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Abstract

Fanzeres, Bruno; Street, Alexandre (Advisor). Hedging Renewable
Energy Sales in the Brazilian Contract Market via Robust Op-
timization. Rio de Janeiro, 2014. 100p. MSc Dissertation — Departa-
mento de Engenharia Elétrica, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Energy spot price is characterized by its high volatility and difficult

prediction, representing a major risk for energy companies, especially those

that rely on renewable generation. The typical approach employed by such

companies to address their mid- and long-term optimal contracting strategy is

to simulate a large set of paths for the uncertainty factors to characterize

the probability distribution of the future income and, then, optimize the

company’s portfolio to maximize its certainty equivalent. In practice, however,

spot price modeling and simulation is a big challenge for agents due to its

high dependence on parameters that are difficult to predict, e.g., GDP growth,

demand variation, entrance of new market players, regulatory changes, just

to name a few. In this sense, in this dissertation, we make use of robust

optimization to treat the uncertainty on spot price distribution while renewable

production remains accounted for by exogenously simulated scenarios, as is

customary in stochastic programming. We show that this approach can be

interpreted from two different point of views: stress test and aversion to

ambiguity. Regarding the latter, we provide a link between robust optimization

and ambiguity theory, which was an open gap in decision theory. Moreover, we

include into the optimal portfolio model, the possibility to consider an energy

call option contract to hedge the agent’s portfolio against price spikes. A case

study with realistic data from the Brazilian system is shown to illustrate the

applicability of the proposed methodology.

Keywords
Stochastic and Robust Optimization; Renewable Energy; Conditio-

nal Value-at-Risk (CVaR); Nonlinear Programming; Price-Quantity Risk;

Contract Market; Energy Call Options; Capacity Contracts; Forward

Contracts.
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Resumo

Fanzeres, Bruno; Street, Alexandre (Orientador). Modelo de Con-
tratação para Fontes Renováveis com Rubustez ao Preço de
Curto-Prazo. Rio de Janeiro, 2014. 100p. Dissertação de Mestrado —
Departamento de Engenharia Elétrica, Pontif́ıcia Universidade Católica
do Rio de Janeiro.

O preço da energia no mecado de curto-prazo é caracterizado pela sua alta

volatilidade e dificuldade de previsão, repesentando um alto risco para agentes

produtores de energia, especialmente para geradores por fontes renováveis.

A abordagem t́ıpica empregada por tais empresas para obter a estratégia de

contratação ótima de médio e longo prazos é simular um conjunto de caminhos

para os fatores de incerteza a fim de caracterizar a distribuição de probabilidade

da receita futura e, então, otimizar o portfólio da empresa, maximizando o seu

equivalente certo. Contudo, na prática, a modelagem e simulação do preço de

curto prazo da energia é um grande desafio para os agentes do setor elétrico

devido a sua alta dependência a parâmetros que são dif́ıceis de prever no médio

e longo, como o crescimento do PIB, variação da demanda, entrada de novos

agentes no mercado, alterações regulatórias, entre outras.

Neste sentido, nesta dissertação, utilizamos otimização robusta para

tratar a incerteza presente na distribuição do preço de curto-prazo da energia,

enquanto a produção de energia renovável é tratada com cenários simulados

exógenos, como é comum em programação estocástica. Mostramos, também,

que esta abordagem pode ser interpretada a partir de dois pontos de vista: teste

de estresse e aversão à ambiguidade. Com relação ao último, apresentamos um

link entre otimização robusta e teoria de ambiguidade. Além disso, inclúımos

no modelo de formação de portfólio ótimo a possibilidade de considerar um

contrato de opção térmica de compra para o hedge do portfólio do agente

contra a iregularidade do preço de curto-prazo. Por fim, é apresentado um

estudo de caso com dados realistas do sistema elétrico brasileiro para ilustrar

a aplicabilidade da metodologia proposta.

Palavras–chave
Otimização Robusta e Estocástica; Energia Renovável; Conditio-

nal Value-at-Risk (CVaR); Programação Não Linear; Risco de Preço-

Quantidade; Mercado Livre de Contratos; Opção Térmica de Compra de

Energia; Contratos por Capacidade;Contrato Futuro de Energia Elétrica.
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– What is jazz, Mr. Armstrong?
– My dear lady, as long as you have to ask
that question, you will never know it.

Louis Armstrong, Musician.
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1
Introduction

Over the last decades, energy markets worldwide have undergone a major
transition. In the past, the energy delivery process by power Generation Companies
(Gencos) to end-users (residential, commercial and industrial consumers) was done
by regulated facilities, typically owned by national, regional or local governments,
using self-owned transmission and distribution lines. Because of their monopoly
status, regulators used to periodically set the tariff in which the companies earn a
“fair” rate of return over investments and recover operational expenses. Therefore,
these firms used to maximize their profits subject to many regulatory constraints.
But because utilities were allowed to pass cost on to consumers through regulated
tariffs, there has been little incentive to reduce costs or to make necessary invest-
ments on the grid [3][4].

After the deregulation process has started, this structure gradually changed
to market mechanisms [5], with unbundled generation, transmission and distribu-
tion companies. In addition, several countries stated a high degree of competition
among agents, especially in the generation sector, aiming to reach an economically
efficient solution and eliminate the market power, among other reasons. Within this
liberalized market, two environments emerged as the most common places for en-
ergy trading: (i) the short-term market (day-ahead market) where generators and
demands daily bid, in a hourly basis, a set of quantities at certain price and a central
operator clears the market, setting the energy spot prices for the day ahead settle-
ment [6][7][8]; and (ii) the forward market, which comprise mid- and/or long-term
contracts negotiations (typically financial instruments only) and are usually used
by Gencos to hedge its cash flow against the volatility of the spot price [9][10][11].
Both environments are present in almost all deregulated electricity markets and play
an important role in the worldwide power sector reform.

Particularly, the Brazilian power sector reform started in 1996 [12]. Similarly
to other countries, the new rules were designed to encourage competition in gener-
ation and retailing, leaving the distribution and transmission sectors still regulated
activities with provision for open access [13][14]. Following the main guidelines,
the current power sector model relies on a combination of competition and plan-
ning to guarantee supply adequacy and provide a “safe” environment to attract new
investors. The principal driving force is the hydro predominance in the country,
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1. INTRODUCTION 14

with huge reservoirs that control multiple river systems distributed over a vast area.
Due to this particular characteristic, the system has a centralized coordination which
takes advantage of the regulation capability of the reservoirs to manage them as a
portfolio and obtain the long-term minimum overall operating cost [15]. In practice,
the system’s scheduling is carried out by the Brazilian Independent System Oper-
ator (ONS) [1], which uses a multi-stage stochastic optimization model that takes
into account the plants’ operating characteristics and inflow uncertainty [16]. This
least-cost dispatch does not consider any commercial arrangements and determines
the dispatch of every plant in the system and also the short-run marginal cost, which
is used as the clearing price in the short-term energy market.

A collateral effect of such centralized dispatch is the high volatility pattern
of the short-run marginal cost (which is, ultimately, the energy spot price) and its
strong correlation with the system’s inflow [17]. Since the system is designed to
withstand under very harsh conditions (by means of an overcapacity in power and
energy), in most of the time it has an excess of recourses to meet the demand. As a
consequence, the short-run marginal cost stays at lower values in most of the time,
reflecting an expected “normal” inflow conditions, reaching extremely high values
when the system future reliability is expected to be in danger. Moreover, the dis-
patch model takes into account several ex ante hypothesis on market uncertainties,
such as fuel prices, plant availability, supply expansion scenario, hydrology (just to
name a few), in which any deviation on these hypotheses distort the observed prob-
ability distribution of the prices (ex post) with respect to the simulated (planned)
one.

Therefore, from the point of view of energy commercialization, the irregular
pattern of the spot price poses a major risk for trading companies which sell electric-
ity contracts backed on renewable production in the Brazilian contract market. The
main reasons are the intermittent energy production pattern of renewable sources
[18] and the modality of contracts typically traded in the contract market, the stan-
dard forward contract [3][4]. On the one hand, although renewable plants are known
for the low emission of greenhouse gases, they are also known for their energy un-
controllability and difficulty to predict. On the other hand, energy standard forward
contracts are bilateral agreements in which the seller counterpart (Gencos) has the
obligation to delivery a fixed amount of electricity to the buyer (end-users) against a
fixed payment. Therefore, when a standard forward contract is supplied by renew-
able energy, the uncertain profile typical to this kind of sources exposes the gen-
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1. INTRODUCTION 15

eration company to the so-called price-quantity risk [10][19][20][21][22], which
occurs whenever the Genco must purchase in the short-term market the amount of
energy sold but not produced, at high prices. In a nutshell, risk-mitigation mech-
anisms are of utmost importance when renewable energy is traded in the Brazilian
contract market.

In technical literature, several works dealt with such issue: (i) in [23], a strate-
gic bidding model that takes into account the agent’s risk profile, by means of
piecewise linear utility functions, and the main uncertainties factors that affect the
long-run Genco’s revenue are considered to assess the Willingness-to-Supply (WtS)
curve of a renewable generator in a multi-item auction-based environment; (ii) [20]
addresses the hedging problem of a load serving entity. By exploiting the correlation
between consumption volume and energy spot price, an optimal zero-cost hedging
function characterized by a set of payoffs is derived. It is also illustrated how such
hedging strategy can be implemented through a portfolio of standard forward con-
tracts and call and put options; (iii) in [10], a two-stage stochastic optimization
model that defines the optimal composition of a portfolio based on complementary
renewable sources is proposed. The model aims to maximize the revenue of an En-
ergy Trading Company (ETC) selling a standard forward contract in the Brazilian
contract market. An interesting feature of the model proposed in [10] is that the
ETC bears all the trading risk, leaving the renewable plants and the end-user free of
such risk; (iv) in [21], a renewable energy hedge pool composed with the three main
renewable sources of the Brazilian power matrix (in [22], the model is extended to
a finite number of renewable plants) is proposed to jointly sell a single standard
forward contract in the Brazilian contract market. The price-quantity risk is miti-
gated since the renewable plants have a complementary production profile and thus
a less intermittent joint generation and exposure to the short-term market; (v) [24]
proposes a model for a Wind Power Producer (WPP) based on a joint-selling strat-
egy with a Small Hydro (SH) run-of-river Genco. In such model, the hydro Genco
receives a surplus payment in comparison to the amount it would receive in the mar-
ket, thus being always a good business for the SH, and the WPP the remainder of the
income. It is shown that such commercial model is able to mitigate the exposure to
the short-term market due to the complementary production profile of such sources
and promote a safer entrance of wind power generation into the Brazilian contract
market.

In this dissertation, the business structure presented in [10] is extended to
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1. INTRODUCTION 16

consider contracts with wind power plants. A mixed stochastic-robust optimization
model is proposed to define the risk-adjusted optimal contracting strategy for a trad-
ing company backed by a renewable portfolio. This approach is different from the
aforementioned works in the sense that the uncertainty in the spot price realization
is treated by means of robust optimization [25][26]. In addition, we add the possi-
bility to consider in the portfolio an energy call option with a thermal power plant
in order to give robustness and protection to the ETC’s portfolio under a worst-case
analysis. The complete model is converted as two-stage stochastic programming
suitable for off-the-shelf solvers. Finally, we show that the proposed contracting
model can be interpreted from two different point of views: the stress test [27] and
ambiguity averseness [28][29][30].

The latter relation (ambiguity and robust optimization) has been widely stud-
ied in recent technical literature. For instance, [31] provides conditions that guar-
antee the satisfaction of probability constraints subjected to ambiguity in a lin-
ear programming framework; [32] studies the properties of a ambiguous chance-
constrained problem; [33] introduces an approach for constructing uncertainty sets
for robust optimization using deviation measures. Such measures capture the dis-
tributional asymmetry and lead to better approximations of chance constraints; [34]
provides a polynomial-time algorithm for sample-driven robust stochastic programs
with uncertainty in the mean and covariance; in [35], a framework for robust op-
timization that relaxes the standard notion of robustness by allowing the decision
maker to vary the protection level in a smooth way across the uncertainty set is
proposed. This approach is applied to the problem of maximizing the expected
value of a payoff function when the underlying distribution is ambiguous. In this
dissertation, we provide a formal relation between robust optimization and ambi-
guity by means of a re-parametrization of the problem. We show that solving the
robust-stochastic contracting model presented in Section 5 (also presented in [36])
is equivalent to solve a contracting model with ambiguity aversion. In addition, the
applications involving robust optimization and ambiguity are, typically, in finan-
cial markets. Here, we present an application to the optimal renewable contracting
strategy. In the next section, the objective and contributions of this dissertation are
summarized.

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



1. INTRODUCTION 17

1.1 Objective and Contributions

The commercialization of renewable energy in Brazil is typically made in the
regulated market [23]. In this environment, long-term energy contracts with spe-
cial clauses that transfer the production risk to consumers are auctioned, reducing
thus the renewable unit’s exposure to the spot price volatility. However, as a con-
sequence of these less risky contracts, the number of new renewable power plants
grew rapidly in the past few years. This movement, though, created a pressure in
the auctioned prices of the regulated market due to the high competition among
agents, pushing out risk averse investors. In the view of these considerations, the
contract market became a way out to keep the growing pace of renewable energy in
the Brazilian power system. However, the contracts typically traded in the contract
market are standard forward contracts. The main characteristic of these contracts
is the obligation by the seller (Gencos) to delivery a fixed amount of energy to the
buyer (consumer) against a fixed payment, i.e., unlike the regulated one, they have
no clauses that mitigate the unit exposure to the short-term market. Thus, the com-
bination of intermittent generation profiles with volatile spot prices creates a highly
undesirable uncertainty on the power generation company’s cash flow when they
are long in standard forward contract backed on renewable energy. This undesir-
able uncertainty is known as price-quantity risk.

In addition to price-quantity risk, electricity traders also face the difficulty to
model the behavior of the energy spot price due to the complex formation of this
variable. It is well known that spot prices are driven by complex interactions be-
tween participants in the market and largely depend on unpredictable market con-
ditions. Therefore, it becomes extremely difficult to capture the true underlying
stochastic process of the spot price and accurately simulate a set of mid- and long-
term scenarios needed to feed the stochastic model usually used to obtain an optimal
contracting strategy in the Brazilian contract market.

Therefore, the objective of this dissertation is to propose a different approach
to represent the uncertainty in the problem of electricity portfolio allocation involv-
ing renewable energy. Since the energy spot price modeling is a very difficult task,
we argue that the actual models to simulate it are inaccurate and only represent an
approximation of the true underlying probability distribution. Therefore, we make
use of robust optimization to characterize the spot price uncertainty in the ETC’s
portfolio allocation problem, while renewable generation are treated as usual, via
scenarios generated by Monte Carlo methods. In this sense, for each scenario of
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renewable production and a (trial) portfolio allocation, the proposed methodology
finds the series of spot price that creates the worst payoff for the ETC inside a given
credible (uncertainty) set. At last, a certainty-equivalent maximization problem is
derived in order to find the “best” portfolio of renewable sources taking into account
the worst-case realization of the energy spot price. We show that this approach has
two different interpretations widely used in practical applications, the stress test and
ambiguity aversion.

Our major contributions to the literature are fourfold:

• Present a new methodology to support an Energy Trading Company (ETC)
to devise contracting strategies under an optimal risk-averse renewable port-
folio problem in which the uncertainty in the generation of renewable energy
sources is accounted for by exogenously simulated scenarios, as is customary
in stochastic programming, and the uncertainty on spot price realization by
means of robust optimization;

• Show that the proposed model can be interpreted from two different points of
view: stress test and ambiguity aversion;

• Develop a business structure which considers the most traded contracts in
the Brazilian contract market (standard forward contracts, capacity payment
contracts and energy call options) within a robust optimization framework;

• Provide a link between robust optimization and ambiguity aversion models
with applications to the electricity portfolio allocation problems;

The main tools used in those commercial models are: two-stage stochastic
optimization, robust optimization, ambiguity and bilevel programming.

1.2 Organization

This dissertation is organized in the following chapters: Chapter 2 presents an
overview of the Brazilian power system in which we discuss the difference between
the contracting environments stated in Brazil during the power sector reform, the
process to obtain the energy spot price, the different types of energy procurements
used in this dissertation and the main renewable sources of the Brazilian power ma-
trix. Chapter 3 discusses the problem of making decisions under uncertainty. We
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present a widely used risk measure, the Conditional Value-at-Risk (CVaR), and an
induced Certainty Equivalent (CE) as well as description of the main tools used
in decision-making problems, such as stochastic optimization and robust optimiza-
tion. Chapter 4 describes the modeling approach proposed for the representation
of the uncertainties in the contracting model. Chapter 5 develops the revenue of
each modality of contract considered in the proposed business and also present the
electricity portfolio allocation model. Chapter 6 discusses the two different point
of views of the proposed model with their interpretation. A link between robust
optimization and ambiguity theory is also presented in this Chapter. Chapter 7
illustrates the applicability of the proposed model in which the ETC has only the re-
newable sources to back up a forward contract. Two case studies are presented, one
for mid-term contracts and one for a long-term business. In Chapter 8, we present
two more studies for the complete model, which includes a thermal call option in
the ETC’s portfolio. Finally, Chapter 9 concludes this dissertation and discusses
extensions and future research.

1.3 Publications Related to this Dissertation

During the MSc degree pursing, several publications were produced related to
the theme of this dissertation. The following list presents the most important ones:

I) Journal Publications

• B. Fanzeres with A. Street, and L. A. Barroso, "Contracting Strategies for
Renewable Generators: a Hybrid Stochastic and Robust Optimization Ap-
proach," accepted to IEEE Trans. Power Syst.

II) Conference Proceedings

• B. Fanzeres with A. Passos, A. Street, and S. Bruno, "A Novel Framework to
Define the Premium for Investment in Complementary Renewable Projects,"
in Proc. XVIII Power System Computation Conference (XVIII PSCC) 2014,
Wroclaw, Poland, pp. 1-7, Aug 2014.

• B. Fanzeres with A. Street, and L. Barroso, "Contracting Strategies for Gen-
eration Companies with Ambiguity Aversion on Spot Price Distribution," in
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Proc. XVIII Power System Computation Conference (XVIII PSCC) 2014,
Wroclaw, Poland, pp.1-8, Aug 2014.

• B. Fanzeres with A. Street, D. Lima, J. Garcia, L. Freire, and R. Rajagopal,
"Mecanismo de Realocação de Energia Renovável: Uma Nova Proposta para
Fontes Alternativas," in Proc. XXII Seminário Nacional de Produção e Trans-

missão de Energia Elétrica (XXII SNPTEE) 2013, pp. 1-9, Brasília, Distrito
Federal, Brazil, Oct. 2013.

