

Fernando Luiz Cyrino Oliveira

Modelo de Séries Temporais para Construção de Árvores de Cenários Aplicadas à Otimização Estocástica

Tese de Doutorado

Tese de Doutorado apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Prof. Reinaldo Castro Souza

Rio de Janeiro, 22 de julho de 2013

Fernando Luiz Cyrino Oliveira

Modelo de Séries Temporais para Construção de Árvores de Cenários Aplicadas à Otimização Estocástica

Tese de apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Reinaldo Castro Souza Orientador

Departamento de Engenharia Elétrica – PUC-Rio

Prof. José Francisco Moreira Pessanha UERJ

Prof. André Luís Marques MarcatoUFJF

Prof. Maurício Nogueira Frota Programa de Pós Graduação em Metrologia

Plutarcho Maravilha Lourenço Centro de Pesquisas de Energia Elétrica

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico-Científico - PUC-Rio

Rio de Janeiro, 22 de julho de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da Universidade, do autor e do orientador.

Fernando Luiz Cyrino Oliveira

Graduou-se em Engenharia de Produção pela Universidade Federal de Juiz de Fora em 2007. Especialista em Métodos Estatísticos Computacionais pela mesma instituição em 2008. Mestrado em Engenharia Elétrica pela PUC-Rio em 2010. Durante o Doutorado atuou em diversos projetos de consultoria e P&D para o mercado de energia elétrica.

Ficha Catalográfica

Oliveira, Fernando Luiz Cyrino

Modelo de Séries Temporais para Construção de Árvores de Cenários Aplicadas à Otimização Estocástica/Fernando Luiz Cyrino Oliveira; orientador: Reinaldo Castro Souza. – 2013.

180 f.: II. color.; 30 cm

Tese (Doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2012.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Árvore de cenários. 3. Técnicas não paramétricas. 4. Simulação estocástica. 5. Programação Dinâmica Dual Estocástica. I. Souza, Reinaldo Castro. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

Aos meus pais, Armando e Maria Inêz, meus primeiros e maiores professores.

Agradecimentos

Esta é a concretização de um sonho e me sinto realizado pela possibilidade de agradecer àqueles que passaram pelo meu caminho e sonharam comigo.

A Deus e à Doutrina Espírita pela minha fé.

Pai e mãe, pois jamais haverá quem tenha sonhado e se doado tanto aos meus caminhos quanto eles.

Fabiana, pelo olhar que dispensa qualquer palavra.

Badinha, pelo exemplo, apoio e cumplicidade.

Gó Lina, o meu maior exemplo de garra e dedicação à vida.

É praxe agradecer ao orientador. Reinaldo foi muito mais do que isso, se tornou um grande amigo e exemplo pessoal e profissional.

Érico, pela parceria de todas as horas.

Thiago, pela amizade incondicional.

Pedro e Bruno pela amizade, ideias e participação fundamental neste trabalho.

André e José Francisco pelos ensinamentos, confiança, credibilidade e exemplo que sempre me deram.

Tales, pela ajuda com os modelos de otimização, fundamentais para o desenvolvimento dos resultados alcançados.

Professores do Departamento de Engenharia Elétrica da PUC-Rio, por acreditarem no meu trabalho.

Prof. Maurício Frota e Plutarcho Lourenço, por aceitarem o convite para compor a banca examinadora e pelas contribuições de alto valor.

Funcionários da PUC-Rio e do NEC, em especial a Ana Paiva, Alcina e Isnard, pela ajuda, paciência e dedicação.

Amigos e colegas dos anos de PUC, por terem dividido comigo as alegrias e angústias do Mestrado e Doutorado.

Amigos feitos nesta Cidade Maravilhosa, estejam nela ou espalhados pelo mundo, pelos inesquecíveis momentos vividos e os que virão.

Meus queridos e saudosos amigos de Juiz de Fora, pela certeza que sempre teremos uns aos outros.

CNPq, pelo apoio financeiro fundamental para a viabilização desta pesquisa.

Obrigado!

