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Simulating Low and High-Frequency Energy
Demand Scenarios in a Unified Framework – Part

I: Low-Frequency Simulation

Raphael Saavedra, Guilherme Bodin, Cristiano Fernandes,

Érica Telles, Alexandre Street

Abstract

Energy demand prediction is a strategic tool for distribution companies due
to the need to contract the amount of use of the transmission and distribu-
tion systems. However, most of the literature focuses on forecasting rather
than simulation. The generation of future scenarios is essential to capture
the inherent uncertainty of the process and to allow for a risk-averse decision
making framework. The first of this two-paper series proposes a method-
ology to simulate long-term, low-frequency energy consumption scenarios
through state-space models. An open-source Julia package containing the
implementation of the time series state-space modeling, Kalman filter and
maximum likelihood estimation is made available. Finally, a case study with
real data from the Brazilian power system is presented.

Index terms— energy demand, state-space models, Monte Carlo simulation

1 Introduction

Network expansion is a fundamental part of the planning of power systems. Expan-
sion occurs at all system levels – namely, generation, transmission, and distribution
– and is essentially attached to time-variant signals, such as energy consumption.
Furthermore, agents that partake in the use of the transmission and distribution
systems must pay for the usage of such infrastructure. Consequently, there is a
systematic need to predict the behavior of energy consumption and to correctly
characterize its uncertainty and to simulate the usage of the system. Moreover, in

This work was partially supported by the Energisa Group through R&D project ANEEL
PD-00405-1701/2017.
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general, the transmission system cost allocation is based on a regulated tariff for
the maximum value of power consumption. The Brazilian case is an example of
such system.

In Brazil, the transmission system cost is allocated through long-term demand
contracts, whose amounts are monthly cleared. The contract clearing is based on
the maximum power imported in each interconnection bus of each distribution
company with the transmission network and contracted amount. The objective
of the distribution company is to minimize contracting expenses by precisely bal-
ancing between the benefit of reducing the direct contract cost while avoiding
paying high penalties for exceeding contract amounts. This means low-frequency
signals, such as monthly data on energy consumption, are not good predictors for
the MUST, since these don’t offer much information on high-frequency demand
peaks. It also presents a further difficulty due to the typical power system struc-
ture, which contains a large number of low-level buses at the distribution level.
These low-level buses, when added together, are ultimately responsible for the to-
tal amount of energy being transmitted at the higher levels. Because the moment
of maximum demand at the high-level buses is not necessarily the moment when
low-level buses are at their maximum, predicting monthly maximum values of the
low-level buses and then adding them together won’t suffice – it is necessary to
account for all low-level buses in hourly frequency in order to accurately predict
the MUST. The first paper of this two-paper work (the companion paper being
[1]) will deal with the long-term, low-frequency modeling.

Various studies have been conducted to investigate the modeling and forecast-
ing of energy consumption, both in long and short terms. Methodologies range
from classic ARIMA models [2] to state-space models [3] and neural networks [4],
as well as hybrid models [5], [6]. In the long-term framework, [7] and [8] pre-
sented grey prediction models to forecast yearly power demand and electricity
consumption in Turkey and Taiwan, respectively. Also in Taiwan, [9] employed a
state-space model to investigate monthly electricity consumption and its relation
with economic growth. Similarly, [10] utilized a state-space model to study the
long-term trend and seasonality of energy demand in the United Kingdom. [11]
proposed a non-linear multivariate regression model for midterm energy forecast-
ing and applied it to the Greek power system. Additionally, the so-called dynamic
score models have recently surfaced to tackle prediction and simulation of several
phenomena. Some studies involving energy include [12] and [13].