• B. Fanzeres with A. Street, A. Veiga, D. Lima, A. Moreira, J. Garcia, and
L. Freire, "Simulação da Geração de Usinas Renováveis Coerentes com os
Cenários de Operação do Sistema Elétrico Brasileiro," in Proc. XXII Sem-

inário Nacional de Produção e Transmissão de Energia Elétrica (XXII SN-

PTEE) 2013, pp. 1-8, Brasília, Distrito Federal, Brazil, Oct. 2013.

• B. Fanzeres with A. Street, A. Veiga, D. Lima, L. Freire, and B. Amaral, "Fos-
tering Wind Power Penetration into the Brazilian Forward-Contract Market,"
in Proc. IEEE PES General Meeting 2012, pp. 1-8, San Diego, California,
USA, Jul. 2012.

• B. Fanzeres with A. Street, A. Veiga, D. Lima, L. Freire, and B. Amaral,
"Comercialização de Energia Eólica no Ambiente Livre: Desafios e Soluções
Inovadoras," in Proc. XII Symposium of Specialists in Electric Operational

and Expansion Planning (XII SEPOPE) 2012, pp. 1-10, Rio de Janeiro, Rio
de Janeiro, Brazil, May. 2012.

• B. Fanzeres with A. Street, "Cálculo da Curva de Disposição a Contratar
de Geradores Hidroelétricos: Uma Abordagem Robusta ao Preço de Curto-
Prazo," in Proc. XXI Seminário Nacional de Produção e Transmissão de En-

ergia Elétrica (XXI SNPTEE) 2011, pp. 1-8, Florianópolis, Santa Catarina,
Brazil, Oct. 2011.
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2
Brazilian Power Sector

The Brazilian power system is the largest in Latin America with 125 GW
installed [37]. Almost 98.3% of the country is connected at the bulk power level
by a 116,000 km meshed high-voltage transmission network, with voltages ranging
from 230 kV to 750 kV ac, plus two 600 kV dc links connecting the binational
Itaipu power plant (14,000 MW) to the main grid. The main direct international
interconnections are the back-to-back links with Argentina (2,200 MW), plus some
smaller interconnections with Uruguay (70 MW) and Venezuela (200 MW). The
remainder 1.7% of the system comprises small isolated systems located mainly in
the Amazon region. Fig. 2.1 shows the Brazilian transmission grid in 2013 [1].

Fig. 2.1: Brazilian transmission system in 2013 [1].

The main driving force of the system is hydroelectricity. Almost 70% of to-
tal installed capacity is hydropower, with more than 75% of the total system load
met by this source. The remaining generation sources mix includes the renewable
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plants: wind and solar power, and the thermal generation: natural gas, nuclear, oil,
bioelectricity (co-generation from ethanol production, using sugarcane bagasse as a
fuel) and coal (see Fig. 2.2 for data of capacity installed and energy generation of
each source in Sep/2013). In particular, wind power is emerging as a competitive
new source. For instance, according to the Brazilian expansion plan for 2020, wind
power will represent 6.1% of the total capacity installed in the country, becoming
the second largest source in capacity, only behind hydroelectricity [38].

Source 

Capacity Installed 

(Sep/2013) 

Energy Produced 

(Sep/2013) 

MW % Total GWh % Total 

Hydro 83,437 69.75% 33,604 77.52% 

Wind 1,747 1.46% 682 1.57% 

Solar 3 >0.01% 0.12 >0.01% 

Natural Gas 13,382 11.19% 4,011 9.25% 

Nuclear 2,007 1.68% 1,251 2.89% 

Oil 7,338 6.13% 530 1.22% 

Bioelectricity 9,757 8.16% 2,178 5.02% 

Coal 1,944 1.63% 1,090 2.51% 

Total 119,615 100.00% 43,346.12 100.00% 

Fig. 2.2: Capacity installed and energy produced in the Brazilian interconnected system in
September 2013 [1].

On the other side of the equation, the Southeastern area of Brazil has the
largest energy consumption among the five geographic regions, with 52% of to-
tal consumption (39,440 GWh), followed by the Northeastern and the South area
(both with 17%) and the Middle-East and North area (both with 7%). Moreover, in
Sep/2013, Brazilian total consumption was divided into the following classes: 27%
residential users, 40% industrial users, 18% commercial users and 15% others users
(rural areas, public light, public service and losses).

2.1 General Aspects of the Brazilian Power Sector Reform

The Brazilian power sector reform started in 1996 [12]. Before the restruc-
turing process, the system was bundled and government owned. The central power
was the main agent which financially supported the system’s expansion and also
coordinate of the system’s operation. As occurred in other countries with the same
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structure, the power plants construction cost overran over time and the load forecast
was constantly biased downwards leaving the system with (apparently) over capac-
ity. Therefore, the tariffs for the consumers were not adequate and not reflected the
system’s true cost, being mostly an instrument to control the exploding inflation.
This situation led to a disastrous financial situation in the Brazilian power sector
with several delays in construction plants and almost no capital for new investments
to meet the growing demand.

In this sense and following the main guidelines of the reform occurred world-
wide, the Brazilian power sector replaced the regulated procedures used in the
decision-making process by market mechanisms. The expansion planning is now
driven by market forces, i.e., neither are mandatory expansion plans for the gener-
ation capacity nor when/how to meet a demand projection. Agents decide on their
own when and where to build a new facility and its characteristics, such as the plant
installed capacity, the energy source, the machinery used, among others. The main
objective of the reform was to induce a reliable and efficient energy supply with
adequate tariffs for end-users. In order to give more reliability to the system, was
established the creation of an Independent System Operator (ONS) [1] to, indepen-
dently, operate the system; a market administrator (CCEE) [39] which coordinates
all the bilateral contracts, the short-term market and the electricity auctions; and
an agency that regulates and supervises the power system agents (ANEEL) [37].
Sector reform brought about 85% of total regulated load privatization and the trans-
mission expansion had been carried out with strong participation of private agents.
However, due to political opposition, the privatization of power generation compa-
nies resulted in only 15% of total generation capacity, being appointed to be one of
the main reasons for the 2001-2002 supply crisis that affected all consumers around
the country [17].

Although competition became a keyword in the Brazilian power sector, the
system’s operation remain centralized coordinated and cost-based. The basic rea-
son for not moving to a bidding scheme was the vast number of interconnected
basins spread out through a complex cascade topology in which plants with differ-
ent ownerships lie in the same cascade (Fig. 2.3). This central scheme leads to an
efficient use of the reservoirs since the operator can take advantage of their regu-
lation capability to manage then as a portfolio and obtain the long-term minimum
overall operating cost [15]. Because the system dispatch is cost-based, the spot price
that clears the short-term market in Brazil is constructed to represent the expected
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value of the water opportunity in a long-term operation setting and is obtained by
means of the dual variables associated with the power constraints (marginal opera-
tive costs). Thus, the Brazilian spot prices are not based on the equilibrium between
supply and demand as many electrical systems around the globe are.

Fig. 2.3: Brazilian interconnected system hydro plants schematic diagram [1].

A collateral effect of such centralized dispatch is the high volatility of the spot
price and its strong correlation with the system’s inflow [17]. The spot price typi-
cally stays at lower values in most of the time, reflecting a expected “normal” inflow
conditions, reaching extremely high values when the system’s future reliability is
expected to be in danger. Moreover, the dispatch model takes into account some ex

ante hypothesis on market uncertainties, such as fuel prices, plant availability, sup-
ply expansion scenario, hydrology (just to name a few), in which any deviation on
this hypothesis distort the observed probability distribution of the prices (ex post)
with respect to the simulated (planned) one (see Fig. 2.4).

A direct consequence of this structure is that the spot price in Brazil does not
provide a clear economical signal for the entrance of new generation as economic
theory suggests [14]. In this sense, a strict rule was established to create incentives
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Fig. 2.4: Brazilian interconnected system hydro plants schematic diagram [1].

for the entrance of new generation: all consumers, both regulated and free, should
have contracts that back up 100% of their loads. The contract coverage is verified
ex post, comparing the cumulative MWh consumed in the previous year with the
cumulative MWh contracted. If the contracted energy is smaller than the consumed
energy, the user pays a severe penalty. Although the contracts are financial instru-
ments only, they must be covered by Firm Energy Certificates (FECs), measured in
avgMW1, issued by the system regulator (ANEEL) for each power unit of the power
plant [40]. For hydro units, the FEC is evaluated as the maximum demand that can
be supplied within the worst hydrological condition of the historical record of in-
flow, being thus a probabilistic variant of the well-known concept of “firm energy”
[41]. In the case of thermal plants, the FEC is assessed by means of a simulation
procedure using the official dispatch model and is dependent of the operating cost
given by the unit [14]. With regard to renewable units, the FEC represents a quantile
of the historical production, typically being the 10%, 25% or 50% quantile of the
renewable unit production [24]. This energy certificate tries to estimate the maxi-
mum amount of electricity that the generator can deliver on a sustainable basis and
it is commonly used to measure the reliability of supply. In addition, the amount of

1 An average MW (avgMW) is equivalent to the continuous production/consumption of one MW
during the relevant period. One avgMW during one year corresponds to 8760 MWh.
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energy that the generator is allowed to sell in contracts is constrained by this certifi-
cate in order to not put the reliability of the system’s supply in danger. Therefore,
since each consumer has a contract that covers 100% of its energy consumption
and each contract is backed up by a firm energy certificate, a link between physical
generation expansion and load growth has been made, creating thus incentives from
the entrance of new generation.

In the next section, we discuss the two environments created by the restruc-
turing process for contract trading backed on electricity in Brazil.

2.2 Contracting Environments

Aiming to establish a formal way for energy trading in Brazil, the national
regulatory agency [37] created in 2004 two different trading environments: the Reg-
ulated Market and the Contract Market [42].

In the regulated market, Distribution Companies (Discos) purchase mid- and
long-term bilateral contracts through public open auctions. The contracts negotiated
have standardized rules and are designed to allocate risk between generators, dis-
tributors and consumers, and also to promote efficient energy purchase. The future
delivery allows investor in generation plants to build the projects and the long-term
contract creates conditions for project financing. These auctions are divided into
two main groups: (i) New Energy auction, carried out three and five years in ad-
vance and aim to auction off new capacity to cover the foreseen load growth; and
(ii) Existing Energy auction, which is designed to cover the existing load, acting
as a contract renewal, and the unexpected load growth. Operationally, the auctions
are carried out for the total load of all Discos, which means that the winners must
sign bilateral contracts with each distribution company in proportion to their energy
needs. This environment correspond to almost 70% of total contracts negotiated.

Some important auctions were made under the revised regulatory model in
the Brazilian’s regulated market. The first energy procurement were carried out
in 2004 and three types of long-term energy contracts were offered to generators.
Each product was an eight-year financial energy supply contract with start dates in
2005, 2006 and 2007. The final result were about 18.5 avgGW contracted [23]. In
2005, an auction for 15-years contracts for delivery in 2008, 2009 and 2010 were
carried out aiming to contract new capacity. The novelty of this auction, with respect
to the one made in 2004, is that the contracts auctioned were energy call options
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in which the thermal generator needed to bid both its strike price and the option
premium [43]. The final result were 3.2 avgGW contracted [14]. Another important
auction carried out in 2009 were a single product were auctioned for a specific
technology, the wind power. The motivation of this auction was to take advantage
of the 2008-2009 world financial crisis that has lowered equipment cost as well as
to foster competition among the interested investors, thus starting the development
of this technology in the country in a larger scale. The product offered was a 20-
year energy contract for delivery in 2012 and had very specific characteristics that
mitigate the exposition of the producer to the short-term market. The final result
were 1.8 avgGW contracted [44]

On the other hand, in the contract market, Gencos and consumers with loads
higher than 3 MW freely negotiate short, medium and long term bilateral contracts.
This environment has gain substantial attention, especially regarding to renewable
energy, since the downwards movement occurred in the regulated market prices.
Moreover, consumers that purchase energy in the contract market from renewable
plants (wind power, small hydros run-of-river, biomass and solar farms) with less
than 30 MW of capacity installed have an discount of more than 50% in the trans-
mission fee [45]. However, the contracts typically negotiated in this environment
are standard forward contracts, in which the seller counterpart (Gencos) has the
obligation to delivery a fixed amount of energy to the buyer (consumers) against
a fixed payment. This obligatory delivery associated with the inherent intermit-
tency of energy production of renewable sources exposes the generation company
to the so-called price-quantity risk [10][19][20][21][22], which occurs whenever the
Genco must purchase in the short-term market, at high prices, the amount of energy
sold but not produced in order to fulfill the contract. Thus, risk-mitigation mech-
anisms are of utmost importance when trading renewable energy in the Brazilian
contract market.

The proposed model of this dissertation aims to mitigate the price-quantity
risk of an Energy Trading Company (ETC) when selling standard forward contracts
backed on renewable energy by treating the main risk factor of the business, the ir-
regularity of the spot price, by means of robust optimization. In the next section, we
briefly explain the formation of the short-term market price with its interpretation
and also motivate the use of robust optimization to model its uncertainty instead of
using the classical stochastic approach.
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2.3 Energy Spot Price Formation

In most electricity power markets worldwide, the price that clears the short-
term market is obtained via an optimization problem. Operationally, an independent
system operator receives energy offers from generation companies and energy bids
from consumers, and determines, for every hour, the market-clearing price, as well
as the individual power production of each generator and the consumption levels of
each demand [46][47]. The procedure used by the operator is typically formulated
as the following economic dispatch problem:

(π, g,d) ∈ arg
{

min
gi,t,dj,t,
δt,n

∑
t∈T

(∑
i∈I

PG
i,tgi,t −

∑
j∈J

PD
j,tdj,t

)
(2-1)

subject to( ∑
i∈Ψ(n)

gi,t −
∑
j∈Ψ(n)

dj,t

)
=

∑
m∈Θ(n)

Bn,m(δt,n − δt,m) : πt,n,

∀ t ∈ T , n ∈ N ; (2-2)

0 ≤ gi,t ≤ QG
i,t, ∀ i ∈ I, t ∈ T ; (2-3)

0 ≤ dj,t ≤ QD
j,t, ∀ j ∈ J , t ∈ T ; (2-4)

fmin
n,m ≤ Bn,m(δt,n − δt,m) ≤ fmax

n,m,

∀ t ∈ T , n ∈ N ,m ∈ Θ(n); (2-5)

δmin
t,n ≤ δt,n ≤ δmax

t,n , ∀ t ∈ T , n ∈ N\{1}; (2-6)

δt,n = 0, ∀ t ∈ T andn = 1.

}
(2-7)

The decision variables in (2-1)-(2-7) are: (i) the energy production (gi,t) of
each generator i in the set of generators I, during the considered dispatch period
t ∈ T

(
usually t represents one hour and T = {1, ..., 24}

)
; (ii) the consumption

level (dj,t) of each demand j in the set of end-users J , during the same period; and
(iii) the voltage angle (δn,t) of bus n ∈ N in time period t ∈ T . Within the set
of parameters, Bn,m is the susceptance of the line that connects the buses n and m,
and fmin

n,m and fmax
n,m are the transmission capacity of the respective line; δmin

t,n and δmax
t,n

are the bounds of each angle bus n ∈ N during the considered dispatch period t
and are typically set to be the mathematical constant −π and π, respectively; Ψ(n)

identifies the unit (generation or demand) located at bus n; and Θ(n) identifies the
buses connected to the bus n.
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In this framework, equation (2-1) maximizes the social welfare by obtaining
the minimum difference among the cost of dispatch and the cost of consumption.
Note that PG

i,t and PD
j,t are the offer and bid prices by the generators and end-users,

respectively. A dc linear approximation of the grid, equation (2-2), is used to repre-
sent the power balance at each node. The price which clears the short-term market
is assessed by the dual variable of this constraint and, for a given level of consump-
tion, can be interpreted as cost to meet an addition MW of demand. Equations (2-3)
and (2-4) are, respectively the bounds for the generation dispatched and the level
of demand consumed, where QG

i,t and QD
i,t are the offer and bid quantities by the

generators and end-users, respectively. Finally, (2-5) and (2-6) enforce the bounds
of each transmission line and angle buses in the grid, respectively, and (2-7) im-
poses n = 1 as the slack bus. A complete representation of the dispatch problem
with no-load offers, ramping rates, minimum generation limits, and minimum up
and down times can be incorporated to (2-1)-(2-7) and has been widely studied in
the literature [48][49][50][51].

The unit commitment problem presented in (2-1)-(2-7) is typically applied to
systems with thermal predominance. However, the hydro dominance of the Brazil-
ian power system in addition to different plant owners in the same cascade, as dis-
cussed in Section 2.1, poses additional challenges to the system’s operator with
respect to a simple thermal dispatch [15]. Aiming to take advantage of the large
reservoirs that are capable of multi-year regulation (up to five years), the system is
centrally operated and a long-term cost-based stochastic optimization model is ap-
plied to define the dispatch of the generators (demand is considered fixed) and the
price that clears the short-term market [16]. The main decision that should be made
is to assess the optimal use of the water stored in the reservoirs, i.e., the operator
should decide if is optimal to use the water today (in the short-term) or to store it
and use in the future (in the long-term). For instance, assume a two-period decision
process with two possible realizations for the future inflow (high or low inflows). If
the operator decides to use the reservoirs in the short-term and a high inflow occurs,
then the decision was made “correctly” since the demand was met at the minimum
cost and the reservoirs are full again. On the other hand, if a low inflow occurs, the
system enters in deficit, thus possible needing an expensive source (thermal units)
to meet the future demand, configuring the “wrong” decision. Now assume that the
operator decides to not use the reservoirs in the short-term. A thermal unit is used
to meet the demand in the short-term and water is stored in the reservoirs. If a high
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inflow occurs, the reservoir spills, losing energy stored and, as a consequence, the
system was not met at minimum cost. On the other side, if a low inflow occurs,
then no energy is lost and the decision made was made “correctly”. In Fig. 2.5, the
decision process for this simple example is presented.

Use reservoir 

Not use reservoir 

Decision 
made by 

the 
operator 

OK 
High Inflow 

Low Inflow 

High Inflow 

Low Inflow 

Deficit 

Spillage 

OK 

Fig. 2.5: Decision process in hydrothermal systems.

