5. Exemplos Numéricos

5.1. Introdução

Neste capítulo, algumas vigas reforçadas à flexão com compósitos de fibra de carbono, estudadas em trabalhos experimentais, foram analisadas através do programa desenvolvido e os resultados comparados com os resultados experimentais. Os trabalhos experimentais escolhidos para esta verificação encontram-se resumidos no Capítulo 2, com detalhes técnicos pertinentes a este estudo, e podem ser estudados detalhadamente em Pinto (2000), Cerqueira (2000) e Araújo (2002).

5.2. Análise Numérica e Comparação de Resultados

5.2.1. Estudo de Pinto (2000)

Na modelagem numérica, elaborada através do pré-processador desenvolvido neste trabalho, foram utilizados 810 elementos bidimensionais planos de quatro nós (Q4) para o concreto e 585 elementos de barra para armadura e reforço, com interpolação quadrática de deslocamentos. A discretização adotada e as condições de contorno do problema são mostradas na Figura 5.1. Devido ao tipo de implementação, e sendo esta a primeira avaliação de desempenho utilizando-se os programas desenvolvidos, optou-se por descrever a aderência entre armaduras e o concreto adjacente como sendo perfeita.

Figura 5.1 – Discretização adotada para analise numérica: (a) Elementos de concreto; (b) Elementos de armadura; (c) Elementos de reforço.

Os parâmetros necessários à formulação do modelo computacional estão resumidos em duas tabelas, sendo as propriedades do concreto, obtidas experimentalmente, apresentadas na Tabela 5.1 e os parâmetros necessários à montagem das superfícies de ruptura, item 3.2.1, na Tabela 5.2. Alguns dos valores apresentados correspondem a valores sugeridos pelos autores da implementação original do programa FEPARCS (Elwi & Murray, 1980), para o caso de não existirem informações experimentais suficientes. Nas Tabelas 5.3 e 5.4 são apresentados os pontos para construção da curva "tensão x deformação", correspondente ao aço e ao compósito de fibra de carbono utilizados no reforço.

Tabela 5.1 - Propriedades do concreto utilizado em V1.

f° _{cu} -Resistência à compressão	35,0 MPa
ϵ_{c} – Deformação associada a f $^{\prime}{}_{cu}$	3 ‰
f [°] _{tu} – Resistência à tração	3,6 MPa
E_o – Módulo de elasticidade tangente inicial	18 GPa
υ _o – Coeficiente de Poisson	0,20

Tabela 5.2 - Parâmetros utilizados no modelo constitutivo.

$\beta_{bc} = f_{bc} / f_{cu}$	1,25
$\beta_t = f_{tu} / f_{cu}$	0,103
(ξ_1, ρ_1)	(22,5;0)
(ξ_2, ρ_2)	(22,5;0)
Energia de fraturamento à tração	80,0 N/m
Energia de fraturamento à compressão	440 N/m
$\sigma_{\rm fis}$	0,75

Armação inferior – ¢16.0				
Tensão (MPa)	Deformação			
0	0,000			
630	0,003			
640	0,020			
700	0,040			
725	0,050			

Estribos e armação superior $-\phi 8.0$			
Tensão(MPa)	Deformação		
0	0,000		
590	0,004		
600	0,006		
700	0,035		
720	0,050		

1 a 0 0 a 0 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A50A	o CA	do ac	cão" d	eformac	x de	"tensão	curva	lo da	tracade	para	Pontos	5.3 - 100	Tabela
---	------	------	-------	--------	---------	------	---------	-------	-------	---------	------	--------	-----------	--------

Tabela 5.4 – Pontos para traçado da curva "tensão x deformação" do compósito de fibra de carbono.

Tensão (MPa)	Deformação
0	0,000
2970	0,018

Analisando-se o estudo experimental desenvolvido para a viga V1, foi observado que o colapso do sistema estrutural ocorreu devido ao descolamento e destacamento do compósito de fibra de carbono, e para valores abaixo da resistência individual de cada material, o que indica a possibilidade do conjunto resistir a esforços superiores caso este tipo de problema não ocorresse. Esta observação conduz a análise realizada a valores abaixo do ponto limite, descrito no item 3.3.