As seen above, there is plenty of literature concerning the forecasting of long-
term energy consumption. On the other hand, the liaison between the long and
short-term frameworks is generally unexplored and strongly connected to the prob-
lem of contracting the optimal MUST. Nonetheless, it is challenging to accurately
predict the hourly behavior of demand months ahead through either long or short-
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term models, as the problem involves high-dimensional data in high frequency. A
possible strategy is to reduce the dimension and frequency of the original problem,
simulate low-frequency signals that dictate the long-term behavior of the multi-
ple signals, and then disaggregate the low-frequency signal back into the high-
dimensional and high-frequency framework. Therefore, a methodology is needed
in order to successfully connect long and short-term variability in energy consump-
tion, both in a macro environment, such as the total monthly energy consumed in a
region, and micro environments, such as the hourly demand occurring in low-level
buses. This paper focuses on the first part, while the companion paper [1] focuses
on the second.

Furthermore, the vast majority of the literature and the industry deals with
forecasting, which only provides a prediction of the mean electricity consumption.
As opposed to forecasting, the simulation of future scenarios allows the description
of the uncertainty in the process, the characterization of a probability distribution
and the implementation of a risk-averse framework. This work proposes a method-
ology to simulate long-term energy consumption scenarios using historical data and
exogenous climatic and economic variables. Additionally, an initial version of the
Julia package StateSpaceModels.jl [14], utilized in the studies presented in this
paper and currently under work, is made publicly available on GitHub.

The remainder of this paper is organized as follows. Section 2 contains the
problem description and utilized notation. Section 3 presents the state-space model
employed in this paper. Section 4 describes the process of estimation and simula-
tion done in order to obtain the future scenarios. A case study with real data from
the Brazilian system is presented in Section 5. Section 6 raises the relevant con-
clusions. Finally, the high-frequency modeling, starting from the monthly energy
consumption scenarios obtained in this paper, which represents the second stage
of this methodology, comprises the companion paper [1].

2 Problem description

The first stage of the methodology presented in this work consists of generating
monthly scenarios of energy consumption, which will be later used as inputs in
the high-frequency model. Energy consumption series have several stylized facts
which must be considered in the model. To name a few, these series are often
non-stationary and contain a well-defined trend, due to population and economic
growth over time; they also generally present yearly seasonality, which is caused
mostly by the variation of temperature and precipitation patterns. Let Em, for
m = 1, ...,M , denote the energy consumption during month m. The objective is
to obtain scenarios

EM+k(ω), k = 1, ..., K, ω ∈ Ω, (1)
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where M + K represents the last simulated month and Ω is the set of simulated
scenarios. In order to do so, a state-space model [3], fully described in the next
section, is employed. The model utilizes historical consumption data as well as
exogenous variables. These explanatory variables can range from economic indices,
such as GDP and employment rates, to climatic data such as temperature and
precipitation.

3 Structural model with exogenous variables

State-space models represent a set of time series models in which the evolution of
the process is assumed to be determined by a set of unobserved vectors α1, ..., αm,
which are called the states, or collectively called the state. These states can often
have a physical interpretation, representing behaviors such as trend and season-
ality. Our problem can be formulated in the linear Gaussian state-space form
as

Em = Zαm + εm, εm ∼ N(0, H), (2)

αm+1 = Tαm +Rηm, ηm ∼ N(0, Q), m = 1, ...,M, (3)

where αm is the state vector, matrices Z, T , R, H and Q may contain unknown,
fixed parameters present in vector ψ, which will be estimated, and error terms εm
and ηm are assumed to be serially independent and independent of each other. In
our case, Em is univariate, so matrix H reduces to a single element σ2

ε . Equations
(2) and (3) are called observation equation and state equation, respectively. The
observation equation describes how the state αm contributes to the actual obser-
vation Em, while the state equation describes the evolution of the state over time.
Matrices Z, T and R can be time-varying in a more general framework, but in
practical cases they are generally constant.

