
2
Literature review and preliminary concepts

2.1
Literature review

Oil well drill string dynamics has been the subject of many academic and

industrial studies. In the literature, several works were published in order

to understand the involved phenomena and propose methods to mitigate

undesired drill strings behaviors.

Gnirk et al. [11], 1968, described the rotary drilling system by idealized

conditions of bit-rock interactions. Dimensionless relationships between weight

on bit, rotary speed, bit diameter, among others, were developed.

Johancsik [20],1984, developed a computational model of directional wells

modeling the friction torque influence and rubbing borehole/casing of the drill

string. In this article, if a friction coefficient is given then the torque and drag

can be obtained. Similarly, if the torque and drag are given then the friction

coefficient can be calculated.

As faster computers were developed, some finite elements models were

created to better describe the drilling system. Brakel et al. [6], 1989, used this

method to design trajectories of drilling considering bit/rock interactions and

Bottom Hole Assembly (BHA). Brakel et al. presented a 3D model simulating

the dynamic behavior of the BHA during drilling with two types of bit: tricone

and PDC (Polycrystalline Diamond Compact).

Jogi et el. [19], 1992, presented a new model to identify the lithology

and drilling conditions using MWD (Measurement While Drilling) data.

The model was proposed to obtain information about lithological changes,

formation porosity, pore pressure, tooth/ cutter and bearing conditions. The

model provided ”drilling alerts” that identified inefficient drilling conditions.

This model, called Drilling Response, was tested during drilling and with

post-drilling data.

Pavone et al. [29], 1994, approached the stick-slip phenomena from

experimental data and developed a friction model to describe the resistive

torque. Also, they analyzed the stability around 34 RPM and 161 kN, as well
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as 125 RPM and 50 kN. In the end, two stick-slip prevention methods were

observed: PID control and Anti Stick-Slip Tool. PID control avoided stick-slip

but the system continued suffering high vibrations. The second method avoids

stick-slip with a positive borehole friction slope and provided stability to the

process.

Focusing on torsional dynamics of drill strings, Jansen et al. [17], 1995,

presented a model considering the drill string as a torsional pendulum with two

degrees- of-freedom (DOF). The inertia representing the rotary table rotating

with constant velocity was driven by a DC motor. Jansen described his system

in terms of relative displacements to avoid singularity. The friction torque on

bit is modeled as a constant dynamic friction torque if bit velocity was greater

than zero and is modeled as static friction torque if bit velocity turns equal to

zero.

In 1995, Jansen et al. [18], proposed to eliminate stick-slip of a drilling

system using active damping (top-drive). A control system was implemented

to control the torque from surface aiming to adjust the velocity of the system.

The control system was based on a hydraulic system. The purpose of this active

damping was to operate as a dynamic absorber.

Yigit and Christoforou [41], 1998, present a coupled torsional and bending

model of the drill string. Using lumped parameters they obtained the equations

of motion in polar coordinates. The contact was modeled using a linear, or

Hertzian stiffness. The rotary table speed was a function of time, i.e., it was not

a prescribed excitation. The Torque on Bit (TOB) and Weight on Bit (WOB)

are modeled as sinusoid functions of the bit speed. The author concluded that

torsional vibrations affect the lateral vibrations and when the bit speed reaches

three times the rotary table speed, the amplitudes of transverse vibrations are

higher.

Abbassian et al. [1], 1998, described the application of a stability

approach to three models of drill string. These models are: torsional model,

lateral model and coupled torsional-lateral model. The first model was a two

degree-of-freedom (DOF) without lateral motion. It underwent a reactive

torque which varies with instantaneous bit velocity. To the steady-state

solution in torsional case, the authors used the standard technique of the

linear stability theory. The second model without torsional motion described a

system in permanent contact with the wellbore around which it was assumed

to spin on its own axis at a constant speed. The steady-state solution in the

lateral model was represented by a forward synchronous motion of the bit. The

coupled model was a combination of the two previous models. The solution for

the coupled model was similar to the lateral model.
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Aiming to improve the driller operations, Heisig et al. [15], 1998,

described a real time tool in downhole which permited the driller to

make adjustments to control the drilling process based on information from

downhole. They concluded that the process feedback allows the driller not

only to avoid dynamic problems downhole but also to optimize the drilling

process for a higher Rate of Penetration (ROP).

