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Abstract 

Lima, Luiz Alberto Barbosa de; Vellasco, Marley Maria Bernardes Rebuzzi 
(Advisor). Porosity Estimation from Seismic Attributes with  Simultaneous 
Classification of Spatially Structured Latent Facies. Rio de Janeiro, 2017. 98p. 
Tese de Doutorado – Departamento de Engenharia Elétrica, Pontifícia 
Universidade Católica do Rio de Janeiro. 

Estimating porosity in oil and gas reservoirs is a crucial and challenging task in 

the oil industry. A novel nonlinear model for porosity estimation is  proposed, which 

handles sedimentary facies as  latent  variables. It successfully combines the concepts of 

conditional random fields (CRFs), transductive  learning and ridge regression.  The 

proposed Transductive Conditional Random Field Regression (TCRFR)  uses seismic  

impedance volumes as  input  information, conditioned on the porosity values from the 

available wells in the reservoir, and simultaneously and automatically provides  as output 

the porosity estimation and facies classification  in the whole volume. The method is able 

to  infer the latent  facies states by combining the local, labeled and accurate porosity 

information available at well locations with the plentiful but imprecise impedance 

information available everywhere in the reservoir volume. That accurate information is 

propagated in the reservoir based on conditional random field probabilistic graphical 

models, greatly  reducing uncertainty.  In  addition,  two  new techniques  are introduced 

as  preprocessing   steps for the application of TCRFR in the extreme but realistic cases 

where  just a scarce amount of porosity labeled samples are available in a few exploratory 

wells, a typical situation for geologists during the evaluation of a reservoir in the 

exploration phase. Both synthetic and real-world data experiments are presented  to prove 

the usefulness  of the proposed  methodology, which show that  it outperforms previous 

automatic estimation methods on synthetic data and provides a comparable result to the 

traditional manual labored geostatistics approach on real-world data. 

Keywords 
Porosity estimation; Geological facies classification; Conditional random field; 

Latent variables; Semi-supervised learning; Transductive learning. 
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Resumo 

Lima, Luiz Alberto Barbosa de; Vellasco, Marley Maria Bernardes 
Rebuzzi (Orientadora). Predição de Porosidade a partir de Atributos 
Sísmicos com Classificação Simultânea de Facies Geológicas Latentes 
em Estruturas Espaciais. Rio de Janeiro, 2017. 98p. Tese de Doutorado – 
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do 
Rio de Janeiro. 

Predição de porosidade em reservatórios de óleo e gás representa em uma tarefa 

crucial e desafiadora na indústria de petróleo. Neste trabalho é proposto um novo modelo 

não-linear para predição de porosidade que trata fácies sedimentares como variáveis 

ocultas ou latentes. Esse modelo, denominado Transductive Conditional Random Field 

Regression (TCRFR), combina com sucesso os conceitos de Markov random fields, ridge 

regression e aprendizado transdutivo. O modelo utiliza volumes de impedância sísmica 

como informação de entrada condicionada aos valores de porosidade disponíveis nos 

poços existentes no reservatório e realiza de forma simultânea e automática a 

classificação das fácies e a estimativa de porosidade em todo o volume. O método é capaz 

de inferir as fácies latentes através da combinação de amostras precisas de porosidade 

local presentes nos poços com dados de impedância sísmica ruidosos, porém disponíveis 

em todo o volume do reservatório. A informação precisa de porosidade é propagada no 

volume através de modelos probabilísticos baseados em grafos, utilizando conditional 

random fields. Adicionalmente, duas novas técnicas são introduzidas como etapas de pré-

processamento para aplicação do método TCRFR nos casos extremos em que somente 

um número bastante reduzido de amostras rotuladas de porosidade encontra-se disponível 

em um pequeno conjunto de poços exploratórios, uma situação típica para geólogos 

durante a fase exploratória de uma nova área. São realizados experimentos utilizando 

dados de um reservatório sintético e de um reservatório real. Os resultados comprovam 

que o método apresenta um desempenho consideravelmente superior a outros métodos 

automáticos de predição em relação aos dados sintéticos e, em relação aos dados reais, 

um desempenho comparável ao gerado por técnicas tradicionais de geoestatística que 

demandam grande esforço manual por parte de especialistas. 

Palavras-chave 
Estimativa de porosidade; classificação de facies geologicas; conditional 

random field; variáveis latentes; aprendizado semi-supervisionado; aprendizado 

transdutivo. 
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We are drowning in information but starved
for knowledge.

John Naisbitt, Megatrends, 1982.

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA



1
Introduction

1.1
Motivation

Porosity estimation in a reservoir is a critical task in the oil industry.
Porosity is a key petrophysical property in the exploration and recovery of
hydrocarbons like crude oil and natural gas, being fundamental in many
different stages, like during the evaluation of rock formations by geologists,
pore pressure assessment for well drilling, and also as an input parameter in
flow simulations executed by reservoir engineers. It is defined as the fraction, or
percentage, of void space over the total rock volume, where those hydrocarbons
can be stored [8]. Figure 1.1(a) shows an actual sandstone slice, thinner
than a human hair, seen from a microscope [1]. Sandstones belong to a class
of reservoir rocks that usually have high porosity. High in this case means
something commonly in the range of 8 to 15%. The larger brown and yellow
grains are made of quartz and between the grains it is possible to observe the
porosity void spaces. Porosity is also shown in black in Figure 1.1(b). These
void spaces can be filled with oil and gas.

(a) Sandstone slice (b) Sandstone schematics

Figure 1.1: Sanstone under microscope [1].

Porosity can be directly measured at wells once they are drilled, however
drilling is extremely costly (tens of million dollars offshore) and typically
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Chapter 1. Introduction 15

conducted only at the locations where a petroleum reservoir is highly likely
to exist. It is, therefore, often predicted from much less expensive, but also
imprecise, indirect information sources. Seismic data constitutes one of the
main sources of information used in reservoir analysis, being available in
the whole reservoir volume. Seismic acquisition is an indirect method which
relies upon data obtained from arrangements of sensors known as geophones
(onshore) or hydrophones (offshore). A source, such as dynamite shot or an air
gun, generates acoustic or elastic vibrations that travel into the Earth, pass
through strata with different seismic responses and filtering effects, and return
to the surface to be recorded as seismic data by those sensors [2]. Figure 1.2
shows an example of offshore seismic acquisition, extracted from [2]. Fig. 1.2(a)
shows a seismic acquisition ship pulling an arrangement of hydrophone sensors.
In Fig. 1.2(b) acoustic waves are emitted from an air gun, being reflected and
refracted at different sedimentary rock layers.

(a) Seismic ship pulling hydrophones (b) Seismic acquisition

Figure 1.2: Offshore seismic acquisition process [2].

The seismic impedance volumes used as input information in all
experiments in this thesis were obtained after the application of a succession
of mathematical procedures on the original seismic reflection volume.

Figure 1.3: Example of distinct
geological facies on a cliff [3].

There is an inverse correlation between
seismic impedance and porosity, which
heavily depends on latent sedimentary
discontinuities known as facies. Each
geological facies category represents a
distinct group of rocks with similar features,
like mineralogy and grain size. Figure 1.3
shows an example of clearly distinct
geological facies, like horizontal packages
of distinct rocks, on a cliff in the Capitol
Reef National Park, CO, USA [3].
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Chapter 1. Introduction 16

Figure 1.4 depicts different data views from the middle layer of the
synthetic Stanford VI reservoir data set, adapted from [4]. Fig. 1.4(a) shows
a synthetic impedance volume covering an area equivalent to approximately
20 square kilometers and 80 meters in depth. Fig. 1.4(b) shows the related
facies. The corresponding porosity volume is illustrated in Fig. 1.4(c). The
high porosity sandstone channels in the reservoir are highlighted in Fig. 1.4(d)
and it is possible to observe the diverse channel geometrical shapes that occur
in the reservoir, depending on the depth location.

(a) Impedance (b) Facies

(c) Porosity (d) Sand channels

Figure 1.4: Synthetic data reservoir example. From left to right: (a) seismic
impedance input volume; (b) (latent) facies volume; (c) porosity output
volume; (d) porosity output volume with applied transparency, showing only
the high porosity sand channels [4].

It is reasonable to assume strong spatial structure connections within
each facies. There are two facies in Fig. 1.4(b). The high porosity sand facies
are colored yellow, while the low porosity shale facies are painted blue. Facies
segmentation, nevertheless, is also an intricate task, due to the many complex
geometric shapes that can co-exist in the reservoir. Besides, the usual methods
applied in facies segmentation typically take into consideration only the seismic
impedance inputs, which often contain overlaps for distinct facies.
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Chapter 1. Introduction 17

The example in Figure 1.5 illustrates the porosity estimation problem to
be solved. Fig. 1.5 (a) shows the seismic impedance from a horizontal slice in
the synthetic reservoir. Fig. 1.5 (c) presents the corresponding porosity output
to be estimated. Fig. 1.5 (b) reveals the hidden/latent facies. Looking at the
impedance in (a) and referring to the latent facies in (b), one can clearly
observe the overlap in the input values between the sand and shale facies, as
similar impedance values (represented by colors) are present in both facies.
This overlap can also be verified in the input (impedance) × target (porosity)
crossplot in Fig. 1.5(d). The lines in this plot show the connections from each
sample to its neighbors in a 4-tile lattice.

(a) Impedance (b) Facies (c) Porosity

(d) input vs. output

Figure 1.5: The porosity estimation problem. The goal is to estimate (c)
porosity (unknown at most of the locations) from (a) impedance (known)
by using a linear relationship between them. This relationship, however,
depends on the (b) facies (unknown), and accurate facies estimation requires
porosity measurements because of the overlapping marginal distribution of the
impedance (d).

Since this problem deals with a combination of massive and imprecise
unlabeled input instances with just a small fraction of precise regression labeled
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Chapter 1. Introduction 18

samples, it can be cast as a semi-supervised learning regression task [9], [10].
Moreover, because all the available data is already at hand, it is possible to
adopt a transductive setting approach [11], [9], where labels of the unlabeled
examples are estimated by learning a function defined only over the point cloud
data.

Many current methods for porosity estimation rely upon standard
geostatistical approaches, like in [12], [13], [14], [15], and [16], but the
task still remains a challenge. Those methods are in general manual labor,
time-consuming processes, demanding considerable expert knowledge during
design parameterization. Chapter 2 describes the geostatistics fundamentals
in more detail.

Prediction of porosity and other reservoir variables has also been
addressed in several geophysics applications that, e.g., combine rock physics
models with seismic inversion. Rock physics fundamentals are described in,
e.g., [17], [18], [19], and [20]. Petrophysical seismic inversion formulations are
depicted in [21], [22], [23], [24]. Gaussian mixture models for estimation of
reservoir variables from seismic inversion and rock physics are presented in [25].
Lithology and fluid prediction classification based on Markov chain models
are described in [26] and [16]. Also, joint inversion approaches for lithology
and elastic properties have been proposed by [27], [18], among others. In this
thesis, however, the focus is on automatic porosity estimation from already
inverted seismic impedance volumes and sparse porosity samples located in
a few exploratory wells, a typical problem faced by geologists during the
evaluation of a reservoir in the exploration phase, where a rock physics model
is not commonly available.

There are also machine learning and soft computing related approaches
on porosity prediction [28], [29] and facies classification [30], [31], but none of
them take into consideration the spatial structure in the reservoir.

Spatial structure has been modeled by conditional random
fields (CRFs) [32], and their extensions comprise diverse continuous
methods [33], [34], [35]. For kernel machines, the classical structured output
support vector machines (SSVM) [36] allow to learn on joint feature maps
(see Section A.2) and extensions to regression can be found in [37], [38], [39].
Those methods, however, require multiple, independent, fully-labeled samples,
and are not directly applicable to this setting, where only dependent
partially-labeled samples are provided.

Transductive Regression [40], [41] copes with the semi-supervised setting
by inferring virtual labels for unlabeled examples by superposition of
information of labeled examples [40]. Here, interactions between examples
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Chapter 1. Introduction 19

are imposed implicitly by choosing an appropriate metric. Those methods,
however, do not take latent dependency structure into account.

Methods based on laplacian regularized learning machines [42], [43], [44]
assume that data lies on a manifold in transductive or semi-supervised settings,
but the computational complexity prevents their application to datasets with
millions of samples.

Another line of research is a mixture of experts model [45], [46], [47], [48],
where multiple regression models (experts) are trained, and one (or a weighted
sum) of them is used to predict the output label of new samples.

Unfortunately, none of the aforementioned methods are able to
simultaneously cope with the problem setting presented in this thesis, which
can be summarized as follows:

• overlapping clusters in the input space;

• scarce labeled data;

• inference of spatial structures in latent space;

• regression based on inferred structured latent states;

• transductive setting.

1.2
Objective and Contributions

The main object of this work is to provide a new methodology for
automatic porosity prediction in oil and gas reservoirs, given impedance cube
volumes already available to the geologist from previous application of seismic
inversion methods and sparse porosity samples located in a small group of
exploratory wells.

To cope with the problem setting described in the previous section, the
methodology contemplates the following requirements:

• transductive/semi-supervised learning;

• regression with continuous labels;

• Non-i.i.d. data with given dependency structure;

• latent state inference;

• mixture model.

A novel nonlinear method for porosity estimation is proposed, which
takes into account geological facies as a latent variable with spatial dependency
structure. It combines the concepts of Markov random fields, transductive
learning, regression, and joint feature maps. The Transductive Conditional
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Chapter 1. Introduction 20

Random Field Regression (TCRFR) method is able to infer the latent facies
states in the reservoir by combining the local, limited and accurate porosity
labeled data from the available wells with the plenty but imprecise unlabeled
impedance information located everywhere in the volume. The corresponding
porosities can be then estimated within each facies.

Moreover, two graph-based preprocessing techniques are introduced,
mainly inspired in the image processing literature, which allow TCRFR to
handle the extreme but realistic cases where the number of labeled samples
in the reservoir correspond to less than 0.005% of all the available data. This
workflow containing the preprocessing techniques plus TCRFR is defined as
the TCRFR Pipeline.

Experiments are performed on both synthetic and real-world data
reservoirs and show that the proposed TCRFR pipeline is able to successfully
infer the correct geological facies geometric shapes and related porosities. The
TCRFR accuracy performance is compared to other state-of-the-art baseline
methods, as well as with the classic geostatistical approach.

1.3
Organization

The organization of this thesis is as follows.
Chapter 2 describes the fundamentals of geostatistics, the standard

approach applied today for porosity estimation.
Chapter 3 explains the mathematical background behind conditional

random fields (CRFs), the structured learning basis method used in the new
proposed model.

Chapter 4 presents in detail the proposed Transductive Conditional
Random Field Regression model (TCRFR).

Chapter 5 proposes the TCRFR Pipeline to handle realistic porosity
prediction problem settings, where only a scarce amount of labeled data is
available from a few wells located in the reservoir.

Chapter 6 presents the results and discussions for the application of
the TCRFR method and the TCRFR Pipeline to both synthetic and real
reservoir data sets, comparing their performance with other machine learning
state-of-the-art methods and also with the classic geostatistical approach.

Finally, Chapter 7 concludes the thesis and proposes future directions.
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2
Geostatistics

Spatial interpolation has application in many and diversified fields such
as geology, geophysics, meteorology, medicine, engineering, economy, and social
sciences. It consists basically in estimating the value z of a random variable
Z(u0) at any coordinate u0 = (x0, y0, z0), given an input set of sampled data
points z(uα) located at coordinates uα = (xα, yα, zα) that usually have a
non-uniform distribution [49].

Geostatistics [50] is today the main approach applied to spatial
interpolation related to physical phenomena and, in particular, petrophysical
properties estimation. It consists on the application of statistical methods
that take into account the spatial correlations between the random variables.
The following sections describe the main concepts behind the geostatistics
framework. Most of the contents in this chapter are summarized from [13], [51],
and [52].

2.1
Random variables and stationarity

Formally, any property value spatially located at position u1 is
interpreted as the z(u1) realization of the random variable Z(u1). So, in
the space S where all the samples are located, we have the realizations of
N correlated random variables Z(u1), Z(u2), ..., Z(uN). The set of correlated
random variables is a random function where only one realization z(uα) for
each random variable is known, that is, the sampled data set.

With just one realization for each random variable, it is practically
impossible to determine statistical parameters for the individual variables or for
the random function. To work around this problem, two criteria are considered.

The first one assumes mean stationarity, i.e., all random variables have
the same mean,

E{Z(u1)} = E{Z(u2)} = · · · = E{Z(uN)} = m (2-1)

With this assumption, m becomes independent of the spatial location
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Chapter 2. Geostatistics 22

(ui) and can be estimated by simple arithmetic mean:

m = 1
N

N∑
α=1

Z(uα)

The second criterion assumes variance stationarity. Applying the same
reasoning, we get

E{[Z(u1)−m]2} = E{[Z(u2)−m]2} = · · · = E{[Z(uN)−m]2} = σ2 (2-2)

These decisions of stationarity result in that the covariance between any
two variables separated by a distance vector h depends only on h:

C(Z(ui), Z(uj)) = C(Z(ui), Z(ui + h)) = C(h), (2-3)

or, in other words,

C(h) = E{Z(ui + h)Z(ui)} − [E{Z(ui)}]2 (2-4)

At h = 0 we get the stationary variance σ2:

C(0) = E{Z(ui + 0)Z(uα)} − [E{Z(uα)}]2

= E{Z(uα)2} − [E{Z(uα)}]2

= V ar(Z(uα)) = σ2 (2-5)

Those are strong assumptions and, in practice, their degree of
applicability depends on the sample homogeneity of the random variable
distribution in the S space. In most cases, a local neighborhood is defined
around each point being estimated, restricting the stationarity to a subset of
S.

2.2
Experimental variograms

From Equations (2-1), (2-2), and (2-4) it is possible to define a
standardized stationary correlogram

ρ(h) = C(h)
C(0) , (2-6)

and also a second order moment, known as the variogram:

2γ(h) = E{[Z(uα + h)− Z(uα)]2} (2-7)
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Chapter 2. Geostatistics 23

The semivariogram is defined as one half of the variogram, or γ(h). The
semivariogram encodes data about spatial variance over a region at a given
distance or lag. Points that are spatially close should share similar features and
points that are separated by greater distances should have less correlation. So,
the semivariogram allows modeling the similarity points in a field as a function
of distance.

One can observe that, assuming stationarity of mean and variance, the
covariance, the correlogram, and the variogram are equivalent forms to define
two-point correlations:

C(h) = C(0)× ρ(h) = C(0)− γ(h)

Using the available experimental data set and Equation (2-7), the
experimental semivariogram is defined as

γ̂(h) = 1
2N(h)

∑
N(h)

[z(uα + h)− z(uα)]2, (2-8)

where N(h) represents the number of points uα separated by distance h.
The distance vector h is specified with a direction and a distance

tolerance known as lag. Both the direction and the lag must be defined by the
user. The defined direction usually reflects the main directions of continuity
(i.e., major, minor, and intermediate) in the reservoir.

Let us illustrate the concepts described so far through an example
extracted from [5]. Here we are given the region in Figure 2.1 with 80 porosity
sample points. The goal is to estimate the porosity for the whole region using
those 80 sample points as input. Generally in surveys it is common to specify
one point in latitude and longitude and then measure all other locations as
North and East of that point, hence the Northing and Easting in the plot.

Applying Equation (2-8), with a direction and a lag defined by the user
results in the experimental semivariogram shown in Figure 2.2.

Let’s analyze how this plot is created. It describes how the variance
(vertical axis) changes as a function of lag increments (horizontal axis, in
meters). The lag distance defined by the user in this case is 500 meters. There
are 500 meter increments from 0 to 10,000 meters. The blue dots on the curve
represent the 500 meter increments. All the pairs of points in Figure 2.1 are
obtained for each lag interval where the distance is in the lag range, e.g.,
all pairs within distance from 0 to 499 meters, then all pairs within distance
from 500 to 1,000 meters, and so on. Within each lag the actual h distance
is calculated between each pair and then Equation 2-8 is applied for all the
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Chapter 2. Geostatistics 24

Figure 2.1: An example of a porosity estimation problem setting. The points
refer to porosity sample values, ranging from low (white dots) to high porosity
(black dots) [5].

points within the lag. In other words, the variogram is only calculated at the
specific lag distances.

As expected, it can be seen that the variance increases (or, in other words,
the covariance decreases) with the increasing distance to a point where there
is no more correlation between the points and the semivariance value reflects
just the stationary variance σ2.

In this simple example, the variogram construction is relatively easy. It
is important, nevertheless, to keep in mind that in most real cases variograms
are anisotropic, i.e., geologic continuity and, consequently, the variogram
continuity are direction dependent. In sedimentary structures, continuity is
more evident in the horizontal direction than in the vertical direction [51]. The
horizontal continuity depends on the direction of the sedimentary deposition
and these directions need to be geologically interpreted by an expert. For the
definition of the scalar distance h, three angles define the orthogonal x, y and
z coordinates and then the components of the distance vectors are scaled by
the three scalar parameters sx, sy and sz, which depend on the interpreted
continuity in each direction:

h =
√

(hx/sx)2 + (hy/sy)2 + (hz/sz)2

In this equation, hx, hy and hz are the components of vector h.
The example in Figure 2.3 illustrates how the direction of h can change.

It shows an xy porosity map and the blue arrows show the (hx, hy) variogram
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Chapter 2. Geostatistics 25

Figure 2.2: The experimental semivariogram [5].

major directions of h in different locations.

2.3
Variogram modeling

The experimental semivariogram points defined in the previous section
are not used directly. Instead, a parametric variogram model needs to be chosen
by the user and fitted to the experimental data points, to be later used by the
interpolation function. These models are positive definite functions and the
most common are the spherical, exponential, and gaussian models. For more
information on the different features of each variogram model, please refer
to [51].

In the current example, a spherical model is fit to the data and the
generated model is represented by the green line shown in Figure 2.4.

2.4
Kriging

From the previously defined semivariogram model, it is now necessary to
interpolate the sampled data points and create a map of the estimated porosity.

Considering Z(u0) a random variable located at u0 and the known values
of the neighbor sample data points as z(uα), α = 1, 2, ..., N , it is established
by stationarity that

E{Z(uα)} = E{Z(u0)} = m

Because of the second order stationarity, it is also know that the
variogram and the covariance only depend on h.
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Chapter 2. Geostatistics 26

Figure 2.3: Variogram direction dependency in sedimentary structures.

The estimator [Z(u0)]∗ = ∑N
α=1 λαZ(uα) can be considered as a random

variable located at u0 resulting from the linear combination of Z(uα), α =
1, 2, ..., N .

Defining ε(u0) as the error of the [Z(u0)]∗ estimator, we have

ε(u0) = [Z(u0)]∗ − [Z(u0)] =
∑
α

λαZ(uα)− Z(u0)

From Equation (2-1),

E{ε(u0)} = E

{∑
α

λαZ(uα)
}
− E{Z(u0)} = 0

E

{∑
α

λαZ(uα)
}

= E{Z(u0)} (2-9)

To avoid bias in the estimation, it is necessary to make

∑
α

λα = 1

Besides the minimum error ε(u0), minimum variance is also necessary as
two estimators can have the E{ε(u0)} = 0, but one of them can have a lower
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Figure 2.4: The semivariogram experimental (blue) and model (green)
curves [5].

dispersion, making it a better estimator:

var{ε(u0)} = var{[Z(u0)]∗ − Z(u0)} = E

{[∑
α

λαZ(uα)− Z(u0)
]2 }

Decomposing the previous expression, the variance becomes

var{ε(u0)} = E

{∑
α

∑
β

λαλβZ(uα)Z(uβ)
}

+ E{Z(u0)2} − 2E
{∑

α

λαZ(uα)Z(u0)
}

=
∑
α

∑
β

λαλβE{Z(uα)Z(uβ)}+ E{Z(u0)2} − 2
∑
α

E{Z(λαuα)Z(u0)}

Once the covariance model or the variogram has been defined, the
previous variance expression can be rewritten as a function of the covariances
between the sampled data points and the covariances between the sampled
data points and the point to be estimated:

var{ε(u0)} = C(0) +
∑
α

∑
β

λαλβC(uα,uβ)− 2
∑
α

λαC(uα,u0) (2-10)

The linear estimation method used in geostatistics, known as Kriging, is
defined at this point.

Kriging comprehends a family of interpolation methods which are
generalized forms of univariate and multivariate linear regression models for
estimation at a point location over an area or volume. The interpolated values
are modeled by a Gaussian process governed by prior covariances [53]. They
are linear-weighted averaging methods, similar to other interpolation methods,
however their weights depend not only on distance, but also on the direction
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Chapter 2. Geostatistics 28

and orientation of the neighboring data provided by the previously defined
variograms. These methods honor the measurements of the sampled data
points Z(uα), α = 1, 2, ..., N , keeping them fixed and limiting in this way
the smoothness in the estimated results.

The basic algorithm, called Simple Kriging, is a linear combination
of a set of N sampled variables Z(uα), α = 1, 2, ..., N that are neighbors
of an unknown sample located at u0 and that satisfies the conditions
described previously, i.e., E{ε(u0)} = 0, min{var(ε(u0))}, and E{Z(u1)} =
E{Z(u2)} = · · · = E{Z(uN)} = m.

Depending on the stochastic relations of the random variables and the
degree of the assumed stationarity, different kriging methods can be applied
for calculating the λα weight parameters. Some classical methods are Simple
Kriging, Ordinary Kriging, Universal Kriging, and Indicator Kriging. For more
information, please refer to [13,51].

Equation (2-10) is now optimized to obtain the weights that minimize
the estimation variance. This is accomplished by applying partial derivatives
of Equation (2-10) with respect to each weight λα:

∂[σ2(u0)]
∂λα

= 2
N∑
β=1

λβC(uβ − uα)− 2C(u0 − uα), α = 1, ..., N

Setting the previous equation to zero, the minimum weights λα are
calculated as

N∑
β=1

λβC(uβ − uα) = C(u0 − uα) (2-11)

For three sample points, for instance, the following system of equations
(known as simple kriging system) would be defined:

C(u1 − u1)× λ1 + C(u1 − u2)× λ2 + C(u1 − u3)× λ3 = C(u0 − u1)

C(u2 − u1)× λ1 + C(u2 − u2)× λ2 + C(u2 − u3)× λ3 = C(u0 − u2)

C(u3 − u1)× λ1 + C(u3 − u2)× λ2 + C(u3 − u3)× λ3 = C(u0 − u3)

or, in matrix notation:




C(u1 − u1) C(u1 − u2) C(u1 − u3)
C(u2 − u1) C(u2 − u2) C(u2 − u3)
C(u3 − u1) C(u3 − u2) C(u3 − u3)




λ1

λ2

λ3

=




C(u0 − u1)
C(u0 − u2)
C(u0 − u3)

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA
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In general,

Cλ = c⇒ λ = C−1c (2-12)

Back to the current example, in Equation (2-12) C is the matrix of
covariances calculated using the spherical model, λα is the vector of weights,
and c is the vector of covariances between the data points and an unsampled
point. For this case Simple Kriging was chosen. The kriging function uses in
the calculation the sampled data points Z(uα), α = 1, 2, ..., N , the model,
the distances h, the coordinates of the unsampled point u0, and the number
of surrounding neighbors points nbg to the unsampled point. It is important
to keep in mind that this system of equations needs to be solved for each
unsampled point in the region.

Figure 2.5: Estimated porosity from kriging interpolation. Porosity ranges from
low (in blue) to high (in yellow) [5].

The porosity estimation result from the application of Simple Kriging is
presented in Figure 2.5.

2.5
Secondary variables

In many cases the number of available samples is not sufficient for a
good interpolation. Porosity estimation during the exploration stage is a good
example. Usually, only a small number of wells exist in the reservoir, so just
a few number of samples are available. In these cases, it is common to use a
secondary variable to help the estimations.

Seismic impedance is usually negatively correlated with porosity and
it is normally used as a secondary variable in porosity estimation. Due to
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Chapter 2. Geostatistics 30

geological complexities and the seismic data vertical low resolution as a result
of limitations in the acquisition process, seismic imprecisely measures the
average porosity at each point in the reservoir. Typically, the seismic vertical
data resolution in a reservoir volume is 10 to 100 times lower than the
well resolution, while the areal (xy) resolution is usually comparable [51].
The degree of correlation must be calibrated for each reservoir. After this
calibration, the seismic impedance information can be used in a similar way
as the well information.

The most common methods for applying kriging with secondary variables
are kriging with varying local means, kriging with external drift, and collocated
cokriging. For more information, please refer to [13,54].

