

Rafaela dos Santos Moraes

Complexos homo e heterobinucleares de ligantes derivados da isoniazida como potenciais agentes antitumorais

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Doutor em Química.

Orientador: Prof. Nicolás Adrián Rey

Rio de Janeiro Março de 2016

Rafaela dos Santos Moraes

Complexos homo e heterobinucleares de ligantes derivados da isoniazida como potenciais agentes antitumorais

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Doutor em Química. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Nicolás Adrián Rey

Orientador Departamento de Química – PUC - Rio

> Prof. Ana Cecilia González Baró UNLP

Prof. Elene Cristina Pereira Maia UFMG

> Prof. Marcos Dias Pereira UFRJ

Prof. Andréa de Moraes Silva IFRJ

Prof. Camilla Djenne Buarque Müller Departamento de Química - PUC – Rio

Prof.Jiang Kai Departamento de Química - PUC - Rio

Prof. Márcio da Silveira Carvalho

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico - PUC - Rio

Rio de Janeiro, 21 de março de 2016

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Rafaela dos Santos Moraes

Graduou-se em Licenciatura em Química no Instituto Federal de Educação, Ciência e Tecnologia em fevereiro de 2009. No mesmo ano ingressou no Mestrado em Química Inorgânica com ênfase em bioinorgânica na PUC-Rio. No ano de 2011 ingressou no Doutorado na mesma área de pesquisa.

Ficha Catalográfica

Moraes, Rafaela dos Santos Complexos homo e heterobinucleares de ligantes derivados da isoniazida como potenciais agentes antitumorais / Rafaela dos Santos Moraes ; orientador: Nicolás Adrián Rey. – 2016. 163 f. ; 30 cm Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2016. Inclui bibliografia 1. Química – Teses. 2. Complexos. 3. Isoniazida. 4. Câncer. I. Rey, Nicolás Adrián. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD: 540

PUC-Rio - Certificação Digital Nº 1111828/CA

Dedico a Deus, fiel em todas as Suas promessas.

Agradecimentos

Agradeço a Deus, por ter me dado saúde, sabedoria e principalmente força não me deixando desistir deste sonho.

A meus pais, Marise e Renato, e ao meu marido João Victor, pelo incentivo e apoio em todos os momentos.

Ao professor e orientador Nicolás pela convivência, dedicação e ensinamentos que contribuíram muito no meu crescimento profissional.

À querida professora Judith (in memoriam) pela imensa gentileza.

Aos meus amigos Vanessa, Leonardo e Aline pela ajuda e parceria contínua no laboratório.

Aos colegas Sumaia, Camila e Wellington por tornarem a convivência tão divertida.

Aos alunos de iniciação científica Kadjna, Ivan, Fernanda e Isabela por estarem sempre prontos a ajudar.

Aos funcionários: Jorge, Caio, Maurício, André, Fátima, Zuzu, Marlene e Oto.

A PUC-Rio e ao departamento de Química, pela oportunidade.

A CAPES, pelo apoio financeiro através da bolsa de doutorado.

A todos que, de alguma forma, contribuíram para a realização deste trabalho.

Agradeço a Deus pela vida de todos.