Na análise foi utilizado o método de Newton-Raphson *standard* até o nível de carga mais próximo do ponto limite permitido pelo método. Estabelecendo-se um limite máximo de 200 iterações para obtenção da convergência em cada passo de solução, atualizando-se a matriz de rigidez a cada uma destas iterações, e controlando-se os valores de tolerância em termos de carga e deslocamento, foram obtidos 16 pontos de convergência para análise e comparação de resultados. Os resultados obtidos em termos de desempenho e fator de multiplicação (CCL) são apresentados na Tabela 5.5.

Decco	N° de		
r asso	Iterações		
1	5	0,25	
2	2	0,50	
3	3	0,75	
4	3	1,00	
5	4	1,25	
6	4	1,50	
7	6	1,75	
8	5	2,00	
9	24	2,25	x Cargas
10	9	2,75	Aplicadas
11	16	4,10	
12	47	6,80	
13	31	9,10	
14	26	10,60	
15	85	12,45	
16	30	13,00	
17	42	15,10	
18	95	17,35	

Tabela 5.5 – Desempenho do programa na obtenção de convergência para NRs.

As curvas "carga x deslocamento", obtidas nos trabalhos experimental e numérico, são mostradas nos Gráficos 5.2 e 5.3. No procedimento experimental, a viga foi submetida a um ciclo de carga onde primeiro atingiu-se um valor de 70 kN, foi completamente descarregada, recarregada a 60 kN e descarregada até o valor de 41 kN, para então ser reforçada. Este procedimento gerou um gráfico "Carga x Deslocamento" onde aparecem deformações residuais. Analisando-se através do programa e do modelo proposto, constatou-se que o aço apresentou durante todo este primeiro ciclo um comportamento elástico, sendo a deformaçõe residual proveniente da acomodação dos apoios e dos pontos de aplicação de carga. Este comportamento é notado claramente se o ciclo 0-70-0 kN for ignorado e as deformações igualadas a zero neste ponto.

Observa-se que o modelo foi capaz de representar todos os estágios de comportamento da curva. O fato de considerar-se a aderência como sendo perfeita entre aço-concreto e compósito-concreto, leva o modelo a valores superiores aos experimentais, podendo o colapso ser atingido apenas por excesso de tensão nas partes. Este fato não causa distorções no modelo teórico, pois o descolamento ocorre de forma brusca, e nota-se que os valores obtidos na análise estão bem próximos dos valores experimentais.

Figura 5.2 – Diagrama "Carga x Flecha" – deflectômetro 1.

Figura 5.3 – Diagrama "Carga x Flecha" – deflectômetro 2.

Analisando-se as Figuras 5.2 e 5.3, observa-se um comportamento diferenciado entre pontos notáveis do procedimento. Inicialmente as curvas são aproximadamente lineares com os materiais - concreto e aço - trabalhando sob baixas tensões e apresentando comportamento linear. No passo de solução 9 observa-se uma mudança na declividade dessas curvas relacionada ao inicio do processo de fissuração, e a conseqüente perda de rigidez da estrutura, a partir da qual apresentam uma tendência não linear. No passo de solução 11, correspondente a um carregamento de 41 kN, é introduzido o reforço, e a estrutura passa a apresentar um comportamento mais linear, o que pode ser atribuído ao aumento em torno de 15% da rigidez total à flexão do conjunto. A partir deste ponto, aço e compósito apresentam praticamente a mesma posição no sistema, e

cada um com seu módulo de elasticidade absorve carga em função das deformações impostas. O início do processo de escoamento da armadura longitudinal (passo 14) é marcado por nova mudança de declividade e nova alteração na rigidez do conjunto à flexão, onde o aço mantém a tensão de escoamento e o compósito passa a ser responsável por todo esforço excedente. O comportamento da armadura longitudinal e do compósito pode ser observado nos Gráficos de 5.4 a 5.7.

Figura 5.4 – Diagrama "Carga x Deformação" da armadura longitudinal interna – extensômetro D-1.

Figura 5.5 – Diagrama "Carga x Deformação" da armadura longitudinal interna – extensômetro D-2.

Figura 5.6 – Diagrama "Carga x Deformação" da lâmina de fibra de carbono – extensômetro F-1.

Figura 5.7 – Diagrama "Carga x Deformação" da lâmina de fibra de carbono - extensômetro F-2.