Robnett et al. [32], 1999, described the use of magnetometer signals

to identify stick-slip behavior downhole. They concluded that negative RPM

indicates backward rotation of BHA and bit. Comparison of the differences

between maximum and minimum RPM, the average RPM, and the time

of backward rotation were implemented as measures of severity of torsional

oscillations. The authors illustrated with examples of stick-slip with a PDC

bit, stick-slip with a tricone bit, stick-slip after start of rotation, and torsional

oscillations after top-drive stall. Also, some field data measurements are

illustrated.

Hansen [14], 2002, approached mechanical systems with friction in control

analysis. He mentioned some advantages and drawbacks of compensation

techniques of friction. He also explained about tools of analysis for friction

induced stick-slip phenomena summarizing the tools most frequently used,

as well as friction models. Also, he presented an experimental Linear Motor

Motion System (LiMMS) and analyzed the friction induced limit cycles. He

used a PID controller to validate and compare the model predictions with the

experimental apparatus.

Spanos et al. [36], 2004, described a drilling process and discussed about

axial, torsional, lateral oscillations, as well as buckling and fatigue. Also,

emerging techniques of analysis are remarked as a new form to approach the

subject such as stochastic analysis and optimization analysis.

Franca [10], 2004, described a model to increase the rate of penetration

(ROP) in hard rocks by means of percussive-rotary self-excited drilling. In

this thesis, the influence of the torsional and axial vibrations on ROP and the

study of drilling in resonance of the BHA were analyzed. He concluded that

is possible to increase the ROP using drilling in resonance of the BHA but

the rotary speed has to be well controlled to create a cyclic variation of the

contact forces. An experimental apparatus to validate the numerical model was

proposed.

López and Suárez [28], 2004, modeled the torsional dynamics of the

drilling system as a simple torsional pendulum driven by an electric motor.

The dynamics of the motor system were not considered. The resistive friction

torque on bit was modeled by a dry friction model. In this article, an analysis
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of different types of friction torque models is presented and a discussion about

the influence of model parameters in stick-slip was performed.

Mihajlović et al. [26], 2004, developed an experimental drill string with

DC motor, power amplifier, two discs, a string and a brake device. This

brake device was responsible for generating stick-slip. The angular positions of

the upper and lower discs were measured using encoders and the velocities

were calculated by numerical differentiation of the angular positions. The

parameters (moments of inertia of the lower and upper discs, stiffness, as well

as parameters of the friction torque model) were estimated by the response of

the system when constant and white-noise input voltages are applied.

The following year, Mihajlović [24] presented his Ph.D. thesis about

torsional and lateral vibrations in systems with friction. The author approached

nonlinear aspects from the adopted friction model. Several methods to

encounter stable and unstable branches of the bifurcation diagrams and the

steady-state of the test rig are presented. Torsional and lateral vibrations

are analyzed separately and when both appear in the system. The friction

model is described as a discontinuous function. This work is strongly referenced

throughout the this dissertation.

Alamo [3], 2006, developed a dynamic model of the drilling system by

means of the Cosserat theory considering axial, lateral and torsional dynamics.

A curved beam into the uniform cavity was designed as an experimental

apparatus in order to study the dynamic behavior of a simplified curved drill

string. Alamo concluded that Cosserat theory could be an efficient method to

solve dynamic problems of slender structures using fewer nodes.

In 2007, Khulief et al. [21], 2007, developed a model consisting of coupled

torsional-bending-axial vibrations by means of finite element method (FEM).

Using 24 finite shaft elements, they described 1000 m of drill pipe and 200 m

of drill collar. A full order model and a reduced order model were compared.

They observed the response of the system when a lateral excitation was applied.

Also, the behavior of the system in stick-slip was illustrated demonstrating a

limit-cycling behavior.

Ritto [31], 2010, described a model of drilling system by means of FEM

taking into account the uncertainties of system parameters (such as inertia,

damping and stiffness) and bit- rock interaction parameters (parameters of the

friction model used). He analyzed stochastic ROP, stochastic angular velocity

on bit of the system in time and frequency domains, with an envelope of 95%

of the mean value.
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2.2
Preliminary concepts

Some preliminary concepts are necessary to understand all the procedures and

analysis adopted in this dissertation. The Parameter estimation method and

nonlinear dynamic definitions and tools are presented in this section.

Several methods of parameter estimation have been created over the

years. Kalman filter, extended Kalman filter, linear and nonlinear least-square

techniques, Gaussian estimation, among others are examples of techniques

to estimate parameters. The estimators can be divided in non-recursive

and recursive methods. Non-recursive estimators are those that collect all

the data before of the estimation process. By contrast, recursive estimators

provide an estimate of the parameters continually as the data are updated.