Resumo

Moraes, Rafaela dos Santos; Rey, Nicolás Ádrian. **Complexos homo e heterobinucleares de ligantes derivados da isoniazida como potenciais agentes antitumorais.** Rio de Janeiro, 2016. 163p. Tese de Doutorado – Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Nas últimas décadas, o câncer ganhou uma dimensão maior, convertendo-se em um evidente problema de saúde pública mundial. Nesse sentido, o presente trabalho visou desenvolver compostos de coordenação que sejam menos tóxicos e mais eficazes, do que os atualmente usados no tratamento clinico, e que causem o mínimo de efeitos colaterais ao paciente no tratamento quimioterápico contra o câncer. Para isso foram sintetizados dois ligantes binucleantes um simétrico, já anteriormente sintetizado por outro grupo de pesquisa, e outro não-simétrico, este inédito. Ambos os ligantes contém como átomos doadores N, O, advindos de braços pendentes contendo grupos, tais como, amida, amina, piridina e fenol. A partir deles foram sintetizados quatro complexos homonucleares e dois heteronucleares. A escolha dos metais visou minimizar a citotóxicidade ao organismo e por isso foram usados metais fisiológicos, encontrados em diversas metaloenzimas do corpo humano. Todos os compostos sintetizados foram caracterizados por diversas técnicas instrumentais de análise. Além disso, os compostos sintetizados neste trabalho e em um trabalho anterior foram testados em linhagens celulares de câncer de pulmão (A549) e de próstata (PC3) e de mama (MCF-7). Dentre os compostos testados, um deles, a saber 10 apresentou ser bastante citotóxico. Os valores de IC₅₀ encontrados foram aproximadamente 1,3 µM, 1,4 µM e 1,8 µM na linhagem A549, MCF-7 e PC3, respectivamente, É importante destacar que o complexo 10 se mostrou aproximadamente cem vezes mais ativos que a própria cisplatina frente às linhagens A549 e MCF-7, tornando este estudo extremamente promissor. Nesse estudo foi possível comprovar o potencial terapêutico de compostos de coordenação na terapia do câncer destacando o caráter

promissor deste ramo da ciência. Este trabalho realizou ainda um estudo a respeito da aplicação das hidrazonas na fabricação de OLEDs, utilizando o ligante H₃L1 como componente emissor.

Palavras-chave

Complexos; isoniazida; câncer.

Moraes, Rafaela dos Santos; Rey, Nicolás Ádrian (Advisor). **Homo and heterodinuclear complexes containing isoniazid-derived ligands as potential antitumor agents.** Rio de Janeiro, 2016. 163 p. PhD Thesis – Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

In the last few decades, cancer has reached a new level, becoming an evident global public health issue. In that direction, the present work aims at developing less toxic and more effective coordination compounds, compared to the ones that are currently being used in clinical treatment, which could lead to minimal side effects to patients in chemotherapy. Therefore, two binucleating ligands were synthesized. A symmetrical one, which was previously created by other research group and a unique nonsymmetrical one. Both ligands contain N and O as donor atoms, deriving from pending arms containing groups such as amide, amine, pyridine and phenol. From them, four homonuclear and two heteronuclear complexes were synthesized. The purpose of chosen metals was to minimize the cytotoxicity to the body. Therefore, physiological metals were used, that are found in numerous metalloenzymes in human body. All synthesized compounds were characterized by several instrumental analysis techniques. Also, the compounds synthesized in this work and in a previous one have been tested in cell lines of lung cancer (A549), prostate cancer (PC3) and breast cancer (MCF-7). Among tested compounds, one compound, 10 showed a high cytotoxicity. The found IC50 values were about 1,3 µM, 1,4 µ M and 1,8 µM in the A549, MCF-7 and PC3 line, respectively. It is important to note that the complex **10** proved almost one hundred times more active than the very front of cisplatin and A549 lines MCF-7, making this extremely promising study. In this study, it was possible to confirm the therapeutic potential of coordination compounds in cancer therapy, highlighting the promising nature of this branch of science.

This study also conducted a study on the application of hydrazones in the manufacture of OLEDs using the H_3L1 binder as emitting component.

Keywords

Complex; isoniazid; cancer.

Sumário

1.	Introdução	21	
1.1.	Câncer: uma doença genética	21	
1.2.	Principais características das células tumorais	27	
1.3.	Causas do câncer	32	
1.4.	A quimioterapia no tratamento do câncer	36	
1.4.1.	Classificação das drogas antineoplásicas	37	
1.5.	Compostos de coordenação como antitumorais	41	
2	Objetives	47	
2. 0.1		47	
2.1. 2.2		47	
2.2.	Objetivo especifico	47	
3.	Metodologia	48	
3.1.	Reagentes e solventes utilizados	48	
3.1.1.	Solventes	48	
3.1.2.	Reagentes inorgânicos	48	
3.1.3.	Reagentes orgânicos	48	
3.2.	Metodologia e instrumentação	49	
3.2.1.	Analise elementar C,H,N,Cu,Zn e Fe	49	
3.2.2.	Temperatura de fusão	49	
3.2.3.	Espectroscopia vibracional (Infravermelho e Raman)	49	
3.2.4.	Espectroscopia eletrônica (UV-vis)	50	
3.2.5.	Análise termogravimétrica	48	
3.2.6.	Ressonância magnética nuclear ¹ H e de ¹³ C	48	
3.2.7.	Manipulação dos ligantes e seus complexos	49	
3.2.8.	Cultura das linhagens de células de origem tumoral	49	
3.2.9.	Determinação da citotoxicidade através do ensaio	50	
de rec	dução de MTT		
3.2.10). Determinação da concentração que inibe	54	
50% do crescimento celular			
3.2.11	. Análises estatísticas	54	

