise to families
of first-type similarity solution which has been a widely explored subject in
literature for Newtonian [51, 27] and non-Newtonian fluids [44].

Studies of self-similarity solution involving non-Newtonian fluids were
presented by Thete et al [44]. Where, based on numerical solutions, they
examined the self-similarity evolution of a power-law liquid film, evaluated
the scaling exponent governing the time evolution of the film thickness and
constructed similarity profiles for the interface shape. For power-law fluids,
the governing equations remain similar to Newtonian fluid equations. However,
Oldroyd-B fluids include an extra tensorial transport equation, which further
increase the difficulty of any kind of analysis or analytical solution. Thus, this
section is not concerned with determining a formal self-similarity solution for
viscoelastic fluids, but, to analyze how the self-similarity solution is affected
by viscoelastic properties.

Approaching to rupture time, one might expect that the length and time
scales of motion in the vicinity of the rupture point are an order of magnitude
smaller than those in the far-field. Hence, self-similar solutions, for a Newtonian
fluid can be written in the form of [27]:

h(x, t) = ταH(ξ) u(x, t) = τΓU(ξ),

where τ = tr − t (tr is the rupture rime) and ξ = xτ−β.
Ida and Miksis [27] and Vaynblat et al [43] have shown that for Newtonian

liquids, the force balance sets the exponents of the similarity solution to:

α = 1
3 , β = 1

2 and Γ = −1
2 (5-1)

The effect of shear-sensitive viscosity on the similarity solution was
investigated by Thete et al [44] for power-law liquids. The study proposed that
similarity exponents are modified due the non-Newtonian effects as following:

α = n

3 , β = 1 − n

2 and Γ = −n

2 , (5-2)
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where n is the power-law exponent, n < 1 for shear-thinning liquids. When
n = 1, the solution corresponds to a Newtonian fluid and recovers Vaynblat’s
results.

To show the effect of viscoelastic forces in the dynamics of the liquid
sheet rupture, Fig. 5.11 presents the logarithm of the film thickness at x = 0
as a function of the logarithm of τ = tr − t at S/Â = 1/π2 for both Newtonian
and viscoelastic liquids (De = 1 and ηr = 20). Near the rupture time, e.g. at
low values of τ , the numerical predictions are well fitted by a straight line in
Fig.5.11, indicating that the solution follows the form h(x, t) ≈ τα. The slope
of the Newtonian results is α = 0.31, which is close to the similarity exponent
α = 1/3 presented in the literature [27, 43]. For the viscoelastic solution, the
slope is α = 0.23, indicating that the viscoelastic forces slow down the growth
of the perturbation.
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Figure 5.11: Dynamics of film thickness at x = 0 close to the rupture time tb.
The sheet thickness follows the form h ≈ (tb − t)α.

5.3.1
Generalized Newtonian model

Generalized Newtonian model (GNM) may describe some aspects of
viscoelastic behavior by allowing viscosity to change with rate-of-extension.
The dimensionless parameters that characterize the viscoelastic behavior of
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GNM liquids are the Deborah number De, which sets the cross-over extansional
rate, and the infinity-extensional-viscosity ratio ηr = η∞/η0.

For a planar flow, the dimensionless expression for viscosity is:

η = ηr + (1 − ηr)
⎡
⎣1 +

(
De

∂u

∂x

)2⎤⎦
n−1

2

.

where n = 0.5. Setting De = 1, then η = 1, and conservation equations recover
the Newtonian behavior.

Figures 5.12 and 5.13 show that, differently from Oldroyd-B model, in
GNM model non-Newtonian effects are more pronounced for high values of
ηr and De, and in the latter stage of rupture. In this sense, the stability
criterion and growth rate of perturbation in the early stage of the rupture
process matches with the Newtonian model regardless of the non-Newtonian
parameters.
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Figure 5.12: Temporal thickness evolution for Newtonian and GNM models for
ηr = 2. Profiles show that non-Newtonian effects are barely perceptible for low
values of ηr.
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Figure 5.13: Temporal thickness evolution for Newtonian and GNM models
for ηr = 20. Profiles show that non-Newtonian effects are more pronounced in
the latter stage of rupture. Substantially effects on the rupture time are only
observed for a high Deborah number.

Figures 5.14 and 5.15 compare different net force profiles for GNM
(De = 1 and ηr = 10) and Newtonian models under a planar perturbation. For
a time at which the film thickness reaches 5% of the undistubed film thickness,
one can observe that viscous and van der Waals forces are still dominant close
to the rupture time. A curious effect can be observed here; in longitudinal
extension, the region affected by the rupture dynamics is much larger for GNM
fluid than for a Newtonian fluid. The same behavior can be observed in Fig.
5.16 for velocities profile. This behavior can be explained by the increase in
viscosity close to rupture point, due to a large rate-of-extension in this region,
as can be observed in Fig. 5.17.
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Figure 5.14: Net force profiles of GNM fluid for a De = 1 and ηr = 10 under
a planar perturbation in the vicinity of rupture point when thickness reaches
5% of the undisturbed film thickness.
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Figure 5.15: Net force profiles of Newtonian fluid under a planar perturbation
in the vicinity of rupture point when thickness reaches 5% of the undisturbed
film thickness.
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Figure 5.16: Velocity profile for Newtonian and GNM fluids for planar pertur-
bation type. Viscoelastic parameters were set to be De = 1 and ηr = 10. And
tf represents the moment when final thickness reaches 5% of the undisturbed
film thickness.

Figure 5.17 shows the viscosity ratio profile along the axial direction for De = 1
and ηr = 10. It is possible to observe that as the rupture approaches, the
viscosity increases in all the longitudinal extension.
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Figure 5.17: Viscosity ratio profile along the axil direction for De = 1 and
ηr = 10 in an intermediate time t = 1.52 and in the final time t = 2.15.
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Sheet retraction
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6
Mathematical modeling

This chapter presents the mathematical formulation used to describe the
sheet rectraction, including momentum conservation equations, stress tensor
model, boundary and initial conditions.