In this work, we utilize a specific instance of state-space models, usually called
the basic structural model with exogenous variables. A state-space time series
model is generally called a structural model in the literature when its components
have well-defined, physical interpretations [15]. Under this framework, one can
write Equation (2) as

Em = µm + γm + θ>Xm + εm, (4)

where µm is a slowly varying component called the trend, γm is a periodic compo-
nent with fixed periodicity called the seasonal, Xm is a set of exogenous variables,
θ is a vector of parameters related to the exogenous variables, and εm is referred
to as the irregular or error component.
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The stochastic trend is formulated in the state equation in the following man-
ner:

µm+1 = µm + νm + ξm, ξm ∼ N(0, σ2
ξ ), (5)

νm+1 = νm + ζm, ζm ∼ N(0, σ2
ζ ). (6)

where νm is called the slope, while the stochastic seasonal component can be
formulated as follows:

γm+1 = −
p−1∑
j=1

γm+1−j + χm, χm ∼ N(0, σ2
χ), (7)

where p represents the periodicity of the seasonal component, which means the
sum of seasonals over a period must be zero, except for an error. Note that all
components change stochastically over time, and therefore add further flexibility
to this model in capturing time series variations. If variances σ2

ε , σ
2
ξ , σ

2
ζ , σ

2
χ are null,

then the model reduces to a deterministic process with well-defined trend, slope
and seasonality.

Naturally, it is necessary to formulate Equations (4)–(7) in the state-space ma-
tricial form so that they can be inserted in the framework of Equations (2) and (3).
The necessary manipulations, as well as the estimation and simulation functions,
are implemented in the Julia package StateSpaceModels.jl [14], which we make
publicly available on GitHub. The package also contains an implementation of
the square-root Kalman filter [16], square-root smoother, parallelized maximum
likelihood estimation [17], and Monte Carlo simulation.

4 Estimation and simulation

The model contemplated in Equations (2)–(7) depends on a set of hyperparame-
ters, namely the variance of the observation error (σ2

ε), and each of the variances
associated with the errors of the states (σ2

ξ , σ
2
ζ , σ

2
χ). Therefore, for the proposed

model, ψ contains the following elements:

ψ =
[
σ2
ε σ2

ξ σ2
ζ σ2

χ

]>
. (8)

Estimation of the fixed parameters is done via maximum likelihood (MLE) [17].
Additionally, given that we’re dealing with a state-space model, the use of the
Kalman filter [18] is necessary. In particular, we utilize the square-root Kalman
filter [16] in our implementation due to its advantages in the state-space time
series framework, such as guaranteed positive semi-definiteness of the estimated
state covariances. The MLE problem can be formulated as

ψ? ∈ arg max `(ψ; E1, ..., EM) (9)
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where `(ψ; E1, ..., EM) denotes the log-likelihood concerning vector ψ and obser-
vations E1, ..., EM , such that

`(ψ) =
M∑
m+1

log p(Em|E1, ..., Em−1;ψ), (10)

where p(Em|E1, ..., Em−1;ψ) is obtained through the Kalman filter equations (for
the derivation of the Kalman filter equations, see Chapter 4.2 of [3]). Among the
Kalman filter outputs is the smoothed state α̃m = E[αm|E1, ..., EM ], which can
be interpreted as the extracted components of the series, and the predictive state
am = E[αm|E1, ..., Em−1], which is used when computing goodness-of-fit statistics
and diagnostics.

Algorithm 1 Monte Carlo simulation in a state-space framework

for ω ∈ Ω do
for k = 1 to K do
1. Sample random innovations from their distributions:

εM+k(ω) ∼ N(0, σ̂2
ε),

ξM+k(ω) ∼ N(0, σ̂2
ξ ), ζM+k(ω) ∼ N(0, σ̂2

ζ ), χM+k(ω) ∼ N(0, σ̂2
χ)

where σ̂2
ε , σ̂

2
ξ , σ̂

2
ζ , σ̂

2
χ are the maximum likelihood estimates of the error

variances.
2. Obtain the state using sampled state innovations:

αM+k(ω) = TαM+k−1(ω) +RηM+k(ω)
3. Obtain energy scenario from simulated state and sampled observation
innovation:

EM+k(ω) = ZαM+k(ω) + εM+k(ω)
end for

end for
return

{
EM+k(ω)

}
, k = 1, ..., K, ω ∈ Ω

Non-linear optimization methods such as BFGS, L-BFGS and Nelder-Mead
[19], [20] can be employed to solve this problem. It is important to note that this
problem is usually non-convex and thus global optimality might not be guaranteed.
It is good practice to run several random seeds as starting points in order to reduce
the risk of obtaining a local maximum. An extensive discussion on parameter
estimation for state-space models can be found in [3].

