

Eduardo Costa da Silva

Magnetômetro GMI de Alta Sensibilidade para Medição de Campos Magnéticos Ultra-fracos

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Prof. Guilherme Penello Temporão Co-Orientadora: Prof^a. Elisabeth Costa Monteiro Co-Orientador: Prof. Carlos Roberto Hall Barbosa

> Rio de Janeiro Outubro de 2013

Eduardo Costa da Silva

Magnetômetro GMI de Alta Sensibilidade para Medição de Campos Magnéticos Ultra-fracos

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Guilherme Penello Temporão Orientador

Centro de Estudos em Telecomunicações - PUC-Rio

Prof^a. Elisabeth Costa Monteiro Co-Orientadora Programa de Pós Graduação em Metrologia - PUC-Rio

Prof. Carlos Roberto Hall Barbosa Co-Orientador Programa de Pós Graduação em Metrologia - PUC-Rio

> Prof. Fernando Luis de Araujo Machado Departamento de Física - UFPE

Prof. Helio Ricardo Carvalho Divisão de Metrologia Elétrica - INMETRO

Prof. Marcelo Martins Werneck Programa de Engenharia Elétrica - UFRJ

Prof. Marcio Nogueira de Souza Programa de Engenharia Biomédica - UFRJ

Prof. José Franco Machado do Amaral Departamento de Eletrônica e Telecomunicações - UERJ

Prof. Miguel de Andrade Freitas Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Rubem Luis Sommer Programa de Pós Graduação em Física - CBPF

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 3 de outubro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eduardo Costa da Silva

Graduado em Engenharia Elétrica e em Engenharia de Controle e Automação pela PUC-Rio em 2008. Mestre em Metrologia pela PUC-Rio em 2010. Atualmente, é doutorando em Engenharia Elétrica (Eletromagnetismo Aplicado). Publicou 7 artigos em periódicos e 21 trabalhos em anais de eventos. Possui 4 patentes e 3 softwares. Tem atuado no desenvolvimento de circuitos eletrônicos, instrumentação eletrônica, transdutores magnéticos e engenharia biomédica.

Ficha Catalográfica

Silva, Eduardo Costa da

Magnetômetro GMI de alta sensibilidade para medição de campos magnéticos ultra-fracos / Eduardo Costa da Silva; orientador: Guilherme Penello Temporão; co-orientadora: Elisabeth Costa Monteiro; co-orientador: Carlos Roberto Hall Barbosa. – 2013.

219 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2013.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Instrumentação eletrônica. 3. Magnetômetro. 4. Magnetoimpedância gigante. 5. Sensores magnéticos. 6. Alta sensibildiade. I. Temporão, Guilherme Penello. II. Monteiro, Elisabeth Costa. III. Barbosa, Carlos Roberto Hall. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. V. Título.

Dedico este trabalho a Nossa Senhora de Fátima, por guiar meus passos, a meus pais, Eduardo e Beatriz, e avó, Maria, por apoiarem e incentivarem minha formação acadêmica, e pela paciência e compreensão nos momentos difíceis.

Agradecimentos

Ao meu orientador Professor Guilherme Penello Temporão por acreditar neste trabalho, por toda confiança e pelas enriquecedoras contribuições, revisões e sugestões. Tenho certeza de que estes foram apenas os primeiros passos de uma longa e profícua colaboração.

Ao meu co-orientador Professor Carlos Roberto Hall Barbosa pelos ensinamentos, auxílios, presteza, amizade e dedicação; por me tornar célere nos momentos necessários, por ter acreditado e contribuído enormemente para os objetivos deste trabalho. Espero que possamos continuar a navegar por mares nunca dantes navegados, por muitos anos!

À minha co-orientadora Professora Elisabeth Costa Monteiro pela confiança, dedicação e amizade; por acreditar na minha capacidade criativa, por fomentar e auxiliar todas as novas pesquisas propostas, pelo apoio incondicional e por ser a definição viva do termo *multitasking*. Sua contribuição foi, é e será fundamental para o sucesso desta e das novas aventuras que se apresentam!

Ao oráculo, Professor Luiz Antônio Pereira de Gusmão, por ser uma inesgotável fonte de saber, por ter sido um companheiro inestimável nesta jornada, por ter iluminado as trevas do caminho e por ter se mostrado sempre tão solícito. Nunca terei como agradecer o suficiente! Afinal, determinadas coisas não têm preço!

Aos membros da Comissão Examinadora por suas contribuições a este trabalho.

Em especial ao Professor Fernando Luiz de Araújo Machado, pela acolhida em minha visita ao Departamento de Física da UFPE, pelos esclarecimentos e por fornecer as amostras GMI utilizadas nesta pesquisa.