Analisando-se o comportamento da armadura longitudinal e do compósito, é possível observar que os valores teóricos e experimentais em muito se aproximam, inclusive descrevendo o limite de deformação para o conjunto compósito-cola-concreto com pequena e ajustável diferença para o valor experimental.

Quanto à compatibilidade de deformação entre o aço e o compósito, notase que a distância entre eixos não é superior ao valor do cobrimento e por isso as deformações devem ser compatíveis por posicionamento. Os Gráficos 5.4 e 5.5 apresentam valores de deformação elevados no escoamento do aço, que em primeira análise são incompatíveis com a deformação do compósito e da viga. Contudo, nota-se que a partir de 130 kN não se registra mais a deformação do compósito em função do inicio do processo de descolamento, e somente após a perda total da capacidade de resposta deste, a armadura longitudinal deforma-se livremente sem capacidade de resistir aos esforços. Com isso, recomenda-se como valor de colapso para o conjunto estrutural o valor de 130 kN, correspondente ao início de descolamento do compósito, quando se torna inevitável o colapso estrutural. São apresentados na Tabela 5.6 valores comparativos entre a resposta experimental e teórica, baseando-se na deformação do compósito e sem corrigir as diferenças entre os modelos teórico e experimental mencionadas anteriormente.

	P _{máx}	$\Delta_{m \acute{a} x}$	$\epsilon_{\text{fmáx}}$	$P_{m\acute{a}x}/P_{m\acute{a}x,}$	$\Delta_{ m m\acute{a}x}$ / $\Delta_{ m m\acute{a}x,}$	$\epsilon f_{m\acute{a}x}/\epsilon_{fm\acute{a}x,}$
	(kN)	(mm)	(‰)	exp	exp	exp
Teórico	138,0	30,00	5,21	1,06	0,92	1,00
Experimental*	130,0	32,25	5,21	1,00	1,00	1,00

Tabela 5.6 – Comparação entre valores de carga e deformação na ruptura.

* - Ultimo registro antes do inicio de descolamento do compósito.

Nas Figuras 5.8, 5.9, 5.10, 5.11 e 5.13, são apresentados os campos de tensões horizontais para todos os passos de solução e pontos notáveis já mencionados. Na Figura 5.12 é apresentada a distribuição de deformações no aço e no compósito, no inicio do descolamento e referente ao passo de solução 16.

Figura 5.8 - Configuração da viga no início do processo de fissuração - passo de solução 9.

Figura 5.9 - Configuração da viga durante o procedimento de reforço - passo de solução 11.

Figura 5.10 – Configuração da viga imediatamente antes ao descolamento do compósito – passo de solução 16.

Figura 5.11– Configuração da viga imediatamente após descolamento do compósito – passo de solução 17.

Figura 5.12 - Distribuição de tensões nas armaduras iniciais e de reforço - passo de solução 17.

Figura 5.13 – Configuração da viga na iminência da ruptura – passo de solução 18.

Comparando-se os campos de tensão representados nas Figuras 5.8 e 5.9, pode-se notar uma redução no valor das tensões de tração, parte inferior da viga, associado ao inicio do processo de fissuração da viga e correspondente plastificação dos Elementos Finitos. Este processo é descrito através da relação uniaxial equivalente à tração do concreto, item 3.2.1.2.2, podendo, fisicamente, ser atribuído à perda gradual do engrenamento dos agregados do concreto e da conseqüente transferência de resistência para as armaduras longitudinais. Este comportamento fica evidente ao analisar-se a distribuição de tensões ao longo da seção transversal B-T, no meio do vão, onde aparecem as tensões de compressão, ainda com distribuição linear, e o patamar de tensão residual de tração associado a resultante dos esforços de tração nas armaduras.

Imediatamente após inicio do escoamento da armadura de tração o compósito torna-se o único a resistir aos esforços excedentes implementados no sistema, sendo que o aço mantém a tensão de escoamento e o compósito recebe incrementos de tensão proporcionais a deformação. Neste momento, de acordo com a Figura 5.10, as tensões de compressão no concreto mantêm uma relação sem nenhuma indicação de plastificação mantendo-se linear. Ou seja, não fosse

pelo descolamento do compósito o conjunto estrutural continuaria resistindo aos esforços implementados.