After estimating the fixed parameters and running the Kalman filter, genera-
tion of future scenarios can be done through Monte Carlo simulation. Given the
energy consumption data EM , the smoothed state α̃M , and the estimated hyper-
parameters ψ̂ the simulation is conducted as described in Algorithm 1.
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5 Case study

This section presents results from a case study based on real data from distribution
company Energisa [21]. The study consists of a simulation of 1000 scenarios for
the energy consumption in the state of Minas Gerais (MG). We utilize historical
consumption dating from January 2006 up to December 2015 as our in-sample
period, while the out-of-sample period is set as January 2016 to September 2016.
Figure 1 presents the time series of interest. It is visible that the series displays
a definite rising trend, which attenuates after 2014, possibly due to the recent
Brazilian economic crisis. Additionally, we employ climatic and economic indices
as exogenous variables, namely monthly temperature in the Minas Gerais state
(specifically in the municipality of Manhuaçu), Brazilian GDP, employment rates,
salary of admission, and an industrial production proxy.

Figure 1: Energisa-MG monthly energy consumption. The dashed line separates
the in-sample and out-of-sample periods.
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Figure 2: Smoothed state components extracted from Energisa-MG in-sample
data.

Estimation and simulation are done following the methods presented in Section
4 through Julia package StateSpaceModels.jl. The extracted smoothed state
components are displayed in Figure 2. It shows a stochastic, rising trend with a
noticeable dip towards the end, a deterministic, positive slope, and a well-defined
but stochastic seasonal component. The simulation results and their comparison
with the out-of-sample realization can be seen in Figure 3. The observed series is
between the 5% and 95% quantiles of the scenarios except for one observation. The
out-of-sample goodness-of-fit statistics indicate an adequate model fitting, with a
mean absolute error1 (MAE) of 2359.72 MWh and consequent symmetric mean
absolute percentage error2 (SMAPE) of 1.26%. The in-sample predictive estimates
show similar results, with a MAE of 2098 MWh and SMAPE of 1.27%.

Finally, as a diagnostic procedure, we analyze the standardized predictive resid-
uals, which are given by

em =
vm√
Fm

, m = 1, ...,M, (11)

where vm = Em − Êm|m−1 and Ft are the one-step-ahead forecast error and its

variance, respectively. Êm|m−1 is the predictive observation given by the Kalman
filter, such that

Êm|m−1 = E
[
Em
∣∣E1, ..., Em−1

]
. (12)

If the model is well-specified, then et follows a standard Normal distribution.
Therefore, we conduct a Jarque-Bera test [22] in order to test the in-sample forecast

1MAE = 1
M

∑M
i=1 |Êm − Em|

2SMAPE = 1
M

∑M
i=1

Êm−Em

(|Êm|+|Em|)/2
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errors for normality. The resulting p-value of 0.026 goes against normality at the
95% significance level. However, residuals have been affected by an outlier in June
2015, where the energy consumption drastically dropped. By inserting a manual
intervention, correcting that outlier residual and computing once again the Jarque-
Bera test, we obtain a p-value of 0.710, which strongly indicates normality.

Figure 3: Out-of-sample simulation and comparison with the actual realization for
Energisa-MG energy consumption.

6 Conclusions

This paper proposes a methodology to simulate future long-term scenarios of en-
ergy consumption based on a state-space framework, as opposed to the majority
of the literature, which consists of forecasting. The out-of-sample goodness-of-fit
results and diagnostics indicate that the model is well-specified. We also make an
initial version of StateSpaceModels.jl, a powerful Julia package for modeling
time series in state-space form, available on GitHub. Additionally, we make the
liaison between low- and high-frequency modeling in demand forecasting together
with the companion paper [1], which starts from the monthly energy consumption
scenarios and proceeds to the high-frequency framework.
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