In theory, geostatistical models have been devised for any number of
secondary variables [51], however, they are difficult to apply for more than
one in practice. This difficulty arises from the need of modeling and inferring
the cross-covariance matrix between the input variables involved. Because of
implementation problems [55], joint probability simulations are rarely used in
its full version and simplifications are adopted, including Markov models and
factorization methods.
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3
Conditional Random Fields

One vital requirement for many real world problems nowadays is the
ability to classify multiple variables that are dependent on each other [56]
in spatial or temporal structures. The fields of application include object
classification in an image [57], natural language processing [58], and segmenting
DNA sequences [59]. In such applications, one wants to predict structured data
encoded on a label output vector y = (y0, y1, ..., yn) ∈ Yn of random variables
given an observed feature vector x = (x0,x1, ...,xn) ∈ X n×D. Each xi can be,
for instance, an input image and yi, the corresponding label for this image. In
those cases, there is a mapping h : X → Y to be learned, so that

h(x) = argmax
y∈Y

f(x, y),

where f is a compatibility function that expresses how well y fits the input x.
This structured learning scenario, where multiple and interdependent

class and observation variables are considered, implies a complex probability
distribution. Probabilistic graphical models map these probability distributions
in a graphical form. Conditional random fields (CRFs) [32] are probabilistic
graphical models used for labeling and segmenting structured data, such as
sequences, trees, and grids [60].

The following sections describe graphical representations in general and,
in particular, conditional random fields. These discussions are adapted from
[56] and [61].

3.1
Graphical representation

A probabilistic graphical model consists on a diagrammatic
representation of a probability distribution. In this graph G = (V,E),
comprising a set V of vertexes and a set E of edges, there is a node for
each random variable. The absence of an edge between two nodes means
that the corresponding random variables are conditionally independent from
each other, given a third random variable. Conditional independence between
two random variables a and b given some other random variable c means
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Chapter 3. Conditional Random Fields 32

that they are independent in their conditional probability distribution, i.e.,
p(a, b|c) = p(a|b, c)p(b|c) = p(a|c)p(b|c).

Conditional independence is an important concept as it can be used
to decompose complex probability distributions into a product of factors,
each consisting of the subset of corresponding random variables. As a
result, complex computation for learning and inference algorithms can be
decomposed, or factored, in a much more efficient way (more on factors in the
Appendix, Section A.1). Denoting by x the values of all unobserved variables in
a graph, the factorization of a probability distribution is written as a product of
factors Ψs, with vs representing the subset of the respective random variables
constituting such a factor and s as the factor subset indexes:

p(x) =
∏
s

Ψs(vs) (3-1)

There are two types of graphical models, directed and undirected. In
directed graphical models, also known as Bayesian Networks, the random
variables and their conditional dependencies are represented as directed acyclic
graphs (DAG). Figure 3.1(a) [6] shows an example of a directed graphical
model. In this particular example, the joint probability distribution of the
random variables is given by the factorization

p(a, b, c) = p(c|a, b)p(b|a)p(a) (3-2)

a

b

c
(a) Directed graph (b) Causal connections

Figure 3.1: An example of directed graphical model [6].

Directed graph models are used in cases where there are influence
connections among the random variables, as show in Figure 3.1(b). In this case,
grass wet depends on the probability of the sprinkler being on or off and on the
chance of raining. Sprinkler, in turn, also depends on the probability of raining.
Directed graph models always have a direct probabilistic interpretation.
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The remaining of this thesis focus on the second type of graphical models,
discussed in the next section.

3.1.1
Undirected Graphical Models

Undirected graphical models differ from directed graph models in that
they can be cyclic and they do not necessarily have a direct probabilistic
interpretation, as explained in latter paragraphs. They are also known as
Markov Random Fields (MRF) because the associated random variables satisfy
the global Markov property [62].

Let G = (V,E) be a graph with vertexes v ∈ V and edges e ∈ E. In this
graph, vertexes V = X ∪ Y , with X and Y as two sets of random variables.
Set X represents the observed input variables and set Y represents the output
variables. For the following discussion, it is important to define the graphical
concept known as clique. A clique is defined as a subset of the vertexes in the
graphG such that there exists a link between all pairs of nodes in this subset. In
other words, the set of nodes in a clique is fully connected. A maximal clique
is a clique such that it is not possible to include any other nodes from the
graph in the subset without it ceasing to be a clique. Figure 3.1 [6] illustrates
these concepts. There we have a four-node undirected graph showing a clique,
outlined in green, and a maximal clique, outlined in blue.

x1

x2

x3

x4

Figure 3.2: An example of a four-node undirected graph showing a clique in
green and a maximal clique in blue [6].

A probability distribution can be represented by an undirected graphical
model using a product of non-negative functions in the set of the maximal
cliques C of graph G. The factorization is performed in a way that conditionally
independent nodes do not appear within the same factor, which means that
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they belong to different cliques:

p(x) = 1
Z

∏
C∈C

ΨC(xC) (3-3)

Equation (3-3) reflects the Hammersley-Clifford theorem [63], the
fundamental theorem of random fields, which stipulates that the probability of
a particular set of values on the random variables on an undirected graphical
model is a product of the potential functions over cliques of the graph. The
factors ΨC ≥ 0 are known as potential functions (also feature or compatibility
functions) of the random variables xC within a clique C ∈ C. The potential
functions may be any arbitrary function and do not necessarily have to be
probability functions, i.e., they do not need to sum up to 1. This is a contrast
to directed graphs where the joint distribution is factorized into a product of
conditional distributions. As a consequence, normalization of the product of
potential functions is necessary to achieve a proper probability measure. This
is carried out by a normalization factor Z:

Z =
∑

x

∏
C∈C

ΨC(xC) (3-4)

Figure 3.3 shows two MRF examples:

(a) MRF sequence (b) MRF grid

Figure 3.3: Two examples of undirected graphical models.

Fig. 3.3(a) represents a chain or sequence. The x′s are the observable
variables and the y′s represent the labels. The x variables could represent the
four amino acids A, C, G, T , and the y variables would be the classification
of a DNA sequence. The joint distribution is

P (x1,x2,x3, y1, y2, y3) = 1
Z

Ψ12(y1, y2)Ψ23(y2, y3)Ψ1(x1, y1)Ψ2(x2, y2)Ψ3(x3, y3)

Fig. 3.3(b) shows a grid. The x variables could be RGB pixel intensities
in an image and the y variables would be the output classification, like person,
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grass, sky, etc. The joint distribution in this case is

P (x1,x2,x3, y1, y2, y3) = 1
Z

∏
i

Ψi(xi, yi)
∏

(i,j)∈E
Ψij(yi, yj)

It is worth mentioning that in both examples the structured relationships
occur in the output space. The input variables are completely independent from
one another. It is also possible to observe the Markov property. For instance,
in Fig. 3.3(a), conditioned on y2, y1 is independent of y3.

The potential functions are non-negative (i.e. probabilities) and expressed
as exponentials, so that

ΨC(xC) = exp{−E(xC)}, (3-5)

where E(xC) is known as the energy function. The joint distribution is defined
as the product of potentials [63] and so the total energy is obtained by adding
the energies of each of the maximal cliques [6]. The following example for some
4-node MRF illustrates this concept:

p(x1, x2, x3, x4) = 1
Z
f1(x1, x2)f2(x2)f3(x2, x3, x4) (3-6)

p(x1, x2, x3, x4) = 1
Z
eln(f1(x1,x2))+ln(f2(x2))+ln(f3(x2,x3,x4)) (3-7)

Equation (3-6) is in the probability domain, while Equation (3-7) is in the
energy or log probability domain. For computational reasons, e.g., real numbers
approximation and efficiency, it is usually preferable to represent probabilities
in the logarithm space.

The decomposition of a graph as a product of factors over subsets
of variables can be expressed explicitly in a factor graph representation.
Given a distribution that is expressed in terms of an undirected graph, it
is straightforward to convert it to a factor graph. To do this, one creates
variable nodes corresponding to the nodes in the original undirected graph,
and then creates additional factor nodes corresponding to the maximal cliques
xs. The factors fs(xs) are then set equal to the clique potentials. There may
be several different factor graphs that correspond to the same undirected
graph, with totally arbitrary functions, again making it necessary to calculate
the normalization factor Z. The factor graph to associate to an undirected
graphical model is going to depend on the specifics of problem setting,
like functions or features connecting two or more variables. Figure 3.4 [6]
illustrates this concept. Fig. 3.4(a) shows a three-node undirected graph with
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a single clique potential Ψ(x1, x2, x3); in (b) we see a factor graph with
factor f(x1, x2, x3) = Ψ(x1, x2, x3); in (c) another factor graph for the same
distribution, with Ψ(x1, x2, x3) = fa(x1, x2)fb(x1, x3)fc(x2, x3); and in (d) still
another factor graph where Ψ(x1, x2, x3) = fa(x1, x2, x3)fb(x2, x3).

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fcfb

(c)

x1 x2

x3

fa

fb

(d)

Figure 3.4: An undirected graph and three examples of factorization [6].

3.2
Conditional Random Fields

A conditional random field (CRF) [32] is a discriminative graphical
probabilistic model that can be arbitrarily spatially or temporally structured.
Discriminative models define a class of models used in machine learning for
modeling the dependence of an unobserved variable y conditioned on an
observed variable x. Within a probabilistic framework, this is accomplished
by modeling the conditional probability distribution P (y|x) [56,61]. In other
words, discriminative models describe directly how to take a feature x and
assign it a label y. Compared to generative models, which model the joint
probability distribution p(x,y), discriminative models have the advantage of
not requiring the knowledge of p(x) distribution nor if the input features x

are correlated or not.
Formally, CRFs compute the probability p(y|x) of a possible output

y = (y1, ..., yn) ∈ Yn given the input observation x = (x1, ...,xn) ∈ X n×D,
where D corresponds to the number of dimensions (or features) of x. The
conditional random field formulation can be derived from equation 3-3:

p(xC ,yC) = 1
Z

∏
C∈C

ΨC(xC ,yC)
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The conditional probability p(y|x) is defined as

p(y|x) = p(y,x)
p(x)

= p(y,x)∑
y′ p(y′,x)

=
1
Z

∏
C∈C ΨC(xC ,yC)

1
Z

∑
y′
∏
C∈C ΨC(xC ,y′C)

From the previous expression, the general formulation of conditional
random fields is derived as

p(y|x) = 1
Z(x)

∏
C∈C

ΨC(xC ,yC) (3-8)

As stated previously, ΨC are the different factors corresponding to
maximal cliques in the graph G. Each factor is a potential function that
combines different features fi of the input observations and outputs.

The normalization factor Z(x), also referred as the partition function,
corresponds to the denominator of equation 3-8 and it is summed over all y′s
to provide a proper conditional probability:

Z(x) =
∑
y′

∏
C∈C

ΨC(xC ,y
′
C) (3-9)

As already explained in Section 3.1.1, Equation (3-8) can be expressed
as an energy function:

p(y|x) = 1
Z(x) exp∑C∈C(−E(xC ,yC))

This negative energy function is usually written as a weighted sum of K
real-valued potential functions fk(xC ,yC), f : X × Y → R:

p(y|x) = 1
Z(x) exp∑C∈C

∑K
k=1 λkfk(xC ,yC) (3-10)

The corresponding partition function is then

Z(x) =
∑
y′

exp∑C∈C
∑K
k=1 λkfk(xC ,y

′
C) (3-11)

To prevent a significant growth in the number of parameters proportional
to the number of nodes and edges in the graph, with an specific λk for
each potential function, it is common practice to group and share sets of
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factors and their corresponding parameters among different cliques in a graph.
These sets are known as clique templates. An example of a shared factor in a
clique template would be the factors Ψt(yt−1, yt, xt), extensively used in linear
chains for entity recognition to locate and classify named entities in text into
predefined categories, such as the names of persons, organizations, locations,
etc. This type of factor take into account the classification of the current
(yt) and the previous (yt−1) word in a sentence. This feature function and
its corresponding parameter can be clearly shared throughout any position in
a text.

Making use of clique templates, the set of cliques C can be divided in a
factor graph G into C = {C1, ..., Cp} clique templates. All cliques in each clique
template Cp share the same parameters Λp, with Λ as the set of all parameters
in graph G, so a template Cp shares the feature functions {λpkfpk(xC ,yC)}K(p)

k=1 .
Equation (3-8) can then be re-written as

p(y|x) = 1
Z(x)

∏
C∈C

∏
ΨC∈Cp

ΨC(xC ,yC ; Λp) (3-12)

The partition function, in turn, is rearranged as

Z(x) =
∑
y′

∏
C∈C

∏
ΨC∈Cp

ΨC(xC ,y
′
C ; Λp) (3-13)

In those two equation, considering K(p) as the number of potential
functions for template Cp and λkp the template-dependent weights of the
potential functions, the clique potential is then

fC(xC ,yC) = exp
(∑K(p)

k=1 λkpfkp(xC ,yC)
)

3.2.1
Parameter estimation

Here, we discuss the case where the training and the testing data are
independent and the training data is fully observed. The Λ = {λ1, ..., λkp}
parameters estimation is achieved by maximizing the conditional likelihood.
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To simplify derivations, we maximize the equivalent conditional log-likelihood:

L(Λ) = log
(

1
Z(x) exp∑C∈C

∑
ΨC∈Cp

∑K(p)
k=1 λkpfkp(xC ,yC)

)

=
∑
C∈C

∑
ΨC∈Cp

K(p)∑
k=1

λkpfkp(xC ,yC)− logZ(x)

=
∑
C∈C

∑
ΨC∈Cp

K(p)∑
k=1

λkpfkp(xC ,yC)− log
∑

y

∑
C∈C

∑
ΨC∈Cp

K(p)∑
k=1

λkpfkp(xC ,yC)

The gradient of the conditional log-likelihood is calculated as

∂(L(Λ))
∂(λkp)

=
∑

ΨC∈Cp

fkp(xC ,yC)−
∑

ΨC∈Cp

∑
y′

C

fkp(xC ,y
′
C)pΛ(y′C |x) (3-14)

The first term on the right side of Equation (3-14) represents the
expected value of the training samples empirical distribution p(x,y), while
the second term corresponds to the expected value of the model distribution
considering the current values of the parameters λk. So, the gradient measures
the difference between the expected value of the features under the empirical
and model distributions.

It can observed from Equation (3-14) that calculating the partition
function is a hard task. If, for instance, if we have two states to be
inferred, the time complexity is O(2M), considering M nodes in the graph.
As a consequence, scientists usually resort to model approximations, notably
pseudolikelihood [64].