Desconsiderando-se o descolamento e continuando-se a análise, nota-se no passo 17 o inicio da plastificação dos elementos que representam o concreto à compressão, ou seja, a distribuição de tensões na seção B-T começa a apresentar um comportamento não-linear, no que diz respeito à compressão. Nota-se uma redistribuição nas tensões de compressão máximas na região entre a aplicação das cargas, com início do processo de fraturamento à compressão. Na Figura 5.12 é observada a distribuição de tensões atuantes no aço e no compósito, estando o compósito sob uma tensão máxima de 1175 MPa e deformação equivalente de 7,12‰ na posição correspondente ao extensômetro D-1. No passo 18 a viga apresenta uma distribuição quase que completamente plastificada, ou danificada, com processo de fraturamento à compressão na iminência de levar o sistema ao colapso com o compósito apresentando tensão de 2074 MPa e deformação de 14,18‰.

Analisando-se as tensões atuantes, constata-se a existência de valores de tensões superiores ao valor de f'_c. No passo de solução 16 a viga apresenta uma distribuição de tensões ainda linear, mas seu valor máximo à compressão é maior que f'_c, sendo o valor de β_{bc} responsável pela tensão atingida neste tipo de confinamento. Atingido um determinado valor, as tensões principais de tração e compressão combinam-se levando a região entre cargas a distribuições de tensão não-lineares e com processo de fraturamento progressivo. Contudo, na região de aplicação das cargas o confinamento existe em todas as direções, e somado a existência do aço de compressão consegue-se atingir nestas regiões uma tensão de aproximadamente 54 MPa.

5.2.2. Estudo de Araújo (2002)

Para esta análise foram utilizados 480 elementos bidimensionais planos de quatro nós (Q4) para o concreto e 422 elementos de barra para armadura e reforço, com interpolação quadrática de deslocamentos. A discretização adotada e as condições de contorno do problema são mostradas na Figura 5.13. De acordo com o adotado na seção anterior, a aderência entre armaduras e o concreto adjacente é considerada perfeita para efeito de cálculo do modelo.

Figura 5.14 – Discretização adotada para analise numérica: (a) Elementos de concreto; (b) Elementos de armadura; (c) Elementos de reforço.

De acordo com o estudo experimental desenvolvido e os resultados obtidos, apresentados em 2.5.2, foram escolhidas as vigas V1 e V4 como referência para o desenvolvimento deste estudo. Sua escolha foi baseada na representatividade dos resultados obtidos, já que possuíam a mesma instrumentação, extensômetros posicionados nos pontos de esforço máximo à flexão e reforços com seção transversal diferentes.

Os parâmetros necessários à formulação dos modelos computacionais estão resumidos em duas tabelas, sendo as propriedades do concreto, obtidas experimentalmente , apresentadas na Tabela 5.7 e os parâmetros necessários à montagem das superfícies de ruptura, item 3.2.1, na Tabela 5.8. Alguns dos valores apresentados correspondem a valores sugeridos pelos autores da implementação original do programa FEPARCS (Elwi & Murray, 1980). Nas Tabelas 5.9 e 5.10 são apresentados os pontos para construção da curva "tensão x deformação", correspondente ao aço e ao compósito de fibra de carbono utilizado no reforço.

	V1 a V3	V4 a V6
f' _{cu} – Resistência à compressão	29,0 MPa	29,1 MPa
ϵ_c – Deformação associada a f ² _{cu}	3 ‰	3 ‰
f' _{tu} – Resistência à tração	2,9 MPa	2,9 MPa
E _o – Módulo de Elasticidade tangente inicial	20 GPa	20 GPa
v _o – Coeficiente de Poisson	0,20	0,20

Tabela 5.7 - Propriedades do concreto utilizado.

Tabela 5.8 - Parâmetros utilizados no modelo constitutivo das vigas V1a V6.

$\beta_{bc} = f_{bc} / f_{cu}$	1,25
$\beta_t = f_{tu} / f_{cu}$	0,103
(ξ_1, ρ_1)	(22,5;0)
(ξ_2, ρ_2)	(22,5;0)
Energia de fraturamento à tração	80,0 N/m
Energia de fraturamento à compressão	440 N/m
$\sigma_{\rm fis}$	0,75

Tabela 5.9 – Pontos para traçado da curva "tensão x deformação" do aço CA50A.