6.1
Conservations equations

Similarly to section 2, flow is considered two dimensional and isothermal.
Fluid is incompressible and bounded by a passive gas phase. The consevation
equations include continuity and Cauchy equation of motion, namely

∇.u = 0, (6-1)

ρ
Du
Dt

= ∇ · T, (6-2)

where ρ is the liquid density, u is the velocity field and T = pI + τ is the
stress tensor, divided into an isotropic and deviatoric component. In order
to complement the work presented ealier in Part I, and study the retraction
process of a ruptured non Newtonian sheet, the stress tensor is also defined by
both models described in Section 2. The GNMmodel includes rate-of-extension
dependent viscosity

η(ε̇) = η∞ + (η0 − η∞)(1 + (λε̇)2)n−1
a . (6-3)

For the Oldroyd-B model the deviatoric stress tensor is divided into two terms:
solvent stress τ s and polymeric stress τ p. The solvent stress is described by
the Newton’s of viscosity:

τ p = ηsγ̇. (6-4)

The polymeric stress is given by the upper-convected Maxwell model,

τ p + λ
∇
τ p= ηpγ̇, (6-5)
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where
∇
τ p is the convected derivative:

∇
τ = D

Dt
τ − (τ · ∇u)T − (τ · ∇u). (6-6)

6.2
Boundary condition

Equations 6-1 and 6-2 are solved using Cartesian coordinate system for
straight line retraction and cylindrical coordinate system for circular hole
rectration, as sketched in Figs. 6.1 and 6.2. The local sheet thickness is defined
by the function h = h(x, t) for the planar and h = h(r, t) for the axisymmetric
problem.

Figure 6.1: Sketch of flow domain for a straight line retraction in a planar
liquid sheet.

Figure 6.2: Sketch of flow domain for hole retraction in a planar liquid sheet.
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Boundary conditions along the liquid-gas interface are defined at z = h

and correspond to force balance along the normal and tangential direction,
and kinematic condition as sketched in Fig 6.3.

Figure 6.3: Sketch of orientation of normal unit vector n and tangential unit
vector t for stress balance equation at interface of the fluid.

Considering that the gas viscosity is much smaller than the liquid
viscosity, tangential stress at the interface is zero and normal stress is balanced
with capillary force

n.T.n = σ∇.n (6-7)
n.T.t = 0. (6-8)

as defined earlier in Chapter 2, the normal (n) and tangential (t) unit vectors
are written as:

t =

⎡
⎢⎣

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

er,
∂h

∂r

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

ez

⎤
⎥⎦

n =

⎡
⎢⎣−∂h

∂r

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

er,

⎛
⎝1 +

(
∂h

∂r

)2⎞⎠−1/2

ez

⎤
⎥⎦ . (6-9)

Kinematic condition imposes zero flow throught the liquid-gas interface, thus
surface moves with the liquid velocity along at the boundary

Dh

Dt
= j.u (6-10)

j is the unit vector in z direction.
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6.3
Initial condition

Unsteady problems require imposed initial conditions to be solved. Here,
the liquid film is considered stationary, and so the initial condition for the
velocity field is set to be zero. The initial thickness profile that a fluid film
assumes just after the pinch-off could be setted up based on the final solution
obtained at Part I, however, in order to validate our numerical solution, initial
profile was based on Savva and Bush [31] work; they proposed an initial profile
that consists of a semicircular cap followed by a nearly straight line of constant
thickness, as sketched in Fig. 6.4.

Figure 6.4: Sketch of the initial thickness profile, which is assumed to be
semicircular cap followed by a straight line. The curvature has a initial negative
value for the circular cap and then jumps to zero for the straight line.

Figure 6.4 also shows that the curvature has a negative constant value
for the semicircular region, and then it jumps to zero when the straight line
starts. Numerical implications of such discontinuity in the curvature, and the
solution to remediate that are discussed in Section. 7.

6.4
Lubrification approximation

The large ratio of characteristic lengths along the directions parallel and
perpendicular to the flow is also present in this problem. In this sense, the long
wavelength approximation introduced in Section 2.3 is still valid here. Avoiding
details that have already been explained in Section 2.3, the focus of this section
is to derive the set of lubrication equation for straight line retraction, in §6.4.1
and hole retraction in §6.4.2.

DBD
PUC-Rio - Certificação Digital Nº 1612780/CA



Chapter 6. Mathematical modeling 75

6.4.1
Straight line retraction

Starting from Eqs. 6-1 and 6-2 in its two-dimensional Cartesian form:

∂U

∂x
+ ∂V

∂y
= 0 (6-11)

ρ

(
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y

)
= −∂P

∂x
+ ∂Txx

∂x
+ ∂Txy

∂y
(6-12)

ρ

(
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y

)
= −∂P

∂y
+ ∂Txy

∂x
+ ∂Tyy

∂y
, (6-13)

interface force balance conditions (Eqs. 6-7 and 6-8), and kinematic condition
at the interface of the film (Eq. 6-10), also in two-dimensional Cartesian form

⎡
⎣(

∂h

∂x

)2
(Txx − P ) + ∂h

∂x
Tyx + Tyy − P

⎤
⎦

⎡
⎣1 +

(
∂h

∂x

)2⎤⎦−1

= σκ (6-14)

⎡
⎣−∂h

∂x
Txx +

⎡
⎣1 −

(
∂h

∂x

)2⎤⎦ Tyx +
∂h

∂x
Tyy

⎤
⎦

⎡
⎣1 +

(
∂h

∂x

)2⎤⎦−1

= 0 (6-15)

∂h

∂t
+ U |y=h

∂h

∂x
= V |y=h, (6-16)

and assuming symmetry about y = 0, one can perform the expansion presented
in 2-19 around y = 0 and introduce the expansions in the set of equations 6-11
to 6-13, 6-14 and 6-15. Afterwards, simillarly to section 2.3, one can assume
the long wavelength approximation, and derive the lubrication system for a
straight line film retraction of an Oldroyd-B fluid

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (6-17)

∂u

∂t
+ u

∂u

∂x
− σ

ρ

∂κ

∂x
− 4ηs

ρh

∂h

∂x

∂u

∂x
− 4ηs

ρ

∂2u

∂x2
− 1

ρ

∂τ p
xx

∂x
,

+1
ρ

∂τ p
yy

∂x
− τ p

xx

ρh

∂h

∂x
+

τ p
yy

ρh

∂h

∂x
= 0, (6-18)

τ p
xx + λ

(
∂τ p

xx

∂t
+ u

∂τ p
xx

∂x
− 2τ p

xx

∂u

∂x

)
= 2ηp

∂u

∂x
(6-19)

τ p
yy + λ

(
∂τ p

yy

∂t
+ u

∂τ p
yy

∂x
+ 2τ p

yy

∂u

∂x

)
= −2ηp

∂u

∂x
. (6-20)
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where κ is the interface curvature given by

κ(x, t) = 1
2

(
∂2h

∂x2

) ⎡
⎣1 + 1

4

(
∂h

∂x

)2⎤⎦−3/2

. (6-21)

Numerical simulation showed that the characteristic retraction time is
prescribed by the length scale of the problem. For low viscosity regime, the
motion is primarily concentrated near the edge. Conversely, for high viscosity
regime, a larger portion of the film is accelerated by the unbalanced surface
tension force close the tip. Thus, in order to obtain non-dimensional equations,
Savva and Bush [31] proposed to use two different set of dimensionless
parameters, depending on the relative importance of viscosity to surface
tension, which is quantified through the Ohnersorge number Oh = ηs/

√
2Hρσ.