To avoid overfitting, it is necessary to add a regularization parameter to
Equation (3-14), which penalize parameters with too large norms. A common
choice is to assume a Gaussian prior over the parameters, with zero mean and
σ2 covariance:

p(Λ) ∝ exp
(
−‖Λ‖

2

2σ2

)
= −∑K(p)

k=1
λ2

kp

2σ2

The regularized conditional log-likelihood is then

L(Λ) =
∑
C∈C

∑
ΨC∈Cp

K(p)∑
k=1

λkpfkp(xC ,yC)− logZ(x)−
K(p)∑
k=1

λ2
kp

2σ2 (3-15)

Finally, training a CRF means finding the parameters Λ∗ that gives the
best possible prediction ŷ [65], so these parameters can be estimated from
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Equation (3-15) using maximum-a-posteriori (MAP) inference:

Λ∗ = argmax
Λ

L(Λ) (3-16)

Equation (3-16) configures an optimization problem. The
usual solver for parameter estimation of CRFs is Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [66].

After estimating the parameters, it is necessary to perform the inference
of each node state in the graph, described in the next section.

3.2.2
Inference

The inference algorithm is going to be invoked repeatedly, once for each
time the gradient in the previous section is computed.

Belief Propagation (BP) [67, 68] is a common choice for MAP inference
of the most likely states in a graphical model. When there are no loops in
the graph, BP provides an exact solution, which is equivalent to dynamic
programming. When the graph contains loops, BP provides an approximate,
but often good, solution [69], and in this case it is known as Loopy Belief
Propagation. In the remaining of this section, the theory behind BP is
explained, with focus on pairwise Markov random fields.

Belief Propagation is an iterative process where neighboring variables
pass messages to each other. The messages are of the type "I, variable xi, think
that you, variable xj, belong to these states with following likelihoods...". In
the case of pairwise MRFs, the joint probability is

P (x1, ...,xn) = 1
Z

n∏
i=1

Ψi(xi,yi)
∏

(i,j)∈E, i<j
Ψij(xi,xj)

The Ψi(xi,yi) represent the unary factors and the Ψij(xi,xj) are the
pairwise factors.

Messages from node i to node j are defined as mij(xj). These messages
are similar to likelihoods, in respect that they are non-negative and do not
necessarily sum to 1. A high value of mij(xj) means that node i believes some
state of j to be true. Usually, all messages are initialized to 1.

Message updates of mij(xj) follow the schematic picture in Figure 3.5.
The message update considers all the messages arriving at i, except the
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Figure 3.5: LBP message updating process.

message that comes from j, and so it is calculated as

mnew
ij (xj) =

∑
xi

Ψij(xi,xj)Ψi(xi)
∏

k∈nbrs(i)\j
mcurrent
ki (xi), (3-17)

where nbrs(i) \ j means all the neighbors of i except j.
After each iteration, it is common practice to normalize the messages to

avoid overflow/underflow:

∑
xj

mij(xj) = 1

Once the messages have converged, the belief state for each node is

bi(xi) = Ψi(xi,yi)
∏

k∈nbrs(i)
mki(xi) (3-18)

The pseudo-code for belief propagation is summarized in Algorithm 1.

Algorithm 1 Belief Propagation algorithm
procedure BP(G(V,E))

convert graph to pairwise potentials
initialize all messages to 1
for every vi do

for every vj and i<j do
repeat

update message mij according to Eq. 3-18
until convergence

end for
end for

end procedure

The i < j statement in the algorithm is used to avoid counting each edge
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twice.
As an example, let’s consider the simple MRF in Figure 3.6. Fig. 3.6(a)

shows the Markov random field graph and Fig. 3.6(b) presents the equivalent
factor graph. Variables yi could represent segmentation labels in an image and
xi observable variables like pixel intensities.

The conditional probability function in this case is

P (y1, y2, y3, y4|x1,x2,x3,x4) = 1
Z(x)(Ψ(y1, y2)Ψ(y2, y3)Ψ(y3, y4)Ψ(y1, y4)

Ψ(x1, y1)Ψ(x2, y2)Ψ(x3, y3)Ψ(x4, y4))

At any iteration of Algorithm 1, the belief for node y1 is obtained as

(a) MRF (b) Factor graph

Figure 3.6: A pairwise MRF and the equivalent factor graph. The gray nodes
represent the observable variables.

b(y1) = Ψ(x1, y1)m41m21,

where message from y4 to y1 is

m41 =
∑
y4

Ψ(x4, y4)Ψ(y1, y4)
∏

k∈nbrs(i)\1
mk4(y4)

and message from y2 to y1 is

m21 =
∑
y2

Ψ(x2, y2)Ψ(y1, y2)
∏

k∈nbrs(i)\1
mk2(y2)

In Chapter 4, the conditional random field concepts described here are
applied in the proposed method, Transductive Conditional Random Field
Regression - TCRFR.

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA



4
Transductive Conditional Random Field Regression

In this chapter, the mathematical theory for the proposed Transductive
Conditional Random Field Regression model is derived.

4.1
Basic Idea

Given a labeled sample set S = {(xi, yi) ∈ RD ×R}ni=1 and an unlabeled
sample set U = {xi ∈ RD}n+m

i=n+1, let’s consider a regression model with
Gaussian noise:

y = f(x; w) + ε, ε = y − f(x; w) ∼ N (0, σ2),

p(y|x,w) ∝ exp(− 1
2σ2 |y − f(x; w)|2) ,

where x ∈ RD and y ∈ R are input and output variables, respectively, and
f(x; w) = 〈w,x〉 is a linear regression function with an unknown parameter
w ∈ RD. Variable σ2 denotes the noise variance. A Gaussian prior is assumed
for w:

p(w) ∝ exp
(
−λ

′

2 ‖w‖
2
2

)
, (4-1)

where λ is the regularization parameter.
The maximum a posteriori (MAP) estimator in this case is obtained by

maximizing the joint distribution of {yi}ni=1 and w (assuming i.i.d. data):

max
w∈RD

p({yi}ni=1|{xi}ni=1,w)p(w) =
n∏
i=1

p(yi|xi,w)p(w) ,

or, equivalently, minimizing the negative logarithm of the joint distribution
minw∈RD L0(w), where

L0(w) = λ′‖w‖2
2 +

∑
i

|yi − 〈w,xi〉|2

σ2 . (4-2)

Equation 4-2 is the standard ridge regression setting, used in many inverse
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Chapter 4. Transductive Conditional Random Field Regression 44

problems.
While ridge regression has been proven useful in many applications,

it alone would suffer from severe drawbacks that would likely deteriorate
the prediction accuracy in the porosity estimation setting, namely: (a) ridge
regression assumes that data is i.i.d., so no spatial connections between data
points are considered and (b) the linear dependency assumption between
input and output only holds for one specific regression model. The linear
dependency between impedances and porosities relies upon the facies, so one
ridge regression model would not be accurate for multiple facies.

Equation 4-2 is then extended threefold:

• The dependency of the regression function f(x), x ∈ X on a latent
variable z ∈ Z is explicitly modeled, using local joint feature maps
Φ : X × Z → H1 on the labeled sample set S;

• The dependency of the inputs of the labeled and unlabeled sample sets S
and U is exploited, on the basis that these samples share spatial relations
that can be modeled by conditional random fields (CRF) using a global
joint feature map Ψ : ⊗n+m

i=1 X ×⊗n+m
i=1 Z → H2;

• Label prediction is constricted to the unlabeled data set U .

In other words, Φ comprises the local features related to each variable xi

given a latent state zi. In contrast, Ψ comprises the global features that result
from spatial shared relations among combinations of distinct xi and zi.

Note that the local Φ and the global Ψ features maps transform
the original samples into reproducing kernel Hilbert spaces H1 and H2,
respectively, which correspond to kernel functions [70]. This is a classical way
of approaching the encoding problem for arbitrary dependencies between x

and z, as it is common in the structured output literature [36].
These extensions are applied to tackle the problem of inferring

latent variables under spatio-temporal structure from few precise output
measurements and many noisy input measurements, a promising approach in
reservoir data analysis, as explained in Section 1.1.

4.2
Proposed Method

Please refer to Table 4.1 for a summary of symbols and short descriptions
used in this section.

To tackle the problem of latent dependencies in semi-supervised
regression problems, Transductive Conditional Random Field Regression
(TCRFR) is proposed, which consists mainly of two parts: (a) a least-squares
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Chapter 4. Transductive Conditional Random Field Regression 45

Symbol Description
S set of labeled data {(xi, yi) ∈ RD × R}ni=1
U set of unlabeled data {xi ∈ RD}n+m

i=n+1
Φ(·, ·) ∈ H1 joint feature map for ridge regression
Ψ(·, ·) ∈ H2 joint feature map for the CRF
u ∈ H1 ridge regression parameter
v ∈ H2 CRF parameter
θ ∈ [0, 1] trade-off between ridge regression and CRF
λ ∈ R+ regularization parameter for ridge regression

Γ regularization matrix for the CRF
K ∈ N+ number of latent states K = |Z|
πi ∈ Z latent state for corresponding sample i⊗n
i=1Xi direct product of sets Xi,∀i = 1, . . . , n
· ⊗ · (flat) tensor product

Table 4.1: List of symbols used in TCRFR.

regression with parameter u, conditioned on the latent states and input
instances; and (b) a conditional random field with parameter v that explicitly
models the dependencies of the latent variables and is conditioned on the input
instances only. Both parts receive a Gaussian prior for stabilization (like in
Equation (4-1)). Starting from the ridge regression likelihood in Equation (4-2),
the maximum a posteriori estimates are given by:

max
u

p({yi}ni=1|{xi}ni=1,u)p(u)

≥ max
u,v,{zi}n+m

i=1

p({yi}ni=1, {zi}n+m
i=1 ,v|{xi}n+m

i=1 ,u)p(u)

= max
u,v,{zi}n+m

i=1

p({yi}ni=1, {zi}n+m
i=1 |{xi}n+m

i=1 ,u,v)p(u)p(v)

= max
u,v,{zi}n+m

i=1

p({yi}ni=1|{zi}ni=1, {xi}ni=1,u)p(u)

p({zi}n+m
i=1 |{xi}n+m

i=1 ,v)p(v)

= max
u,v,{zi}n+m

i=1

n∏
i=1

p(yi|zi,xi,u)p(u)

p({zi}n+m
i=1 |{xi}n+m

i=1 ,v)p(v). (4-3)

The probabilities are defined accordingly:

p(y|z,x,u) ∝ exp
(
− |y−〈u,Φ(x,z)〉|2

2σ2

)
, (4-4)

p(u) ∝ exp
(
−λ′

2 ‖u‖
2
)
, (4-5)

p({z}n+m
i=1 |{xi}n+m

i=1 ,v) = exp(〈v,Ψ({xi}n+m
i=1 ,{zi}n+m

i=1 )〉)
Z({xi}n+m

i=1 ,v) , (4-6)

p(v) ∝ exp
(
−1

2v>Γv
)
, (4-7)
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Chapter 4. Transductive Conditional Random Field Regression 46

where λ′ and Γ ∈ SdimH2
+ (positive semi-definite matrix) are regularization

constants and Z({xi}n+m
i=1 ,v) = ∑

ẑ∈⊗n+m
i=1 Z

exp
(
〈v,Ψ({xi}n+m

i=1 , Ẑ)〉
)

is the
partition function. Variable Ẑ represents the estimated state variables. Thus,
the MAP estimator for all unknown variables, including the model parameters
u ∈ H1 and v ∈ H2, and the latent variables {zi}n+m

i=1 can be obtained by
solving the following problem:

min
u∈H1,v∈H2,{zi∈Z}n+m

i=1

L(u,v, {zi}n+m
i=1 ), (4-8)

where L(u,v, {zi}n+m
i=1 ) is a convex combination of the objectives of the ridge

regression model and the conditional random field. The relative weight between
the regression and CRF components is given below by the θ parameter:

L(u,v, {zi}n+m
i=1 ) = θLrr(u, {zi}ni=1)

+ (1− θ)Lcrf(v, {zi}n+m
i=1 ), (4-9)

where

Lrr(u, {zi}ni=1) =λ2‖u‖
2
2 + 1

2

n∑
i=1
|yi − 〈u,Φ(xi, zi)〉|2, (4-10)

Lcrf(v, {zi}n+m
i=1 ) = 1

2‖vΓ 1
2‖2

2 − 〈v,Ψ({xi}n+m
i=1 , {zi}n+m

i=1 )〉

+ logZ({xi}n+m
i=1 ,v). (4-11)

Here, the parameters for the regression part are re-parameterized, so that
the trade-off between the regression loss and the latent structure loss is explicit.

Figure 4.1 shows the graphical representation of the TCRFR model.
The conditional dependency is given by p(y|x; z), where y are the labeled
regression outputs (i.e., the porosities in the current problem), x are the
observable input features (i.e., the impedancies) and z represent the structure
connected latent states (i.e., the facies). Unlike traditional conditional random
fields, TCRFR does not assume multiple pre-labeled example structures during
parameter estimation. Instead, it can be viewed as ordinary ridge regression
where observations xi and corresponding regression targets yi are coupled
through latent variables zi with few of the examples carrying ground truth
label information y. Hence, there is a single structure going through all the
examples contained in the training as well as the test set, which makes the
model transductive by nature.
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Chapter 4. Transductive Conditional Random Field Regression 47

Figure 4.1: The Transductive Conditional Random Field model.