Tensão (MPa)	Deformação
0	0,000
500	0,0025
620	0,0055
650	0,024
100	0,040

Tabela 5.10 - Pontos para traçado da curva "tensão x deformação" do compósito de fibra de

carbono.

Tensão (MPa)	Deformação
0	0,000
3645	0,015

Analisando-se os resultados experimentais obtidos para as vigas V1 a V6, foi observado que o colapso do sistema estrutural ocorreu pela ruptura do compósito de fibra de carbono, imediatamente após a plastificação do aço de flexão. Não havendo indicativo de ruptura por esmagamento do concreto e como a ruptura do compósito acontece de forma frágil, a análise será conduzida a valores abaixo do ponto limite, descrito no item 3.3, sem necessidade analítica e prática de ir além deste.

Sendo assim, para obtenção dos resultados desejados foi utilizado na análise o método de Newton-Raphson *standard* até o nível de carga mais próximo do ponto limite permitido pelo método e pelos materiais utilizados.

▶ Viga 1:

Estabelecendo-se um limite máximo de 200 iterações para obtenção da convergência em cada passo de solução, atualizando-se a matriz de rigidez a cada uma destas iterações, e controlando-se os valores de tolerância em termos de carga e deslocamento, foram obtidos 19 pontos de convergência para análise e comparação de resultados. Os resultados obtidos em termos de desempenho e fator de multiplicação (CCL) são apresentados na Tabela 5.11.

Tabela 5.11 – Desempenho do programa na obtenção de convergência para NRs.

			1	
	Passo	N° de Iterações		
Introdução do reforço	1	5	0,50	
	2	3	1,00	
	3	4	1,50	
	4	4	2,00	
	5	6	2,50	
	6	6	3,00	
	7	7	4,00	
	8	8	5,00	
	9	3	6,00	v Corgos
	10	15	8,00	x Cargas
	11	16	9,00	Apricadas
	12	14	10,00	
	13	34	14,00	
	14	29	17,00	
	15	37	19,00	
	16	33	20,00	
	17	26	20,75	
	18	31	21,50	
	19	44	22,50	

Analisando-se a curva "carga x deslocamento" obtida na análise, mostrada nos Gráficos 5.14 e 5.15 em conjunto com o resultado experimental, percebe-se a existência de dois pontos que marcam a perda gradual de rigidez do sistema estrutural.

Figura 5.15 – Diagrama "Carga x Flecha" na posição do deflectômetro 1 -Comparação entre o valore teórico da viga reforçada e o experimental.

Figura 5.16 – Diagrama "Carga x Flecha" na posição do deflectômetro 2 -Comparação entre o valore teórico da viga reforçada e o experimental.

O primeiro ponto pode ser notado próximo ao passo de solução que gera um fator multiplicador igual a cinco e refere-se ao inicio efetivo da propagação das fissuras de tração. Neste momento o concreto perde capacidade de resistência à tração nas partes afetadas, e o conjunto aço-compósito atua única e efetivamente gerando o binário resistente. Vale ressaltar que diferentemente do estudo anterior, a adição do compósito aconteceu antes de iniciar-se o processo de fissuração.

Após acomodações entre os materiais, o conjunto segue resistindo através de um comportamento linear até valores próximos de um fator multiplicador igual a 20. Este comportamento linear se deve ao fato do aço se encontrar em seu regime elástico, e trabalhar combinado ao compósito de fibra de carbono, sempre elástico. Ocorre uma nova redução de rigidez do conjunto quando o aço, de acordo com ensaio próprio, começa a perder rigidez gradualmente, causando aumento na parcela de contribuição do compósito e sua conseqüente ruptura por excesso de esforço. Este processo é notado claramente nas deformações que ocorrem no vão biapoiado, inclusive invertendo a rotação no apoio do balanço e causando redução na deflexão geral do balanço.