3.3.	Sínteses dos ligantes binucleantes e de seus precursores	54	
3.3.1.	Preparação do centro precursor Hdfmp	55	
3.3.2.	Braços pendentes	55	
3.3.3.	Síntese do (2-hidroxibenzil)(2-piridilmetil)amina (HBPA)	56	
3.3.4.	Síntese do intermediário não simétrico do	57	
3-[2-(ł	nidroxibenzil)-2 (piridilmetil)amina]-		
5-meti	il-salicilaldeído (Hbpamff)		
3.4.	Preparação dos ligantes binucleantes	59	
3.4.1.	Síntese do ligante simétrico N,N'-diisonicotinoil-	59	
2-hidr	oxi-5- metilisoftaldeído hidrazona (H ₃ L1)		
3.4.2.	Síntese do ligante não-simétrico N-isonicotinoil-	60	
2-hidr	oxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]-metil}-5-		
metilb	enzaldeído hidrazona (H3L2)		
3.5.	Síntese dos Complexos	60	
3.5.1.	Síntese de [Zn ₂ (μ -CH ₃ COO)(H ₂ O)(<i>L1</i>)]·2 H ₂ O,	60	
compo	composto (1)		
3.5.2.	Síntese de $[Zn_2(\mu-OH)(L1)] \cdot 10 H_2O$, composto (2)	61	
3.5.3.	Síntese de [Zn ₂ (μ -CH ₃ COO)(H ₂ O)(<i>L</i> 2)]· $\frac{1}{2}$ H ₂ O,	62	
composto (3)			
3.5.4.	Síntese de [Zn ₂ (μ -OH)(H ₂ O)(<i>L</i> 2)]·1 ¹ / ₂ H ₂ O, composto (4)	62	
3.5.5.	Síntese de [FeCu(μ -OH)(H ₂ O)(<i>L</i> 2)]ClO ₄ · $\frac{1}{2}$ H ₂ O,	63	
compo	osto (5)		
3.5.6.	Síntese de [FeZn(μ -OH)(H ₂ O)(<i>L</i> 2)] ClO ₄ · $\frac{1}{2}$ H ₂ O,	64	
composto (6)			
4.	Resultados e discussão I	65	
H ₃ L1 e	e seus complexos homobimetálicos de zinco(II)		