As a result, the decision process must take into account a composition be-
tween immediate cost and the future cost in a environment of uncertainty (the level
of inflow in the future). In this sense, the problem in the Brazilian dispatch do not
rely on which power level is needed to meet the demand that is feasible with re-
spect to ramp and reserve constraints and/or maximum and minimum up and down
times. The problem is “energetic”, i.e., relies on the optimal operation of the reser-
voirs under inflow uncertainty, since ramp and reserves are addressed by the hydro
plants. To construct an adequate operation model for hydrothermal systems, note
that Immediate Cost Function (ICF) is related to the cost of using thermal gener-
ation in the short-term and storage water for the use in the future. On the other
hand, the Future Cost Function (FCF) is related to the usage of thermal generation
in the future. Therefore, both functions are inversely related: (not) use the water
today, (increases) decreases the level of the reservoirs in the future and (decreases)
increases the expected cost of thermal unit. Thus, the optimal use of the water cor-
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respond to the point that minimizes the sum of both functions, i.e., the point that the
derivative of both functions are equal in absolute value. In a stochastic framework,
the optimal use of the water must be assessed for different states of the nature (sce-
narios), representing possible future realizations of the reservoirs levels. Hence, the
optimization model (main constraints) to find the optimal long-term operating level
of a hydrothermal system in a stage (period) t ∈ T can be formulated as:

zt = min
gj,t,ui,t,
υi,t+1,si,j

∑
j∈J

cjgj,t + αt+1(υt+1) (2-8)

subject to∑
i∈I

ρiui,t +
∑
j∈J

gj,t = dt : πt; (2-9)

υi,t+1 = υi,t − ui,t − si,t + ai,t +
∑

k∈M(i)

(uk,t + sk,t), ∀ i ∈ I; (2-10)

0 ≤ υi,t+1 ≤ ῡi, ∀ i ∈ I; (2-11)

0 ≤ ui,t ≤ ūi, ∀ i ∈ I; (2-12)

0 ≤ gj,t ≤ ḡj, ∀ j ∈ J . (2-13)

In (2-8)-(2-13), the decision variables are: (i) thermal production (gj,t) of the
unit j in the set of plants J at stage t; (ii) volume discharged (ui,t) by the hydro
plant i in the set of hydro units I at stage t; (iii) total volume at the hydro plant
reservoir (υi,t+1) in the next stage t+ 1; and (iv) spillage discharge si,t of the hydro
plant i at stage t. Within the set of parameters, ūi, ῡi and ḡj are, respectively, the
maximum value for the volume discharged, the volume stored and thermal produc-
tion. Moreover, ρi represents the production coefficient of the hydro unit i, ui,t is
the actual level of the reservoir i at stage t, ai,t the inflow to the hydro unit i at stage
t and dt the foreseen demand for the stage t.

As discussed earlier, the objective function (2-8) of the hydrothermal dis-
patch model aim to minimize the sum of the ICF, represented by

∑
j∈J cjgj,t, and

the FCF, αt+1(υt+1). Note that the FCF of a stage t (αt(·)) is parametrized by the
total volume stored in the system υt = {υ1,t, ..., υ|I|,t} at the same stage, represent-
ing the future status of the system. Equation (2-9) is the load balance in stage t.
Again, its dual variable defines the price that clears the short-term market and has
the same interpretation of (2-2). In (2-10), the hydraulic continuity is modeled for
each hydro plant i ∈ I. In this model, it is assumed that the discharges from all
upstream reservoirs, represented by the set M(·), flow directly into the succeed-
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ing downstream plant with no time lag. Finally, the set of equations (2-11)-(2-13)
bounds the volume discharged, the volume stored and thermal production, respec-
tively. In real time operation, several particular constraints are considered to better
represent the system, but the equations that form the backbone of the hydrothermal
dispatch model is presented in (2-8)-(2-13). The main question that arises is how
to compute the value of the FCF, αt+1(υt+1). [16] presents a recursive procedure,
called Stochastic Dual Dynamic Programming (SDDP), to evaluate this function
and efficiently solve the hydrothermal dispatch.

From the point of view of energy trading in Brazil, agents typically assess
their optimal contracting strategy by simulating the system for the contract period
using the official dispatch tool based on (2-8)-(2-13) and obtaining a series of syn-
thetic scenarios for prices that clears the short-term market (π). Then, a two-stage
linear optimization problem is formulated to assess the optimal portfolio [10][19].
However, note that, since the operation evolves a long-term reservoir management,
the operator needs to assume a series of hypothesis for the system for the long-run
operation, such as hydrology, demand level, no delay on plants construction, out of
merit order dispatches, among others. In the non-occurrence (ex-post) of some of
this hypothesis in operation lead to a totally different solution for (2-8)-(2-13) and
thus a totally different spot price. In this context, the optimal portfolio decided ex-

ante can be sub-optimal or even infeasible for implementation, being in some cases
(not so rare), more risky than planned. In addition, the complex structure of the spot
price formation in Brazil makes a statistical model for price simulation unappropri-
ated. Therefore, the need for a methodology that capture this systemic risk is of
utmost importance in the problem of devising optimal strategies for trading compa-
nies. In this work, we propose the use of robust optimization to protect the portfolio
against the worst-case realization of the spot price within a feasible set. We show,
by means of a realistic case for the Brazilian system, that this approach outperforms
the pure stochastic one when the realized spot price is influenced by some changes
on the system structure that were not contemplated during the scenarios obtainment
process.

2.4 Renewable Energy in Brazil

In Brazil, the renewable sources that are receiving special attention in the past
years are the Wind Power (WP) and the Small Hydro (SH) run-of-river. According
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to the Brazilian expansion plan for 2020, these two sources will represent 10% of
the total installed capacity in the system (see Fig. 2.6 for the individual share) [38].
The great interest in these sources comes from the appeal to reduce greenhouse
emission and reach a more sustainable power system. However, on the other hand,
these sources are known to have a high intermittent energy production. Therefore,
from the point of view of trading WP and SH plants in the Brazilian contract market,
the uncertain renewable production associated with the irregular pattern of the spot
price, discussed in Section 2.3, poses a major risk to generation companies which
sell forward contracts backed up on these sources.

Fig. 2.6: Installed capacity in 2020 (forecast) segregated by type of source.

In almost all countries, wind power has been the most developed renewable
source. In 2012, its installed capacity around the world exceeded 280,000 MW with
a growth rate of 15.8% over 2011, more than ever before. China appeared as the
largest total wind power capacity with more than 75,000 MW installed, followed by
USA (59,000 MW), Germany (31,000 MW), Spain (22,000 MW) and India (18,300
MW), summing 73% of the worldwide wind capacity (see Fig. 2.7 for the evolution
of the worldwide total installed capacity of wind power) [2].

In Brazil, however, this growth movement started only in 2009, led, mainly, by
the world financial crisis and regulatory/government incentives. During the 2008-
2009 world financial crises, a severe cutoff in energy investment took place in Eu-
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Fig. 2.7: Wind power world total installed capacity (source: WWER 2012 [2])

rope forcing the European and Asian manufactures to lower their equipment cost
and find alternative markets for their products, aiming still growing economies,
which is the case of Brazil. On the regulatory environment, in 2009, a specific
auction to contract wind power as reserve energy to the system was carried out.
This auction included clauses that alleviate the producers risk in order to foster
this source into the Brazilian power system [44]. In subsequent auctions, the pace
of wind energy contracted grew exponentially at the cost of a severe reduction on
the auctioned price, pushing out risk averse investors. However, Brazil still has an
enormous wind power potential untapped. According to [52], almost 300 GW of
wind energy remain unexplored, mainly in the Northeastern area of country. In this
sense, the Brazilian contract market became a way out to keep the growing pace
of wind power in the Brazilian power system. Nevertheless, as discussed earlier,
selling a forward contract backed up on wind power production can be very risk for
the generation company, and risk-mitigation mechanisms (as the one proposed in
this dissertation) should be studied in order to make a “safe” transition between the
regulated market to the contract market.

Analyzing the energy production profile of a typical wind farm in the North-
eastern area of Brazil (Fig. 2.8), despite the intermittency, we can observe a seasonal
pattern which can be explored to reduce the agent’s exposition to the short-term mar-
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ket via a joint commercialization with a complementary source, such as the SHs in
the Southeastern area. Moreover, it is also possible to adequately generate scenarios
of energy production for long periods (more than a year) by means of a periodical
stochastic process without violating its dynamics [24].

Fig. 2.8: Quantiles of energy production of a typical wind farm in the Northeastern area of
Brazil

The other renewable source with great interest in the Brazilian system is the
small hydro run-of-river. According to [53], a SH is a hydroelectric plant in which
the capacity installed in higher than 1 MW and lower than 30 MW. Moreover, the
total area of the plant reservoir must be higher than 3 km2 and lower than 13 km2,
thus having a regularization capacity of less than a month (typically, a single day).
Therefore, the energy production is a direct function of the influent inflow. In terms
of energy commercialization, the price-quantity risk that affect the trading of re-
newable sources in the contract market is worsened for the case of the small-hydros
due to the high (negative) correlation of the spot price with the system’s inflow [17].

In order to mitigate this important risk, a hedging mechanism, known as En-
ergy Reallocation Mechanism (MRE), was proposed for hydro plants, in which each
hydroelectric (small hydros and “big” hydros) receives an energy credit proportional
to the total hydro production (sum of the production of all hydros in the system).
As a consequence, within the MRE, the production used to clear the contract is less
intermittent and seasonal, being thus less expose to the short-term market. How-
ever, a several critics have been made to the inclusion of SHs into the MRE with the
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consequence that some plants have been excluded from the mechanism. Moreover,
the entering of new participants (SHs) in the pool became more difficult2. Thus,
SHs still need to study risk-mitigation mechanisms in order to make the contract
market a less risk environment, especially for those outside the MRE. In Fig. 2.9,
the energy production profile of a typical small hydro plant in the Southeastern area
of Brazil is presented. Note that the uncertainty on the SH production is higher than
the WP (Fig. 2.8), but it also presents a seasonal pattern which can be explored in
the same way discussed earlier.

Fig. 2.9: Quantiles of energy production of a typical small hydro plant in the Southeastern
area of Brazil

Finally, in order to illustrate the complementarity between the WP and the
SH energy production, in Fig. 2.10 is presented the monthly average and 5%-95%
quantiles for each renewable generation, in percentage of their FEC. Several works
in recent literature, such as [10][21][22][24], make use of this well-known charac-
teristic and shown positive results in mitigating the price-quantity risk when a joint-
strategy is performed to sell a forward contract backed up by renewable sources in
the contract market. It is important to mention that the energy production profile of
a biomass (generation from sugar-cane waste) also presents a complementary pro-
file with a SH, being suitable for joint-trading strategies. In the business structure
proposed in this work, the complementarity characteristic of renewable sources to
create a less intermittent joint-generation profile with higher market value will be

2 For “big” hydros, the entry in the mechanism is compulsory.

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



2. BRAZILIAN POWER SECTOR 37

explored too. We make use of the model presented in [24] to simulate correlated
scenarios of different renewable plants and consider then in a two-stage stochastic
programming model within the robust optimization framework applied in the spot
price realization. The details over the formulation of the problem as well as the risk-
averse measure used in the contracting model will be presented in the next chapters.

Fig. 2.10: Monthly average and 5%-95% quantiles for SH and WP generation profile in
percentage of their FEC
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3
Decision under Uncertainty

The problem of decision under uncertainty can be defined as a problem in
which an agent must define a future guiding policy with uncertainty in some of the
problem parameters [54]. It contains a set of decision variables in which their def-
inition must be determined before the realization of the uncertainty, known as first

stage variables. In addition, some problems have also the possibility of a “correc-
tive action” after the realization of the uncertainty. If a single action can be made,
the problem is known as a two-stage problem and the actions are called second

stage variables. For instance, in typical electricity trading, the contracting decision,
first stage decision, is made before the observation of the uncertainty (demand, spot
price, energy availability, etc.) and the second stage decision is the short-term mar-
ket settlement. On the other hand, if a series of actions over time is allowed as
the information is revealed, the problem is known as a multi-stage problem and the
actions are called multi-stage variables [55]. The classical approach to deal with
such problems is to treat the “uncertain parameters” as random variables with an
associated joint probability distribution function.

A naive approach to solve these problems, i.e., to assign a value to the decision
variables, is to substitute the uncertain parameters by their forecast or best predic-
tion (typically the expected value obtained from the joint distribution). Frequently,
this procedure reaches a very simple and intuitive solution. However, in those cases
in which the decision variables are highly sensitive with respect to the uncertain pa-
rameters and these parameters have a significant level of variability, it is important
that the model used to obtain the future guiding policy (the set of decision variables)
takes into account the risk associated to this variability. Moreover, each individual
(agent) has different preferences or risk profile, i.e., a different value is assigned for
the same “result”. In this sense, a quantitative treatment of the uncertainty and risk
preference are important to avoid undesirable solutions.

In this chapter, a widely used risk measure, both in practical and academi-
cal applications, named the Conditional Value-at-Risk (CVaR), is presented and a
Certainty-Equivalent (CE) induced by the CVaR is discussed. Furthermore, some
important approaches to model decision-making problems with uncertainty - stochas-
tic programming, ambiguity theory and robust optimization - are analyzed.
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3.1 Conditional Value-At-Risk

An important issue in decision theory arises when the decision maker needs
to define its attitudes towards uncertainty and a risk management policy. In the
past years, the Conditional Value-at-Risk (CVaR) has been playing the role of the
main risk measure and paving the way for an enormous number of applications
[24][56][57]. The main reason is its very intuitive form and important coherence
properties [58]. In a net revenue or financial profit context, for which agents or
decisions makers generally express their preferences, the CVaRα can be defined as
the conditioned expectation of the revenue left-side continuous distribution below
a given (1 − α) quantile, typically 1-10% (or α from 0.99 to 0.90). To mathemat-
ically model the CVaR, we assume a probability space (Ω,Σ,P) and a stochastic
continuous revenue defined as a Σ-measurable function R̃ : Ω → Q, which maps
elements from the set of all possible “states of nature” (Ω) to the compact set of all
possible revenue outcomesQ ⊂ R. Within these definitions, an induced cumulative
probability distribution function (FR̃ : Q → [0, 1]) can be defined as:

FR̃(r) = P
{
ω ∈ Ω | R(ω) ≤ r

}
, ∀ r ∈ Q. (3-1)

In addition, we define F−1

R̃
(α) = inf

{
r ∈ Q |FR̃(r) ≥ α

}
as the left contin-

uous inverse of FR̃. Therefore, for a fixed level α, the Value-at-Risk (VaRα) is the
(1− α)-quantile of FR̃, i.e., VaRα(R̃) = F−1

R̃
(1− α) [59]. Then, by definition, the

Conditional Value-at-Risk is the left-tail conditional expectation of revenue values
up to the (1−α) quantile (or VaRα(R̃)) and have the following mathematical form:

CVaRα(R̃) := E
[
R̃ | R̃ ≤ VaRα(R̃)

]
:=

∫
{ω ∈ Ω | R(ω)≤VaRα(R̃)}

R(ω) · dP(ω)

FR̃
(
VaRα(R̃)

) . (3-2)

In Fig. 3.1, the CVaRα and VaRα values for a smooth revenue cumulative
probability function is presented. In real applications, where the agent’s revenue is
a function of multidimensional random variables that model exogenous risk factors,
expression (3-2) can be hard to compute since it is required to assess the multidi-
mensional integrals value. In this sense, [60] propose an equivalent approach for
(3-2) based on the solution of the optimization problem presented in (3-3):
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𝐹𝑅 𝑟  

Revenue support 
𝑟 

VaR𝛼 𝑅  

CVaR𝛼 𝑅  

1 − 𝛼 

1 

Fig. 3.1: CVaRα and VaRα values for a smooth revenue cumulative probability function.

CVaRα(R̃) := sup
z

{
z − E[(z − R̃)+]

(1− α)

∣∣∣∣ z ∈ R
}
, (3-3)

where (x)+ = max{x, 0}. The optimality proof as well as several properties of
(3-3) can be found in [60].

Note that this approach exchanges the multidimensional integration in (3-2)
by the supremum calculation over a convex family of unconditional expectation.
Also, the optimization problem can take advantage of some convergence results that
are provided for finite sampled scenarios, such as the convergence of the expectation
operator

(
limn→∞

(
n−1

∑n
i=1 xi

)
→ E[X̃], where {xi}ni=1 is a sample sequence of

the random variable X̃
)

[61]. Therefore, (3-3) can be “solved” by sampling the
exogenous variables, the so-called Sampled Average Approximation (SAA) [62].
Moreover, note that (3-3) is a convex maximization problem, which can be easily
coupled into a decision-making problem typically modeled as a convex problem
as well. In this sense, for a set S of sampled scenarios Rs of the revenue with
probability of occurrence ps, i.e, the pair {(Rs, ps)}s∈S , the CVaR of a continuous
random variable R̃ can be approximated by the following linear programming:

CVaRα(R̃) ≈ max
z,δs

z −
∑
s∈S

psδs
(1− α)

(3-4)
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subject to:

δs ≥ z −Rs, ∀ s ∈ S; (3-5)

δs ≥ 0, ∀ s ∈ S. (3-6)

With respect to its properties, CVaR is considered a coherent risk measure
[58][63]. Finally, it is shown in [64] that the CVaRα preference index is the Cer-
tainty Equivalent (CE) of the assessed random variable R̃. In the next section, we
discuss the concepts of CE and its importance in decision theory.

3.2 Certainty Equivalent

In decision theory, the concept of Certainty Equivalent (CE) is defined as the
minimum (deterministic) value in which an agent becomes indifferent to a stochas-
tic outcome [65]. In [64], it is shown that "the CVaRα preference index of a given

random variable is its induced certainty equivalent (Remark 4)". Moreover, in or-
der to avoid (irrational) solutions with the same value of CVaRα, i.e., solutions with
the same risk, but lower expected values (lower return), a convex combination be-
tween the CVaRα and the unconditioned expectation of the agent’s revenue, called
Extended CVaR Preference (ECP), is also presented. In this sense, a risk averse
agent which follows an ECP has its certainty equivalent (Φα,λ) defined as:

Φα,λ(R̃) = λCVaRα(R̃) + (1− λ)E[R̃], with λ ∈ (0, 1). (3-7)

Note that, in (3-7), the convex combination parameter λ acts as a risk aversion
parameter. For high values of λ, the weight of the CVaRα in the agent’s CE grows,
representing a risk-averse agent. On the other hand, low values of λ induce a risk-
neutral agent since the weight of the unconditioned expectation grows. Finally,
note that (3-7) is a particularization of the widely used utility function U(R̃) =

E[R̃]−λRisk(R̃), in which Risk(R̃) measures the agent’s risk premium. By making
the risk premium be the difference between the unconditioned expectation and the
CVaRα of the agent’s revenue (see Fig. 3.2 for a graphical interpretation), (3-7) is
reached:

U(R̃) = E[R̃]− λRisk(R̃)

= E[R̃]− λ
(
E[R̃]− CVaRα(R̃)

)
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Fig. 3.2: Probability distribution function of the agent’s revenue and Risk interpretation.

