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Study of an embarked vibro-impact system:

mathematical modeling and nonlinear analysis

In this chapter a general overview of the state of the art of

impact mechanics is shown, as well as some methodologies for impact

phenomenon modeling and the numerical integration of discontinuous

di�erential equations. The hammer modeling is also addressed in this

chapter, for both test rig con�gurations. The parameter identi�cation

is discussed and the comparison between numerical analysis and the

experimental results is performed.

3.1
Brief impact theory

Literature on contact dynamics and impact analysis is vast and

spans many diverse disciplines. It is not the concern of this thesis to

fully describe impact phenomena, but to provide necessary information to

understand the results of this research. To provide a broader context for

this subject, references are listed throughout the text, including previous

master's dissertations [2] [91] [32] and doctoral theses [29] [17] [41] at the

Department of Mechanical Engineering of PUC-Rio.

Impact is a complex phenomena that occurs when two or more bodies

undergo a collision. This phenomena is important in many di�erent areas:

machine design, robotics and multi-body analysis are a few examples [34]

[63]. Characteristics of impact are: very brief duration, high levels of force,

rapid dissipation of energy and high values of acceleration and deceleration.

During impact, the system presents discontinuities in geometry and some

material properties may be modi�ed by the impact itself. Contact is a more

ambiguous term, although it is frequently used interchangeably with impact

[62].

A typical energy �ow associated with an impact is shown in Figure

3.1.
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Figure 3.1: Energy �ow associated with impact [15].

In general, two di�erent approaches are used to describe impact.

The �rst approach, referred to as impulse-momentum or discrete method,

assumes that the interaction between the objects occurs in a short time

period and that the con�guration of impacting bodies does not change

signi�cantly. The dynamic analysis is divided into two intervals: before

and after impact. To model the energy transfer and dissipation various

coe�cients are employed, mainly the coe�cient of restitution and the

impulse ratio. Application of these methods has been con�ned primarily

to impact between rigid bodies and are referred to as impulse-momentum

or discrete methods [62] [34] [15]. The extension to �exible systems and the

extension case involving multiple contacts and intermittent contact is quite

complicated.

The second approach (referred to as force-based method or continuous

analysis) is based on the concept that interaction forces will act in a

continuous manner during the impact. The analysis may be performed in

the usual way by simply adding the contact forces to the equations of motion

during their action period. This allows for a better description of the real

behavior of a system. More importantly, this approach is naturally suitable

for contact modeling and complex contact scenarios involving multiple

contacts and bodies. This approach is referred to as continuous analysis

or force-based methods [34] [15] and implies a multi-scale analysis within

the time domain.

3.1.1
Force-based method (or continuous analysis)

Application of the impulse-momentum methods to model the impact

dynamics of rigid bodies leads to several problems. First, in the presence

of Coulomb friction, cases arise in which no solution or multiple solutions

exist. These ambiguities have been attributed to the approximate nature

of Coulomb's model and the inadequacy of the rigid body model, but no
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clear explanation has been found [34]. The second problem is that energy

conservation principles may be violated during frictional impacts, as shown

by Stronge [76], as a consequence of the de�nition of the coe�cient of

restitution. Finally, the discrete approach is not easily extendible to generic

multi-body systems. The use of compliance or continuous contact models

where the impact force is a function of local indentation can overcome the

problems encountered in the discrete formulation [34].

Di�erent models have been postulated to represent the interaction

force at the surfaces of two contacting bodies [53] [48] [17] [41] [61] [15] [76]

[10] [34] [40] [63] [69] [81]. The �rst model was developed by Hertz [34], in

which an elastostatic theory was used to calculate local indentation without

the use of damping. The corresponding relationship between the impact

force and the indentation is allowed to be nonlinear. In the �rst and simplest

model of damping, referred to as the spring-dashpot model [15] [69] [81],

the contact force is represented by a linear spring-damper element. Hunt

and Crossley [40] showed that a linear damping model does not truthfully

represent the physical nature of the energy transfer process. Thus, they

proposed a model based on Hertz's theory of contact with a non-linear

damping force de�ned in terms of local penetration and its corresponding

rate. Other damping models have also been proposed to describe totally or

partially plastic impacts [10] [34].

Contact sti�ness and damping forces are dependent on at least two

parameters: the coe�cient of sti�ness and the coe�cient of damping.

For simple contact between two bodies, the former is determined by the

geometry and the material of the contacting bodies, while the coe�cient

of damping can be related to the coe�cient of restitution. An important

advantage of continuous contact dynamics analysis is the possibility of using

one of many models available in literature.

3.1.2
Continuous contact dynamics models

The continuous model, also referred to as the compliant contact model,

overcomes the problems associated with the discrete models. The basis

of the continuous formulation for contact dynamics is accounting for the

deformation of the bodies during impact or contact. In a large class of

continuous models, this is done by de�ning the normal contact force, Fi, as
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an explicit function of local indentation, δ and its derivative,

Fi = Fi(δ, δ̇) = Fδ(δ) + Fδ̇(δ̇) (3-1)

Four existing contact force models are summarized here.

Hertz's model.

This is a nonlinear model, limited to impacts with elastic deformation,

and in its original form does not include damping. With this model,

the contact process can be pictured as two rigid bodies interacting via

a nonlinear spring along the line of impact. The hypotheses state that

deformation is concentrated in the vicinity of the contact area, elastic wave

motion is neglected, and the total mass of each body moves with the velocity

of its mass center. Therefore, this impact model does not consider rigid body

rotation, only pure translation. The impact force is de�ned as [76] [73]

Fi = kiδ
n , (3-2)

where ki is the impact sti�ness and n is a constant. The term δn is the

nonlinear term. Both parameters ki and n depend on material and geometric

properties and are computed by using elastostatic theory. For instance, in

the case of two spheres in central impact, n = 1.5. Sti�ness ki is de�ned in

terms of Poisson's ratio, Young's moduli and the radii of the two spheres

[73]. Since the Hertzian model does not account for energy dissipation, its

equivalent coe�cient of restitution is 1. Therefore, this model can be used

only for low impact speeds and hard materials [34].

Spring-dashpot model.

In this model, the impact is schematically represented with a linear

damper (dashpot) for energy dissipation in parallel with a linear spring for

elastic behavior [15] [34]. The contact force is de�ned as

Fi = kiδ + ciδ̇ , (3-3)

where ki is the impact sti�ness and ci is the impact damping. The impact

force pro�le for this model is represented schematically in Figure 3.2. This

model has two weaknesses:
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1. The contact force at the beginning of impact (point A, Figure 3.2) is

discontinuous, because of the damping term. In a more realistic model,

both elastic and damping forces should be initially at the magnitude

of zero and increase over time;

2. As the objects are separating (point B, Figure 3.2), i.e., the

indentation approaches zero, their relative velocity tends to be

negative. As a result, a negative force is present that holds the objects.