4.1. Caracterização do ligante simétrico N, N -diisonicotinoil-2 hidroxi-5-metilisoftaldeído hidrazona (H ₃ L1)	65
4.1.1. Espectroscopia vibracional	65
4.1.2. Análise termogravimétrica	70
4.1.3. Ressonância magnética nuclear de ¹ H e ¹³ C	72
4.1.4. Espectroscopia eletrônica (UV-vis)	76
4.2. Caracterização dos complexos binucleares de zinco(II),	78
(1) e (2)	
4.2.1. Espectroscopia vibracional	78
4.2.2. Análise termogravimétrica	85
4.2.3. Ressonância magnética nuclear de ¹ H	90
4.2.4. Espectroscopia eletrônica (UV-vis)	93
5. Resultados e discussão II- H ₃ L2 e seus	96
complexos homobimetálicos de zinco(II) e heterobimetálicos	
do tipo ferro(III)cobre(II) e ferro(III)zinco(II)	
do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico	96
 do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i>-isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino] 	96
do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i> -isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H ₃ L2)	96
do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i> -isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H ₃ <i>L2</i>) 5.1.1. Espectroscopia vibracional	96 - 97
do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i> -isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H ₃ <i>L2</i>) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica	96 - 97 100
do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i> -isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H ₃ <i>L2</i>) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹ H	96 97 100 101
do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i> -isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H ₃ <i>L2</i>) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹ H 5.1.4. Espectroscopia eletrônica (UV-vis)	96 97 100 101 106
 do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i>-isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H₃<i>L2</i>) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹H 5.1.4. Espectroscopia eletrônica (UV-vis) 5.2. Caracterização dos complexos binucleares de zinco(II), 	96 97 100 101 106 108
 do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i>-isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H₃<i>L2</i>) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹H 5.1.4. Espectroscopia eletrônica (UV-vis) 5.2. Caracterização dos complexos binucleares de zinco(II), (3) e (4) 	96 97 100 101 106 108
 do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i>-isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]: metil}-5-metilbenzaldeído hidrazona (H₃L2) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹H 5.1.4. Espectroscopia eletrônica (UV-vis) 5.2. Caracterização dos complexos binucleares de zinco(II), (3) e (4) 5.2.1. Espectroscopia vibracional 	96 97 100 101 106 108 108
 do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i>-isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H₃L2) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹H 5.1.4. Espectroscopia eletrônica (UV-vis) 5.2. Caracterização dos complexos binucleares de zinco(II), (3) e (4) 5.2.1. Espectroscopia vibracional 5.2.2. Análise termogravimétrica 	96 97 100 101 106 108 108 114
 do tipo ferro(III)cobre(II) e ferro(III)zinco(II) 5.1. Caracterização do ligante não-simétrico <i>N</i>-isonicotinoil-2-hidroxi-3-{[(2-hidroxibenzil)(2-piridilmetil)amino]- metil}-5-metilbenzaldeído hidrazona (H₃L2) 5.1.1. Espectroscopia vibracional 5.1.2. Análise termogravimétrica 5.1.3. Ressonância magnética nuclear de ¹H 5.1.4. Espectroscopia eletrônica (UV-vis) 5.2. Caracterização dos complexos binucleares de zinco(II), (3) e (4) 5.2.1. Espectroscopia vibracional 5.2.2. Análise termogravimétrica 5.2.3. Espectroscopia eletrônica (UV-vis) 	96 97 100 101 106 108 108 114 118

FeCu (5) e FeZn (6)

5.3.1.	Espectroscopia vibracional	120
5.3.2.	Análise termogravimétrica	125
5.3.3.	Espectroscopia eletrônica (UV-vis)	129
6.	Resultados e discussão III- Aplicações dos	132
compo	ostos sintetizados	
6.1.	Atividade citotóxica dos compostos: sobrevivência	132
celula	r nas linhagens tumorais humanas de câncer de	
pulmã	o, A549, e de próstata, PC3	
6.2.	Potencial aplicação tecnológica para o ligante simétrico	141
H ₃ L1		
6.2.1.	Estudo das concentrações de dopante nos dispositivos	142
7.	Considerações finais	145
8.	Referências bibliográficas	148
9.	Anexo	158

Lista de Figuras

Figura 1.1 - Formação do tumor ou neoplasia	22
Figura 1.2 - As etapas da carcinogênese	23
Figura 1.3 - Genes envolvidos no processo da carcinogênese	25
Figura 1.4 - Genes reparadores de DNA. A troca de uma base	26
produz como resultado um erro na cadeia de DNA. Se esse dano é	
reparado não há consequências para a célula. No entanto, as	
mutações nos genes reparadores de DNA podem conduzir ao	
fracasso na reparação do DNA, que por sua vez permite que as	
mutações subsequentes se acumulem e leve a célula a	
transformação maligna	
Figura 1.5 - Os hallmarks do câncer	27
Figura 1.6 - Esquema do Ciclo celular	28
Figura1.7 - Estruturas de algumas mostardas nitrogenadas usadas	38
no tratamento quimioterápico	
Figura 1.8 - Algumas das ligações cruzadas que podem ocorrer	38
entre um agente alquilante bifuncional e o DNA	
Figura 1.9 - Método para a preparação de ligações cruzadas	39
intercadeias no DNA. Dois precursores de ligações são	
incorporados no DNA por meio da síntese de DNA na fase sólida e	
a formação de ligações cruzadas do tipo interfilamentares ocorre	
através de uma reação seletiva pós-sintética	
Figura 1.10 - Estruturas de alguns antimetabólitos usados no	40
tratamento de neoplasias	
Figura 1.11 - Substituição de ligantes do cisplatina no interior da	41
célula	
Figura 1.12 - Tipos de adutos formados entre cisplatina e as bases	42
do DNA	
Figura 1.13 - Estrutura do complexo [Cu(Phen) ₂] ²⁺	43
Figura 1.14 - Proposta de mecanismo para a clivagem hidrolítica	44
promovida por composto de coordenação, em que M = metal de	
transição e L = ligante	