= λCVaRα(R̃) + (1− λ)E[R̃]. (3-8)

In (3-8), CE is obtained by taking the unconditioned expectation on both
sides. In recent literature, several works used (3-7) as a metric for decision mak-
ing [10][19][21][22][24][65]. In the business proposed by this dissertation, we use
(3-7) as the agent certainty equivalent measure as well.

3.3 Mathematical Programming in Decision-Making Problems

Decision theory is the knowledge field that studies actions made by decision-
making. It also evolves the identification of the uncertainties present on the busi-
ness and the agent’s rationality, aiming to support the decision-making process in
an environment of uncertainty [54]. In this sense, several approaches have been
developed, in past years, in order to find the “optimal decision” in this framework.
In this section, we briefly present some of them as an introduction to contextualize
the contributions and the developments of this dissertation.

3.3.1 Stochastic Programming

Due to the uncertain nature of real-life problems, the classical approach to
model decision-making problems is the stochastic programming [55]. In this frame-
work, the data uncertainty is represented as random variables and an accurate prob-
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ability description of this random variables is assumed available, under the form of
probability distributions, densities or, more generally, probability measures. In gen-
eral, the uncertain data is represented as a vector of random variables ξ̃ : Ω → Ξ

which maps the set of all possible “states of nature” into a compact support set
Ξ ⊂ Rn (the smallest closed subset in Rn such that P

{
ξ̃ ∈ Ξ

}
= 1). Again, a

probability space (Ω,Σ,P) is considered. Therefore, the general decision-making
problem, within the framework of stochastic programming, can be formulated as
the following certainty-equivalent maximization:

Maximize
x∈X

Φα,λ

(
R(x, ξ̃)

)
, (3-9)

where Φα,λ is the agent’s certainty equivalent defined in (3-7) (for convenience,
we define the stochastic problem with the CE defined in Section 3.2. However, a
general certainty equivalent functional can be used in (3-9)). Furthermore, x is the
vector of decision variables and X represents the set of feasible decisions. Note
that the agent revenue is redefined as a map R : X × Ξ → Q ⊂ R to contemplate
the decision variables that affect the income. Usually, the maximization problem
(3-9) can not be solved in its continuous form. Therefore, to numerically solve this
problem, the vector of continuous random variables is approximated by a vector of
discrete random variables within a discrete and finite sample space. Thus, using the
CVaR reformulation presented in Section 3.1, the certainty equivalent maximization
(3-9) can be redefined as:

Maximize
x,z,δ(ω)

∑
ω∈Ω

p(ω)

[
(1− λ)R

(
x, ξ(ω)

)
+ λ

(
z − δ(ω)

1− α

)]
(3-10)

subject to:

x ∈ X ; (3-11)

δ(ω) ≥ z −R
(
x, ξ(ω)

)
, ∀ω ∈ Ω; (3-12)

δ(ω) ≥ 0, ∀ω ∈ Ω. (3-13)

One of the main challenges in application of stochastic programming to real
problems is the complexity on describing the probability distribution function of
some random variables (see [66] for a wide discussion). A poor description of
this function can lead to a poor or even meaningless decisions. Therefore, several
advances have been made in stochastic programming theory applied to decision-
making problems aiming to formulate models in which the optimal solution is more
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“reliable” in the framework of a poor specification of the probability function. One
of them is called Ambiguity Theory and is presented next.

3.3.2 Ambiguity Theory

Ambiguity was first introduced by [28] and is defined as the uncertainty over
modeling of uncertain parameters, i.e., uncertainty over the joint probability dis-
tribution function of the random variables. Thus, the usual approach to obtain
ambiguity-averse solutions is to take into account a set of probability distributions
into the decision-making model. Hence, consider a probability space (Ω,Σ,P) and
let ξ̃ : Ω → Ξ ⊂ Rn be a vector of uncertain parameters modeled as random
variables and Fξ̃ : Ξ → [0, 1] the induced joint probability distribution function of
these variables. Assume a decision-maker who is affected by this uncertain param-
eters and wants to model its problem using the classical stochastic programming
approach presented in (3-9). However, with the available information, the agent
was not able to precisely specify the probabilistic behavior of such variables. In this
context, the certainty-equivalent maximization problem averse to ambiguity can be
defined as:

Maximize
x∈X

{
min
Fξ̃∈F

Φα,λ

(
R(x, ξ̃)

)}
. (3-14)

According to [60], the CE
(
Φα,λ

)
, presented in (3-7), can be rewritten as:

Φα,λ

(
R(x, ξ̃)

)
= (1− λ)

∫
ξ∈Ξ

R(x, ξ)dFξ̃(ξ) +

λ sup
z

{
z − (1− α)−1

∫
ξ∈Ξ

(
z −R(x, ξ)

)+

dFξ̃(ξ)

}
. (3-15)

In (3-14), the inner optimization problem (minimization problem) is per-
formed over a set F of credible distributions given by the agent. In this sense,
considering an appropriate F , the solution obtained by (3-14) can be interpreted
as the best solution (maximization problem) for the worst distribution function that
could be chosen within F (minimization problem). Therefore, under ambiguity,
agents not only express their preference toward risk by means of their CE function-
als, but also their preference toward the ambiguity level contained in each choice.
Under the framework of (3-14), the main challenges in real application lies in the
definition of the credible set of probability distributionsF and how to solve the non-
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linear optimization problem. We refer to [30][29][67][68] for further details about
ambiguity theory and applications.

3.3.3 Robust Optimization

Robust optimization is a class of optimization problems based on worst-case
analysis and was first discussed in [69]. It emerged as an alternative to stochastic
programming and seeks to find the optimal solution against the worst-case possible
realization of uncertainty. Using the same notation defined in the previous sections,
the decision-making problem with robust optimization can be stated as:

Maximize
x∈X

{
min
ξ∈Uξ

R(x, ξ)

}
. (3-16)

In (3-16), the inner optimization problem minimizes the agent’s revenue over
the worst possible realization of the vector of random variables within a set Uξ, i.e.,
over the worst possible realization of uncertainty. In robust optimization literature,
Uξ is known as an “uncertainty set” [26]. For instance, Uξ can be modeled as a
polyhedral set of the form Uξ =

{
ξ ∈ Ξ | Aξ ≤ b

}
. In Fig. 3.3, an example

of a polyhedral uncertainty set is presented for a bivariate vector of uncertainties
ξ = [ξ1, ξ2]T .

𝜉1 

𝜉2 

𝒰𝜉  

Fig. 3.3: Example of a Polyhedral Uncertainty Set.
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On the one hand, the robust optimization approach has the benefit of not re-
quiring the full specification of the joint probability distribution to represent the
uncertainty factor, but only the description of an uncertainty set, which is typically
written as linear equations. However, on the other hand, the main criticism to this
approach in real applications is related to the fact that its solutions tends to be too
conservative, which can be, sometimes, unrealistic. In this sense, a careful specifi-
cation of the uncertainty set is of utmost importance to overcome high conservatism
solutions.

In the literature, several works dealt with the construction of uncertainty sets.
For instance, in [70], a methodology for constructing uncertainty set for linear op-
timization problems with uncertainty parameters that relies on decision maker risk
preferences is proposed; [71] discusses a relaxed robust counterpart for general
conic optimization problems that preserves the computational tractability of the
nominal problem and provide a guarantee on the probability that the robust solu-
tion is feasible when the uncertainty coefficients obey independent and identically
distributed Normal distributions; also [72] developed different tractable approxima-
tions to individual chance-constrained problems in robust optimization on a variety
of uncertainty sets and show their interesting connections with bounds on the CVaR
measure. In this dissertation, we shall be dealing with polyhedral uncertainty sets,
such as the one presented in Fig. 3.3. In the next Chapter, we discuss how the uncer-
tainty factors that affect the ETC’s future cash flow were modeled in the framework
of the theory presented in this Chapter.
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4
Uncertainty Modeling

The main risk factors that affect an Energy Trading Company (ETC) future
cash flow in the commercialization of renewable energy are: the amount of renew-
able production of each unit in the portfolio and the energy spot price. Using the

notation introduced in Chapter 3, we can define ξ̃t =
[
π̃t, g̃

(R)
1,t , . . . , g̃

(R)
|U |,t

]T
, where

π̃t is a random variable that represents the energy spot price value in period t ∈ H
and g̃(R)

i,t a random variable that accounts for the energy production of the unit i ∈ U
in period t ∈ H. The “standard” approach to model optimal portfolio allocation in
electricity contracts considers price-taker agents and represents uncertainty in en-
ergy production and market prices by scenarios, generated via Monte Carlo simu-
lation. This is done by means of a production costing models (market equilibrium
simulated by a fundamentalist approach) [16][46] or by statistical regressions using
historical data [73][74][75]. In this dissertation, we propose a different approach to
model uncertainty in energy spot price. In this Chapter, we motivate and describe
how these uncertainties are treated in the proposed contracting model.

4.1 Renewable Generation

For renewable production, the modeling approach adopted in this disserta-
tion follows the “standard” scenario-based approach. The scenarios of renewable
generation is based on a well-known simulation procedure of stochastic processes,
the Monte Carlo simulation procedure. We argue that physical variables, such as
the wind speed and river inflows, generally exhibit a periodical and “well-behaved”
pattern when they are simulated on a mid-term basis (monthly, for instance). In this
sense, they are suitable for statistical modeling and can be adequately simulated
for long-term periods (more than one year in a monthly basis) without violating
their dynamics. Therefore, we consider that the random variables that model the
renewable energy production have an objective joint probability distribution func-
tion, which means that their stochastic process can be adequately estimated from
available information.

In the commercial model proposed in this dissertation, the generation of the
scenarios for each renewable plant is considered as input data and thus exogenous
to the model. We make use of the stochastic process proposed in [24] to simu-
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late the renewable production used in the case study results. The model is based
on a vector-autoregressive model with variance law. In this sense, the scenarios
simulated contain the strong correlation structure that renewable production usually
presents (correlation among the production of the power plants) and also preserve
the different variance and covariance matrix for each month, reproducing thus the
different variability over the months observed in this sources. It is important to
mention that is outside of the scope of this dissertation to discuss or propose a
methodology to simulate renewable scenarios.

4.2 Energy Spot Price

Spot price scenarios are usually obtained utilizing a production costing model
(a fundamentalist approach) [16][46] or through a statistical regression on past mar-
ket prices [73][74][75]. On the one hand, the fundamentalist approach takes into
account ex ante hypothesis on market uncertainties, such as fuel prices, plant avail-
ability, supply expansion scenario, hydrology, etc. Statistical models, on the other
hand, are based on the assumption that past realizations explains its future behav-
ior. However, both approaches can be easily challenged: in the first (fundamentalist
approach), any deviation on the assumptions affects the estimated probability distri-
bution of prices, whereas the second approach (statistical approach) is not suitable
for markets with technological developments, where the supply mix changes signifi-
cantly over time and does not make the historical record a good proxy for the future.
In this sense, an accurate description of the spot price probability distribution turns
out to be a difficulty task.

In the view of these considerations, our proposal considers the spot price un-
certainty by means of endogenously generated scenarios following the robust op-
timization approach. Typically, uncertainty on the input parameters of a decision-
making problem is modeled as a variation around a nominal value assumed as the
expected or best prediction value. We follow this assumption and define a nomi-
nal stochastic process to represent the spot price {π̃ot }t∈H (this nominal stochastic
process can be obtained via fundamentalist/statistical models or given by an ex-
ogenous expert). To model the spot price uncertainty set, defined as Πo

τ (ω), a K-
neighborhood around the nominal value is constructed. Moreover, to allow the ETC
to express its inter-temporal risk-preference, the set of periodsH that represents the
time horizon of the business, is partitioned into subsets of sub-periods, {Hτ}τ∈T ,
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e.g., months of each year τ . Therefore, for each renewable generation scenario
g

(R)
i,t (ω), ω ∈ Ω, there are |T | sets of partial credible spot price time series, each one

of them related to a given subset of periods Hτ . Thus, assuming a discrete sample
space Ω, the uncertainty set that represents those sets are:

Πo
τ (ω) =

{
πτ (ω) =

[
π1(ω), . . . , π|Hτ |(ω)

]T
∈ R|Hτ |+

∣∣∣∣ (4-1)

πt(ω) = πot (ω) + ∆π+
t (ω)v+

t (ω)

−∆π−t (ω)v−t (ω), ∀ t ∈ Hτ ; µt(ω) (4-2)∑
t∈Hτ

(
v+
t (ω) + v−t (ω)

)
≤ Kτ ; βτ (ω) (4-3)

πt+1(ω) ≥ (1− r−t )πt(ω), ∀ t ∈ H̄τ ; γt(ω) (4-4)

πt+1(ω) ≤ (1 + r+
t )πt(ω), ∀ t ∈ H̄τ ; θt(ω) (4-5)

0 ≤ v+
t (ω) ≤ 1, ∀ t ∈ Hτ ; ηt(ω) (4-6)

0 ≤ v−t (ω) ≤ 1, ∀ t ∈ Hτ ; ρt(ω)

}
. (4-7)

Where, H̄τ is a copy ofHτ except for the last term, which is disregarded to ac-
count for (4-4)-(4-5). Lagrangian multipliers (LM) are shown after the semicolon.
Expression (4-2) defines the envelope for the spot-price time series in each Hτ :
πot (ω) is a parameter that defines the reference or nominal scenario, ∆π+

t (ω) and
∆π−t (ω) are parameters that define the maximum positive and negative deviations
from the nominal value, respectively, and v+

t (ω) and v−t (ω) express the percentage
of ∆π+

t (ω) and ∆π−t (ω), respectively, ((4-6) and (4-7)) in which the endogenous
spot price deviates from the reference. In addition, the total variation within each
set of periods τ is constrained by a budget represented by the conservatism param-
eter Kτ in constraint (4-3). Note that, roughly speaking, Kτ can be interpreted as
the number of periods that the endogenous spot price can deviate from the nom-
inal value. Thus, for a small Kτ , the uncertainty with respect to the probability
distribution of the spot price considered in the robust model is also small. Finally,
expressions (4-4) and (4-5) constrain the maximum and minimum returns to r+

t and
r−t , respectively.

A particular variation that could be straightforwardly made in the proposed
uncertainty set is allow Kτ to vary for each scenario, which induces to the model
different levels of stress as a function of the renewable production and reference
spot price. For instance, we might consider a modeling that, in a scenario of en-
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ergy deficit, the spot price might present a stress level higher than in scenarios of
energy surplus. Furthermore, for Kτ = 0, the proposed model meets the traditional
stochastic optimization approach in which the spot price scenarios are the nominal
scenarios. In this case, the agent considers the nominal distribution as the “true”
one. Therefore, increasing the value of Kτ , (4-1)-(4-7) can be understood as a poly-
hedral family of sets of scenarios, which defines a family of credible distributions
for the spot prices. Fig. 4.1 depicts the arrangement of the polyhedral sets over time
and for different renewable energy scenarios. The dots over the straight line repre-
sent the nominal values of the spot price and the shaded area is the feasible region
of the endogenous price with both positive and negative deviations (expression (4-
2)). Therefore, once respected the budget (4-3) and returns (4-4)-(4-5) constraints,
a polyhedral family of set of scenarios for the spot price can be defined inside this
shaded area, one for each period τ ∈ T and scenario ω ∈ Ω.
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Fig. 4.1: Uncertainty characterization of the spot price random variable.

After the description of the spot price uncertainty set, we can direct apply
the certainty-equivalent maximization problem discussed in Chapter 3. In the next
Chapter, in order to apply the theory presented in this and in the previous Chapters,
we develop the mathematical expression of the contract revenue for each modality
of contract used in this dissertation and also present the electricity portfolio allo-
cation model that takes into account the stochastic-robust framework discussed so
far.
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5
Modelling Electricity Contracts

As discussed in Section 2.2, the Brazilian contract market is an environment
of bilateral negotiation between generator companies and consumers. In this mar-
ket, the characteristics of the signed contracts are agreed between parties and, gen-
erally, rely on the definition of the modality of the contract, the price and quantity,
the total maturity, the seasonalization and/or modularization, among others char-
acteristics. Despite the full freedom in the choice of the contract, two types of
arrangements are usually set in practice: standard forward contract and capacity
payment contract [3]. Next, we discuss the specificities of each contract type as
well as its financial payoff expression.

5.1 Standard Forward Contract

Standard forward contracts is a bilateral arrangement in which the seller coun-
terpart has the obligation to delivery in full the agreed amount of energy against a
fixed payment made by the buyer. This type of contract has been widely used in
several electricity markets worldwide in different contexts (see [10][19][76][77]). A
standard forward contract is defined by an initial and final supply date, an amount of
energy

(
Q

(F )
t

)
that must be delivered by the seller counterpart (typically measured

in avgMW) and a price
(
P

(F )
t

)
paid by the buyer for each MWh received. There-

fore, the future (stochastic) revenue of an agent selling a standard forward contract
is presented in expression (5-1).

R
(F )
t

(
π̃t
)

= P
(F )
t htQ

(F )
t − π̃thtQ

(F )
t , ∀ t ∈ H. (5-1)

In (5-1), the first term represents the fixed payment received by the seller
and the second term models the short-term settlement (energy bought to fulfill the
contract). Typically, the agent has a second contract or a generation plant that covers
the forward contract, and the risk of purchase at high price in the second term is
mitigated. However, from the point of view of financial settlement of this contract in
the clearing market, the energy is bought on the short-term market at the spot price
(π̃t). The remainder parameters of (5-1) is the contract time horizon, comprised in
the set of periodsH, and ht, the number of hours of each period t ∈ H.
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5.2 Capacity Payment Contracts

Capacity payment contracts can be understood as a rental operation. In this
framework, the generator rents a percentage of its unit (energy production and FEC)
against a fixed payment [78]. The buyer, on the other hand, gains the right to trade
this energy in the market (via a standard forward contract, for instance). In general,
the capacity payment contract is defined by an initial and final supply date, a quan-
tity that measures the amount of energy bought, a fixed price paid by the buyer and
a Variable Operating Cost (VOC), Λ. This last term is a reimbursement made by the
seller to the generation company to cover the cost of energy production.