Figure 3.2: Spring-dashpot model [34].

Although the spring-dashpot model is not physically realistic, its

simplicity has made it a popular choice [34] [30] [68] [69] [71] [81] [84].

It provides a reasonable method for capturing the energy dissipation

associated with the normal forces without explicitly considering plastic

deformation issues.

Hunt and Crossley model.

To overcome the problems of the spring-dashpot model and to retain

the advantages of the Hertz's model, an alternative model for energy

dissipation was introduced by Hunt and Crossley [40]. It includes a nonlinear

(hysteresis) damping term, and the impact/contact force is modeled as

Fi(δ, δ̇) = kiδ
n + ciδ

nδ̇ = kiδ
n(1 + λiδ̇) , λi =

ci
ki
, (3-4)

where ki is the impact sti�ness, ci is the impact damping, n is a constant

term and λi is the damping/ sti�ness ratio.
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As with the spring-dashpot model, the damping parameter ci can be

related to the coe�cient of restitution, since both are related to the energy

dissipated by the impact process. An important aspect of this model is that

damping depends on the indentation. This is physically sound since contact

area increases with deformation and a plastic region is more likely to develop

for larger indentations. Another advantage is that the contact force has no

discontinuities at initial contact and separation, therefore it begins and ends

with the correct value of zero. This model has been studied and used by

several authors [40] [29] [2]. The phase plane of indentation and the impact

force pro�le of a rigid mass impacting a surface where the impact is modeled

using the Hunt & Crossley model are shown in Figure 3.3.

(a) (b)

Figure 3.3: Impact of a rigid mass against a rigid wall, for di�erent velocities

before impact [2]: a) phase plane; b) contact force pro�le. Parameters:

m = 2Kg, ki = 2.1 · 108N/m, n = 1.6, λi = 0.6s.

Lankarani model.

Lankarani and Nikravesh [45] developed a contact force model with

hysteresis damping for impact in multi-body systems. This model uses

the general trend of the Hertz contact law, in which a hysteresis damping

function was incorporated in the model that represents the energy dissipated

during the impact. This model can be expressed as

Fi = kiδ
n

[
1 +

3(1− e2)

4

δ̇

δ̇(−)

]
, (3-5)

where ki is the impact sti�ness, n is a constant term, e is Newton's coe�cient

of restitution and δ̇(−) is the instant velocity before impact.
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In this model, as in the Hunt and Crossley impact model, the hysteresis

damping function assumes that the loss of energy in impact is all due to the

material damping of the colliding bodies. An advantage of the Lankarani

model is that it shows a direct relationship between the coe�cient of

restitution and the contact force.

3.2
Numerical integration of discontinuous ordinary di�erential equations

Physical phenomenon, such as impact and dry friction in mechanical

systems, are often studied by means of mathematical models with some kind

of discontinuity or non-smoothness. Systems which can be described by a

set of �rst-order ordinary equations with a discontinuous right-hand side

form a sub-class of discontinuous dynamical systems and are addressed as

Filippov systems or non-smooth systems of Filippov-type [51]. The focus of

this section is to describe one methodology of solving such systems.

Non-smooth nonlinearity is abundant in nature, being usually related

to either the friction phenomenon or the contacts between system

components. Therefore, physical systems with dry friction and impact

operate in di�erent modes, and the transition from one mode to another

can often be idealized as an instantaneous or discrete transition. Since

the time scale of this transition is much smaller than the scale of the

individual mode dynamics, their modeling results in non-smooth systems.

Non-smooth systems appear in many kinds of engineering systems and also

in everyday life. Examples include the stick-slip oscillations of a violin string

or mechanical brakes [48].

The mathematical modeling and numerical simulations of non-smooth

systems present many di�culties, which make their description unusually

complex. Moreover, the dynamical behavior of these systems shows a

variety of responses. Therefore, non-smooth systems present scienti�c and

technological interests that motivated di�erent researches [48] [50] [51] [52]

[69] [84] [88].

Prevailing scienti�c literature presents many reports dealing

with non-smooth systems, concerning the mathematical modeling, the

proposition of numerical algorithms, and experimental approaches employed

to verify the results. The idea that non-smooth systems can be considered

as continuous in a �nite number of continuous subspaces, and that system

parameters do not change in an abrupt manner, inspired some authors to

try to describe non-smooth systems by a smoothed form. Wiercigroch et al
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[82] [81] [83] [84] [85] [86] [87] [88] [89], Leine et al [48] [49] [50] [51], Franca

et al [29] [30], Savi et al [68] [69] [71] [72] and Glocker [38] [35] [36] propose

interesting approaches to deal with mathematical discontinuity.

The mathematical model applied throughout this work uses a

smoothed switch model, proposed by Leine [48] on the study of stick-slip

vibrations. Basically, the switch model treats non-smooth systems by

de�ning sets of ordinary di�erential equations. Each set is related to a

subspace of the physical system. Leine's innovative idea is the de�nition

of transition regions that governs the dynamical response. Therefore, each

subspace has its own ordinary di�erential equations. Besides, each transition

region also has its governing equations, de�ned in order to smooth the

system dynamics. The use of this approach smoothes the discontinuities and

allows the use of classical numerical procedures. Numerical investigations

of single-degree-of-freedom systems with a discontinuous support show

e�ciency and allow analysis of many aspects related to the non-smooth

system dynamics.

3.2.1
Filippov solution concept

The Filippov solution considers a dynamical system described by a set

of ordinary di�erential equations

ẋ(t) = f(t,x(t)), x(t) ∈ Rn, (3-6)

where x is the state vector and f(t,x(t)) is the right-hand side vector

describing state vector's time derivative. The time derivative vector f(t,x)

may be discontinuous in x. The solution x(t) presented by Filippov leads to

a di�erential equation with a discontinuous right-hand side, continuous in

time [48] [49]. Systems with a discontinuous solution (occurring for systems

with impulse-momentum or discrete methods, as mentioned in previous

section) are not described by the theory of Filippov. This section is restricted

to the Filippov concept where the right-hand side of the di�erential equation

is discontinuous at a number of hyper-surfaces. For the case of a single

hyper-surface, the state space Rn is split into two subspaces ν+ and ν− by

a hyper-surface Σ in a way that Rn = ν+ ∪ ν− ∪ Σ. The hyper-surface is

called the switching boundary and is de�ned by a scalar switching function

h(x). The state x(t) is in Σ when

h(x) = 0⇐⇒ x ∈ Σ . (3-7)
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The subspaces ν+ and ν− and the switching boundary Σ can be

formulated as 
ν− = {x ∈ Rn | h(x) < 0},
Σ = {x ∈ Rn | h(x) = 0},
ν+ = {x ∈ Rn | h(x) > 0}.