Resumo

Oliveira, Fernando Luiz Cyrino; Souza, Reinaldo Castro. **Modelo de Séries Temporais para Construção de Árvores de Cenários Aplicadas à Otimização Estocástica**. Rio de Janeiro, 2013. 180p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Em função da dependência dos regimes hidrológicos, a incerteza associada ao planejamento energético no Brasil exige a modelagem estocástica das Séries Temporais associadas de maneira adequada e coerente. Percebe-se, portanto, a importância dos modelos de geração de cenários hidrológicos com vistas à otimização, via Programação Dinâmica Dual Estocástica (PDDE), do desempenho das operações do sistema elétrico, com consequente aumento de benefícios e confiabilidade e, sobretudo, redução de custos. Esta modelagem estocástica tem sido realizada por um modelo Autorregressivo Peridódico, PAR(p), que ajusta um modelo autorregressivo de ordem p para cada um dos estágios das séries históricas que compõem as configurações do sistema. Este trabalho mostra que a estrutura utilizada no processo de simulação de séries sintéticas do modelo vigente no Setor Elétrico Brasileiro, via distribuição Lognormal, gera uma não linearidade na equação do modelo, o que pode ocasionar inconvenientes de não convexidade que inviabilizam o correto cálculo das Funções de Custo Futuro, poliedros convexos aproximados por funções lineares por partes. Haja vista o exposto e as características do modelo estocástico gerador da árvore de cenários e sua utilização em modelos de otimização, este trabalho apresenta uma nova metodologia alternativa para a construção dos cenários, de forma que os inconvenientes supracitados sejam eliminados. Isto posto, será apresentado uma nova abordagem geral para a construção das árvores, considerando os passos Forward e Backward, fundamentais no processo de otimização empregado pela técnica de PDDE. A estrutura de simulação estocástica desenvolvida conjugou a técnica de computação intensiva de *Bootstrap* e o método de simulação de Monte Carlo. Foram geradas árvores de cenários com horizonte temporal condizente com o planejamento de médio prazo do despacho hidrotérmico. As séries sintéticas foram comparadas às históricas por meio de uma bateria de testes estatísticos e a

aderência das séries geradas foi atestada, provando a adequabilidade do modelo desenvolvido no que tange à parte estocástica do problema. Por fim, a árvore de cenários gerada foi aplicada na PDDE e várias variáveis de resposta foram analisadas, permitindo concluir que o modelo desenvolvido é perfeitamente capaz de reproduzir estruturas compatíveis com o modelo vigente, contudo sem causar a referida não linearidade na equação do PAR(p) e a possível não convexidade do problema de otimização associado ao planejamento de operação de médio/longo prazo.

Palavras-chave

Árvore de Cenários, Técnicas Não Paramétricas, Simulação Estocástica, Programação Dinâmica Dual Estocástica.

Abstract

Oliveira, Fernando Luiz Cyrino; Souza, Reinaldo Castro (Advisor). **Time Series Model for Building Scenarios Trees Applied to Stochastic Optimization**. Rio de Janeiro, 2013. 180p. D.Sc. Thesis - Electrical Engineering Department, Pontifical Catholic University of Rio de Janeiro.

Due to the highly dependence on the hydrological regimes, the uncertainty associated with energy planning in Brazil requires stochastic modeling of associated time series appropriately and consistently. It is clear, therefore, the importance of models to generate hydrologic scenarios to be used in the optimization via Stochastic Dual Dynamic Programming (SDDP), which improves the performance of system operations, with consequent increase in benefits and reliability and, above all, cost reduction. This stochastic modeling is performed by the PAR(p), which sets an autoregressive model of order p for each of the stages of the historical series that make up the system settings. It was shown in this work that the structure used in the simulation process of synthetic series of the model prevailing in SEB via lognormal distribution generates a nonlinearity relationship in the model equation, which causes the inconvenience of nonconvexity in the calculation of Expected Cost-to-go Functions, convex polyhedral approximated by piecewise linear functions. Considering the above and the characteristics of the stochastic model that generates the scenarios tree and its use in the optimization algorithms, this study aims the development of an alternative methodology for the construction of scenarios, so that the aforementioned drawbacks were eliminated. It is proposed a new general approach for the construction of trees, considering the steps Forward and Backward, fundamental in the process of optimization technique employed by SDDP. The structure of stochastic simulation technique developed conjugates computationally intensive Bootstrap method and Monte Carlo simulation. Scenarios trees were generated consistent with the medium-term planning of hydrothermal dispatch. The synthetic series were compared to the historical data through a battery of statistical tests and the goodness fiting of the series generated was tested that

confirmed the suitability of the developed model with respect to the stochastic problem. Finally, the paths of the trees were applied to the SDDP and response variables were analyzed, leading to the conclusion that the model was able to perfectly reproduce structures compatible with the current model, but without causing the aforementioned non-linearity of the PAR(p) equation and possible non convexity in the Expected Cost-to-go Functions.

Keywords

Scenario Tree, Non Parametric Techniques, Stochastic Simulation, Stochastic Dual Dynamic Programming.