4.2.1
Optimization Scheme

To solve the non-convex problem 4-8, a Convex-Concave Procedure
style scheme (CCCP) [71, 72] is adopted, which has been successfully used in
structured output settings with latent variables [73]. In each (t-th) iteration,
the most likely configuration {zi} is inferred, given u and v, for all training
examples,

{ẑi}n+m
i=1 = argmin

{zi∈Z}n+m
i=1

L(u,v, {zi}n+m
i=1 )

= argmin
{zi∈Z}n+m

i=1

θ

2

n∑
i=1
|yi − 〈u,Φ(xi, zi)〉|2

− (1− θ)〈v,Ψ({xi}n+m
i=1 , {zi}n+m

i=1 )〉, (4-12)

and then update the ridge regression parameter u and the CRF parameter v

respectively (see Algorithm 2 for pseudo-code),

û = argmin
u∈H1

L(u,v, {zi}ni=1) = argmin
u∈H1

Lrr(u, {zi}ni=1), (4-13)

v̂ = argmin
v∈H2

L(u,v, {zi}n+m
i=1 ) = argmin

v∈H2

Lcrf(v, {zi}n+m
i=1 ). (4-14)

Steps (4-12) to (4-14) are summarized in Algorithm 2:
Considering the existence of a minimizer for the inference problem in

Eq. (4-12), it is easy to show that, for each iteration in Algorithm 2, the
objective function monotonically decreases. From the minimizer, one observes
that

L(ut,vt, {zt+1
i }n+m

i=1 ) ≤ L(ut,vt, {zti}n+m
i=1 ), (4-15)
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Chapter 4. Transductive Conditional Random Field Regression 48

Algorithm 2 Transductive Conditional Random Field Regression (TCRFR)
procedure TCRFR(S,U)

put t = 0 and initialize ut and vt (e.g., randomly)
repeat

t:=t+1
Minimize Eq. (4-8) by splitting it into 3 parts:
(1) Update {zti}n+m

i=1 by Eq. (4-12) using the intermediate solutions ut−1

and vt−1

(2) Update ut by Eq.(4-13) and {zti}n+m
i=1

(3) Update vt by Eq.(4-14) and {zti}n+m
i=1

until ∀ i = 1, . . . , n+m : zti = zt−1
i

Predict unlabeled examples U using the inferred states {zti}mi=n+1 and
regression parameter ut: yi = 〈ut,Φ(xi, zti)〉

end procedure

and, because of the convexity of Lrr and Lcrf, it is also possible to verify that

L(ut+1,vt+1, {zt+1
i }n+m

i=1 ) ≤ min
{u}
L(u,vt+1, {zt+1

i }n+m
i=1 )

min
{u}
L(u,vt+1, {zt+1

i }n+m
i=1 ) ≤ min

{v}
L(ut,v, {zt+1

i }n+m
i=1 )

min
{v}
L(ut,v, {zt+1

i }n+m
i=1 ) ≤ L(ut,vt, {zt+1

i }n+m
i=1 )

L(ut,vt, {zt+1
i }n+m

i=1 ) ≤ L(ut,vt, {zti}n+m
i=1 )

So, in summary, the log-likelihood in Eq. (4-8) monotonically decreases
for increasing number of iterations t, i.e., L(ut+1,vt+1, {ẑt+1}n+m

i=1 ) ≤
L(ut,vt, {ẑt}n+m

i=1 ).

4.2.2
Choice of Joint Feature Maps

This section describes the joint feature maps that are used in the
experiments depicted in Chapter 6 (more on joint feature maps in the
Appendix, Section A.2. See also Section A.3 for indicator functions). Given an
undirected graph G = (V,E) with edges E and vertexes V , where each vertex
corresponds to a sample and the state space is S = Z, the global feature map
Ψ is defined as

Ψ({xi}n+m
i=1 , {zi}n+m

i=1 ) = (∑(ei,ej)∈E 1[zei
= si ∧ zej

= sj])(si,sj)∈S,

(∑v∈V 1[zv = s]φ(xv))s∈S

 (4-16)

In this joint feature map there are two types of features, pairwise and
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unary.
The pairwise features are represented in the first line of the joint feature

map formulation. For any edge (ei, ej) ∈ E, one sums up all the features
that satisfy the condition that state z of node ei (zei

) is equal to some state
si and state z of vertex ej (zej

) is equal to some state sj. For each feature
that satisfies the condition, its output is 1 and 0 otherwise, as defined by the
indicator function 1[zei

= si ∧ zej
= sj].

The unary functions are represented in the second line of the joint feature
map formulation in (4-16). For any vertex v ∈ V , one sums up all the features
that satisfy the condition that state z of node v (zv) is equal to some state
s. For each feature that satisfies the condition, its output is 1 times the value
of the feature φ(xv) and 0 otherwise, as defined by the indicator function
1[zv = s]φ(xv).

Accordingly, the local regression joint feature map is defined Φ as

Φ(x, z) = φ(x)⊗ Λ(z), (4-17)

where Λ(z) ∈ {0, 1}K with entries (Λ(z))k = 1 if z = k and 0 otherwise.
K ∈ N+ is the number of hidden states.

4.2.3
Latent State Inference

Latent state inference is computationally hard in general. While for
tree-like structures efficient global inference schemes exist, this does not
hold true for settings with loops [69]. Since the focus is on the latter, it
becomes necessary to rely upon approximation methods. Two of the most used
inference approximation methods are Quadratic Programming Approximation
(QPA) [74] and Loopy Belief Propagation Approximation (LBPA) [75].

Because QPA is computationally demanding and does not scale well with
the number of edges, in the remaining of this thesis the focus is on Loopy Belief
Propagation Approximation.

4.2.3.1
Loopy Belief Propagation Approximation (LBPA)

In Loopy Belief Propagation Approximation, each ẑi is sequentially
updated given the states of its neighbors. This approach is proven to
monotonically decrease the objective for each iteration and therefore
Assumption (4-15) holds even in the presence of loops. Moreover, in case of
tree-like structures, LBPA does converge to the global solution. The algorithm
works by iteratively sending messages Mij(s) from node i to node j (in state
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s) in the proximity of its location:

Mij(s)← ε+ max
t
ιij(s, t) + ϑi(t) +

∑
k∈N(i)/j

Mki(t) ,

where ε is some normalization constant, N(i) denotes the set of neighboring
nodes of node i and

ιij(s, t) = (1− θ)vst,

ϑi(t) = (1− θ)〈vt, φ(xi)〉+ 1[i ≤ n]θ2 |yi − 〈u,Φ(xi, t)〉|2 .

After convergence, max-marginals µi(s) can be computed as follows,

µi(s)← ε+ max
t
ϑi(t) +

∑
k∈N(i)

Mki(t) .

Finally, backtracking using the max-marginals reveals the latent states per
node. Experiments empirically showed that the quadratic approximation
performs similar, but it is time-consuming, while the LBP approximation gives
a reasonable performance and it is scalable.

4.2.4
Regression Parameter Estimation

The estimation (4-13) of u is simply a ridge regression problem, of which
the solution is available analytically (cf. Section 4.1):

∂Lrr(u, {zi}ni=1)
∂u

= 0⇒ u = (λI + ΦΦT)−1Φy ,

with I ∈ {0, 1}dimH1×dimH1 being the identity matrix, Φ ∈ RdimH1×n the design
matrix of only the labeled samples, and ΦΦT the corresponding covariance
matrix.

One fundamental assumption in the porosity estimation problem setting
is the linearity of the regression model within each latent state. For this setting,
the above regression model is sufficient. It is, however, relatively easy to extend
to non-linear settings. For that, kernel ridge regression can be applied and
solved analytically, which, nevertheless, is not in the scope of this work.

4.2.5
CRF Parameter Estimation

Problem (4-14) of v is convex and therefore a gradient-based solver with
L-BFGS is used, which is the method of choice for parameter estimation of
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CRFs. To perform the gradient descent, it is necessary to compute the objective
function Lcrf and its gradient with respect to v, which is written as

∇vLcrf(v, {zi}n+m
i=1 ) = Γv −Ψ({xi}n+m

i=1 , {zi}n+m
i=1 )

+Eẑ∼p({ẑi}n+m
i=1 |{xi}n+m

i=1 ,v)[Ψ({xi}n+m
i=1 , {ẑi}n+m

i=1 )]. (4-18)

The objective function (4-9) contains the partition function
logZ({x}n+m

i=1 ,v), and the gradient (4-18) involves the expectation

Eẑ∼p({ẑi}n+m
i=1 |{xi}n+m

i=1 ,v)[Ψ({xi}n+m
i=1 , {ẑi}n+m

i=1 )].

As already explained in Section 3.2.1, computation of the partition
function with pairwise interaction is known to be hard. In the experiments
described in Chapter 6, it was verified that approximately 85% of the time
of the optimization is spent on the calculation of the partition function and
less than 15% on the inference problem. Therefore, the partition function is
approximated with the pseudolikelihood [64].
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5
Transductive Conditional Random Field Regression Pipeline

Although the TCRFR model described in Chapter 4 is devised to handle
just a small amount of labeled data, it is still not enough for realistic and
extreme situations such as in the oil exploration of petroleum reservoirs, where
less than 0.01% of labeled data is available from a really small number of wells.

This chapter describes a novelty process workflow for porosity estimation
from seismic impedance and well porosity data, at the heart of which is
the Transductive Conditional Random Field Regression model proposed in
Chapter 4. The basic idea is to perform a segmentation in the 3D seismic
input volume as a preprocessing step and, from this new clustered volume,
determine the neighboring graph structure to be passed to the TCRFR
method, which in turn estimates facies and porosity for multiple clusters. As
another preprocessing step, the model is enhanced by fixing the facies in regions
where the geologist feels confident about their categorical values. The TCRFR
pipeline is shown in Figure 5.1:

Figure 5.1: The proposed TCRFR pipeline for porosity prediction.

Each of those steps is described in the following sections.

5.1
3D input volume segmentation

In this step, the original 2D graph-based image segmentation method
proposed in [76] is extended to 3D. The goal is to define clusters (or geobodies,
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Chapter 5. Transductive Conditional Random Field Regression Pipeline 53

in this case) with similar features based solely on the input instances of the
impedance volumes. The segmentation is applied to the whole volume. The
impedance values are converted to RGB colors in a 256 color table.

The method adaptively adjusts the segmentation criterion based on the
degree of variability in neighboring regions of the volume. The evidence for
creating a boundary between two regions is given by comparing two quantities,
one based on intensity differences across the boundary, and the other based on
intensity differences between neighboring pixels within each region. Intuitively,
the intensity differences across the boundary of two regions are perceptually
important if they are large relative to the intensity differences inside at least
one of the regions [76].

The volume is represented as a graph G = (V,E), where each node
vi ∈ V corresponds to a voxel (a value on a regular grid in 3D space) and the
edges in E connect pairs of neighboring voxels (vi, vj) ∈ E in a 6-connected
tile, as shown in Figure 5.2(a). A weight w(vi, vj) is associated with each edge.
This weight is a non-negative measure of the dissimilarity between neighboring
elements vi and vj based on the RGB color intensity difference between the
voxels that it connects: w(vi; vj) = |I(pi) − I(pj)|. I(pi) represents the color
intensity of voxel pi.

The method is executed once for each of the red, green, and blue color
components. Two neighboring voxels are set in the same cluster only if they
independently belong to each of the same red, green, and blue clusters.

The segmentation S is a partition of V into clusters such that each cluster
Ci ∈ S corresponds to a connected component in a graph G′ = (V ;E ′), where
E

′ ⊆ E. The segmentation S is not unique. The idea is that edges between
two vertexes in the same component should have relatively low weights, and
edges between vertexes in different component should have higher weights.

The algorithm defines a predicate D for evaluating if there is evidence to
create a boundary between two clusters in a segmentation. This predicate D is
based on measuring the dissimilarity between elements along the boundary of
the two clusters relative to a measure of the dissimilarity among neighboring
voxels within each of the two clusters. The resulting predicate compares the
inter-cluster differences to the intra-cluster differences.

The intra-cluster difference Int(Ci) of a cluster Ci ⊆ V is defined as the
largest weight in the minimum spanning treeMST of the corresponding graph
in this cluster, so that cluster Ci only remains connected if its edge weights
are less or equal to that maximum weight:

Int(Ci) = max
e∈MST (Ci,E)

w(e)
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The inter-cluster difference Dif(C1, C2) between two clusters C1 and C2,
on the other hand, is defined as the minimum weight edge connecting these
two clusters:

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w((vi, vj))

The comparison predicate D evaluates if the difference between the two
components Dif(C1, C2) is large relative to the minimum intra-difference
within clusters Int(C1) and Int(C2). A threshold function τ controls the
definition of "large". If the difference is large, there is evidence for a boundary
between the clusters. The predicate D is then defined as

D(C1, C2) =

true if Dif(C1, C2) > MInt(C1, C2)

false otherwise
,

where the minimum internal difference MInt corresponds to MInt(C1, C2) =
min(Int(C1) + τ(C1), Int(C2) + τ(C2)) The threshold function τ is based on
the size of the component: τ(Ci) = k/|Ci|, where |Ci| is the size of Ci and k is
a constant parameter. The parameter k corresponds to a scale factor. A larger
k leads to larger components.

The algorithm implementation has three hyperparameters:

• k: the scale factor used in the threshold function;
• σ: used for smoothing the volume before the segmentation;
• min: minimum cluster size.

It is important to keep in mind that, after the segmentation step, different
facies can still occur inside each cluster. This is due to the fact that the
segmentation takes into account only the inputs, without considering eventual
input overlaps for distinct facies in the cluster.

5.2
Neighborhood graph construction

Considering the segmentation obtained in the previous section, a
neighborhood graph is created based on the clustered 3D input volume and
the available wells. First, each voxel in the input volume is connected to the
neighbors that belong to the same cluster in a 6-tile setting. A diagram of this
6-tile construction is shown in Figure 5.2(a). The resulting grid for a 3x3x3
volume is shown in Figure 5.2(b).

Next, additional edges are created from each labeled voxel to its
surrounding neighbors that are in the same horizontal slice. These additional
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connections consider the neighboring voxels that belong to a circle centered
on the labeled voxel, as shown in Figure 5.2(c). The white voxels correspond
to the unlabeled input volume data and the blue voxels represent the labeled
(impedance, porosity) information from a well in the volume’s resolution. As
before, each edge is created only if the labeled voxel and its neighbor belong to
the same cluster. The circle radius is defined as the distance from this centered
labeled voxel to its closest labeled neighbor. Figure 5.2(d) shows an example
of those additional connections (in red) from a labeled voxel, considering a
radius equal to 2.

The additional edges help to propagate the strong information contained
in the labeled samples to the surrounding neighbors. Because the areal spatial
continuity is usually greater than in the vertical direction [51], only the areal
(xy) information is considered to create the additional edges. The graph
connection in Figure 5.2 takes into consideration the vertical and horizontal
dependency entailed by Walther’s law principle [77].

(a) (b) (c) (d)

Figure 5.2: Typical 3D graph connections in a volume. Blue voxels represent
the labeled samples in a well. White voxels represent unlabeled samples: (a)
6-tile voxel connections; (b) unlabeled connections in the volume; (c) radius
for additional labeled (blue) to unlabeled (white) voxel connections in the
horizontal slices; (d) example of connections from one labeled voxel to its
neighbors, considering a radius of 2.

5.3
Labeled data enrichment by fixed facies

Since labeled data is only certain and available at the well locations, the
amount of the important label information is almost negligible when compared
to the bulk of unlabeled data.

Increasing the number of labeled examples greatly reduces uncertainty
and leads to tighter estimates of the underlying porosity values.