(3-8)

The switching boundary is assumed to be continuous but it can be

allowed to be non-smooth.

The right-hand side of the dynamics ẋ(t) = f(t,x(t)) is assumed to

be locally continuous for all x /∈ Σ. In this way it is able to consider the

following n-dimensional nonlinear system with a discontinuous right-hand

side

ẋ(t) = f(t,x(t)) =

{
f−(t,x(t)), x ∈ ν−,
f+(t,x(t)), x ∈ ν+,

(3-9)

with initial condition x(0) = x0. As mentioned, the right-hand side f(t,x(t))

is assumed to be discontinuous but is continuous piecewise, and smooth on

ν− and ν+, and discontinuous on Σ. The system described in Equation

(3-9) does not de�ne f(t,x(t)) if x(t) is on Σ. To overcome such problem

the set-valued extension F (t,x) is de�ned:

ẋ(t) = F (t,x(t)) =


f−(t,x(t)), x ∈ ν−,

co{f−(x), f+(x)}, x ∈ Σ,

f+(t,x(t)), x ∈ ν+,

(3-10)

where the convex set with two right-hand sides f− and f+ can be written

as

co{f−(x), f+(x)} = {(1− q)f−(x) + qf+(x) , ∀q ∈ [0, 1]} (3-11)

The extension (or convexi�cation) of a discontinuous system into a

convex di�erential inclusion is know as Filippov's convex method [48].

3.2.2
Numerical integration method: the Switch Model

This section presents one technique for the integration of di�erential

equations with a discontinuous right-hand side. The technique presented is

the switch model, however this is not the only technique available. Other
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examples are the event-driven integration method, time-stepping methods

and augmented Lagrangian approach, widely discussed in [49] [46] [47].

First, the smoothing method is brie�y discussed, and the disadvantages

of the smoothing method motivates the use of the Switch Model.

Smoothing Method.

Consider the following di�erential inclusion

ẋ(t) = F (t,x(t)) =


f−(t,x(t)), x ∈ ν−

co{f ′−(x), f ′+(x)}, x ∈ Σ

f+(t,x(t)), x ∈ ν+

(3-12)

with

ν− = x ∈ Rn | h(x) < 0

Σ = x ∈ Rn | h(x) = 0

ν+ = x ∈ Rn | h(x) > 0

(3-13)

A di�culty is faced when trying to numerically integrate a

discontinuous system of Filippov-type with an integration algorithm for

ordinary di�erential equations (ODE). An ODE integrator will chatter

around the hyper-surface, computing points alternating between ν− and

ν+. If the integration algorithm is equipped with a variable step size, then

it will �nd a reasonable approximation to the exact solution but it will

take a considerable computational time. The discontinuous system can

therefore not e�ciently be numerically solved using the integration method

of ODE due to the presence of discontinuity. The discontinuous vector

�eld is often approximated by a smoothed vector �eld, as described in

the works of Leine [48] and Wiercigroch [81]. The discontinuous right-hand

side f(t,x) may typically contain a sign-function. A common smoothing

approximation of the sign-function, frequently used to model Coulomb

friction, uses an arc-tangent function. However, if the system has chaotic

behavior, the results using the smoothing method will probably be incorrect,

as shown in the work of Wiercigroch [81]. Figure 3.4 shows the di�erence

in the Poincaré topology when a discontinuous system is modeled using a

smoothing function under di�erent parameter values (Figure 3.4(a), (b) and

(c)), compared to the system modeled with the discontinuity (Figure 3.4(d))

[81].

The advantage of the smoothing method is its easiness of use, as

standard integration techniques can be directly applied and no additional
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Figure 3.4: Change of Poincaré map topology of the smoothed system under
di�erent parameter values (a), (b) and (c); and for discontinuous system (d).
From the work of Wiercigroch [81].

programming has to be done. The main disadvantage of this method is that

it yields sti� di�erential equations, which are numerically time consuming,

not to mention that in the case of nonlinear systems the smoothing method

may lead to incorrect results, especially if the system has chaotic regions

[81].

Switch Model.

This numerical technique is used for integrating di�erential inclusions

without the problems of solving sti� di�erential equations. The methodology

introduces a vector �eld in the transition surface, such that the state of the

system is pushed to the middle of the surface, thereby avoiding numerical

instabilities.

Consider a vector �eld which contains a switching boundary, as

shown on Equation (3-10). The switching boundary contains a part with

a transversal intersection from ν− to ν+. The switch model constructs a
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'band' or 'boundary layer' with thickness 2η around Σ, that allows for an

e�cient numerical approximation.

co{f−(x), f+(x)}, x ∈ Σ (3-14)

This assures that the system passes through the discontinuity when the

transition from ν− to ν+ takes place, and vice-versa. Thickness parameter

η should be chosen su�ciently small, which means that η is small so it will

not in�uence the solution. The switch model maintains the continuity of the

state vector and yields a set of non-sti� ordinary di�erential equations. This

is the method used to deal with the discontinuity caused by the impacts in

the mathematical modeling, therefore this method will be revisited in future

sections, applied speci�cally to the stated problem.

Figure 3.5 shows the simulation results of a single DOF mass-spring

system with a base excitation and discontinuous support, modeled using

the switch model. It is observed the narrow band η between sub-spaces ν−
and ν+. Such information is shown in Figure 3.6, where the transition from

sub-space ν− to ν+, passes though hyper-surface Σ.

Figure 3.5: One DOF system with discontinuous support and base
excitation, application of the Switch model.

3.3
Hammer supported by wires: mathematical modeling and comparison
between numerical simulation and experimental results

The mathematical modeling and the comparison between numerical

simulation and experimental results of the �rst test test rig are presented in

this section. The purpose of the �rst test rig (hammer supported by wires)

was to eliminate some phenomenon caused by the beam springs bending
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Figure 3.6: One DOF system with discontinuous support and base
excitation, transition between sub-spaces during one impact.

vibration. At �rst it was thought that the two peaks in the impact force

pro�le were caused by the beam bending vibration. Subsequently the actual

cause of such phenomenon is the axial vibration of the hammer. Therefore,

to satisfactorily identify the impact parameters, a second hammer was

built, so the axial vibration was eliminated. In this way, only the geometry

of the impact bodies and the materials involved will a�ect the impact

dynamic behavior [15]. Once the impact parameters are identi�ed, these

may be carried in other modeling without loss of information. Following

the impact identi�cation, the mathematical modeling is proposed. The test

rig parameter identi�cation is performed and the numerical simulations are

compared to the experimental results, including some nonlinear analysis.

3.3.1
Impact model

To adopt an impact model capable of describing the real impact

observed during the experiments in this work, some hypotheses are adopted:

1. impact is central and co-linear, i.e., the center of mass of both bodies

lies on the impact line;

2. impact velocity is along the impact line;

3. tangential contact force is always zero, because impact is co-linear and

there is no impact velocity component in the tangential axis.