Figura 1.15 - Diversidade de mecanismos propostos para 45 metalohidrolases binucleares. (A) fosfatase ácida púrpura, (B)urease, (C) aminopeptidase leucina, (D) fosfatase alcalina, (E) (F) 3¢-5¢ exonuclease, monofosphatase inositol, (G) fosfotriesterase, e (H) EcoRV endonuclease Figura 1.16 - Propostas de sínteses dos ligantes e seus respectivos 46 complexos Figura 3.1 - Representação da reação de redução do MTT a 52 formazan promovida pela ação da succinato desidrogenase Figura 4.1 - Espectro de infravermelho do ligante $H_3L1 e$ de seus 67 precursores Hdfmp e INH (amostragem: pastilha de KBr) 67 Figura 4.2 - Espectro Raman do ligante H₃L1 Figura 4.3 - Curva termogravimétrica (TG, vermelho) e primeira 71 derivada (DTG, azul) do ligante H_3L1 . Atmosfera: nitrogênio; taxa de aquecimento: 10.00 °C min⁻¹ Figura 4.4 - Estrutura proposta para o ligante simétrico H₃L1 72 Figura 4.5 - Espectro de RMN de ¹H para o ligante H_3L1 em solução 72 de DMSO- d_6 à temperatura ambiente Figura 4.6 - Espectro de RMN de ¹³C para o ligante H_3L1 em 73 solução de DMSO- d_6 à temperatura ambiente. Figura 4.7 - HSQC para o ligante H_3L1 em solução de DMSO- d_6 à 74 temperatura ambiente Figura 4.8 - HMBC para o ligante H_3L1 em solução de DMSO- d_6 à 75 temperatura ambiente Figura 4.9 - Espectro eletrônico de H_3L1 em solução de DMSO, 76 $[H_3L1] = 1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$ Figura 4.10 - Espectro de infravermelho do composto 1 na região 80 (4000-450) cm⁻¹ (amostragem: pastilha de KBr) Figura 4.11 - Espectro de infravermelho do composto 2 na região 80 (4000-450) cm⁻¹ (amostragem: pastilha de KBr) Figura 4.12 - Espectro Raman do composto 1 81 Figura 4.13 - Espectro Raman do composto 2 81 Figura 4.14 - Modos de coordenação do íon carboxilato a um ou 84

dois metais; (a) monodentado; (b) bidentado (quelato); (c) bidentado (em ponte); (d) monodentado (em ponte) Figura 4.15 - Curva termogravimétrica (TG, vermelho) e primeira 87 derivada (DTG, azul) do composto 1. Atmosfera: nitrogênio; taxa de aquecimento: 10,00 °C min⁻¹ Figura 4.16 - Curva termogravimétrica (TG, vermelho) e primeira 87 derivada (DTG, azul) do composto 2. Atmosfera: nitrogênio; taxa de aquecimento: 10,00 °C min⁻¹ Figura 4.17 - Estrutura para os compostos 1 e 2 89 Figura 4.18 - Espectro de RMN de ¹H para o composto **1** em 90 solução de DMSO-d₆ à temperatura ambiente Figura 4.19 - Espectro de RMN de ¹H para o composto **2** em 91 solução de DMSO-d₆ à temperatura ambiente Figura 4.20 - Espectro eletrônico de 1 em solução de DMSO, 94 $[\text{composto } \mathbf{1}] = 2.0 \text{ x} 10^{-5} \text{ mol } \text{L}^{-1}.$ Figura 4.21 - Espectro eletrônico de 2 em solução de DMSO, 94 $[composto 2] = 2.0 \times 10^{-5} \text{ mol } \text{L}^{1}$ Figura 5.1 - ORTEP para o ligante binucleante H3L2, de fórmula 96 molecular C₂₈H₂₇N₅O₃ Figura 5.2 - Espectro de infravermelho do ligante H_3L2 e de seus 98 precursores Hbpamff e INH (amostragem: pastilha de KBr). Figura 5.3 - Espectro Raman do ligante H3L2 98 Figura 5.4 - Curva termogravimétrica (TG, vermelho) e primeira 101 derivada (DTG, azul) do ligante H_3L2 . Atmosfera: nitrogênio; taxa de aquecimento: 10,00 °C min⁻¹ Figura 5.5 - Espectro de RMN de ¹H para o ligante H₃L2 em solução 102 de DMSO- d_6 à temperatura ambiente Figura 5.6 - Mapa de contornos COSY para o ligante H_3L2 em 103 solução de DMSO-d₆ à temperatura ambiente Figura 5.7 - Mapa de contornos COSY para o ligante H_3L2 em 104 solução de DMSO-d₆ à temperatura ambiente, centrado na região dos deslocamentos químicos dos hidrogênios piridínicos e fenólicos Figura 5.8 - Espectro eletrônico de H_3L2 em solução de DMSO, 106