For a high viscosity or high Oh regime, the dimensionaless variables are defined
as

t = τvisct
∗, x = OhHx∗, h = Hh∗, u = Ucu

∗,

τxx =
ηsUcOh

H
τ ∗

xx, τyy =
ηsUc

OhH
τ ∗

yy, (6-22)

where τvisc = OhH/Uc is the characteristic time scale for high Oh, and
Uc =

√
2σ/(ρH) is the Taylor-Cullick velocity. For low viscosity regime, the

dimensionaless variables are defined as:

t = τinvt∗, x = Hx∗, h = Hh∗, u = Ucu
∗,

τxx =
ηsUc

H
τ ∗

xx, τyy =
ηsUc

H
τ ∗

yy, (6-23)

where τinv = H/Uc is the chacracteristic time scale for low Oh.
The governing equations (6-17 to 6-20) can be rewritten in terms of the

dimensionaless variables defined in 6-22, leading to the set of dimensionaless
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lubrication equations for high Oh

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (6-24)

∂u

∂t
+ u

∂u

∂x
− 1
2Oh2

∂κ

∂x
− 4

h

∂

∂x

(
h

∂u

∂x

)
− Oh2

h

∂

∂x
(τ p

xxh)

+1
h

∂

∂x
(τ p

yyh) = 0, (6-25)

τ p
xx + De

(
∂τ p

xx

∂t
+ u

∂τ p
xx

∂x
− 2τ p

xx

∂u

∂x

)
= −2 ηr

Oh2
∂u

∂x
, (6-26)

τ p
yy + De

(
∂τ p

yy

∂t
+ u

∂τ p
yy

∂x
+ 2τ p

yy

∂u

∂x

)
= 2ηr

∂u

∂x
. (6-27)

The dimensionaless interface curvature is given by:

κ(x, t) = 1
2

(
∂2h

∂x2

) ⎡
⎣1 + 1

4
1

Oh2

(
∂h

∂x

)2⎤⎦−3/2

. (6-28)

For low Oh regime, the dimensionaless set of equations becomes

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (6-29)

∂u

∂t
+ u

∂u

∂x
− 1
2

∂κ

∂x
− 4Oh

h

∂

∂x

(
h

∂u

∂x

)
− Oh

h

∂

∂x
(τ p

xxh),

+Oh

h

∂

∂x
(τ p

yyh) = 0, (6-30)

τ p
xx + De

(
∂τ p

xx

∂t
+ u

∂τ p
xx

∂x
− 2τ p

xx

∂u

∂x

)
= 2ηr

∂u

∂x
, (6-31)

τ p
yy + De

(
∂τ p

yy

∂t
+ u

∂τ p
yy

∂x
+ 2τ p

yy

∂u

∂x

)
= −2ηr

∂u

∂x
. (6-32)

The dimensionaless interface curvatures is now defined as:

κ(x, t) = 1
2

(
∂2h

∂x2

) ⎡
⎣1 + 1

4

(
∂h

∂x

)2⎤⎦−3/2

. (6-33)
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6.4.2
Hole retraction

For hole circular retraction flow, Eqs. 6-1 and 6-2 are written in the
two-dimensional form for cylindrical coordinates:

∂

∂r
(Ur) + ∂

∂z
(V r) = 0 (6-34)

ρ

(
∂U

∂t
+ U

∂U

∂r
+ V

∂U

∂z

)
= −∂P

∂r
+ 1

r

∂

∂r
(rTrr) +

∂

∂z
Tzr − Tθθ

r
(6-35)

ρ

(
∂V

∂t
+ U

∂V

∂r
+ V

∂V

∂z

)
= −∂P

∂z
+ 1

r

∂

∂r
(rTzr) +

∂

∂z
Tzz. (6-36)

Force balance along the free surface and kinematic condition at the film
interface are written in cylindrical coordinates as:

⎡
⎣(

∂h

∂r

)2
(Trr − P ) + ∂h

∂r
Tzr + Tzz − P

⎤
⎦

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦−1

= σκ(6-37)

⎡
⎣∂h

∂r
Trr +

⎡
⎣1 −

(
∂h

∂r

)2⎤⎦ Trz − ∂h

∂r
Tzz

⎤
⎦

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦−1

= 0 (6-38)

∂h

∂t
+ U |z=h

∂h

∂r
= Vz=h. (6-39)

Following the same approach of subsection 6.4.1, given that the expansion
of Trr and Tθθ are equal to the expansion for Txx and the expansion of Trz is
equal to Txy, one can obtain the lubrication system for a circular hole retraction
of an Oldroyd-B liquid film:

∂h

∂t
+ 1

r

∂

∂r
(hru) = 0, (6-40)

∂u

∂t
+ u

∂u

∂r
− σ

ρ

∂κ

∂r
− 4ηs

ρh

[
∂

∂r

(
h

r

∂

∂r
(ur)

)
− u

2r
∂h

∂r

]

+ 1
ρr

∂

∂r
(hτ p

zz) − 1
ρhr

∂

∂r
(hrτ p

rr) +
τ p

θθ

ρr
= 0, (6-41)

τ p
rr + λ

(
∂τ p

rr

∂t
+ u

∂τ p
rr

∂r
− 2τ p

rr

∂u

∂r

)
= 2ηp

∂u

∂r
, (6-42)

τ p
zz + λ

(
∂τ p

zz

∂t
+ u

∂τ p
zz

∂r
+ τ p

zz

r

∂

∂r
(ru)

)
= −2ηp

r

∂

∂r
(ru), (6-43)

τ p
θθ + λ

(
∂τ p

θθ

∂t
+ u

∂τ p
θθ

∂r
− 2τ p

θθ

u

r

)
= 2ηp

u

r
.
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The interface curvature is defined as:

κ = 1
2

∂2h

∂r2

⎡
⎣1 + 1

4

(
∂h

∂r

)2⎤⎦−3/2

− 1
2
1
r

∂h

∂r

⎡
⎣1 + 1

4

(
∂h

∂r

)2⎤⎦−1/2

. (6-44)

Dimensionaless variable are defined as the straight line retraction prob-
lem. For high Oh regime are defined as:

t = τvisct
∗, r = OhHr∗, h = Hh∗, u = Ucu

∗,

τrr =
ηsUcOh

H
τ ∗

rr, τyy =
ηsUc

OhH
τ ∗

yy, τθθ =
ηsUc

H
τ ∗

θθ, (6-45)

and for low Oh regime, defined as

t = τinvt∗, r = Hr∗, h = Hh∗, u = Ucu
∗,

τrr =
ηsUc

H
τ ∗

rr, τyy =
ηsUc

H
τ ∗

yy, τθθ =
ηsUc

H
τ ∗

θθ, . (6-46)