In this way, all impact models presented in earlier sections are in line

with the hypotheses adopted. All models listed will be used to describe the
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test rig impact behavior, and from comparing the data one model will be

chosen.

3.3.2
Impact force: parameters identi�cation

To better identify the impact parameters, a second impact body

(hammer) was built (see Figure 2.3 for original hammer con�guration).

The idea is to remove the in�uence of the axial vibration behavior while

characterizing and identifying the impact force. The new hammer is made

completely of steel. See Figure 3.7.

Figure 3.7: Impact parameters identi�cation, new hammer.

Using the same screw with knurled nut and impact force sensor,

impact conditions will be reproducible, because impact depends only on

the materials and geometries involved during contact. To identify the

impact force parameters, a simple experiment was performed, where a

well-known initial condition was imposed on the system. The experimental

data was compared to the numerical simulation. All impact models listed

were compared to the experimental data. An optimization procedure was

performed, using the fminsearch Matlab function, attempting to �nd the

parameters that minimize the error between numerical simulation and

experimental data. Error function selected was the di�erence between peaks

in the impact force pro�le. Charts in Figure 3.8 show a typical response of

the system during impact.
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Figure 3.8: New hammer released from a initial condition of 3 mm

(approximately), impact force and acceleration of �rst impact.

Charts above show that the new hammer is rigid, because there is

no di�erence in the pro�les of impact force and acceleration. However, it is

important to notice that although the new hammer is rigid, a similar impact

pro�le is observed. So, it is possible to a�rm that existing �exibility is not

caused by the hammer. Therefore, the cart impact surface, where the impact

force sensor is mounted, is responsible for the �exibility. The frequency of

this oscillation is within the 3 kHz range, observed during the hammer modal

analysis presented in Chapter 2 (see Figure 2.61). When comparing the

numerical simulation and the experimental data for the impact parameter

identi�cation, a time di�erence between impacts will be noted, caused by

the impact surface �exibility. This �exibility will not be taken into account

during the mathematical modeling.

The numerical simulation and experimental data for the impact force

parameter identi�cation are show in Figures 3.9 and 3.10. As mentioned, all

four impact force models were tested. The Hertz model, see Equation (3-2),

was obviously discarded, because it does not take into account any loss of

energy. The Hunt & Crossley model and the Lankarani model, Equations

(3-4) and (3-5) respectively, better represent the impact force pro�le close

to the physical reality. These models present a strong nonlinear behavior,

which makes parameter identi�cation di�cult.

Figures 3.9 and 3.10 show the comparison between experimental data

and numerical simulation for the case where the hammer is released from two

di�erent initial conditions. The impact is modeled using the spring-dashpot

model.
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Table 3.1: Impact parameters - spring-dashpot model.

Parameter Value Unit
Impact sti�ness, ki 5.5 · 106 N/m
Impact damping, ci 1.2 · 103 Ns/m

Figure 3.9: Impact force parameters identi�cation. Comparison between

experimental data and numerical simulation. Impact modeled using the

spring-dashpot model.

Figure 3.10: Impact force parameters identi�cation. Comparison between

experimental data and numerical simulation. Impact modeled using the

spring-dashpot model.

Although the spring-dashpot model, Equation (3-3), is not capable of

reproducing the real impact force pro�le over time due to the jump caused by

the damping force, this model generated the best results. Impact parameters

for this model are listed in Table 3.1.
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3.3.3
Mathematical modeling and parameter identi�cation

The mathematical modeling of the �rst test rig, i.e., hammer

supported by wires, is presented below. Using the Lagrange equation [42],

with θ as the generalized coordinate, see Figure 3.11, the hammer can be

modeled as a single pendulum embarked in a cart with prescribed movement

(y(t) = A0 sin Ωt), where the impact surface is also moving within the

system. See Figure 3.11.

Figure 3.11: Model of hammer supported by wires, physical representation.

For the situation of no impact, i.e., l sin θ−gap > 0, equation of motion

is

ml2θ̈ −mlA0Ω2 cos θ sin Ωt+mgl sin θ = 0. (3-15)

Because impact is modeled using continuous analysis, when the

hammer is impacting the cart (l sin θ − gap 6 0), the equation of motion

will slightly change to

ml2θ̈ −mlA0Ω2 cos θ sin Ωt+mgl sin θ = −Fil; Fi = kiδ + ciδ̇, (3-16)

where the penetration δ and the velocity of penetration, δ̇ are described as

δ = l sin θ − gap,

δ̇ = lθ̇ cos θ.
(3-17)

It is important to emphasize that the generalized coordinate θ (and

therefore θ̇) is embarked on the cart. To compare the numerical results with

DBD
PUC-Rio - Certificação Digital Nº 0611808/CA



Experimental investigation and numerical analysis of the vibro-impact phenomenon 88

Table 3.2: Hammer supported by wires - parameters identi�cation.

Parameter Value Unit
Natural frequency, ω 1.82 Hz
Hammer mass, m 0.298 kg
Cart mass, M 5.38 kg
Wire length, l 75 mm
Excitation amplitude, A0 0.89 mm

the experimental data, where the linear displacement is measured outside

the cart, the following transformations must take place:

x = l sin θ + A0 sin(Ωt)

ẋ = lθ̇ cos θ + A0Ω cos(Ωt)
(3-18)

The system without impact presents some degree of damping.

However, the mathematical modeling does not take this into consideration.

For the system without impact, the test rig parameters are identi�ed and

the hammer natural frequency is obtained. These results are shown in Table

3.2.

3.3.4
Numerical results and comparison between numerical simulation and
experimental results

According to the Filippov theory [48] [51] [49], the mathematical

modeling presented is described by a di�erential equation with a

discontinuous right-hand side. Therefore, the state space ẋ = f(x),x ∈ Rn

may be split into two subspaces Γ− and Γ+, separated by a hyper-surface Σ.

Hyper-surface is de�ned by a scalar function h(x). Consequently, the state

space x is in Σ when h(x) = 0. Hence, it is possible to de�ne the subspaces

Γ− and Γ+, as well as the hyper-surface Σ, using the sets:

Γ− = {x ∈ Rn | h(x) < 0}

Σ = {x ∈ Rn | h(x) = 0}

Γ+ = {x ∈ Rn | h(x) > 0}

(3-19)

Some physical systems need di�erent interfaces in order to perform a

correct description of the transitions. The impact force model used in the

mathematical modeling is an example. Due to the nature of the impact

model, the contact between the mass and the support occurs whenever
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the linear displacement becomes equal to the contact gap. However, the

mass loses contact with the support when the contact force vanishes. Two

indicator functions are used to de�ne the system subspaces [68]:

hα(θ, θ̇) = l sin θ − gap

hβ(θ, θ̇) = kiδ + ciδ̇,
(3-20)

where the penetration δ and velocity of penetration δ̇ are already de�ned

in Equation (3-17).