Particularly, the characteristic and interpretation of this type of contract dif-
fers with respect to the source of generation. For renewable energy, the VOC can
be considered zero (Λ = 0) since the “raw material” of the energy production is ob-
tained from natural sources, such as wind and water inflow (for biomass plants, the
sugarcane bagasse have an opportunity cost since it can be used for other purposes.
Thus, for these plants, the VOC can be considered greater than zero). Therefore,
the payment is related only to the amount of energy contracted. For instance, if we
assume a trading in which the quantity is equal to the FEC of the plant, then the
buyer has the right to receive all the plant’s production, configuring a total leasing
of the unit. On the other hand, for thermal units, the VOC can not be considered
zero, since the “raw material” of the energy production is related to (sometimes ex-
pensive) commodities, such as coal and oil. In the Brazilian power system, in which
thermal production is centrally determined, the amount of energy produced by ther-
mal plants (consequently the energy received under this contract) is a function of
the spot price. Thus, buying a capacity payment contract related to thermal units
can be compared to buying an energy call option [14][43].

Next, we present the cash-flow expression of an agent buying a capacity pay-
ment contract for both types of sources: renewable and thermal plants.

5.2.1 Renewable Leasing

The net revenue expression of an ETC buying energy from renewable plants
through a capacity contract is the following:

R
(R)
t

(
g̃

(R)
t , π̃t

)
= π̃thtg̃

(R)
t Q

(R)
t − P

(R)
t htQ

(R)
t , ∀ t ∈ H. (5-2)
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In (5-2), the first term represents the income from the settlement of the renew-
able energy in the short-term market, in which g̃(R)

t represents the energy production
in period t and is modeled as a random variable, and the second-term models the
fixed payment to the generator. In order to adjust the “size” of the renewable plant
to the quantity of the contract, the renewable generation in expression (5-2) is ac-
counted for per unit of FEC (% FEC). The remaining parameters ht andH have the
same interpretation of (5-1).

Note that (5-2) can be interpreted from the point of view of a long-term in-
vestment in a renewable plant. For instance, consider a Genco that aims to devise
its optimal investment strategy in a renewable technology. Under this setting, the
second term can represents the annualized investment cost and interests expenses.
Thus, the decision that should be made by the Genco is to determine the optimal
size of the renewable plant that it is willing-to-invest, i.e., define the optimal amount
of Q(R)

t that maximizes the company’s value by inserting this unit in the Genco’s
portfolio. Therefore, the term P

(R)
t htQ

(R)
t in (5-2) could be replaced by a simpler

fixed payment term, E(R)
t , representing those expenses in each period of the cash

flow time horizon.

5.2.2 Energy Call Option

The revenue of a capacity payment contract with a thermal unit is slightly
different with respect to (5-2) due to the need to consider the reimbursement to the
plant’s owner on its declared VOC whenever the plant runs. In (5-3), the revenue
expression of a agent buying this contract is presented.

R
(T )
t

(
π̃t
)

= g
(T )
t (π̃t)Q

(T )
t htπ̃t − P (T )

t htQ
(T )
t −(

g
(T )
t (π̃t)− g

¯
(T )
)
Q

(T )
t Λht, ∀ t ∈ H. (5-3)

The first term represents the income from the settlement of the thermal gen-
eration in the short-term market, in which g(T )

t (π̃t) represents the energy produced
by the thermal unit in period t as a function of the spot price π̃t, the second-term
models the fixed payment to the generator and the third term is the reimbursement
to the plant’s owner on its declared VOC (Λ) with g

¯
(T ) representing the plant’s in-

flexibility (a must run constraint declared by the owner). Again, in order to adjust
the “size” of the thermal plant to the quantity of the contract Q(T )

t , the thermal gen-
eration is considered per unit of FEC (% FEC). The remaining parameters ht andH
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have the same interpretation of (5-1) and (5-2).
As discussed in Section 2, the Brazilian system operation is cost-based. There-

fore, a thermal plant is dispatched whenever the system marginal cost (spot price) is
higher than plant’s variable cost. In this sense, the function that models the thermal
production is:

g
(T )
t (π̃t) =

{
ḡ(T ), π̃t ≥ Λ

g
¯

(T ), π̃t < Λ
(5-4)

where ḡ(T ) is the maximum production of the thermal unit, also declared by the
plant’s owner. By analyzing the revenue expression (5-3) and the thermal produc-
tion rule presented in (5-4), the capacity payment contract with a thermal unit can be
compared with an energy call option [3][14][43]. To better understand the compar-
ison, assume, without loss of generality, a thermal plant 100% flexible

(
g
¯

(T ) = 0
)
.

Therefore, equation (5-3) can be rewritten as:

R
(T )
t (π̃t) =

[(
π̃t − Λ

)
htQ

(T )
t g

(T )
t (π̃t)

]
− P (T )

t htQ
(T )
t , ∀ t ∈ H. (5-5)

Note that, if the spot price π̃t is lower than the plant’s VOC (Λ), than the
thermal generation is g(T )

t (π̃t) = g
¯

(T ) = 0. Therefore, the resulting income is neg-

ative, deterministic and is equal to the contract payment
(
R

(T )
t = −P (T )

t htQ
(T )
t

)
.

On the other hand, if the spot price π̃t is higher than the plant’s VOC (Λ), than
the thermal generation is maximum, i.e., g(T )

t (π̃t) = ḡ(T ). As a consequence,
the resulting income in stochastic (depends on the value of the spot price) and is
R

(T )
t (π̃t) =

[(
π̃t−Λ

)
htQ

(T )
t ḡ(T )

]
−P (T )

t htQ
(T )
t . Thus, we can write the stochastic

revenue in a given period t ∈ H as:

R
(T )
t (π̃t) = max

{(
π̃t − Λ

)
, 0
}
htQ

(T )
t ḡ(T ) − P (T )

t htQ
(T )
t . (5-6)

According to the option theory [79], by treating energy as “the underlying
instrument” (asset from which the option is derived), if H is the option’s maturity,
π̃t represents the asset (energy) spot price, Λ the option’s strike and P (T )

t htQ
(T )
t the

option’s premium, than R(T )
t (π̃t) is exactly the revenue of a financial call option

written over the commodity energy [79]. In Fig. 5.1, expression (5-6) is depicted
as a function of πt. Note that this graphic has the typical format of the payoff of an
agent long in a call option. The only difference between the capacity payment con-
tract with a thermal unit (energy call option) and the classical financial call option
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is that the energy option has no exercising limit, i.e., the buyer has one call option
for each period of the contract horizon (a set of calls).

𝜋𝑡 

𝑅𝑡
𝑇

𝜋𝑡  

𝑃𝑡
𝑇
ℎ𝑡𝑄𝑡

𝑇
 

Λ 

ℎ𝑡𝑄𝑡
𝑇
 𝑔 𝑇  

Fig. 5.1: Profit function of an agent long in energy call option as a function of the energy
spot price π̃t.

Therefore, in a nutshell, the first term of expression (5-6) represents the payoff
of the call option and the second term is its premium with strike price Λ.

5.3 Proposed Business Structure

The business structure proposed in this dissertation involves an Energy Trad-
ing Company (ETC) [10] that have a opportunity to sell a standard forward contract
to a consumer. To back this contract, the ETC has a set U of capacity payment
opportunities with renewable units. In addition, in order to mitigate the exposure to
the short-term market, we assume that the ETC has also an opportunity to buy an
energy call option with a thermal unit. Fig. 5.2 illustrates the proposed contractual
scheme for two renewable plants and a conventional thermal unit.

Note that in this contracting scheme, the ETC bears all of the price-quantity
risk because the capacity contracts do not guarantee a fixed energy delivery to fulfill
the forward contract with the consumer. In addition, the energy call option acts only
as hedge against high spot prices and, typically, have an associated quantity lower
than the forward contract. Therefore, in order to mitigate this risk, the ETC has the
opportunity to adjust the portfolio by choosing the optimal amount that should be
contracted from each opportunity that creates the maximum value for the company,
i.e., must optimally define a percentage x =

[
x(F ), x

(R)
1 , . . . , x

(R)
|U | , x

(T )
]T of the

quantity of each contract to compose its portfolio in order to maximize its value
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Fig. 5.2: ETC contract scheme: one forward contract, two capacity payment contract (one
with a wind farm and one with a small hydro) and one energy call option.

(the certainty equivalent, for instance). In expression (5-7), the net revenue of the
ETC under this contract scheme is presented.

Rt

(
x, g̃

(R)
t , π̃t

)
= P

(F )
t htQ

(F )
t x(F ) −

∑
i∈U

P
(R)
i,t htQ

(R)
i,t x

(R)
i −(

P
(T )
t − g

¯
(T )Λ

)
htQ

(T )
t x(T ) +

(∑
i∈U

g̃
(R)
i,t Q

(R)
i,t x

(R)
i −Q

(F )
t x(F )

)
π̃tht +(

π̃t − Λ
)
g

(T )
t (π̃t)htQ

(T )
t , ∀ t ∈ H. (5-7)

Equation (5-7) is basically composed by the sum of the revenue of the individ-

ual contracts. Note that, by making ξ̃t =
[
π̃t, g̃

(R)
1,t , . . . , g̃

(R)
|U |,t

]T
, the ETC’s revenue

(5-7) has the form of the revenue used to derive all results in Chapter 3, especially
the certainty-equivalent maximization problem (3-9). Therefore, a particular appli-
cation of the theory presented in Chapter 3 is to define the optimal amount of energy
to compose the ETC’s portfolio in order to maximize its certainty-equivalent mea-
sure described in (3.2). In the next section, this optimization model is presented
under the framework of the mix between stochastic and robust modeling discussed
in Chapter 4.
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5.4 Hybrid Robust and Stochastic Model

The hybrid robust and stochastic model which aims to find the optimal port-
folio of electricity contracts is presented in the set of equations (5-8)-(5-12):

Maximize
x(F ),x

(R)
i ,x(T ),

δτ (ω),zτ

∑
τ∈T

∑
ω∈Ω

p(ω)

[
λ

(
zτ −

δτ (ω)

1− α

)
+

(1− λ)RWC
τ

(
x, g(R)

τ (ω)
)]

(1 + J)(1−τ) (5-8)

subject to:

δτ (ω) ≥ zτ −RWC
τ

(
x, g(R)

τ (ω)
)
, ∀ τ ∈ T , ω ∈ Ω; (5-9)

Q(F )x(F ) ≤
∑
i∈U

Q
(R)
i x

(R)
i +Q(T )x(T ); (5-10)

δτ (ω) ≥ 0, ∀ τ ∈ T , ω ∈ Ω; (5-11)

x(F ), x
(R)
i , x(T ) ∈ [0, 1], ∀ i ∈ U, (5-12)

where the worst-case revenue is obtained from the minimization of the ETC’s net
revenue (5-7) over the polyhedral uncertainty set (4-1)-(4-7) discussed in Section
4.2, as presented next

RWC
τ

(
x, g(R)

τ (ω)
)

= min
πτ (ω)∈Πoτ (ω)

∑
t∈Hτ

[
P

(F )
t htQ

(F )
t x(F ) −

∑
i∈U

P
(R)
i,t htQ

(R)
i,t x

(R)
i −

(
P

(T )
t − g

¯
(T )Λ

)
htQ

(T )
t x(T ) +

(∑
i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q

(F )
t x(F )

)
πt(ω)ht +

(
πt(ω)− Λ

)
g

(T )
t (πt(ω))htQ

(T )
t x(T )

]
(1 + Jτ )

−(t−tini
τ ), ∀ τ ∈ T , ω ∈ Ω. (5-13)

In (5-8)-(5-12), the set of available feasible solutions is described as X ={
x ∈ [0, 1]1×|U |×1 |Q(F )x(F ) ≤

∑
i∈U Q

(R)
i x

(R)
i + Q(T )x(T )

}
. Within the set of

parameters, in (5-8), λ ∈ (0, 1) has the same interpretation of equation (3-7) and
stands for the weight given to the (convex) combination between the expected value
and the CVaR of the ETC’s revenue, p(ω) is the probability of the scenario ω ∈ Ω

and α ∈ (0, 1] is the level of significance of the CVaR. In practical applications, α
generally ranges from 0.90 to 0.99. Constraints (5-9) and (5-11) represent a two-
segment piecewise linear function, which computes in δτ (ω) only the violations of
the scenarios whose worst-case revenue RWC

τ

(
x, gτ (ω)

)
do not exceed the thresh-
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old zτ , necessary to compute the CVaR [60]. Finally, (5-10) represents the energy
balance constraint (the amount of energy bought must cover the amount sold, in
avgMW).

In order to represent the ETC’s inter-temporal preference, in (5-13), a partial
present value accounts for the money value over the time within each subset of
periods by means of a discount rate Jτ . In this setting, RWC

τ

(
x, gτ (ω)

)
means the

worst-case present value of the ETC’s revenue for a given scenario ω ∈ Ω at the
first period of Hτ , accounted for by tini

τ (see Fig. 5.3). In addition, in (5-8), each
resultant cash-flow valuated in the first period of each subset is also discounted by
a discount rate J in order to obtain the value of the entire cash-flow in a reference
date, which we assume to be the very first period of the business (see Fig. 5.4).

𝑡 

𝑅𝑡 

𝐽𝜏=2 𝐽𝜏=1 

Subset of periods 𝐻𝜏=1 Subset of periods 𝐻𝜏=2 

𝑡𝜏=1
ini  𝑡𝜏=2

ini  

Fig. 5.3: Discount cash-flow inside each subset of periodsHτ to the first period tini
τ .

Subset of periods 𝐻𝜏=1 Subset of periods 𝐻𝜏=2 

𝑡 

𝑅𝑡 

Reference 

Date 

𝐽 

Fig. 5.4: Discount of the resultant cash-flow to the first period of the business.
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Finally, the optimal contracting problem presented in (5-8)-(5-12) can be in-
terpreted from two different point of views: stress test [27] and ambiguity averse-
ness [29][30]. In the next Chapter, we discuss both interpretations.

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



6
Model Interpretations

One of the main contributions of this dissertation is to provide an economic
and rational interpretation of the hybrid robust and stochastic contracting model
developed in the previous Chapter. In this sense, in this Chapter, we present two
different environment in which the optimal contracting problem (5-8)-(5-12) is in-
serted: stress test [27] and ambiguity averseness [29][30]. In addition, we provide
a formal (mathematical) link between robust optimization and ambiguity aversion
models [36].

6.1 Stress Test

Stress test is a typically used methodology in financial practice in which stress
scenarios are applied to validate the performance of the current portfolio under ad-
verse conditions. These stress scenarios are usually static (in the sense that represent
the worst scenario independently of the portfolio), provided externally to the port-
folio allocation model and given by a group of experts. It appears in the context
of quantification of losses or risks that may appear under special extremal circum-
stances. The stress scenarios aim to represent some change in macroeconomic,
socioeconomic or political factors and how this changes impact a given portfolio.
The stress test approach differs among the context, the nature of the tested problem
and also the way in which the stress scenarios have been selected [27][80].

In the view of these considerations, we argue that problem (5-8)-(5-12) can be
interpreted as a generalization of this technique. Making (4-1)-(4-7) deterministic,(
πot (ω),∆π

+/−
t (ω)

)
→ (πot ,∆π

+/−
t ), we have a methodology to evaluate the quality

of a proposed portfolio x under high stress since the optimization problem (5-13)
recovers the worst financial outcome of this portfolio. Therefore, if on the one
hand, stress scenarios used in practice are usually exogenously defined by a group
of experts, on the other hand, under the deterministic framework proposed by (5-
8)-(5-13), the stress scenarios are obtained endogenously and represent the worst
possible spot price realization which affects the ETC’s revenue, being thus a step
ahead over the stress test technique used in practice.
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6.2 Ambiguity Aversion

A second point of view that this methodology can be seen is from aversion
to ambiguity. Intuitively, it is easy to see that the decision-making problem using
robust optimization has a close relation with the ambiguity-averse model presented
in Section 3.3.2, in the sense that both approaches aim to find the worst case un-
certainty realization within a given set of possibilities. In recent literature, different
approaches treated ambiguity in a decision-making problem using robust optimiza-
tion [31][32][33][34][35]. In this dissertation, we propose a different approach to
characterize ambiguity in the framework of robust optimization [36]. The proposed
approach allow us to treat ambiguity from the point of view of the scenarios, which
is extremely useful both theoretically as well as for practical applications.