In this sense, the dimensionaless form of Eqs. 6-40 to 6-44 for high Oh

regime is:

∂h

∂t
+ 1

r

∂

∂r
(hru) = 0, (6-47)

∂u

∂t
+ u

∂u

∂r
− 1
2Oh2

∂κ

∂r
− 4

h

[
∂

∂r

(
h

r

∂

∂r
(ur)

)
− u

2r
∂h

∂r

]

+1
h

∂

∂r
(hτ p

zz) − Oh2

hr

∂

∂r
(hrτ p

rr) + Oh
τ p

θθ

r
= 0, (6-48)

τ p
rr + De

(
∂τ p

rr

∂t
+ u

∂τ p
rr

∂r
− 2τ p

rr

∂u

∂r

)
= 2 ηr

Oh2
∂u

∂r
, (6-49)

τ p
zz + De

(
∂τ p

zz

∂t
+ u

∂τ p
zz

∂r
+ τ p

zz

r

∂

∂r
(ru)

)
= −2ηr

r

∂

∂r
(ru), (6-50)

τ p
θθ + De

(
∂τ p

θθ

∂t
+ u

∂τ p
θθ

∂r
− 2τ p

θθ

u

r

)
= 2 ηr

Oh

u

r
. (6-51)
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Conversely, the for low Oh regime, it is written as:

∂h

∂t
+ 1

r

∂

∂r
(hru) = 0, (6-52)

∂u

∂t
+ u

∂u

∂r
− 1
2

∂κ

∂r
− 4Oh

h

[
∂

∂r

(
h

r

∂

∂r
(ur)

)
− u

2r
∂h

∂r

]

+Oh

r

∂

∂r
(hτ p

zz) − Oh

hr

∂

∂r
(hrτ p

rr) + Oh
τ p

θθ

r
= 0, (6-53)

τ p
rr + De

(
∂τ p

rr

∂t
+ u

∂τ p
rr

∂r
− 2τ p

rr

∂u

∂r

)
= −2ηr

∂u

∂r
, (6-54)

τ p
zz + De

(
∂τ p

zz

∂t
+ u

∂τ p
zz

∂r
+ τ p

zz

r

∂

∂r
(ru)

)
= −2ηr

r

∂

∂r
(ru),

τ p
θθ + De

(
∂τ p

θθ

∂t
+ u

∂τ p
θθ

∂r
− 2τ p

θθ

u

r

)
= 2ηr

u

r
.

It is possible to observe that the set of lubrication equations that
describes a film retraction is similar to the one used to describe the film
rupture flow, with the absence of the van der Waals term. However, the
retraction flow is free boundary problem; the positions of the tip of the rim,
and consequently the flow domain, changes with time. This characteristic leads
to a more complicated solution method, which is described in Section 7.
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7
Solution method

This chapter brings the numerical methodology used to solve the full set
of coupled non-linear equations proposed to describe sheet retraction process.
Similar to the rupture process, a second-order finite difference method was used
to discretize the spatial derivatives, and an implicit Crank-Nicholson method
to discretize the time derivative terms. However, the film retraction brings
extra difficulties; the tip or edge velocity, which is one of boundary conditions
is also part of problem solution, also the thickness derivative goes to infinity
in the tip, and the initial condition in the form that was set in section 6.3 has
a jump in curvature, creating a point of sigularity.

There is no single way to deal with the difficulties that arise during the
numerical solution of sheet retraction. For this work, the chosen approach is
based on the Savva and Bush’s work [31] and presented as follows: Section 7.1
presents the methodology used to solve the tip velocity. Section 7.3 describes
mapping domain transformation performed to avoid the blowing up of the
thickness derivative at the tip, and Section 7.4 brings the strategy to avoid the
discontinuity in the curvature for the initial thickness profile.

7.1
Velocity tip condition

The long wavelength approximation used to derive Eqs 6-24 to 6-27 and
6-40 to 6-44 fails as equations approach to the edge of the liquid sheet, since
∂h/∂x → ∞ in this region. Eggers and Dupont [42] faced the same problem in
studying jet breakup, they overcame this difficulty by neglecting the viscosity
effect near to the tip, which for a jet flow was not critical. However for the
film retraction problem, viscosity plays an important role by hindering the
expansion rate of a straight line or a hole, and neglecting its effect leads to a
totally inaccurate problem solution. Knowing it, Savva and Bush [31] proposed
a more appropriate approach to solve the tip velocity: instead of use the long
wavelength approximation, they used the condition ∂h/∂x → ∞ to simplified
boundary conditions at the tip. The approach is detailed below, for a straight
line 7.1.1 and a hole 7.1.2.
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7.1.1
Straight line tip velocity

For the tip velocity of a straight line retraction, the same procedure
adopted in Section 2.3 is followed; Taylor expansions given in 2-19 are used in
Eqs. 6-1 and 6-2 to derive the set of expanded conservation equations

v1 = −∂u

∂x
(7-1)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ ∂τxx

∂x
+ τyx. (7-2)

and in Eqs. 6-7 and 6-8 to get the expanded boundary conditions
⎡
⎣(

∂h

∂x

)2
(τxx − p) + ∂h

∂r
τyxh + τyy − p

⎤
⎦

⎡
⎣1 +

(
∂h

∂r

)2⎤⎦−1

= σκ (7-3)

⎡
⎣−∂h

∂x
τxx +

⎡
⎣1 −

(
∂h

∂x

)2⎤⎦ τyxh + ∂h

∂x
τyy

⎤
⎦

⎡
⎣1 +

(
∂h

∂x

)2⎤⎦−1

= 0. (7-4)

Knowing that ∂h/∂x → ∞ in the vicinity of the edge of the film, it is
reasonable to make the following approximation

1 +
(

∂h

∂r

)2
≈

(
∂h

∂r

)2
. (7-5)

The approximation 7-5 can be used into Eqs. 7-3 and 7-4 and get a
simplified form for tip boundary conditions

−p + τxx + 2
(

∂h

∂x

)−1
τyxh +

(
∂h

∂x

)−2
τyy = σκ (7-6)

−τxx −
(

∂h

∂x

)
τyxh + τyy = 0. (7-7)

Given that (∂h/∂x)−1 → 0, one can get an expression for mechanical
pressure at the tip in function of stress tensor components from Eq.7-6 , where
τxx = τ p

xx + 2ηs(∂u/∂x)

−p = −τ p
xx − 2ηs

∂u

∂x
+ σκ (7-8)

Substituing 7-8 into expanded Cauchy equation 7-2, on can get the
expression for the retraction velocity of the tip u0 of a straight line in Oldroyd-
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B fluid

∂u0
∂t

+ u0
∂u0
∂x

= σ

ρ

∂κ

∂x
− ηs

ρ

∂2u0
∂x2

+ τyx,0

ρ
(7-9)

where τxy,0 is given by Eq. 7-7, being τxx = τ p
xx + 2ηs(∂u/∂x) and τyy =

τ p
yy + 2ηs(∂u/∂x)

τyx0 = −
(

h
∂h

∂x

)−1 (
τ p

xx − τ p
yy + 4ηs

∂u

∂x

)
(7-10)

Here, unlike Savva and Bush [31], the term τxy (in their case u2) was not
found by extrapolation, but by applying the approximation in the expanded
tangential boundary condition.