The mass is not in contact with the support if the state vector

x = (θ, θ̇) ∈ Γ−, in other words:

Γ− = {x ∈ R2 | hα(θ, θ̇) < 0 or hβ(θ, θ̇) < 0}. (3-21)

For the case when there is contact between the mass and the support:

Γ+ = {x ∈ R2 | hα(θ, θ̇) > 0 and hβ(θ, θ̇) > 0}. (3-22)

The hyper-surface Σ consists of the conjunction of two surfaces, Σα

and Σβ. The hyper-surface Σα de�nes the transition from Γ− to Γ+, i.e.,

when the mass initiates the contact with the support (l sin θ − gap = 0),

Σα = {x ∈ R2 | hα(θ, θ̇) = 0 and hβ(θ, θ̇) > 0}. (3-23)

Surface Σβ de�nes the transition from Γ+ to Γ− as the contact is lost

when the impact force vanishes:

Σβ = {x ∈ R2 | hα(θ, θ̇) > 0 and hβ(θ, θ̇) = 0}. (3-24)

Consequently, the state equation of this discontinuous system is

written as follows:

ẋ = f(x, t) =


f−(x, t),x ∈ Γ−

co{f−(x, t), f+(x, t)},x ∈ Σ

f+(x, t),x ∈ Γ+

(3-25)

where

f−(x, t) =

 θ̇

A0Ω2

l
cos θ sin Ωt− g

l
sin θ

 ; x ∈ Γ− (3-26)
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f+(x, t) =

 θ̇

A0Ω2

l
cos θ sin Ωt− g

l
sin θ − 1

ml
(kiδ + ciδ̇)

 ; x ∈ Γ+ (3-27)

co{f−(x, t), f+(x, t)} =

 θ̇

A0Ω2

l
cos θ sin Ωt− g

l
sin θ − 1

ml
(ciδ̇)

 ; in Σα

(3-28)

co{f−(x, t), f+(x, t)} =

 θ̇

A0Ω2

l
cos θ sin Ωt− g

l
sin θ

 ; in Σβ (3-29)

This approach allows one to deal with non-smooth systems by

employing a smoothed system. Leine [49] also de�nes a �nite region that

considers transition between subspaces. Therefore, a region of small relative

displacement is de�ned as |l sin θ − gap| < η as well as |kiδ + ciδ̇| < η,

where η � 1. The �nite region is useful for numerical simulations because

an exact instant of impact will not be computed. The thickness parameter

of the narrow band η needs to be chosen according to the physical problem

[68].

The comparison between numerical simulation and experimental

data starts with the chart of the non-dimensional force (Fi/mg) in the

non-dimensional frequency domain (Ω/ω), for each gap imposed on the test

rig. These results are shown in Figures 3.12, 3.13 and 3.14. The methodology

applied to identify is the same as that used during the experimental analysis,

where for each excitation frequency the maximum impact force is detected,

regardless of the impact force behavior.
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Figure 3.12: Hammer supported by wires, comparison between numerical

simulation and experimental results. Non dimensional force versus non

dimensional frequency. Gap 0.0 mm.

Figure 3.13: Hammer supported by wires, comparison between numerical

simulation and experimental results. Non dimensional force versus non

dimensional frequency. Gap 1.0 mm.
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Figure 3.14: Hammer supported by wires, comparison between numerical

simulation and experimental results. Non dimensional force versus non

dimensional frequency. Gap 2.4 mm.

From the numerical analysis and the comparison between numerical

simulation and experimental data shown in Figure 3.12, it is possible to

identify, numerically, the frequency bands observed in the test rig, as the

range of excitation frequencies is covered. For the �rst frequency band,

characterized by one impact per excitation cycle, the time range used to

capture the experimental displacements (cart + hammer) was too short,

showing eventually one or two cycles of excitation, which is not enough to

perform a satisfactory comparison of displacement over time, phase plane

and Poincaré map.

3.3.5
Hammer displacement, phase plane and Poincaré map; comparison
between numerical simulation and experimental results

Poincaré map.

In mathematics, particularly in dynamical systems, a �rst recurrence

map or Poincaré map, named after Henri Poincaré (29 April 1854 - 17 July

1912), is the intersection of a periodic orbit in the state space of a continuous

dynamical system with a certain lower dimensional subspace, called the

Poincaré section, transversal to the �ow of the system. More precisely, one

considers a periodic orbit with initial conditions on the Poincaré section and

observes the point at which these orbits �rst return to the section, thus the

name �rst recurrence map [90]. See Figure 3.15.
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Figure 3.15: Poincaré map [90].

A Poincaré map can be interpreted as a discrete dynamical system

with a state space that is one dimension smaller than the original

continuous dynamical system. It preserves many properties of periodic and

quasiperiodic orbits of the original system and has a lower dimensional state

space that is often used for analyzing the original system. In practice this is

not always possible as there is no general method to construct a Poincaré

map [90].

With the exception of the �rst frequency band (z = 1/1) for the

0.0 mm gap, where the number of excitation cycles was insu�cient, the

experimental data is compared to numerical simulations. Figures 3.16 to

3.23 show the phase plane and Poincaré map. Charts show good agreement,

especially in every frequency band, even showing satisfactory agreement

after bifurcation. Figures 3.18 and 3.21 show the comparison for the �rst

frequency band (z = 1/1), while Figures 3.17 and 3.19 show the comparison

for the second frequency band (z = 1/2), all in di�erent gap conditions.

Figures 3.16 and 3.20 show the comparison after the bifurcation.
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(a) (b)

Figure 3.16: Hammer supported by wires, gap 0.0 mm, non dimensional

frequency 2.7. Numerical (blue)/ experiment (red) comparison: a) Hammer

displacement; b) Phase plane (solid line) and Poincaré map (dots).

(a) (b)

Figure 3.17: Hammer supported by wires, gap 0.0 mm, non dimensional

frequency 3.8. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).
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(a) (b)

Figure 3.18: Hammer supported by wires, gap 1.0 mm, non dimensional

frequency 1.5. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).

(a) (b)

Figure 3.19: Hammer supported by wires, gap 1.0 mm, non dimensional

frequency 3.3. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).
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(a) (b)

Figure 3.20: Hammer supported by wires, gap 1.0 mm, non dimensional

frequency 4.7. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).

(a) (b)

Figure 3.21: Hammer supported by wires, gap 2.4 mm, non dimensional

frequency 1.2. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).
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(a) (b)

Figure 3.22: Hammer supported by wires, gap 2.4 mm, non dimensional

frequency 1.4. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).