Suppose a probability space (Ω,Σ,P) and a nominal random vector ξ̃
o

: Ω→
Rn, that belongs to L∞(Ω,Σ,P) [81], as a reference case, and its induced joint-
probability distribution function Fξ̃o : Ξo → R. This distribution can be interpreted
as the best modeling of the uncertainty factors the user is able to make. In this
framework, we can define a polyhedral set that defines the inaccuracy that the agent
perceives around a reference scenario ξo(ω):

EoK
(
ξo(ω)

)
=

{
ξ(ω) =

[
ξ1(ω), . . . , ξn(ω)

]T
∈ Rn

∣∣∣∣ (6-1)

ξi(ω) = ξoi (ω) + ∆ξ+
i (ω)v+

i (ω) −

∆ξ−i (ω)v−i (ω), ∀ i ∈ {1, ..., n}; (6-2)
n∑
i=1

(
v+
i (ω) + v−i (ω)

)
≤ K; (6-3)

0 ≤ v+
i (ω) ≤ 1, ∀ i ∈ {1, ..., n}; (6-4)

0 ≤ v−i (ω) ≤ 1, ∀ i ∈ {1, ..., n};
}
. (6-5)

According to this idea, a K-neighborhood of ξ̃
o

is defined for each point of
the sample space ω ∈ Ω. Therefore, we can define the set of all credible random
variables, induced by the set of credible scenarios in EoK

(
ξo(ω)

)
, as follows:

EoK
(
ξ̃
o)

:=
{
ξ̃ ∈ L∞(Ω,Σ,P)

∣∣∣ ξ(ω) ∈ EoK
(
ξo(ω)

)
, ∀ ω ∈ Ω

}
. (6-6)

In this context, a multiplicity of credible distributions around the nominal

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



6. MODEL INTERPRETATIONS 62

joint distribution function is induced by (6-6). Then, we can define the following
related set of induced distribution functions:

F =
{
Fξ̃ ∈ D

∣∣∣ ξ̃ ∈ EoK(ξ̃o)}, (6-7)

where D is the set of all joint-probability distribution functions in Rn. Within this
set of definitions, the minimization problem in (3-14) can be rewritten in terms of ξ̃
and EoK

(
ξ̃
o)

as follows:

min
Fξ∈F

Φα,λ

(
R(x, ξ̃)

)
= min
ξ̃∈EoK(ξ̃

o
)
Φα,λ

(
R(x, ξ̃)

)
. (6-8)

Moreover, since the set EoK
(
ξ̃
o)

is pointwise defined, i.e., the set of all random
vectors ξ̃ such that ξ(ω) ∈ EoK

(
ξo(ω)

)
for all ω ∈ Ω, and we are assuming a

coherent risk measure Φα,λ (as discussed in Section 3.2), which is a non-decreasing
function with respect toR(x, ξ̃) [64], the minimization problem in (6-8) is achieved
by a pointwise minimum for all ω ∈ Ω:

min
Fξ∈F

Φα,λ

(
R(x, ξ̃)

)
= min
ξ̃∈EoK(ξ̃

o
)
Φα,λ

(
R(x, ξ̃)

)
= min
ξ(ω)∈EoK

(
ξo(ω)

) (1− λ) ·
∑
ω∈Ω

R(x, ξ(ω)) · P
(
{ω}

)
+

λ · sup
z

{
z −

∑
ω∈Ω

(
z −R

(
x, ξ(ω)

))+

·
P
(
{ω}

)
(1− α)

}
= (1− λ) ·

∑
ω∈Ω

RWC(x, ω) · P({ω}) +

λ · sup
z

{
z −

∑
ω∈Ω

(
z −RWC(x, ω))+

·
P
(
{ω}

)
(1− α)

}
,

(6-9)

where

RWC(x, ω) = min
ξ(ω)∈EoK

(
ξo(ω)

) R(x, ξ(ω)); ∀ x ∈ X , ω ∈ Ω, (6-10)

and Φα,λ is the functional presented in (3-15). Therefore, the certainty-equivalent
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maximization problem can be directly applied to (6-9) resulting in:

Maximize
x∈X

{
min
Fξ̃∈F

Φα,λ

(
R(x, ξ̃)

)}
=

Maximize
x∈X

(1− λ) ·
∑
ω∈Ω

RWC(x, ω) · P({ω}) +

λ · sup
z

{
z −

∑
ω∈Ω

(
z −RWC(x, ω))+

·
P
(
{ω}

)
(1− α)

}
. (6-11)

This re-parametrization allow us to treat ambiguity from the point of view of
the scenarios ω ∈ Ω, which is extremely useful since we can apply the classical
Robust Optimization approach described in Section 3.3.3. Moreover, (6-11) has the
classical two-stage stochastic programming form, with an equivalent deterministic
formulation [55] that can be solved by commercial softwares [82]. Moreover, im-
portant to say that such model is also suitable for decomposition techniques, such
as L-shaped decomposition. In addition, (6-1)-(6-5) with (6-10)-(6-11) generalizes
the traditional stochastic optimization approach. By making K = 0 in (6-3), the set
of random variables EoK

(
ξ̃
o)

reduces to a singleton with only the nominal random
variable ξ̃

o
, which means that the agent considers the reference distribution as the

“true” one and thus no ambiguity is considered.
Finally, note that the following partition on the vector of risk factors can be

applied ξ̃ =
[
ξ̃(amb), ξ̃(obj)

]T
. With this partition, if the agent believes that ambigu-

ity affects only a part of the random vector, lets say ξ̃(amb), then, with the available
information, a stochastic process can not be adjusted to precisely describe the un-
certainty on ξ̃(amb). Therefore, this vector can be treated as “robust” on the CE
maximization problem (6-11). On the other hand, if the rest of the vector is as-
sumed to have an objective probability distribution, lets say ξ̃(obj), then a stochastic
process can be well-adjusted and scenarios can be adequately simulated without vi-
olate their dynamics. In this case, this vector can be treated as “stochastic” on (6-11)
and Fξ̃o(obj)

= Fξ̃(obj)
. Thus, considering a discrete sample space Ω, the maximization

problem (6-11) can be written as follows:

Maximize
x∈X

(1− λ) ·
∑
ω∈Ω

RWC(x, ξ(obj)(ω)
)
· P
(
{ω}

)
+

λ · sup
z

{
z −

∑
ω∈Ω

(
z −RWC(x, ξ(obj)(ω)

))+

·
P
(
{ω}

)
(1− α)

}
, (6-12)
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where,

RWC(x, ξ(obj)(ω)
)

= min
ξ(amb)(ω)∈EoK

(
ξo(amb)(ω)

)R(x, ξ(obj)(ω), ξ(amb)(ω)
)
,

∀ω ∈ Ω,x ∈ X . (6-13)

The equivalent bilevel [83] mathematical programming problem that solves
(6-12) is:

Maximize
x,z,δ(ω)

∑
ω∈Ω

p(ω)

[
(1− λ)RWC

(
x, ξ(obj)(ω)

)
+ λ

(
z − δ(ω)

1− α

)]
(6-14)

subject to:

x ∈ X ; (6-15)

δ(ω) ≥ z −RWC
(
x, ξ(obj)(ω)

)
, ∀ω ∈ Ω; (6-16)

δ(ω) ≥ 0, ∀ω ∈ Ω, (6-17)

It is important to mention that, since some variables are represented via sce-
narios generated externally to the model

(
ξ̃(obj)

)
, the worst-case revenue (6-13) is

defined for each scenario ω ∈ Ω, i.e., for each ξ(obj)(ω), with ω ∈ Ω, a set of
ξ(amb)(ω) is obtained in order to create the worst possible scenario of revenue in
(6-13).

Finally, the decision-making problem with robust optimization is a bilevel
programming problem, which cannot be directly solved by commercial solvers [82].
However, for some particular structures of R and EoK

(
ξ̃
o)

, the results of [26] can be
directly applied to transform (6-12) into an equivalent single-level problem. For
instance, assuming that EoK

(
ξ̃
o)

is a polyhedral set (Fig. 3.3, for example) and the
revenue expression is the following linear function on ξ̃(amb) and x,

R
(
x, ξ(obj)(ω), ξ(amb)(ω)

)
= cTx+ f

(
ξ(obj)(ω), ξ(amb)(ω)

)T
x, (6-18)

with f also linear on ξ̃amb, the max-min nonlinear programming problem in (6-12)
can be transformed into the following single-level equivalent linear maximization
problem:

Maximize
x∈X ,

y(ω)∈Y(ω)

Φα,λ

(
cTx+ bTy(ω)

)
. (6-19)
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In (6-19), Y(ω) is the correspondent dual feasible region of (6-13) and y(ω)

are the associated vector of Lagrange multipliers. Note that (6-19) has the classical
stochastic programming form presented in (3-9), which can be solved using com-
mercial solvers [82]. In the next two Chapters, we present two optimization models
for two different business approaches using realistic data from the Brazilian power
system to illustrate the applicability of the theory developed in this dissertation.
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7
Contracting Strategies for Renewable Plants

To illustrate the proposed methodology, we first present two applications of
the business structure described in Chapter 5. We assume in this Chapter that the
ETC represents a set of renewable generation companies and, therefore, the optimal
portfolio must relies only on renewable capacity contracts to back a sale of a stan-
dard forward contract in the Brazilian contract market. In this context, the trading
revenue (5-7) is simplified to:

Rt

(
x, g̃

(R)
t , π̃t

)
= P

(F )
t htQ

(F )
t x(F ) −

∑
i∈U

P
(R)
i,t htQ

(R)
i,t x

(R)
i +(∑

i∈U

g̃
(R)
i,t Q

(R)
i,t x

(R)
i −Q

(F )
t x(F )

)
π̃tht , ∀ t ∈ H. (7-1)

As a consequence, the worst-case revenue presented in equation (5-13) must
be replaced by the following optimization model:

RWC
τ

(
x, g(R)

τ (ω)
)

= min
πτ (ω)∈Πoτ (ω)

∑
t∈Hτ

[
P

(F )
t Q

(F )
t x(F ) −

∑
i∈U

P
(R)
i,t Q

(R)
i,t x

(R)
i +(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q

(F )
t x(F )

)
πt(ω)

]
ht(1 + Jτ )

−(t−tini
τ ), ∀ τ ∈ T , ω ∈ Ω.

(7-2)

Although mathematically precise, the contracting model presented in (5-8)-
(5-12) with worst-case revenue (7-2) is a bilevel optimization model [83], which can
not be directly solved by commercial linear programming solvers [82]. However,
note that the uncertainty sets {Πo

τ (ω)}τ∈T are polyhedral sets and the ETC’s revenue
(7-1) is a linear function on {π̃τ}τ∈T and on x. Therefore, the transformation
proposed in [26] and discussed in Section 3.3.3 can be applied to obtain an efficient
single-level two-stage linear optimization model. The procedure proposed in [26]
can be summarized in three steps:

1. for each ω ∈ Ω and τ ∈ T , derive the dual objective function of the linear
program defined by the right-hand-side of (7-2). It constitutes a lower bound
for the worst-case revenue term, for all dual feasible solution;

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



7. CONTRACTING STRATEGIES FOR RENEWABLE PLANTS 67

2. for each ω ∈ Ω and τ ∈ T , derive the dual feasible constraints of the linear
program defined by the right-hand-side of (7-2);

3. replace RWC
τ

(
x, g

(R)
τ (ω)

)
in (5-8) and (5-9) by the dual objective function

found in 1. and add in (5-8)-(5-12) the dual feasible constraints derived in 2..

Following the steps, we first need to derive the dual objective function of the
right-hand-side of (7-2) and its respective dual feasible constraints. In the next set
of equations, we present both developments in which equation (7-3) represents the
dual objective function and (7-4)-(7-10) the dual feasible constraints for each ω ∈ Ω

and τ ∈ T .

RDual
τ

(
x, g(R)

τ (ω),Θτ (ω)
)

=
∑
t∈Hτ

(
πot (ω)µt(ω)− ηt(ω)− ρt(ω)

)
−Kτβτ (ω) +

∑
t∈Hτ

(
P (F )Q(F )x(F ) −

∑
i∈U

P
(R)
i Q

(R)
i x

(R)
i

)
ht(1 + Jτ )

−(t−tini
τ ) (7-3)

µt(ω)− (1− r−t )γt(ω) + (1 + r+
t )θt(ω) ≤(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t = 1 + (τ − 1)|Hτ |; (7-4)

µt(ω) + γt−1(ω)− (1− r−t )γt(ω)− θt−1(ω) + (1 + r+
t )θt(ω) ≤(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t 6= 1 + (τ − 1)|Hτ | and t 6= |Hτ | τ ; (7-5)

µt(ω) + γt−1(ω)− θt−1(ω) ≤(∑
i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t = |Hτ | τ ; (7-6)

∆π+
t (ω)µt(ω) + βτ (ω) + ηt(ω) ≥ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (7-7)

∆π−t (ω)µt(ω)− βτ (ω)− ηt(ω) ≤ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (7-8)

βτ (ω), ηt(ω), ρt(ω) ≥ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (7-9)

γt(ω), θt(ω) ≥ 0, ∀ t ∈ H̄τ , τ ∈ T , ω ∈ Ω. (7-10)

Where Θτ (ω) =
[
µt(ω), θt(ω), βτ (ω), ηt(ω), ρt(ω), γt(ω)

]T is the set of dual
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variables that satisfies (7-4)-(7-10), for each ω ∈ Ω and t ∈ Hτ , τ ∈ T . Once de-
veloped the dual objective function of the right-hand-side of (7-2) and its respective
dual feasible constraints, we can proceed to step 3., by replacing RWC

τ

(
x, g

(R)
τ (ω)

)
in (5-8) and (5-9) by RDual

τ

(
x, g

(R)
τ (ω),Θτ (ω)

)
in (7-3) and add to (5-8)-(5-12) the

constraints (7-4)-(7-10). By the weak duality, all feasible solution that satisfies (7-
4)-(7-10) constitutes a lower bound for the worst-case revenue RWC

τ

(
x, g

(R)
τ (ω)

)
,

i.e. RWC
τ

(
x, g

(R)
τ (ω)

)
≥ RDual

τ

(
x, g

(R)
τ (ω),Θτ (ω)

)
, ∀Θτ (ω) feasible in (7-4)-(7-

10). Therefore, maximizing this revenue (or a coherent measure of this revenue,
such as the CVaR) implies in maximize expression (7-3). By making the set of dual
variables Θτ (ω) as decision variables and using the strong duality theorem [84],
in the optimal value

(
Θ∗τ (ω)

)
, the dual objective function recovers the value of the

worst-case revenue, i.e., RWC
τ

(
x, g

(R)
τ (ω)

)
= RDual

τ

(
x, g

(R)
τ (ω),Θ∗τ (ω)

)
. Hence, by

using the dual of the worst-case revenue minimization problem, we can transform a
bilevel problem into an equivalent single-level linear problem, which can be solved
using commercial softwares [82]. In the following, it is presented the single-level
equivalent model for the problem (5-8)-(5-12) with worst-case revenue described in
(7-2).

Maximize
x(F ),x

(R)
i ,RWC

τ (ω),zτ ,
δτ (ω),µt(ω),θt(ω),

βτ (ω),ηt(ω),ρt(ω),γt(ω)

∑
τ∈T

∑
ω∈Ω

p(ω)

[
λ

(
zτ −

δτ (ω)

1− α

)
+

(1− λ)RWC
τ (ω)

]
(1 + J)(1−τ)

(7-11)

subject to:

RWC
τ (ω) =

∑
t∈Hτ

(
πot (ω)µt(ω)− ηt(ω)− ρt(ω)

)
−Kτβτ,s +

∑
t∈Hτ

(
P (F )Q(F )x(F ) −

∑
i∈U

P
(R)
i Q

(R)
i x

(R)
i

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ τ ∈ T , ω ∈ Ω; (7-12)

δτ (ω) ≥ zτ −RWC
τ (ω), ∀ τ ∈ T , ω ∈ Ω; (7-13)

Constraints (5-10)-(5-12) (7-14)

µt(ω)− (1− r−t )γt(ω) + (1 + r+
t )θt(ω) ≤(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),
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∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t = 1 + (τ − 1)|Hτ |; (7-15)

µt(ω) + γt−1(ω)− (1− r−t )γt(ω)− θt−1(ω) + (1 + r+
t )θt(ω) ≤(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t 6= 1 + (τ − 1)|Hτ | and t 6= |Hτ | τ ; (7-16)

µt(ω) + γt−1(ω)− θt−1(ω) ≤(∑
i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t = |Hτ | τ ; (7-17)

∆π+
t (ω)µt(ω) + βτ (ω) + ηt(ω) ≥ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (7-18)

∆π−t (ω)µt(ω)− βτ (ω)− ηt(ω) ≤ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (7-19)

βτ (ω), ηt(ω), ρt(ω) ≥ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (7-20)

γt(ω), θt(ω) ≥ 0, ∀ t ∈ H̄τ , τ ∈ T , ω ∈ Ω. (7-21)

Note that (7-11)-(7-21) is the implementable version of problem (5-8)-(5-12)
using as worst-case revenue the minimization problem presented in (7-2). It is im-
portant to mention that exists a vast literature to handle bilevel optimization pro-
grams, such as primal-dual or KKT conditions, Benders decomposition, column-
constraint generation, among others. However, these methods involve nonlineari-
ties and/or iterative procedures that are undesirable in practice. In this sense, we
decided to use the aforementioned methodology to solve the bilevel programming
since the single-level equivalent problem is a linear programming, which has effi-
cient algorithms to solve it.

7.1 Case Studies

In order to analyze the accuracy of the proposed methodology, we present two
illustrative case studies with different structures and interpretations using realistic
data from the Brazilian power sector. In the first case study, we motivate the usage
and analyze the results of the optimal portfolio model as a strategic tool to define the
optimal medium-term renewable portfolio to back a one-year flat standard forward
contract, with monthly short-term settlements. In the second study, we consider a
case where an ETC needs to define its optimal participation in a given set of re-
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newable projects to supply a long-term standard forward contract. In this setting,
we assume a 10-year business, as typically required by financial institutions to pro-
vide competitive interest rates for project financing. Both studies we will analyze
from the point of view of stress test, i.e. with a “deterministic” uncertainty set -
(πot (ω),∆π

+/−
t (ω))→ (πot ,∆π

+/−
t ) in (4-1)-(4-7).

For expository purposes, all studies assume J = 10% p.y. with Jτ ≈ 0.8%
p.m. (the equivalent monthly rate). We consider that the energy trading company
has no existing portfolio. Two capacity payment contract opportunities with the
following renewable plants are assumed to be available: a small hydro (SH) run-of-
river plant with 30 MW of installed capacity and 17.4 avgMW of FEC and a Wind
Power Plant (WPP) with 54.6 MW of installed capacity and 27.12 avgMW of FEC.
Both renewable units agree to sell 100% of their FEC on capacity payment contracts
by a flat monthly price P (R)

t = 90 R$/MWh-of-FEC, ∀ t ∈ H. We make use of the
methodology presented in [24] to jointly simulate a set of 2000 scenarios for the
renewable energy generation based on the historical data available for the SH and
WPP. Figs. (7.1) and (7.2) depicts the historical data used to simulate the scenar-
ios. Note that both variables present seasonality, intermittent and complementary
profile. Moreover, both variables have different variance among the months, mo-
tivating thus the use of the model proposed in [24], since the main characteristics
of the variables, such as the correlation between the production of the plants and
different variance among months, are preserved.

Fig. 7.1: Historical data of a 54.6 MW wind farm in avgMW.
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Fig. 7.2: Historical data of a 30 MW small hydro run-of-river plant in avgMW.

The optimization model were implemented in Mosel language under the soft-
ware FICO Xpress [82] and each problem were solved in less than one minute using
a Dell Inspiron 15R Special Edition Laptop.

7.1.1 Medium-Term Portfolio Strategy

The business structure studied in this first case study is the typical energy
commercialization trading made in the Brazilian contract market. We consider an
energy company selling an one-year flat forward contract of Q(F )

t = 10 avgMW by
P

(F )
t = 140 R$/MWh, ∀ t ∈ H. The risk-aversion parameters are set to λ = 0.5

(half weight to expected value and half to CVaR) and α = 0.95. We compare the
solution obtained by the model proposed in this dissertation, which we call Hy-
brid Stochastic-Robust (HSR) model, with the Pure Stochastic (PS) model (similar
to one proposed in [10]), i.e., using an external spot price scenarios simulated by
a least cost dispatch model. In addition, both solutions are benchmarked against
actual (observed) market variables (renewable production and short-term market
price). The period of the contact opportunities are assumed to range from January
2012 to December 2012. Thus, T = 1 and H = Hτ = {1, 2, ..., 12}. Using the
methodology described in [16] with the official system data from December 2011,
we obtain the simulation of the Brazilian system for the contract period, including
the short-term market price. Fig. 7.3 shows the statistics for the set of simulated
spot-price scenarios for 2012.
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Fig. 7.3: Average and extreme quantiles (5% and 95%) for the simulated spot prices: from
January 2012 to December 2012 on a monthly basis.