Aos Professores da PUC-Rio, dos Departamentos de Engenharia Elétrica e Engenharia de Controle e Automação, CETUC e Metrologia, pela sólida formação acadêmica.

À equipe de suporte técnico do Departamento de Engenharia Elétrica da PUC-Rio, em especial aos técnicos Manuel Ramos Martins, Isnarde Antonio Ernesto e Evandro Costa dos Reis, por permitirem meu acesso à oficina e por terem um estoque de componentes eletrônicos superior ao da Farnell.

Aos alunos Rodrigo Gonçalves Novais, Leonardo Gouvea e Silva Fortaleza, Daniela de Mattos Szwarcman, Gabriel Drummond de Mendonça Simonsen, João Henrique Costa Carvalho Carneiro, João Ricardo Cortes Nunes, Lucas Castro Faria e Yuri Leipner, que desenvolveram ou estão desenvolvendo iniciações científicas, trabalhos de conclusão de cursos de graduação e mestrados, relacionados ao tema desta Tese. Suas contribuições ao trabalho aqui apresentado foram inestimáveis! A curiosidade é a mola propulsora da ciência, nunca parem de se questionar sobre o funcionamento das coisas!

À equipe da Agência PUC-Rio de Inovação, em especial Shirley Coutinho, Taís e Márcio, por acreditarem e estimularem a integração universidade-empresa, por promoverem cursos e palestras sobre propriedade intelectual no ambiente da PUC-Rio, por permitirem que pesquisadores da universidade informem-se sobre aspectos relativos à propriedade intelectual, e por serem um instrumento de transformação de invenções em inovações.

À PUC-Rio, por acreditar na pesquisa científica como instrumento de desenvolvimento social e evolução humana.

Ao CNPq, pelos auxílios financeiros concedidos.

Resumo

Costa da Silva, Eduardo; Temporão, Guilherme Penello (Orientador); Monteiro, Elisabeth Costa (Co-orientadora); Barbosa, Carlos Roberto Hall (Co-orientador). **Magnetômetro GMI de Alta Sensibilidade para Medição de Campos Magnéticos Ultra-fracos**. Rio de Janeiro, 2013. 219 p. Tese de Doutorado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta Tese teve por objetivo desenvolver um magnetômetro de alta sensibilidade, baseado nas características de fase do efeito da Magnetoimpedância Gigante (GMI – Giant Magnetoimpedance), para medição de campos magnéticos ultra-fracos. Elementos sensores GMI apresentam grande potencial na fabricação de magnetômetros que conciliem alta sensibilidade e elevada resolução espacial com baixo custo. A otimização da sensibilidade do transdutor magnético é diretamente afetada pela sensibilidade de seus elementos sensores GMI, cuja maximização é um processo intrinsecamente multivariável. Consequentemente, a metodologia experimental empregada iniciou-se pelo desenvolvimento de um sistema automático de caracterização das amostras GMI, de modo a se garantir a agilidade do processo de caracterização, possibilitando a obtenção de um volume significativo de informações experimentais. A análise minuciosa dos dados provenientes das medições experimentais permitiu a definição do ponto ótimo de operação das amostras GMI estudadas. Em todas as medições experimentais realizadas foram obtidas e avaliadas as curvas de histerese das amostras GMI. Na sequência, foram idealizados circuitos eletrônicos para condicionamento das amostras GMI e leitura das características de fase de sua impedância, destacandose a configuração eletrônica desenvolvida para a amplificação da sensibilidade de fase. Foram, inclusive, depositadas patentes nacionais e internacionais referentes ao método proposto e ao novo transdutor magnético GMI (PI 0902770-0; PI 1004686-0; WO/2010/094096 e WO/2012/048395). As caracterizações e ensaios experimentais realizados indicaram a eficácia da abordagem proposta, evidenciando o grande potencial do magnetômetro GMI desenvolvido, o qual apresentou uma elevada sensibilidade de 5 mV/nT. A resolução do magnetômetro foi limitada pelo ruído magnético ambiental, indicando que sua capacidade de medição de campos inferiores aos níveis de ruído poderá ser claramente evidenciada quando for avaliada em ambiente magneticamente blindado. Os estudos teórico-experimentais realizados indicam o potencial do transdutor magnético GMI desenvolvido, caracterizado por seu baixo custo e elevada sensibilidade, para aplicação na medição de campos magnéticos ultra-fracos.

Palavras-chave

Instrumentação Eletrônica; Magnetômetro; Magnetoimpedância Gigante; Sensores Magnéticos; Alta Sensibilidade.