(a) (b)

Figure 3.23: Hammer supported by wires, gap 2.4 mm, non dimensional

frequency 2.7. Numerical simulation (blue)/ experimental data (red)

comparison: a) Hammer displacement; b) Phase plane (solid line) and

Poincaré map (dots).

Overall comparison shows a satisfactory agreement, especially

concerning the impact resonance and the maximum impact force for the

z = 1/1 behavior, for each gap imposed.

3.3.6
Further numerical analysis: bifurcation diagrams, Peterka map and
basins of attraction

Although the impact force charts shown in Figure 3.12 give some

important information regarding the impact force amplitude and the impact
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resonance, such charts provide neither information about the characteristics

of the impact force, nor details on the transition between frequency bands.

To better visualize the behavior of this dynamical system, two nonlinear

tools are used. One is the Peterka map [60] [57] [56] [55], shown in Figure

3.24, which provides information about the characteristic of the impact force

as the gap is varied and the range of excitation frequencies is covered. From

this chart one can see the areas where the two frequencies bands occur, as

noted by the red (z = 1/1) and green (z = 1/2) areas. The second tool is

a bifurcation diagram [75], where the bifurcation in the z = 1/1 behavior

is observed in more detail, showing the conditions of pitch-fork bifurcation

(for gap 0.0 mm) and chaotic behavior (gaps 1.0 mm and 2.4 mm).

Figure 3.24: Hammer supported by wires, numerical result, Peterka map.

Figure 3.25: Hammer supported by wires, numerical (bright colors) /

experiment (dots) comparison, Peterka map.

It is important to emphasize that in the Peterka map each gap/

frequency combination correspond to one numerical simulation. In order
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to generate a satisfactory image resolution, the Peterka map was built in

steps of 0.01 mm in gap and 0.01 Hz in frequency, generating 209916 points

(therefore 209916 simulations). The computational e�ort to generate such

map was around 120 hours in a PC equipped with an Intel Core 2 DUO

1.80 GHz with 2 Gb of RAM.

Although the Peterka map provides important information about the

condition of impact, no information regarding the impact magnitude is

given. To overcome this problem, a slight variance of the Peterka map is

suggested. The relevant impact condition is z = 1/1. Therefore, just this

area in the Peterka map is addressed. For each gap/ frequency combination,

the nondimensional impact force (Fi/mg) is obtained and plotted in colors,

see Figure 3.26.

Figure 3.26: Hammer supported by wires, Peterka map of z = 1/1 with

impact force magnitude addressed.

This chart provides several important facts about the system behavior

and it con�rms some aspects observed during the experimental analysis.

First, it con�rms that the impact force when the hammer is excited in

its natural frequency generates impact forces that are 3 times smaller in

magnitude than the maximum force. It also shows that the maximum impact

force for each given gap does not occur at the z = 1/1 boundary, except

for high values of gap. Finally, the chart con�rms the recommendation to

operate in the �eld using the 0.0 mm gap, because the magnitude of the

impact force is in the same value as the impact force in higher gap values.

In addition, non-zero gap values are known to present nonlinear jumps.
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(a) (b)

Figure 3.27: Hammer supported by wires, gap 0.0 mm, bifurcation diagrams:

a) Hammer displacement, Numerical simulation (blue)/ experimental data

(red) comparison; b) Impact force (numerical).

(a) (b)

Figure 3.28: Hammer supported by wires, gap 0.0 mm, bifurcation diagrams,

hammer displacement, details of Figure 3.27(a).

(a) (b)

Figure 3.29: Hammer supported by wires, gap 0.0 mm, bifurcation diagrams,

Impact force, details of Figure 3.27(b).
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(a) (b)

Figure 3.30: Hammer supported by wires, gap 1.0 mm, bifurcation diagrams:

a) Hammer displacement, Numerical simulation (blue)/ experimental data

(red) comparison; b) Impact force (numerical).

(a) (b)

Figure 3.31: Hammer supported by wires, gap 1.0 mm, bifurcation diagrams,

Hammer displacement, details of Figure 3.30(a).

(a) (b)

Figure 3.32: Hammer supported by wires, gap 1.0 mm, bifurcation diagrams,

Impact force, details of Figure 3.30(b).
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(a) (b)

Figure 3.33: Hammer supported by wires, gap 2.4 mm, bifurcation diagrams:

a) Hammer displacement, Numerical simulation (blue)/ experimental data

(red) comparison; b) Impact force (numerical).

(a) (b)

Figure 3.34: Hammer supported by wires, gap 2.4 mm, bifurcation diagrams,

hammer displacement, details of Figure 3.33(a).

(a) (b)

Figure 3.35: Hammer supported by wires, gap 2.4 mm, bifurcation diagrams,

Impact force, details of Figure 3.33(b).
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Finally, the presence of impact and the gap between the hammer

and the cart induces nonlinearities, and therefore nonlinear phenomena

arise, speci�cally in the transition between frequency bands. One of these

phenomena is the change of the basins of attraction [75] for some gap

conditions. In the Peterka map, Figure 3.24, for a gap condition higher than

1.5, there is an area between the z = 1/1 (red) and z = 1/2 (green) regions

that are characterized by various impact conditions, which are dependent on

the system initial condition, as veri�ed by the experiment, Figure 2.20. In

some conditions, where the system is excited, when a small amount of energy

is inserted, the system will enter an impact condition for some time and then

return to its non-impact condition. However, for a similar condition, when a

small amount of energy is inserted, the system will enter an impact condition

and remain in this state, as shown in Figure 2.20.

This area in the Peterka map can be better visualized with the use of

basins of attraction [75], de�ned as the set of initial conditions x0 such that

x(t)→ x∗ as t→∞.

(a) (b)

Figure 3.36: Hammer supported by wires, basins of attraction; condition

of impact (blue) / no impact (red): a) Ω/ω = 2.00 gap/A0 = 2.00; b)

Ω/ω = 2.00 gap/A0 = 1.50.
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(a) (b)

Figure 3.37: Hammer supported by wires, basins of attraction; condition

of impact (blue) / no impact (red): a) Ω/ω = 1.75 gap/A0 = 2.50; b)

Ω/ω = 1.75 gap/A0 = 3.50.

(a) (b)

Figure 3.38: Hammer supported by wires, basins of attraction; condition

of impact (blue) / no impact (red): a) Ω/ω = 2.15 gap/A0 = 1.60; b)

Ω/ω = 2.25 gap/A0 = 1.50.

The computational e�ort to generate each basins of attraction was

around 20 hours in a PC equipped with an Intel Core 2 DUO 1.80 GHz

with 2 Gb of RAM.
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3.4
Hammer supported by beam springs - mathematical modeling and
comparison between numerical simulation and experimental results

3.4.1
Mathematical modeling and parameter identi�cation

The mathematical modeling of this test rig is presented below. A

simple mass-spring-damper system with base excitation [42] is used. See

Figure 3.39.

Figure 3.39: Model of hammer supported by beam springs, physical

representation.

For the situation of no impact, i.e., x − (y + gap) > 0, equation of

motion is

mẍ+ c(ẋ− ẏ) + k(x− y) + k(x− y)3 = 0, (3-30)

where

y = A0 sin(Ωt),

ẏ = A0Ω cos(Ωt).
(3-31)

Although the hammer support has changed, the impact set up remains

the same as the last experiment, because the materials and geometries of

the impact bodies remain the same. So the same impact model will be used.

Therefore, when the hammer is impacting the cart (x− (y+ gap) 6 0), the

equation of motion will slightly change to

mẍ+ c(ẋ− ẏ) + k(x− y) + k(x− y)3 = −Fi,

Fi = kiδ + ciδ̇,
(3-32)
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Table 3.3: Hammer supported by beam springs - parameters identi�cation.

Parameter Value Unit
Hammer mass, m 0.298 kg
Cart mass, M 5.38 kg
Excitation amplitude, A0 0.89 mm
Damping ratio, ζ 0.004
Couplings Distance Value Unit
170 mm
Natural frequency, ω 4.50 Hz
Damping coe�cient, ζ 0.06 Ns/m
Couplings Distance Value Unit
150 mm
Natural frequency, ω 5.25 Hz
Damping coe�cient, ζ 0.08 Ns/m
Couplings Distance Value Unit
135 mm
Natural frequency, ω 6.50 Hz
Damping coe�cient, ζ 0.09 Ns/m

where the penetration δ and the velocity of penetration δ̇ are described as

δ = x− (y + gap),

δ̇ = ẋ− ẏ.
(3-33)

In this modeling, the hammer displacement x is taken from a �xed

frame of reference. Consequently the numerical results will be directly

compared to the experimental data.

The parameter identi�cation of this test rig takes into account

some results from the previous experiment (hammer mass, cart mass and

excitation amplitude). The �rst natural frequency of the beam springs

assembly [42]represents the hammer sti�ness in the mathematical model,

see Equation (3-30):

k = mω2, (3-34)

where m is the hammer mass and ω is the �rst natural frequency of the

bending vibration of the beam springs, determined experimentally. For the

damping identi�cation, only viscous damping is considered, and because the

damping ratio is related to material damping, the same ratio is adopted for

all three beam spring lengths. The value of the damping ratio was extracted

from previous work [2].
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As in the mathematical modeling of the hammer supported by wires,

the Filippov theory must be used in order to numerically integrate the

equations of motion. Because the same impact model is used in both

mathematical models, similar indicator functions are used. The contact

between the mass and the support occurs whenever the linear displacement

becomes equal to contact gap. In the other hand, the mass loses contact with

the support when the contact force vanishes. The tow indicator functions

are described as [68]:

hα(x, ẋ) = A0 sin(Ωt) + gap,

hβ(x, ẋ) = kiδ + ciδ̇,
(3-35)

where the penetration δ and velocity of penetration δ̇ are de�ned in Equation

(3-33). The same sub-spaces and hyper surfaces are used, refer to Equations

(3-21), (3-22), (3-23), (3-24). Consequently, the state equation of this

discontinuous system is written according to Equation (3-25), where

f−(x, t) =

 ẋ

1
m

(
−c∆̇− k∆− k∆3

)  ; x ∈ Γ− (3-36)

f+(x, t) =

 ẋ

1
m

(
−c∆̇− k∆− k∆3 − Fi

)  ; x ∈ Γ+ (3-37)

co{f−(x, t), f+(x, t)} =

 ẋ

1
m

(
−c∆̇− k∆− k∆3 − (ciδ̇)

)  ; in Σα (3-38)

co{f−(x, t), f+(x, t)} =

 ẋ

1
m

(
−c∆̇− k∆− k∆3

)  ; in Σβ (3-39)

where ∆ = x− y and ∆̇ = ẋ− ẏ.

3.4.2
Comparison between numerical simulation and experimental results

The comparison between numerical simulation and experimental

results starts with the chart of the non-dimensional force (Fi/mg) in the
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frequency domain (Ω/ω), for each sti�ness and gap imposed on the test rig.

These results are shown in Figures 3.40, 3.41 and 3.42. The methodology

applied in order to identify the impact force is the same performed for

the experimental data, where for each excitation frequency the maximum

impact force is detected, regardless of the impact force behavior.

Figure 3.40: Hammer supported by beam springs, couplings distance 170

mm. Numerical/ experiment comparison. Non dimensional force versus non

dimensional frequency. a) Gap 0.0 mm. b) Gap 1.0 mm. c) Gap 3 mm.

Figure 3.41: Hammer supported by beam springs, couplings distance 150

mm. Numerical/ experiment comparison. Non dimensional force versus non

dimensional frequency. a) Gap 0.0 mm. b) Gap 1.0 mm. c) Gap 3 mm.

Figure 3.42: Hammer supported by beam springs, couplings distance 135

mm. Numerical/ experiment comparison. Non dimensional force versus non

dimensional frequency. a) Gap 0.0 mm. b) Gap 1.0 mm. c) Gap 3 mm.

Simulation results show satisfactory agreement with the experimental

data. For the beam springs length of 170 mm, Figure 3.40, the simulation
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captures well the maximum impact force and also the presence of the

nonlinear jump, for the 3.0 mm gap con�guration (Figure 3.40c). For the

gap 1.0 mm con�guration the comparison between numerical simulation

and experimental data is not as satisfactory as compared to the other

gap con�gurations. However such disagreement is due to the unexpected

experimental data, as mentioned in the analysis on Chapter 2, where the

behavior impact force magnitude in the frequency domain for the 1.0 mm

gap was not in between 0.0 mm and 3.0 mm gap, as expected.

For the beam spring length of 150 mm, the agreement is better for the

1.0 mm gap con�guration. For the 0.0 mm gap con�guration, the agreement

is satisfactory until the excitation frequency is twice the value of the natural

frequency of the hammer. For the 3.0 mm gap con�guration, agreement

is also satisfactory, although the nonlinear jump is detected with a 10 %

error in frequency. For the beam spring length of 135 mm, the agreement

is satisfactory up to a non-dimensional frequency of 1.7, for the cases of 0.0

mm and 1.0 mm gap.

3.4.3
Nonlinear analysis: bifurcation diagrams, Peterka map and basins of
attraction

In this subsection some nonlinear tools are used to investigate the

hammer behavior, starting with the bifurcation diagrams, shown in Figures

3.43, 3.44 and 3.45.