Comparando os resultados dos deslocamentos obtidos na análise numérica, Gráficos 5.14 e 5.15, notam-se algumas diferenças de desempenho que podem ser justificadas pela simplicidade do sistema experimental para aplicação de forças e o do programa que é pré-definido e vetorial. O sistema experimental para aplicação de forças é mecânico e deve ser desmontado para aplicação dos reforços, enquanto o sistema do programa é predefinido e vetorial, o que permite a rotação negativa de apoio já descrita. Os comportamentos do aço de flexão e do compósito podem ser observado nas Figuras de 5.17 a 5.18.

Figura 5.17 – Diagrama "Carga x Deformação" na posição do extensômetro 2 -Comparação entre o valor teórico da viga reforçada e o experimental.

Figura 5.18 – Diagrama "Carga x Deformação" na posição do extensômetro 7 -Comparação entre o valor teórico da viga reforçada e o experimental.

Analisando-se o comportamento do aço que compõe a armadura longitudinal, é possível observar que os valores teóricos e experimentais estão de acordo com as considerações feitas anteriormente. O sistema mecânico experimental de distribuição de cargas forçou os pontos de contato em suas direções de deslocamento, causando a perda de rigidez no meio do vão e no balanço quase ao mesmo tempo, diferente da análise teórica. Nota-se a perda do "extensômetro 2" durante o ensaio, o que compromete em parte a análise gráfica efetuada, pois de acordo com seu traçado inicial poderia constatar-se um alinhamento quase semelhante entre e justificado para o extensômetro 7.

São apresentados na Tabela 5.12 valores comparativos entre a resposta experimental e teórica.

	P _{máx}	$\Delta_{ m m\acute{a}x}$	$\epsilon_{fmáx}$	P _{máx} / P _{máx, exp}	$\Delta_{ m m\acute{a}x}$ / $\Delta_{ m m\acute{a}x,}$	$\epsilon_{fm\acute{a}x}/\epsilon_{fm\acute{a}x,}$
	(kN)	(mm)	(‰)	-	exp	exp
Teórico	225,00	19,15	-	1,09 1,02 1,12	-	-
Experim. V1	206,15	-	-	1,00	-	-
Experim. V2	219,55	-	-	1,00	-	-
Experim. V3	200,52	-	-	1,00	-	-

Tabela 5.12 – Comparação entre valores de carga e deformação na ruptura.

► Viga 4:

Seguindo-se o mesmo procedimento de modelagem e cálculo da viga V1, com aumento da seção transversal do compósito no reforço negativo de acordo com o item 2.5.2, os resultados obtidos em termos de desempenho e fator de multiplicação são apresentados na Tabela 5.13.

	Decco	N° de		
	Passo	Iterações		
	1	5	0,50	
	2	3	1,00	
Introdução do reforço	3	4	1,50	
	4	4	2,00	
	5	5	2,50	
	6	5	3,00	
	7	3	4,00	
	8	6	5,00	
	9	20	6,00	. Comos
	10	17	8,00	x Cargas
	11	15	9,00	Aplicadas
	12	12	10,00	
	13	20	14,00	
	14	29	17,00	
	15	27	19,00	
	16	22	20,00	
	17	26	20,75	
	18	27	21,50	
	19	40	22,60	
Analizanda a	a" 6 page			

Tabela 5.13 – Desempenho do programa na obtenção de convergência para NRs.

Analisando-se as curvas "Carga x Flecha" é possível notar a compatibilidade no desempenho entre o modelo teórico e o experimental, mostrando que houve uma razoável concordância de resultados, o que confirma os comentários feitos para a análise da viga V1.

Figura 5.19 – Diagrama "Carga x Flecha" na posição do deflectômetro 1 -Comparação entre o valore teórico da viga reforçada e o experimental.

Figura 5.20 – Diagrama "Carga x Flecha" na posição do deflectômetro 2.

Figura 5.21 – Diagrama "Carga x Deformação" na posição do extensômetro 2.

Figura 5.22 - Diagrama "Carga x Deformação" na posição do extensômetro 7.

O comportamento estrutural das vigas V1 e V4 são semelhantes, sendo possível verificar que os mesmos pontos marcam a perda gradual de rigidez do sistema estrutural. A confirmação é obtida analisando-se os gráficos de "Carga x Flecha" e "Carga x Deformação", onde o resultados experimentais e teóricos praticamente se sobrepõem. Analiticamente nota-se que as tensões atuantes nos pontos de esforço máximo praticamente se equivalem, sendo determinante para a ruptura do compósito e do sistema uma diferença mínima entre propriedades. Esta observação está retratada no fato de todos os gráficos de deslocamento e deformação serem compatíveis entre valores teóricos e experimentais, diferenciando-se apenas na eminência de ruptura.