ònico de

[H ₃ L1]	= 1,0	x10 ⁻⁵	mol	L ⁻¹
---------------------	-------	-------------------	-----	-----------------

• • •		
Figura 5.9 - Espectro de infravermelho do composto 3	110	
(amostragem: pastilha de KBr)		
Figura 5.10 - Espectro de infravermelho do composto 4	110	
(amostragem: pastilha de KBr)		
Figura 5.11 - Espectro Raman do composto 3	111	
Figura 5.12 - Espectro Raman do composto 4	111	
Figura 5.13 - Curva termogravimétrica (TG, vermelho) e primeira	116	
derivada (DTG, azul) do composto 3. Atmosfera: nitrogênio; taxa de		
aquecimento: 10,00 °C min ⁻¹		
Figura 5.14 - Curva termogravimétrica (TG, vermelho) e primeira	116	
derivada (DTG, azul) do composto 4. Atmosfera: nitrogênio; taxa de		
aquecimento: 10,00 °C min ⁻¹		
Figura 5.15 - Estrutura para os compostos 3 e 4	117	
Figura 5.16 - Espectro eletrônico do composto 3 em solução de	118	
DMSO, [composto 3] = $2,0 \times 10^{-5} \text{ mol } \text{L}^{-1}$		
Figura 5.17 - Espectro eletrônico do composto 4 em solução de	118	
DMSO, [composto 4] = $2,0 \times 10^{-5}$ mol L ⁻¹		
Figura 5.18 - Espectro de infravermelho do composto 5	121	
(amostragem: pastilha de KBr)		
Figura 5.19 - Espectro de infravermelho do composto 6	121	
(amostragem: pastilha de KBr)		
Figura 5.20 - Espectro Raman do composto 5	122	
Figura 5.21 - Espectro Raman do composto 6	122	
Figura 5.22 - Curva termogravimétrica (TG, vermelho) e primeira	127	
derivada (DTG, azul) do composto 5. Atmosfera: nitrogênio; taxa de		
aquecimento: 10,00 °C min ⁻¹		
Figura 5.23 - Curva termogravimétrica (TG, vermelho) e primeira	127	
derivada (DTG, azul) do composto 6. Atmosfera: nitrogênio; taxa de		
aquecimento: 10,00 °C min ⁻¹		
Figura 5.24 - Estrutura para os compostos 5 e 6		
Figura 5.25 - Espectro eletrônico de 5 em solução de DMSO,		
$[\text{composto 5}] = 2.0 \text{ x}10^{-5} \text{ mol L}^{-1}$		