The non-dimensional form for a high Oh regime can found by using the
non-dimensional parameters presented at 6-22

∂u0
∂t

+ u0
∂u0
∂x

− 1
2Oh2

∂κ

∂x
+ ∂2u0

∂x2
− τyx,0 = 0 (7-11)

Conversely, the non-dimensional form of the tip velocity for low Oh is given
by

∂u0
∂t

+ u0
∂u0
∂x

− 1
2

∂κ

∂x
+ Oh

∂2u0
∂x2

− Ohτyx,0 = 0. (7-12)

7.1.2
Hole tip velocity

The tip velocity of a hole retraction follows the same procedure presented
in above section, but for equations written in cylindrical coordinates. Here,
intermediate steps are skipped to avoid unnecessary repetitiveness. In this
sense, using approximations (∂h/∂r) → ∞ and (∂h/∂r)−1 → 0, the equation
of the tip velocity of the hole retraction in an Oldroyd-B fluid is given by

∂u0
∂t

+ u0
∂u0
∂r

− σ

ρ

∂κ

∂r
− τ p

rr,0

ρr
+ τrz,0

ρ
+ τθθ,0

ρr
+ ηs

ρ

(
∂2u0
∂r2

− 1
r

∂u0
∂r

+ u0
r2

)
= 0

(7-13)

and τrz,0 corresponds to

τrz,0 = −2
h

(
∂h

∂r

)−1
[τ p

rr − τ p
zz] (7-14)
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The non-dimensional form of Eq.7-11 for high Oh regime is given by

∂u0
∂t

+ u0
∂u0
∂r

− 1
2Oh2

∂κ

∂r
− Oh2

τ p
rr,0

r
+ τrz,0 + Oh

τθθ,0

r
+

(
∂2u0
r2

− 1
r

∂u0
∂r

+ u0
r2

)
= 0

(7-15)

and for low Oh the tip velocity equation becomes

∂u0
∂t

+ u0
∂u0
∂r

− 1
2

∂κ

∂r
− Oh

τ p
rr,0

r
+ Ohτrz,0 + Oh

τθθ,0

r
+ Oh

(
∂2u0
r2

− 1
r

∂u0
∂r

+ u0
r2

)
= 0.

(7-16)

7.2
Curvature singularity problem

As discussed earlier, at the tip of the fluid film ∂h/∂r → ∞ creating
numerical difficulties to evaluate the curvature at this point. Eggers and
Duppont [42] overcame this problem by using an even quadratic polynomial
to fit the jet profile in this region. A more elegant solution was proposed by
Savva and Bush [31]; instead of creating a fitting, they rearranged equations
using f = h2. Hence, the equations are transformed accordingly, Eqs. 6-24 to
6-27 for the straight line retraction become

∂f

∂t
+ u

∂f

∂x
+ 2f ∂u

∂x
= 0 (7-17)

∂u

∂t
+ u

∂u

∂x
− 1
2Oh2

∂κ

∂x
− 2

f

∂f

∂x

∂u

∂x
− 4∂2u

∂x2
− Oh2τ p

xx

2f
∂f

∂x
− Oh2

∂τ p
xx

∂x

+
τ p

yy

2f
∂f

∂x
+

∂τ p
yy

∂x
= 0 (7-18)

τ p
xx + De

(
∂τ p

xx

∂t
+ u

∂τ p
xx

∂x
− 2τ p

xx

∂u

∂x

)
= −2 ηr

Oh2
∂u

∂x
(7-19)

τ p
yy + De

(
∂τ p

yy

∂t
+ u

∂τ p
yy

∂x
+ 2τ p

yy

∂u

∂x

)
= 2ηr

∂u

∂x
. (7-20)

and the transformed curvature for straight line is given by

κ = 8
2f ∂2f

∂r2
−

(
∂f

∂r

)2
⎛
⎝16f +

(
∂f

∂r

)2⎞⎠3/2 (7-21)
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For hole retraction the transformation leads Eqs. 6-47 to 6-51 to

∂f

∂t
+ u

∂f

∂r
+ 2f ∂u

∂r
+ 2fu

r
= 0 (7-22)

∂u

∂t
+ u

∂u

∂r
− 1
2Oh2

∂κ

∂r
− 4∂2u

∂r2
− 4

r

∂u

∂r
+ 4 u

r2
− 2

f

∂f

∂r

∂u

∂r
− 1

f

∂f

∂r

u

r

+∂τ p
zz

∂r
+ τ p

zz

2f
∂f

∂r
− Oh2

∂τ p
rr

∂r
− Oh2τ p

rr

r
− Oh2

2
τrr

f

∂f

∂r
+ Oh

τθθ

r
= 0(7-23)

τ p
rr + De

(
∂τ p

rr

∂t
+ u

∂τ p
rr

∂r
− 2τ p

rr

∂u

∂r

)
= −2 ηr

Oh2
∂u

∂r
(7-24)

τ p
zz + De

(
∂τ p

zz

∂t
+ u

∂τ p
zz

∂r
+ τ p

zz

r

∂

∂r
(ru)

)
= −2ηr

r

∂

∂r
(ru) (7-25)

τ p
θθ + De

(
∂τ p

θθ

∂t
+ u

∂τ p
θθ

∂r
− 2τ p

θθ

u

r

)
= 2 ηr

Oh

u

r
. (7-26)

and curvature is written as

κ = 8
2f ∂2f

∂r2
−

(
∂f

∂r

)2
⎛
⎝16f +

(
∂f

∂r

)2⎞⎠3/2 −
∂f

∂r

r

⎛
⎝16f +

(
∂f

∂r

)2⎞⎠1/2

7.3
Mapping domain transformation

As the problem is free boundary, the solution domain changes with time
due to the movement of the edge of the liquid sheet, requiring a re-meshing of
the domain at each time step to accommodate that change. This re-meshing
makes the numerical solution further complicated, thus to avoid it Savva
and Bush [31] proposed the use of a transformation from physical (r, t) to
a computational domain (r′, t′). The transformation is given by the following
relation

r =
(
1 − x0(t)