São apresentados na Tabela 5.14 valores comparativos entre a resposta experimental e teórica, baseando-se na deformação do aço-compósito e sem corrigir os valores para eventuais distorções experimentais, mencionadas anteriormente.

	P _{máx} (kN)	Δ _{máx} (mm)	*εf _{máx} (‰)	P _{máx} / P _{máx, exp}	$\Delta_{ m m\acute{a}x}$ / $\Delta_{ m m\acute{a}x,~exp}$	$\epsilon f_{máx} / \epsilon f_{máx,}$
Teórico	226,0	19,78	7,623	0,99 1,09 0,83	0,95 0,80 1,06	1,00
Experim. V3	227,97	20,89	7,620	1,00	1,00	1,00
Experim. V5	207,50	24,77	-	1,00	1,00	-
Experim. V6	272,08	18,57	-	1,00	1,00	-

Tabela 5.14 - Comparação entre valores de carga e deformação na ruptura

* - Leitura correspondente à perda do extensômetro 2 em 180kN.

Devido à semelhança no comportamento estrutural das vigas estudadas, foi escolhida para representar a analise de tensões no concreto o modelo gerado para a viga V4. Assim, são apresentados nas Figuras 5.23, 5.24, 5.25, 5.26 e 5.27, os campos de tensões horizontais para todos os passos de solução e pontos notáveis mencionados. Na Figura 5.28 é apresentada a distribuição de tensões atuantes no aço e no compósito de reforço, correspondente ao passo de solução 19 e a distribuição de tensões horizontais representado na Figura 5.27.

Figura 5.23 – Configuração de tensões atuantes durante o processo de fissuração – passo de solução 8 – tensões de compressão e tração ao longo das seções transversais.

Figura 5.24 – Configuração de tensões atuantes no inicio do processo de escoamento do aço – passo de solução 16 – tensões de compressão e tração ao longo das seções transversais.

Figura 5.25 - Configuração de tensões atuantes ao inicio do processo de escoamento do aço passo de solução 16 - tensões principais de Compressão.

Figura 5.26 - Configuração de tensões atuantes na eminência de ruptura do compósito de fibra de carbono - passo de solução 19 - tensões de compressão e tração ao longo das seções transversais.

Figura 5.27 – Configuração de tensões atuantes na eminência de ruptura do compósito de fibra de carbono – passo de solução 19 – tensões principais de compressão.

Figura 5.28 – Configuração de tensões atuantes na eminência de ruptura do compósito de fibra de carbono – passo de solução 19 – armação e reforço de flexão

Estudando-se o campo de tensão representado nas Figura 5.23, pode-se notar um patamar no valor das tensões de tração, parte inferior da viga, associado ao inicio do processo de fissuração da viga e correspondente a primeira perda de rigidez mencionada na analise do gráfico "Carga x Deslocamento". Este comportamento fica evidente ao analisar-se as distribuições de tensão ao longo das seções transversais detalhadas, onde aparecem as tensões de compressão, ainda com distribuição linear, e o patamar de tensão residual de tração associado a resultante dos esforços de tração nas armaduras.

Analisando-se a distribuição de tensões ao longo da seção transversal após inicio do escoamento da armadura de tração, passo de solução 16, nota-se uma distribuição linear das tensões de compressão com valores máximos já ultrapassando o valor de f'_c. Neste ponto, verifica-se que as fissuras, visualizadas na Figura 5.24, já começam a comprometer as regiões de momento máximo.

Na eminência do colapso a viga apresenta um estado avançado de fissuração e o concreto na zona comprimida mostra sinais de degradação com distribuição de tensões não-linear. Entretanto, nota-se na Figura 5.28 que o compósito encontra-se na eminência de ruptura, apresentando tensões de 3300 MPa, o aço com tensões máximas entre 503 e 736 MPa, e a clara indicação do colapso do sistema pela de ruptura destes elementos no vão bi-apoiado.