Figura 5.26 - Espectro eletrônico de 6 em solução de DMSO, 129 $[composto 6] = 2,5 \times 10^{-5} \text{ mol } \text{L}^{-1}$ Figura 6.1 - Estruturas dos ligantes H_3L1 e H_3L2 132 Figura 6.2 - Estruturas dos complexos 1 e 2 133 Figura 6.3 - Estruturas dos complexos 3 e 4 133 Figura 6.4 - Estruturas dos complexos 5 e 6 133 Figura 6.5 - Estruturas dos complexos 7 e 8 134 Figura 6.6 - Estruturas dos complexos 9 e 10 134 Figura 6.7 - Sobrevivência celular da linhagem de câncer de pulmão 135 A549 nos compostos H3L2, 4, 5, 6, 8, 9, 10 e cisplatina. Cada ponto da curva de sobrevivência celular representa a média ± desvio de um experimento realizado em duplicata, padrão nas concentrações de composto ativo 10, 25, 50, 75 e 100 µM Figura 6.8 - Sobrevivência celular da linhagem de câncer de 136 próstata PC3 nos compostos 4, 6, 9, 10 e cisplatina. Cada ponto da curva de sobrevivência celular representa a média ± desvio padrão de um experimento realizado em duplicata, nas concentrações de composto ativo 10, 25, 50, 75 e 100 µM Figura 6.9 - Estrutura do diéster ativado 2,4-bis(dinitrofenil)fosfato 138 (BDNPP) Figura 6.10 - Estrutura do cátion complexo 138 [Cu2(µ-OH)(C21H33ON6)]2+ Figura 6.11 - Sobrevivência celular da linhagem de câncer de 140 pulmão A549 ao composto 10 Figura 6.12 - Sobrevivência celular da linhagem de câncer de 140 mama (MCF-7) ao composto 10 Figura 6.13 - Espectro de eletroluminescência (EL) dos Dispositivos 143

testados

Lista de tabelas

Tabela 1.1 - Algumas características desenvolvidas pelas células 31 tumorais Tabela 1.2 - Classificação de alguns compostos com relação ao 33 risco carcinogênico para o homem Tabela 1.3 - Exemplos de vírus relevantes na carcinogênese em 35 seres humano Tabela 4.1 - Análise termogravimétrica do ligante H_3L1 70 Tabela 4. 2 - Principais bandas de IV e Raman experimental para 79 H_3L1 , compostos **1** e **2** Tabela 4.3 - Análise termogravimétrica do composto 1. 86 Tabela 4.4 - Análise termogravimétrica do composto 2 86 Tabela 5.1 - Análise termogravimétrica do ligante H₃L2 100 Tabela 5.2 - Dados de RMN de ¹H para o ligante H_3L2 , em DMSO-105 d_6 , à temperatura ambiente Tabela 5. 3 - Principais bandas de IV e Raman experimental para 109 H_3L1 , compostos **1** e **2** Tabela 5.4 - Análise Termogravimétrica do composto 3 114 Tabela 5.5 - Análise Termogravimétrica do composto 4 115 Tabela 5.6- Principais bandas de IV e Raman experimental para 121 H_3L1 , compostos 5 e 6 Tabela 5.7 - Análise Termogravimétrica do composto 5 125 Tabela 5.8 - Análise Termogravimétrica do composto 6 126 Tabela 6.1 - IC₅₀ (μ M) dos compostos nas linhagens de câncer de 136 pulmão A549 e câncer de próstata PC3, baseado no ensaio de redução de MTT. Estes valores foram calculados a partir das curvas dose-resposta (Figuras 6.7 e 6.8), utilizando o programa GraphPadPrism 5 Tabela 6.2 - IC₅₀ (µM) do composto **10** nas linhagens de câncer de 141 pulmão A549, câncer de próstata PC-3 e câncer de mama MCF-7, baseado num ensaio de redução de MTT de 24 h Tabela 6.3 - Arquiteturas dos Dispositivos testados

142

"Nas Estrelas"

Nas estrelas vejo a sua mão. E no vento ouço a sua voz, Deus domina sobre terra e mar: O que ele é pra mim?

Eu sei o sentido do Natal Pois na história tem o seu lugar Cristo veio para nos salvar O que ele é pra mim?

Té que um dia o seu amor senti, Sua imensa graça recebi, Descobri, então, que Deus não vive Longe, lá no céu, sem se importar comigo.

> Mas agora ao meu lado está, Cada dia sinto o seu cuidar, Ajudando-me a caminhar Tudo ele é pra mim!!!

> > João Alexandre