Additional labels can artificially generated by:

• considering locations nearby wells as certain;

• generating various realizations for the drilled wells;
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• entering manually the facies for some regions in the volume.

For the TCRFR pipeline, the focus is on the last case. The user can choose
one or more time slices in the volume and then he/she roughly assigns regions in
these slices which he/she is confident that belong to a specific facies. Figure 5.3
shows an example of this process. In Figure 5.3(a), the user chose one horizontal
slice from the impedance volume. The red points are well locations. On top of
that slice he/she drew two white stripes that represent areas which he/she is
certain that belong to a non-reservoir facies. He/she also drew three black dots
that correspond to a reservoir facies. Figure 5.3(b) shows the clusters resulting
from the 3D input volume segmentation described in Section 5.1. Figure 5.3(c)
shows the TCRFR facies estimation without considering the additional fixed
facies. It can be seen that the method was not able to identify the sand channels
(yellow) in some regions where there are no wells present. Figure 5.3(d) shows
the TCRFR estimation considering the fixed facies provided by the user. In
this case, TCRFR was able to correctly map the sand channels.

(a) (b) (c) (d)

Figure 5.3: Label enrichment by fixing known facies regions specified by an
expert: (a) impedance input slice with well locations (red) and fixed facies.
The white stripes represent non-reservoir facies and the black dots are the
reservoir facies; (b) the 3D segmentation result; (c) TCRFR facies estimation
without considering the fixed facies; (d) TCRFR facies estimation considering
the fixed facies.

It is interesting to notice that, because of the 3D segmentation, the
information provided by the black dot positioned on the upper part of
the impedance slice propagates throughout the whole cluster colored cyan,
reaching the top region of the sand channel.

Geologists are used to make several assumptions about the geological
model, mainly during the geologic evaluation of a reservoir in the exploration
phase, where the available labeled data (i.e., porosity) is really scarce. The
hand-labeling step is not necessarily a requirement for the TCRFR pipeline
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to work, but it can substantially improve the porosity prediction results, if
the geologist detains sufficient expert knowledge to assign some hand-labeling
facies. It is important to keep in mind that just one pixel in one slice in the
whole volume can be already of great help for the method, as this valuable
information is propagated throughout the whole 3D segment to which that
pixel (or voxel, in fact) belongs to in the volume, due to the graph structure.

5.4
Transductive Regression with Latent Dependencies and multiple clusters

Here, the TCRFR method is extended twofold: (1) it is assumed that
the graph can be decomposed into multiple, independent sub-graphs, and (2),
some of the latent states can be fixed in advance. It is shown empirically in
Chapter 6 that these extensions enable TCRFR to be applied to higher number
of data points as well as fewer labeled examples without suffering from accuracy
decrease.

Originally, TCRFR consists mainly of two parts: (a) a least-squares
regression part with parameter u ∈ H1, conditioned on the latent states
and input instances; and (b) a conditional random field part with parameter
v ∈ H2 that explicitly models the dependencies of the latent variables and is
conditioned only on the input instances. Both parts receive a Gaussian prior for
stabilization and the focus is on the maximum a posteriori (MAP) estimates.

Building upon Chapter 4, S := {(xi, yi) ∈ RD × R}ni=1 labeled data
points and U := {xi ∈ RD}n+m

i=n+1 unlabeled data points are given. Additionally,
Φ(·, ·) ∈ H1 and Ψ(·, ·) ∈ H2 are the joint feature maps into the feature spaces
for the ridge regression and the CRF respectively. In this setting, λ ∈ R+ and
Γ ∈ SdimH2

+ (positive semi-definite matrix) are regularization hyperparameters
and 0 ≤ θ ≤ 1 is the trade-off hyperparameter between the regression and
CRF parts. Further, let Z({xi}n+m

i=1 ,v) = ∑
Ẑ∈⊗n+m

i=1 Z
exp

(
〈v,Ψ({xi}n+m

i=1 , Ẑ)〉
)

be the partition function. Thus, the MAP estimator for all unknown variables,
including the model parameters u ∈ H1 and v ∈ H2, and the latent variables
{zi ∈ Z}n+m

i=1 , can be obtained by solving the following problem:

min
u∈H1,v∈H2,{zi∈Z}n+m

i=1

L(u,v, {zi}n+m
i=1 ) subject to {zk}k∈M = Ω (5-1)

whereM is the index set of fixed latent states and Ω ∈ Z |M| the corresponding
set of states. Equation (4-9) is repeated here, where L(u,v, {zi}n+m

i=1 ) is
the convex combination of the objectives of the regression model and the
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conditional random field:

L(u,v, {zi}n+m
i=1 ) = θLrr(u, {zi}ni=1) + (1− θ)Lcrf(v, {zi}n+m

i=1 ), (5-2)

with

Lrr(u, {zi}ni=1) =λ2‖u‖
2
2 + 1

2

n∑
i=1
|yi − 〈u,Φ(xi, zi)〉|2, (5-3)

Lcrf(v, {zi}n+m
i=1 ) = 1

2‖vΓ 1
2‖2

2 −
C∑
c=1
〈v,Ψ({xi}i∈Ic , {zi}i∈Ic)〉

+ logZ({xi}n+m
i=1 ,v). (5-4)

Equation (5-3) is the same as 4-10 and Equation (5-4) now incorporates
the results from the graph-based segmentation. Variable C denotes the number
of segments, and the disjoint sets Ic, for c = 1, . . . , C correspond to the indexes
within each of the segments. The joint feature map Ψ({xi}i∈Ic , {zi}i∈Ic) is
constructed according to the neighborhood graph construction explained in
Section 5.2.

For drastically saving computation time, the MAP inference is skipped
for some segments, as follows.

Each segment c = 1, . . . , C satisfies one of the following conditions:

(a) The segment contains no labeled samples nor hand-labeled voxels;

(b) The segment contains only a single labeled sample or voxel
hand-annotated to a single facies category;

(c) The segment contains multiple labeled samples and/or voxels
hand-annotated to multiple facies categories.

For the segments satisfying (a), the improved TCRFR cannot do much,
because the voxels in the segments are completely unlabeled. For those
segments, the same facies category is assigned to all voxels in each segment by
majority voting based on the impedance. Also for the segments satisfying (b),
the same facies category is assigned to all voxels in each segment, however,
in this case, the category is the one estimated for the labeled voxel from the
porosity, or the one given to the hand-annotated voxels in the segment. The
full MAP-inference is applied only to the segments satisfying (c).
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Algorithm 3 Transductive Conditional Random Field Regression (TCRFR)
with independent partitions and partially fixed latent states

procedure TCRFR(S,U)
repeat

t:=t+1
c = 0
repeat

Update {zti}i∈Ic according to setting (a), (b), or (c) for the
current partition using the intermediate solutions ut−1 and vt−1

c := c+ 1
until c = C

(2) Update ut with fixed {zti}n+m
i=1

(3) Update vt with fixed {zti}n+m
i=1

until ∀ i = 1, . . . , n+m : zti = zt−1
i

Predict unlabeled examples xi = n + 1, . . . , n + m using the inferred
states {zti}n+m

i=n+1 and regression parameter ut: yi = 〈ut,Φ(xi, zti)〉
end procedure

Since the inference for the cases (a) and (b) can be done with constant
time complexity, and those cases apply to many segments under very sparsely
labeled scenario, this strategy provides a huge boost in runtime performance.

For the case (c), the optimization is performed in a similar fashion to the
original TCRFR. The algorithm is described in Algorithm 3.
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6
Experiments

In this chapter, experiments for porosity prediction are conducted on
synthetic and real-world data. These experiments are divided in two parts. In
the first part, the performance of the Transductive Conditional Random Field
Regression method alone is evaluated, as described in Chapter 4. In the second
part, the results obtained from the application of the whole TCRFR Pipeline
for real-world scenarios are presented, as described in Chapter 5.

The datasets used in the experiments are described in the next section.

6.1
Dataset Description

6.1.1
Synthetic dataset

For the synthetic dataset experiments, the Stanford VI 3D reservoir
benchmark dataset [4] (150 × 200 × 40 voxels) was used, based on realistic
geological modeling. For reservoir exploration purposes, it is enough to segment
the meandering depositional system from the shale in this example [78], so the
data model was simplified for these experiments by merging the point bar and
channel sands in one facies (sand), and the floodplain and boundary in another
one (shale).

For easier comprehension, Figure 1.5 is repeated here. Figure 6.1 shows
one horizontal data slice with 150× 200 voxels.

In this example there are two facies, the sand channels in yellow and the
background shale in blue, as seen in Fig. 6.1(b).

From the data, it is possible to observe the following trend: the sand
channels have higher porosity (Fig. 6.1(c)) than the background shale, and
the impedance (Fig. 6.1(a)) has a negative correlation with porosity (see also
Fig. 6.1(d)).

Throughout the remaining of this chapter, the synthetic reservoir dataset
is referred as Stanford-VI.
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(a) Impedance (b) Facies (c) Porosity

(d) input vs. output

Figure 6.1: The porosity estimation problem for one horizontal slice in the
synthetic volume. In (a), the seismic input data; in (b), the related facies; (c)
the corresponding porosity output; and (d) the scatter plot input × output.

6.1.2
Real-world dataset

The real-world dataset used in the experiments consists on a carbonate
reservoir located in the offshore coast of Brazil (cf. Figure 6.2). It covers an
area of approximately 100 square kilometers, with 460 meters in depth.

The reservoir is part of the sedimentary rock formation whose
depositional model is presented in Figure 6.3. It comprises a carbonate
platform with progressive shallowing cycles strongly related to subsidence,
salt tectonics and sea level oscillations. The reservoir is composed of
oolitic/oncolytic calcarenites developed in high energy environments (oolitic
shoals). These shoals were developed in the highest parts of the structures,
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(a) (b)

(c)

Figure 6.2: The real-world data reservoir: (a) 3D view of an acoustic impedance
subvolume in the reservoir with a cut section passing along the four wells; (b)
map view; (c) section view passing along the four wells.

generated by the movement of the salt that accumulated in that area during
middle Albian. The variations in the tectonic regime and/or fluctuations of the
sea level promoted the cyclicity in the depositional system characterized by the
intercalation of sediments with high and low energy. The extensive deposits
of low energy, formed during high-sea level, correspond to seals to distinct
reservoir units. Three facies groups occur in this region: grainstone at the bar
crests with high energy sediments; oolitic/oncolytic packstones with moderate
to low energy sediments at the flanks of the shoals; and peloidal packstones and
wackestones in depressions located around the bars. Clay content is quite low
for this carbonate environment, but the carbonate micritical matrix produces
microporosity and retains irreducible water, with similar response as clay.

The volume data in the reservoir region comprises 313×549×74 voxels of
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Figure 6.3: Depositional model: (A) terrigenous, tidal plain; (B)
wackstones/packstones; (C) oolitic grainstones; (D) peloidal packstones;
(E) oncolytic packstones; (F) wackstones/mudstones (open sea).

acoustic impedance samples. The impedance volume was previously obtained
using constrained sparke-spike inversion in the JasonTM Workbench.

Throughout the remaining of this chapter, the real-world reservoir
dataset is referred as BR-1031.

6.2
TCRFR experiments

As introduced in Chapter 1, porosity estimation is a crucial step in
the analysis of petroleum reservoirs for the oil industry. Although estimating
porosity from seismic impedance is less accurate than from drilled wells [54],
plenty of measurements are available, typically on a 3D grid covering over tens
to hundreds of square kilometers.

As stated earlier, the correlation between seismic impedance and porosity
depends on bodies (or units) of rock known as facies [51]. The segmentation
of the reservoir into facies allows local heterogeneity and strong contrasts in
rock properties to be preserved between different geological layers [79].

The proposed Transductive Condition Random Field regression model is
able to simultaneously infer both facies and porosity, given as input the seismic
impedances and some porosity labeled points from the available wells in the
reservoir. It does not assume any prior distribution for the input data and, by
definition, it can naturally handle multiple input variables/features.

In the following subsections, the performance of TCRFR and the baseline
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competitors are compared on the Stanford-VI and BR-1031 datasets. In all
experiments, 3-fold cross validation was applied on the training samples to tune
the hyper-parameters for all methods. The search range for each parameter
is shown in Table 6.1. Those ranges reflect the best performance results
empirically obtained for each method.

The performance is evaluated with different criteria: mean absolute error
(MAE), mean squared error (MSE), root mean squared error (RMSE), median
absolute error (MDAE), and the R2-score. The lower bounds of the errors are
also plotted for the Stanford-VI dataset, which were obtained by assuming
that the latent variable was known for all the test samples.

The following baseline methods were chosen: ridge regression (RR) [80];
support vector regression (SVR) [81]; a naive approach for assessing
latent states by applying k-means and using ridge regression within each
cluster (k-means+RR); a mixture of experts approach (MoE) [47, 48]1; and
transductive regression (TR) [40].

Method Parameter Range
MoE iterations 300, 400, ..., 800

tolerance 1E-4, 1E-3, ..., 0.1
KMRR ε 1E-5, 1E-4, 1E-3
SVR C 1E-3, 1E-2, ..., 1.

ε 0.1, 1., 10.
kernel linear

RR tolerance 1E-6, 1E-5, ..., 0.1
TR ε 1E-6, 1E-5, 1E-4

C 10., 100., ..., 1E4
C ′ 0.001, 0.01, ..., 1

TCRFR R 3, 4, ..., 8
θ 0.7, 0.75, ..., 1.0
λ 1E-4, 1E-3, 1E-2
γ 0.1, 1., 10.

Table 6.1: Optimized hyperparameters in the porosity prediction experiment.

As discussed in Section 1.1, no previous method has been developed for
our target setting and the baseline methods above are state-of-the-art in the
current research.

6.2.1
Empirical Evaluation on the Stanford-VI Dataset

In these experiments, the problem setting is simplified by only considering
connections in the horizontal slices. So, from each of the given volumes,

1 The FlexMix software package.
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150 × 200 horizontal slices are extracted and the whole impedance data and
part of the porosity data are available as the input and the regression labels
(output), respectively. The goal is to infer the latent structure or, in other
words, the facies, and to predict the porosities at the unlabeled samples.

