
3
PyCar: A versatile vehicle simulation package

Currently, there are many vehicle simulation softwares, e.g. CarSim [55], MSC
Adams Car [56] and VI-CarRealTime [57]. In general, they are employed for
vehicle dynamic analysis and design of control strategies for active safety
systems. However, in many cases, these softwares are difficult to use and/or
a license is required. In addition, in the previous section, the fully non-linear
and three-dimensional road vehicle model was derived using nine rigid bodies
and the Jordain’s principle. This model includes, a handling tire model and a
non-linear suspension model. Finally, the chassis, the tire and the suspension
system, were included in one global package that was named in this thesis as
PyCar.

PyCar is an essential part of this thesis and it was developed in order
to test control strategies, to analyze the vehicle dynamics and the suspension
system kinematics. Due to this characteristic, it was denominated as a versa-
tile vehicle dynamic simulation package. Furthermore, PyCar was built using,
predominantly, Python as a programming language. The choice of this pro-
gramming language was because it is well accepted in the scientific community
as well as there is a solid support behind its main numerical package, e.g.
SciPy [58], Numpy [59] and Matplotlib [60].

3.1
Computational vehicle model

The global multibody vehicle model is completely described by the Equa-
tion (2-71). This nonlinear system of differential equations can be analyzed by
numerical time integration. Furthermore, the computational effort to solve this
system is generally large due to the complexity of the vehicle model. Conse-
quently, a trade-off between accuracy and time consuming is required in order
to choose the correct solver. A theoretical review of methods to solve a sys-
tem of differential equations can be found in [61, 62]. In [63], numerical time
integration methods for a multibody vehicle model are considered.

The commercial programming platform Matlab® offers seven solvers for
technical computing as presented in [64], i.e. ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb. Each of them has their advantages and disadvangaes

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA



Chapter 3. PyCar: A versatile vehicle simulation package 61

against a stiff and non-stiff problems [61]. Generally, ode45 is the best function
to apply as a “first try” for the majority of problems. However, if the
programmer/user suspects that the system is a stiff problem, probably the
ode15s solver is the best option. Especifically, because the multibody vehicle
model is highly non-linear, i.e. a stiff problem, implicit solvers, e.g. ode15s or
ode23s, are needed. Furthermore, because PyCar was implemented in Python
then, a equivalent Matlab® implicit solver need to be employed.

3.1.1
Numerical integration

PyCar use the VODE [65] solver for the numerical solution of the multibody
vehicle model described in this thesis. Probably, this set of subroutines for
numerical solution of initial-value problems (IVP) is the best know ODE
solver for stiff and non-stiff problems. Neverthless, before solving the system
of differential equations of the multibody vehicle model of the form

M(q)ż = g(q, z, t), z(t0) = z0, z ∈ Rn (3-1)

the solution of the M (q)−1g(q, z, t) need to be computed first in order to
have IVP of the form

ẏ = f(y, t), y(t0) = y0, y ∈ Rn (3-2)

and finally, compute the its numerical solutions by applying the VODE solver.
The solution of M(q)−1g(q, z, t) is performed using a LU decomposition
implemented by the Numpy package.

3.1.2
Virtual test driver

The driver can be thought as a sensor, controller and actuator over the vehicle.
It senses the environment and the current state of the vehicle, then takes a
decision based on its capabilities (experience) and finally actuates over the
vehicle through the steering wheel, brake and throttle pedal, and the clutch.
In addition, an average driver can recognize the linear behavior of the vehicle,
i.e. when the vehicle is in the stability region. On the other hand, skilled
drivers can operate the vehicle at its limits without allowing the car to become
unstable.

In this thesis, an average driver is modeled using a Proportional-
Derivative (PD) controller. In addition, the driving torque is controlled by the
driver using a simple PI-controller where the vehicle longitudinal is considered
as input. For steering control of this driver model, only one input is required,

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA



Chapter 3. PyCar: A versatile vehicle simulation package 62

i.e. the cross-track error (ε). This input is defined as the difference between the
current lateral position y and the desired one y0, i.e. ε = y(t)−y0(t). Then, the
driver model is proportional to this error and the variation of it. In addition,
the controller has a delay τ , this means

δ(t + τ) = −Kpε − Kdε̇ (3-3)

where Kp and Kd are the proportional and derivative gain of the controller
respectively. Moreover, by expanding the function δ(t + τ) using the Taylor
series about time t and truncating it after the linear term, it is obtained

τ δ̇(t) + δ(t) = −Kpε − Kdε̇ (3-4)

The delay τ of this first-order driver model includes the reaction time of
the driver as well as the actuator delay. In addition, it is possible to assume a
delay τ = 0.25 s for an average driver and τ = 0.08 s for skilled drivers [69].