To construct the “deterministic” uncertainty set, we extract some statistics
from the simulated scenarios. The reference time series was set to the simulated
average shown in Fig. 7.3 to capture the conditional information of the spot prices
throughout the contract horizon. Nevertheless, the maximum positive and negative
deviations from the reference scenario were chosen to allow the stress scenario to
reach the price cap (730 R$/MWh) and floor (12.1 R$/MWh), respectively, in any
period. To constrain the worst-case spot-price scenarios, the maximum and mini-
mum returns were obtained from the historical data for each month. In Table 7.1,
the aforementioned input data is summarized.

Our goal in to study the effect of varying the conservatism parameter K1 on
the optimal portfolio. Therefore, we have solved (7-11)-(7-21) forK1 = 1, 2, ..., 12,
and the optimal amount sold and contracted of each technology is shown in Table
7.2. We observed that when the spot price is treated as an exogenous variable (sec-
ond column of Table 7.2), the optimal strategy is to back the forward contract sale
solely on the capacity contract with the wind power unit. One way to interpret this
result is to observe that the wind production pattern is similar to the spot price one,
i.e., high spot price seasons coincide, in general, with high wind power produc-
tion (see Fig. 7.1 and Fig. 7.3 for better comparison). In contrast, hydro production
presents almost full complementarity with these two variables, thus adding no value
to the portfolio.
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Tab. 7.1: Uncertainty set input data for the medium term study

πot ∆π+
t ∆π−t r+t r−t

Jan 046.47 683.53 34.37 Jan→ Feb 1.29 0.70
Feb 054.93 675.07 42.83 Feb→Mar 1.57 0.61
Mar 061.18 668.82 49.08 Mar→ Apr 1.91 0.62
Apr 069.62 660.38 57.52 Apr→May 1.59 0.60
May 072.74 657.53 60.37 May→ Jun 1.33 0.50
Jun 076.44 653.56 64.34 Jun→ Jul 0.52 0.37
Jul 082.02 647.98 69.92 Jul→ Ago 0.41 0.78
Ago 080.30 649.70 68.20 Ago→ Sep 2.91 0.17
Sep 089.13 640.87 77.03 Sep→ Oct 0.85 0.35
Oct 099.69 630.31 87.59 Oct→ Nov 0.44 0.27
Nov 103.69 626.21 91.69 Nov→ Dec 0.21 0.56
Dec 094.68 635.32 82.58

Tab. 7.2: Optimal contracting of each candidate option in the Pure Stochastic model and
Hybrid Stochastic-Robust model (avgMW)

PS HSR HSR HSR
(K1 = 1) (K1 = 2) (K1 = 3)

Forward 10.00 10.00 10.00 0.00
WPP 10.00 09.21 09.87 0.00
SH 00.00 04.91 06.88 0.00

Excess 00.00 04.12 06.88 0.00

When the model (7-11)-(7-21) is solved with K1 = 1 and 2, the optimal strat-
egy is also to sell the total amount of the forward contract, but supporting it by a
mixed portfolio that is composed of both WPP and SH. This result is due to the
stress-scenarios for the spot prices that penalize portfolios with high exposure to
the short-term market, which occurs whenever the portfolio generation is below the
amount sold. This situation can be observed in Fig. 7.4, which shows an out-of-
sample comparison (in energetic terms) for the first three portfolios shown in Table
7.2 with actual renewable production observed in 2012.

It is possible to see that the portfolios found with the robust model mitigate
purchases in the short-term market by raising the generation profile throughout the
months. The effect of such mitigation is shown in Fig. 7.5, where the impact of the
first semester spot-price disturbance (April and May) is attenuated under the robust
solutions. For K1 ≥ 3, the stress created to the portfolio is so high that it is optimal
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Fig. 7.4: Generation profile of the portfolios found with the stochastic and hybrid
stochastic-robust models for the observed data (renewables generation) during
the contract horizon: months of 2012.

to not set up the business.
Finally, it is important to mention that it is not always the case that the HSR

model outperforms the PS one. In Table 7.3, the stochastic and hybrid stochastic-
robust solutions were evaluated under observed generation and prices for two other
representative years: 2010 (a typical year with respect to spot price realization -
lower values at the beginning of the year and high values at the end) and for 2008
(an unusual year - a price spike in January and low values at the end of the year).
We also present the evaluation for 2012.

Tab. 7.3: Back test in the yearly revenue of the ETC (MMR$)

PS HSR HSR HSR
(K1 = 1) (K1 = 2) (K1 = 3)

2008 2.31 3.84 4.65 0.00
2010 5.22 3.83 3.19 0.00
2012 5.12 7.60 9.34 0.00

As shown in Table 7.3, the PS model has the highest yearly revenue in the typ-
ical year, mainly because the spot price outcome for this year realized as “expected”,
i.e., in accordance with the pattern of the simulated scenarios. However, when the
spot price realization presents a different pattern with respect to the price scenarios
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Fig. 7.5: Spot prices and revenue profile of the portfolios found with the stochastic and ro-
bust models for the observed data (renewables generation and spot prices) during
the contract horizon: months of 2012.

simulated by the stochastic model, the hybrid stochastic-robust model outperforms
the pure stochastic one. We also indicate that the HSR model also outperforms the
PS one when the spot price increases in the last months of the year, indicating that
the robust counterpart was able to capture the typical pattern of prices as well.

7.1.2 Long-Term Portfolio Strategy

In any business sector, a long-term investment is one of the most difficult
challenges for an investing company, not only due to the difficulty to make long-
term assumptions, but also because of the assessment of financial support given by
financial institutions. Typically, these institutions require a high level of guarantees
that, most of the time, make the project infeasible. Therefore, the main goal of
investment companies is to achieve low risk projects with (almost) deterministic
positive cash-flows. When it happens, a “safe” business is set and a financial support
can be obtained. In the view of these considerations, in this study, we consider
an ETC deciding its willingness to invest in renewable plants to cover a 10-year
forward contract with a consumer in the Brazilian contract market. We use the same
WPP and SH considered before and a contract period that ranges from January 2016
to December 2025. We argue that, under this time horizon, the specification of any
price model would rely on unpredictable economic and structural data inputs under

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



7. CONTRACTING STRATEGIES FOR RENEWABLE PLANTS 76

which almost all rational institutions would not give financial support for investing
on these plants due to the high risk of the business. Thus, the proposed approach
provides the decision maker with a tool consistent with the stress analysis.

Within the model parameters, we set T = {1, 2, ..., 10} as the set of the
years and {Hτ}τ∈T as the collection of sets containing the months of each year
τ ∈ T , i.e., H1 = {1, . . . , 12},H2 = {13, . . . , 24}, . . . ,H10 = {109, . . . , 120}
with H =

⋃
τ∈T Hτ = {1, . . . , 120}. We make use the model proposed in [24] to

simulate the joint WPP and SH production scenarios throughout the contract hori-
zon. To construct the “deterministic” uncertainty set, we set to the nominal spot
price time series ({πot }t∈Hτ ), for all years of the study horizon, a typical year of
observed (historical) realization: the year of 2010. The maximum positive and neg-
ative deviations from the reference scenario were again chosen to allow the stress
scenario to reach the price cap (730 R$/MWh) and floor (12.1 R$/MWh), respec-
tively, in all periods. The returns used were the same of the previous study. In Table
7.4, the input data is summarized for a one year (the rest of the years receive the
same values):

Tab. 7.4: Uncertainty set input data for the long-term study

πot ∆π+
t ∆π−t r+t r−t

Jan 012.91 717.09 000.81 Jan→ Feb 1.29 0.70
Feb 013.82 716.18 001.72 Feb→Mar 1.57 0.61
Mar 027.24 702.76 015.14 Mar→ Apr 1.91 0.62
Apr 021.47 708.53 009.37 Apr→May 1.59 0.60
May 032.34 697.66 020.24 May→ Jun 1.33 0.50
Jun 067.70 662.30 055.60 Jun→ Jul 0.52 0.37
Jul 089.61 640.39 077.51 Jul→ Ago 0.41 0.78
Ago 116.66 613.34 104.56 Ago→ Sep 2.91 0.17
Sep 132.10 597.90 120.00 Sep→ Oct 0.85 0.35
Oct 137.78 592.22 125.68 Oct→ Nov 0.44 0.27
Nov 116.68 613.32 104.58 Nov→ Dec 0.21 0.56
Dec 071.62 658.38 059.52

To evaluate the results, an efficient frontier curve is created by varying the
risk-aversion parameter λ from 0.5 to 0.99 on a 0.05 step-basis. Fig. 7.6, shows the
curve for {Kτ}τ∈T = 1 and 2. The vertical axis represents the Net Present Value
(NPV) of the expected value of the 10-year revenue and the horizontal axis stands
for risk, evaluated as the difference between the NPV of the expected value and the
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NPV of the CVaR.

Fig. 7.6: Efficient frontier curve for {Kτ}τ∈T = 1 and 2 varying the parameter λ from 0.5
to 0.99 on a 0.05 step-basis.

For {Kτ}τ∈T = 2 and λ = {0.50, 0.55, 0.60}, the risk is higher than the ex-
pected return, indicating that the NPV of the CVaR is negative. This fact suggests
that under {Kτ}τ∈T = 2, the investment decision in renewable plants requires high
risk aversion to mitigate the solvency risk (chance of a negative NPV). Table 7.5
depicts the portfolio decisions associated with each point of the efficient frontier
curve. Observe that in Table 7.5, as the risk-averse parameter λ grows, the excess
of energy bought by the ETC also grows, representing a hedge against the price-
quantity risk. These results are expected and follow the same idea explained in the
case study of Section 7.1.1. The optimal contracting model aims to create a flat-
ter portfolio, reducing the exposure to the short-term market because this level of
conservativeness is highly aggressive against the ETC’s revenue.

In general, the efficient frontier varies with respect to the conservativeness
level of the robust counterpart, i.e., with {Kτ}τ∈T . In this sense, to create a long-
term portfolio, the decision maker should well-adjust its risk preference to the pa-
rameters of the model proposed because the solution obtained is highly dependent
on the parameters of the model. For example, a 0.05 variation on λ creates a differ-
ent portfolio and the relationship between risk and expected revenue. This is also
extremely important in a financial support negotiation with a financial institution
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and may affect the decision of give or not the support.

Tab. 7.5: Optimal contracting of each candidate option for {Kτ}τ∈T = 1 and 2 in the 10-
year case study for different risk levels of λ (avgMW)

{Kτ}τ∈T = 1 {Kτ}τ∈T = 2
λ Forward WPP SH Excess Forward WPP SH Excess

0.50 10.00 13.57 2.25 5.82 10.00 11.48 5.09 6.57
0.55 10.00 13.65 2.29 5.93 10.00 11.80 5.18 6.99
0.60 10.00 13.74 2.34 6.08 10.00 12.00 5.25 7.25
0.65 10.00 13.87 2.41 6.27 10.00 12.13 5.30 7.42
0.70 10.00 14.11 2.47 6.58 10.00 12.21 5.35 7.56
0.75 10.00 14.43 2.56 6.99 10.00 12.34 5.36 7.70
0.80 10.00 14.74 2.67 7.42 10.00 12.43 5.38 7.81
0.85 10.00 14.97 2.76 7.73 10.00 12.48 5.41 7.89
0.90 10.00 15.08 2.83 7.90 10.00 12.55 5.42 7.97
0.95 10.00 15.19 2.90 8.09 10.00 12.63 5.43 8.06
0.99 10.00 15.28 2.95 8.22 10.00 12.68 5.44 8.12
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8
Portfolio Allocation with Energy Call Options

In this second case study chapter, we study the ETC’s optimal portfolio allo-
cation considering available an energy call option with a thermal unit. For this pur-
pose, we can directly apply the contract model (5-8)-(5-12) with worst-case revenue
described by (5-13). However, one of the problems of the optimal contracting model
(5-8)-(5-13), from a computationally point of view, is to assess, endogenously, the
thermal generation under the worst-case spot price. As discussed in Section 5.2.2,
the thermal dispatch

(
g

(T )
t

)
is a deterministic function of the spot price (equation (5-

4)). In this sense, since the spot price is obtained endogenously by a minimization
problem which aims to minimize the ETC’s portfolio revenue, we need to guarantee
that the thermal generation follows the rule (5-4) endogenously too. To deal with
this problem, we propose a third level problem with the objective to recover the
thermal generation rule (5-4) given a spot price “realization” defined by the second
level (5-13). This third level can be interpreted as a response by the call option
contract against the realization of the worst-case spot price time series, acting as a
hedge to the portfolio of the trading company and, then, reflecting the generation
of the thermal plant or the call option exercise so that the revenue is maximized. In
Fig. 8.1, a scheme of the full contracting model with an interpretation of each level
and their input and output is presented to ease the understanding.

Mathematically, the three level optimization problem that describes the scheme
in Fig. 8.1 is the following:

Maximize
x(F ),x

(R)
i ,x(T ),

δτ (ω),zτ

∑
τ∈T

∑
ω∈Ω

p(ω)

[
λ

(
zτ −

δτ (ω)

1− α

)
+

(1− λ)RWC
τ

(
x, g(R)

τ (ω)
)]

(1 + J)(1−τ) (8-1)

subject to:

δτ (ω) ≥ zτ −RWC
τ

(
x, g(R)

τ (ω)
)
, ∀ τ ∈ T , ω ∈ Ω; (8-2)

Q(F )x(F ) ≤
∑
i∈U

Q
(R)
i x

(R)
i +Q(T )x(T ); (8-3)

δτ (ω) ≥ 0, ∀ τ ∈ T , ω ∈ Ω; (8-4)

x(F ), x
(R)
i , x(T ) ∈ [0, 1], ∀ i ∈ U, (8-5)
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Fig. 8.1: Three-level model scheme.

with worst-case revenue,

RWC
τ

(
x, g(R)

τ (ω)
)

= min
πτ (ω)∈Πoτ (ω)

∑
t∈Hτ

[
P

(F )
t Q

(F )
t x(F ) −

∑
i∈U

P
(R)
i,t Q

(R)
i,t x

(R)
i −

(
P

(T )
t − g

¯
(T )Λ

)
Q

(T )
t x(T ) +

(∑
i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q

(F )
t x(F )

)
πt(ω) +

max
g
(T )
t (ω)∈G(T )

t (ω)

{(
πt(ω)− Λ

)
g

(T )
t (ω)

}]
ht(1 + Jτ )

−(t−tini
τ ), ∀ τ ∈ T , ω ∈ Ω.

(8-6)

where

G(T )
t (ω) =

{
g

(T )
t (ω) ∈ R+

∣∣∣∣∣ g
(T )
t (ω) ≤ ḡ(T )Q

(T )
t x(T );

g
(T )
t (ω) ≥ g

¯
(T )Q

(T )
t x(T ).

}
(8-7)

The optimization problem (8-1)-(8-5) represents the optimal portfolio selec-
tion problem (1st level). The optimal portfolio is assessed by maximizing the mea-
sure presented in (3-7) of the worst-case revenue (8-6), the 2nd level of the problem,
which is accounted for by minimizing the ETC’s revenue over the spot price feasi-
ble region. Finally, this worst-case revenue considers, endogenously, the call option
response by means of the maximization problem in (8-6), which represents the 3rd

level of the contracting problem. Writing in its extended form, the third level is
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the following deterministic optimization problem, one for each scenario ω ∈ Ω and
period t ∈ H:

ft
(
πt(ω), x(T )

)
= max

g
(T )
t (ω)≥0

(
πt(ω)− Λ

)
g

(T )
t (ω) (8-8)

subject to

g
(T )
t (ω) ≤ ḡ(T )Q

(T )
t x(T ); ϕt(ω) (8-9)

g
(T )
t (ω) ≥ g

¯
(T )Q

(T )
t x(T ). χt(ω) (8-10)

Note that, since (8-8)-(8-10) is a maximization problem, if πt(ω) ≥ Λ the
optimal solution is g(T )

t (ω) = ḡ(T )Q
(T )
t x(T ). On the other hand, if πt(ω) < Λ, the

optimal solution is g(T )
t (ω) = g

¯
(T )Q

(T )
t x(T ). For both cases, the optimal solution

recovers the dispatch rule (5-4) and the objective function is exactly the short-term
settlement of the call option. However, from a technical point of view, incorporating
this third level into the ETC’s worst-case revenue problem (8-6) creates an undesir-
able nonlinearity, leaving the certainty-equivalent maximization problem difficult to
be solved. Since we are only interest in the value of the objective function evaluated
in the optimal solution (dispatch), we can use the dual problem of (8-8)-(8-10) and
apply the transformation proposed in [26] (discussed previously) to overcome this
nonlinearity. Since the dual problem of the third level problem is a minimization
problem and the second-level (8-6) is also a minimization problem, the argument
discussed in Chapter 7 holds and we can “couple” both problem (second and third
levels) into a single-level equivalent problem. Thus, writing the dual problem of
(8-8)-(8-10), we have:

ft
(
πt(ω), x(T )

)
= min

ϕt(ω),χt(ω)

(
ḡ(T )ϕt(ω)− g

¯
(T )χt(ω)

)
Q

(T )
t x(T ) (8-11)

subject to

ϕt(ω)− χt(ω) ≥ πt(ω)− Λ; (8-12)

ϕt(ω), χt(ω) ≥ 0. (8-13)

By coupling (8-11)-(8-13) into (8-6) we obtain a equivalent second-level lin-
ear minimization problem in which the thermal dispatch is considered “correctly”,
i.e., the generation rule (5-4) is endogenously defined and respects the worst-case
spot price realization. This equivalent second-level optimization problem is the fol-
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lowing minimization problem, one for each τ ∈ T and ω ∈ Ω:

RWC
τ (x, g(R)

τ (ω)) = min
πt(ω),v+t (ω),v−t (ω),

ϕt(ω),χt(ω)

∑
t∈Hτ

[
P

(F )
t Q

(F )
t x(F ) −

∑
i∈U

P
(R)
i,t Q

(R)
i,t x

(R)
i −

(
P

(T )
t − g

¯
(T )Λ

)
Q

(T )
t x(T ) +

(∑
i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q

(F )
t x(F )