L

)
x′ + x0(t)

t = t′

for straight line retraction, where 0 ≤ x′ ≤ L, being L the longitudinal extent
of the liquid sheet. Under this mapping, the tip of the film is always located
at x′ = 0 and the free-boundary problem is transformed into a fixed-boundary
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problem. The derivatives are transformed accordingly

∂∗
∂t

= ∂

∂t′ −

⎡
⎢⎢⎢⎣

1 − x′

L

1 − x0(t)
L

⎤
⎥⎥⎥⎦ u0

∂∗
∂x′

∂∗
∂x

= 1

1 − x0(t)
L

∂

∂x′

where the tip speed is given by the derivative of the tip position with time

u0(t) =
∂x0(t)

∂t
. (7-27)

Defining

c = 1

1 − x0(t)
L

(7-28)

and dropping primes, Eqs. 7-17 to 7-20 can be written in computational domain
as following

∂f

∂t
+ c

[
u −

(
1 − x

L

)
u0

]
∂f

∂x
+ 2cf

∂u

∂x
= 0 (7-29)

∂u

∂t
+ c

[
u −

(
1 − x

L

)
u0

]
∂u

∂x
− c

2Oh2
∂κ

∂x
− 2c2

f

∂f

∂x

∂u

∂x
− 4c2∂2u

∂x2

−cOh2

2
τ p

xx

f

∂f

∂x
− cOh2

∂τ p
xx

∂x
+

cτ p
yy

2f
∂f

∂x
+ c

∂τ p
yy

∂x
= 0 (7-30)

τ p
xx + De

[
∂τ p

xx

∂t
+ c

(
u −

[
1 − x

L

]
u0

)
∂τ p

xx

∂x
− 2c∂u

∂x
τ p

xx

]

= −2c ηr

Oh2
∂u

∂x
(7-31)

τ p
yy + De

[
∂τ p

yy

∂t
+ c

(
u −

[
1 − x

L

]
u0

) ∂τ p
yy

∂x
+ 2c∂u

∂x
τ p

yy

]

= 2cηr
∂u

∂x
(7-32)

being the curvature transformed into

κ = 8c2
2f ∂2f

∂x2
−

(
∂f

∂x

)2
⎛
⎝16f + c2

(
∂f

∂x

)2⎞⎠3/2 . (7-33)
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For hole retraction, x is replaced by r, so the computacional domain is
0 ≤ r′ ≤ L, L becomes the radial extend of the liquid sheet, and tip is located
at r′ = 0. Thus, the tip speed is given by

u0(t) =
∂r0(t)

∂t
. (7-34)

And c is written as

c = 1

1 − r0(t)
L

(7-35)

Therefore, the transformation yields the system

∂f

∂t
+ c

[
u −

(
1 − r

L

)
u0

]
∂f

∂r
+ 2cf

∂u

∂r
+ 2c fu

r + r0c
= 0 (7-36)

∂u

∂t
+ c

[
u −

(
1 − r

L

)
u0

]
∂u

∂r
− c

2Oh2
∂κ

∂r
− 4c2∂2u

∂r2
− 4c2

r + r0c

∂u

∂r

+4c2 u

(r + r0c)2
− 2c2

f

∂f

∂r

∂u

∂r
− c2

f

∂f

∂r

u

r + r0c
+ c

∂τ p
zz

∂r
+ c

τ p
zz

2f
∂f

∂r

−cOh2
∂τ p

rr

∂r
− c

Oh2τ p
rr

r + r0c
− c

Oh2

2
τrr

f

∂f

∂r
+ cOh

τθθ

r + r0c
= 0 (7-37)

τ p
rr + De

(
∂τ p

rr

∂t
+ c

[
u

(
1 − r

L

)
u0

]
∂τ p

rr

∂r
− 2cτ p

rr

∂u

∂r

)
= −2c ηr

Oh2
∂u

∂r
(7-38)

τ p
zz + De

(
∂τ p

zz

∂t
+ c

[
u

(
1 − r

L

)
u0

]
∂τ p

zz

∂r
+ c

τ p
zzu

r + r0c
+ cτ p

zz

∂u

∂r

)

= −2cηr

(
∂u

∂r
+ u

r + r0c

)
(7-39)

τ p
θθ + De

(
∂τ p

θθ

∂t
+ c

[
u

(
1 − r

L

)
u0

]
∂τ p

θθ

∂r
− 2cτ p

θθ

u

r + r0c

)
= 2c ηr

Oh

u

r + r0c
.(7-40)

with curvature given by

κ = c2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
8

2f ∂2f

∂r2
−

(
∂f

∂r

)2
⎛
⎝16f + c2

(
∂f

∂r

)2⎞⎠3/2 −
∂f

∂r

(r + r0c)
⎛
⎝16f + c2

(
∂f

∂r

)2⎞⎠1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Equations 7-27, 7-29 to 7-32, as well as 7-34, 7-36 to 7-40 constitute
hybrid Lagrangian-Eulerian systems; the computational domain for x 	= 0
or r 	= 0 is prescribed by an Eulerian formulation, and tip is treated as a
Lagrangian point.
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7.4
Initial thickness profile

In section 6.3 the initial thickness profile is defined as semicircular
cap couple with a nearly linear straight strip. This profile introduces a
discontinuity in the curvature, which requires a much more refined mesh to
computing the numerical solution of the problem, and consequently increases
the computational time. To avoid it, Savva and Bush [31] adapted the initial
condition to smoother profile by introducing a parameter α that controls the
curvature,

f(r, 0, α) = 1 −
(1
2 − α − r + 1

2
√
(1 + 2α)2 + 4r(2α + r − 1)

)2
. (7-41)

The typically values for parameter used by Savva and Bush [31] were
α = 1/20 to α = 1/100. In Fig.7.1 it is possible to observe how the profile
changes as α is increased.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2

 = 0

 = 1/20
= 1/100

f(x
, t=

0)

x

Figure 7.1: Initial thickness profile gets smoother as the value of α is aug-
mented.

.

7.5
Finite difference method

Similarly to Section 4.1, a numerical approximation of the transport
equation solutions was obtained by using the Finite Difference Method. Also,
as can be observed in Fig.7.2, a staggered grid over the interval 0 ≤ r ≤ 1 was
used to avoid spurious oscillations in the curvature in the long-time limit; values
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of hi, τrr,i, τzz,i and τθθ,i are prescribed at ri and values of ui are prescribes at
ri+1/2.

Figure 7.2: Stagerred grid used to solve retraction problem. Values of fi are
prescribed at mesh points ri, and values of ui are prescribed at ri+1/2 =
(ri + ri+1)/2

.

Derivatives were performed by using second-order central-difference
scheme, as explained in details at Section 4.1. And a non-uniform grid was
also implemented to concentrate mesh near the tip of the film by using the
function

ri = 1 −
[

N − i

N − 1

]a

For the numerical solution the initial value of the hole was set to be
r0 = 50 in all cases.