Herein, the parameter estimation is achieved by means of a non-recursive

nonlinear least-square technique which is presented in section 2.2.1. Inverse

problem solutions and estimation techniques are more thoroughly described in

references [34, 38, 39].

Nonlinear behavior is present in several mechanical systems. Aiming for

a best understanding about these behaviors, many analytical and numerical

tools are widely used. Several works approach the nonlinear aspects of the

drilling systems in order to analyze its stability, prediction and estimation

of steady-state in oil field operation. Nonlinear dynamic conceptions are richly

found in references [13, 35, 37, 40]. Also, nonlinear dynamics of drilling systems

are presented in the references of this dissertation.

2.2.1
Least-square technique

Usually, in theoretical environment, the variables are encountered when the

parameters are known. By contrast, the experimentalists use the inverse

problem solution, i.e the parameters can be estimated by given (or measured)

variables. Least-square technique is one of several methods of solution for

inverse problems. Bayesian inference provides the theory to relate observed

results with theoretical predictions [38]. In the context of this dissertation, Eq.

2-1 shows the posterior probability density function (PDF) of parameters {x}
given measured variables {y} from the experimental apparatus,

p({x}|{y}) ≈ ℵ p({y}|{x}), (2-1)

where ℵ = p{x}/p{y} is the normalization constant (for constants p{x} and

p{y}) and p({y}|{x}) is the forward PDF. Now, {y} = {ŷ({x})}+{n} is defined
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where {ŷ({x})} is the data from the theoretical model and {n} is a gaussian

noise.

Thus, the likelihood function is defined as

P ({y}|{x}) = P ({n} = {y} − {ŷ({x})})

=
1

(2π)N/2
√
det(Γ)

e−
1
2

({y}−{ŷ({x})})T Γ−1({y}−{ŷ({x}))},
(2-2)

where Γ corresponds to the covariance matrix and N is the number of samples.

The superscript T denotes transposition.

The least-square technique assumes that measuring errors have Gaussian

distribution and the trials are independent identically distributed (i.i.d.). This

assumption means that the covariance matrix Γ is diagonal and Γii = σ2.

Thus, Γ = σ2 I e Γ−1 = 1
σ2 I, where σ2 is the variance. Herein, I denotes

identity matrix.

The functional shape of the Gaussian distribution is an unimodal function

(one peak), thus the maximum of the likelihood function drives to the minimum

of its exponent, called misfit function ε({x}; {y}) (Eq. 2-3).

ε({x}; {y}) =
1

σ2
({y} − {ŷ}({x}))

T ({y} − {ŷ({x})}). (2-3)

Summarizing, least-squares technique is equivalent to the maximum

likelihood function with independent identically distributed Gaussian noise.

The Bayesian theory and parameter estimation applied to mechanical system

are thoroughly described in reference [34].

2.2.2
Nonlinear dynamics concepts

In a broader context of dynamics, there are two types of systems: differential

equations and iterated maps. The first one describes the evolution of the

system in continuous time, whereas in the second one the time is discrete.

For differential equation representations, a nonlinear dynamical system can be

expressed as

ẋ = f(x), (2-4)

where x ∈ <n contains the state with initial condition x0, t ∈ < and

f : <n → <n is the vector field. The overdot denotes differentiation with respect

t.

To find the solution of Eq. 2-4, the Lagrangian coordinates are adopted.

These coordinates describe the trajectory of an imaginary particle that places

in x0 position at t0, i.e {x(x0, t)| − ∞ < t < ∞} is the trajectory and
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represents the solution of the differential equation starting x0 at time t0. This

solution is called flow. Thereby, the dependence of x with respect to its initial

conditions was evidenced to achieved the solution. By contrast, the Eulerian

coordinates propose a description of motion in terms of the space coordinates.

This description observes what is occurring at a fixed point in space over time.

This type of approach is typically applied in studies of fluid mechanics where

the properties of greatest interest is the rate of changes of the kinematics of

the motion than the shape of the body of fluid in a given time.

In order to have an easy understanding, for solutions of dynamical

systems as described by Eq. 2-4, a fixed point is an equilibrium point when

f(x∗) = 0, (2-5)

and in cases of periodic solutions, xp is a solution if

xp(x0, t) = xp(x0, t+ T ), (2-6)

where T represents the period of the solution.

A periodic solution is isolated if other periodic solution does not exist

in its neighborhood. An isolated periodic solution, in autonomous systems, is

called limit cycle [24]. Further, it is possible to find a steady-state solution

that is a combination of periods and the relation between these periods

(T1/T2, for instance) is an irrational number. These type of motions are called

quasi-periodic solutions.

Addressing steady-state behavior, the stability of the solutions of

dynamical systems are often investigated. There are several types of stability

of differential equations, however, stability around an equilibrium solution is

one of the most important type. Stable solutions are approached in theory of

Lyapunov.

In general words, if xeq is a steady-state solution and all solutions of the

dynamical system that start close by xeq, remain close by xeq in t→∞, then

xeq is Lyapunov stable (or stable in the sense of Lyapunov). If a solution is

Lyapunov stable but not attracting, it is called neutrally stable. Furthermore,

if this solution xeq is asymptotically stable then all solutions that start around

it converge to xeq when t→∞. Otherwise, the solution is unstable.

Mathematically, the equilibrium solution xS(xS0, t) is Lyapunov stable

with initial condition xS0 if, for every ε > 0 there is a δ = δ(ε) such as

||x0 − xS0|| < δ(ε) −→ ||x(x0, t)− xS(xS0, t)|| < ε, (2-7)

for every t ≥ t0 and asymptotically stable if,

||x0 − xS0|| < δ(ε) −→ lim
t→∞
||x(x0, t)− xS(xS0, t)|| = 0. (2-8)
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Nonlinear dynamical systems may hold more than one solution

(equilibrium points and/or periodic solutions). Thereby, the solution x(x0, t)

converges to one of those stable solutions, according the initial condition

x0. Hence, those solutions are locally stable. The suite of related all initial

conditions x0 which are solution of x(x0, t) of 2-4 converge to the equilibrium

point (or periodic solution) over time is called as basin of attraction of the

equilibrium point (or periodic solution). By contrast, if for all initial condition,

the solution converge to one stable behavior over time, then this solution is

globally stable [13, 24, 37].

However, in the oil industry, these stability concepts are different. For

instance, if a drilling system presents vibrations (a periodic solution according

to the theory of Lyapunov) then the system is unstable. Likewise, if the system

does not present vibrations (an equilibrium solution according to the theory

of Lyapunov).

The qualitative structure of the flow can change when certain parameter

varies. Stable solutions can be created or destroyed, or become unstable. These

parameters are called control parameters µ and these qualitative changes in

the dynamics are known as bifurcations. The values in which these changes

occur are called bifurcation points. The representation of the dynamical system

presents a variant as following

ẋ = f(x, µ). (2-9)

Graphically, the curves of the flow xS(xS0, t) as function of µ are called

branches and represent an equilibrium point or a periodic solution. These

branches will be called equilibrium branch and periodic branch, respectively,

as adopted in [24].

The Hopf bifurcation diagrams are addressed. This type of diagram

appears when the Jacobian eigenvalues λ of the system around the equilibrium

(linearization) has two complex conjugate roots which cross the imaginary

axis from the left to right half-plane or vice versa (see Figure 2.1). It means

there exists a system that settles down an equilibrium while µ changes for

critical value µc. Thus, equilibrium state loses stability and a periodic solution

appears around the former steady-state - supercritical Hopf bifurcation. Also,

for a nonlinear system that holds an unstable equilibrium solution and, when

µ = µc, it becomes stable appearing unstable oscillations is named subcritical

Hopf bifurcation. Figure 2.2 illustrates these bifurcations. In engineering

applications, this last one is potentially dangerous because it occurs drastically

and may jump to a distant attractor, which may be a fixed point, another limit

cycle, infinity or a chaotic attractor. Degenerate Hopf bifurcation is for a system
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Figure 2.1: Eigenvalues of a Hopf bifurcation point. Source: Mihajlović [24].

(a) (b)

Figure 2.2: (a) Supercritical Hopf bifurcation and (b) Subcritical Hopf
bifurcation. Source: Mihajlović [24].

that transits suddenly from nonconservative to conservative system.

In literature, there are several bifurcation diagrams. Each one holds its

characteristics which can be found in references [13, 35, 37].

Finally, the Poincaré map is used to prove the existence of periodic orbits.

Suppose an n-dimensional system as in Eq. 2-4 and S as an n− 1 dimensional

surface of section. All the trajectories pass trough S, i.e. S is transverse to the

flow. Mathematically, if xk ∈ S denotes the kth intersection of the flow (see

2.3), then the Poincaré maps P can be defined by

xk+1 = P (xk). (2-10)

It is noticed that if x∗ is a fixed point in P (P (x∗) = x∗), then a trajectory

starting in x∗ returns to x∗ after period T . In general words, this technique

converts problems with stable close orbit into problems with fixed point of a

mapping [37].
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Figure 2.3: Poincaré section. Source: Strogatz [37].
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