)
πt(ω) +

(
ḡ(T )ϕt(ω)− g

¯
(T )χt(ω)

)
Q

(T )
t x(T )

]
ht(1 + Jτ )

−(t−tini
τ ) (8-14)

subject to

πt(ω) = πot (ω) + ∆π+
t (ω)v+

t (ω) −∆π−t (ω)v−t (ω),

∀ t ∈ Hτ ; µt(ω) (8-15)∑
t∈Hτ

(
v+
t (ω) + v−t (ω)

)
≤ Kτ ; βτ (ω) (8-16)

πt+1(ω) ≥ (1− r−t )πt(ω), ∀ t ∈ H̄τ ; γt(ω) (8-17)

πt+1(ω) ≤ (1 + r+
t )πt(ω), ∀ t ∈ H̄τ ; θt(ω) (8-18)

0 ≤ π+
t (ω) ≤ 1, ∀ t ∈ Hτ ; ηt(ω) (8-19)

0 ≤ π−t (ω) ≤ 1, ∀ t ∈ Hτ ; ρt(ω) (8-20)

ϕt(ω)− χt(ω) ≥ πt(ω)− Λ, ∀ t ∈ Hτ ; ζt(ω) (8-21)

ϕt(ω), χt(ω) ≥ 0, ∀ t ∈ Hτ . (8-22)

Finally, as discussed in Chapter 7, the contracting model (5-8)-(5-12) is still
a non-linear bilevel optimization model. However, note that each feasible region
of the problem (8-15)-(8-22), is a polyhedral set and the ETC’s revenue (8-14) is
a linear function on {π̃τ}τ∈T and on x. Therefore, we can apply again the trans-
formation proposed in [26] leading to the following single-level two-stage linear
optimization model:

Maximize
x(F ),x

(R)
i ,x(T ),RWC

τ (ω),zτ ,
δτ (ω),µt(ω),ζt(ω),θt(ω)
βτ (ω),ηt(ω),ρt(ω),γt(ω)

∑
τ∈T

∑
ω∈Ω

p(ω)

[
λ

(
zτ −

δτ (ω)

1− α

)
+

(1− λ)RWC
τ (ω)

]
(1 + J)(1−τ) (8-23)

subject to:

RWC
τ (ω) =

∑
t∈Hτ

(
πot (ω)µt(ω)− ηt(ω)− ρt(ω)− Λζt(ω)

)
−Kτβτ (ω) +
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∑
t∈Hτ

(
P (F )Q(F )x(F ) −

∑
i∈U

P
(R)
i Q

(R)
i x

(R)
i

)
ht(1 + Jτ )

−(t−tini
τ ) +

∑
t∈Hτ

(
g
¯

(T )Λ− P (T )
)
htQ

(T )x(T )(1 + Jτ )
−(t−tini

τ ), ∀ τ ∈ T , ω ∈ Ω; (8-24)

δτ (ω) ≥ zτ −RWC
τ (ω), ∀ τ ∈ T , ω ∈ Ω; (8-25)

Constraints (5-10)-(5-12) (8-26)

µt(ω)− (1− r−t )γt(ω) + (1 + r+
t )θt(ω)− ζt(ω) ≤(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t = 1 + (τ − 1)|Hτ |; (8-27)

µt(ω) + γt−1(ω)− (1− r−t )γt(ω)− θt−1(ω) + (1 + r+
t )θt(ω)− ζt(ω) ≤(∑

i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t 6= 1 + (τ − 1)|Hτ | and t 6= |Hτ | τ ; (8-28)

µt(ω) + γt−1(ω)− θt−1(ω)− ζt(ω) ≤(∑
i∈U

g
(R)
i,t (ω)Q

(R)
i,t x

(R)
i −Q(F )x(F )

)
ht(1 + Jτ )

−(t−tini
τ ),

∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω
∣∣ t = |Hτ | τ ; (8-29)

∆π+
t (ω)µt(ω) + βτ (ω) + ηt(ω) ≥ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (8-30)

∆π−t (ω)µt(ω)− βτ (ω)− ηt(ω) ≤ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (8-31)

ζt(ω) ≤ ḡ(T )Q(T )x(T )ht(1 + Jτ )
−(t−tini

τ ), ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (8-32)

ζt(ω) ≥ g(T )Q(T )x(T )ht(1 + Jτ )
−(t−tini

τ ), ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (8-33)

ζt(ω), βτ (ω), ηt(ω), ρt(ω) ≥ 0, ∀ t ∈ Hτ , τ ∈ T , ω ∈ Ω; (8-34)

γt(ω), θt(ω) ≥ 0, ∀ t ∈ H̄τ , τ ∈ T , ω ∈ Ω. (8-35)

In (8-23)-(8-35), the dual variables of the second level problem defined by
(8-14)-(8-22) are decision variables and the set of equations (8-27)-(8-35) is the
feasible region of the dual problem of (5-13). Finally, note that (8-23)-(8-35) is
the implementable version of problem (5-8)-(5-13). Next we present a set of case
studies to illustrate the applicability of the proposed model.
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8.1 Pricing Energy Call Option with Ambiguity Aversion on Spot
Price Distribution

In this case study, the accuracy of the proposed model (8-23)-(8-35) is illus-
trated from the point of view of ambiguity aversion. In addition to the contracts
considered in the previous Chapter (forward and renewable capacity payment con-
tracts), we consider a thermal call option opportunity in the ETC’s portfolio. For
expository purpose, we assume a total flexible thermal1 plant (g

¯
(T ) = 0) with VOC

(Λ) equals to 90 R$/MWh. The amount of energy available in the call option is set
to be the unit’s FEC, assumed to be 5 avgMW, which is also considered to be the
maximum production of the plant, i.e. ∀ t ∈ H, g

¯
(T )Q

(T )
t = 0, for π̃t < P

(T )
t and

ḡ(T )Q
(T )
t = 5, for π̃t ≥ P

(T )
t . We can interpret this opportunity as belonging to a

medium-sized gas-fired plant (100 MW of installed capacity), which has low VOC
(between 70-100 avgMW) and have 5% of its installed capacity “uncontracted” and
agreed to sell it in the market. In this case, the thermal unit is willing to receive a
fixed payment by the hedge when it generates (dispatches).

Our goal in this study is to assess the value of this call option from the point
of view of a trading company that already sold a one-year flat forward contract with
quantity Q(F )

t = 10 avgMW and price P (F )
t = 140 R$/MWh backed on the same

WPP unit considered in the last Chapter (54.6 MW of installed capacity and 27.12
avgMW of FEC). The amount bought in energy from the renewable capacity pay-
ment contract to cover the forward contract was Q(R)

WPP,t = 10 avgMW and P (R)
WPP,t =

90 avgMW, i.e., the ETC bought the minimum necessary to cover the sell. In this
sense, we make a sensitivity analysis on the call option price (the option premium)
and compare the expected value and the CVaR of the trade revenue with and with-
out the option. We assume that the contract period ranges from January 2013 to
December 2013, thus T = {1} and H = Hτ = {1, 2, ..., 12}. The risk-aversion
parameters are set to α = 0.95 and λ = 0.50 as usual.

In order to obtain the nominal spot price scenarios ({πot (ω)}t∈H) for the con-
tract period (January 2013 to December 2013), we make use of the methodology
described in [16] with the Brazilian official system data from December 2011. The
maximum positive and negative deviations from the reference scenario were cho-
sen to allow the endogenous spot price to reach the price cap (730 R$/MWh) and
floor (12.1 R$/MWh), respectively, in any period. The return constraints (4-4) and

1 Typically, the cost of the inflexible generation is embedded in the contract price.

DBD
PUC-Rio - Certificação Digital Nº 1212890/CA



8. PORTFOLIO ALLOCATION WITH ENERGY CALL OPTIONS 85

(4-5) are relaxed in this study since the simulation scenarios already capture the
inter-temporal relationship between consecutive periods. The expected value and
the CVaR of the trading without the call option in the portfolio is presented Table
8.1 for K1 = 0 (stochastic), 1 and 2.

Tab. 8.1: Expected value and CVaR of the trading without considering the call option in the
portfolio for K1 = 0 (stochastic), 1 and 2 (MMR$)

K1 = 0 K1 = 1 K1 = 2
Exp. Value 3.49 0.45 -2.15

CVaR -1.19 -3.49 -6.55

Note that, as expected, this revenue measures (risk and return) decreases as
we increase the value ofK1, since the spot price became more aggressive against the
company’s portfolio. In addition, the CVaR of the trading, which, roughly speaking,
represents the average of worst revenue scenarios, is negative for every K1 = 0, 1

and 2, reaching -6.55 MMR$ in one year, if the spot price deviates for “2 months”
with respect to the simulated scenarios. Thus, a hedge against this possibility is
of utmost importance for a risk-averse trading company in this business (amount
sold in contracts equal to the amount bought from capacity contract). In Fig. 8.2
a sensitivity analysis in the call option premium is presented. Note that, for K1

= 0, equivalent to solve a pure stochastic problem, is optimal to purchase the full
call option until its premium reach 30 R$/MWh. After that, the optimal amount is
reduced in the portfolio, reflecting the increase in the cost of the option. After 130
R$/MWh, the call is so expensive that brings no value to the portfolio.

Likewise, we can make the same analysis for K1 = 1 and 2. The option has
full value until a premium of 45 R$/MWh and 85 R$/MWh, respectively, reducing
the optimal amount in the portfolio for values after that, being valueless after 160
R$/MWh and 180 R$/MWh, respectively. Therefore, the graphs presented in Fig.
8.2 prices the value of a call option with a thermal unit in a portfolio for each possi-
ble premium available and represent an important decision tool in real negotiations.

At last, in order to illustrate the importance to consider multiple possible prob-
ability distributions when defining the optimal strategy, we perform a back test on
this portfolio with observed data of wind production and spot price for the contract
year (January 2013 to December 2013). This back test is motivated due to ma-
jor change occurred in the Brazilian spot price formation methodology in Septem-
ber 2013 when the Brazilian system operator incorporate a risk averse operation
methodology (instead of a risk neutral operation) to assess the future cost function
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of the system (see [85] for more details). Thus, even if the probability distribution
induced by the simulation of the system in December 2011 for the contract year is
assumed to be the real distribution of the spot prices, after this methodology change,
it is hard to believe that this assumption remains true and represents, minimally, the
real outcome. The main idea therefore is to study how the portfolio behaves with
this “structural change” in the spot price formation methodology.

In Table 8.2, we present the yearly revenue of the trading company for K1

= 0, 1 and 2 assuming that the amount of call option obtained using the proposed
model was implemented for a premium ranging from 50 to 100 R$/MWh.

Tab. 8.2: Back test in the yearly revenue of the ETC for a range of premiums varying from
50 to 100 R$/MWh (MMR$) and the optimal amount contracted (avgMW) for K1

= 0, 1 and 2

P (T )

K1 = 0 K1 = 1 K1 = 2
Rev. Qt. Thrm. Rev. Qt. Thrm. Rev. Qt. Thrm.

(MMR$) (avgMW) (MMR$) (avgMW) (MMR$) (avgMW)
50 6.74 2.83 8.82 4.76 9.08 5.00
55 6.23 2.45 8.15 4.31 8.86 5.00
60 5.99 2.32 7.65 4.00 8.64 5.00
65 5.73 2.16 7.11 3.61 8.42 5.00
70 5.54 2.05 6.70 3.34 8.20 5.00
75 5.39 1.99 6.45 3.22 7.98 5.00
80 5.18 1.83 6.09 2.95 7.76 5.00
85 5.00 1.70 5.77 2.70 7.54 5.00
90 4.73 1.44 5.48 2.47 7.24 4.88
95 4.38 1.01 5.30 2.36 6.76 4.49
100 4.21 0.82 5.15 2.28 6.38 4.20

Note that stochastic model has the lowest value for different possible option
premiums, reflecting, among other things, the impact of changing the spot price for-
mation rules on the optimal hedge level. This result reflects the adjustment that the
model can perform in the spot distribution in order to seek the worst-case revenue
within a set of credible probability distributions. As a result, the optimization model
robustifies the ETC’s portfolio against unexpected variations on the scenarios con-
sidered as nominal or typical and mitigates this intrinsic risk inherent to spot price
variables, being thus averse to ambiguity.
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Fig. 8.2: Sensitivity analysis in the call option premium for K1 = 0 (stochastic), 1 and 2.
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8.2 Full Portfolio Allocation with Aversion to Ambiguity

This last case study comprises the full portfolio allocation problem. The con-
tract opportunities considered in this study are the same of the previous studies:
(i) one flat forward contract with quantity {Q(F )

t }t∈H = 10 avgMW and price
{P (F )

t }t∈H = 140 R$/MWh; (ii) an energy call option with a total flexible ther-
mal plant (g

¯
(T ) = 0) with VOC (Λ) equals to 90 R$/MWh and {Q(T )

t }t∈H = 5

avgMW; (iii) a renewable capacity contracts with a wind power of 54.6 MW of in-
stalled capacity and 27.12 avgMW of FEC which agreed to sell 100% of its FEC for
{P (R)

WPP,t}t∈H = 90 R$/MWh; and (iv) a renewable capacity contracts with a small
hydro of 30 MW of installed capacity and 17.4 avgMW of FEC which agreed to sell
100% of its FEC for {P (R)

SH,t}t∈H = 90 R$/MWh. The contract period is the same
of the previous study (January 2013 to December 2013) thus being affected by the
change in spot price formation methodology after September. Hence, T = {1} and
H = Hτ = {1, 2, ..., 12}. The risk-aversion parameters are set to α = 0.95 and λ =
0.50 as usual.

To evaluate the results, a sensibility analysis is performed again on the call
option price (call premium). Fig. 8.3 shows a curve in which the x-axis represents
the call premium (in R$/MWh), the primary (left) y-axis measures the expected
value and the CVaR in MMR$ and the secondary (right) y-axis shows the amount
of energy contracted, in avgMW, from the available opportunities. Note that, for
K1 = 0 (pure stochastic model), the call option is bought in full until its premium
reaches 45 R$/MWh. For {P (T )

t }t∈T ∈ {50, 55, 60}, the optimal amount brought
to the portfolio is a percentage of the contract. After that, the thermal plant has no
value to the portfolio due to the expensive price and the forward contract is covered
only by the renewable plants. Note that, for all prices, the total amount bought in
contracts is higher than the quantity of the contract, reflecting a hedge against low
production scenarios.

Likewise, for K1 = 1, which represents a single deviation on the nominal
scenarios, the optimal decision is to fully buy the call option until a premium of 45
R$/MWh. However, its value has a slower decay with respect to the pure stochastic,
being valueless only after 90 R$/MWh. In addition, the total amount bought in
contracts is higher than the quantity of the contract, reflecting a hedge against low
production scenarios too, but the total net of energy in the portfolio is higher than
K1 = 0, since the aggressiveness of the spot price is higher. At last, in the K1 = 2

graph in Fig. 8.3, a different pattern can be seen. Note that the optimal portfolio
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without the call option is to not set up the business due to the high aggressiveness
of the spot price against the ETC’s portfolio. Therefore, the trading has value only
if the call option have value in the portfolio. This happens for call premiums below
70 R$/MWh.

As a final comment, the graphs presented in Fig. 8.3 expresses the optimal
portfolio that should be contracted to back up a one-year forward contract in the
Brazilian contract market with: (i) aversion to price-quantity risk associated with
the renewable production; (ii) hedge against price spikes by means of thermal call
options; and (iii) ambiguity averseness using a worst-case approach within a mul-
tiple credible probability distribution set. Again we argue that these figures are
important decision tool in real negotiations.
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Fig. 8.3: Sensitivity analysis in the call option premium for K1 = 0 (stochastic), 1 and 2 in

the full problem study.
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9
Conclusion

Energy commercialization is one of the most important challenges of a gener-
ation company in a liberalized market. This process typically involves the definition
of the optimal strategy that should be made in order to maximize the company’s
value with an adequate modeling of all important risk factors that affect the busi-
ness and the agent’s risk profile. In the case of trading renewable generation, this
process became worsened due to the uncertainty inherent to its production that, as-
sociated to the irregularity of the short-term market price, creates a major risk for
the trading company, known as price-quantity risk. In this dissertation, we present
a novel approach to determine the risk-constrained optimal portfolio of an energy
trading company that sells standard forward contracts to end-users in the contract
market backed on renewable generation. Such a model assesses the optimal amount
to trade in contracts by the ETC, given their respective specifications (prices, start-
ing dates, durations, etc.), which is robust with respect to unexpected variations in
spot prices but that also considers the stochastic nature of the production of renew-
able assets in a risk-constrained setting. In addition, we include into the optimal
portfolio model, the possibility to consider an energy call option contract to hedge
the portfolio against price spikes. This approach provides an alternative to current
models based on the simulation of prices. The main motivation for this approach
comes from the recognition that the simulation of short-term market prices is a very
difficulty task due to the complex formation process which this variable is derived.
It involves complex interactions between participants in the market and largely de-
pend on unpredictable market conditions.

Two different points of view derived from the model were discussed: (i) stress
test, in which the agent considers the worst-case realization of the spot price against
its cash-flow endogenously to the formation of the portfolio; and (ii) ambiguity
aversion, where the optimal portfolio is constructed considering a set of credible
distribution functions around a nominal random variable. One of the main results
of this dissertation is a relation between the solution obtained from the classical
ambiguity-averse model and the robust optimization model. We provide this link
by making use of a re-parametrization of the problem, that shows that the proposed
methodology that evolves robust optimization is equivalent to consider ambiguity
on some risk factors distribution.
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We illustrated the applicability of the methodology by means of a set of case
studies in which an ETC must define the portfolio of renewable sources (wind and
small hydros) in the Brazilian contract market to back up a mid- and long-term for-
ward contract. In addition, we apply the proposed model to price the value of an
energy call option in such renewable portfolio. We show, by means of back testing
on the ETC’s revenue and using realistic data from the Brazilian power system, that
the proposed methodology outperforms the classical stochastic approach whenever
the observed prices deviates from the simulated scenarios. Since the majority of the
trading decisions are set with at least 6 months in advance, we argue that this devia-
tions are very typical due to the “time uncertainty” on the simulation (six months in
advance) and the aforementioned difficulty to predict the short-term market price.
Therefore, the methodology proposed in this dissertation is a powerful tool in risk
managing of renewable energy commercialization.

Ongoing research related to this work includes a definition of a stochastic
conservatism parameter correlated with the generation of the plants as well as its
estimation and the generalization of the methodology to include other types of con-
tracts, such as flexible and collar contracts.
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