7.6
Numerical validation

In order to validate our numerical procedure, the solution of film retrac-
tion in a Newtonian fluid was compared with results presented by Savva and
Bush [31]. Figures 7.3 and 7.4 show that the results of straight line and hole
retraction for an Oh = 10 presents a good agreement with Savva and Bush
results. A small numerical oscillation can be observed at the beginning of the
retraction process, such oscillation can be associated with the high acceleration
in the early stages of the process.
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Figure 7.3: Validation of the numerical procedure for straight line retraction
in Newtonian fluid with Oh = 10 by comparing with Savva and Bush results
[31]

.
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Figure 7.4: Validation of the numerical procedure for hole retraction in New-
tonian fluid with Oh = 10 by comparing with Savva and Bush results [31]

.
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8
Results and discussions

This capter presents the results of straight line and circular hole film re-
traction for Newtonian and non-Newtonian liquid sheets. Simillarly to rupture
process, GNM and Oldroyd-B models are used to describe the non-Newtonian
fluids. The analysis are performed for stationary initial condition for two vis-
cosity regime: low Oh and high Oh.

8.1
High Oh regime

Sheet retraction in high Oh regime was first investigated by Debrégeas
et al. [65]. They performed an experimental study of the bursting process in
films formed by a liquid with long chain polymer. Interesting features were
observed in their studies: the absence of rim formation which was atributed to
elastic stress and an exponential rate of retraction. Latter, numerical studies
conducted by Savva and Bush [31] showed that high viscous stress induces the
momentum diffusion away from the rim during the retraction process, making
the film thickness to be more or less uniform. Thus viscosity by itself can
explain the observation made by Debrégeas et al. [65].

Savva and Bush’s studies left an open question about the role of the
elastic stress in the retraction process of a high-viscous fluid. Therefore, here
we look into this question by numerically investigating the effects of non-
Newtonian properties on the retraction process of a liquid sheet in the high Oh

regime. Results show the effects of non-Newtonian properties on the velocity
retraction and on thickness shape. Analyses are performed for straight line and
circular hole retraction in the early stage of the process.

8.1.1
Oldroyd-B model

This section presents the numerical results for film retraction of an
Oldroyd-B fluid in high viscosity regime. The influence of non-Newtonian
properties in the retraction dynamics is analyzed through the parameters De

number and ηr. The Ohensorge number is kept fixed at Oh = 10 for all cases.
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Figures 8.1 and 8.2 show the temporal evolution of the tip velocity for
straight line and circular hole retraction, respectively, taking into account
different polymer-to-solvent viscosity ratio at De = 1. It is possible to observe
that, in both cases, increasing ηr the retraction process is decelerated, even in
the early stage of the process. Hence, in high viscosity regime, elastic stresses
act to hinder the retraction velocity in both geometry.
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Figure 8.1: Tip velocity of straight line for Oldroyd-B model with De = 1 at
Oh = 10 regime.
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Figure 8.2: Tip velocity of a circular hole for Oldroyd-B model with De = 1
at Oh = 10 regime.

Debrégeas et al. [65] and Savva and Bush [31] have already discussed the
absence of a rim formation in high Oh regime. However, an interesting feature
can be observed in the retraction process of an Oldroyd-B fluid; the elastic
stresses act in such away that film becomes flatter, as shown in Fig. 8.3.
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Figure 8.3: Thickness profile for Oldroyd-B model with De = 1 at t = 1 in
Oh = 10 regime.
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Net force analysis can provide interesting physical information about the
retraction dynamics. Figure 8.4 presents all the difference forces along the film
at t = 1. They all decay to zero away fomr the tip. The axial viscoelastic force
Tp

xx, combined with viscous force act to hinder the straight line retraction
driven by capillary force in a Oldroyd-B fluid.
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Figure 8.4: Net force for Oldroyd-B model with De = 1 and ηr = 10 at t = 1.

8.1.2
Generalized Newtonian model

As discussed earlier, GNM includes non-Newtonian effects only by al-
lowing viscosity to change with rate-of-extension. Non-Newtonian parameters
that control the flow behavior are also given by De and ηr, however, with dif-
ferent physical importance. Here, De in the non-dimensional parameter that
represents the crossover from a region of zero-extensional-rate viscosity η0 to a
region of high-extensional-rate viscosity η∞. The ratio between those charac-
teristic viscosities is given by ηr = η∞/η0. By increasing ηr, the model allows a
larger change in the viscosity of the liquid, and by increasing De, this change
occurs at a lower extensional rate.

Figure 8.5 presents an analysis of the influence of ηr on the retraction
velocity. It is possible to observe that the non-Newtonian properties of a GNM
fluid have small effect on the retraction velocity, even for high ηr and high De

number.
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Figure 8.5: Tip velocity for GNM model with De = 1 at Oh = 10 regime.

The small influence of the GNM on the film retraction can be explained
by the nature of non-Newtonian properties of the model; it is required a high
rate-of-extension to induce a effective change in the fluid viscosity. However,
as can be observed in Fig. 8.6, in the high Oh regime, the dynamics do not
impose a high enough rate-of-extension, and consequently, ηr, which is set to
be 10, does not reach 20% of that value, as shown in Fig.8.7.
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Figure 8.6: Longitudinal velocities profile for GNM model with De = 1 and
ηr = 10 at Oh = 10 regime.
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Figure 8.7: Viscosity profile for GNM model with De = 1 and ηr = 10 at
Oh = 10 regime.

8.2
Low Oh regime

Low to moderate Oh regimes are present in most configurations of
pratical importance such as those involving water-like fluid. The dissipation
effect of viscosity is weaker and the motion becomes concentrated primarly
near the edge of the film. A direct effect of the low viscous dissipation is
the acceleration of the retraction process, as discussed earlier by Savva and
Bush [31]. Another important aspect observed by Savva and Bush [31] was the
formation of a rim during the retraction process, which was atributted to the
inertia of the fluid ahead of the advancing edge. Also, Savva and Bush [31]
observed that, for Oh < 1, capillary waves are generated ahead of the growing
rim.

The analysis performed in Section 8.1 for high Oh regime of an Oldroyd-
B fluid showed that viscous and elastic forces work together to hinder the
retraction process. It was observed that increasing the viscoelastic effects,
the retraction velocity is substantialy reduced, even at the early stage of
the process. In this section, the effect of non-Newtonian properties on the
retraction process of a fluid with low viscous stress is analysed.
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8.2.1
Oldroyd-B model

Figures 8.8, 8.9 and 8.10 show that viscoelastic properties have an
important role in hindering the circular hole velocity retraction for a fluid in
the low viscosity regime. The influence of elastic properties seems to be more
accentuated in a moderate Oh regime (Oh = 1). It was observed a reduction
of more than 50% of the edge velocity at t = 3 for and Oldroyd-B fluid with
De = 1 and ηr = 5 (Oh = 1).
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Figure 8.8: Tip velocity of a hole for Oldroyd-B model with De = 1 at Oh = 1
regime.
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Figure 8.9: Tip velocity of a hole for Oldroyd-B model with De = 1 at Oh = 0.5
regime.
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Figure 8.10: Tip velocity of a hole for Oldroyd-B model with De = 1 at
Oh = 0.1 regime.