The neighborhood graph is created in a 4-tile setting, connecting each
pixel in a horizontal slice in the volume. The connection diagram of this 4-tile
construction is shown in Figure 6.4(a). In Figure 6.4(b), the 4-tile setting is
applied to a 3x3 slice of unlabeled samples. Next, additional edges are created
from each labeled pixel to its surrounding neighbors in the same slice. These
additional connections consider the neighboring voxels that belong to a circle
centered on the labeled pixel, as shown in Figure 6.4(c). The white voxels
correspond to the unlabeled input volume data and the blue voxels represent
the labeled (impedance, porosity) information from a well in the volume’s
resolution. The circle radius is defined as the distance from this centered labeled
pixel to its closest labeled neighbor. Figure 6.4(d) shows an example of those
additional connections (in red) from a labeled pixel, considering a radius of 2.

(a) (b) (c) (d)

Figure 6.4: Typical 2D graph connections in a horizontal slice. Blue voxels
represent the labeled samples in a well. White voxels represent unlabeled
samples: (a) 4-tile voxel connections; (b) unlabeled connections in the slice;
(c) radius for additional labeled (blue) to unlabeled (white) pixel connections
in the slice; (d) example of connections from one labeled pixel to its neighbors,
considering a radius of 2.

From the 150× 200 = 30, 000 pixels, 5% are randomly chosen as labeled
samples and the others are treated as unlabeled samples. This process is
iterated 10 times and the average performance is reported.

Table 6.2 summarizes the performance of TCRFR and the baseline
methods. From the table it is possible to verify that TCRFR compares clearly
favorably to the other state-of-the-art algorithms.

To discuss the reason of the success of TCRFR, the estimated facies and
the predicted porosity for a single trial are shown in Figure 6.5 and Figure 6.6,
respectively. From the competitor methods, only MoE and k-means+RR are
able to provide facies estimation results.

Figure 6.5 implies that TCRFR successfully recovers the facies structure,
while MoE and k-means+RR fail. The excellent facies estimation by TCRFR,
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Method MAE MSE RMSE MDAE R2
MoE 2.38477 8.44310 2.90562 1.57930 0.47237

k-means+RR 2.08030 6.27532 2.50489 1.93901 0.61407
SVR 1.84235 11.37484 3.37256 0.24478 0.28910
RR 2.05989 6.19819 2.48950 1.89004 0.61271
TR 2.05993 6.19791 2.48944 1.89106 0.61273

TCRFR 0.69878 3.55215 1.88422 0.14865 0.77804
L. bound 0.15237 0.03567 0.18885 0.13740 0.99777

Table 6.2: Porosity prediction performance on synthetic reservoir with 5% of
labeled data for mixture of experts (MoE), Support Vector Regression (SVR),
Ridge Regression (RR), Transductive Regression (TR), and Transductive
Conditional Random Field Regression (TCRFR). From left to right: Mean
Absolute Error (MAE); Mean Squared Error (MSE); Root Mean Squared Error
(RMSE); Median Absolute Error (MDAE); Coefficient of Determination (R2).

(a) Ground truth (b) MoE (c) kmeans+RR (d) TCRFR

Figure 6.5: Facies estimation results for 5% of labeled examples in one slice.

despite the small fraction of labeled data, is because it acquires the facies
structure with adequate strength of correlation between neighbors, through
the learning process of the conditional random field. This enables appropriate
propagation of the label information, which is necessary for good facies
estimation from only 5% of labeled samples. On the other hand, MoE and
k-means+RR are not capable to take the structure of facies into account and,
therefore, although designed with multiple regression models, one for each
facies in this case, they fail to identify the facies of the unlabeled samples,
because no information is propagated from the labeled samples.

Thanks to the high quality of facies estimation, TCRFR provides
significantly better porosity estimation results, as shown in Figure 6.6. SVR,
RR, and TR are not capable to deal with multiple regression models and,
therefore, do not perform as well as the TCRFR method. As already stated,
these methods do not provide facies estimation results.
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(a) Ground truth (b) MoE (c) k-means+RR (d) SVR

(e) RR (f) TR (g) TCRFR

Figure 6.6: Porosity prediction results for 5% of labeled data.

Figure 6.7 shows MAE, RMSE, and MDAE for a range of labeled samples
fraction. For any fraction in this range, TCRFR outperforms all state-of-the-art
competitors.
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(a) MAE
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Figure 6.7: MAE, RMSE, and MDAE on Stanford-VI dataset for a range of
labeled data fraction.

(a) Truth (b) 15% (c) 10% (d) 5% (e) 2% (f) 1%

Figure 6.8: Estimated facies and the predicted porosity by TCRFR for different
fractions of labeled samples.

Last, Figure 6.8 shows the facies estimation results (top) and the
porosity prediction results (bottom) by TCRFR for different fractions of
labeled samples. Although degradation is observed to some extent, TCRFR
still provides reasonable facies estimation and porosity prediction, even if only
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1 ∼ 2% of labeled samples are available. In fact, 1 ∼ 2% is still much for a
real-world porosity prediction application setting — only an extremely small
number of labeled samples available at the drilled wells should be assumed.
Section 6.3 presents the results from TCRFR Pipeline described in Chapter 5
to cope with realistic conditions and scarce labeled examples.

6.2.2
Porosity Prediction on the BR-1031 Dataset

For this real problem setting, truly labeled data from only four wells were
available, with which no general-purpose machine learning method can cope.
To circumvent this problem for now, additional labeled samples were created,
which were obtained using geostatistical modeling (see Chapter 2 for details),
specifically 3D Kriging with Locally Varying Mean (LVM).

Table 6.3 shows the performance of TCRFR and the baseline methods
on the BR-1031 dataset for 5% of labeled samples (including the geostatistics
generated labels).

Method MAE MSE RMSE MDAE R2
MoE 0.42502 0.55195 0.74268 0.22591 0.88991

k-means+RR 0.45002 0.44259 0.66513 0.28474 0.90910
SVR 0.48028 0.46350 0.68055 0.35463 0.90757
RR 0.45716 0.45581 0.67490 0.28999 0.90909
TR 0.45717 0.45581 0.67490 0.29000 0.90909

TCRFR 0.24225 0.13712 0.37001 0.14571 0.97264

Table 6.3: Porosity prediction performance on real reservoir with 5% of labeled
examples.

Similarly to the experiment on the Stanford-VI dataset in the previous
subsection, TCRFR compares highly favorably with the baselines.

Fig. 6.9 shows the predicted porosity by TCRFR and the baseline
methods. Note that the reference in Fig. 6.9(a) is composed of the true labels
available at the wells plus additional labels predicted from the geostatistics
model. Again, TCRFR provides excellent results for a useful assessment of
geologically attractive regions for oil exploration (red and yellow regions).
Figure 6.10 shows the estimated porosity histograms and a cross plot
comparing the geostatistics and TCRFR estimation results. The plots show
that the results from TCRFR are similar to the ones obtained with the
geostatistical approach.
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(a) Reference (b) MoE (c) k-means+RR (d) SVR

(e) RR (f) TR (g) TCRFR

Figure 6.9: Predicted porosity on the BR-1031 dataset. As a reference, the
geostatistical model is used in (a).

6.3
TCRFR Pipeline experiments

In this section, experiments are again conducted on the Stanford-VI and
BR-1031 reservoir datasets, but now for the whole TCRFR Pipeline. On the
Stanford-VI dataset, the performance results are compared with the provided
ground truth for different criteria: for prediction, the median absolute error
(MDAE) and the R2-score are used; for clustering (latent variable estimation)
accuracy, the adjusted rand index (ARI) is used (more on ARI in the Appendix,
Section A.4). On the BR-1031 dataset, the results obtained with the TCRFR
Pipeline are compared with the ones provided by the classical geostatistics
approach [13, 51]. The algorithm used was 3D Kriging with Locally Varying
Mean (LVM).
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(a) (b)

(c)

Figure 6.10: Porosity statistics: (a) geostatistics porosity distribution; (b)
TCRFR porosity distribution; (c) geostatistics vs. TCRFR porosity cross plot.

6.3.1
Empirical Evaluation on the Stanford-VI Dataset

The volume layer of the Stanford-VI dataset was segmented in
four vertical zones (z direction) that presented distinct geometry shapes
(Figure 6.11) and the TCRFFR Pipeline was then applied on each of them
separately. For the input data, the shear impedance volume was used. The first
row of Fig. 6.11 shows one horizontal slice with its impedance input for each of
the four distinct zones. The second row in this figure presents the corresponding
clustering results for each zone. The third row shows the impedance input for
this slice with the annotated facies defined by the geologist. Here, the white
stripes correspond to the shale facies and the black dots to the sand facies.

Porosity observation was given at 17 production wells available in the
reservoir (named P1 to P6 and P21 to P31 in [4]). For each of the four zones
described above, all the porosity observations at the 17 wells were used. These
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Figure 6.11: Four distinct regions used for the Reservoir-VI data experiment.
The red dots correspond to the 17 well locations. Top row: the shear impedance
input; Middle row: (a slice) of the graph-based segmented volume; Bottom row:
manual annotations given by a geologist, where the white stripes voxels are
annotated as the shale facies, and the black dot voxels are annotated as sand
facies.

17 wells are represented in Figure 6.11 as red circles.
For the choice of θ and λ, leave-one-out cross-validation was applied for

each of the 17 wells, obtaining θ = 0.99 and λ = 1.
Figures 6.12 and 6.13 show the quality of facies and porosity estimation,

respectively, by the TCRFR Pipeline. It can be seen that the TCRFR Pipeline
(bottom row in each figure) accurately estimates the ground-truth (top row).
Table 6.4 shows quantitative results with the performance criteria.

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA



Chapter 6. Experiments 73

Zone # Slices MDAE R2 ARI
1 12 0.17122 0.82054 0.68739
2 2 0.17492 0.80693 0.69699
3 10 0.16267 0.90446 0.86022
4 6 0.16527 0.91091 0.86165

Table 6.4: Performance on synthetic seismic data.

Figure 6.12: Estimated facies by the TCRFR Pipeline for 4 different regions
in the Stanford-VI dataset. The red dots correspond to the well locations. Top
row: the ground truth facies; Bottom row: estimated facies by the TCRFR
Pipeline.
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Figure 6.13: Estimated porosity by TCRFR Pipeline for 4 different regions in
the Stanford-VI dataset. The red dots correspond to the well locations. Top
row: the ground truth porosity; Bottom row: estimated porosity by TCRFR
Pipeline.

Figure 6.14 compares the performance of the TCRFR Pipeline and
the original TCRFR.2 Comparing with the ground truth (Fig.6.14(a): facies
(top) and porosity (bottom)), it can be seen that the TCRFR Pipeline
(Fig.6.14(e)) outperforms the original TCRFR (Fig.6.14(b)). Figures 6.14(c)
and (d) show the results with other variants of TCRFR, where just one of
the new techniques, i.e., the new graph-construction and the incorporation of
manual annotation, is applied. In this case, both techniques are essential for
good performance of the proposed method.

In particular, in Fig. 6.14(c) the sand (yellow) channel is disconnected
because of the lack of label information, which is compensated by hand-labeling
in Fig. 6.14(e), while in Fig. 6.14(d) the facies of the main sand channel
is accurately estimated, but the method incorrectly classifies shale (blue)
regions (mainly on the top left corner of the slice) as sand. As a result, the
regression model for the sand facies is inaccurately trained, which results in
a poor porosity prediction over the sand channel regions. More specifically,
the regression model for the sand facies is adversely affected by taking the
erroneous shale high impedance values into account and, consequently, bringing

2 Comparison with the previous methods other than TCRFR was omitted, since they
were shown previously to be outperformed by the original TCRFR.
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(a) (b) (c) (d) (e)

Figure 6.14: Facies (top) and porosities (bottom) results for different TCRFR
methods. (a) ground truth; (b) original TCRFR; (c) TCRFR with graph
construction based on the segmented volume; (d) TCRFR with manual
annotations; (e) (full) TCRFR Pipeline.

the porosity down. The result is an average porosity estimation in the sand
channel, which corresponds to the middle of the color table (green color).

Figure 6.15 shows some statistics of the true and the estimated porosity
distributions by TCRFR Pipeline. Figs. 6.15(a) and (b) show that the
distribution of the estimated porosity is quite similar to the distribution of
the true one.
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        Avg: 0.119 
Std. dev: 0.085 

(a)

        Avg: 0.117 
Std. dev: 0.083 

(b)

(c)

Figure 6.15: Porosity statistics: (a) true porosity distribution; (b) estimated
porosity distribution by TCRFR Pipeline; (c) true vs. estimated porosity cross
plot. Sand facies samples in yellow and shale facies samples in blue.

Fig. 6.15(c) shows that there are two small clusters with misclassified
samples: the blue one on the top shows shale (low) porosity samples that were
incorrectly classified into the sand facies; the yellow one on the bottom shows
sand (high) porosity samples incorrectly classified in the shale facies.

TCRFR Pipeline execution time is approximately linear in the number
of samples, as shown in Figure 6.16, where the method was executed varying
the number of contiguous slices in the volume from one (30,000 samples) to 10
(300,000 samples).
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Figure 6.16: TCRFR Pipeline execution time (in minutes) from one to ten
contiguous slices. Each slice contains 30,000 samples.

Sensitivity analysis was performed on a slice of the Stanford-VI dataset,
progressively adding Gaussian noise over the impedance input with impedance
values varying from 0 to 100%. Figure 6.17 presents the results. The top row of
Fig. 6.17 (a) to (e) shows the impedance input data. The second row presents
the corresponding estimated facies and the third row shows the estimated
porosity. The coefficient of determination (R2) and median absolute error
(MDAE) results are presented in Fig. 6.17(f). It can be observed that even
with 20% Gaussian noise the R2 performance is still close to 85%, while the
MDAE increases linearly with the noise.

Figure 6.18 presents another sensitivity analysis, now considering the
hand-labeled facies. In Fig. 6.18(a) some portions of the sand channel are not
correctly identified by the method. In Fig. 6.18(b) a black ("sand") point was
added on the upper half of the slice and, as a result, a good portion of the
channel is now detected by TCRFR Pipeline. Adding a second black point to
the bottom half of the slice in Fig. 6.18(c) makes it possible for the method
to connect the whole sand channel. Figures 6.18(d) and 6.18(e) illustrate that
adding more black points to the slice do not necessarily further improve the
overall result, showing that TCRFR Pipeline just requires a minimum number
of hand-labeled points to provide a good performance. The MDAE and R2
plots shown in Figures 6.18(f) and 6.18(g) present the corresponding increase
in the method’s performance as a result of the added hand-labeled facies. Each
black point in this example corresponds, in fact, to 21 pixels (facies).
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Figure 6.17: Sensitivity analysis on a slice of the Stanford-VI dataset:
increasing gaussian noise applied to the impedance input, from 0 to 100%
standard deviation over the original values. Top row: the impedance input;
Second row: the estimated facies; Third row: the estimated porosity; Bottom
row: sensitivity analysis plots for median absolute error (MDAE) and
coefficient of determination (R2) with increasing gaussian noise over the
original input impedance.