Figure 3.43: Hammer springs, couplings distance 170 mm, bifurcation

diagrams, hammer displacement, numerical simulation (blue)/ experimental

data (red) comparison: a) gap 0.0 mm; b) gap 1.0 mm; c) gap 3.0 mm.

DBD
PUC-Rio - Certificação Digital Nº 0611808/CA



Experimental investigation and numerical analysis of the vibro-impact phenomenon 110

Figure 3.44: Hammer springs, couplings distance 150 mm, bifurcation

diagrams, hammer displacement, numerical simulation (blue)/ experimental

data (red) comparison: a) gap 0.0 mm; b) gap 1.0 mm; c) gap 3.0 mm.

Figure 3.45: Hammer springs, couplings distance 135 mm, bifurcation

diagrams, hammer displacement, numerical simulation (blue)/ experimental

data (red) comparison: a) gap 0.0 mm; b) gap 1.0 mm; c) gap 3.0 mm.

Two interesting issues can be observed. First, the bifurcation diagrams

of the experimental data in all sti�ness/ gap combinations present a group

of dispersed points, even in regions where a steady behavior was observed

(z = 1/1 for example). So this behavior is not related to any chaotic

condition. The second observation is related to the non-agreement between

numerical simulation and experiment data. The simulation results present

higher amplitudes than the experimental data. The phenomena that justi�es

both issues is the energy distribution in the bending vibration modes of

the beam springs after each impact. Such energy distribution is shown as

a dispersion of the experimental points in the bifurcation map, even in

a steady-state condition. Because the mathematical model considers only

the �rst bending vibration mode, the amplitude obtained by numerical

simulation is always higher than the experimental data, even when the

impact force is presenting equivalent values. This di�erence appears to be

higher as the beam springs sti�ness increases. Even taken into account

this amplitude di�erence, the transition between frequency bands can be

qualitatively observed.
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Figures 3.46, 3.48 and 3.50 show the Peterka map, determined

numerically. For all hammer sti�ness, the map shows similar characteristics

to the Peterka map supported by wires (Figure 3.24), even the instability

region after the z = 1/1 region in values of non-dimensional gap higher

than 1.5 (Figures 3.46(b), 3.48(b) and 3.50(b)). Figures 3.47, 3.49 and

3.51 present the Peterka map for frequency band z = 1/1 showing the

magnitude of the impact force. The same observations stated for the hammer

supported by wires can be applied here. One more conclusion observed is

the similarity in the shape pattern of the maps regardless of the sti�ness

imposed (Figures 3.46(a), 3.48(a) and 3.50(a)). The maps are identical

in all cases, except for the chaotic region between regions z = 1/1 and

z = 1/2. This is an indication that the impact force behavior is somehow

not dependent on the hammer sti�ness. Independence is not completely due

to the non-dimensional gap, which takes into consideration the hammer's

�rst natural bending vibration frequency, a function of the system sti�ness.

(a) (b)

Figure 3.46: Hammer springs, couplings distance 170 mm; a) Peterka map;

b) Detail of map.
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Figure 3.47: Hammer springs, couplings distance 170 mm, Peterka map of

z = 1/1 with impact force magnitude addressed.

(a) (b)

Figure 3.48: Hammer springs, couplings distance 150 mm; a) Peterka map;

b) Detail of map.
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Figure 3.49: Hammer springs, couplings distance 150 mm, Peterka map of

z = 1/1 with impact force magnitude addressed.

(a) (b)

Figure 3.50: Hammer springs, couplings distance 135 mm; a) Peterka map;

b) Detail of map.
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Figure 3.51: Hammer springs, couplings distance 150 mm, Peterka map of

z = 1/1 with impact force magnitude addressed.

Figures 3.46(b), 3.48(b) and 3.50(b) show some basins of attraction of

the instability region presented in the Peterka map.

(a) (b)

Figure 3.52: Hammer springs, couplings distance 170 mm, basins of

attraction; condition of impact (blue) / no impact (red): a) Ω/ω = 1.80

gap/A0 = 1.60; b) Ω/ω = 2.20 gap/A0 = 1.50.
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(a) (b)

Figure 3.53: Hammer springs, couplings distance 150 mm, basins of

attraction; condition of impact (blue) / no impact (red): a) Ω/ω = 1.80

gap/A0 = 1.74; b) Ω/ω = 2.10 gap/A0 = 1.40.

(a) (b)

Figure 3.54: Hammer springs, couplings distance 135 mm, basins of

attraction; condition of impact (blue) / no impact (red): a) Ω/ω = 2.15

gap/A0 = 1.60; b) Ω/ω = 2.25 gap/A0 = 1.50.

3.5
Final remarks

This chapter presented a general view of the state of the art of impact

mechanics, as well as some methodologies to model the impact, and the

numerical integration of discontinuous ordinary di�erential equations. The

hammer modeling for both test rigs was also addressed in this chapter.

The parameter identi�cation was discussed and the comparison between

numerical analysis and the experimental results was performed.

In both test rigs, the comparison between numerical simulation

and experimental data was satisfactory, showing the capability of the
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mathematical model to predict the impact resonance for each sti�ness/

gap combination. Nonlinear tools were used to understand the impact force

behavior, including bifurcation diagrams, basins of attraction, Poincaré

maps and Peterka maps. In this chapter a new methodology was proposed

to better visualize each impact force behavior in the Peterka map, plotting

one impact force behavior at a time (in this case only the z = 1/1 region

was plotted), adding colors to the third coordinate Fi, the impact force

magnitude. This methodology provided important information regarding

the hammer behavior and it con�rmed some aspects observed during

the experiment analysis. After considering the experimental data and the

nonlinear tools, it is recommended to operate with 0.0 mm gap, because

the magnitude of the developed impact forces is in the same range as the

impact force in higher gap values. However, in higher gap values nonlinear

jump occurs, which is not the case for the 0.0 mm gap, where approximate

values of the maximum impact force occur for a wider frequency range.

For the second test rig, i.e., hammer supported by beam springs, the

mathematical model is capable of qualitatively determining the frequency

bands, and predicting the impact force magnitude in the frequency domain

for each sti�ness/ gap combination. However, the mathematical model did

not predict the hammer displacement well, due to the energy distribution in

the bending vibration modes of the beam springs following each impact. This

energy distribution was observed as a dispersion of the experimental points

in the bifurcation map, even in steady-state condition. The mathematical

model considers only the �rst bending vibration mode, so the amplitude of

the mathematical model is always higher than the experimental data, even

when the impact force presents equivalent values. This di�erence appears

to be greater as the beam springs sti�ness increases.

One last aspect that was observed in the case of the hammer supported

by beam springs was the similarity in the shape pattern of the Peterka

maps regardless of the hammer sti�ness imposed, except for the chaotic

region between frequency bands z = 1/1 and z = 1/2. This is an indication

that the impact force behavior is somehow not dependent on the hammer

sti�ness.
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