Abstract

Costa da Silva, Eduardo; Temporão, Guilherme Penello (Advisor); Monteiro, Elisabeth Costa (Co-Advisor); Barbosa, Carlos Roberto Hall (Co-Advisor). **High Sensitivity GMI Magnetometer for the Measurement of Ultra-Weak Magnetic Fields**. Rio de Janeiro, 2013. 219 p. D.Sc. Thesis – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This Thesis aimed at developing a high sensitivity magnetometer, based on the phase characteristics of the Giant Magnetoimpedance effect (GMI), for measuring ultra-weak magnetic fields. GMI sensor elements have great potential to implement magnetometers that combine high sensitivity and high spatial resolution with low cost. The optimization of the magnetic transducer sensitivity is directly affected by the sensitivity of its GMI sensor elements, whose maximization is inherently multivariate. Consequently, the first step of the experimental methodology employed was to develop an automatic system for the characterization of GMI samples, so as to ensure the agility of the characterization process, allowing the gathering of a significant amount of experimental data. A thorough analysis of the experimental data led to the definition of the optimal operation point of the analyzed GMI samples. The hysteresis curves of the GMI samples were obtained and evaluated, in all of the performed experimental measurements. Based on the characterization studies results, electronic circuits were designed for conditioning the GMI samples and reading their impedance phase characteristics, highlighting the new electronic configuration developed for enhancing the phase sensitivity. National and international patents were filed, related to the proposed method, for sensitivity enhancement, and to the new GMI magnetometer (PI 0902770-0; PI 1004686-0; WO/2010/094096 e WO/2012/048395). The performed experimental characterizations and assays indicated the effectiveness of the proposed approach, showing the great potential of the developed GMI magnetometer, which presents a high sensitivity of 5 mV/nT. The magnetometer resolution was limited by the environmental magnetic noise, pointing out their capability in measuring fields below the environmental noise level, which can be clearly evidenced only when evaluated in a magnetically shielded room. The theoretical and experimental studies carried out indicate the potential of the developed GMI magnetic transducer, characterized by

its low cost and high sensitivity, for applications involving the measurement of ultra-weak magnetic fields.

Keywords

Electronic Instrumentation; Magnetometer; Giant Magnetoimpedance; Magnetic Sensors; High Sensitivity.

Sumário

1 Introdução	25
1.1. Transdutores Magnéticos	25
1.1.1. Superconducting Quantum Interference Device (SQUID)	27
1.1.2. Bobinas Sensoras	29
1.1.3. <i>Fluxgates</i>	30
1.1.4. Fibra-óptica	32
1.1.5. GMR	33
1.1.6. GMI	35
1.1.6.1. Aspectos Teóricos	35
1.1.6.2. GMI Assimétrica	40
1.1.6.3. Técnicas de Transdução	41
1.1.6.3.1. Leitura Direta do Módulo	41
1.1.6.3.2. Leitura em Meia Ponte	42
1.1.6.3.3. Rede de Duas Portas	43
1.1.6.3.4. Leitura de Frequência	45
1.1.6.4. Comparação de Figuras de Mérito	48
1.2. Relevância e Objetivos	49
1.3. Estrutura da Tese	50
2 Caracterização das Amostras GMI	52
2.1. Caracterização Experimental: Metodologia	52
2.1.1. Caracterização Experimental do Módulo da Impedância	56
2.1.2. Caracterização Experimental da Fase da Impedância	58
2.1.3. Análise dos Resultados Experimentais	59
2.1.4. Otimização da Sensibilidade das Amostras GMI	61
2.2. Características da Amostra GMI Selecionada	62
2.2.1. Modelo elétrico da amostra GMI selecionada	64
2.2.2. Sensibilidade aos parâmetros da corrente de condicionamento	66
3 Amplificação da Sensibilidade de Fase	70

3.1. Método de Amplificação	70
3.2. Método de Amplificação Aprimorado	76
3.2.1. Exemplo de Aplicação do Método	86
3.2.2. Simulações SPICE	92
3.2.2.1. Simulações SPICE 1 – Elementos Ideais	93
3.2.2.2. Simulações SPICE 2 – Influência dos AmpOps Reais	95
3.2.2.3. Simulações SPICE 3 – Influência da Fonte de Corrente Real	98
3.2.2.4. Simulações SPICE 4 – Influência das Resistências Espúrias	109
3.2.2.5. Simulações SPICE – Considerações Finais	112
3.2.3. Estabilidade do Circuito	112
3.2.3.1. Limitação da Amplitude	116
4 Magnetômetro GMI	120
4.1. Circuito Eletrônico de Transdução	122
4.2. Caracterização Experimental	138
4.2.1. Considerações sobre a Operação do Circuito	138
4.2.2. Estabilidade da frequência de oscilação	140
4.2.3. Amplificação da Sensibilidade de Fase	144
4.2.4. Análise do Estágio de Filtragem	147
4.2.5. Análise da Sensibilidade	148
4.2.6. Análise da Figura de Ruído 1/f	157
5 Ensaios Experimentais com o Magnetômetro GMI	161
5.1. Bobina de Excitação de Relógio de Cristal de Quartzo	161
5.2. Motor <i>Brushless</i> CC	168
5.3. Sinal Cardíaco Sintetizado	171
5.4. Onda de Pulso Arterial Carotídeo	176
6 Conclusões e Trabalhos Futuros	181
6.1. Conclusões	181
6.2. Trabalhos Futuros	183
6.2.1. Transdutor Magnético	183
6.2.2. Novos Estudos e Novas Técnicas de Transdução	186