6.3.2
Porosity Prediction on the BR-1031 Dataset

The TCRFR Pipeline is now applied to the real carbonate reservoir
already described in Section 6.1.2. From the original volume with 313 ×
549× 74 voxels of acoustic impedance samples, a subvolume was chosen with
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Figure 6.18: TCRFR Pipeline sensitivity analysis on a slice of the Stanford-VI
dataset for increasing number of hand-labeled facies defined by the geologist.
Top row: the impedance input; Second row: the estimated facies; Third row: the
estimated porosity; Bottom row: sensitivity analysis plots for median absolute
error (MDAE) and coefficient of determination (R2) with increasing number
of hand-labeled facies.

6 contiguous horizontal slices. Four exploratory wells were available with a
total of 121 (impedance, porosity) pair samples in seismic resolution. All the
porosity values provided by the four wells were used, so the number of labeled
samples correspond to approximately 0.01% of the total number of samples
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in that subvolume. For comparison, porosity was also estimated with the
traditional geostatistics approach. The algorithm used was 3D Kriging with
Locally Varying Mean (LVM).

Figure 6.19 shows (a) a time slice of the seismic impedance input
with manual annotation; (b) the graph-based segmentation result; (c) the
estimated facies by the original TCRFR; (d) the estimated facies by the
improved TCRFR, (e) the estimated porosity by the original TCRFR; (f)
the estimated porosity by TCRFR Pipeline; and (g) the estimated porosity by
geostatistics. The same hyperparameters for the Stanford-VI case were used
in this experiment.

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.19: Estimated facies and predicted porosity for one slice in
the BR-1031 dataset: (a) impedance input with manual annotations; (b)
graph-based segmentation; (c) Facies estimated by original TCRFR; (d)
Facies estimated by TCRFR Pipeline; (e) Porosity estimated by original
TCRFR; (f) Porosity estimated by TCRFR Pipeline; (g) porosity estimated
by geostatistics.

It is possible to observe a significant gain from the original TCRFR—the
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improved TCRFR Pipeline (f) gives a more similar result to the geostatistics
estimation (g) than the original TCRFR (e). As seen in Fig. 6.19(c), the
original TCRFR is not able to correctly estimate the facies, as the number of
labeled samples (121 in this case) is much smaller than the unlabeled samples
(more than a million). Only one facies was found, leading to just one regression
model. With the TCRFR Pipeline, three facies were estimated.

Table 6.5 shows the RMSE and MDAE errors by original TCRFR and
TCRFR Pipeline from the geostatistics estimation and Figure 6.20 presents
the estimated porosity histograms and a cross plot comparing the geostatistics
and TCRFR Pipeline estimation results. Again, one can observe that the
results from the improved TCRFR are similar to the ones obtained with the
geostatistical approach.

Method RMSE MDAE
TCRFR 0.89065 0.48472

TCRFR Pipeline 0.44430 0.17930

Table 6.5: Comparison between TCRFR and TCRFR pipeline on the real
dataset. Errors are evaluated by using the geostatistics estimation as reference.

It is worth noting that the TCRFR Pipeline gives sharper contours than
the geostatistics estimation. Although one cannot argue with only the current
results that this is an advantage of the TCRFR Pipeline over the geostatistics
estimation, it might imply that the proposed semi-automatic method has a
potential to improve even the geostatistics estimation.

In general, even with partial facies overlap, the TCRFR Pipeline is able to
estimate the different facies present in a reservoir as long as the corresponding
regression models are distinct, i.e., if the slope and/or intercept for each facies
linear regressor is different from all the others.
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(a) (b)

(c)

Figure 6.20: Porosity statistics: (a) geostatistics porosity distribution; (b)
TCRFR Pipeline porosity distribution; (c) geostatistics vs. TCRFR Pipeline
porosity cross plot.
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7
Conclusions

This work tackled the problem of porosity prediction in petroleum
reservoirs, a fundamental task in the oil industry.

Handling data under spatial structures with limited number of labels
remains a great challenge, requiring novel and robust modeling strategies. In
this particular case, porosity needs to be predicted in the whole reservoir from
local, labeled and accurate porosity information in the wells combined with
plentiful but imprecise impedance input information available everywhere in
the reservoir volume.

The proposed Transductive Conditional Random Field (TCRFR) is
an automatic statistical inference method able to estimate hidden or latent
states of geological facies, propagating information in the reservoir based on a
conditional random field (CRF) probabilistic graphical model and generating
multiple regression models dependent on the estimated facies to predict the
corresponding porosities. This way, both facies and porosities of the unlabeled
samples are simultaneously estimated, respecting the inferred spatial structure
learned from the conditional random field. The method implement with
concepts like semi-supervised/transductive learning, classification based on
non-i.i.d. data with spatial dependency structure, latent state inference, and
regression from continuous labels.

To handle extreme but realistic scenarios, where only a scarce number
of porosity samples from a few exploratory wells are available in the reservoir,
two new preprocessing techniques were also proposed, inspired in the image
processing literature. The first technique performs a graph-based 3D volume
segmentation, while the second one makes use of label annotation of facies.
The whole workflow, considering both preprocessing techniques plus TCRFR
is called the TCRFR Pipeline.

Experiments on both synthetic and real-world datasets were conducted,
first analyzing the TCRFR performance alone and then the TCRFR Pipeline
performance. In both cases TCRFR and TCRFR Pipeline presented superior
performance when compared with state-of-the-art competitors, as well as with
the traditional geostatistics approach.

Execution time was approximately linear with increasing number of
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Chapter 7. Conclusions 84

samples. Sensitivity analysis showed a remarkable robustness of the TCRFR
Pipeline to noise in the seismic impedance input.

As future work, code parallelization needs to be implemented for
scalability. Also, domain knowledge can be added to the current architecture.
Last but no least, the method can be applied to other fields that also present
spatial and/or temporal dependency structure.
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A
Miscellaneous Concepts and Definitions

A.1
Operations on Factors

Factors are the fundamental building blocks in the definition and
manipulation of probability distributions in probabilistic graphical models. In
this section, we give some examples of their functionality. These examples were
extracted from [7].

A factor is a function that takes a set of arguments that represent random
variables and returns some real value:

f(x1, ...xk)→ R ∈ R

So, factor f gets all combinations of the variables (x1, ...xk) in its scope
and provides a R output for each combination.

A joint distribution, for instance, is a factor. Let us take the P (I,D,G)
distribution in Figure A.1. Any combination of variables I, D, and G gives a
number, which in this particular case is a probability and all probabilities sum
up to 1.

Figure A.1: Example of factor of a joint distribution [7].

It is important to keep in mind that factors do not need to be normalized
measures. In Figure A.2, we fix G = g1 and in this case the scope of the factor
is f(I,D).
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Appendix A. Miscellaneous Concepts and Definitions 93

Figure A.2: Example of factor of an unnormalized measure [7].

Another example is a factor that represents a conditional probability
distribution P (G|I,D), as shown in Figure A.3. In this case, variable G can
assume one of three values {g1, g2, g3} and the probabilities of these values
sum up to 1 horizontally on the table, depending on the values of I and D.

Figure A.3: Example of factor of a conditional distribution [7].

We can have general factors, as the one shown in Figure A.4. We see
that those factors are scores that are not constrained to the interval [0, 1]. The
values assigned to variables A and B could be real numbers, for instance.

Figure A.4: Example of a general factor [7].

One of the most common operations on factors is the factor product, as
we see in the example of Figure A.5. We take to factors, f1(A,B) and f2(B,C).
The resulting function is going to combine all three original arguments,
f3(A,B,C), and its values is simply the multiplication of the rows in first
and second tables.

Another important operation is factor marginalization. In Figure A.6 we
have a factor f(A,B, c) and if we want to marginalize out B, we take both
values for each combination of A and C values and add them up. This process
is similar to probability marginalization, except that the values involved don’t
need to be probabilities.

Finally, we can also have factor reduction. In Figure A.7, we want to
reduce a factor f1(A,B,C) to all occurrences of c1. In the end, we obtain a
factor f2(A,B, c1) = f2(A,B).
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Figure A.5: Example of factor product [7].

Figure A.6: Example of factor marginalization [7].

In summary, an exponentially large probability distribution of N random
variables is defined by taking small factors and putting them together by
multiplying them to define probability distributions in high dimension spaces.
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Figure A.7: Example of factor reduction [7].

A.2
Joint Feature Map

In a multiclass classification problem, a compact and often common way
to express multiple classes y and multiple features x is through joint feature
maps representations.

As an example, set’s assume that we want to represent K classes learning
problems as one. We can define class-dependent feature maps Ψj in the
following representation:

xi 7→ (Ψ(x), 0, 0, ..., 0) ≡ Ψ1(xi), if yi = c1

xi 7→ (0,Ψ(x), 0, ..., 0) ≡ Ψ2(xi), if yi = c2

... ... ...

xi 7→ (0, 0, 0, ...,Ψ(x)) ≡ ΨK(xi), if yi = cK

For each class cj we have a distinct set of weights wj, so the joint weight
vector is wjoint = (w1,w2, ...,wK). In the same manner, the joint Hilbert
spaces are defined as Hjoint := ⊕Kj=1Hx and wj ∈ Hj

x.
As a consequence, these two formulations are equivalent:

〈Ψ(wj,xi)〉H ≡ 〈Ψj(wjoint,xi)〉Hjoint

At this point, we have defined one feature map Ψj for each output class
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cj ∈ Y :

Ψj : X → Hjoint

From there, we can define just one joint feature map Φ, which depends
on sample x and on the class label y:

Φ : X × Y → Hjoint

Φ(x, y) = Ψj(x) for y = cj (A-1)

Equation A-1 can be expressed theoretically as the following matrix:

Φ(x, y) =

Ψ1(x, 1) Ψ2(x, 2) Ψ3(x, 3) . . . ΨK(x, K)



x 0 0 . . . 0
0 x 0 . . . 0
0 0 x . . . 0
... ... ... ...
0 0 0 . . . x

=





∑m
i=1 f1(x, y) 0 0 . . . 0

0 ∑m
i=1 f2(x, y) 0 . . . 0

0 0 ∑m
i=1 f3(x, y) . . . 0

... ... ... ...
0 0 0 . . .

∑m
i=1 fK(x, y)

,

and considering a objective function L(x) = argmaxy〈wT
joint,Φ(x, y)〉, the

cross product can be written as





∑m
i=1 f1(x, y) 0 0 . . . 0

0 ∑m
i=1 f2(x, y) 0 . . . 0

0 0 ∑m
i=1 f3(x, y) . . . 0

... ... ... ...
0 0 0 . . .

∑m
i=1 fK(x, y)

•





w1

w2

w3
...

wK

A.3
Indicator Function

The indicator function of some event (or condition) is a random variable
that takes value 1 when that event happens and value 0 otherwise. Indicator

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA

DBD
PUC-Rio - Certificação Digital Nº 1221699/CA



Appendix A. Miscellaneous Concepts and Definitions 97

functions are often used in probability theory to simplify notation and to prove
theorems [82].

Formally, we can define an indicator function as

1E(ω) =

1 if ω ∈ E

0 if ω /∈ E
,

where ω is the random variable and E represents the event.
Besides 1E(ω) notation, the indicator function is also often written as

1[ω ∈ E].
As an example, an indicator function with the condition y = 1 and x = 0

would be represented as

1[y = 1 ∧ x = 0] =

1 if y = 1 and x = 0

0 otherwise

Another example would be the toss of a die. All the possible outputs are
in the set Ω = {1, 2, 3, 4, 5, 6}. The indicator function that defines any even
output number is 1[ω = 2 ∨ ω = 4 ∨ ω = 6].

A.4
Adjusted Rand Index

The Rand Index [83] computes the similarity measure between two
clusters by considering all pairs of samples and counting pairs that are assigned
in the same or different clusters in the predicted and the true clusters.

Given a set S = {o1, o2, ..., on} with n elements, let us define two distinct
partitions of the objects in S, T = {t1, t2, ..., tr} and P = {p1, p2, ..., ps}, such
that ∪ri=1ti = ∪sj=1pj = S and ti ∩ ti′ = pj ∩ pj′ = 0 for 1 ≤ i 6= i

′ ≤ r and
1 ≤ j 6= j

′ ≤ s.
Let us now consider the following groups:

• a, the number of pairs of objects in S that are in the same set in T and
in the same set in P ;

• b, the number of pairs of objects in S that are in different sets in T and
in different sets in P ;

• c, the number of pairs of objects in S that are in the same set in T and
in different sets in P ;

• d, the number of pairs of objects in S that are in different sets in T and
in the same set in P .
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True\Predicted p1 p2 . . . ps Sums
t1 n11 n12 . . . n1s n1.
t2 n21 n22 . . . n2s n2.
... ... ... ... ...
tr nr1 nr2 . . . nrs nr.

Sums n.1 n.2 . . . n.s n

Table A.1: Notation for comparing two clusters.

The Rand Index R is defined as

RandIndex = a + b

a + b + c + d
,

where intuitively a + b represents the number of agreements between C1 and
C2 and c + d indicates the number of disagreements between C1 and C2.

The Rand Index tends to give quite large values even when clustering
methods are in substantial disagreement. Even a random assignment of points
to clusters can lead to large Rand Index values. Hubert and Arabie [84]
proposed an adjustment to the Rand Index in order to account for agreement
by chance. The true and and predicted clustering are selected at random so
that the number of objects in both clustering is fixed.

The Adjusted Rand Index is obtained using

ARI = RandIndex− ExpectedRandIndex
MaxRandIndex− ExpectedRandIndex

It is shown in [84] that the Adjusted Rand Index can be written as

ARI =
∑
ij

(
nij

2

)
−
[∑

i

(
ni.

2

)∑
j

(
n.j

2

)
/
(
n
2

)]
1
2

[∑
i

(
ni.

2

)
+∑

j

(
n.j

2

)]
−
[∑

i

(
ni.

2

)∑
j

(
n.j

2

)
/
(
n
2

)] , (A-2)

with
(
x
2

)
= x(x−1)

2 .

In Equation A-2, nij represents the number of objects that are in clusters
ti and sj, ni. is is the number of objects that are in cluster ti, and n.j is the
number of objects in cluster pj, as shown in Table A.1.
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