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A
Double wishbone suspension kinematic constraints

A.1
Constraint equations: wheel up/down motion

In order to satisfy the suspension topology, constraint equations are need to
be considered in the kinematic model. Similarly to the wheel’s position, the
position of the ball joint F can be expressed in the vehicle-fixed axis system
V , see Figure 47, as follows

rV F,V = rV B,V + AφrBC,φ + AV W rCF,W (A-1)

where rV B,V (measured in V ), rBC,φ (measured in an axis system fixed to the
lower control arm) and rCF,W (measured in the wheel-fixed axis system W ) are
defined by the suspension topology. Furthermore, because F is also attached
to the upper control arm, its position can be also represented by,

rV F,V = rV D,V + AρrDF,ρ (A-2)

where rV D,V (measured in V ) and rDF,ρ (measured in an axis system fixed to the
upper control arm) are given by data and, Aρ represent the rotation matrix of
the upper control arm. Similarly to Equation 2-21, Aρ can be calculated using
the rotation axis eρ (defined by D and E) via

Aρ = eρeT
ρ +

�
I3×3 − eρeT

ρ

�
cos ρ + �eρ sin ρ. (A-3)

where ρ is the angle of rotation around eρ as illustrated in Figure 47.
Considering and rearranging Equation A-1, A-2 and A-3, it is possible

to find an expression of the form

a cos ρ + b sin ρ = c (A-4)

with
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V
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Figure 47: Lower and upper control arms of a double wishbone suspension
system.

a = rT
CD,V

�
I3×3 − eρeT

ρ

�
rDF,ρ

b = rT
CD,V eρ × rDF,ρ

c = 1
2

�
CF

2 −
�
CD

2 + DF
2��

− rT
CD,V eρeT

ρ rDF,ρ

rCD,V = rV D,V − (rV B,V + AφrBC,φ)

(A-5)

where CF and DF are the lengths of the vectors rCF and rDF respectively, and
CD = rT

CD,V rCD,V . The solution of the Equation A-4 can be easily obtained
via

ρ = arcsin
�

c√
a2 + b2

�
− arctan

�
a

b

�
(A-6)

where ρ = ρ(φ) because rCD,V is function of φ as presented in Equation A-
5. With ρ = ρ(φ), the rotation matrix of the upper control arm Aρ can be
calculated using Equation A-3, i.e. Aρ(φ). Then, the rotation of the upper
control arm is completely described by the rotation of the lower control arm
φ.

The next step is to obtain an expression of the elementary rotation Aα

and Aβ in function of the φ. This is required in order to describe the wheel
body orientation under pure up/down wheel motion, i.e. variation of φ. The
vector rCF,V can be expressed by,
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Appendix A. Double wishbone suspension kinematic constraints 101

rCF,V = rCD,V (φ) + Aρ(φ)rDF,ρ (A-7)

where rCD,V is obtained from Equation A-5 and Aρ(φ) from Equation A-3. In
addition, rCF,V can be also calculated by using the elementary rotations as
follows

AαAβAδrCF,W = rCF,V . (A-8)

However, because rCF,W coincides with the rotation axis eδ, it will be not
affected by this rotation, i.e. AδrCF,W = rCF,W . Then, using this last equality
into Equation A-8, it is obtained

AαAβrCF,W = rCF,V (A-9)

where rCF,V is calculated using Equation A-7. Then, by multiplying the last
equation by AT

α and considering Equation 2-23, we obtain




cos β 0 sin β

0 1 0
− sin β 0 cos β


 rCF,W =




1 0 0
0 cos α − sin α

0 sin α cos α




T

rCF,V (A-10)

where rCF,W is measured in the wheel-fixed axis system W and is given by
data, and rCF,W is know from Equation A-7. Equation A-10 is a system of
equations with two unknown variables, i.e. α and β. Then, considering the
1st and 3rd row of this equation system, it is possible to find mathematical
expressions, similarly to Equation A-4, for α and β. Consequently, they can
be solved by using Equation A-6. Finally, the upper control arm rotation ρ

(Equation A-6), and the elementary rotations α and β (Equation A-10) are
described by the wheel up/down motion, i.e. the rotation of the lower control
arm φ.

A.2
Constraint equations: rack displacement

For the suspension model presented here, a pure lateral rack motion was
assumed. In addition, the rack displacement commands the wheel rotation
around the kingpin axis eρ through the drag link. Then, the actual position of
the ball joint R can be expressed in the vehicle-fixed axis system V as follows
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Appendix A. Double wishbone suspension kinematic constraints 102

rV R,V = rK
V R,V +




0
uF

0


 (A-11)

where rK
V R,V represents the design position of the ball joint R related to V

and is defined by the topology of the suspension, and uF is the front rack
displacement.

The other attached point of the drag link, i.e. the ball joint Q, can be
calculated via

rV Q,V = rV A,V + AφrAC,φ + AV W rCQ,W (A-12)

where rV A,V (measured in V ), rAC,φ (measured in an axis system fixed to the
lower control arm) and rCQ,W (measured in the wheel-fixed axis system W )
are defined by the suspension topology. Considering the current position of
the attached points of the drag link, i.e. R and Q, it is possible to defined the
second constraint equation via

(rV Q,V − rV R,V )T (rV Q,V − rV R,V ) = RQ
2 (A-13)

where rV R,V and rV Q,V are obtained using Equation A-11 and A-12 respec-
tively, and RQ is the length of the drag link.