Figure 22 shows a double lane-change maneuver performed by the PD
driver defined in Equation (3-4). The vehicle model employed for this simula-
tion is the simple handling model defined in Section 2. For this maneuver, a
reference lateral position y0(t) is defined as follows

y0(t) =





5 for 1 < t < 8

0 for other values
(3-5)

It can be noticed that the PD driver is capable of following the reference
trajectory quite well as shown in the plot of ε − x. In addition, a steering
ratio kδ = 1/17 is considered, δw represents the steering wheel angle. Some
characteristic parameters for the simple handling vehicle model and for the
PD driver controller are shown in Table 6.

3.2
Animation environment

It is well know that the visualization of the simulation results by animation of
the multibody system is an important feedback for the engineer. PyCar also
offers a web-based visualization tool. Figure 23 shows a screen-shot of PyCar
animation tool. In this 3D environment it is possible to create obstacles as
well as represent different type of surfaces, this is particularly useful for µ-split
scenarios. In addition, the time simulation is displayed in the left upper part
of the panel as well as some useful bottoms to command the animation in the
right upper part.

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA



Chapter 3. PyCar: A versatile vehicle simulation package 63

−20

−10

0

10

20

y
[m

]

−60

−40

−20

0

20

40

60

δ w
[d
eg
]

−6
−5
−4
−3
−2
−1
0
1

ε
[m

]

0 50 100 150

x [m]

−20
−15
−10
−5
0
5

10
15
20

ψ̇
[d
eg
/s
]

Figure 22: Double lane-change maneuver performed by the PD driver model
using the simple handling model at 50 km/h.

3.3
Model validation using PyCar

In order to validate the multibody vehicle model through PyCar, a scaled car
is employed, see Figure 24. This scaled car was built about 5 years ago at OTH
Regensburg [16] and it is constantly improving. In addition, this scaled vehicle
is highly oversteer, see Appendix B.1. For measurements of the lateral states,
e.g. yaw rate ψ̇ and lateral acceleration ay, sensors were mounted in this scaled
car. In addition, this scaled model is controlled using a Radio Control Joystick.
Inertia and geometric data of the scaled vehicle are presented in Table 7.

For the validation, a double-lane change was performed in a surface of
a static coefficient of friction of 0.7 approximately. Figure 25 shows the input
steering angle performed by the driver using the Radio controller. This input
is measured in %, it represents the maximum and minimum angle of the servo

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA



Chapter 3. PyCar: A versatile vehicle simulation package 64

Table 6: Simple handling model and Proportional-Derivative driver model
parameters.

SHM
Parameters Symbol Value Unit
Vehicle mass m 1724 kg

Vehicle z-axis inertia Θ 1100 kg × m2

Distance c.o.g to front axle lf 1.35 m
Distance c.o.g to rear axle lr 1.15 m

Cornering stiffness of front axle Kf 9 × 104 N/−
Cornering stiffness of rear axle Kr 13.8 × 104 N/−

PD driver model
Proportional gain Kp 0.3 rad/m
Derivative gain Kd 0.4 rad × s/m

Delay τ 0.25 s
Steering ratio kδ 1/17 -

Figure 23: PyCar animation screen-shot.

Figure 24: Three-dimensional CAD model and real scaled car.

motor that controls the steering angle. Moreover, the velocity of the maneuver
was controlled to 5 m/s approximately.

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA



Chapter 3. PyCar: A versatile vehicle simulation package 65

Table 7: Scaled vehicle main inertia and geometric data.

Parameter Value Unit
Tire radius 0.0618 m
Wheel base 0.5080 m
Track width 0.3210 m

Height of c.o.g. 0.1397 m
Mass 12.215 kg

Inertia x-axis 0.1038 kg × m2

Inertia y-axis 0.5730 kg × m2

Inertia z-axis 0.6291 kg × m2

−100

−50

0

50

100

S
te
er
in
g
an

gl
e
δ
[%

]

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Time [s]

0

1

2

3

4

5

6

V
el
o
ci
ty

[m
/s
]

Figure 25: Top: input steering angle for a double lane change maneuver
performed in a surface with a static coefficient of friction of 0.7 approximately.
Bottom: controlled longitudinal velocity (black: measurement, gray: PyCar).

Figure 26 shows the lateral acceleration and yaw rate obtained by the
sensors as well as the ones computed using PyCar. In qualitative terms, a good

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA



Chapter 3. PyCar: A versatile vehicle simulation package 66

agreement between the measurements and states computed by PyCar can be
observed.

Figure 26: Top: lateral acceleration versus time. Bottom: yaw rate versus
time in a double lane change maneuver (black: measurement, gray: PyCar).

DBD
PUC-Rio - Certificação Digital Nº 1321902/CA