Referências Bibliográficas	188
Apêndice A Modelagem dos Sensores GMI por Redes Neurais	203
A.1. Sensibilidade das Amostras GMI	204
A.2. Redes Neurais	207
A.2.1. Normalização	207
A.2.2. Topologia	209
A.2.3. Resultados	210
Apêndice B Características do Circuito Eletrônico do Transdutor GMI	214
B.1. Configuração Mecânica da PCB	214
B.2. Lista de Componentes	215
B.2.1. Módulo I	215
B.2.2. Módulo II	218

Lista de figuras

Figura 1 – Representação esquemática do SQUID.	28
Figura 2 – Configuração esquemática de um transdutor	
magnético do tipo <i>Fluxgate</i> .	31
Figura 3 – Curva de magnetização com Histerese.	31
Figura 4 – Princípio de funcionamento de um <i>Fluxgate</i> .	32
Figura 5 – Configuração esquemática de um transdutor	
magnético a Fibra-óptica.	33
Figura 6 – Medição Típica do efeito LMI.	36
Figura 7 – Magnetômetro GMI baseado na leitura	
do módulo da impedância [87].	41
Figura 8 – Magnetômetro GMI baseado na leitura em meia ponte [54].	42
Figura 9 – (a) Representação esquemática do elemento	
sensor e (b) Modelo da rede de duas portas associada.	43
Figura 10 – Magnetômetro GMI baseado na configuração	
do elemento sensor como uma rede de duas portas, composta	
pela associação da amostra GMI a uma bobina de leitura [88].	44
Figura 11 – Magnetômetro GMI baseado na variação da	
frequência de oscilação com o campo magnético [89].	45
Figura 12 – Níveis de tensão nas entras e saídas do comparador:	
(a) saída v_o , (b) entrada inversora v e (c) entrada não-inversora v_+ .	46
Figura 13 – Diagrama de Blocos do sistema utilizado na	
caracterização das fitas GMI.	53
Figura 14 – Bobina de Helmholtz com a fita GMI posicionada	
em seu centro.	55
Figura 15 – Módulo da impedância de amostras GMI, em forma	
de fita, em função do campo magnético, submetidas a	
i_{C} = [80 + 15 sen(2 πf t)] mA, com os seguintes comprimentos:	
(a) 1 cm, (b) 3 cm, (c) 5 cm e (d) 15 cm.	57
Figura 16 – Módulo da impedância de amostras GMI, em forma	
de fita, em função do campo magnético; para amostras	

com diversos comprimentos: (a) 1 cm, excitada por	
i_{C} = [I_{cc} + 15 sen(2 π 10 ⁵ t)] mA, (b) 3 cm, excitada por	
i_{C} = [I_{cc} + 15 sen(2 π 5 10 ⁶ t)] mA, (c) 5 cm, excitada por	
i_{C} = [I_{cc} + 15 sen(2 π 10 ⁵ t)] mA e (d) 15 cm, excitada	
por $i_c = [I_{cc} + 15 \text{ sen}(2\pi \ 10 \ 10^6 \ t)] \text{ mA}.$	57
Figura 17 – Fase da impedância de amostras GMI, em forma	
de fita, em função do campo magnético, submetidas a	
i_{C} = [80 + 15 sen(2 πf t)] mA, com os seguintes comprimentos:	
(a) 1 cm, (b) 3 cm, (c) 5 cm e (d) 15 cm.	58
Figura 18 –Fase da impedância de amostras GMI, em forma	
de fita, em função do campo magnético; para amostras	
com diversos comprimentos: (a) 1 cm, excitada por	
i_{C} = [I_{cc} + 15 sen(2 π 10 ⁵ t)] mA, (b) 3 cm, excitada por	
i_{C} = [I_{cc} + 15 sen(2 π 2 10 ⁶ t)] mA, (c) 5 cm, excitada por	
$i_{\rm C}$ = [$I_{\rm cc}$ + 15 sen(2 π 10 ⁵ t)] mA e (d) 15 cm, excitada por	
$i_c = [I_{cc} + 15 \operatorname{sen}(2\pi \ 10 \ 10^6 \ t)] \operatorname{mA}.$	59
Figura 19 – Curvas de Histerese de Módulo e Fase da	
amostra GMI com 3 cm de comprimento, excitada por	
i_{C} = [80 + 15 sen(2 π 10 ⁵ t)] mA. (a) Módulo da Impedância	
em função do campo magnético; e (b) Fase da impedância	
em função do campo magnético.	63
Figura 20 – Curvas Médias de Módulo e Fase da	
amostra GMI com 3 cm de comprimento, excitada por	
i_{C} = [80 + 15 sen(2 π 10 ⁵ t)] mA. (a) Módulo da Impedância	
em função do campo magnético; e (b) Fase da impedância	
em função do campo magnético.	63
Figura 21 – Curvas Médias de Resistência e Indutância da	
amostra GMI com 3 cm de comprimento, excitada por	
i_c = [80 + 15 sen(2 π 10 ⁵ t)] mA. (a) Resistência em função do	
campo magnético; e (b) Indutância em função do campo magnético.	65
Figura 22 – (a) Curvas de fase da impedância e (b) Curvas de	
variação de fase $arDelta heta_{\prime ca}$ em função do campo magnético, para	
diferentes valores de amplitude <i>l_{ca}</i> da corrente de excitação	

(10 mA, 12,5 mA, 15 mA, 17,5 mA e 20 mA).	66
Figura 23 – (a) Curvas de fase da impedância e (b) Curvas de	
variação de fase $\Delta heta_{\prime ca}$ em função do campo magnético, para	
diferentes valores de frequência f da corrente de excitação	
(95 kHz a 105 kHz, em passos de 1 kHz).	67
Figura 24 – Curvas de fase da impedância em função	
do campo magnético, para diferentes níveis CC I _{CC} da	
corrente de excitação (0 mA a 100 mA, em passos de 20 mA).	68
Figura 25 – Configuração eletrônica idealizada para	
implementação do método de amplificação da sensibilidade de fase.	71
Figura 26 – Generalized Immittance Converter (GIC).	72
Figura 27 – Representação esquemática do circuito	
eletrônico desenvolvido para a amplificação da sensibilidade de	
fase das amostras GMI.	72
Figura 28 – Sensibilidade de fase das amostras GMI em função	
de C_{aj} e Z_{FDNR} .	75
Figura 29 – Representação esquemática da configuração	
aprimorada do circuito para amplificação da sensibilidade de fase.	77
Figura 30 – Função arco-tangente.	78
Figura 31 – Representação fasorial das impedâncias	
Z_{eq2} e Z_{gic} , ajustando-se R_{AJ} de modo a garantir que o	
denominador do argumento da função arco tangente, eq. (53),	
seja uma constante negativa, para (a) $H = H_{pol} e$ (b) $H = Hpol + \Delta H$.	84
Figura 32 – Representação fasorial das impedâncias	
Z_{eq2} e Z_{gic} , ajustando-se R_{AJ} de modo a garantir que o	
denominador do argumento da função arco tangente, eq. (53),	
seja uma constante positiva, para (a) $H = H_{pol} e$ (b) $H = Hpol + \Delta H$.	84
Figura 33 – Curvas teóricas de fase $ heta_{eq2}$ em função do	
campo magnético <i>H</i> , obtidas ao se variar <i>R_{AJ}</i> .	90
Figura 34 – Curvas das componentes da impedância $Z_{eq2}(H)$	
em função do campo magnético H. (a) componente resistiva $R_{eq2}(H)$	
e (b) componente reativa $X_{eq2}(H)$.	91
Figura 35 – SPICE 1: Comportamento das componentes resistiva	

R_{eq2} e reativa X_{eq2} da impedância equivalente Z_{eq2} ,	
em função da frequência da corrente de excitação.	94
Figura 36 – SPICE 2: Comportamento das componentes resistiva	
R_{eq2} e reativa X_{eq2} da impedância equivalente Z_{eq2} ,	
em função da frequência da corrente de excitação.	96
Figura 37 – SPICE 2: Curva de fase $ heta_{eq2}$ em função do	
campo magnético <i>H</i> .	97
Figura 38 – Representação esquemática do circuito	
eletrônico de amplificação da sensibilidade de fase, com a	
fonte de corrente ideal I _{CC} substituída por uma implementação real.	99
Figura 39 – Curva $i_D \times V_{SD}$ típica de um transistor	
PMOS tipo enriquecimento.	100
Figura 40 – Curva característica $i_D \times V_{DS}$ do transistor	
PMOS tipo enriquecimento FDC6304P, utilizado na	
implementação da fonte de corrente real <i>I_{CC}</i> .	101
Figura 41 – Estruturas para implementação da fonte de	
corrente CC: (a) conexão direta entre V _{CC} = 6 V e o <i>source</i>	
de Q1 e (b) conexão entre V_{CC} = 6 V e o source de Q1	
por meio de uma resistência R _{S1A} .	103
Figura 42 – Dependência da corrente <i>i</i> _D com a temperatura,	
entre 15 °C e 35 °C, para: (a) a topologia apresentada	
na Figura 41(a); e (b) a topologia apresentada na Figura 41(b).	105
Figura 43 – SPICE 3: Comportamento das componentes resistiva	
R_{eq2} e reativa X_{eq2} da impedância equivalente Z_{eq2} ,	
em função da frequência da corrente de excitação.	108
Figura 44 – SPICE 4: Comportamento das componentes resistiva	
R_{eq2} e reativa X_{eq2} da impedância equivalente Z_{eq2} ,	
em função da frequência da corrente de excitação.	111
Figura 45 – Comportamento dos polos e zeros do sistema, para	
R_{AJ} = 217 Ω , em função do campo magnético, -1,0 Oe < H < -0,4 Oe.	115
Figura 46 – Tensão <i>v_{out}(t)</i> , medida no terminal de leitura	
do circuito apresentado na Figura 38, com o circuito ajustado	
para operar na região instável.	117

Figura 47 – Tensões no dreno v_D , source v_S e gate v_G do	
MOSFET Q1, utilizado para implementar a fonte de corrente	
<i>I_{CC}</i> do circuito apresentado na Figura 38.	119
Figura 48 – Diagrama de blocos do circuito eletrônico do	
Magnetômetro GMI.	120
Figura 49 – Representação esquemática do circuito eletrônico	
completo desenvolvido para o magnetômetro GMI.	122
Figura 50 – Representação esquemática do <i>módulo II</i> do	
circuito eletrônico desenvolvido para o magnetômetro GMI.	123
Figura 51 – Representação esquemática do módulo I do circuito	
eletrônico desenvolvido para o magnetômetro GMI.	124
Figura 52 – (a) Tensões nos terminais de entrado do XOR,	
$V_{U4_OUT} e V_{U5_OUT}$, e (b) a respectiva tensão no terminal	
de saída, V _{XOR_OUT} .	133
Figura 53 – Curva característica do filtro <i>notch</i> , em função da	
variação de P7.	135
Figura 54 – Diagrama de Bode simulado do estágio de	
filtragem completo.	136
Figura 55 – (a) Sinais de tensão medidos nos pontos de teste	
T2 e T3 do circuito apresentado na Figura 51, e (b) as	
respectivas saídas dos comparadores U4 e U5.	139
Figura 56 – Tensão medida no ponto de teste TPB (Figura 51)	
ao se fazer f_{REF} = 100 kHz e f_{osc} igual a 100,1 kHz, 100,5 kHz	
e 101,0 kHz.	141
Figura 57 – Sinal de saída do filtro passa baixa, no ponto	
TPB (Figura 51), em função de variações no campo magnético	
$(\Delta H = H - H_{pol})$, para (a) $\Delta H = 0.5$ Oe, (b) $\Delta H = 1.0$ Oe e	
(c) Δ <i>H</i> = 1,5 Oe.	142
Figura 58 – Curva experimental de $\Delta f_{ m OSC}$ em função das	
variações ΔH , em torno do campo magnético de polarização	
$H_{pol} = -0.7 \text{ Oe.}$	144
Figura 59 – Variação da diferença de fase entre os sinais	
de saída dos comparadores (U4 e U5) e a consequente variação	