Sumário

1.	Introdução	19
1.1	Considerações Iniciais	19
1.2	Motivação	19
1.3	Objetivo	21
1.4	Descrição do Trabalho	22
1.5	Publicações relacionadas	23
1.6	Organização da Tese	25
2.	Planejamento da Operação de Sistemas Hidrotérmicos	26
2.1	Considerações Iniciais e Caracterização do SIN	26
2.2	Critério de Otimização em Sistemas Hidrotérmicos	28
2.3	Cadeia de Modelos e a Representação em Reservatórios Equivalentes	30
3.	Modelos de Otimização no Contexto do Planejamento do D	espach
Hid	lrotérmico	37
3.1	Programação Dinâmica Dual Determinística	37
3.2	Programação Dinâmica Dual Estocástica	41
3.2	PDDE no Contexto do Planejamento do Despacho Hidrotérmico	44
4.	Representação da Incerteza Hidrológica no Planejamento da Operação	53
4.1	A Construção da Árvore de Cenários	53
4.2	Modelos Estocásticos em Hidrologia	61
4.3	O Modelo Autorregressivo Periódico	62
4.3	.1 Identificação Estrutural	64
4.3	.2 Estimação Paramétrica	66
4.3	.3 Simulação de Cenários	67
4.4	Proposta de Trabalho	71
5.	Referencial Teórico e Modelo Proposto	73
5.1	A Técnica Não Paramétrica Bootstrap	77

5.1.1 Bootstrap na Simulação de Séries Temporais	80
5.2 Distribuições de Probabilidade: Ajuste, Estimação Paramétrica e Seleção	82
5.3 Simulação de Monte Carlo	84
5.4 Modelo Proposto	87
6. Resultados	93
6.1 Caracterização da Base de Dados	94
6.2 Resultados do Modelo Estocástico fornecidos à PDDE	96
6.3 Análises dos Resíduos do Modelo PAR	103
6.4 Seleção das Distribuições de Probabilidade	107
6.5 Avaliação dos cenários de ENA	119
6.5.1 Simulação Forward	120
6.5.2 Simulação <i>Backward</i>	130
6.6 Avaliação do Modelo Proposto no Planejamento da Operação	138
7. Conclusões e Considerações Finais	148
0 Defender D'I-1'	151
8. Referências Bibliográficas	151
9. Apêndices	160
9.1 Apêndice A – Estrutura de Configurações do PMO	160
9.2 Apêndice B – Caracterização das Distribuições de Probabilidade	163
9.2.1 Distribuição Normal	163
9.2.2 Distribuição Logística	164
9.2.3 Distribuição de Gumbel	165
9.2.4 Distribuição Generalizada de Valores Extremos	166
9.2.5 Distribuição do Tipo <i>Location-scale</i>	169
9.3 Apêndice C – Testes e Critérios de Ajuste, Estimação Paramétrica e Seleç	ão
de Distribuições	171
9.3.1 Testes de Inferência Estatística Não Paramétrica	171
9.3.1.1 Teste Chi-Quadrado	171
9.3.1.2 Teste Kolmogorov-Smirnov	173
9.3.2 Critérios de Informação	175
9 3 2 1 AIC	176

9.3.2.2 BIC	177
9.3.2.3 AICc	178
9.4 Apêndice D – Análise de Sequências	179

Lista de figuras

Figura 2.1 - Decisões Operativas e Possíveis Consequências	28
Figura 2.2 - Otimização da Decisão de Operação	29
Figura 2.3 - Representação das Incertezas e do Detalhamento dos Sistemas	32
Figura 2.4 - Cadeia de Modelos Computacionais	36
Figura 3.1 – Árvore de Cenários	45
Figura 4.1 - Exemplo de uma Árvore de Cenários Completa	55
Figura 4.2 - Sub árvore Passo Forward	57
Figura 4.3 - Sub árvore Passo <i>Backward</i> (estágio 3)	58
Figura 4.4 - Ruídos para Construção da Árvore de Cenários	59
Figura 4.5 - Ruídos Repetidos para Construção da Árvore de Cenários	60
Figura 5.1 - Falha no Passo Backward	74
Figura 5.2 – Matriz de ruídos e aberturas	76
Figura 5.3 – Exemplo dos três cenários Forward sorteados	77
Figura 5.4 - Estrutura do Passo Backward	91
Figura $6.1 - p$ -valores Teste t	104
Figura 6.2 – p-valores Teste Ljung-Box	105
Figura 6.3 – p-valores Teste ARCH	106
Figura $6.4 - p$ -valores teste Kolmogorov-Smirnof distribuição GEV	115
Figura $6.5 - p$ -valores teste Kolmogorov-Smirnof, subsistema Nordeste, na	ível de
significância de 1%	115
Figura 6.6 – Envoltória cenários Forward	121
Figura 6.7 – Testes de igualdade de médias - cenários Forward	123
Figura 6.8 – Testes de igualdade de variâncias - cenários Forward	124
Figura 6.9 – Testes de igualdade de distribuições - cenários Forward	125
Figura 6.10 – Correlação cruzada SE/CO e pares - cenários Forward	127
Figura 6.11 – Correlação cruzada S, NE e pares - cenários Forward	128
Figura 6.12 – Envoltória cenários Backward	132
Figura 6.13 – Testes de igualdade de médias - cenários <i>Backward</i>	133
Figura 6.14 – Testes de igualde de variâncias - cenários <i>Backward</i>	134
Figura 6.15 – Testes de igualdade de distribuições - cenários <i>Backward</i>	135