Another important result is related to the shape of the film. In a similar
way to that observed in high viscosity films, Fig. 8.11 and 8.12 show that
viscoelastic properties can prevent the formation of liquid rim in a low viscous
fluid. For Oh = 0.1, Fig. 8.13, the absence of rim formation only was detected
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for a high elastic regime, De = 1 and ηr = 20. However, it was observed
the absence of capillary waves, at least in the early stages of retraction
process, suggesting that viscoelastic effects can prevent or delay such kind
of instabilities.
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Figure 8.11: Thickness profile for Oldroyd-B model with De = 1 at t = 3 in
Oh = 1 regime.
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Figure 8.12: Thickness profile for Oldroyd-B model with De = 1 at t = 3 in
Oh = 0.5 regime.
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Figure 8.13: Thickness profile for Oldroyd-B model with De = 1 at t = 1 in
Oh = 0.1 regime.

The behavior of the film thickness profiles observed in Figs.8.11, 8.12 and
8.13 can be better understood by examining the axial velocity profile, presented
in Figs. 8.14 and 8.15. The viscoelastic properties show an effect similar to the
one observed at high viscosity regime, there is diffusion of momentum through
the bulk of the film, which prevents the rim formation. Thus, by including
viscoelastic properties the motion of a low viscosity fluid is no longer localized
in the vicinity of the edge and begins to spread out through the radial direction.

DBD
PUC-Rio - Certificação Digital Nº 1612780/CA



Chapter 8. Results and discussions 101

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Newtonian

r
 = 10

r
 = 5

r
 = 20

u(
r, 

t f )

r

Figure 8.14: Thickness profile for Oldroyd-B model with De = 1 at t = 3 in
Oh = 1 regime.
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Figure 8.15: Thickness profile for Oldroyd-B model with De = 1 at t = 3 in
Oh = 0.5 regime.

DBD
PUC-Rio - Certificação Digital Nº 1612780/CA



Chapter 8. Results and discussions 102

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Newtonian

r
 = 5

r
 = 10

r
 = 20

u(r
, t f )

r

Figure 8.16: Thickness profile for Oldroyd-B model with De = 1 at t = 3 in
Oh = 0.1 regime.
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9
Conclusions

In this work, we presented an investigation of the entire breakup process
of a viscoelastic thin liquid sheet. The process was divided into two separate
steps: rupture and retraction. Viscoelastic effects were described by two
models: the Oldroyd-B and generalized Newtonian model, that considers the
viscosity a functions of the extensional rate.

The effect of viscoelastic forces on the rupture process of a liquid sheet
was studied by solving the governing equations that describe the time evolution
of planar and axisymmetric perturbations.

First, the stability criterion proposed by Erneux and Davis [25] for
planar perturbation of a Newtonian liquid was extended to axisymmetric
perturbations and Oldroyd-B liquids. The linear stability results suggest that
an axisymmetric perturbation is more stable than a planar disturbance, due
to the extra curvature that helps stabilize the liquid curtain. Predictions also
show that the viscoelastic behavior has no effect on the critical condition (value
of S/Â) below which the sheet is unstable.

The numerical solution of the evolution equations revealed that, when the
van der Waals forces dominate and the sheet is unstable, the growth rate of
axisymmetric disturbances is higher than that of planar perturbations, leading
to shorter breakup time. The effect of the rheological behavior of the liquid
was analyzed by varying the value of the Deborah number De and polymer-to-
solvent viscosity ratio ηr. The results show that, despite not having any effect
on the critical value of S/Â, the viscoelastic forces have a tremendous impact
on the dynamics of the sheet rupture, slowing down the growth of the imposed
perturbation and delaying the curtain pinch-off. These results may explain
the experimental observation that curtain coating process can be stabilized by
adding small amounts of high molecular weight polymers to the coating liquid.

For the retraction process, the non-Newtonian effects were studied
through numerical solution of the evolution equations for two different vis-
cosity regime; high Oh and low Oh. In high Oh regime, earlier studies [65, 31]
in Newtonian fluids showed that viscous force delays the retraction process due
to the acceleration of a larger portion of the fluid. Another feature observed
in this regime was the absence of the rim formation. Results of an Oldroyd-
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B fluid revealed that elastic effects further increase the features observed in
high viscosity fluids. By including viscoelastic forces, the retraction process is
decelerated and the thickness shape becomes flatter. Conversely, the analysis
performed for a GNM fluid showed that the dynamic effects of the retraction
process were not enough to activate non-Newtonian properties of that model,
thus the non-Newtonian effects were barely perceptible.

In low Oh regime, numerical results of Oldroyd-B model showed impor-
tant features associated with viscoelastic forces: for moderately low values of
Oh, i.e Oh = 1 and Oh = 0.5, elastic forces that arise na help to hinder the
hole retraction process, avoiding the formation of the rim, in an effect similar
to the observed in high viscosity fluid. An analysis of the axial velocity profile
showed that elastic forces cause a momentum diffusion through the bulk of
the liquid film. Additionally, results for Oh = 0.1, a viscosity regime marked
by the presence of capillary waves in Newtonian films, shows the absence of
ot it, revealing that elastic stresses avoid such instability that arise during the
retraction process.

9.1
Future works

There are some open questions regarding the study of the dynamics of
thin liquid sheets, especially because a large amount of fluids used in the
industry is formed by particles and additives that can change its properties
and affect the breakup dynamics. In this sense, an inclusion of a diffusion flux
model to study the migration mechanism of suspended particles, as well as
Marangoni stress associated to non-constant surface tension can be interesting
for coating industry and could be explored for Newtonian an non-Newtonian
liquid sheets.

From the studies presented in this work, a self-similarty analysis could be
performed in order to propose a similarity solution for the rupture process of a
viscoelastic fluid. In addition, the rupture dynamics of a double or a multiple
layers of fluids, involving non-Newtonian and Newtonian fluid combination is
still under-explored, though its large use by the industry, especially in coating
applications.

Still, it is important to emphasize that there is a small number of
experimental studies in the literature concerning breakup process of a non-
Newtonian liquid sheet. In this sense, PIV methods and high-speed cameras
could be used to evaluate the rupture and retraction process dynamics of
viscoelastic sheets, ensuring the validity of numerical observation presented
in this work.
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