no <i>duty cycle</i> da tensão de saída do XOR (U6), em função	
do campo magnético H. O campo magnético cresce	
gradualmente, em passos de 28,77 mOe, de (a) H = 642,46 mOe	
a (e) <i>H</i> = 757,54 mOe.	145
Figura 60 – Diagrama de Bode experimental do estágio	
de filtragem completo.	147
Figura 61 – Arranjo experimental implementado para	
avaliação da sensibilidade do magnetômetro GMI: (a) vista superior	
e (b) vista em perspectiva.	148
Figura 62 – Representação esquemática da configuração	
utilizada para excitação da Bobina de Helmholtz.	149
Figura 63 – Curva experimental do módulo da impedância	
da Bobina de Helmholtz <i>Z_H</i> em função da frequência	
da corrente de excitação.	151
Figura 64 – Dependência da amplitude da tensão do gerador	
<i>v_{GER}</i> em função da frequência do sinal gerado, a fim de se	
manter a amplitude da densidade de fluxo magnético fixa em 560 nT.	152
Figura 65 – Tensão de saída do magnetômetro GMI desenvolvido	
para campos magnéticos senoidais de mesma amplitude (560 nT)	
e frequências variáveis: (a) 1 Hz, (b) 10 Hz, (c) 50 Hz e (d) 250 Hz.	153
Figura 66 – Dependência da sensibilidade do magnetômetro	
GMI em função da frequência do campo magnético de	
excitação: (a) sensibilidade em mV/nT e (b) sensibilidade em dB.	155
Figura 67 – Transformada Rápida de Fourier (FFT) do sinal de	
saída do magnetômetro GMI, em ambiente desprovido	
de blindagem magnética.	158
Figura 68 – Densidade espectral de ruído da tensão	
de saída do magnetômetro GMI desenvolvido, em ambiente	
desprovido de blindagem.	159
Figura 69 – Mecanismo interno de um relógio de	
quartzo típico, destacando-se sua bobina de excitação.	162
Figura 70 – Configuração experimental implementada para	
medição, com um magnetômetro <i>fluxgate</i> , do sinal gerado pela	

fluxgate, do sinal

bobina de excitação do relógio.	162
Figura 71 – Resultados das medições experimentais realizadas	
com o <i>fluxgate (saída bruta)</i> : (a) tensão de saída em função	
do tempo, (b) FFT da tensão de saída, de 0 Hz a 10 Hz, e	
(c) FFT da tensão de saída, de 0 Hz a 100 Hz.	163
Figura 72 – Resultados das medições experimentais realizadas	
com o <i>fluxgate</i> , advindos da saída digitalmente processada	
com ganho máximo (128 vezes).	165
Figura 73 – Configuração experimental implementada para	
medição, com o magnetômetro GMI, do sinal gerado pela	
bobina de excitação do relógio.	166
Figura 74 – Resultados das medições experimentais realizadas	
com o magnetômetro GMI: (a) tensão de saída em função do	
tempo e (b) FFT da tensão de saída, de 0 Hz a 10 Hz.	166
Figura 75 – Arranjo experimental implementado para	
medição da velocidade de rotação de um cooler brushless CC,	
com o magnetômetro GMI desenvolvido. (a) vista superior,	
(b) vista lateral e (c) detalhes do estator do motor do <i>cooler</i> .	168
Figura 76 – Forma de onda obtida, na saída do	
magnetômetro GMI desenvolvido, ao se excitarem os	
terminais de alimentação do <i>cooler</i> com uma tensão V_{cooler} = 12 V.	
(a) sinal não processado via <i>software</i> e (b) sinal processado	
via <i>software</i> por um filtro passa-banda (1 Hz a 100 Hz).	169
Figura 77 – FFT do sinal filtrado apresentado na Figura 76(b);	
(a) de 0 Hz a 200 Hz e (b) de 20 Hz a 80 Hz.	169
Figura 78 – Velocidade de rotação do <i>cooler v_{rot}</i> em função de	
sua tensão de alimentação V _{cooler} .	171
Figura 79 – Resultados experimentais da medição de um	
sinal cardíaco sintetizado por meio do magnetômetro GMI	
desenvolvido. (a) Sinal cardíaco sintetizado, (b) tensão de saída	
do magnetômetro e (c) tensão de saída filtrada digitalmente.	172
Figura 80 – Resultados experimentais da medição por meio de um	
magnetômetro <i>fluxgate</i> comercial <i>(saída</i> bruta). (a) Sinal	

cardíaco sintetizado, (b) tensão de saída do magnetômetro	
e (c) tensão de saída filtrada digitalmente.	174
Figura 81 – Resultados experimentais da medição de um	
sinal cardíaco sintetizado (a) por meio de um magnetômetro	
fluxgate comercial utilizando-se sua saída com ganho máximo	
(128 vezes), a qual restringe a banda de passagem em até 10 Hz (b).	175
Figura 82 – Onda de pulso carotídeo normal.	176
Figura 83 – Configuração do transdutor de pressão GMI	
anteriormente desenvolvido no LaBioMet [53], capaz de registrar	
a onda de pulso carotídeo.	177
Figura 84 – Arranjo experimental implementado para a medição	
direta da onda de pulso arterial carotídeo, com o magnetômetro	
GMI aqui desenvolvido.	178
Figura 85 – Resultados experimentais das medições da onda	
de pulso arterial, realizadas com o magnetômetro GMI. (a) Sinal	
de saída do magnetômetro entre 1 s e 10 s, (b) sinal de saída	
do magnetômetro, entre 1 s e 10 s, processado digitalmente,	
(c) sinal de saída do magnetômetro entre 6,2 s e 7,5 s,	
e (d) sinal de saída do magnetômetro, entre 6,2 s e 7,5 s,	
processado digitalmente.	179
Figura 86 – Configurações gradiométricas (SQUID):	
(A) ordem zero – detecta todas as linhas de campo que	
atravessam a bobina, (B) 1ª ordem e (C) 2ª ordem.	185
Figura 87 – Módulo da impedância em função do campo	
magnético, para uma fita GMI de 3 cm submetida a uma corrente	
$i_c = [80 + 15 \text{ sen}(2\pi \ 10^5 \text{ t})] \text{ mA}.$	204
Figura 88 – Fase da impedância em função do campo	
magnético, para uma fita GMI de 3 cm submetida a uma corrente	
$i_c = [80 + 15 \text{ sen}(2\pi \ 10^5 \text{ t})] \text{ mA}.$	204
Figura 89 – Diagrama esquemático do método computacional	
de ajuste proposto.	206
Figura 90 – Fita GMI de 15 cm submetida a uma corrente	
i_{C} = [100 + 15 sen(2 π 10 ⁷ t)] mA - (a) Polinômio de ajuste	

$ Z_{sens} \times H$, (b) Sensibilidade de módulo $S_{mod} \times H$,	
(c) Polinômio de ajuste $\theta_{sens} x H$, (d) Sensibilidade de fase $S_{fas} x H$.	206
Figura 91 – Diagrama de blocos das duas Redes Neurais	
desenvolvidas - (a) Módulo e (b) Fase.	208
Figura 92 – Análise do desempenho da rede, que modela a	
sensibilidade de módulo do efeito GMI, em relação aos	
pontos do conjunto de teste - (a) RMSE ótimo, (b) MAPE ótimo,	
(c) RMSE Médio e (d) MAPE Médio.	210
Figura 93 – Análise do desempenho da rede, que modela a	
sensibilidade de fase do efeito GMI, em relação aos pontos do	
conjunto de teste - (a) RMSE ótimo, (b) MAPE ótimo,	
(c) RMSE Médio e (d) MAPE Médio.	211
Figura 94 – Diagrama das Redes Neurais selecionadas para	
modelar S_{mod} e S_{fas} .	212
Figura 95 – Comparativo entre a saída da rede (S_{mod}) e	
os dados experimentais (alvos) pertencentes ao conjunto de teste.	212
Figura 96 – Comparativo entre a saída da rede (<i>S_{fas})</i> e	
os dados experimentais (alvos) pertencentes ao conjunto de teste.	213
Figura 97 – Configuração mecânica da PCB desenvolvida	
para montagem do circuito eletrônico do magnetômetro GMI.	214

Lista de tabelas

Tabela 1 - Comparação do desempenho de Magnetômetros [1].	26
Tabela 2 – Comparação de figuras de mérito de magnetômetros GMI.	48
Tabela 3 – Sensibilidade ótima de módulo e fase das	
amostras GMI, em função do comprimento e da corrente de excitação.	60
Tabela 4 – Comparação quantitativa da dependência da	
sensibilidade de fase e do fundo de escala com o valor arbitrado	
para R _{AJ} .	91
Tabela 5 – Definição dos aspectos não-ideais considerados em	
cada uma das quatro simulações SPICE realizadas.	93
Tabela 6 – Caracterização experimental da impedância da	
Bobina de Helmholtz Z _H em função da frequência.	150
Tabela 7 – Relação entre a tensão de alimentação do	
<i>cooler</i> e sua velocidade de rotação.	170
Tabela 8 – Normalização dos parâmetros de interesse.	208
Tabela 9 – Lista dos componentes ativos empregados	
no circuito eletrônico do <i>módulo I</i> , apresentado na Figura 51.	215
Tabela 10 – Lista dos componentes passivos empregados	
no circuito do <i>módulo I</i> , apresentado na Figura 51.	215
Tabela 11 – Lista dos componentes ativos empregados	
no circuito eletrônico do <i>módulo II</i> , apresentado na Figura 50.	218
Tabela 12 – Lista dos componentes passivos empregados	
no circuito do <i>módulo II</i> , apresentado na Figura 50.	218

The scientific man does not aim at an immediate result. He does not expect that his advanced ideas will be readily taken up. His work is like that of the planter — for the future. His duty is to lay the foundation for those who are to come, and point the way. He lives and labors and hopes.

Nikola Tesla