Figura 6.16 – Correlação cruzada SE/CO e pares - cenarios <i>Backward</i>	136
Figura 6.17 – Correlação cruzada S, NE e pares - cenários <i>Backward</i>	137
Figura 6.18 – Comparações Correlações Médias Forward e Backward	138
Figura 6.19 – Valor Esperado do Custo Total de Operação do SIN	139
Figura 6.20 – CMO - SE/CO	140
Figura 6.21 – CMO - S	140
Figura 6.22 – CMO - NE	140
Figura 6.23 – CMO - N	140
Figura 6.24 – Geração Hidráulica Total do SIN	141
Figura 6.25 – GHID - SE/CO	141
Figura 6.26 – GHID - S	141
Figura 6.27 – GHID - NE	142
Figura 6.28 – GHID - N	142
Figura 6.29 – Geração Térmica Total do SIN	142
Figura 6.30 – GTER - SE/CO	143
Figura 6.31 – GTER - S	143
Figura 6.32 – GTER - NE.	143
Figura 6.33 – GTER - N	143
Figura 6.34 – Déficit de Energia Total do SIN	144
Figura 6.35 – GDEF - SE/CO	144
Figura 6.36 – GDEF - S	144
Figura 6.37 – GDEF - NE.	144
Figura 6.38 – GDEF - N	144
Figura 6.39 – Energia Armazenada Final Total do SIN	145
Figura 6.40 – EARMFS - SE/CO	146
Figura 6.41 – EARMFS - S	146
Figura 6.42 – EARMFS - NE	146
Figura 6.43 – EARMFS - N	146
Figura 7.1 – Contribuição da Tese	150
Figura 9.1 – Pré-estudo, Pós-estudo e as diferentes configurações	162
Figura 9.2 – Exemplos da Distribuição Normal	164
Figura 9.3 – Dados Simulados de uma Distribuição Logística	165
Figura 9 4 – Distribuição de Gumbel	166

Figura 9.5 – Distribuição GEV	169
Figura 9.6 – Distribuição t de Student vs Normal	170
Figura 9.7 - Esquema de uma sequência negativa	179

Lista de tabelas

Tabela 2.1 - Estrutura de Capacidade Instalada do SIN	26
Tabela 6.1 – Configurações vs Estágios	95
Tabela 6.2 – Ordens Identificadas – SE/CO	96
Tabela 6.3 – Ordens Identificadas – S	97
Tabela 6.4 – Ordens Identificadas – NE	97
Tabela 6.5 – Ordens Identificadas – N	98
Tabela 6.6 – Parâmetros Estimados – SE/CO	99
Tabela 6.7 – Parâmetros Estimados – S	100
Tabela 6.8 – Parâmetros Estimados – NE	101
Tabela 6.9 – Parâmetros Estimados – N	102
Tabela 6.10 – Distribuições Selecionadas – SE/CO	109
Tabela 6.11 – Distribuições Selecionadas – S	110
Tabela 6.12 – Distribuições Selecionadas – NE	111
Tabela 6.13 – Distribuições Selecionadas – N	112
Tabela 6.14 – Percentual das Distribuições Selecionadas	113
Tabela 6.15 – Caracterização distribuição GEV – SE/CO	116
Tabela 6.16 – Caracterização distribuição GEV – S	117
Tabela 6.17 – Caracterização distribuição GEV – NE	118
Tabela 6.18 – Caracterização distribuição GEV – N	119
Tabela 6.19 – Coeficiente de Variação Médio	120
Tabela 6.20 – Análises de Sequências Negativas	130
Tabela 6.21 – Análises de Sequências Positivas	130
Tabela 6.22 – Resumo comparativo SIN	147
Tabela 9.1 - Características da Distribuição Normal	164
Tabela 9.2 - Características da Distribuição Logística	165
Tabela 9.3 - Características da Distribuição de Gumbel	166
Tabela 9.4 - Características da Distribuição GEV	168
Tabela 9.5 - Características da Distribuição do Tipo <i>Location-scale</i>	170
Tabela 9.6 - Tabela de Contingência	172
Tabela 9.7 – Modelagem das seguências negativas	180

"[...] É preciso ousar, aprender a ousar, para dizer não à burocratização da mente a que nos expomos diariamente. [...]"

Paulo Freire