From the suspension topology, see Figure 15, it is possible to define the
position of the ball joint C as follows

rV C,V = rV R,V + rRC,V = rV A,V + AφrAC (A-14)

Then, inserting the previous expression into Equation A-12, we obtain

rV Q,V − rV R,V = rRC,V + AV W rCQ,W (A-15)

Finally, inserting the last expression into the Equation A-13, one gets

(rRC,V + AV W rCQ,W )T (rRC,V + AV W rCQ,W ) = RQ
2 (A-16)

rearranging and simplifying last expression results in

rT
RC,V rRC,V + 2rT

RC,V AV W rCQ,W + rT
CQ,W rCQ,W = RQ

2 (A-17)
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Appendix A. Double wishbone suspension kinematic constraints 103

Using the the previous equation and considering the following: AV W = AαAβAδ

and Aδ is defined by Equation 2-23, RC = rT
RC,V rRC,V and CQ = rT

CQ,W rCQ,W ,
it is obtained an expression similarly of Equation A-4 and therefore, it can be
solved using Equation A-6.
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B
Steering tendencies

In order to analyze the steering tendency of road vehicles, a driving maneuver
called steady state cornering is performed. For this maneuver, a human driver
or an appropriate driver model, see Section 3, need to maintain the vehicle on a
curve of radius R and at the same time increase slowly the driving speed v. As
the lateral acceleration can be computed via ay = v2/R, it also increases when
v increases until reaching the tire-road adhesion limit. Depending of which
tires saturates first, i.e. front or rear tires, the vehicle reaches the oversteer or
understeer limit.

B.1
Scaled car

In Figure 48, the steering wheel angle and the sideslip angle of the scaled car
(employed to validate the lateral dynamics of the multibody vehicle model)
against the lateral acceleration at the vehicle COG are shown. Table 11
summarize the characteristic parameters of the SHM for the scaled car.

Linear
Multibody

ay/g ≈ 0.56

Figure 48: Steering tendency of the scaled car.

It can be noticed from the left plot that the scaled car has a highly
oversteer tendency. With this characteristic the vehicle becomes unstable with
a tendency to spin out. However, some skilled drivers prefer this type of vehicle
in order to perform drastic driving maneuvers, e.g. drifting.
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Table 11: Scaled car: characteristic parameters for the corresponding SHM

Parameter Symbol Value Unit
Vehicle mass m 10.54 kg
Vehicle z-axis inertia Θ 1.05 kg.m2

Distance COG to front axle lf 0.31 m
Distance COG to rear axle lr 0.22 m
Cornering stiffness at front axle Kf 625 N/m
Cornering stiffness at rear axle Kr 775 N/m

B.2
Fullsize car

Figure 49, shows the steering tendency of a fullsize car. The solid line
represents the steering wheel angle computing using the fully nonlinear and
three-dimensional multibody vehicle model with the characteristic parameters
summarized in Table 8, and the dashed line was computed using a SHM with a
linear tire model considering the front and rear cornering stiffness, see Table 12.
The front and rear cornering stiffness, Kf and Kr in Table 12 respectively,
describe the stiffness of each axle, that depends for example, on the suspension
configuration and tire force characteristics. As can be noticed from the left plot
of the Figure 49, the fullsize car has an understeer tendency, i.e. Krlr > Kf lf .

Linear
Multibody

ay/g ≈ 0.25

Figure 49: Steering tendency of a fullsize car.
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Table 12: Fullsize car: characteristic parameters for the corresponding SHM

Parameter Symbol Value Unit
Vehicle mass m 2127.8 kg
Vehicle z-axis inertia Θ 3358.3 kg.m2

Distance COG to front axle lf 1.5 m
Distance COG to rear axle lr 1.4 m
Cornering stiffness at front axle Kf 150 kN/m
Cornering stiffness at rear axle Kr 200 kN/m

B.3
Midsize car

Figure 50 shows the steering tendency of a midsize car. Characteristic param-
eters employing for the SHM of the midsize car are summarized in Table 13.
As can be noticed in Figures 49 and 50, these type of vehicles have an under-
steer tendency. This is normal for passengers car because, although the vehicle
follows a path of radius larger than the driver intends, it is dynamically sta-
ble [33].

Linear
Multibody

ay/g ≈ 0.29

Figure 50: Steering tendency of a midsize car.

Table 13: Midsize car: characteristic parameters for the corresponding SHM

Parameter Symbol Value Unit
Vehicle mass m 1450 kg
Vehicle z-axis inertia Θ 2020.3 kg.m2

Distance COG to front axle lf 1.13 m
Distance COG to rear axle lr 1.47 m
Cornering stiffness at front axle Kf 121.5 kN/m
Cornering stiffness at rear axle Kr 120 N/m

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA




